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Abstract

The stringent timing constraints as well as the functional correctness are essential require-
ments of hard real-time systems. In such systems, scheduling plays a very important role in
satisfying these constraints. The priority based scheduling schemes have been used commonly
due to the simplicity of the scheduling algorithm. However, in the presence of task interdepen-
dencies and complex timing constraints, such scheduling schemes may not be appropriate due to
the lack of an efficient mechanism to schedule them and to carry out the schedulability analysis.
In contrast, the time based scheduling scheme may be used to schedule a set of tasks with greater
degree of schedulability achieved at a cost of higher complexity of off-line scheduling. One of
the drawbacks of currently available scheduling schemes, however, is known to be their inflexi-
bility in dynamic environments where dynamic processes exist, such as aperiodic and sporadic
processes. We develop and analyze scheduling schemes which efficiently provide the flexibility
required in real-time systems for scheduling processes arriving dynamically. This enables static
hard periodic processes and dynamic processes(aperiodic or sporadic) to be jointly scheduled.
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1 Introduction

In this paper we develop an approach to addressing the problem of incremental scheduling of tasks
in a hard real-time system.

Real-time systems are characterized by the timing constraints on the execution of tasks. Usually,
the real-time computer systems are used to control or interact with a physical system and the timing
constraints on the execution of task instances are imposed by the requirements of the physical
system. In a hard real-time system, failure to conform to any timing constraint is considered a
catastrophic failure.

Clearly, in order to ascertain that the timing constraints will be satisfied, it is essential that the
resource requirements for task instances be known and made available in a timely manner. When,
for a hard real-time system, an absolute guarantee is required, it is necessary that the resources for
the worst case execution be reserved.

Traditionally, the scheduling problem considered for real-time systems is that of generating a
schedule for n tasks. In practice, however, a system may have to accept additional tasks during its
operation. Here, we study the problem of incremental scheduling in dynamic time-based environ-
ment. We assume that we are given a set of n tasks, 7(and all their task instances), along with
a schedule for their execution. We consider adding a task to the schedule. To add a new task, we
have to first analyze the acceptability of it. If this task can not be scheduled without violating
constraints of any of the tasks in 7 then this task is not accepted. If this can be scheduled, we not
only accept the task, but also add it to the schedule.

One approach to real-time scheduling is to assign priorities to tasks statically or dynamically
and use those priorities to schedule the tasks at runtime. The schedulability tests can be carried
out with little overhead. But, this approach does not provide the capability to schedule the task
set with complex timing constraints, such as complicated precedence relations, jitter constraints,
relative timing constraints, etc.

The time-based scheduling approach can schedule any set of tasks with complex timing con-
straints. Traditionally, this is done by statically allocating resources(time intervals) to the task
instances at pre-runtime. Recently, much research effort has been devoted to reduce the complex-
ity of the off-line scheduling algorithms and some systems have been successfully implemented using
this approach [24, 29, 31, 14, 30]. In this proposal, we develop a time-based scheduling scheme in
which the scheduling of resource usages may be done dynamically at run-time and we employ this
approach to incrementally schedule arriving tasks.

In Section 2 the incremental scheduling problem is formally defined within a time-based schedul-
ing scheme. The related work is presented in Section 3 and the results on incremental scheduling of
aperiodic and sporadic tasks are presented in Section 4. Finally, a conclusion follows in Section 5.
The appendix contains the proof of the main theorem in Section 4.2.

2 Problem Description

The main problem which is to be addressed in this paper is about how to incrementally accept and
schedule tasks while not sacrificing the schedulability of the tasks already accepted.

A taskin a real-time system may invoke its corresponding task instances by informing the system
of the release time, deadline, and execution time of the task instance. Tasks in real-time systems



may be classified into single instance task and multiple instance task. Single instance task, which
is also called aperiodic task, invokes its task instance only once, and multiple instance task invokes
its instance repeatedly. Multiple instance tasks are further divided into periodic tasks and sporadic
tasks. Periodic task invokes its instances at regular time intervals(period), whereas sporadic task
invokes its instances at any time instants with a defined minimum inter-arrival time between two
consecutive invocations.

Any arriving task belongs to one of these classes. A periodic task P is characterized by an
invocation of a sequence of task instances. The following characteristics are assumed to be known
at the arrival time, AP, of the periodic task, P.

e task invocation time Z? from which the task starts to invoke its instances.

e task termination time AP when the task is terminated.

e period p

e invocation time of the j-th task instance is defined to be If =IP+(j—1)p

e relative deadline d? which implies that the absolute deadline of j-th task instance is If + dP.
e worst case execution time c?

A hard aperiodic task A invokes its task instance only once. A has the following set of param-
eters:

e arrival time of the request, A%

e ready time R* from which the task instance can start its execution.

e relative deadline d* which implies that the absolute deadline is D* = R®* + d*
e worst case execution time ¢®

A sporadic task 5 is characterized by an invocation of a sequence of task instances with the
minimum inter-arrival time apart. The following characteristics are assumed to be known at the
arrival time, A°, of the sporadic task, 5.

e task invocation time Z° from which the task instances can be invoked.

e task termination time A'®* when the task is terminated.

e minimum inter-arrival time 6

e invocation time of the j-th task instance, 77, can be any time instant satisfying 77 > 77 _; + 6

e relative deadline d® (< ) which implies that the absolute deadline of the j-th task instance
is 72 4+ d°.
J

e worst case execution time ¢



In addition to these, system may be called upon to handle non-realtime tasks which don’t have
deadlines; Instead, they require as fast completion time as possible.

For a set of task instances to be scheduled, traditional time-based scheduling scheme first finds a
complete schedule for them in a given scheduling window. This schedule contains a static start time,
s;, for each task instance, which is decided based on the worst case execution time ¢; and reflects
all task dependencies. However, to enhance the scheduler with the ability to schedule dynamically
arriving tasks, it may change s; at runtime, while conforming to all constraints, such as release time
r;, deadline d;, precedence relations, relative constraints, etc. Clearly, this additional information
has to be kept for each task instance with the schedule. If a new task arrives, based on the current
schedule it needs to be decided whether this new task can be accepted by the system, and if it can
be accepted, a new schedule has to be constructed to incorporate this new task.

In hard real-time environment, tasks may be executed in preemptive or non-preemptive manner.
When a task is executed non-preemptively it begins execution at time s; and is assured CPU
access for the time, ¢;, without any interruption or preemption. In preemptive execution, the task
execution may be preempted at some defined time instant, and resumed at a later time instant.
Note that the task preemption and resumption times may be dynamically decided.

We extend the static time-based scheduling scheme into dynamic time-based scheduling scheme
that enables any dynamically arriving aperiodic, periodic, or sporadic task to be incrementally
scheduled. In traditional static time-based scheduling scheme, every resource requirement is met
by assigning explicit start times to the task instances. But, in this dynamic time-based scheduling
scheme, the start times no longer have to be statically determined. Instead, the schedule includes
a mechanism for determining the time when a task instance will be started or resumed based on
the information available prior to its start time.

3 Related Work

3.1 Scheduling

The scheduling algorithms in hard real-time systems may be classified in several ways. One way is to
classify them in terms of how the scheduling is done. Priority-based scheduling schemes resolve the
resource( CPU) contention between different tasks by making use of the fixed or dynamic priorities
of the tasks. Another scheduling approach is a time-based scheduling scheme in which the explicit
time line is used to schedule the tasks. In traditional time-based scheduling schemes, all resource
requirements are satisfied by statically assigning time intervals to the task instances at pre-runtime.

Each approach has its own advantages and disadvantages. Even though scheduling in priority
based approach can be done in a simple manner, it lacks the capability of scheduling tasks with
complex constraints such as precedence relations, relative timing constraints, while the time-based
approaches have that capability. In this paper, we develop a dynamic time-based scheduling scheme
to provide the flexibility commonly required in dynamic real-time systems, i.e. incremental schedul-
ing of dynamic tasks, such as aperiodic, periodic, and sporadic tasks. In this dynamic scheme, the
actual execution times of the tasks may be decided at run-time for example by constructing pa-
rameterized start or resume times of the tasks.



3.1.1 Fixed priority scheduling

In this scheme, fixed priority is assigned to each task and it is used at runtime to resolve the
resource conflicts. A task with a higher priority can preempt any lower priority task and thus the
currently executing task has the highest priority among the tasks currently active(released). It is
well known that rate monotonic scheduling algorithm is optimal for scheduling a set of independent
periodic tasks with deadlines at the end of their periods [21]. It is optimal in a sense that it can
schedule any set of tasks if that is schedulable by any fixed priority scheduling scheme. Any set of
n tasks are schedulable according to rate monotonic scheduling scheme if the total utilization of the
tasks doesn’t exceed n(2'/™ — 1) which converges to In(2) = 0.69314718 as n goes to oo. This is a
sufficient condition for a given set of tasks and not a necessary condition. The exact schedulability
condition which is necessary and sufficient is found in [17] with the statistical simulation results
showing that in general the utilization of the schedulable task set is higher than [n(2).

A deadline monotonic scheduling algorithm is shown to be optimal for a set of tasks which have
deadlines less than or equal to their periods. It assigns priorities according to their deadlines, the
shorter the deadline, the higher priority is assigned regardless of their periods [20, 2]. For a set of
tasks with arbitrary deadlines, it is shown that the optimal priority assignment can’t be done in a
simple priority assignment method, but requires a pseudo polynomial time algorithm [28].

A synchronization protocol becomes necessary when tasks use shared resources such as semaphores.
Sharing resources may lead to a possible priority inversion when a higher priority task is blocked
due to the lower priority task possessing the required resource by a higher priority task. This
priority inversion may cause an unbounded blocking times. To solve this problem, several synchro-
nization protocols have been developed. In a priority ceiling protocol [23], a priority ceiling is first
assigned to each semaphore, which is equal to the highest priority of the tasks that may use this
semaphore. Then, a task, 7, can start a new critical section only if 7’s priority is higher than all
priority ceilings of all the semaphores locked by tasks other than 7. In stack-based protocol [3],
the concept of preemption level is used instead of the priorities to derive the protocol suitable for
both fixed priority and dynamic priority based systems. Also, sharing of multiple-unit resources
becomes possible with this protocol.

Hard and non-realtime aperiodic tasks can be scheduled within a fixed priority scheduling
scheme. Omne approach is to utilize the aperiodic server concept in which a certain percentage
of the processor utilization is reserved for servicing the aperiodic tasks. Several algorithms have
been developed and their performances have been compared [18, 25]. Another approach is slack
stealing approach which tries to utilize as much processor time as possible by postponing the
execution of hard periodic task executions as long as the schedulability of the hard tasks is not
affected [10, 19, 27]. The optimal slack stealing algorithm is found to be pseudo polynomial [10]
and several approximation algorithms have been devised [9].

3.1.2 Dynamic Priority Scheduling

The priorities of tasks in dynamic priority scheme are decided at runtime. This means that the task
instances from the same task may have different priorities at runtime while in the fixed priority
scheme the same priority is used for scheduling them. The earliest deadline first( EDF) scheduling
algorithm which assigns the highest priority to a task instance with the closest deadline is known to



be optimal for a set of periodic or aperiodic tasks [21, 11]. The necessary and sufficient schedulability
condition for a set of independent tasks with their deadlines equal to their periods is that the total
processor utilization of the tasks should be less than or equal to 1 [21]. A dynamic priority ceiling
protocol [4] and a stack-based protocol [3] have been developed for dynamic priority systems to
enable the use of shared resources and to bound the blocking times. Note that the stack based
resource allocation protocol may be used for both fixed priority and dynamic priority scheduling
algorithms. Also, in [3], it is shown that the stack-based protocol provides a better schedulability
test than that of dynamic priority ceiling protocol.

An aperiodic task scheduling problem has been studied under the assumption that only hard
periodic tasks exist [16, 15]. The O(N ) acceptance test for a hard aperiodic task is given when a set
of independent periodic tasks is scheduled by EDF where N is the total number of task instances
in an LC'M*! of the periods of periodic tasks [7, 6, 8]. Aperiodic scheduling schemes for EDF have
been proposed and studied and the Improved Priority Exchange Algorithm is shown to perform
well [26].

3.1.3 Static Time-based Scheduling

In a static time-based scheduling scheme, a calendar for a set of task instances is constructed at
pre-runtime. At runtime this calendar is referred to execute each task instance at a scheduled time
instant. Through off-line scheduling, we can schedule any set of tasks with various constraints, such
as complex precedence relation, relative timing constraints, and other synchronization constraints.
Even though the complexity of the off-line scheduling is NP-Complete in general, the scheduling
can be done in a reasonable amount of time in most cases using techniques such as branch and
bound or heuristic search algorithms [29, 12, 5, 32]. It has been shown that the complexity of
non-preemptive scheduling can be dramatically reduced in many cases by decomposition scheduling
approach where task instances are decomposed into a sequence of subsets, which are scheduled
independently [31]. Also, the time based scheduling scheme can efficiently schedule task sets with
relative timing constraints which can’t be easily accommodated in priority-based systems [14, 5].
Because of these reasons, it is claimed that the time-based scheduling scheme is the most appropriate
scheduling approach for hard real-time systems [30].

The aperiodic scheduling problem in time-based scheduling scheme has been addressed in the
paper [13]. The initial schedule is assumed to be given and arriving aperiodic tasks are scheduled
at runtime. First, the deadlines of task instances, 7;, in the time-based schedule are sorted and
the schedule is divided into a set of disjoint execution intervals, I;. Then, the spare capacities are
defined for these intervals, which may be used to schedule arriving aperiodic tasks. Several tasks
with the same deadline constitute one interval and the end of an interval, end(1;), is defined to be
the deadline of the last task in the interval. The earliest start time of an interval is defined to be
the minimum of the earliest start times of its constituting tasks. And, the start time of the interval,
start(l;) is defined to be the maximum of its earliest start time or the end of the previous interval.
The length of an interval, | I; | is defined to be end(l;) — start(l;). Then, the spare capacity is
defined recursively as:

se(ly) = | L] — Z C; + min(se(Li41),0)
€L

YAn LCM is a least common multiple of the periods.



se(le) = |1 ] - Z C;

Ty el

where C; denote the worst case execution time of 7; and I. is the last interval in the schedule.
Note that the spare capacity may have a negative value reflecting the fact that the borrowed spare
capacity from the previous interval is used to schedule the task instances in the current interval.
Figure 1 shows an example case of this. In this example, the spare capacities for Iy and [ are
found to be:

se(l;)=2-3=-1

se(l;) =8 =34 min(—1,0) =4

These spare capacities are used to schedule arriving aperiodic tasks and adjusted whenever the
aperiodic tasks are accepted.

o
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Figure 1: Example case.

However, no consideration is given how to obtain correct spare capacities when the deadlines
of the task instances are not in increasing order in the schedule. For example, no correct spare
capacity can be obtained in the example case shown in Figure 2.

T [ T |

Figure 2: No spare capacities can be found.

According to the algorithm presented in that paper, [0,12] is an execution interval of spare
capacity 2, which is not correct.

Moreover, the spare capacities of the task instances have to be adjusted every time a new task
is accepted and scheduled, which introduces more overhead.

4 Dynamic Time-based Scheduling Schemes

Two dynamic time-based scheduling schemes are presented here. In Section 4.1, a mechanism is
presented to incrementally schedule periodic and aperiodic tasks. In Section 4.2, a mechanism is



presented to incrementally schedule periodic and sporadic tasks. In both sections, it is assumed
that a valid schedule of task instances is initially given with start times of the task instances. Based
on this schedule, we develop an efficient scheduling algorithm to incrementally schedule arriving
aperiodic task instances with the schedulability of the existing task instances not affected. And
then, another scheduling mechanism is presented in the following section to incrementally schedule
dynamically arriving periodic or sporadic tasks while not affecting the schedulability of the already
accepted periodic and sporadic tasks.

4.1 Aperiodic Task Scheduling

In this section, a mechanism is presented to schedule arriving aperiodic tasks. The key idea of this
mechanism is to make use of the fact that the task executions may be dynamically shifted to the
left or to the right in a time line as long as the timing constraints of the tasks can be satisfied. All
task instances in this section are assumed to be preemptible.

4.1.1 Task Model

We assume that an initial schedule of task instances is given in a scheduling window [0, L] and
this schedule is used by dispatcher at run-time. Let 7 = {7, 79, ..., 78} be a set of task instances
in the initial schedule. It is assumed that 7; is scheduled before 7,47 in the schedule. Fach task
instance 7; has the following parameters in the schedule:

o release time R,

e absolute deadline D; (D; < L forall 1 <i< N)

e worst case execution time ()

e runtime variable e; denoting the processing time already spent for 7; at any time instant

e runtime variable w; denoting the latest start(or resume) time of 7;, which is a function of the
current time ¢ and the value of ¢;

o earliest start time est(7)
o latest start time [st(7)

A hard aperiodic task A is defined the same way as in Section 2 except that the ready time is
agssumed to be equal to its arrival time, i.e, A* = R*. Also, the task instances in 7 are assumed to
be preemptible by an aperiodic task and any aperiodic task is assumed to be preemptible by a task
instance in 7.

The values of est(i), Ist(i) , 1 =1,2,..., N, are found as follows:
est(l) = Ry
est(1) = max(R;est(i—1)+C;) fori=2,3,...,N
lSt(N) = Dny—-Cn
Ist(t) = min(D;,lst(i+1))—-C; fori=N-1,N-2,...,1
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Di
Figure 3: Deriving w;(0) recursively
If D; <lst(i+ 1), then Ist(7) value will be decided from D;. And if D; > Ist(i+ 1), then [st(7) will

be decided from Ist(¢ 4+ 1). Fig 3 shows an example of these relationships.
Also, Fig 4 shows an example set of task instances with their est(i) and [st(7).

R;R> Rz:R, Rs
! T [ T ] [ T5] Ta | [ Ts | |
est(1) est(2) est(3) est(a) est(5)
! [ 7 [ %] [ *a] | Ta [ Ts |
‘ Ist(1) Ist(2) Ist(3) Ist(4) Ist(5)
I D, D2 D3 Da Dy T
Scheduling window for T, [O,L] ‘

Figure 4: est(¢) and [st(¢) for an example task set

Note that the run-time variable e; is initialized to 0 and w; to [st(7).

7 and a set of arriving aperiodic tasks Ay, ..., A; are said to be feasible if and only if there
exists a schedule which satisfies all the timing constraints on 7 and aperiodic tasks. The optimality
of a scheduling algorithm is defined as:

Definition 1 (Optimality) A scheduling algorithm is optimal if and only if it can schedule any
feasible task instance set T and arriving aperiodic tasks.

4.1.2 Scheduling of Non-realtime Tasks

We can efficiently schedule any non-realtime tasks in a sense that maximum processor time can be
found and used to service non-realtime tasks at any time instant by delaying as much as possible the
executions of task instances already accepted. The non-realtime tasks are assumed to be processed
by using FIFO scheduling policy.

At a current time instant ¢;, let 7; denote a task instance in 7 which is just finished or partially
executed. Also, let 5 denote the last time instant when the dispatcher took the control before y,
and let t5 denote the run-time variable denoting the future time instant when the dispatcher should
take the control. The dispatcher takes the control whenever a non-realtime task or a task instance
in 7 is finished, or whenever #; = t5 holds. Then, at a current time instant ¢; when a dispatcher
takes the control:



If 7; is executed in [tg, 1]
then
let e; =e; +t; — 1o
let w; =w; +t — 1o
If 7; is finished
then
let j=7+1
let 15 = w;
Ift < W
then
if there exists a non-realtime task pending,
then give the processor to the first non-realtime task in the queue
else if R; <ty,
then give the processor to 7;
else let the processor be idle
else
give the processor to 7;

If there exists no non-realtime task pending, the next(or partially executed) task 7; is executed
if it is possible, i.e., the release time of it is reached. Whenever there exists a non-realtime task
waiting in the queue, and the latest start(or resume) time, w;, is not reached for 7; the non-realtime
task will be executed(after preempting 7; if it is already started) until it finishes or w; is reached.
If it continues its execution until w;, the non-realtime task is preempted and 7; will resume its
execution or start its execution. In other words, the non-realtime tasks have higher priorities until
the latest start(or resume) time of 7; is reached.

Example case is shown in Fig 5.

A
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Figure 5: Joint scheduling of a non-realtime and 7
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4.1.3 Acceptance Test for A Hard Aperiodic Task

Some aperiodic tasks may have hard deadlines within which the execution of it should be completed
from the arrival time of it. An acceptance test is performed to check if the requested hard aperiodic
task can be finished within its deadline. The relative deadline of A is assumed to be less than or
equal to the scheduling window size L. The approach taken in this section treats arriving aperiodic
task instances in FIFO order. This assumption will be removed in the next section.

Similar scheduling policy is used for this case to the one in the previous section except that
aperiodic tasks are accepted and scheduled instead of non-realtime tasks. However, at the arrival
time of an aperiodic task, an acceptance test is performed to check if this new task can be scheduled
or not.

The acceptance test algorithm follows. Assume that 7; is the next or partially executed task
when the hard aperiodic task, A, arrived at time R".

At the arrival time, R, of an aperiodic task, A:

TotalCapacity = w; — R®

k=i4+1

While (TotalCapacity < ¢* and Ist(k) < R* 4 d)
begin
TotalCapacity = TotalCapacity + Ist(k) — Ist(k — 1) — Cy
k=k+1

If (TotalCapacity > c*)
then Return(Success)
end
TotalCapacity = TotalCapacity + max(0, R* + d* — Ist(k — 1) — Cy—1)
If (TotalCapacity > ¢*)
then Return(Success)
else Return(Fail)

At the arrival time of an aperiodic task, R®, the acceptance test can be done in O(M) time
within this framework where M denotes the total number of task instance 7;(¢ < j) which satisfies
R* <Ist(j) < R*+d". In this case, the total amount of available processor time for A in [R*, R*+d"]
can be found by the following formula:

(R, R"+d") = w; —R" (1)
i1

+ ) (Ust(k 4 1) — Ist(k) — Cj) + max(0, R* + d* — Ist(j) — C)

J
k=1

where j/(i < j/) is the last index satisfying wyr < R® 4+ d*. Note that we can pre-calculate the
values, Ist(k + 1) — Ist(k) — Cj at pre-runtime and use them at runtime to reduce the runtime
complexity of the acceptance test algorithm.

Example case is depicted in Fig 6 where j =5.
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Figure 6: Obtaining a maximum slacks within a scheduling window of a hard aperiodic task A
4.1.4 Acceptance Test for A Set of Hard Aperiodic Tasks

In this section, we address the problem of scheduling aperiodic tasks when several such tasks
may arrive at any time instants. In this generalized scheduling model, we need to decide which
scheduling policy is to be used for resolving the resource conflicts between the task instances in 7
and the aperiodic tasks, as well as the conflicts among the aperiodic tasks. For example, we can
agsign higher priorities to aperiodic tasks than the task instances in 7 as long as the latest start
times of them are not reached, and use an earliest deadline first scheduling algorithm among the
aperiodic tasks. However, this algorithm is not optimal as you can see from Fig 7. In this figure,
the example task set is shown which is not schedulable according to the above approach. But, there
exists a feasible schedule for this task set as is shown at the bottom of this figure. In the following
subsections, we develop an optimal scheduling algorithm.

Deriving Virtual Deadlines and Virtual Release Times

As a first step, we derive a virtual deadline and a virtual release time for each task instance 7;
in 7. This process is necessary to enforce the total order on 7 when we employ EDF scheduling
policy to resolve the resource conflicts in an unified manner for all the task instances.

A virtual deadline of 7; is defined by the following recursive equation where D¢ is the original
deadline of 7;:

Dy = D%
D; = min(Dijy1 —Ciyq, D7) fori=N—-1,N—-2,...,1

If a virtual deadline is missed by some task 7;, then either the deadline of that task itself is missed
or at least one of the following tasks misses its deadline. It is clear that the virtual deadline is
always less than or equal to the original one and the virtual deadline D; is always less than D;yq
by a difference of at least (41, i.e. D; < Dy — Cigq.

Also, a virtual release time of 7; is defined by the following recursive equation where R is the
original release time of ;. Fig 8 explains the virtual release time and deadlines of the example
tasks. Virtual release time is necessary to impose a total order on 7 when an EDF scheduling

12



|
[
| T i

I
T ‘ Ty T2
Al 1 |
Az

Stealing Maximum Slacksfrom T
| 2 |

| Ta |

[ |
T T,
A } |
Ao

EDF Scheduling
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algorithm is used to schedule the tasks.

Ry = RY
R, = max(Ri—1,R]) fori=2,3,...,N
This reduction of scheduling window of each task to [R;, D;] from [R?, D?] by the introduction
of the virtual deadline is the result of imposing total order on 7.
The following proposition establishes the equivalence between the original task set and the
transformed task set with virtual deadline and release times in terms of the schedulability when an

EDF is used to schedule 7 and an additional set of aperiodic tasks. Here, it is assumed that the
total order of the task instances in 7 should be kept.

Proposition 1 7 and a set of additional aperiodic tasks are schedulable by EDF if and only if T
with virtual deadlines and release times is schedulable with the additional aperiodic tasks by EDF.

Proof Proof can be derived from the theorem in [8].
Optimal Scheduling Algorithm

In this section, the optimal scheduling algorithm is presented and its optimality is proved. We
assume that the task instances in 7 have virtual deadlines and virtual release times instead of the

13
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original ones. The optimal scheduling algorithm assigns a higher priority to a task instance with a
closer deadline in an unified manner.

At any time instant ¢, let A°4(¢) = {A9 A .. A2} denote a set of active aperiodic tasks.
Here, active aperiodic task is the aperiodic task that was accepted before ¢ and still needs to be
executed. It is obvious that the deadlines of these aperiodic tasks are greater than t. The tasks in
A°(t) are assumed to be sorted in their increasing order of deadlines. In addition, A?*" denotes
a newly arrived aperiodic task at time ¢. The first step of testing the acceptability of A" is to
insert A7¢ into A°?(t), thus producing A(t) = {4y, Az,..., Ayp1} in which the tasks are sorted
according to their deadlines in increasing order. Also, let e?(¢) denote the processor time already
spent for A; up to time ¢. Obviously, e?(¢) = 0if A; = AP, At this point, we derive the following
lemmas and theorem which proves the optimality of the EDF scheduling algorithm proposed above.

The following lemma specifies the necessary condition for A(%) to be schedulable. Here, let D¢
(1 <i<m+1)denote a deadline of the i-th aperiodic task, A;, in A(?).

Lemma 1 Let A(t) denote a set of aperiodic tasks defined above. If there exists a feasible schedule
for A(t), then

Vi<i<m+1 = QDY) > ZZ:(C? —ej(t)) (2)

Proof Suppose (2) is not satisfied for some 1 < k < m + 1, then

Qt, D) <

(¢j = e5(1))

k
=1

J

This means that the processor demand in [¢, Df] required by A(t) exceeds the maximum processor
time in [t, D}] available for A(t). The un-schedulability of A(¢) follows.
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Lemma 2 Let A(t) denote a set of aperiodic tasks defined above. Then A(t) can be scheduled
under the proposed EDF if

Vi<i<m+1 = QDY) > Z(Cq —€ei(t))

Proof The proof can be easily derived from the theorem 3.2 and 3.3 in the paper [6].

Theorem 1 Let A(t) denote a set of aperiodic tasks defined above. Then the proposed EDF schedul-
ing algorithm is optimal and the schedulability condition is:
Vi<i<m+1 = QDY) > Z(Cq —€ei(t))

J J
i=1

Proof From Lemma 1 and Lemma 2, this theorem follows.

Clearly, the condition of the above theorem can be checked within O(M + m) by utilizing the
formula (1) where M denotes the total number of task instances in 7 whose deadlines are greater
than ¢ and less than or equal to D7, i.e., the task instances in 7" which may be executed within
the range [t, D . |]. The first step is to insert the newly arrived aperiodic task into the set of active
aperiodic tasks so that the aperiodic tasks are ordered in increasing order of their deadlines. Then,
the maximum slack times, Q(¢, D?), are found from ¢ = 1 to ¢ = m + 1 by making use of Q(¢, D¢ ;)
already found.

If multiple number of aperiodic tasks arrive at ¢, we have to give priorities to these aperiodic
tasks to decide which one has to be accepted and scheduled first. In this case, the above acceptance
test is repeated for each aperiodic task from the one with highest priority to the one with lowest
importance. The total complexity in this case is O(K (M + m)) where K denotes the number of
aperiodic tasks arrived at .

4.2 Sporadic Task Scheduling

One of the drawbacks of time-based scheduling scheme is that the sporadic task scheduling becomes
very difficult. The algorithm to transform a sporadic task to an equivalent pseudo-periodic task
has been proposed by Al Mok [22]. From the definition of the sporadic tasks, the events which
invoke the sporadic task instances may occur at any time instants with the minimum inter-arrival
time, 6. And, once the task is invoked, it has to be finished within its relative deadline from the
invocation time, d®*. The first step of the transformation is to decide the relative deadline of the
pseudo-periodic task, dP, which is less than or equal to d°. And then, the period, prd?, of the
pseudo task is found from the equation prd? = min(d® — dP + 1, ¢). This is justified from the worst
case scenario which can be seen in Figure 9.

However, this approach may lead to significant under-utilization of the processor time, especially
when d? is small compared to é, since a great amount of processor time has to be reserved statically
at pre-runtime for servicing dynamic requests from sporadic tasks. This is well explained in Fig 10
through a simple example where an equivalent periodic task is to be found from a sporadic task
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State change
t+1 s

prd P

Figure 9: Worst Case for Deadline Determination

whose worst case execution time is ¢® = 4, whose relative deadline is d* = 8, and whose minimum
inter-arrival time is 6 = 8. If we employ Mok’s algorithm, the corresponding periodic task has a
worst case execution time ¢? = ¢® = 4, a relative deadline d? = 4(< d*), and a period prd? =
min(d® — dP 4+ 1,6) = 5. The processor utilization of this new periodic task is 4/5 = 0.8.

S— -
o

I I
Sporadic c® =4

prd® =5 ‘

p
e d=4 5 | L | || |
\ 1 1 1 |

TransformedSproadic‘ c’=4 ‘ ‘ ‘ ‘ ‘ ‘ ‘

Figure 10: Under-utilization of the transformed sporadic task

In our proposed scheduling approach, the incremental scheduling of hard periodic tasks and
sporadic tasks may be decomposed into two steps. We assume that the initial schedule of task
instances is given in a scheduling window [0, L] as in the previous sections. Then, the release times
and deadlines of those task instances are transformed into virtual ones as was done in Section 4.1.
And at runtime, every time new sporadic task arrives, the schedulability check is performed to see if
the already accepted tasks and this new sporadic tasks can be scheduled using the EDF scheduling
algorithm. And at runtime, the hard task instances from the schedule and the sporadic tasks are
scheduled according to EDF. This can be viewed as merging two task instance streams, one from
hard tasks and the other from sporadic tasks.

4.2.1 Extended Task Model

As in Section 4.1.1, an initial schedule of task instances is assumed to be given in an scheduling
window [0, L] and denoted as I'. Let 7 = {7y, 73,...,7n} be a set of task instances in I" where 7;
appears earlier than 7,19 in I'. Each 7; has a following set of parameters in the schedule.

e virtual release time R;

e virtual deadline D;(< L)
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e worst case execution time C;

deadlines and virtual release times are obtained as in Section 4.1.4 from the original ones.

Let & = {59,5%,...,59n.} be a set of sporadic tasks which have to be scheduled with 7. For
each sporadic task 5;, the minimum inter-arrival time 4;, the maximum execution time ¢, and the
relative deadline df (< §;) are assumed to be given. It is also assumed that the 9;s are ordered in
increasing order of their relative deadlines, d7, i.e., df < d7, . The objective of this section is to
develop an optimal scheduling algorithm and its schedulability test for 7 and S together.

Some additional terms are defined in the following;:

e Extended scheduling window for 7 and S, [0, LC'M], where LC'M is the least common mul-
tiple of L and the minimum inter-arrival times of the tasks in §.

o N’ denotes the total number of hard task instances scheduled in [0, LCM]. N' = N(LCM/L)
where [0, L] is the original scheduling window of I

e Extended schedule in an extended scheduling window [0, kLCM] is found by repeating k
times the schedule I' and denoted as kI'.

We need to check the schedule in an extended window [0,2LC M] to verify a schedulability of
7 and § according to the following scheduling model.

4.2.2 Scheduling Model

The conflicts among the tasks in 7 are resolved naturally from the total order among the tasks
given in I'. This can be done by using an earliest deadline first scheduling algorithm and by using
the virtual deadlines introduced earlier since R; < R;4q and D; < D;41q. But, the mechanisms
to resolve the resource contention between tasks from & and those from 7 should be provided
to enable them to be scheduled at run-time. We assume that those contentions are also resolved
through the same scheduling algorithm(EDF'), leading to an uniform scheduling policy for & and
7.
We denote a subset, {7,,7,41,...,75}, of 7 in [0, LOCM] as V¥ if:

e 1<a<b<N

o est(j+1)=est(j)+C;forj=a+1l,a+2,...,0—1
o est(a)>est(a—1)+Cpqifl<a

o est(b+1)>est(b)+ Cpifb+1< N

In this case, we can divide the set of task instances in [0, LC'M] into disjoint subsets, Uy, Wy, ...,
Uy, satisfying the above conditions. Let est(¥;) denote the earliest start time of the first task
instance in ¥; and let eft(V;) denote the earliest finish time of ¥;. Figure 11 shows an example
case.

In addition, we define ®(#1,%2) (0 < t; < LCM A t1 <tz < 2LCM) as the maximum slack time
obtainable in [t1, t3] under the assumption that from time 0 up to time instant ¢y task instances only
from 7 have been executed with their maximum execution times, i.e., tasks have started at their
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Figure 11: ¥ found for an example task set

earliest start times and spent their worst case execution times. Then, ®(¢1,%2) can be obtained as
follows. First step is to find task instance 7; satisfying:

est(i— 1)+ Cim1 <t1 At <est(i)+ C;

If t4 < est(1) + Cy, then let 7 = 1. Then,

O(ty,t) = Ist(i) — t1 + max(0,1 — est(7)) (3)
+]§_: (Ist(k + 1) = Ist(k) — Ci) + max(0, 15 — Ist(j') — C;)
k=1

where j/(i < j/) is the last index satisfying lst(j/) < ty. This process is similar to the one used in
the acceptance test of aperiodic task in Section 4.1. Example case is depicted in Figure 12.

D: D2 Ds Da Ds
| [ T P I 'S B =
est W eft W, W,
|t | ] [ [ o] | T [ T[]
est(1) T Ist(2) Ist(3) Ist(4) Ist(5)
t1 t,

Figure 12: ®(t1,1;) for an example task set

4.2.3 Schedulability Test
The following proposition specifies the necessary condition for 7 and S to have a feasible schedule.

Proposition 2 [f there exists a feasible schedule for T and S, then

Vi€ [1,9)] o Vit e lest(¥;),est(¥;)+ LCM]
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o ®est(Vy),t) > i cy - L(t — 6815(\1};1—'_ b — dZ)J )

k=1

Proof: This is proved in the appendix.

The following theorem specifies the sufficient and necessary schedulability condition of the task
set 7 and §. The extended schedule in [0,2LCM] is assumed to be given.

Theorem 2 7 and S are schedulable according to EDF if and only if

Vi€ [1,9] = Vt € [est(¥;),est(V;)+ LCM]
 B(est(V;), 1) > i ¢ L(t - 6815(\11;)];% o — dZ)J 5)

k=1

Proof: By proposition 2 and proposition 7.

From the above proposition and a theorem, we can know that EDF is optimal for scheduling
7 and S. Finally, we obtain an equivalent condition to (5) of the theorem 2, which enables us
to reduce the complexity of the schedulability check. This corollary specifies that only the time
instant which is equal to a deadline of some task instance in & needs to be examined at or after
est(W;) in checking the condition (5) of the theorem 2.

Corollary 1 The following two conditions are equivalent to each other:

(1) Vie[l,] = Vt e [est(V;),est(¥;) + LCM]

i D(est(W;),t) > i - L(t - eSt(\pis)k—l_ op — alZ)J
k=1
(2) Vie[l,y] :: Vd; € [est(¥;), est(¥;) + LCM]
i B(est(V,),d;) > i ¢ L(dj - 6815(\11(;2 + o — dZ)J
k=1

where d; is the deadline of some task instance in S.

Therefore, the total complexity of the schedulability check algorithm is reduced to O(M/) where
M = (N + S (LOM/&)) + Y (LC M 6;) log(Sms (LCM/§;)). The first step is to obtain
the deadlines(d;) of the task instances from § in the window [0, LC'M] and sort them in increasing
order. Then, for each est(¥;) (1 < i < 1)), the second condition of the above corollary is checked
in O(N' + Y7 (LCM/é;)) for the deadlines obtained in the first step. This process is similar to
the one used in Section 4.1.4.

5 Conclusion

As was seen in the previous sections, the time-based scheduling scheme can be extended to achieve
the flexibility by providing mechanisms such as incremental non-realtime task scheduling, incremen-
tal aperiodic task scheduling, and incremental sporadic task scheduling. The schemes are obtained
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for cases when preemptions are allowed. For non-preemptible tasks, similar results can be obtained
as those presented in this paper.

We believe that this dynamic time-based scheduling scheme is a suitable framework for schedul-
ing dynamic tasks especially in the presence of complex task dependencies and complex timing con-
straints such as relative timing constraints. The scheduling problem of tasks with relative timing
constraints has been addresses in our paper [1]. The start time range of task instances are param-
eterized in terms of start or finish times of already executed task instances, and the parametric
functions are evaluated to obtain the valid range of task instance start times. This enables to dy-
namically adjust the task instance start times without affecting the schedulability of tasks. On-line
scheduling of dynamic tasks based on this dynamic dispatching framework seems to be a promising
approach for incorporating both static tasks with complex timing constraints, and dynamic tasks
such as non-realtime or aperiodic tasks.
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A Proof of Theorem 2

The proof of theorem 2 is presented here.
Proposition 3 If 7 and S are schedulable then the following condition is satisfied:

Vi€ [1,4] = Vt € [est(¥;),est(¥;)+ LCM]
 B(est(V;), 1) > i ¢ L(t - 6815(\11;)];% o — dZ)J

k=1

Proof: Suppose that S and 7 are schedulable and the above condition doesn’t hold. Let ¢, be
the first time instant at which the condition is not satisfied. That is, the following is satisfied for
some 4, € [1,%]:

2 R (tv — est(\Iliv) + 6 — dZ)
dfesi()10) < 3t | g )

However, from this we can conclude that the task set is not schedulable when all the sporadic tasks
start to be invoked at time est(¥; ) with their minimum inter-arrival times. This is because the
processor demand by § in [est(V;,),1,] exceeds the processor time in [est(V;, ),1,] available for
tasks in §. Therefore, if 7 and S are schedulable, the condition is satisfied.

We define a busy period for the given task, «, which belongs to 7 or & and denote it as
BP, = [a, f,] where f, is the actual finish time of the task a at run-time. Let D, denote a
deadline of a. Then, let 5 be the last task satisfying the following conditions:

(1) BeTorpBes

(2) [ starts its execution before f,.

(3) [ starts its execution at its release time 4.

(4) mno idle period exists between rg and f,.

(5) mo task whose deadline is greater than D, is executed between rg and f,.

Then, the following proposition claims that the task 3 exists for any given task a.

Proposition 4 If EDF is used at run-time to schedule T and S, for any given task o ( € T or
€S8), the task 3( € T or € S) exists.

Proof: It is clear that at the end of the last idle period before f,, the conditions (1), (2), (3),
and (4), hold for some task y whose release time is equal to the end of that idle period. If there
is no idle period before a, then let 3y denote the first task which starts its execution at time 0.
Let (1 denote the last task which starts its execution between the end of the idle period and f,,
and which satisfies all of the conditions from (1) to (4). In this case, 3; is the last task in [rg,, fa]
which starts its execution at its release time. In other words, every task executed between rg, and
fo] has started its execution some time after its release time except (3.

Suppose that the condition (5) is not satisfied in [rg,, fo] and let v denote a task whose start
time is between rg, and f,, and which has a deadline D, greater than D,. But, because D, is less
than D, and EDF is used to schedule the tasks, a contradiction has occurred. 7 should never have
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been executed between 7., and f, since the task o has a higher priority than y. Therefore, task
instance fy satisfies the condition from (1) to (5).

Then, the start time a of the busy period for a is defined to be rg, which is found in the above
proof procedure. Example busy period is depicted in Fig 13.

S11 S12 ‘ Si3 ‘ ‘ S14 ‘

|
i Iz S

Busy Period for S 1, ! ‘ Busy Period for S 22

Figure 13: Busy period

Here, the earliest finish time of ; is defined as est(i) + C;.
Proposition 5 The following is satisfied for every i € [2,v¢ + 1]:
Viy € left(W;_q),est(W;)] == V>0 2 ®(ty,t +1) > O(est(V;), est(V;) + 1) (6)

Proof: If the time interval [est(¥;), est(V;) + [] is shifted to the left by the amount of est(V¥;) — #;
which results in a new time interval [t;,?; 4+ [], the slack time is increased by the amount of
est(V;) — t1 and decreased with the amount less than or equal to est(W¥;) — ¢1. This is depicted in
Figure 14.

Proposition 6 The following is satisfied for every i € [1,1]:

Vi € (est(W;),eft(W;)) == VI >0 = ®(ty,t +1) > ®(est(V;), est(V;) +1) (7)

Proof: If the time interval [est(V;), est(W¥;) + (] is shifted to the right by the amount of ¢; — est(¥;)
which results in a new time interval [t;,?; 4 [], the maximum slack time, ® is increased or at least
remains the same as can be seen from Figure 15. This proves the proposition.

Proposition 7 If 7 and S satisfy the condition of proposition 2, then they are schedulable by FDF
scheduling algorithm.
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Figure 14: & is increased or remains the same in the shifted interval

Proof:

Suppose that the condition is satisfied for S and 7 and some task can’t be finished within its
deadline. Let’s call that task a (a € 7 or a € §) and the deadline of that task D,. And, let
BP, = [t;, fa] denote a busy period for a. In this case, the actual finish time of «, f,, is greater
than D,,.

Then there are two cases to be considered.

Case l: D, —t; > LCM.

Note that the maximum processor demand in [¢;,¢;+ LC' M] by task instances from & is less than
or equal to ®(¢;,t; + LCM) from the condition 4. In this case, at ¢; + LC'M a new task instance
starts its execution whose release time is equal to t; + LCM. Then, it is obvious that the start
time of the busy period, ¢;, should be greater than or equal to t; + LC' M, which is a contradiction.

Case2: D, —t; < LCM.

Let 7, be the first task in [¢;, D,] which belongs to 7. First, suppose that this exists. Then, let
YV, denote the task group containing 7;¢,. From the definition of a busy period we know that the
release time of 7,, r,, is greater than or equal to ¢;. Then from proposition 5 and 6,

VI>0 @t b+ 1) > ®est(V;),est(V;) +1)

This means that if the tasks in S starts to invoke their task instances from ¢; with their minimum
inter-arrival times, then they are schedulable with 7. This implies that the task instances invoked
at or after ¢; are schedulable since the worst case scenario is that every 5; € S starts to be invoked at
t; with ¢; inter-arrival time, which is proven to be schedulable. This contradicts to the assumption
that « misses its deadline at D,.

Second, suppose that 7, doesn’t exist. In this case all the task instances executed in the interval
[t;, Do) C [ti, fa] are from S. It is clear in this case from the condition 4 that

V>0 (D) > S e (1=t + bk — d3) /%)
k=1
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Figure 15: @ is increased or remains the same in the shifted interval

From this, we can conclude that every task instance in [¢;, D,] is schedulable, which contradicts to
the assumption that « misses its deadline at D,,.
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