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The interplay between different genomic and epigenomic alterations lead to dif-

ferent prognoses in cancer patients. Advances in high-throughput technologies, like

gene expression profiling, next-generation sequencing, proteomics, and fluxomics,

have enabled detailed molecular characterization of various tumors, yet studying

this interplay is a complex computational problem.

Here we set to develop computational approaches to identify and study emerg-

ing challenges in cancer metabolism and genomics. We focus on three research

questions, addressed by different computational approaches: (1) What is the set

of metabolic interactions in cancer metabolism? To this end we generated a com-

putational framework that quantitatively predicts synthetic dosage lethal (SDL)

interactions in human metabolism, by developing a new algorithmic-modeling ap-

proach. SDLs offer a promising way to selectively kill cancer cells by targeting the

SDL partners of activated oncogenes in tumors, which are often difficult to target

directly. (2) What is the landscape of metabolic regulation in breast cancer? To this



end we established a new framework that utilizes different data types to perform

multi-omics data integration and flux prediction, by incorporating machine learn-

ing techniques with Genome Scale Metabolic Modeling (GSMM). This enabled us

to study the regulation of breast cancer cell line under different growth conditions,

from multiple omics data. (3) What is the power of somatic mutations derived

from RNA in estimating the tumor mutational burden? Here we develop a new

tool to detect somatic mutations from RNA sequencing data without a matched-

normal sample. To this end we developed a machine learning pipeline that takes

as input a list of single nucleotide variants and classifies them as either somatic or

germline, based on read-level features as well as position-specific variant statistics

and common germline databases. We showed that detecting somatic mutations di-

rectly from RNA enables the identification of expressed mutations, and therefore

represent a more relevant metric in estimating the tumor mutational burden, which

is significantly associated with patient survival.

In sum, my work has been focused around developing computational methods

to tackle different research questions in cancer metabolism and genomics, utilizing

various types of omics data and a variety of computational approaches. These

methods provide new solutions to some important computational challenges, and

their applications help to generate promising leads for cancer research, and can be

utilized in many future applications, analyzing novel and existing datasets.
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Preface

During the last years, my research was driven by my interest in the develop-

ment of computational tools that harness different types of genomic data in order

to study cancer metabolism and genomics. In this dissertation I present three com-

putational approaches, designed to answer three different research questions. Each

computational approach presented utilizes computational tools, designed to partic-

ularly answer the research question considering the relevant data in availability.

Initially, I was fascinated by the clinical potential of genetic interactions in

cancer metabolism, and more specifically by a new concept called “synthetic dosage

lethality” (SDL). I built an algorithmic approach to identify such interactions by

employing Genome Scale Metabolic Modeling (GSMM) that enables perturbation

simulations, and measured the effect of such perturbations on cell proliferation.

Completion of work described above, had stimulated my interest in studying

the interactions between different data types, and understanding metabolic regu-

lation. Therefore, I set to develop a computational approach to study metabolic

regulation in cancer cells. By incorporating GSMMs, machine learning algorithms

and data representation methods, I developed a pipeline to enable the integration

of different genomic data types. This work enabled me to systematically chart the

different layers of regulation in breast cancer cells, by predicting enzymes and path-

ways regulation levels, and laid a conceptual and computational basis for mapping

metabolic regulation in additional cancers.

Finally, I was curious to study cancer immunity. Cancer is caused by the break-

down of the controls that regulate cells, often the result of mutations - changes in
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the DNA/RNA sequence. Somatic mutations are the most common cause of can-

cer. Their analysis enabled the identification of driver mutations and contributed

to cancer prognosis and interventions, through the development of biomarkers and

targeted therapies. Recent studies indicate that a high tumor mutational burden

(TMB) results in more neoantigens, increasing chances for T cell recognition, and

has been recently approved by the FDA as a marker for immune checkpoint block-

age therapy responses. To investigate the clinical utility of RNA-based mutations,

I developed the first machine learning model that identifies the somatic mutations

from RNA-seq of a given tumor sample, without its matched normal. This novel

work allows the analysis of mutations from tumor RNA-sequencing alone, thus fa-

cilitating a profound investigation of mutations in numerous datasets, which was

not feasible before. In the context of immunotherapy, our results demonstrate that

estimating TMB from RNA is of a higher, or similar, predictive power, compare to

TMB estimated from DNA.

In conclusion, the work presented in this thesis provides multiple computa-

tional approaches, designed to address different questions in cancer research. Work-

ing in close collaboration with different experimental labs on some of these projects

provided me with a better understanding of the research questions, which motivated

the computational approaches I developed to answer each question. I believe that

much of this work can be used in future studies to advance the development of

treatments and improve clinical decision-making for cancer patients.
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Chapter 1

Introduction

1.1 Modeling Cellular Metabolism

One of the ultimate goals of Computational Systems Biology is to build an in

silico model of a living cell that included all its components and has a predictive value

in simulating all cellular processes. While this goal has yet to be achieved, a first

step in this direction was introduced by [1]. In this study the authors reconstructed

a whole-cell computational model of the human pathogen Mycoplasma genitalium

that includes all of its molecular components and their interactions. Even though

Mycoplasma genitalium is a simple prokaryote with only 525 genes, this task has

been very challenging, requiring an integrative approach combining diverse modeling

approaches. A key difficulty is the lack of sufficient comprehensive knowledge on the

pertaining biological processes and associated detailed kinetics. However, despite

these difficulties, there is one domain where under simplifying assumptions, and due

to two hundred years of biochemistry research, we were able to come closer towards

realizing this in silico vision, and that is cellular metabolism [2]; Metabolism is

by now the most studied and well known cellular process across many species, in-

cluding humans. Over the last decade, recent strides in the computational study of

metabolism have enabled its computational investigation on a genome-scale, demon-

strating its value in predicting an array of cellular phenotypes. These advancements
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have naturally began with the study of bacterial species [3, 4, 5, 6, 7, 8] then followed

by eukaryotic and human modelling studies in an accelerating pace [9, 10, 11, 12, 13].

Cellular metabolism is defined as the set of biochemical reactions needed by biolog-

ical cells to maintain life. These processes allow the cells to maintain their proper

function, grow and respond to changes in the environment. Metabolism is often al-

tered in disease, leading to an increased recognition of the importance of metabolic

analysis in drug discovery and in understanding their mechanisms and modes-of-

action [14]. Furthermore, metabolic processes involve the production of industrially

important nutrients, resulting in a growing interest of metabolic biotechnological

engineering applications [15]. Most of the chemical reactions within the cell are

catalyzed by specific proteins called enzymes. There are two types of reactions:

catabolic, that break down various substrates into metabolites, and anabolic, that

collectively synthesize metabolites into amino acids, fatty acids, nucleic acids, and

other needed building blocks. Reaction rate, or flux, is the rate of formation or

consumption of metabolites in the reaction. The collection of these reactions forms

highly complex metabolic networks. In general, the extreme complexity of cellular

metabolism, involving thousands of cross-talking reactions, poses challenges for the

field of metabolic modeling, requiring a system-level approach [3].

Traditionally, a Genome-Scale Metabolic Model (GSMM) reconstruction is a

manual, bottom-up process, in which all the biochemical transformations taking

place within a specific target organism or cell are identified and assembled into

a structured metabolic network [16]. The network is represented mathematically

by a stoichiometric matrix that comprises of the stoichiometric coefficients of the
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network’s reactions, and is accompanied by a detailed mapping of the genes and

proteins to their catalyzed reactions [17]. Recent technological advancements have

enabled the genome-wide quantification of genes, enzymes and metabolites levels,

thus providing cues to an organism’s metabolic state. However, despite this con-

siderable progress, the most direct measure of activity in a metabolic network, the

reactions flux rates, can be measured today for only a few dozens of reactions in

central metabolism [18]. The analysis of GSMMs aims to bridge this gap and fa-

cilitate the prediction of the network’s inner and outer (uptake and secretion) flux

rates, thus characterizing the organism’s metabolic state on a large-scale.

Ideally, one would like to use enzyme kinetics to characterize fully the mechan-

ics of each reaction, in terms of how changes in metabolite concentrations affect local

reaction rates. Namely, a kinetic model which is composed by a set of differential

equations describing the change in metabolite concentration over time. However, a

considerable amount of data and effort is required to parameterize even a small mech-

anistic model; the determination of such parameters is costly and time-consuming,

and moreover much of the required information may be difficult or impossible to de-

termine experimentally [19]. Example of a detailed small-scale kinetic model is of the

human red blood cell [20] and a proposed overflow for the formulation of large-scale

kinetic model was outlined [19, 21]. Instead of utilizing kinetic models, genome-scale

metabolic modeling has applied constraint-based modeling (CBM) approach that re-

lies on constraint-based analysis [22], which uses physicochemical constraints such

as mass balance, energy balance, thermodynamics and flux limitations to describe

the potential behavior of an organism. Such methods, however, ignore much of the
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dynamic nature of the system and are unable to give insight into cellular substrate

concentrations.

1.2 Constraint-based Modeling

A reconstruction of a genome-scale metabolic network (GSMM) is a process

of identifying all the reactions that comprise a network, which relies on assembling

various sources of information about all the biochemical reactions in the network.

The reconstruction can be mathematically represented as an in-silico model for com-

puting allowable network states under governing chemical and genetic constraints

[3]. A fundamental step towards large scale human metabolic models has been taken

in recent studies [23, 24] that reconstructed the global human metabolic network

based on an extensive evaluation of genomic and bibliomic data. The reconstructed

human model of [23] has been successfully used to predict disease co-morbidity [25]

and tissue-specificity of disease genes [26], and for identifying diagnostic biomarkers

for Inborn Errors of Metabolism (IEMs) [19].

Given a stoichiometric matrix [S] that encompasses all biochemical reactions

and corresponding metabolites, a CBM model imposes mass-balance, thermody-

namic and flux bound constraints to define a set of flux vectors that represent all

possible steady-state solutions in the genome-scale metabolic network. The con-

straints imposed on the model are represented as a set of linear equations on the

network’s flux vector v

S · v = 0 (1.1)
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vmin ≤ v ≤ vmax (1.2)

Where v ∈ Rm (where m denotes the number of reactions in the network) denotes

the predicted metabolic state and represents a feasible flux distribution through all

reactions in the network. The steady state assumption represented in equation 1.1

assumes that there is no accumulation or depletion of metabolites in the metabolic

network. Therefore, the production rate of each metabolite equal’s its consumption

rate and there is no concentration change. The thermodynamic constraints (i.e.,

under physiological conditions certain reactions are reversible while others are not)

and flux capacity constraints (i.e., constraints on enzyme production rate) define

bounds on the flux vector and are embedded in equation 1.2 (a negative lower

bound corresponds to a reversible reaction and a zero lower bound corresponds to

unidirectional reaction). Other constraints such as ones describing the available

nutrients in the environment or a genetic perturbation may be also added. For

example, in order to eliminate the activity of a gene (”knockout experiment”) the

minimal and maximal flux bounds of the corresponding reaction should be set to

zero ( i.e.: 0 ≤ vi ≤ 0 ). Similarly, to restrict the consumption of a metabolite from

the environment the corresponding flux bounds should be set to zero.

The set of constraints that are imposed on the metabolic model defines a

solution space of alternative feasible flux solutions that can be explored by different

sampling and optimization techniques [27, 3]. The most frequently used optimization

method is flux balance analysis (FBA), which assumes that a cell maximizes certain

objective function (Figure 1.1). By searching for optimal steady-state solutions, it
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narrows the set of feasible steady-state solutions. For micro-organisms, the most

common objective function is of growth rate maximization (or biomass production)

which is modeled by adding a pseudo reaction to the model (the biomass reaction),

whose flux represents the cell’s growth rate. The biomass reaction consumes essential

biosynthetic precursors according to their contribution to the organism’s dry cell

weight [28]. Other objective functions can be postulated such as maximization of

ATP production rate and minimization of nutrient uptakes. FBA is formulated as

a Linear Programming (LP) problem, whose solution defines an optimal solution

space, which is composed of alternate feasible steady-state solutions. Minimization

of Metabolic Adjustment (MOMA) is a Quadratic Programming (QP) optimization

method that searches for a flux distribution following gene knockout with a minimum

Euclidean distance from the wild-type flux distribution [29]. An alternate approach

to the same problem is called ROOM (Regulatory On/Off Minimization) which

utilizes Mixed Integer Linear Programming (MILP) optimization in order to search

for a flux distribution that minimizes the boolean regulatory changes between the

wild-type and knockout strain fluxes [30].

1.3 Cancer Metabolism

Recent cancer genome studies have led to the identification of multiple cancer

associated genes and pathways [32, 33]. It is clear now that cancer initiation and

progression are controlled by a host of mutational events in these genes, combined

together to support cancerous phenotypes. Furthermore, next-generation sequenc-
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Figure 1.1: Without constraints, the flux distribution of a biological network may lie at
any point in a solution space. When mass balance constraints imposed by the stoichiomet-
ric matrix S (labeled 1) and capacity constraints imposed by the lower and upper bounds
(a and b) (labeled 2) are applied to a network, it defines an allowable solution space. The
network may acquire any flux distribution within this space, but points outside this space
are denied by the constraints. Through optimization of an objective function, FBA may
identify a single optimal flux distribution that lies on the edge of the allowable solution
space [31]

ing technologies have enabled the screening of numerous cancer types and subtypes,

uncovering both inter and intra-tumor heterogeneity [34]. Despite this large diver-

sity in dysregulated cellular processes, many key neoplastic events are converged to

alter tumor cells metabolism. Indeed, cancer cells were found to have a metabolism

that is remarkably different from the tissues from which they originated, due to their

high demand for proteins, lipids, nucleotides and energy, all necessary for enhanced

growth and proliferation [35]. This fundamental characteristic of cancer cells has

led to the development of the first chemotherapy treatment, methotrexate, already

in the early 1950’s [36], in an attempt to target cancer cell proliferation. This drug

is designed as an anti-metabolite that interferes with the use of folic acid by cancer

cells, thus blocking DNA synthesis and halting cell growth. This common denomina-

tor amongst cancer cells together with additional accumulating evidences reviewed
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below, have recently led to the recognition of altered tumor metabolism as one of

the hallmarks of cancer [37].

Cellular metabolism is finely tuned by integrating signals from the intracel-

lular and extracellular environments. The metabolic switch promoting deregulated

growth is often triggered by mutations in signalling pathways that rest at the crux of

anabolic and energetic homeostasis, such as HIF-1, PI3K/AKT, mTOR and AMPK

[38, 39, 40, 41]. The mutated pathways result in constitutively active growth sig-

nals that induces cells to proliferate uncontrollably. In addition to the intracellular

genetic modifications, the abnormal environmental conditions also play a major

role in modifying cellular metabolism. Heterogeneity in oxygenation, PH levels and

nutrient availability are combined with intrinsically altered tumor metabolism, op-

timizing for a continuous supply of building blocks and redox potential that allow

cancer cells to survive and proliferate under strict selective pressure [42].

Recent years have significantly advanced our understanding of the genetic

and molecular events underlying the metabolic functional phenotype of cancer cells.

This has been achieved due to the considerable leap forward in omics measurement

technologies, enabling the genome-wide characterization of different altered cellular

processes. Accumulating data of gene sequences and gene methylation patterns,

gene, protein and microRNA expression measurements, as well as metabolites lev-

els, have revealed a comprehensive and complex picture of dysregulated cellular

processes. Nonetheless, the entire metabolic network is comprised of more than

a hundred different subsystems, spanning a few thousands of biochemical trans-

formations. To comprehensively understand how the different cellular components
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interact with each other, as well as figuring how the metabolic network responds to

different genetic and environmental perturbations as a whole, computational tools

come in hand. In particular, computer simulations enabling the investigation of

the network’s state under diverse conditions and on a genome-wide level are helpful

for studying both normal and cancerous cellular metabolism and for advancing our

ability to identify potential drug targets and biomarkers.

1.4 Multiomics data integration

The availability of high throughput multi-omics data, including transcrip-

tomics, proteomics, phospho-proteomics and fluxomics, raises an emerging challenge

of overlaying this data on top of the reconstructed metabolic networks, to more ac-

curately infer the metabolic regulation reflected in the data. While much progress

has been made on studying the regulation of metabolism in bacteria [43, 44, 45]

and yeast [46] this question has not yet been studied in cancer cells. Using CBM

as scaffolds for the analysis of high throughput omics-data suggests the possibility

of inferring condition-dependent changes in the metabolic activity of an organism.

Developing computational methods capable of predicting metabolic flux by integrat-

ing these data sources with a metabolic network is a major challenge of metabolic

network modeling. Previous studies have already utilized GSMM to integrate high-

throughout molecular datasets with a metabolic network in a qualitative manner:

The methods developed by [47] and by [48] use gene expression data to identify

genes that are absent or likely to be absent in certain contexts. While transcrip-
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tomics and proteomics data provide important insight into hierarchical regulation of

metabolic flux, phospho-proteomics may provide information on an additional level

of regulation, called post-translational regulation. The latter denotes the effect

of phosphorylation (the attachment of a phosphoryl group) that regulates protein

function, subcellular localization, complex formation, degradation of proteins and

therefore cell signaling networks. Currently, there are no GSMM methods that

enables the integration of quantitative phospho-proteomics data with a metabolic

network model to directly infer the metabolic fluxes themselves. In chapter 3, I

provide the first chart of metabolic regulation in MCF7 breast cancer cells on a

genome scale by integrating multi-omics data, and classifies the metabolic enzymes

at three distinct regulation levels.

1.5 Synthetic Dosage Lethality and Genetic Interactions

Identification of proteins that interact to perform a common function is crucial

to understanding the mechanisms of cellular processes. Both genetic and biochemical

methods are used to uncover an interaction between two proteins. Synthetic lethal

(SL) interactions, which occurs when the inhibition of two genes is lethal while the

inhibition of each single gene is not [49, 50, 51, 52, 53, 54, 55, 56, 57], is a phenomenon

offers a unique opportunity to develop selective anticancer drugs that will target a

gene whose synthetic lethal (SL) partner is inactive only in the cancer cells [58, 59].

Synthetic dosage lethal (SDL) interactions, whereby the underexpression of one

gene, combined with the overexpression of another gene is lethal, but not each event
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individually [60] offer a promising way to kill cancer cells by inhibiting the activity

of the partners of activated oncogenes in tumors [61, 62, 63, 64], as one of the

hallmarks of cancer is over-expression of oncogenes. Screening technologies have

been developed to detect SL/SDL-interactions in numerous model organisms [65]

and in human cell lines [49, 50, 51, 52, 53, 54, 55, 56, 57]. However, as every pair

of genes can potentially interact, the combinatorial search space consists of more

than 500 million pairs, thus current experimental technologies are far from being

able to address the challenge on a genome-scale. New bioinformatics approaches

tried to address the challenge. While the model-based investigation of metabolic

SLs GSMM is quite straightforward and has proven its value already for more than

a decade (e.g., [66, 67]) and specifically in cancer [68, 69], SDLs have mostly been

an uncharted land. In chapter 2 I present the first computational method for the

identification of metabolic SDLs using GSMM. Our method does not only identify

SDLs that are strictly lethal to the cell, but also those that have a significant effect

on tumor growth or proliferation in clinical settings, depending on the measure of

strength θ, assigned by the method. We further test and validate the predictive

beneficial signal in cancer and show that the activation of SDLs is associated with

smaller tumor sizes and longer patient survival.

1.6 Mutations in cancer

A mutation is a change in the DNA sequence of an organism. The human

genome can harbor two types of mutations, germline and somatic. Germline mu-
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tations are found in the first cell of the embryo and propagate to every cell of an

individual. Conversely, somatic mutations are acquired by each cell lineage during

development and post-natal life. For this reason, somatic mutations are found only

in a portion of the cells of an individual, or even in a single cell. Somatic muta-

tions are caused by several endogenous and exogenous factors. They can arise at

very low frequencies due to the molecular instability of DNA bases and spontaneous

reactions [70, 71]. Metabolic by-products such as reactive oxygen species (ROS),

DNA replication before cell division as well as unwinding of the DNA double-helix

during transcription all pose steady threats to DNA integrity [72, 73, 74]. Addition-

ally, cells can be exposed to environmental mutagens such as tobacco smoke and

aflatoxin or UV and ionising radiation [75, 76]. However, the accumulation of muta-

tions is not always a gradual process as catastrophic events such as chromothripsis

and kataegis can cause thousands of clustered chromosomal rearrangements or vast

numbers of point mutations across a relatively short stretch of DNA [77, 78]. While

the occurrence of an individual mutation is a stochastic event and can be caused by

any of the factors outlined above, the type and context of mutations is not random.

Each of the endogenous or exogenous factors and their associated repair mechanisms

promote particular molecular reactions and thus, are associated with a spectrum of

mutations. The first formalized approach to detect the association between different

underlying mutational processes and their corresponding footprint was performed on

the point mutation profiles of a large sequencing cohort of cancer patients [79, 80].

A primary hallmark of tumorigenesis is the accumulation of mutations in can-

cer cells [81]. The relationship between mutations and cancer emerged in the late

12



nineteenth and early twentieth century, when the German biologists David von

Hansemann and Theodor Boveri observed abnormalities in mitotic divisions and

corresponding chromosomal aberrations in cancerous epithelial cells [81, 82]. After

the discovery of DNA as the inheritable substance and its structure in the forties and

fifties, these mutagens were shown to cause chemical changes in the DNA, further

strengthening the link between genetic alterations and the occurrence of cancer [83].

These mutations are found both in genes that drive cancer, and those that do not

(passenger mutations) [34]. Regardless of driver status, these mutations provide a

potential opportunity to specifically target tumor cells through the creation of tumor

specific novel immunogenic peptides (neoantigens). These neoantigens are generated

from peptides encoded by gene alterations that are present in tumor but not normal

tissue, and therefore represent highly promising vaccine immunogens [84, 85]. Sem-

inal studies have suggested the immunotherapeutic potential of neoantigens and

have shown that: (a) mice and humans can mount T cell responses against mu-

tated antigens [86, 87]; (b) mice can be tumor-protected by immunization with a

single mutated peptide present in the tumor [88]; and (c) memory cytotoxic T lym-

phocyte (CTL) responses to mutated antigens are generated in patients who have

unexpected long-term survival or have undergone effective immunotherapy [89, 90].

However, neoantigens also are almost exclusively personal, found uniquely in the tu-

mor of each individual patient, and therefore have not been used for immunotherapy

due to technical difficulties in their identification and testing [86]. Somatic muta-

tion identification is traditionally performed on tumor and normal genomes/exomes

[91, 92, 93, 94, 95, 33], comparing the DNA sequence from tumor samples with
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their matched normal samples from the same individual. This allows subtraction

of the germline variants shared by all cells in an individual, leaving only acquired

somatic mutations. Due to the popularity of RNA-seq technology for gene expres-

sion profiling over microarray technology [96, 97, 98, 99], it has become routine for

projects like The Cancer Genome Atlas (TCGA) to also sequence the tumor RNA,

along with many more RNA-seq data that have been accumulated over the past

few years. The majority of these RNA-seq data has been only studied for gene ex-

pression. Recently, Yitzhak et al. [100] have developed a tool to accurately detect

somatic mutations from RNA-seq data. In chapter 4, I present the first model to

identify somatic mutations from RNA-seq data without the matched normal. The

clinical potential is huge, as the model allows for the first time to utilize a great

amount of datasets available in the public domain that have RNA-seq data of the

tumors of cancer patients, and it can potentially enable a better understanding of

phenotype-genotype associations, as both the genetic (mutations) and expression

levels are inferred from the same sample.

1.7 Immunotherapy

Up until recently, many doubts were raised regarding the ability of the immune

system to control cancer, and the possibility of developing effective immunotherapy.

However, evidences accumulated over the past years do not leave much room for

skepticism. Studies have found that the abundance of CD8+ T-cells is one of the

best predictors of overall survival in human cancers [101]. In addition, Adoptive T
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cell therapy has shown to eradicate several types of blood cancers, and has been

officially approved by the FDA as standard of care for some forms of non-Hodkin

Lymphoma and acute lymphoblastic leukemia [102]. More recently, the develop-

ment of checkpoint blockade (CPB) therapy such as anti-PD1 and anti-CTLA4 has

resulted in long-lasting tumor responses in patients with a variety of cancers [103].

As a result, these drugs have been FDA-approved for many cancer types, includ-

ing melanoma, non-small cell lung cancer, Urothelial carcinoma, Head and Neck

squamous cell carcinoma and more [104].

CPB therapies were developed to overcome the dysfunction or exhaustion of T

cells resulting from chronic antigen exposure and suppression by the tumor or cells

in its microenvironment. However, it remains unclear why some patients respond

to this therapy while others do not. Specifically, overall response rates with these

agents as monotherapy are relatively low (15–20%), but some individuals can attain

durable complete remissions. In specific cancer types (e.g., melanoma), front-line

anti-PD-1 achieves higher response rates (40-45%), and the median progression free

survival (PFS) is approximately six months [105, 106]. The combination of anti-PD1

and anti-CTLA4 (ipi/nivo), as reported in Phase I-III trials, is associated with even

higher response rates (exceeding 60%) and improved PFS (median 12 months), but

at the cost of high toxicity (grade 3 or 4 treatment-related adverse events 55+%)

without improved overall survival (OS) [107, 108]. The variability of response to

CPB highlights the need for identifying predictive biomarkers, leading to multiple

attempts to develop such predictors.

Several biomarkers for CPB are already FDA-approved: The first has been
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granted to patients with specific tumor types, including Non-small cell lung can-

cer and triple negative breast cancer, with high PDL-1 expression (50%). In these

cases, a significant increase in PFS was observed. Additionally, in 2017 the FDA

granted accelerated approval to pembrolizumab (anti-PD-1) for both adult and pe-

diatric patients with microsatellite-instability-high (MSI-H) or defects in mismatch

repair (dMMR) solid tumors, that have progressed following prior treatment. Over-

all response rate (ORR) in this group was 39.6%, and this was the first time the

agency authorized a cancer treatment based on a genomic biomarker that was his-

tology agnostic. Recently, an additional accelerated approval for anti-PD1 for the

treatment of adult and pediatric with unresectable or metastatic solid tumors with

tumor mutational burden-high (TMB-H) [≥10 mutations/megabase (mut/Mb)] has

been granted. However, even among these patients, the overall response rate stands

on 29%.
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Chapter 2

Metabolic Interactions in Cancer

?? Published as ”Synthetic dosage lethality in the human metabolic network is

highly predictive of tumor growth and cancer patient”, Proceedings of the National

Academy of Sciences, 2015

2.1 Introduction

Synthetic lethality (SL) occurs when the combined loss of two non-essential

genes renders a lethal phenotype [63]. SLs have been studied using experimental

[109, 110] and computational approaches [111, 67, 112] to address various questions

of cell function and evolution. The potential of SLs for cancer therapy has been

recognized and accelerated the development of many SL screens [113, 114, 115, 116,

117]. See [118, 119, 120] for reviews of SLs applied in the context of cancer research.

Less studied are the so-called synthetic dosage lethality (SDL) interactions.

An SDL is a genetic interaction between two genes where the underexpression of

gene A (A↓) together with the overexpression of gene B (B↑) is lethal [121]. The

observation that an interaction with an overexpressed gene can be lethal makes it

particularly interesting for targeting cancer cells with (over-)expressed oncogenes.

This is because many oncogenes that drive tumor growth are essential to cell function

and thus difficult to target directly. Targeting the oncogenes’ SDL partner, which
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is a non-essential gene in normal cells, may nevertheless kill cancer cells. That

SDLs can have important implications for cancer research, for instance to aid the

design of new therapies, has also been recognized [118, 122, 60, 123]. Moreover,

it has been shown that the overexpression of specific genes can be detrimental to

cancer cell growth [124]. Recently, a data mining approach was used that identifies

SLs and SDLs by analyzing large volumes of cancer genomic data [61]. Here we

aim to complement data driven computational efforts with a biological network

model approach to identify SDLs. This has recently become feasible in the realm of

metabolism, with the advent of genome-scale metabolic modeling. We introduce a

novel method that utilizes a constraint-based Genome-Scale Model of Metabolism

[125, 126, 6, 127, 128] to predict metabolic SDLs. GSMMs have successfully resolved

a wide range of research questions in model organisms [6, 4, 5, 3, 129, 130] and have

been the basis for many computational studies of cancer [113, 114, 131, 132, 133,

134]. Furthermore, they have contributed to a systematic understanding of the

underlying mechanisms leading to lethality and synthetic lethality [110, 111, 67,

112, 113] . A major advantage of a model based approach is that it can provide

insights into the underlying network mechanisms causing SDLs. Furthermore, the

modeling approach presented is general and can be used to identify SDLs in species

and cell-types where omics data is missing.

We introduce IDLE, a computational approach for Identifying Dosage Lethal-

ity Effects in metabolism. IDLE predicts enzymatic SDLs from a GSMM with

application to cancer. For each enzyme pair (A,B) in the human GSMM we sys-

tematically knock-out the enzyme flux through A combined with a stepwise flux
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increase through enzyme B, and quantify the level of growth reduction. Pairs in

which the growth is significantly more reduced than where either enzyme is per-

turbed individually are ranked as SDLs (A↓, B↑) with a corresponding value of

”strength”.

We demonstrate the predictive power of our approach in five different ways:

First, by analyzing genome-wide experimental shRNA screens we show that A↓ in

predicted SDLs (A↓, B↑) are indeed more likely essential in an overexpressed enzyme

B↑ background than when B is not overexpressed. When A is underexpressed and

B is overexpressed in a predicted SDL in a given tumor sample, we denote that SDL

as ‘active’, that is, bearing potential functional effects on the tumor growth and the

patient’s survival. Secondly, we show that SDLs are less frequently active across

cancer patients compared to randomly selected enzyme pairs, indicating that tumor

cells select against the presence of SDLs to avoid cell death. Thirdly, we illustrate

that the tumor size of breast cancer patients that have one or more active SDLs

is significantly smaller than that of patients expressing randomly selected enzyme

pairs. Fourth, we show that the predicted impeding effect of active SDLs on tumor

growth correlates with a significantly longer patient survival time. These results

become even more pronounced when one includes only highly ranked active SDLs

(that show a stronger A↓, B↑ pattern at the transcriptional level) illustrating that

our method successfully identifies the clinical impact of SDLs. Finally, we report

that observed effects become stronger when more active SDLs are present in a given

tumor, pointing to the cumulative effect of active SDLs in clinical tumors.
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2.2 Results

2.2.1 Overview of IDLE Algorithm

The IDLE method (see 2.1 and methods for details) computes the effect on cell

growth when an enzyme B increases its activity (we call this the reference GSMM),

compared to its activity in a knockout (KO) GSMM, where additionally enzyme A

is knocked out. The objective of IDLE is to find enzyme pairs (A, B) where this

differential growth effect is marked, searching over the space of all possible pairs.

For a given pair (A, B), we define a reference wild type GSMM and compute the

maximum growth (biomass, µmax) with Flux Balance Analysis [135]. Similarly,

µmax is computed for the KO GSMM, where reaction A is knocked-out. In both

models, the maximum flux through B is computed without any constraint on µ

(i.e., lower bound is zero, see 2.1 panel a and b for the reference and KO GSMM

respectively). Now, the lower bound of the biomass reaction is stepwise increased

(using n = 10 steps) towards µmax in both the reference (2.1 panel c) and KO (2.1

panel d) model. For each increase, the maximal allowable flux through reaction B

is again computed. The increasing growth pressure may affect the allowable flux

through reaction B, and if so, it must decrease. The basic idea behind IDLE is

that this argument is reversible: if the growth requirement constrains the maximum

allowable flux through B, then a further flux increase through B must decrease

growth. This effect is quantified and expressed as a vector (2.1 panel e). The angle

θ between the reference and KO vectors measures the difference between the effects

on cellular growth of overexpressing enzyme B in the wild type (A, B↑) and after
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a KO of enzyme A (A↓, B↑). If growth reduction is stronger in the KO situation

(A↓, B↑) then we define θ positive and the enzymes (A, B) form an SDL. SDLs

with the largest angle are predicted to have the maximum effect and are termed

“high-impact” SDLs. We can therefore rank-order SDLs based on the computed

angle θ (2.1 panel f).

Figure 2.1: Conceptual overview of the IDLE method: (A) The maximum flux through
enzyme B is computed when there is no biomass pressure (i.e., lower bound flux is zero).
(B) This process is repeated for the KO model. (C) The biomass pressure is increased
in stepwise fashion and the maximum flux through enzyme B is computed at each step.
(D) This is repeated for the KO model. (E) The maximum relative flux of B (VB,max) is
plotted at each biomass step (max) and the angle θ between the reference and KO vector
is computed. (F) SDL pairs are ranked based on their growth impact, quantified by their
angle θ.

2.2.2 The Metabolic SDL Network.

Our method discovered 12,447 SDL interactions. Reassuringly, the ranked

list of SDLs significantly matches the top ranked metabolic SDLs identified by

DAISY, an approach for data-driven inference of genetic interactions in cancer that

is based on the discovery of underrepresented gene pairs in cancer genomic data
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[61] (Wilcoxon rank-sum p ¡ 0.0038). SDLs are asymmetrical by definition, i.e., A↓,

B↑ denotes a different interaction than A↑, B↓, and each may have a very different

magnitude; in the first interaction enzyme A is the KO partner, while in the second

interaction it is the overexpressed partner. Surprisingly, we discovered that six en-

zymes are major ‘master’ hubs, being the KO partners of many other over-activated

B↑ in the SDL network (see subsection ??). These major hubs (TPI, ENO, PGM,

PYK, PGK and GAPD) all reside in the glycolysis pathway. Interestingly, when ex-

amining the hub partners, we observed that the B↑ partners are the same for 80%

of the SDLs. The metabolic pathways that are enriched for these overexpressed

partners are shown in SI1-Table S3. To better understand the putative mechanisms

underlying the workings of these SDLs we conducted a further model-based anal-

ysis. First, we charted synthetic lethal (SL) interactions of the six master hubs,

i.e., searched for genetic interacting pairs involving these six hub reactions where

the growth reduction after their combined KO is larger compared to that observed

after the single KOs. We were surprised to see that while these SDL hub reac-

tions are highly sensitive to a synthetic dosage load (each being essential for 500

overexpressed partners), they have only very few SL partners (a list of these reac-

tions and their pathways is shown in SI1-Table S4). Examining the SDL partners

of the six central glycolytic hubs we find that they are quite distributed across the

metabolic network in ten different pathways that are significantly enriched with the

SDL partners (see SI1-Table S5). When further investigating these SDLs, we dis-

covered that glycogen production is decreased by (on average) 60% when such SDLs

are active compared to the wild-type and the knockout conditions. Interestingly, it
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has recently been shown that glycogen metabolism and its initial accumulation is

a key pathway induced by hypoxia and its activity is necessary for optimal glucose

utilization in tumors [136].

2.2.3 SDL Is Predictive of in Vitro shRNA Essentiality Screens

We expect that a knockdown of enzyme A (A↓) will be lethal in a B↑ back-

ground in the case of an SDL (A↓B↑). To study this, we exploited gene essentiality

at a genome-wide scale in cancer cell lines using experimental shRNA screens [137]

and matched it with gene-expression profiles [138]. In a typical shRNA screen in a

given cell line, each gene is individually knocked down by targeting its mRNA (both

inhibiting and degrading it) by specific shRNAs that bind to it. Then, the effect of

each individual gene knockdown on cell growth is measured from which scores are

calculated that indicate gene essentiality (a p = 0.05 cutoff was used to consider a

gene essential [137]). For each cancer cell line, we divided SDLs into two groups:

group 1 consists of SDLs in which at least one of the B enzymes that form an SDL

with enzyme A is overexpressed (B↑) and group 2 consists of SDLs where none of

the B enzymes are overexpressed (see methods for definition of overexpression and

for mapping genes to reactions). Then, the number of essential and non-essential

A enzymes observed experimentally in the shRNA screen was compared between

group 1 and group 2 in each cell line (one-tailed Fisher’s exact test). Using a p =

0.05 cutoff we counted the number of cell lines in which enzymes A from group 1

are more frequently essential compared to these enzymes in group 2. The above
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procedure was also repeated 5000 times for a set of random enzyme pairs of equal

size. As expected, the number of cell lines in which essentiality of A in a B↑ back-

ground is enriched (group 1) is significantly higher for SDL than for random pairs

(empirical p = 0.002).

2.2.4 Cancer Cells Select Against SDL

Cancer cells are expected to select against the negative effect that SDLs have

on (tumor) growth. Thus, when the enzyme pair (A, B) is an SDL, underexpression

of enzyme A and overexpression of enzyme B should occur less frequently than for

random enzyme pairs. We analyzed a gene expression dataset of 7,362 patients from

the TCGA cohort [139] and determined for each gene whether it is underexpressed

(↓), overexpressed (↑), or unchanged compared with expression levels in normal tis-

sue samples [140] (See methods for more information). We then computed for all

SDLs the number of patients, FSDL, with an active SDL (A↓, B↑) relative to those

patients having only enzyme A underexpressed (A↓, B) or having only enzyme B

overexpressed (A, B↑). This was repeated for 5,000 randomly constructed enzyme

pair sets of equal size (FRANDOM). As expected, FSDL is significantly smaller than

FRANDOM , illustrating that an underexpression of A combined with an overexpres-

sion of B when A and B have an SDL relation occurs significantly less frequently

than when the enzyme pair have no SDL relation (Figure 2.2). In fact, when the

angle θ increases, the fraction of patients that have an active SDL approaches zero,

testifying to the strong negative selection exerted on such SDLs.
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Figure 2.2: Percentage of active enzyme pairs (i.e., A, B) with A underexpressed and B
overexpressed. When the angle θ increases, the fraction of active SDLs approaches zero.
SDLs are significantly less frequently active than randomly chosen enzyme pairs. For all
cutoffs, the P values obtain their maximum (1+1/5,000+1) significance.
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2.2.5 SDL Correlates with Smaller BC Tumor Size.

Since SDL negatively affects growth in cancer cell lines we expect that the

tumor size will be smaller for patients having at least one active SDL, compared

to those who do not. To address this, we used a dataset where gene expression

and matched tumor size data is available for 1587 breast cancer patients (41). We

split the patients in this heterogeneous dataset based on the estrogen receptor (ER)

sensitivity of their tumor (see SI1-Section S5 for key properties of the data set).

We analyzed whether the tumor size of patients with an active SDL (A↓, B↑) is

significantly smaller compared to patients that have one of the single effects, meaning

only an under- (A↓, B) or overexpression (A, B↑) of enzyme A or B respectively.

To investigate A↓, B↑ in relation to A↓, B we separated patients into two groups:

patients that have B overexpressed (see methods for definition of overexpression)

with varying underexpression of A (σ between 0 and 3 given the underlying gene

expression distribution) and patients that have enzyme B not overexpressed with

varying underexpression of A. When comparing A↓, B↑ with A, B↑ we also separated

the patients into two groups: patients that have A underexpressed (see methods

for definition of underexpression) with varying overexpression of B (σ between 0

and 3 given the underlying gene expression distribution) and patients that have

enzyme A not underexpressed with varying overexpression of B. Finally, we created

random enzyme pairs (n=5000) to serve as control for testing the specific effects of

the SDLs. Statistical significance for all comparisons was computed with a signed

Wilcoxon ranksum test, analogous to the signed Kaplan-Meier test defined in [61].
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See SI1-Section S6 for a detailed procedure. As expected, we observed for ER+

breast cancer patients that patients with (at least one active) SDL have significantly

smaller tumors compared to patients with only overexpression of B (p < 4e-8, 2.3).

We found for ER- patients that the tumor sizes of patients with SDL are also

significantly smaller compared to patients with only overexpression of B (p < 5e-5)

as well as compared to those with only underexpression of A (p < 7e-5). Moreover,

smaller tumors are observed for both ER- and ER+ patients with active SDLs

compared to when patients have randomly selected enzyme pairs with the A↓, B↑

pattern active (p < 2e-3).

2.2.6 SDL Correlates with Increased Cancer Survival.

Since SDLs decrease breast cancer tumor size, we hypothesized that their

presence also affects patient survival. For the breast cancer data, matched survival

times were available such that we could correlate it to the level of SDL activation

[141]. We hence performed a survival analysis analogous to the tumor size analysis

described above. The significance of the results obtained for SDL were compared

to the single effects and random pairs by a modified signed Kaplan-Meier test in-

troduced in [61]. See methods for detailed procedure. As expected, we found that

ER+ breast cancer patients with at least one active SDL have significantly better

survival times compared to patients with only an underexpression of A (p < 4e-03,

Figure 2.4 panel a and b). Patients that activate the highly ranked SDLs show the

longest ER+ breast cancer survival times up to a median of over 12 years (Figure
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Figure 2.3: Median BC tumor size (in millimeters) for patients with ER+ disease.
Arrowheads denote the median tumor size for all patients with ER+ BC (22 mm). The
number of patients that express at least one enzyme pair are denoted inside the figures. (A)
Patients with at least one active SDL (A↓, B↑) with constant overexpression of enzyme
B. (B) Patients whose disease only underexpresses enzyme A (A↓, B) of the SDL. (C)
Patients with at least one active SDL (A↓, B↑) with constant underexpression of enzyme
A. (D) Patients whose disease only overexpresses enzyme B of the SDL (A, B↑).
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2.4 panel a). In line with expectation, the survival time of patients with active

SDL is significantly better compared to those having only enzyme B overexpressed

(p ¡ 3e-4, Figure 2.4 panel c and d). Moreover, significant longer survival is also

observed for patients with SDLs compared to those with random enzyme pairs with

the A↓, B↑ pattern active (p < 1e-03). We refer to SI1-Section S7 for survival anal-

ysis of ER- patients. Since overexpression of enzyme B is generally not beneficial

when enzyme A is not underexpressed, we wondered whether underexpressing en-

zyme B alone would be beneficial. SI-1-figure S5 indicates that this is not the case.

In particular, severe underexpression of enzyme B correlates with increased tumor

sizes (SI1-figure S4a,c) and decreased survival times (SI1- figure S4b,d) in both the

ER+ and ER- breast cancer patients. SDLs predicted by IDLE are not expected to

be specific for breast cancer. To examine their predictive power in another cancer

type we analyzed a large cancer type-specific cohort of 921 patients diagnosed with

serous epithelial ovarian cancer [142] with matched survival times. Indeed, the same

observations were made as in the case of breast cancer ER+ patients, i.e., ovarian

cancer patients with at least one active SDL have significantly better survival times

compared to those having the single or random effects (p < 0.09 compared to A↓,

B and p < 0.01 compared to all others, SI1-Figure S5). These results are even more

apparent in the relapse free survival times of these patients (p < 0.02 compared to

A↓, B and p < 9e-04 compared to all others, SI1-Figure S6).
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Figure 2.4: Median ER+ BC survival time (in years). Arrowheads denote the median
survival for all patients with ER+ BC (7.4 y). The numbers of patients whose disease
expresses at least one enzyme pair are denoted inside the figures. Note that the axis of
figure a scales differently. (A) Patients with at least one active SDL (A↓ , B↑ ) with
constant overexpression of enzyme B. (B) Patients whose disease only underexpresses
enzyme A (A↓ , B) of the SDL. (C) Patients with at least one active SDL (A↓ , B↑ ) with
constant underexpression of enzyme A. (D) Patients whose disease only overexpresses
enzyme B of the SDL (A, B↑ ).
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2.2.7 Cumulative Effect of SDLs in a Tumor Correlates to Better

Survival

As SDL activity in a tumor correlates to survival prognosis, we asked if sur-

vival time would increase when patients have more SDLs active. We tested the

presence of such a cumulative effect in the two largest cancer subtypes; the ER+

breast cancer (BC) patients (n=1174) and the serous epithelial ovarian cancer (OC)

patients (n=921). Patients were categorized into three groups, those having 1-3, 4-8

or more than 8 active SDLs in their expression profiles (see methods for definition

of over- and underexpression). The Kaplan-Meier survival curve in Figure ?? shows

as expected better survival for patients with large number of active SDLs compared

to those having only a few active SDLs. Indeed, a logrank test [143] revealed sig-

nificantly improved survival times in both cancer types when the number of active

SDLs increases (p < 8e-03 for BC ER+ and p < 2e-03 for OC and OC-RFS). The

largest cumulative effect in the BC survival is related to SDLs being active with en-

zyme A as one of the major glycolytic hubs. Interestingly, the observed cumulative

effect in OC is already present for patients that have 4-8 active (Figure ?? panel

b). The under-activated enzymes A in these SDLs are enriched for pathways that

utilize glutamine through glutamate metabolism, the TCA cycle and mitochondrial

transport (p < 0.001, hypergeometric test). It has recently been shown that severe

types of OC, such as the epithelial subtype we considered, are driven by glutamine

metabolism, in contrast to BC tumors that depend on an over activity of glycolytic

enzymes [144].
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Figure 2.5: Kaplan–Meier survival curves for patient groups that have one to three, four
to eight, or more than eight active SDLs. (A) Survival times for the patients with ER+
BC. (B) Survival times for patients with serous epithelial OC.
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2.3 Discussion

We introduce the first computational method that captures enzymatic SDL

effects in metabolic networks. Our method does not only identify SDLs that are

strictly lethal to the cell, but also those that have a significant effect on tumor

growth or proliferation in clinical settings (i.e., “synthetic dosage sick”). We show

that our method is able to assign a measure of strength θ to each SDL, which cor-

relates to its predictive power in an array of different tumor clinical attributes. It

is therefore of interest to focus further research towards therapeutic interventions

on the basis of “high-impact” pairs, which may have the largest beneficial effect on

killing cancer cells. We show that SDLs are less frequently active than expected

in cancer cells. This shows that rapidly expanding cancer cells select against in-

teractions that reduce their growth rate. The activation of “highimpact” SDLs is

associated with smaller tumor sizes and longer patient survival. The effect strongly

depends on the extent to which SDLs are activated, but most SDLs we found do not

require a complete enzyme knock-out to exert a functional predictive signal. Lastly,

we demonstrated a cumulative effect of SDL presence; the more SDLs active in a

tumor sample, the better this is for a patients’ prognosis. This observation may

shed light on targeting cancers that rely on glycolysis. Down-regulating glycolytic

enzymes that are the major hubs in the SDL network is hence expected to have

large inhibitory growth effect in tumor cells that overexpress many of the glycolytic

SDL partners. As glycolysis is usually less active in normal cells and SDL part-

ners of glycolytic hubs are less frequently overexpressed in normal cells compared to
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cancer cells in the majority of tissue types (SI1-Section S2.2), targeting these gly-

colytic SDLs may be of therapeutic interest, especially when a large number of their

partners are overexpressed. The current study, being the first of its kind, naturally

focuses on harnessing the generic human metabolic model to identify a common core

of SDLs that may be shared by many different cancer types. However, the IDLE

approach is general and could be extended in the future to identify cancer type

specific SDL interactions more precisely, by integrating patient- and tumor-specific

omics data such as gene expression or proteomics. The results of our metabolic

network modeling do not support the hypothesis that SDLs arise due to draining

alternative compensatory pathways that compensate for the loss of the KO enzyme.

This is because we do not find that the flux in such backup reactions of the major

key glycolytic enzyme hubs is reduced following the over-expression of their SDL

partners. Intriguingly, we do find that disrupted glycogen metabolism is predicted

to be the major mechanism by which hundreds of SDLs of key glycolytic enzymes

exert their growth inhibitory effects. Indeed, it has recently been shown that glyco-

gen metabolism and its initial accumulation is key for optimal glucose utilization in

tumors [136]. Thus, SDL relations do not arise via simple proximal interactions, but

are likely to be the result of complex stoichiometric network relations that withdraw

flux from biomass production through activation of other pathways. Our results tes-

tify to the potential contribution of model-based approaches to identify and uncover

the mechanisms behind SDLs. Model-based SDL prediction via IDLE is widely

applicable and not limited to cancer. It could be used to identify SDL networks

in pathogenic bacteria or fungi, providing new antibiotic therapeutic leads. Other
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possible applications include metabolic engineering to increase the yield of valuable

metabolic byproducts. Specifically, this may be achieved by engineering an SDL

effect to inhibit the production of undesired byproducts, or inversely, neutralizing

the SDL effect to force an increased flux through desired pathways. Taken together,

IDLE is expected to contribute to various research fields ranging from medical sci-

ences to biotechnology.

2.4 Methods

2.4.1 The IDLE algorithm

The concept behind the IDLE algorithm is given in detail in Figure 2.6. IDLE

compares fluxes in the reference genome-scale metabolic model (GSMM), in which

no reaction is knocked-out (KO), with those in n KO GSMMs. Each KO GSMMs i is

created by restraining the flux through reaction i to 0. For the reference GSMMs and

each KO GSMMs, the maximum growth µmax is computed with flux balance analysis

(FBA) [135, 31]. KOs that reduce the biomass flux to zero are not considered for

further analysis. The minimum growth rate is set to 0, and the maximum growth

to µmax. The objective is then changed to compute the maximum flux through

reaction B. This determines the starting point as indicated in Figure 2.6 (step 1).

Then, the minimum growth rate is increased in steps of 10% until it equals µmax.

At each of these steps, again the maximum allowable flux through reaction B in the

reference and KO models is computed Figure 2.6 (step 2).

Increasing the minimal growth rate may affect the allowable flux through reac-
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tion B. If this is the case, the maximum allowable flux always decreases, because we

add an extra constraint to the model, i.e. the maximum flux through B can already

be reached when the biomass is unconstrained. Because initial flux and growth val-

ues may differ widely between the reference and KO model, we compare the relative

effect of increasing the biomass flux. Therefore, the flux through reaction B and the

biomass reaction are normalized by dividing all values by their maximum. Then, the

maximum allowable flux is plotted against the growth rate and fitted by a straight

line for both the reference and the KO models. Finally, the angle θ between both

lines is calculated, which is a measure of growth rate reduction due to an increase

of reaction B flux in the KO state (Figure 2.6, step 3).

Because the GSMM is a linear model we can deduce that an increased flux

therefore leads to a lowered growth rate. The main reason that we constrain the

growth rate and optimize the flux to simulate an up-regulated enzyme (and not vice

versa) is that we can easily compare relative flux changes at linearly changing growth

rates. We iterate over all possible reaction pairs (≈2500) in the human model and

therefore create over 6 million putative SDLs. We are only interested in those pairs

with a significant difference between the reference and KO cell. Therefore, all pairs

with |θ| < 2° were removed, reducing the list to 12,447 putative SDLs. The effect

of an increased enzyme flux on growth can be captures into four major types of

enzyme relations, depending on whether growth is affected in the reference model,

the KO model or both.
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Figure 2.6: The IDLE method. IDLE measures the ‘vulnerability’ of the growth rate
to a flux increase through enzyme B. This reference model m is compared with a model
m’ that computes this vulnerability when additionally enzyme A is knocked out. This
difference can be quantified as the angle θ between the vectors in the m and m’ models.
To accommodate for differences in flux scaling, the computation is done using relative
differences, which not shown here for clarity.

2.4.2 Over- /Under- expression

In all analyses, we defined an enzyme/gene to be under- (over)expressed when

its expression was below (above) 0.5σ to 1.0σ from the mean in the gene expression

distribution (see main text for references to gene expression datasets).

2.4.3 Mapping gene expression to enzymatic activity using the GPR

associations

To map the gene expression to expression on the enzyme level, we used the

boolean gene-protein- reaction (GPR) associations available in the H. sapiens re-

con1 [23] metabolic model, downloaded from the BIGG database [145]. These rules

indicate which genes need to be expressed using the two boolean operators “and”
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and “or”. An example of such a rule is the following:

E1 = (g1 or g2) and g3 (2.1)

which indicates that either gene 1 or gene 2 needs to be expressed (or both)

in combination with gene 3 to encode the enzyme E1 and allow its activity. For

the TCGA dataset with 7362 cancer patients with various tumor types and dataset

matched with shRNA, presence/absence calls were assigned by the method described

by [140]. Given the presence/absence of the gene transcripts, the GPR rules could

be applied to determine the presence/absence of the enzyme.

For the breast- [141] and ovarian [142] cancer datasets, measured transcription

levels were provided. In this case, we converted the boolean rules in a way that is

commonly used in metabolic networks [146, 61].

• OR rules were converted to the maximum transcription level of either of the

genes, i.e. (g1 or g2) was converted to max(g1, g2).

• AND rules were converted to the minimum transcription level of either of the

genes, i.e. (g1 and g2) was converted to min(g1, g2).

To deal with different patients, having different tumor subtypes and expression

levels, we first normalized the enzyme expression by subtracting the mean expression

along all enzymes in each patient. Then, we computed the expression standard

deviation σj for each enzyme j. Denote Ei,j as the enzyme expression of enzyme j

in patient i. Furthermore, denote Ej as the median expression of enzyme j across
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all patients. Then, the SDL (A↓, B↑) is considered to be expressed at a cutoff in

patient i, when Ai,j ≤Ai - τσj and Bi,k ≥Bi + τσk , ∀k 6= j.

2.4.4 Computing the frequency of SDLs in cancer tissue (FSDL)

Since SDL is detrimental to cell growth, cancer cells are expected to select

against their activation. To test this hypothesis, we computed how often SDLs are

activated in tumor cells, compared to randomly selected enzyme pairs. We used a

dataset where gene expression was measured for 26 different tumor types collected

from 7362 cancer patients. We followed the protocol from [140] to calculate for

each gene in a tumor sample the Z-score and P-value to infer its underexpression

(-1), overexpression (+1) or no alternation (0) compared to the level of expression in

normal tissues. Comparisons were carried out between the exact same tissue types if

25 or more samples were available. Otherwise, all normal tissue samples irrespective

of tissue type were used. To calculate Z-scores, normalized RSEM data was retrieved

from the TCGA consortium and log2 transformation was applied on the normalized

RSEM. Z-score is then calculated as Z = (expression in single tumor sample) –

(mean expression in normal samples) / (standard deviation of expression of normal

samples). We applied the false discovery rate method in R [144] to correct for

multiple hypothesis testing. A cutoff of adjusted p-value 0.05 was used for defining

under- or over-expression. Gene expression was then mapped to metabolic enzyme

expression using the boolean GPR rules in the GSMM.

In equation 2.2 we compute n1 , the number of SDLs (A↓, B↑) that are active,
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relative to n2 and n3, the number of single under- (A↓, B) or over expressed (A, B↑)

enzymes.

f= n1

n1+n2+n3



n1 = A ↓, B ↑

n2 = A ↓, B

n3 = A,B ↑

(2.2)

We compute this fraction f for our list of SDLs: fsdl and a list of randomly

constructed enzyme pairs: frand of equal length. Let L be the number of pairs, then

we computed the fraction

F =
1

L

∑
i=1

L1Fsdl,i<Frand,i
(2.3)

where 1 is an indicator function that returns 1 if the fraction F is smaller for

the ith SDL and 0 otherwise. The expression of an SDL does not occur frequently,

meaning that n1 is often 0. In that case, we cannot distinguish the expression of

SDL from random expression. Therefore, we only consider cases where n1 > 0,

meaning that at least one patient activated the SDL or random pair. To analyze

how the angle of our predicted SDL influences the result, we repeat this procedure

for N = 5000 random iterations at different cutoffs. Finally, the empirical p-value

is computed as:

p =
|F < 0.5|+ 1

N + 1
(2.4)
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Notice that the reported empirical p-values of 2e-04 are the lowest possible,

meaning that for all 5000 iterations, the median fraction of expressed pairs (A,B)

was smaller for the SDLs.

2.4.5 Computing the tumor size and patient survival significance for

SDLs

To test whether cancer patients with one or more SDLs active live signifi-

cantly longer than patients expressing randomly selected enzyme pairs, we adopted

a significance test analogously to the one presented in [61]. Based on the metabolic

enzyme expression of each of the predicted SDLs we defined two groups of patients:

• SDL+group: patients whose tumors under expressed enzyme A and over ex-

pressed enzyme B in the SDL (A↓, B↑);

• SDL−group: patients whose tumors did not activate the SDL (A↓, B↑);

Enzymes were considered under (over) expressed when their expression was

below (above) 1σ (OC) or 1.5σ (BC) the mean enzyme expression measured across

all patients in the data set. For each SDL, a Kaplan-Meier (KM) [147] survival

curve was plotted for the SDL+ and SDL− group of patients. Then, we performed

a logrank test [143] that returns a p-value denoting the significance in survival

between the two groups considered. The logrank test takes censoring (patients

did not die during the study) into account, which allows us to use both deceased

and censored patients. In order to integrate the logrank p-values for all SDLs in
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a later stage, we computed a signed KM-score. This KM-score is defined as sign

* -ln(logrank p-value) and hence the more significant the logrank p-value is the

higher the absolute KM-score will be. The sign of the KM-score is positive when

the prognosis is better (measured by the median survival time) for the SDL+ group

than for the SDL− group and negative otherwise. We repeated this analysis for

10,000 randomly selected enzyme pairs (A, B). The SDLs are expected to impede

tumor growth and therefore lead to longer survival. Therefore, the median KM-

score is expected to be positive. The randomly selected pairs are not expected to

significantly affect tumor growth, and therefore their median KM-score is expected

to be close to zero. Finally, we computed a p-value for the difference between the

SDL and random group by applying a Wilcoxon ranksum test to their KM-scores.

This score provides an integrated significance score for cancer survival associated

with the SDLs, compared to random reaction pairs. The same approach was applied

to test the survival difference between patients that express the SDLs and those that

only under express enzyme A (A↓, B) or only over express enzyme B (A, B↑). For

the tumor sizes the KM survival curves or logrank test are not applicable. To

test whether tumor sizes were significantly smaller (larger) for SDLs compared to

randomly selected enzyme pairs, we substituted the logrank test for a Wilcoxon

ranksum test. Parallel to the signed KM test, we defined the sign positive when

the median tumor sizes for the SDL patients were smaller and negative otherwise.

Then results for all pairs were integrated in the same way as for the signed KM test.

There is quite some redundancy in the SDLs we found. This can be explained in the

following way: consider a linear metabolic pathway with three reactions, catalyzed
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by enzymes A, B and C respectively. If enzyme D forms a SDL A-D, then B-D and

C-D must also be SDLs and in fact they must have the same angle θ. This does

not affect the heat maps we showed, because we only selected a patient once if she

expressed at least one SDL. Now, we compare for each pair and we want to avoid

counting a patient multiple times for related SDLs. To that end, we removed all

duplicates, reducing the set from over 22.000 to little over 5000 “non-redundant”

SDLs. Finally, to make our test more robust, we only included enzyme pairs (SDL,

or random) that are expressed by at least 10 patients.

2.5 Supplementary Information

2.5.1 Six hub reactions
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2.5.2 Enriched metabolic pathways

2.5.3 Enriched metabolic pathways

44



2.5.4 Enriched metabolic pathways

2.5.5 ER- breast cancer survival times

Survival times for ER- patients show to our surprise a positive correlation with

tumor size, quite the opposite from the ER+ patients. In general, patients ER-

have poorer prognosis (median survival time 5.85 years) compared to ER+ patients

(median survival time 7.42 years). In this case, although IDLE effectively finds the

patients with the smallest tumor sizes they exhibit the worst survival time (figure

2.7 panel a). This also holds for patients whose tumors only under express enzyme

A and do not over express the dosage enzyme B (figure 2.7 panel b). Only the SDL

patients with an extreme underexpression of enzyme A (σ ¿ 3) show the negative

correlation. ER- patients receive chemotherapy significantly more often than ER+

patients (56% on average, vs 11%). This probably affects the expression of oncogenes

and tumor suppressors, which causes that more SDLs are active. Although this is

beneficial for the tumor size of these patients, the fact that these patients needed

chemotherapy could be reflected in their poor survival prognosis.
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Figure 2.7: Median ER- breast cancer survival time (years). The arrowhead denotes the
median survival time (5.8 years) for all ER- patients. a) Patients with at least one SDL
(A↓, B↑) active, with enzyme B overexpressed at a constant (cutoff) value. b) Patients
that only under express enzyme A (A↓, B). c) Patients with at least one SDL (A↓, B↑)
active with A underexpressed at a constant (cutoff) value. d) Patients that only over
express enzyme B (A, B↑).
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Chapter 3

Studying the regulation of breast cancer metabolism from

multi-omics data

?? Published as “The landscape of tiered regulation of breast cancer cell

metabolism”, Scientific Reports 2019

3.1 Introduction

Cancer cells adapt their metabolism to facilitate biomass formation to support

their rapid proliferation. Transcriptional regulation alone does not account for many

of the metabolic alterations observed in cancer [148, 149], suggesting that post-

transcriptional, post-translational and protein phosphorylation mechanisms may

play an important role in modulating cancer metabolism and determining cancer

cell phenotypes [150, 151, 152, 153]. Here we aim to chart the transcriptional,

post-transcriptional and post-translational regulation of MCF7 breast cancer cell

metabolism on a genome scale. This is performed via measurements of multi-omics

data employing MCF7 breast cancer cells under three different in vitro growth condi-

tions, and its analysis via an integration of this data within a genome scale metabolic

model (GSMM) of human metabolism. Our approach is inspired by previous large-

scale omics studies of the multi-level regulation of bacterial metabolism [44, 45, 43]

and yeast [46], which have advanced our understanding of the organization and
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regulation of metabolism in these organisms.

Genome scale metabolic modeling is an increasingly widely used computa-

tional framework for studying metabolism. Given the GSMM of a species alongside

contextual information such as growth media and omics data, it has been shown

that one can fairly reliably predict numerous metabolic phenotypes, including cells’

growth rates, metabolite uptake and secretion rates and internal fluxes, gene essen-

tiality, and more. Over the last few years, GSMMs have successfully served as a

basis for many computational studies of cancer, e.g. [113, 114, 131, 132, 133, 134].

GSMMs have also been used to predict post-transcriptional regulation of metabolic

enzymes in healthy tissues [26] but going beyond that to systematically analyze

metabolic regulation in cancer is addressed here for the first time to the best of our

knowledge.

3.2 Results

3.2.1 Data collection and preliminary model-free analysis

We collected omics measurements in MCF7, a breast cancer cell line, grown

under three different conditions: (1) Minimum Essential Medium (MEM) with glu-

cose and without glutamine (MEM-Gln), (2) MEM with glucose and glutamine

(MEM) and (3) MEM with glucose, glutamine and supplemented with Oligomycin

– an inhibitor of ATP synthase that inhibits cell respiration (MEM+Oli). The media

were chosen because they reflect multiple stress conditions for the cell: one media

(glutamine deprivation) is chosen because MCF7 cells rely on glutamine as the main
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source of energy, and the other media (supplement of Oligomycin) is chosen because

it emulates tumor hypoxic conditions.

The measurements were repeated twice under each condition at two time points

- after 8 and 24 hours, resulting in overall 6×2 multi-omics datasets. Each such

dataset includes the gene-expression of 1372 metabolic genes, proteomics for 486

metabolic enzymes ( 97% of the measured enzymes have gene expression values),

phosphorylation values for 71 phosphorylation sites on metabolic enzymes, and flux

measurements of 44 metabolic reactions (see methods). To obtain flux measure-

ments, we fitted all the data obtained through spectrophotometric measurements

and 13C assisted metabolomics experiments using our in-house developed software

that simulates dynamics of metabolites 13C labeling, Isodyn [26, 154, 155, 156, 157].

Fitting the data allows determining the metabolic flux profiles of MCF7 breast can-

cer cells under three different growth conditions (see methods). Figure 3.1 sum-

marizes the qualitative changes in the metabolites and their analysis using Isodyn.

The analysis demonstrates a decrease in the fluxes of glycolysis, lactate production,

pentose phosphate pathway (PPP) activity, tricarboxylic acid cycle (TCA) cycle

utilization and fatty acid synthesis when the cells are at MEM-Gln growth condi-

tion compared to MEM. Moreover, increased pyruvate cycle, which is the conversion

of pyruvate to oxaloacetate via pyruvate carboxylase followed by its conversion to

malate and consequently back to pyruvate via malic enzyme, occurs mainly in MCF7

cells at MEM-Gln condition compared to the MEM growth condition. On the other

hand, in the MEM+Oli growth condition, increased glycolysis, lactic acid fermen-

tation and pyruvate cycle are observed compared to the MEM growth condition,
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together with decreased TCA cycle activity, PPP and lipogenesis.

1

MEM-Gln MEM+Oli

Fold Change

   X

Figure 3.1: Metabolic flux map of MCF7 breast cancer cells under MEM-Gln or
MEM+Oli growth conditions compared to MEM condition. The fluxes were estimated
by using Isodyn software. In each growth condition, the calculated flux was normalized
against the flux of MEM growth condition in order to calculate the net change.

To obtain a genome wide view of pathway-level differences in the transcrip-

tional data across the different growth conditions, we first compared (using a t-test)

the metabolic gene expression values between the different growth conditions to

identify metabolic pathways that were significantly up or down regulated in any of

these conditions compared to the others. We found that upon oligomycin treat-

ment, carnitine shuttle pathway is downregulated compared to the other growth

conditions, as well as the urea cycle/amino group metabolism pathway. On the

other hand, fatty acid activation and C5-Branched dibasic acid metabolism (among

other pathways) were found to be elevated upon such treatment - a full list of the

significant growth condition-specific changes is provided in Supplementary Tables in

subsections 3.4.1, 3.4.2, all p-values were FDR corrected for 0.05). A similar analysis
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of the proteomics data revealed different results. While carnitine shuttle pathway

activation was consistent with the gene expression analysis, the fatty acid pathways

(activation, elongation and oxidation) were now found to be downregulated upon

Oligomycin treatment. These results, consistent with previous observations both in

yeast [158, 159] and in human [160, 161], point to the significant differences between

the mRNA and protein levels of many metabolic enzymes and call for a systematic

study of their potential functional regulatory implications.

3.2.2 Overview of the metabolic modeling based analysis

Our main goal in this study is to use the measured multi-omics data to sys-

tematically chart the different layers of metabolic regulation in breast cancer cells

that orchestrate the actual metabolic flux across the network’s reactions occurring

in each growth condition. Ideally, measuring the actual fluxes in each condition di-

rectly via tracing experiments would be adequate, but obviously, this can currently

be done only for a small number of fluxes that are mainly involving central cell

metabolism. Hence, alternatively, we integrated the various omics data measured

in each growth condition within a genome scale model of human metabolism [23] to

infer the likely metabolic fluxes given these data in a genome wide manner. After an

initial validation of these predictions, we proceeded to compare the flux predictions

of the resulting reactions to the corresponding enzymes’ omics data to identify their

regulation. This is performed in a stepwise manner as follows (Figure 3.2):

1. GSMM based identification of transcriptional and translational di-
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Figure 3.2: Systematic identification of reactions’ regulation: Step 1: Using gene-
expression and proteomics data to predict transcriptionally and translationally regulated
reactions. Step 2: Using phospho-proteomic data to predict post-translationally regulated
reactions. Step 3: Based on the results of step 1, build predictors of TR and TL regula-
tion. Step 4: Identifying indirectly regulated reactions that are metabolically regulated
via stoichiometric coupling.

rectly regulated reactions: We first identify reactions that are directly

regulated – that is, reactions whose model-based predicted flux alterations

across the different conditions studied can be accounted for by molecular al-

terations at any one of the levels measured: those include reactions that are

primarily transcriptionally regulated and primarily translationally regulated.

These assignments are done in a mutually exclusive manner, as follows: (1)

transcriptionally regulated reactions (TR) are those reactions whose enzymes’

gene expression levels match the predicted fluxes. (2) translationally regulated

reactions (TL) are those reactions whose predicted flux levels do not match

their gene expression levels, but they match the protein levels of their enzymes.

2. GSMM based identification of post-translationally directly regu-
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lated reactions: Post-translationally regulated reactions’ (PTL) assignments

are given to the reactions where both the enzymes’ gene expression and pro-

teomics levels do not match the predicted flux levels but the predicted flux

levels across the different growth condition can be significantly associated with

changes in the phosphorylation levels of the enzymes.

3. Building machine learning predictors of additional directly regulated

reactions: For the majority of the metabolic reactions, however, we did not

find omics evidence testifying that they are directly regulated at any of these

three levels. One major reason for that may be the limited scope of the pro-

teomics and phospho-proteomics measurements. We, therefore, built machine

learning based predictors of TR and TL regulation based on the reactions that

have already been labeled as such via the model-based analysis in step (1).

Then, we applied these predictors in a genome wide manner to further identify

sets of reactions that are predicted to be TR or TL regulated (detailed below).

We then performed various genome wide analyses to further test and validate

the veracity of these predictions.

4. Identifying stochiometrically coupled, indirectly regulated reac-

tions: Finally, even after this prediction step, a large set of reactions still

remains unassigned and are labeled as indirectly regulated. A major likely

source of such indirect regulation is metabolic regulation [162], which man-

ifests itself in the stoichiometric coupling of the fluxes of different reactions

across the metabolic network, and which we study further using the human
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metabolic model.

Below we provide a detailed description of each of these four steps and the results

they uncover.

3.2.3 Step 1: Identifying transcriptionally regulated (TR) and trans-

lationally regulated (TL) reactions

We first aimed to predict the fluxes of the reactions in each condition, to

determine which reactions are directly regulated and at what level they are regu-

lated. To this end, we used iMAT (the integrative Metabolic Analysis Tool) [26],

a computational method that systematically predicts metabolic fluxes in a GSMM

by incorporating omics data (transcriptomics and/or proteomics) that represent the

activity level of the metabolic enzymes. iMAT considers the gene expression or pro-

tein levels as cues for the likelihood that the enzymes in question carry a metabolic

flux in their associated reactions. It then leverages the GSMM to accumulate these

cues into a global flux distribution that is stochiometrically consistent and maintains

mass balance across the entire metabolic network (see methods).

To this end we first tested if the above described procedure yields flux predic-

tions that are in accordance with those quantified with 13C Metabolic Flux Analysis

(13C MFA). To this end, we combined both mRNA and protein expression measure-

ments and used iMAT, a tool that extends upon the standard flux balance analysis

(FBA) to predict the flux distribution that is the most likely given both types of

data. Briefly, following a procedure already established and validated by [26], the
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activity level of an enzyme was set according to the proteomics data when these data

were available and according to the gene-expression otherwise, leaving the activity

level unconstrained when large disparities existed between the gene expression and

the proteomics data (see methods). Reassuringly, the accuracy of predicting the ex-

perimentally measured fluxes was significant across all growth conditions (Spearman

correlation coefficient across all growth conditions = 0.42, p-values < 8.9671e-25,

see Figure 3.3 for the correlations obtained at each of the three different growth

conditions).

Figure 3.3: Scatter plot depicting the association between the measured and predicted
fluxes in each of the three media conditions. Flux predictions were obtained by integrating
the transcriptomics and proteomics data within the human metabolic model, as described
in the main text.

Given these network wide flux predictions, we next set to identify the re-

actions that are transcriptionally regulated (TR). To this end we discretized the

gene expression measurements and the predicted fluxes into three levels of activity:

low (TR-low), moderate (TR-moderate) and high (TR-high). We then compared

predicted flux level of each reaction to the discretized gene-expression level of the

pertaining enzymes (see methods). Reactions whose predicted flux levels matched

gene expression levels of their enzymes across the different measurements were con-

sidered to be TR. For the three conditions (MEM-Gln, MEM and MEM+Oli), 562,
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550 and 556 reactions (approximately 28% of the model reactions) were identified as

TR, respectively. Supporting these predictions, we found that the group of predicted

TR reactions is enriched with transcription factor binding sites (using ENRICHR

tool [163, 164], we calculated the enrichment according to several databases: Jas-

par [165] and Transfar [166] (hyper-geometric p-value = 9.5892e-05), ChEA [167]

(hyper-geometric p-value = 1.2819e-10) and ENCODE [168, 169] (hyper-geometric

p-value = 0.0029)) (see methods).

To predict translational regulation (TL), we searched for reactions whose (dis-

cretized) predicted flux activity levels were different from the transcriptomic levels of

their enzymes. Such transcriptomic/flux ‘discordant’ reactions whose activity levels

were high (low) according to the gene expression of their enzymes but low (high) ac-

cording to the flux predictions are considered to be post-transcriptionally down-(up-

)regulated. The correlation between the proteomics data and the predicted fluxes for

this subset of TL predicted reactions was high and significant (rho = 0.75, 0.6, 0.5,

for the 3 growth conditions, all p-values <0.0071, Supplementary figure in subsection

3.4.3), as would be expected. It is important to note that in order to avoid circular-

ity, this correlation was calculated in a cross-validation manner only for sub-group

which was not constrained in the algorithm input. Among the reactions identified

as post-transcriptionally regulated, we denoted the subset of reactions whose pre-

dicted flux state highly matches the proteomics (discretized) levels in a given growth

condition as translationally (TL)-regulated. Among those, about 15 reactions are

predicted to be TL-upregulated (the discretized flux/proteomics activity state is

higher than the discretized transcriptomics state), and about 35 are predicted to be
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TL-downregulated (the discretized flux/proteomics activity state is lower than the

discretized transcriptomics state) (Table in subsection 3.4.5). The specific pathways

that are predicted to be TR (high/low/moderate) and TL (up/down) regulated are

listed in in Supplementary Table in subsection 3.4.4.

3.2.4 Step 2: Identifying post-translational (PTL) regulated reac-

tions

To identify the reactions that are post-translationally (PTL) regulated, we

used the fluxes predicted in the previous step as a reference point. That is, re-

actions whose predicted flux activity markedly differed both from their transcrip-

tomics and proteomics expression levels (that are hence not predicted to be TR

or TL regulated) may be post-translationally (PTL)-regulated. Overall, 34, 39, 42

such reactions have at least one measured phosphorylation site in MEM, MEM-Gln

and MEM+Oli, respectively. We next inferred the impact of each of the measured

phosphorylation sites on enzyme activity. The phosphorylation data included 56

metabolic enzymes phosphorylated at 71 different phosphorylation sites catalyz-

ing 164 metabolic reactions. For each of the reactions, we computed the Spearman

rank correlation between the predicted flux (computed via integrating the pertaining

transcriptomics and proteomics data) and the corresponding site phosphorylation

levels across all growth conditions and time points measured (subsections 3.4.5). 19

reactions manifested a significant p-value (<0.05) with a strong correlation (Spear-

man rho >—0.6—). These 19 reactions have 13 different phosphorylation sites (SI,

57



Fig. 4).

The functional impact of phosphorylation is currently known from the liter-

ature for only two of these enzymes: (1) phosphorylation of S1859 in carbamoyl-

phosphate synthetase 2 (CAD) enhances its in vivo [170] activity, and (2) phos-

phorylation on S293 causes pyruvate dehydrogenase (PDHA1) enzyme inactivation

[171]. Our predictions match both; for the CAD enzyme, we detected a high positive

correlation (0.718) and for PDHA1 we obtained a strong negative correlation of 0.6.

To test and validate these predictions in our cells further, we performed western blot

experiments for both proteins (CAD and PDH together with their phosphorylated

forms). We observed a marked phosphorylation of PDH in the predicted conditions

for MEM-Gln and MEM+Oli compared to MEM growth condition, indicating its

reduced activity under these conditions (Figure 3.4). This is additionally confirmed

via flux measurements through 13C MFA. On the other hand, we observed a de-

creased phosphorylation at CAD protein, indicating a decrease at its activity at

MEM-Gln and MEM+Oli conditions, as predicted (Figure 3.4).

3.2.5 Step 3: Genome wide prediction of TR and TL regulation of

breast cancer metabolism

In the previous steps, we have identified about 500 reactions that are directly

regulated at one of the three regulatory levels described above (TR, TL or PTL). In

these reactions, the predicted flux changes were significantly associated with molec-

ular alterations in the pertaining enzymes. However, this leaves a large number
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Figure 3.4: Phosphorylation of the indicated proteins (PDH and CAD) at MEM-Gln
and MEM+Oli conditions were detected by western blot analysis.
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of about 1450 reactions that were not assigned to any of these direct regulatory

levels, which can be attributed to the limited scope of our measurements. In order

to predict additional reactions that are likely to be directly regulated at TR or TL

level, we built five Support Vector Machine (SVM) classifiers for five different di-

rect regulation levels: TR-high, TR-low, TR-moderate, TL-up and TL-down. The

goal of each classifier is to predict whether a reaction is regulated at one of these

levels or not. The classifier was trained and evaluated using the reactions that have

already been labeled as TR or TL regulated in the previous analysis at step (1),

using a standard train and test 5-fold cross validation. The classifier input features

included the gene expression, proteomics, predicted fluxes and metabolic network

characteristics (reversibility information, number of participating metabolites, index

of the relevant pathway, and more) of the given reactions, and the TR/TL labels

already assigned in the previous steps (see methods). The accuracy of the classifier

was measured by comparing the predicted labels against the known labels. The

resulting classifiers achieved a high cross validation prediction accuracy (mean AUC

>0.946 for all classifiers, all values are presented in Figure 3.5 panel a; recall and

precision values are presented in Figure 3.5 panel b). Applying this to predict the

direct regulation of the 1450 remaining reactions, 450 additional reactions were

predicted to be regulated at exactly one of the TR/TL levels (in MEM, MEM-Gln

and MEM+Oli, see Figure 3.5 panel c for their subdivision in each of the regulation

groups). The predicted TR group is enriched with transcription factor binding sites

(hyper-geometric p-value = 6.236e-119, see methods. Similarly, the predicted TL

group has a significantly higher number of flux/proteomic states matches compared
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to the randomly selected sets (empiric p-value = 0.04). It is important to note

that the very small numbers of predicted PTL reactions did not enable us to build

reliable predictors of regulation at this level. Interestingly, adding the new set of

predicted reactions which are directly regulated to those reactions which are pre-

viously identified as directly regulated by model based integration uncovers a large

number of new pathways that now become enriched in directly regulated reactions

(in Supplementary Tables in subsections 3.4.7,3.4.8,3.4.9).

Figure 3.5: (a) AUC curves for each of the direct regulation SVM classifiers; (b) mean
precision and recall values for each of the SVM classifiers; (c) number of reactions that
have been uniquely predicted to be directly regulated by one of the classifiers.

3.2.6 Step 4: Studying the reactions that are indirectly regulated via

stoichiometric coupling

After the predictions we performed at step 1–3, around 1000 reactions yet

remained not to be predicted as directly regulated, some of which are likely to be

further identified as regulated with more extensive data. However, many of these
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remaining unassigned reactions may still be truly indirectly regulated (IR) reac-

tions where their flux may be primarily metabolically-regulated by changes in their

substrate and product levels due to changes in the flux activities of other reactions

in the metabolic network. That is, their flux may be stoichiometric coupling (SC-

regulated) to the flux of other reactions in the metabolic network [172, 173, 174].

In the framework of MCA (Metabolic Control Analysis), it has been estab-

lished that network structure is an important determinant of metabolic control

[175]. Accordingly, a perturbation in enzyme abundance or activity can be prop-

agated through reactions stoichiometry coupled to the reaction catalyzed by such

enzyme. To study such dependencies on a genome-scale, we used flux sampling to

quantify the pairwise stoichiometric couplings between all the metabolic reactions

in the human network, identifying for each reaction how tightly its flux is coupled

to the flux of each of the other reactions, in each of the different conditions (see

Methods).

Remarkably, we found that the 1000 ‘unassigned’ indirect reactions have sig-

nificantly higher stoichiometric couplings to the TL and PTL directly regulated

reactions than among themselves across the different growth conditions (using one

sided Wilcoxon test, p-values = 6.9163e-158 and 2.945e-14, respectively). These

findings point out that the regulation of cellular metabolism may be governed in a

hierarchical manner where the flux of many indirectly regulated reactions is deter-

mined via stoichiometric coupling to the flux of others, directly regulated reactions.

Finally, we found that the group of 1000 indirectly regulated reactions is highly en-

riched with bi-directional reactions (hyper-geometric p-value = 1.15e-28, 2.21e-32,
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5.54e-32 for each condition, see Methods). This observation can be explained by

metabolic control analysis (MCA) [176] theory: In the framework of MCA, enzyme

activities catalyzing reversible reactions, which often are in rapid equilibrium, usu-

ally have low flux control coefficients and hence are poor targets of direct regulation.

Indeed, the combination of the ‘directional flexibility’ of candidate SC-regulated re-

actions with their enhanced coupling to other directly-regulated reactions is likely

to facilitate the formation of stoichiometrically feasible flux distributions across the

metabolic network, providing a way for efficiently regulating the metabolic state

with minimal cellular costs in terms of transcriptomics, proteomics and phospho-

proteomics regulation.

3.2.7 Discussion

This study integrates transcriptomics, proteomics, phospho-proteomics and

fluxomics data with metabolic modeling to provide the first chart of metabolic reg-

ulation in MCF7 breast cancer cells on genome scale. We classified the metabolic

enzymes as those that are predicted to be directly regulated at three distinct levels

(TR, TL, and PTL) and those that are predicted to be indirectly regulated, given

the current coverage of omics data. As expected, we found that citric acid cycle

is generally upregulated both on the transcription and translational level. Interest-

ingly, while on the transcriptional level fatty acid oxidation was found to be generally

down-regulated, it is up-regulated on the translational level. In addition, oxidative

phosphorylation – another hallmark of cancer, was found to be up-regulated only on
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the translational level (not including MEM+Oli medium). These findings further

highlight the pivotal role of translational regulation in cancer and the importance

of obtaining higher coverage of proteomic data, whenever possible.

Remarkably, we found that the flux of the indirectly regulated reactions is

coupled to the flux of directly regulated ones. We also found that the indirectly

regulated reactions are enriched with bi-directional reactions. These findings might

open an opportunity for further research to determine an extent by which their ac-

tivity levels are set by other reactions. Taken all together, these findings suggest that

the regulation of breast cancer cell metabolism is controlled in a hierarchical manner

where the direct regulation of about half of the reactions suffices to orchestrate the

flux regulation through the whole metabolic network via flux coupling.

Like almost any other computational, genome scale investigation, our approach

has quite a few limitations. First, the data itself, is still limited and noisy, and the

coverage of different layers of omics data is uneven, due to obvious technical lim-

itations. Second, guided by the data we collected, we focused here on studying

post-translational modifications mediated by phosphorylation. However, obviously,

post-translational modifications occur via a variety of additional mechanisms, in-

cluding, e.g., acetylation, glycosylation and allosteric regulation [177, 178]. Con-

sequently, the machine learning predictors built for predicting transcriptional reg-

ulation and post-transcriptional regulation, but not post-translational regulation.

Fourthly, as we employ coarse discretization to overcome some of the noise in the

data, we only identify regulatory alterations in reactions that are differentially ac-

tive across the conditions of study. This limitation is partly mitigated, however, by
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analyzing three very distinct metabolic states. Future work should aim to address

these limitations by incorporating data sets covering more conditions, measuring a

wider range of omics data with higher coverage, and ideally, move to perform such

measurements in patients’ tumor data. With the advent of omics technologies such

data may become readily available soon and may be benefit from the conceptual

and computational framework laid out in the current study.

Although we analyzed multiple layers of omics data, their coverage has been

limited: while we had gene expression data for all 1372 metabolic genes, the coverage

of our cutting-edge proteomics measurements provided data for only 486 metabolic

enzymes and 71 of their phosphorylation sites. Flux measurements using 13C la-

beling are understandably even more limited in their scope, covering only central

carbon metabolism. Aiming to make the best use of the available data and to

obtain a genome-wide view of breast cancer cell metabolism, we used a modeling

approach to integrate the data and infer the most likely genome-scale flux distribu-

tions. Additional work aiming to deal with the limited coverage problem was carried

out via creating SVM predictors that used the known network properties together

with measurements with high coverage and helped us extend the scope of the study

to the utmost. With rapid advancement of high-throughput technology and accu-

mulation of more comprehensive omics data across additional cellular conditions,

the conceptual and computational framework exhibited here lays the methodolog-

ical foundations for gradually obtaining a more comprehensive view of metabolic

regulation in both breast cancer and other cancer types.
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3.3 Materials and Methods

3.3.1 Genome-scale metabolic modeling (GSMM)

A metabolic network consisting of m metabolites and n reactions can be repre-

sented by a stoichiometric matrix S, where the entry Sij represents the stoichiometric

coefficient of metabolite i in reaction j [3]. A GSMM model imposes mass balance,

directionality, and flux capacity constraints on the space of possible fluxes in the

metabolic network’s reactions through a set of linear equations:

S · v = 0 (3.1)

vmin ≤ v ≤ vmax (3.2)

where v stands for the flux vector for all of the reactions in the model (i.e. the flux

distribution). The exchange of metabolites with the environment is represented as

a set of exchange (transport) reactions, enabling a pre-defined set of metabolites to

be either taken up or secreted from the growth media. The steady-state assumption

represented in equation 3.1 constrains the production rate of each metabolite to be

equal to its consumption rate. Enzymatic directionality and flux capacity constraints

define lower and upper bounds on the fluxes and are embedded in equation 3.2.

In the following, flux vectors satisfying these conditions will be referred to as

feasible steady-state flux distributions.
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3.3.2 Pathway enrichment analysis

Based on iMAT results, which was used to predict the regulation of the re-

actions in the metabolic model, a hypergeometric p-value was computed for each

pathway in the model for being enriched with reactions that are regulated in each

level. Data for reactions and their pathways were taken from BIGG database [145].

A correction for multiple hypotheses was done using false discovery rate method of

0.05.

3.3.3 Using iMAT with transcriptomics and proteomics as its input

We first employed a discrete representation of significantly high or low enzyme-

expression levels across tissues. Gene expression and proteomics levels were dis-

cretized to highly (1), lowly (-1), or moderately (0) expressed, for each sample. This

discretization was conducted as follows: the 1/3 of the proteomics with the high-

est values to be considered as highly expressed, and vice versa for lowly expressed.

When proteomics data was not available, transcriptomics data was used (again – top

1/3 as lowly expressed, and vice versa). One could argue that the different levels

of coverage between transcriptomics and proteomics could suggest using different

thresholds for determining ‘active’ and ‘inactive’ genes in the respective analysis;

To keep a systematic approach, here we opted to treat both data measurements in

the same, uniform, way (but other approaches may be taken in the future. Lastly,

in order to avoid direct effect of the coverage differences between proteomics and

transcriptomics, we determined a moderate expression level for genes whose level
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according to the gene expression was high (low) and according to the proteomics

low (high), and left their corresponding enzymes/reactions unconstrained. In iMAT

analysis, the discretized gene expression levels were incorporated into the metabolic

model to predict a set of high and low activity reactions. Network integration was

done by mapping the genes to the reactions according to the metabolic model (see

methods), and by solving a constraint-based modeling (CBM) optimization problem

to find a steady-state metabolic flux distribution. CBM models the cell as a network

of metabolic reactions controlled by hundreds of genes and enables the prediction

of feasible metabolic behavior under different genetic and environmental conditions,

that are expressed as constraints in the network [9, 179]. By using the CBM ap-

proach, we assign permissible flux ranges to all the reactions in the network, in a

way that satisfies the stoichiometric and thermodynamic constraints embedded in

the model and maximizes the number of reactions whose activity is consistent with

their expression state. iMAT’s solution may not be unique as a space of alternative

optimal solutions (in terms of its objective function) may exist. Therefore, we sam-

pled 2,000 different flux distributions that are all consistent with the reactions’ state

of activity or inactivity defined in one of iMAT’s optimal solutions. To address the

potential degeneracy of the CBM solutions, we used the artificial-center-hit-and-run

(ACHR) sampling approach [180] which is an efficient sampling approach for a lin-

early constrained space [181]. The mean flux distribution obtained over the 2,000

samples then serves as an approximation of the source metabolic state.
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3.3.4 Gene to reaction mapping

To map the gene expression to expression on the reaction level, we used the

boolean gene-protein-reaction (GPR) associations available in the H. sapiens recon1

metabolic model, downloaded from the BIGG database ([182]). These rules indicate

which genes need to be expressed using the two Boolean operators “and” and “or”.

An example of such a rule is the following:

• R1 = (g1 or g2) and g3 (indicating that either gene 1 or gene 2 (or both) need

to be expressed in combination with gene 3 to allow reaction 1 activity.

– OR rules were converted to the maximum transcription level of either of

the genes, i.e. (g1 or g2) was converted to max(g1, g2)

– AND rules were converted to the minimum transcription level of either

of the genes, i.e. (g1 and g2) was converted to min(g1, g2).

3.3.5 Bi-directional reactions

Bi-directional reactions are those that can potentially carry flux in both direc-

tions (this information is provided in the human GSMM model).

3.3.6 Identifying TR/TL reactions

We compared the discretized gene expression measurements to the activity

levels of the predicted fluxes; we took 1/3 of the reactions with the highest flux

values to be considered as highly active, and vice versa for lowly active reactions.

The rest of the reactions considered to be moderately active. If the activity level
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of a reaction matches the discretized value according to the gene expression, in at

least 3 out of the 4 cell line replicates, the reaction is considered to be TR. For the

rest of the reactions, if the activity level of a reaction matches the discretized value

according to the proteomics, the reaction is considered to be TL.

3.3.7 Identifying PTL reaction

Among the reactions that haven’t been classified as TR or TL in the way that

mentioned above, we found the sub group of reactions that were associated with at

least one phosphorylation site. Reactions whose predicted flux activity markedly

differed from their transcriptomics or proteomics expression levels, and that were

associated with at least one phosphorylation site in 3 of the 4 cell line replications,

were predicted to be potentially post-translationally (PTL) regulated.

3.3.8 Finding transcription factor enrichment

First, we found the reactions that were predicted to be TR in all condition.

Then, using the reaction-gene matrix, we found the list of genes that catalyze this

group of reactions. Using ENRICHR tool [163, 164], we found how many of the

genes have (at least one) TFs that bind to their promoter region, from exploring

Jaspar [165], Transfar [166], ChEA [167] and ENCODE [168, 169] databases. Same

for all model genes. These values were used in the hypergeometric calculation.
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3.3.9 Support vector machine (SVM) classification

We built and trained five SVMs classifiers (representing 5 “classes” of regu-

lation, as described in main text). We applied an SVM classifier with a quadratic

kernel for each classifier, with the following features:

(1–4) gene expression measurements under 4 data points

(5–8) predicted fluxes under 4 data points

(9) A binary integer indicating if the reaction is reversible.

(10) An integer value associated with a unique metabolic pathway.

(11) The total number of metabolites participating in the reaction.

(12) The total number of substrates participating in the reaction.

(13) The total number of products participating in the reaction.

For the labels, we used the classification of the reactions from the previous steps (1

if it’s regulated at that level, 0 otherwise). All SVM classifiers were trained on part

of this data, and later tested on all data (mean recall and precision values presented

in the text).

Cross-validation was performed by setting aside one fifth of the regulated-

predicted reactions in the training set. The classifier was trained on the remaining

four. The classifier’s accuracy was measured by comparing the predicted labels

against the known labels.
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3.3.10 Computing pairwise flux correlations

For each growth condition, we found 2000 different flux distributions using

flux balance analysis. Then, for each pair of reactions, we calculated the Spearman

correlation between their flux values. For the coupling calculations, we used the

absolute values of these correlations (as coupling between reactions can be either

positive or negative).

3.3.11 Multiple hypotheses correction

Throughout our paper P-values were filtered by False Discovery Rate (FDR)

to correct for multiple testing [183]. More specifically, first, all the p-values were

sorted in increasing order, P1, P2, .., Pn. Next, we filtered p-values pi : pi >
i
n
∗ 0.05.
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3.4 Supplementary Information

3.4.1 Enriched metabolic pathways
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3.4.2 Enriched metabolic pathways

3.4.3 Spearman Correlation Comparison
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3.4.4 Enriched metabolic pathways

3.4.5 Spearman Correlation histogram

3.4.6 Number of directly regulated reactions

75



3.4.7 Enriched metabolic pathways
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3.4.8 Enriched metabolic pathways
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3.4.9 Enriched metabolic pathways
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Chapter 4

Estimating tumor mutational burden from RNA-sequencing without

matched-normal

4.1 Introduction

Somatic point mutations accumulate in the DNA of all dividing cells, both

normal and neoplastic, and are the most common mechanism for altering gene func-

tion [184, 185, 186, 187]. Their detection in tumor samples is of high clinical value;

first, when accumulated in specific genes termed ”drivers”, they may lead to the

development of cancer. Identifying these mutations is therefore crucial for matching

existing targeted therapies and for developing novel ones [188, 189, 190, 191]. In ad-

dition, somatic mutations are used for determining intra-tumor heterogeneity which

is a major mechanism of therapeutic resistance [192], and for identifying mutational

signatures, which have proven to be clinically useful biomarkers [193, 194]. Tradi-

tionally, detection of somatic point mutations is done using tumor and matched-

normal whole exome or genome sequencing [195, 196, 197, 198, 199]. The latter

is required for distinguishing between somatic mutations found exclusively in the

tumor sample, and germline variants shared by all cells of an individual. Recently,

several studies have developed a ’tumor-only’ pipeline that detect somatic muta-

tions without the matched-normal sample, at the cost of lower precision and recall
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[200, 201, 202].

An additional extension to the traditional pipelines includes the detection of

somatic mutations from RNA sequencing and a matched-normal DNA sample. In

a recent publication, such a pipeline termed RNA-MuTect, was introduced, and

showed that most of the mutations detected only in the RNA are filtered out by

the pipeline, achieving and overall high precision. In addition, high sensitivity for

mutations with sufficient detection power was observed, enabling the detection of

most driver genes and mutational signatures [203].

In this study we took this approach one step further and developed RNA-

MuTect-NMN, a pipeline for detecting somatic point mutations from RNA sequenc-

ing without a matched-normal sample. This is accomplished via a machine learning

approach which utilizes a few dozens of features to classify single nucleotide vari-

ants as either somatic or germline. Our pipeline is trained and tested on the TCGA

melanoma dataset achieving high precision and recall. In addition, it enables a

reliable identification of both driver genes and mutational signatures. Finally, we

applied our model to estimate the tumor mutational burden (TMB) which emerged

as a proxy for neoantigen load. TMB is defined as the number of non-silent muta-

tions found in a tumor DNA, and was found to be an independent marker of patient

response to immune checkpoint inhibitor therapy (ICI), and for predicting patient

survival, both in treated and treatment-naive patients [204, 205, 206, 207]. Here

we show that estimating TMB from RNA which better reflects the set of expressed

mutations, is either equivalent or superior to TMB estimated base on DNA. In ad-

dition, we show that this can be accomplished using a single RNA sample, further
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emphasizing the potential clinical utility of our pipeline.

4.2 Results

4.2.1 Identifying somatic mutations from RNA-seq data without a

matched normal sample

To develop a pipeline for detection of somatic point mutations from RNA-

seq without a matched-normal sample, we leveraged RNA-seq and matched-normal

DNA of 462 melanoma samples (SKCM) from the The Cancer Genome Atlas (TCGA)

[208]. To obtain the ground truth of somatic and germline variants in these samples,

we ran RNA-MuTect [203]; in short, RNA-MuTect works by first running MuTect

[33] on RNA and matched-normal DNA, which classifies all variants into either

germline or somatic. Since the set of somatic variants includes multiple noisy sites

unique to the RNA, a series of filtering steps is then applied to yield the final set of

true somatic mutations (Figure 4.1 panel A). As originally reported [203], focusing

on the RNA mutations with sufficient detection power in the DNA, 90% were indeed

found in the DNA, with a median of only 3 detected mutations per sample remained

in the RNA set.

For each somatic and germline variant we collected a set of genomic features

(Methods), such as the number of reference and alternate reads, variant classifica-

tion type and MuTect likelihood score. In addition, we collected data on germline

variants from dbSNP [209], gnomAD [210], 1000 genomes [68] and the Exome Se-

quencing project [211]. Finally, we utilized both DNA and RNA panel of normal
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(PoN) which are based on ∼8000 TCGA and ∼6500 Genotype-Tissue Expression

(GTEx) normal samples (Methods) [212]. These PoNs encode the distribution of

alternate read counts across the entire sets of normal samples [213]. To test how

well our features separate between somatic and germline variants, we performed a

Wilcoxon rank sum test for each feature, and found that all features show a sig-

nificant difference between these two types of variants (FDR corrected p-values ≤

0.0111). However, when searching across a range of thresholds in each feature, we

found that the Precision-Recall Area Under the Curve (PR-AUC) is very low ( ≤

0.08), as well as the F1 score ( ≤ 0.16). This finding is a result of the substantial

overlap between features’ values in these two variant types, demonstrating the need

for a more complex model. To this end we developed a machine learning framework

named RNA-MuTect-NMN that gets as input a list of variants with their associated

features, and classifies them as either somatic or germline. We first focused on an

initial set of 100 samples. Each such sample contains the list of single nucleotide

variants with their genomic features (Methods) and a somatic/germline label based

on the RNA-MuTect pipeline, as described above (Figure 1A). We then trained

random forest classifiers [214] in a 5-fold cross validation manner, such that in each

iteration, 80 samples are used for training and 20 samples are used for validation.

The median precision and recall achieved by our model on the validation sets are

0.82 and 0.83, respectively (Figure 4.1 panel B). To test our model performance, we

used the remaining 362 samples and applied the following three step process: (1)

we ran MuTect with tumor RNA-seq and without a matched-normal sample. In

this step both somatic and germline variants are marked as true somatic mutations,
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and a subset of sites are removed based on MuTect filtering scheme; (2) we then

applied to this set of variants the 5 models built in the training step, and classified

each variant as either somatic or germline, based on the majority vote; (3) finally,

to remove any remaining RNA-specific noise, we applied the various RNA-MuTect

filtering steps on the set of predicted somatic mutations. We have decided to run

our pipeline as this three steps process due to a couple of time consuming steps

implemented in the RNA-MuTect filtering pipeline, that would run more efficiently

on the narrowed list of variants achieved after step 2. The final set of somatic and

germline variants were then used to estimate the pipeline performance, showing a

median precision and recall of 0.85 and 0.83, respectively (Figure 1B). Further in-

vestigating our results, we observed that a few samples achieved a relatively low

precision. We found that this performance is due to their overall low number of

somatic mutations in these samples (41 out of 46 samples with precision ≤ 0.6 had

mutation count ≤ 50, Figure 4.1 panel C), and that the median precision on the

remaining samples is 0.89. In addition, to circumvent the possibility that the high

performance obtained by our model is a result of low purity levels which will in turn

result with different allele fractions for somatic and germline variants, we examined

the correlation between tumor purity and the obtained precision and recall levels.

Indeed, we found this correlation to be insignificant (Spearman R = -0.0040, -0.0874,

for precision and recall, respectively, P-value = N.S. for both). To better character-

ize our model we next examined which features are the most important using the

feature importance score (methods). We found that the PoN DNA score 2 and PoN

DNA score 1 features are the most important, followed by PoN RNA likelihood score
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and gnomAD AF (Supplementary Table in subsection 4.4.1). Finally, we computed

the Spearman correlation between the number of predicted somatic mutations, to

that achieved by the DNA or RNA with a matched-normal DNA sample. In both

cases, we found it to be highly significant (R = 0.92, P-value ≤ 4.15−151 for DNA

and R = 0.98, P-value ≤ 8.7∗ 10−286 for RNA, Figure 4.1 panels C-D, respectively).

Figure 4.1: (a) An overview of the RNA-MuTect-NMN pipeline: In the training set
(n=100, green arrows), RNA-MuTect is applied on tumor RNA and matched-normal DNA
to obtain a list of variants labeled as somatic or germline. A random forest classifier is
then trained with the collected set of features for each variant in a 5-fold cross validation
manner. In the test set (n=362, orange arrows), MuTect is applied with tumor RNA
and without a matched-normal sample, to yield a list of mixed somatic and germline
variants. The five trained models are then applied to this set of variants in a majority
vote manner. Finally, the predicted set of variants is further filtered by the various RNA-
MuTect steps. (b) Precision and recall on training and validation sets. Box plots show
median, 25th, and 75th percentiles. The whiskers extend to the most extreme data points
not considered outliers, and the outliers are represented as dots. (c) Correlation between
the number of predicted somatic mutations and true somatic mutations as determined
by DNA. (d) Correlation between the number of predicted somatic mutations and true
somatic mutations as determined by RNA. (e) Precision as the function of the number of
true somatic mutations per sample.
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4.2.2 Detecting mutational signatures and significantly mutated genes

without a matched-normal sample

The overall high performance of RNA-MuTect-NMN enabled us to apply our

standard analysis pipelines for identifying mutational signatures and significantly

mutated genes. To this end we applied SignatureAnalyzer [215, 216] using the set of

predicted somatic mutations, and identified 4 signatures (Figure 4.2 panel A): UV

signature (COSMIC SBS7b, cosine similarity = 0.95) which is common in melanoma

[185, 217], signature 5 (COSMIC SBS5, cosine similarity = 0.87) which is common

in various cancer types, including melanoma, and a signature enriched with C>A

mutations and was previously found only in ultraviolet light associated melanomas

(SBS38, cosine similarity = 0.78). Importantly, the same three signatures were

identified in the DNA (Supplementary Table in subsection 4.4.4). In addition, a

signature enriched with T>G mutations was detected. This signature was not de-

tected in the DNA but was detected in the RNA when somatic mutations were

identified with a matched-normal DNA sample (Supplementary Table in subsection

4.4.3). Investigating this set we found that out of 552 mutations that are associated

with this signature, 489 are mutations that were not found in the DNA mutations,

suggesting a mechanism that is unique to RNA mutations.

Next, we identified significantly mutated genes by applying MutSig2CV [218]

to the set of predicted somatic mutations. Out of 24 identified genes, 22 were

found to be significantly mutated also when the matched-normal sample is taken

into account (Figure 4.2 panel b), and only 2 were missed by our pipeline. Finally,
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we examined our pipeline performance in identifying a set of 55 melanoma somatic

driver genes based on the COSMIC database [219], 43 of them were found to carry

at least one true somatic mutation in our dataset. Notably, we found that our

pipeline achieves an even higher precision and recall on this set (median of 1 and

0.95, respectively), further demonstrating its high value.

Figure 4.2: (a) Mutational signatures identified based on the set of predicted somatic
mutations; (b) Co-mutation plot based on predicted somatic mutations in our test set.
Overall frequencies, allele fractions, and significance levels of candidate cancer genes (Q ≤
0.05) identified by MutSig2C [218] are shown. Genes marked with a red arrow were also
identified as significantly mutated based on the set of true somatic mutations. (c) Precision
and recall on the set of know melanoma drivers. Box plots show median, 25th, and75th

percentiles. The whiskers extend to the most extreme data points not considered outliers,
and the outliers are represented as dots.
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4.2.3 TMB predicted by RNA-MuTect-NMN is associated with pa-

tient survival

The development of checkpoint blockade (CPB) therapy such as anti-PD1 and

anti-CTLA4 has revolutionized cancer therapy and resulted in long-lasting tumor

responses in patients with a variety of cancers [103]. As a result, these drugs have

been FDA-approved for many cancer types, including melanoma, non-small cell lung

cancer, Urothelial carcinoma, Head and Neck squamous cell carcinoma and more

[104]. Recently, an accelerated approval for anti-PD1 for the treatment of adult and

pediatric with tumor mutational burden-high (TMB-H, ≥ 10 mut/Mb) has been

granted, making it a critical metric for the clinical decision process. Indeed, the

TMB which is traditionally estimated via DNA sequencing has been found to be

associated with patient survival, though to different extents depending on cancer

type [220], prior and current treatment [221, 222, 223]. Here, based on the set of

predicted somatic mutations from RNA sequencing alone, we estimated the tumor

mutational burden as the number of non-silent somatic mutation in each sample.

We then divided the patients into two groups with high- and low-TMB levels, using

the median TMB as the cutoff value. We found that patients with high-TMB had

a mild but significant increase in survival time as compared to those with low-

TMB (log-rank P-value = 0.02, figure 4.3 panel a). Of note, performing the same

analysis using the set of somatic mutations detected based on tumor and matched-

normal DNA, similar results are obtained (logrank P-value = 0.01, Figure 4.3 panel

b), further demonstrating the utility of our pipeline. In addition, we performed a
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multivariate Cox proportional hazards regression analysis with patient age, tumor

stage and TMB as the covariates, and found that TMB is the prognostic factor

most associated with increased survival (HR = 0.59, 95% CI=0.36-0.96, P-value ≤

0.03, Figure 4.3 panel e) . As discussed above, the extent of association between

TMB and patient survival vary widely between different datasets according to cancer

type and prior therapy. A recent publication by Valero et al. showed that among

patients that were not treated with CPB, a very high TMB (top 10-20 percentile) is

associated with poor survival [224]. Given that most of the patients in the TCGA

cohort were not treated with CPB, we set to examine this observation in our data

as well. Indeed, when we divide the patients into three groups with very high-,

high- and low- TMB levels, using the top 10th percentile for the very high group,

and median for the remaining samples, we find that those with the highest TMB

values have a poor survival (logrank P-value = 0.04 between high- and very high-

TMB), and those with median high TMB have an improved survival as compared to

those with low TMB (logrank p-value = 5.8*10-4, Figure 4.3 panel c). This result

is robust to the selection of threshold for the very-high TMB group (top percentile

between 10-18). Importantly, performing the same analysis based on DNA revealed

the same trends, though with an inferior significance level (logrank P-value = 0.01,

0.04, respectively, Figure 4.3 panel d). Repeating the cox analysis while removing

the top 10th percentile, the association of TMB with survival is becoming even more

significant (HR = 0.31, % CI=0.17-0.58, P-value ≤ 2*10-4, Figure 4.3 panel e).

Overall, these results demonstrate that estimating TMB based on RNA alone is

feasible and of a high predictive power.
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Figure 4.3: Kaplan–Meier survival curves for patient groups (a) patients with high vs.
low TMB (estimated from the predicted RNA somatic mutations). The median is used
to define the ‘low TMB’ and ‘high TMB’ subgroups. The P value is computed via a
two-sided log-rank test. (b) same, for TMB estimated from DNA somatic mutations. (c)
patients with very-high vs. high vs. low TMB (estimated from the predicted RNA somatic
mutations). Subgroups were splitted by using the top 10th percentile for the very high
group, and median for the remaining samples. (d) same, for TMB estimated from DNA
somatic mutations. (e) Hazard Ratio vs. –log10(p-value), obtained from multivariate Cox
proportional hazards regression analysis. Red dots for results based on all samples, blue
dots for results after excluding the top 10% of samples (very high TMB).
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4.2.4 TMB estimation from RNA in patients treated with CPB

We next examined the prediction power of our model on an additional set of

patients that were treated with nivolumab (anti-PD1), some are treatment naive

and some have previously progressed on ipilimumab (anti-CTLA4) [225]. Raw

RNA-sequencing data from 50 pre-therapy biopsies were obtained and aligned to

the reference genome. Then, the set of mutations ¬obtained by MuTect using tu-

mor RNA alone was further labeled by our model as either somatic or germline.

To validate our calls we first applied SignatureAnalyzer and identified the set of

mutational signatures that are active in these samples. Encouragingly, we found the

UV signature (SBS7b), along with signatures SBS11 andSBS5 that were found by

the authors based on DNA were also detected based on our predicted set of somatic

mutations (cosine similarity = 0.86, 0.95 and 0.78, respectively, Figure 4.4 panel

a). In addition, when applying MutSig2CV to identify significantly mutate genes,

both NRAS and BRAF, known melanoma drivers, were found to be significantly

mutated (Figure 4.4 panel b). Finally, we estimated the TMB based on the set of

predicted somatic mutation. Interestingly, when considering the set of treatment

näıve patients for which both DNA and RNA are available, no significant associa-

tion between TMB and patient survival is found, based on neither DNA nor RNA.

However, when considering the set of patients that were previously progressed on

ipilimumab, a significant association between high TMB and poor survival is found

(logrank P-value = 0.01, Figure 4.4 panel c). This is in similar to the trend that

was reported by the authors using DNA (Figure 4.4 panel d). Overall, we again find
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that estimating the TMB from tumor RNA alone is feasible and results with similar

trends to those obtained with tumor and matched-normal DNA.

Figure 4.4: (a) Mutational signatures identified based on the set of predicted somatic
mutations (using the RNA-seq data of 50 pre-therapy biopsies from [225]. (b) Co-mutation
plot based on predicted somatic mutations. Overall frequencies, allele fractions, and signif-
icance levels of candidate cancer genes (Q < 0.05) identified by MutSig2C [38] are shown.
(c) Kaplan–Meier survival curves for patient groups (a) patients with high vs. low TMB
(estimated from the predicted RNA somatic mutations). The median is used to define the
‘low TMB’ and ‘high TMB’ subgroups. (d) same, for TMB estimated from DNA somatic
mutations.
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4.3 Methods

4.3.1 Datasets

RNA-seq data of tumor from 462 Melanoma patients from the TCGA project [208]

was utilized in this study. To infer the true labeling from RNA-mutect, RNA-seq

from the adjacent matched normal tissue was used as well. For the survival anal-

ysis the clinical data of these patients was obtained. To compare between somatic

mutations from RNA to somatic mutations from DNA, MuTect [33] was applied to

the DNA data. We tested the model on an additional dataset, where RNA-seq data

and clinical data for a cohort of 50 patients with advanced melanoma was obtained

[225].

4.3.2 Somatic Mutation Calling

• RNA-somatic mutations were identified by applying RNA-MuTect [100] to the

list of variants obtained from tumor RNA-seq and the variants obtained from

DNA of the matched normal. This was also used as our labels for the model.

• DNA-somatic mutations were identified from tumor-normal paired alignments

using MuTect [33], which identifies variants unique to the tumor sample by

contrasting alignment pileups at each genomic position.
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4.3.3 Feature Collection

The following features were collected and calculated for the random-forest classifi-

cation model:

1) T ref count - count of reference alleles reads in tumor

2) T alt count - count of alternate alleles reads in tumor

3) T lod fstar - a statistic score assigned by MuTect; Log of (likelihood tumor event

is real / likelihood event is sequencing error)

4) Tumor f - allelic fraction of this candidate based on read counts

5-12) For each of the germline variants database (dbSNP, gnomAD, 1000Genome,

ESP) two vectors were created:

1. The variant is present (1) or not (0) in each database (resulting with a 1X4

binary vector for each variant)

2. Allele Frequency (AF), when available, and when not available, the mean AF

value was used (resulting with a 1X4 AF vector for each variant)

13) Variant classification - (1) if the variant classification (assigned by Oncotator

[226]) is one of the follows: ’IGR’, ’Intron’, ’RNA’, ’lincRNA’ , and (0) otherwise.

(14-31) Panel of Normals DNA (based on TCGA normal samples) – Each genomic

position’s histogram comprises eight bins used as features 14-21

14) total counts < 8 (insufficient coverage)

15) total counts ≥ 8 (and no alt count above the subsequent thresholds)

16) alt count ≥ 1 and alt fraction ≥ 0.1%

17) alt count ≥ 2 and alt fraction ≥ 0.3%
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18) alt count ≥ 3 and alt fraction ≥ 1%

19) alt count ≥ 3 and alt fraction ≥ 3%

20) alt count ≥ 3 and alt fraction ≥ 20%

21) alt count ≥ 10 and alt fraction ≥ 20%

22) log-likelihood score (based on [213])

23-31) same for RNA (based on GTEx samples)

4.3.4 Panel of Normals (PoN)

The different PoN scores used as features in our model, are based on the method

described in [213], where the idea is encoding the expected distribution of alternate

allele read counts at every genomic position, based on a large panel normals (∼8000

TCGA normal samples, in case of DNA, and ∼6500 GTEx samples in case of RNA).

4.3.5 Feature Importance

To calculate the feature importance, we used the built-in feature importance of

scikit-learn, also known as GINI importance (or- mean decreased impurity). We

obtained the feature importance scores for each of the 5 trained models, and final

importance score for each feature was calculated as the average across all 5 models.

4.3.6 Significantly Mutated Genes

MutSig2CV [218] uses three tests to infer significantly mutated genes: abundance,

which classifies whether a gene’s observed mutation rate is significantly elevated
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relative to its expected background mutation rate; clustering, which looks for genes

harboring recurrently mutated loci; and conservation, which looks for genes whose

mutations are significantly enriched in evolutionary conserved sites. Each of these

tests returns a p-value for every gene, which are Fisher-combined and false discovery

rate (FDR)-corrected via Benjamini-Hochberg. Genes were considered “significant”

if their FDR value was below 0.05.

4.3.7 Statistical analysis

1. Multiple hypotheses correction. Throughout our paper P-values were filtered

by False Discovery Rate (FDR) to correct for multiple testing [183].

2. Survival analysis. Survival analysis was performed using the Kaplan–Meier

method [143] to generate survival curves, where the median values of TMB

was used to split the patients into two groups, resulting with two survival

curves. In the additional survival analysis, we used additional threshold of

10% for the group of very-high TMB samples, and median TMB for the rest

of the samples. The log-rank test p-value was calculated to estimate the

survival difference between the groups. Multivariable analysis was performed

using Cox proportional hazards regression [227], where variables significant

with univariate regression were included, namely, TMB, age and stage.

3. Distributions comparisons between germline and somatic groups was per-

formed using the Wilcoxon rank-sum test [228].
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4.4 Supplementary Information

4.4.1 Feature Importance
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4.4.2 Mutational Signature (cosine similarity) - RNA predicted

S1-SBS45 S3-SBS7b S4-SBS5

SBS5
SBS29
SBS8

SBS20
SBS18
SBS4

SBS36
SBS38
SBS45
SBS53

SBS10a
SBS52
SBS14
SBS56
SBS35
SBS30
SBS11
SBS31
SBS19
SBS23
SBS7a
SBS7b
SBS24
SBS50
SBS32
SBS2

SBS42
SBS25

SBS10b
SBS47
SBS48
SBS49
SBS39
SBS44
SBS59

SBS17b
SBS28

SBS17a
SBS60
SBS22
SBS34
SBS13
SBS7c
SBS7d
SBS27
SBS43
SBS33
SBS55
SBS16
SBS41
SBS51
SBS15
SBS37
SBS26
SBS12
SBS21
SBS54
SBS57
SBS58
SBS9

SBS46
SBS1
SBS6
SBS3

SBS40

0.2 0.53 0.87
0.56 0.083 0.48
0.59 0.098 0.4
0.55 0.13 0.4
0.73 0.16 0.47
0.77 0.14 0.38
0.81 0.095 0.31
0.78 0.05 0.18
0.84 0.032 0.21
0.52 0.077 0.25
0.51 0.029 0.13
0.48 0.027 0.17
0.68 0.048 0.25
0.62 0.023 0.17
0.43 0.37 0.38
0.027 0.85 0.46
0.016 0.73 0.37
0.12 0.63 0.38
0.017 0.58 0.41
0.015 0.61 0.44
0.0058 0.91 0.17
0.02 0.95 0.32
0.33 0.11 0.43
0.14 0.45 0.32
0.085 0.45 0.62
0.0017 0.47 0.13
0.24 0.38 0.46
0.27 0.26 0.69
0.049 0.34 0.19
0.13 0.28 0.26
0.24 0.0057 0.045
0.29 0.0086 0.063
0.17 0.15 0.6
0.25 0.12 0.64
0.16 0.0097 0.14

0.0038 0.011 0.042
0.018 0.033 0.082
0.011 0.019 0.18
0.017 0.015 0.17
0.018 0.032 0.13
0.016 0.036 0.15
0.11 0.027 0.22
0.081 0.16 0.21
0.057 0.12 0.24
0.065 0.13 0.25
0.041 0.016 0.25
0.052 0.076 0.27
0.035 0.052 0.24
0.12 0.13 0.34
0.065 0.19 0.53
0.13 0.13 0.47
0.072 0.091 0.52
0.063 0.11 0.49
0.044 0.073 0.44
0.063 0.08 0.4
0.056 0.059 0.37
0.038 0.049 0.4
0.11 0.3 0.47
0.09 0.32 0.51
0.2 0.22 0.51
0.15 0.22 0.5

0.0083 0.1 0.62
0.021 0.16 0.71
0.39 0.37 0.68
0.47 0.51 0.65

0.75

0.80

0.85

0.90

0.95

1.00

97



4.4.3 Mutational Signature (cosine similarity) - RNA true

S2-SBS7b S3-SBS5

SBS7a
SBS7b
SBS2

SBS10b
SBS30
SBS11
SBS19
SBS23
SBS31
SBS5

SBS32
SBS40
SBS47
SBS50
SBS3

SBS57
SBS58
SBS35
SBS42
SBS7c
SBS7d
SBS27
SBS55
SBS43
SBS52
SBS56

SBS17a
SBS10a
SBS13
SBS48
SBS49
SBS22
SBS34
SBS59
SBS60

SBS17b
SBS28
SBS25
SBS51
SBS18
SBS16
SBS33
SBS53
SBS41
SBS9

SBS46
SBS38
SBS45
SBS24
SBS12
SBS36
SBS21
SBS14
SBS54
SBS8

SBS26
SBS39
SBS20
SBS4

SBS37
SBS15
SBS29
SBS6
SBS1

SBS44

0.91 0.035
0.95 0.094
0.46 0.007
0.42 0.065
0.84 0.27
0.71 0.21
0.57 0.15
0.6 0.23
0.62 0.21
0.55 0.7
0.45 0.49
0.49 0.56
0.27 0.2
0.44 0.27
0.37 0.6
0.3 0.41
0.32 0.34
0.36 0.36
0.38 0.37
0.16 0.18
0.12 0.21
0.13 0.22
0.054 0.21
0.017 0.23
0.024 0.25
0.022 0.25
0.02 0.19
0.027 0.2
0.026 0.2
0.0035 0.12
0.0063 0.12
0.031 0.13
0.039 0.15
0.009 0.17
0.017 0.15
0.0098 0.039
0.034 0.069
0.28 0.67
0.15 0.37
0.17 0.55
0.13 0.3
0.078 0.31
0.079 0.31
0.2 0.48
0.23 0.47
0.22 0.49
0.044 0.35
0.026 0.38
0.11 0.44
0.081 0.43
0.091 0.44
0.064 0.39
0.048 0.41
0.06 0.41
0.092 0.47
0.079 0.48
0.15 0.5
0.13 0.49
0.13 0.48
0.12 0.48
0.099 0.6
0.094 0.55
0.2 0.67
0.14 0.66
0.13 0.66

0.75

0.80

0.85

0.90

0.95

1.00
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4.4.4 Mutational Signature (cosine similarity) - DNA

S1-SBS38 S2-SBS7a S3-SBS1

SBS5
SBS11
SBS30
SBS7a
SBS7b
SBS31
SBS50
SBS19
SBS23
SBS2

SBS10b
SBS1
SBS6

SBS49
SBS44
SBS32
SBS15
SBS24
SBS58
SBS42
SBS47
SBS51
SBS21
SBS33
SBS37
SBS12
SBS26
SBS54
SBS57
SBS39
SBS41
SBS9

SBS46
SBS52
SBS56

SBS10a
SBS16
SBS27
SBS7c
SBS7d
SBS48

SBS17b
SBS59
SBS28
SBS22
SBS60
SBS55

SBS17a
SBS34
SBS13
SBS43
SBS40
SBS3

SBS25
SBS35
SBS29
SBS14
SBS8

SBS36
SBS18
SBS4

SBS20
SBS53
SBS38
SBS45

0.14 0.5 0.72
0.011 0.67 0.2
0.018 0.79 0.29
0.0025 0.97 0.062
0.0078 0.89 0.17

0.1 0.51 0.27
0.11 0.48 0.27
0.016 0.5 0.2
0.015 0.49 0.26

0.00095 0.56 0.021
0.015 0.42 0.068
0.038 0.12 0.76
0.048 0.16 0.75
0.36 0.0055 0.1
0.23 0.095 0.62
0.046 0.42 0.46
0.1 0.083 0.61
0.19 0.095 0.36
0.062 0.34 0.36
0.13 0.31 0.31
0.14 0.29 0.23
0.089 0.13 0.4
0.053 0.043 0.34
0.029 0.066 0.34
0.055 0.1 0.47
0.051 0.067 0.39
0.041 0.062 0.44
0.028 0.04 0.42
0.1 0.28 0.42
0.14 0.13 0.51
0.056 0.18 0.53
0.099 0.19 0.48
0.13 0.2 0.45
0.21 0.02 0.17
0.18 0.014 0.18
0.098 0.024 0.14
0.089 0.12 0.29
0.039 0.12 0.23
0.052 0.15 0.2
0.057 0.11 0.18
0.073 0.0029 0.049
0.0065 0.0074 0.053
0.04 0.0073 0.095
0.014 0.032 0.1
0.012 0.025 0.13
0.02 0.014 0.11
0.037 0.053 0.18
0.0041 0.014 0.17
0.016 0.03 0.17
0.034 0.023 0.19
0.043 0.012 0.21
0.32 0.47 0.52
0.32 0.32 0.57
0.2 0.25 0.65
0.37 0.29 0.34
0.39 0.079 0.48
0.48 0.038 0.31
0.44 0.078 0.41
0.42 0.082 0.34
0.49 0.15 0.5
0.65 0.11 0.4
0.56 0.11 0.43
0.76 0.069 0.31
0.99 0.042 0.31
0.87 0.024 0.31

0.75

0.80

0.85

0.90

0.95

1.00
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Chapter 5

Discussion

5.1 Summary and contributions

In this thesis I addressed emerging challenges in the field of GSMMs, focusing

on the modeling of human metabolism, and also in the field of somatic mutation

calling in cancer. This thesis begins with the presentation of a novel model-based

method for the identification of synthetic dosage lethality interactions, that enables

to selectively kill cancer cells. Next, in order to better study the metabolic regulation

in breast cancer cell-line, I present an approach for multi-omics data integration

and flux prediction, by establishing a conceptual framework that utilizes GSMM

and machine learning techniques. Finally, to study somatic mutations in cancer, I

developed the first model that enables the identification of somatic mutations in the

tumor from RNA-seq data, without the matched normal.

Below I summarize these three studies, their limitations, and their future ap-

plications.

1. The IDLE (identifying dosage lethality effects) algorithm presents a novel

approach to capture enzymatic SDL effects in metabolic networks. Previous

GSMM-based methods to study interaction between enzymes were focused on

synthetic lethal interactions, however, in order to target oncogenes, which are

genes that over-expressed in the cancer cell, and cannot be targeted directly
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because they are essential in the normal cell, an SDL interaction approach

should be used.

To this end we came up with an algorithmic method, accomplished via a

constraint-based modeling, that enables the prediction of cell growth under

diverse genetic perturbations and constraints. Our approach enables the iden-

tification of SDL interactions with a range of lethal strength to the cell, and

we show the correlation between this strength to different tumor clinical at-

tributes, such as tumor size and patient survival, where the most lethal pairs

have the largest effect on killing cancer cells. In addition, we show that the

more SDLs active in a tumor sample, the better this is for a patients’ prog-

nosis. We also demonstrate that cancer cells selects against SDL interactions,

such that SDLs are less frequently active than expected.

The IDLE approach presented here is general, however, it can be extended

in the future to identify SDL interactions that are cancer type specific, by

integrating omics data of the patients’ tumor, such as gene expression or pro-

teomics. In addition, the IDLE approach is not limited to cancer, and could be

used to identify SDL networks in pathogenic bacteria or fungi, providing new

antibiotic therapeutic leads. Other possible applications include metabolic en-

gineering to increase the yield of valuable metabolic byproducts. Specifically,

this may be achieved by engineering an SDL effect to inhibit the production

of undesired byproducts, or inversely, neutralizing the SDL effect to force an

increased flux through desired pathways.
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Taken together, IDLE is expected to contribute to various research fields rang-

ing from medical sciences to biotechnology.

2. In this part of the thesis, I describe a study that provides the first chart of

metabolic regulation in MCF7 breast cancer cells on a genome scale, by inte-

grating multi-omics data with the genome-scale metabolic model, along with

machine learning techniques. In this study we classified the metabolic reac-

tions as regulated at three distinct levels (transcriptionally-, translationally-,

and post-translationally- regulated), and also characterized them as being ei-

ther directly or indirectly regulated. We found that the flux of the indirectly

regulated reactions is coupled to the flux of directly regulated ones, suggesting

that the regulation of breast cancer cell metabolism is controlled in a hierar-

chical manner.

The major limitation of this study is the data itself, being limited, noisy

and having different levels of coverage for the different omics types. In ad-

dition, we focused on studying post-translational modifications mediated by

phosphorylation, while post-translational modifications occur via a variety of

additional mechanisms, including acetylation, glycosylation and allosteric reg-

ulation. Aiming to make the best use of the available data and to obtain

a genome-wide view of breast cancer cell metabolism, we (1) employ coarse

discretization to overcome some of the noise in the data, and only identify

regulatory alterations in reactions that are differentially active across the con-

ditions of study, and (2) build SVM predictors that use the known network
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properties together with measurements with high coverage and help us to deal

with the limited coverage and to extend the scope of the study to the utmost.

Future work should aim to address these limitations by measuring a wider

range of omics data with higher coverage; with the rapid advancement of high-

throughput technology and the accumulation of more comprehensive omics

data across additional cellular conditions, such data may become readily avail-

able soon and may be benefit from the conceptual and computational frame-

work laid out in the current study.

3. In this study we introduce RNA-MuTect-NMN, the first computational method

that identifies somatic mutations from RNA-seq data without a matched-

normal sample. The pipeline is based on the RNA-MuTect method [203] which

is designed to detect somatic mutations from tumor RNA-seq and matched-

normal DNA. To extend it to a ’tumor-only’ mode we built a random forest

classification model that distinguishes between somatic and germline variants

using various features, including mutation specific ones, and those derived from

large panels and databases of normal individuals. Our model was trained on

a subset of the TCGA melanoma dataset, and achieved high precision and

recall (85% and 83%, respectively), when applied to an independent test set

of additional >350 melanoma samples. Additionally, we show that estimating

the tumor mutational burden from RNA rather than from DNA is feasible,

and that the exact same trends as those estimated using tumor DNA with

a matched-normal sample are observed. As previously shown, we find that
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in melanoma patients that were not treated with checkpoint blockade (CPB),

very high TMB is associated with poor survival [224], while median high is

associated with improved survival as compared to patients with low TMB. In

addition, in treated patients that were previously progressed on anti-CTLA4,

we find that high TMB is significantly associated with poor survival compared

to low TMB. These results are in concordance with the original findings [225].

Importantly, the model built in this study is based on melanoma samples,

however, the RNA-MuTect-NMN approach is generic and can be easily ap-

plied for any cancer type, given a sufficient number of samples with RNA-seq

of the tumor, along with tumor and matched normal DNA for validation.

Moreover, melanoma is a highly mutated cancer with a sufficient number of

somatic mutations that can be used for model training, and where the fraction

of germline contamination predicted by our model is negligible. Hence, the

performance of our approach should be further tested on lowly mutated can-

cers where significantly less somatic mutations are available for training, and

where the fraction of germline contamination can become substantial. These

limitations can be potentially addressed by down-sampling of the germline

group, or by combining multiple datasets together.

We believe that the motivation for using RNA-MuTect-NMN is three-fold:

(a) For future studies, it diminishes the need for collecting and sequencing

matched-normal samples, thus significantly reducing sequencing cost,

especially for large cohort analysis.
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(b) It enables the analysis of RNA-seq data in retrospective studies where

RNA was originally sequenced for expression-based analyses.

(c) It enables a combined analysis where both genetic and phenotypic data

can be inferred from the exact same sample. This is especially crucial

in cancer where different regions of a tumor from which DNA and RNA

are extracted may be significantly different due to tumor heterogene-

ity. These applications can significantly increase the number of samples

analyzed and thus aid biomarker and drug target discovery.

5.2 Future challenges in the modeling human metabolism

While there has been a remarkable progress in the last years in the genome-

scale modeling of human metabolism, additional challenges lies ahead, including the

utilization of richer datasets from both cell-lines and clinical samples, the modeling

of cell environment including its interactions with surrounding cells, and studying

the potential of emergent drug resistance to metabolic drugs. Generally, GSMMs

lend themselves naturally to the early stages of drug development, most notably the

determination of new targets for target-based screens. However, as direct drivers

of innovation and as scaffolds for interpretation of complex large-scale datasets, the

potential of GSMMs in drug development is yet largely untapped.
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5.2.1 Integrating additional omics data sources

The GSMM framework is a platform for omics data integration that can be of

significant value. Nonetheless, transcriptomics and proteomics have been the main

data source for deciphering metabolic phenotypes while other data sources have been

rarely used. New technologies for next-generation sequencing (NGS) has enabled

a systematic cataloguing of human genomes through national and international ge-

nomics projects. This is most prominent in cancer through resources such as The

Cancer Genome Atlas and the International Cancer Genomics Consortium. These

databases are examples for comprehensive resources where mutational signatures

and potentially new therapeutic targets across cancer types have been identified

[79, 144]. By focusing on the subset of mutated metabolic enzymes and evaluating

their effect on protein function, one can potentially use these datasets to model mul-

tiple human cells and identify their unique metabolic vulnerabilities. A first step in

this direction has been taken by Nam et al. [129]. In this study the authors inte-

grated genetic mutation data from more than 1,700 cancer genomes along with their

gene expression levels. Predicted flux changes between normal and cancer cells were

then evaluated by simulating loss-of-function mutations in metabolic enzymes, lead-

ing to the identification of 15 onco-metabolites, including the well-studied succinate

and fumarate.

Apart from genomics, metabolomics is an additional accumulating data re-

source for studying human metabolic disorders. For instance, metabolomic profiles

of cancer cells have been widely used for the past several years to distinguish between
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different cell lines and tumor types both in vitro and in vivo [229, 230]. Further-

more, cancer-associated mutations in certain metabolic genes were found to induce

an abnormal accumulation of onco-metabolites [231]. The ability to both integrate

and predict metabolite concentrations at the genome-scale level is therefore of major

importance in studying human metabolism. While the information on extracellular

metabolites has been used to constrain a given GSMM [133, 232], the prediction

and/or integration of intracellular metabolite levels require the usage of thermo-

dynamic information and the knowledge of the kinetic parameters of the network

[233, 234], which are largely unknown. The utilization of metabolomic data for an-

alyzing GSMMs therefore calls for new, more sophisticated methodologies, designed

to address these emerging challenges.

5.2.2 Modeling cancer cells environment and interactions

While many studies have focused on growing cancer cells in vitro and out of

their tumorigenic context, it is now widely accepted that the tumor microenviron-

ment plays an important role in defining and reprogramming cancer cell metabolism

[235]. The computational study of cell and tissue interactions via GSMMs has al-

ready been demonstrated in both microorganisms and human tissues [236, 237, 238],

but has not been explored in the context of cancer cells and supporting cells in their

environment. Modeling the dynamic exchange of material between these different

cells can bring us closer to a more accurate modeling of tumors in vivo and re-

veal metabolically related phenotypes that could not have been discovered by the
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modeling of each cancer cell alone.

5.2.3 Studying the emergence of resistance to metabolic drug targets

GSMMs can be utilized in the context of resistance in bacteria and cancer, to

identify promiscuous functions of existing metabolic enzymes, thus revealing alter-

native pathways capable of bypassing the targeted reaction(s). Furthermore, this

approach can be used to identify gain-of function enzyme mutations and increase

our understanding of enzymes’ catalytic side activities. Promiscuous functions of

metabolic enzymes have already been studied by GSMM of Escherichia coli, both

revealing fundamental features of these enzymes [129], as well as identifying novel

metabolic pathways that produce precursors for cell growth under diverse environ-

mental conditions [130].

In summary, GSMM is a stepping stone for whole-cell modelling, and this

vision, that was already firstly realized by [1] in bacteria, should inspire us to aim

at modeling the entire cellular dynamics of different human cells.

5.3 Future challenges in somatic mutation calling

Variant calling algorithms have been evolving and improving in the past years.

The underlying models are getting more and more complex in order to describe the

physical process of NGS experiments and to model different types of artifacts. How-

ever, it is still very challenging to precisely detect somatic Single nucleotide variants
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(SNVs) due to low variant allele frequencies (VAFs), sequencing artifacts and lower

than desired coverage. Low VAFs in tumor samples are caused by several reasons in-

cluding tumor-normal cross contaminations, tumor ploidy, sub-clonality (also called

intra-tumor heterogeneity), and local copy-number variation in the cancer genome.

In addition, the performance of a particular caller varies dataset by dataset. Pre-

vious studies also showed that the output of different somatic callers for a given

dataset is highly divergent and the calling results show a very low level of concor-

dance across callers [239, 240, 241, 242, 243, 244, 245]. Due to discrepancies among

callers, finding a single best caller for various datasets is considered impractical

[244].

Below are some of the open challenges in the field of mutations calling and

somatic mutations.

5.3.1 Ensemble of callers

Ensemble approaches have been used to combine prediction results generated

by multiple somatic variant callers. The idea is based on the “wisdom of crowds”;

since the patterns of statistical models used in different classifiers do not necessarily

overlap, the complementary information about these patterns could potentially be

harnessed to improve overall performance. To get a good ensemble, it is generally

believed that the base learners should be as accurate as possible, and as diverse as

possible. Thus, there are two major questions raised regarding how to construct a

feasible and effective ensemble approach. First, how to select a reasonable number
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of component callers with higher accuracy while maintaining the diversity of the

callers [246, 247]. Second, how to combine the results from individual callers to

determine whether a variant should be called or not. Most ensemble approaches

for somatic calling belong to two categories: The simple approach is combining the

predictions from multiple callers by simple fixed rules, such as majority voting [248]

or consensus approaches [249, 250]. The more complex approaches employ machine

learning (ML) methods, which treat prediction results or metrics of individual callers

as input features. These inputs are then combined with other genomic features and

used to train a classifier that is then applied on an unknown new dataset to predict

variants. These ML-based methods include stacking [251], Bayesian approach [252],

decision trees [244, 253] and deep learning [254, 255]. Consensus approaches with a

fixed rule are easily implemented and can save tremendous training and prediction

time. In contrast to consensus approaches, ML-based ensemble approaches can

leverage the information from the training sets with known truth, which may provide

potentially better performance than fixed combination rules. However, a downside

of the ML-based ensemble approaches is higher computational complexity that may

be very sensitive to the training dataset.

Two significant concerns for current existing ensemble approaches still exist:

1) Due to insufficient real “ground-truth” somatic variants and evolving software,

the caller selection from previous studies may be out of date and not ideal for current

studies.

2) The replicability and reproducibility of ML-based ensemble methods have not

been thoroughly examined.
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5.3.2 Benchmarking studies

Although most variant callers were published with benchmarking results against

other mainstream pipelines of their time, the claimed performance may not be repli-

cated on independent datasets. A number of independent studies to benchmark and

compare various somatic variant callers have been published [256, 257, 258, 240,

241, 239, 259], but inconsistent performance data and contradicting rankings of the

variant callers were reported. The inconsistency of benchmarking results is due to

two reasons. First, most variant callers need to be fine-tuned to achieve the expected

accuracy on a naive dataset, yet the optimal parameter values are unknown to the

tester. In this case, applying the default values seems a reasonable solution and

indeed a common practice in benchmarking studies. For example, Cai et al. [259]

applied default settings in comparing four tumor-normal callers. Sandmann et al.

[257] used default settings except for VAF threshold. Kroigard et al. [239] applied

default settings for when benchmarking on exome-sequencing data and adjusted pa-

rameters for targeted sequencing data. Second, some variant callers were original

designed for certain types of applications and then published without extensive vali-

dation on a wide range of datasets, so their performance may drop in some occasions.

To conclude, variant calling algorithms have been evolving and improving in

the past years. The underlying models are getting more and more complex in

order to describe the physical process of NGS experiments and to model different

types of artifacts. Somatic mutations identification holds great potential in cancer
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treatment; systematic sequencing studies of larger numbers of tumors from a wide

variety of cancer types will yield further insights into the development of human

cancer, providing new opportunities for molecular diagnosis and therapeutics.
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