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ABSTRACT

We address two problems of memoryless distributed detection with dependent observa-
tions across time and sensors. In the first problem, the observation sequence of each sensor
consists of a common weak signal in additive dependent noise with stationary univariate and
second-order joint densities; here the objective of the sensors is to cooperatively detect the
presence of a weak signal. In the second problem, the observation sequence of each sensor is
characterized by its stationary univariate and second-order joint densities; here the objective of
the sensors is to cooperatively disrciminate between two arbitrary such sequences of observa-
tions. For both problems, the analysis and design are based on a common large sample size.
The dependence across time and sensors is modeled by m-dependent, ¢-mixing, or p-mixing
processes. The performance of the two-sensor configuration for each problem is measured by
an average cost, which couples the decisions of the sensors. The design criteria for the test
satistics of the sensors, which constist of sums of memoryless nonlinearities, are established by
using two-dimensional Chemoff bounds on the associated error probabilities involved in the
average cost. The optimal nonlinearities are obtain as the solutions of linear coupled or uncou-
pled integral equations. Numerical results for specific cases of practical interest show that the
performance of the proposed scheme is superior to the one which ignores the dependence
across time and/or sensors for each of the two problems.
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1. INTRODUCTION

Decentralized detection presents several interesting problems (see [1] and [2]). Classical
theory of centralized hypothesis testing cannot be applied directly to practical systems of dis-
tributed decision makers (or sensors). The advantages of employing distributed sensors include
low communication bandwidth, good reliability, and low cost.

In most of work on distributed decision making (see [1-5]), the observations (signal in noise)
are assumed to be independent across time and/or sensors, an assumption that is intended to
make the analysis tractable. However, the observations are oenerally dependent. Indeed, the
observation sequences of the sensors become dependent across time individually for each sensor,
when sampling rates increase, and correlated across sensors, when the locations of the sensors
are close geographically.

In contrast to the model of independent observations, distributed detection from dependent
observations across time and/or sensors are studied in this paper. In particular, two sensors
without communication collect their own observations n times (the common sample size) and
decide which hypothesis is true, Hy or Hy. The object of each decision-making process is to
minimize an average common cost, which consists of error probabilities and couples the two
decisions in general. The form of the average cost is concerned with the consensus of the two
sensors, and thus can be applied to the data fusion with a fixed rule such as ’OR’, ’AND’ or the
majority rule.

Two problems of different descriptions for the observations are considered: in the first one,
each observation consists of a weak signal in additive dependent noise with a stationary uni-
variate density and second-order joint densities; in the second one, each observation itself is

characterized by its univariate and second-order joint densities and thus, not necessary for the



signal in additive noise. For both types of observations, the analysis is based on a common large
sample size for each sensor, which guarantees a high-quality performance.

The model of dependence used here is described by the mixing sequences, such as the m-
dependent, the ¢-mixing or the p-mixing sequences (see [6-8]). These models of dependence have
been extensively and successfully used in single-sensor detection (see {9-11]). In general, the
optimal detection scheme under the above model involves high-order (larger than two) densities,
which are difficult to characterize, and needs huge space of memory for storing the dependent
data. To avoid such inconvenience, we employ a suboptimal structure of memoryless nonlinearity
for each sensor in this work (see [9]); each observation of sensor k (k = 1,2) is passed through a
nonlinearity gi(-) and summed up to the sample size n to form the test statistic T, x(gx(-)). The
activity of each sensor is to conduct a threshold test (as in the likelihood ratio test) by using its
test statistic. The design criterion for each nonlinearity is maximizing an objective function of
efficacy-type induced from the average cost by using the two-dimensional Chernoff bounds on
error probabilities (see [9]). Each course of obtaining the optimal nonlinearity involves solving
an integral equation.

Although the scheme of this paper is suboptimal, numerical results indicate that, with rea-
sonable large sample size, the performance is better than that of the one which ignores the
dependence.

The remainder of this paper is organized as follows: in Section II, we discuss the central
limit theorem for the m-dependent, the ¢-mixing and the p-mixing sequences and derive the
two-dimensional Chernoff bounds. In Section III, the first description of observations for a weak
signal in additive noise is considered. In Section IV, the second description of observations

is considered. In Section V, numerical results from Cauchy noise for the first description of



observations (weak signal) and from Rayleigh vs. log normal (univariate and second-order joint)
densities for the second description of observations (strong signal) are given. Conclusions are

drawn in Section VI.



II. PRELIMINARIES
II.A. The Central Limit Theorem for Mixing Sequences

Let {X‘.(k),i = 1,2,---,n} be the observation sequence of sensor k, (kK = 1,2); the test
statistic of sensor & is given by

Tni(gx) = igk(Xi(k)) (2)
=1

where gi(-) is the nonlinearity to be determined. The test of sensor k is

>H
Tn,k <H0 nnk (3)

where nyy is the threshold.

As mentioned in Section I, the model of dependence is one of the m-dependent, ¢-mixing or
p-mixing sequences. However, the model is an issue here, instead, it is essential that appropriate
conditions are satisfied, as that, with a large sample size, the test statistic (3) of each sensor is
asymptotically Gaussian distributed. To give an example of such “appropriate conditions,” let
us cite the central limit theorem for an arbitrary function h of the ¢—mixing sequences (see [6]).

Theorem 1: Suppose that {Y;}32, is a stationary ¢—mixing sequence with > =1 d)? < 0

and that h is a measurable function satisfying
E[h(Y1)] = p, var[h(Y1)] < oo

Then the series

o(h) = var(A(Y2)] + 23 coulA(¥1)h(¥;41)] ()

j=1

converges absolutely as m — oo. Furthermore, if 62 > 0

;}—ﬁ[z:; B(Y;) = nyl

converges in distribution to a Gaussian distribution with mean zero and variance o2.



Proof : Set i = h — po, thus E[R(Y1)] = 0 and E[h%(Y;)] < oo. The above Theorem follows
according to the theorem on page 174 of {6].

In the following sections, we omit the arguments of the means g ;(-) and the variances oy ;(+),
which are functionals of gi(-) and thus functions of the observations. The m in the formulations
is finite for m-dependent noise and m — oo, for ¢-mixing or p- mixing noise.

11.B. Two-Dimensional Chernoff Bounds

The cost function used in this context has the form

(0 ifd1=d2=u

(i3] if dl # dz,ll=0
C(di,daiu) = 4 ¢, if dy # dy,u=1 (5)

C2 ifdl-:dg;éu,u:O

[ ¢y ifdy=dy#u,u=1
where dji (k = 1,2) is the binary (0 or 1) decision of sensor k, u is the true phenomenon (u = 0
or 1), and ¢, ¢}, ¢z and ¢}, are non-negative constants. We also assume that ¢z > ¢1,¢} and
¢h > ¢1,¢}, i.e., the penalty is higher when both sensors make wrong decisions. This form of cost

is of the Bayesian type and has been useful in [1]. The average cost, which couples the decisions

of the two sensors is
E[C(d1, da; u)] = pEo[C(d1, da;u)] 4 (1 ~ p)Ey[C(dy, d2; )]
= p{aa[Po(1,0)+ Po(0,1)] + e2Po(1, 1)} + (1 = p){y[P1(1,0) + P1(0,1)] + c3P1(0,0)} (6)
where p is the a pﬁor probability of Hg, P; (i = 0,1) are error probabilities under H;, P;(1,0) =

-Pi(Tn,] > n7717Tﬂ,‘2 S 7”72), R(Oa 1) = Pi(Tn,l S nnlaTn,Z > 'I'L'I]z) (Z = 0,1), PO(I, 1) = PO(Tn,l >

n1, Tn2 > nne) and P1(0,0) = Pi(Thy £ 01, Tno < nip).



Because of the complexity of the average cost, there is no directly tractable approach by
which a nice criterion can be reached for each optimal nonlinearity g (k = 1,2). Instead
of optimizing (6) directly, we first derive the two-dimensional Chernoff bounds on the error
probabilities in (6). In Sections IIT and 1V, we approximate the bounds under a large sample
sizev. Our purpose is to approximate and combine the terms in (6) as an exponential form, i.e.,
E[C(d1(g1),d2(g2);u)] = A - exp[J(91,92)], so that we have a closed and meaningful form of
design criterion for each nonlinearity.

Define

1 fThy > nm,Th2 > nmn
Y(771, 772) =
0 otherwise,

where we assume that, for k = 1,2, T x ~ N(ngg;,nof;) under H;, (i = 0,1), and the pair
(Tn1,Tn,2) is bivariate Gaussian distributed with the correlation coefficient p; = E;[T), 1 - T 2]
Then for s; > 0,3, > 0

esmm+52nnzy(nl’m) < eslT1+ng2_ (7)

Taking the expectation of (7) under Hy and we have, after some manipulations

PO(Tn,l > ni, Too > ""]2) < e—slnm—Sznﬂon[eslTn,1+82Tn,2]

2

no? 2 nol,s
= V2mexp [ 12’0 Lt 22’0 2+ npoo,002,08182 — $10(Th — pi1,0) — san(7 — /Jz,o)] . (8)

Similarly, for t; > 0,t2 > 0, and ¢1; > 0,¢2,; > 0 and ry; > 0,72,; > 0 we have

Pi(Tnp < iy Tog < i) < eltmmttznm prle=t1Tni-t2Tn2)

nof’lsf no? s
= V2mexp 2 + 2’ + np101,102,18182 + s1n(m — p1a) + san(ne — p21)|  (9)

under Hq,
Pi(Tn,l > nnl»Tn,Z < 71772) < e—ql,mm+Q2,inn2Ei[eQ1,i n1 —112,-'Tn,2]

6



n01,'12q2 . no? .q2 .
= V2mexp { ‘2 L 2; 28 ppioyi02,i01,i02, — Qi — pa i) + g2,z — B2,i)

(10)
under H;, (1= 0,1) and

Pi(Tn,l < n’]l,Tn,z > n772) < LTI T2, Ei[e-rl,iTn,l+T2,iTn,2]

2,2 2 .2
nel.r?. noz;ry;
1,671, 2,67 2,1
= /27 exp [ 2 =+ 2 L npi01,i02,iT1,iT2,i + ry,in(m - Bii) — To,in(N2 — /-L?,,i)]

(11)
under H;,i=0,1. The bounds given by (8)-(11) supply good approximations to the error prob-
abilities in the average cost, as the sample size increases. The positive constants sk, tk; ks Tk
are to be adjusted to set final forms of the bounds. Since the weights (cg,¢h) of Po(1,1) or
Py(0,0) are greater than that (c1,c;) of Pi(0,1) or Pi(1,0) (i = 0,1), we first minimize the
bounds in (8) and (9) with respect to (s1,82) and (t1,12), respectively. If we minimize (8) with

respect to (s1,82), we have

Po(Tn,l > nnl,Tn,2 > "712)

< Varexp { n [(771 —mo)” | (m —2#2,0)2 _ 2po(m = p1,0)(m2 — m,o)n (12)

- 2 2
2(1 - p3) ot 030 01,002,0

and the corresponding (81, 82) are

_ (m = mip)o20 — (12 = #2,0)P001

81 = T 53 (13)
( P§)o1002,0

5 = (112 — B2,0)01,0 — (m - #1,0)[1102,0, (14)

(1 - p3)as o010

where 0 < p2 < 1. Similarly, if we minimize (13) with respect to (t1,t2), we have

Py(Tnq < v, T2 < n1z)

- 2 2 2
2(1 - p3) 011 021 01,1021

< VErexs { n [(um—mV +(u2,l—m)2_2p1(m,1—m)(;iz,l—nz)”(15)



and the corresponding (t1,1;) are

f, = (m13 = m)o2 2— (#2,21 = 12)p101,1 (16)
(1= pi)o1i’o2,
f, = (#2,1 — M2)ory — (P11 — M)P102, (17)

(1 - P%)U2,1201,1

Under the restrictions sx > 0 and tx > 0 (k = 1,2), we have

T ;zl,o > 2 0—2,/;2,0,)0, (18)

79 U—zzz,o S T ;:‘(:I,OPO’ (19)

Ill.;l; m Il2,;2"‘1 772’p1 (20)
and

Nz,olrz’—1 2 #1,;1'; Ui p1. - (21)

Let us now consider (10) and (11). We can minimize (10) with respect to (ry,72,), or (11)
with respect to (¢i1,i,¢2,). However, either minimization will lead to results contradictory to
(18)-(19) or (20)-(21), if the constraint r;; > O or gz ; > 0 (i = 0,1;k = 1,2) are to be satisfied.

Therefore, we choose

To = 7-71—:;"‘—12, T20=10 (22)

9i0
T21 = /_‘Lz—_ﬁl, rp=0 (23)
921
_Th — H2p0

920=——5—, q0=0 (24)
22,0

and

iy = f_‘}i{;ﬂl, g2, =0 (25)

J1ia

which give the bounds on (10) and (11) as

-7 -_— N 2
P(To1 > nii, Tz < np) < V37 exp [——(—";72—‘-‘1] (26)
1,4
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and

_ ___ N2
P{(Tn’l S ’n?h,Tn’z > nng) S V27l' exp [—-ﬂ%—#z’—z)—-] . (27)
2,1

In the above bounds, all parameters sg,tx, 7%, and gx; (¢ = 0,1 and k = 1,2) are nonnegative.

The constraints satisfied by n, px,; and ok, are described by (18)-(21) and
pr0 < M < pra (28)

fork=1,2.

Finally the bound on the average cost has the form

E[C(dy, d;w)] < B,

=P{01{\/2—7rexp [:ﬁ(ﬂ_l__’.‘_l_ol_] +\/—2—7Fexp[ (2 —~ 20)2]}

207, 202,0
Vv n (m — p10)® | (m2—p20)®  2polm — p10)(m2 — p2 0)
+eoV2rexp < — LU 0)" , ,
: ’ { 2(1 - p%) [ 0’%0 0'2702 01,0020 }
- - 2
+(1 - p){d {\/27:' exp [__gil___“_l.]_)_} + V37 exp [ n(n, - t2.1) } }
207 %11 2034
Vv n (m—ma) (2= p21)? 2p1(m — pa1,1) (02 — p2,)
+chV2mexp { — LU 1)’ , ’
2 p { 2(1- pi) [ 0}, o3, 11020 }

(29)

For the purpose of convenience, in the following sections we will set ¢; = ¢} and ¢; = ¢,
which can be applied to the data fusion with a majority fusion-rule. For other fusion-rules, the

techniques in the following sections remains useful with minor modifications.



III. WEAK SIGNALS

We consider the following observation model of a weak signal in two-sensor detection

P x® = N

H® 0 x®W=0+N®, i=1,-,n; k=1,2 (30)

where # — 0 with § > 0 is the nonrandom weak signal and {N;*),i=1,...,n}, (k = 1,2) are
two noise sequences with stationary univariate and second-order joint densities. The asymptotic
analysis based on a large sample size, which guarantees a high-quality performance for # — oo,

is used. For this model of observations, we assume that

FEylgi] < 00, varg(gr) < oo (31)
and
o} o(9) = varolgu( X)) + 23 covralon(X{)gr(X[P0) > 0 (32)
Jj=1

for all # > 0. In addition, in this description of observations we use the notations

ot o(gr) = ot 1(9k), (33)
npe(g1,92) = np1(g1,92) = Eo((Tng — npt1,i)(Tn2 — npta:)] (34)

and
io(98) = ea(9e) = [ 94(@) iz - O)da (35)

for > 0, where fi(-) the univariate density of Ni(k) and thus of Xi(k) under Hp.
As discussed in Section II, conditioned on H; for I = 0,1 and 6 > 0, the test statistics
T, x. of each sensor are asymptotically Gaussian distributed with means nuy ¢(gx) and variances

na,f,e(gk). Furthermore, T},; and T}, are bivariate Gaussian distributed with the correlation

10



coefficient npg(gy,92). In addition, the following regularity conditions are assumed, for k = 1,2

and @ — 0, under a large sample size

ool [ 9@ ta - 0)ds) = [ la(@ia - Oz, (36)
#ir,0(gk) ; peo(gr) 3#2(0%)'0:0 >0, (37)
ok,6(gk) = 0k0(9k)s (38)
and
po(91,92) — po(91,92)- (39)

Since 8 — oo, we use o and pg to represent the variance and the correlation coefficient under
either hypothesis in the following Sections.
II1.A. Dependence Across Time

First let us consider the case when the two observation sequences are independent. The
locally optimal test of each sensor as shown in [1] is a likelihood ratio test with a data-dependent
threshold. However, the computation of the optimal thresholds is generally complicated and
depends on high-order (larger than two) densities of the observation sequences that are difficult
to characterized. Here we develop a suboptimal approach by using the central limit theorem
and the bounds derived in the Section II. The threshold of each sensor for design purpose is easy
to determine and depends only on the means of the nonlinearity.

Since the correlation coefficient po in Section II is zero in this case, the bound of (29) in

Section II has the form

2 2
B, = P{cn/é—n_exp [_________n(nl 2”1'0) } + c1V2mexp [———-——n(nz — 12,0 }

p)
201, 2050

2 2
—_ — —n —
+C2\/27rexp[ "(’721 2Hl,o) + (7722 2#2,0) ]}
71,0 92,0

11



2
+(1 - plavirer [ﬂ”—‘i‘—)—] + erv/Fm exp [_-_Wv__—_&_lﬁ]

201’0 203,0
2 2
+eVom exp [ (ﬂ;az H1,1) + (U;Uz H2,1) }} (40)
) 10

where g0 < 7k < ptk,1. Notice that there are two parts in (40): one is from the error probability
under Ho and the other is from the error probability under H;. Using the fact that for positive

constants (a1,b;) and negative constants (ay, by)
a1e™? + be™? n 2a1ble("“2+"b2)/2 (41)

as n increases, we can approximate the bound in (40) by

_an _ 2 ~ yo)?
3 [(771 2Ml,o) +(772 2#2,)]}

8 %10 %20

(1 - p)Aexp { —3n [(m —2;L1,9)2 4 (m —2M2,a)2] } (42)

8 %10 92,0

B, =~ pAexp {

where A is a known constant. Because the optimal thresholds are difficult to calculate, we use
the suboptimal thresholds determined in an ad hoc way. Since the error probabilities cannot be

known a priori, we pose the condition

(m = p0)® | (m2 = p20) _ (m = m1e)? | (2= payp)®
) + 3 = 3 + 5 (43)
%10 %20 %10 020

for all px 0, pr,e and oo (kK = 1,2) to balance the two error probabilities under two hypotheses

in (40), so that we do not bias either hypothesis, One solution of (43) for (m, 72) is

kO + Lk,0
e = ﬁ__o_2_”____, k=1,2. (44)

It is easy to check that the constraints (18)-(21) and (28) are satisfied by using the above

thresholds. The bound (42) employing 7% (k = 1,2) given by (44) is

- =3n [(p1,0 = p10)* | (H2,0 = p20)*
B, = Aexp{ ) [ 7 + 03’0 (45)

12



We have reached the exponential form given by (45) for the approximate upper bound on
the average cost by using the above thresholds. Minimizing this exponential form with respect

to (91, 92) is equivalent to maximizing the exponent

n(pi1,6(91) = #1,0(01))° | n(2,6(92) — p2,0(92))?

o7 o(9) * o2 o(92)
—_ 92 [(11,6(91) — Hl,o(gl))/0]2 [(112,6(92) = Hz,o(gz))/9]2
=0 { oTo(r) * oZo(s2) } (146)

where the weak signal § — 0. Using the regularity condition (36) and normalizing (46) by

dividing it by 6%, we have the equivalent objective function for design criterion

 (OB0:]/00Yy . {0Felr)/00Yin0
o2 = =05 G oTo()

(47)

which is to be maximized with respect to (g;,g2). We notice that (47) is the summation of two
efficacies, and thus the criterion becomes a generalization of the ARFE in single-sensor detection
(see [9]). In fact, we have shown the connection between the general ARE and the average cost
for the detection of a weak signal in a multiple-sensor environment. Because the observation
sequences of the two sensors are independent of each other, we can maximize the efficacy for
each sensor in (47) with respect to its gx. Notice that the efficacy for each sensor in (47) is
invariant under the scaling of its g;. Using the same technique as in [9] we have the following

integral equation
~ @) k2 - [ Kalo, w)ou)dy = ge(a) (48)

for optimal g, where the integration kernel K(z,y) has the form

Ki(,9) =23 S, (012) = (@m + Dfily), b = 1,2. (49)
g=1

The procedure of solving (48) was addressed in [9] and will not be duplicated here.

13



II1.B. Dependence Across Time and Sensors

We consider now the case when the two stationary observation sequences are dependent
across time and sensors. The situation of interest here is that the univariate and second-order
joint densities of the two observation sequences are identical and the structures (i.e., the non-
linearities and thresholds) of the two sensors are the same. In our formulations, we use the
notations fi(-) = f2() = S(), S0 () = S0 ) = 30 ) 9a() = ga() = g(Yand my = mp = .
Consequently, py 0 = p20 = po, p1,9 = H29 = fg, and 019 = 020 = 09. These conditions char-
acterize a model, for which the channels of the two sensors are symmetric and the two sensors
are implemented under the consideration of regulation with the same structure.

Under the above symmetric conditions, the bound described by (29) has the form

B, = p{z\/ﬂcl exp[M] + \/2_7;(:2 exp[—n(n - ,UIO)Q]}

202 (14 po)od
2 2
+H1- pevEre epl IS i, ol I} (s0)

Using the same technique of balance condition as in the previous case

—n(n — pto)? —n(n — p9)°
R A o)
(14 po)ad (1 + po)ai ’
we obtain one solution for %
+ po

Again conditions (18)-(21) and (28) are satisfied with this threshold. The bound defined from

this threshold is |

_ _ 2 _ _ 2
By = 2v/27ciexp {—ﬁ(—%(—r—z—”—ol-} + V2rey exp {—&%%’%p—)%)—g—} . (54)
0 0/Y%0

14



The globally optimal nonlinearity that minimizes (54) is difficult to obtain and may even not
exist. Therefore, we design the nonlinearity in the ad hoc way described as follows.

We notice that there are two exponents in (54), namely

n(po(9) = #o(9)) _ o l(ke(9) = 1o(@))/6F _ 12 {[0Eslg)/06]0=0})
2730) 0 R 8ade) (55)

Ryi(g) =

and

_ (o) = o)) _ (o) = po(@))/OF _ o {[0ELal/00)0-)"
B9 = 0 p@er) =™ a0+ m@)ed@) " 4 ool O

as § — 0. First we obtain the optimal gg,(-) by maximizing the functional R;(-) with respect to

g(:). Then we maximize Ry(-) to obtain the optimal gg,(-). From gg,(-) and gp,(-) we compose

the nonlinearity of each sensor as

g(z) = ngRl(x) +(1- Tw)ng(x)’ (57)

where the parameter 7, is determined through numerical experimentation. The optimization of
Ri(-) has been discussed in Subsection III.A. For the optimization of R;(-), we can derive an
integral equation satisfied by the optimal nonlinearity gg,(+) in a manner similar to that in [9].

Notice that, for all @ # 0, Ry(g) = Ro(ag),i.e., Ry(-)is invariant under the scaling of its g(-).
Therefore under the regularity condition (37), maximizing Ry(-) with respect to g(-) is equivalent
to maximizing — [ g(z)f'(z)dz under the constraint that (1 + po(g))od(g)is a constant. Thus

the optimization of Ry(g) is characterized by max, H(g) with

H(g) = {- [ 9(a)f@)da + AL+ po(9)lo(s)} (58)

where ) is the Lagrange multiplier and

po(g)o'g(g) - E, { [Tn,lx;ﬁnllo] . [Tn,zjﬁnﬂo]}

= Bl +23 Blaeg(e@)] - 2 + 1) (59)

=1
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by using a large sample size.
Denote the variation of g(-) by 6¢(-) and let Jy(¢) = H(g + €bg). Then the necessary and

sufficient conditions satisfied by the optimal g for arbitrary dg is
J5(0)=0 (60)

and

J"4(0) < 0. (61)

Let fN“) N be the joint density of Nl(l) and N](i)l and fN(x) N the joint density of Nl(l) and
1 N4 1 N4

N J('i)l' We have

T0)= [1-1(=) + o))+ [0 + Jie,0) - 26 ) Mslbo(a)ds (62

where
fj(ﬂ?, y) = (fNil),Néz)(w’ y) + fN§1),N§2)(y’ 13))/2
+fN1(]),N§i)l (=, 9)+ le(n‘Nﬁ)l (y,2) - 2f(2)f(y) (63)
and
fi(z,y) = Iy w (8 9) + fyom vy (y,2) — 2f () f(y). (64)

From (60) and (61), we have the linear integral equation

~ P+ @@+ [ g 5(E9) + e )yl =0 (65)

i=1

where A is a scaling factor of g. From (61) we obtain the sufficient condition
2X(1+ po(89))a5(6g) < 0. (66)

Since po(.) < 1, (66) holds for negative A. Following the tradition in single-sensor detection (see

[9]) for i.i.d. observations, we set A = —1/2; thus the integral equation to be solved for the
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optimal g can be expressed as

- @)@~ [ Kooy = g(z), (67)

where gi,(z) = —f'(z)/f(z) is the locally-optimum detector for i.i.d. observations across time

and sensors and

-Kc(xa y) = (fN§2)/N§1)(ylx) + fN§1)/N§2)(y|x))/2 - zf(y)
+ ;UNﬁl’: o le) + Fn e, (Wlo)
+fN,(i)1 e (yle) + fN,(l)l i) = 4f(y)]

fNiz)/Ngz)(yW) ~-2f(y)+ 2Z[f1v(:3 vn(yle) + fN‘-i’ Ne(le) — 2f(y)] (68)
j=1 aw/t i+1/Vy

is the kernel of integration.
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IV. STRONG SIGNALS
In this section we consider the second description of observations, which is characterized
by the univariate and second-order joint densities. The distributed detection for this type of

observations can be described as the following binary hypotheses testing problem:

HY + X~ [fo(X®), £ P, x B

2P 0 X o [ (x M), O x 8, i= 1, k=1,2 (69)

where f,(k)( -} is the univariate density of the observations for sensor k under H; (I = 0,1) and the
two observation sequences {X i(k)}f‘_’__l (k = 1,2) are modeled by the m-dependeﬁt, the ¢-mixing
or the p-mixing sequence.

Although the use of the Chernoff bound simplifies the analysis, the determination of the
optimal thresholds involves complex computations and results in nonlinear optimization for
the optimal nonlinearities. We pose additional conditions for the relationship between n; and
(1r,i,0% ;) (1= 0,1) and express 7% (k = 1,2) as functions of (u,, U,%,,-). Under such conditions
for our design criteria, a large sample size is used to guarantee high-quality performance.
IV.A. Dependence Across Time

In this case, we assume that the two observation sequences are independent across sensors
conditioned on either hypothesis; thus there is no correlation between the two statistics 7, ; and

Tn2,ie., py = 0for [ = 0,1. By using the approximation (40), we have, for this case,

- 2 _ 2
Bu & phiesy { ~Agn [(771 U;f; 1(’351)) 4 (2 03’:’(»332)) ]}

(m — p1,1(91))* | (12 — p22(g2))?
+(1 - p)Ajexp {—Agn [ Ui",l(gl) + 03,1(92) ] } (70)

where A; and A, are known constants.
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For the same reason as in the previous section, we pose the balance condition

(1 ~ o(ge))? (k= pra(gx))”
otolor) il (7)

for each sensor k. Under the assumption pr1(gx) > pr0(gx), the solutions of (71) for (11, 72)

are

_ 0xa(gr) ik 0(gk) 4 ok0(gk)itk,1(gk)
M= ok,1(gk) + ok,0(gk) (72)

for £ = 1,2. The conditions (18)-(21) and (28) are automatically satisfied. Although these
thresholds are suboptimal, they depend only on (u:,0%:), (k = 1,2 and ¢ = 0,1), which can
be calculated directly from the observations. Consequently, the bound given by (70) takes the

form

By, = Ayexp{-A:N[J(g1,92)]}

- exp 4 — (1,1(91) = p1,0(91))% | (12,1(92) = p2,0(g2))?
" p{ o [<0m(91)+al,o(gl))2 * (02,1(92)+02,0(92))2}} ()

where A; and A, are constants.
The minimization of the above objective function (i.e., the maximization of J.) with respect
to g, for k = 1,2, results in nonlinear integral equations, which are difficult to solve. To simplify

the design procedure further, we approximate J. in (73) as follows

(11,1(g1) — p1,0(91))? (112,1(g2) — p2,0(92))?
71103 1(01) + (L = 1)0io(g1) 71203 1(g2) + (1 — 12)0% o(g2)

Je(91,92) & = Jy(91, 92,115 72)
(14)

where the denominators of the two terms for the two sensors are weighted sums of ‘713,1 and 02,0,

for k = 1,2, with weights ;. This form of design criterion has been useful for single-sensor

detection (see [12]). The weights 7, are chosen to maximize J(¢7 ,,,93.,), where g; . (k= 1,2)

v'72)’

are the optimum nonlinearities for fixed .
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Since there is no correlation between the two sensors, maximizing J,(g1, g2) (here the argu-

ments vy are omitted) with respect to (g1, ¢2) for fixed 74 is equivalent to maximizing

 (pralr) — pro(gr))?
Jilge) = k0% 1(9k) + (1 = )07 o(gk) (75)

with respect to gx (k = 1,2), respectively. We notice that J; (k = 1,2) are invariant under the
scaling of g, i.e., J(gx) = Ji(argr) with the scaling factors oy, and thus we can use the same
technique as in the previous section (see [9]) for the optimizations of J;. The optimizations of

Ji for each sensor is equivalent to the maximizations of the objective function

Hi(gr) = pra(gx) = mro(gx) + Melveod 1 (ge) + (1 = vi)o? 1(gx)] (76)

with respect to gx, where A is the Lagrange maultiplier.

Performing the optimization, for £ = 1,2, we obtain the following linear integral equations

fea(®) = fro(z) - / Ki(z, y)9x(y)dy = gr(2)[vefen(z) + (1 — 1) fro(2)] (17)

where

Ki(z,y) = 5§vufﬁkuy)—2nJu»an»+41—meﬁ¥kay)—2np@onpw»1

i=1

V1 (@) e (y) — (1 = vk) fre0(x) fro(y)

is the kernel of integration with the notation

k ' k k k
@,y = 2P = 2, X = )+ 1P = 4, x5, = 2). (78)

Solving each integral equations for fixed 74 and k = 1,2 we obtain the optimum nonlinearity,

which is a function of ;. It is straightforward to show that

108 1(9%) + (1 = 71)o% o(gk) = Tevarka(ge) + (1 = vi)varko(ge) + / / Ki(z,y)gr(2)gr(y)dzdy
(79)
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where

Ki(z,y) = Ki(z,y) + ¥ fe,1(2) fie1(¥) + (1 = %) fieo(2) fr0(y) (80)

for k = 1,2, and thus for gi , which are the solutions of (77)

WOEa(0E) + (1 = WEo(0h) = [(fra(®) = Frol@))0i, (). (81)

Finally, the optimal v, (k = 1,2) are obtained by maximizing

Telgim) = [(fea(®) = feo(@))gi (2)dz. (2)

IV.B. Dependence Across Time and Sensors
We consider the case for which the observations are dependent across time and sensors.

We are particularly interested in symmetric case similar to the one in Subsection IILB, i.e.,
fi(z) = foi(z) = fi()

A, xB) = 1P, x2) = 19X, Xjsa) (83)
conditioned on H; (¢ = 0,1) and 5 = 92 = 7. Again, the same form of the nonlinearity

a1(-) = 92(-) = g(-) is used. Therefore, py; = pp; = pt; and 61, = 03; = 04, for i = 0,1. In the

present case, the upper bound given by (29) takes the form

B, = \/2—7r-p {261 exp [:E(_Q__H_O)_z_} + coexp [—n(n — /"’0)2] }

203 (14 po)ad
2 2
VIR~ p) {zcl exp [l—(%ai)—] ferexp [:(’f({-;—g‘;)—} } (84)

which consists of two parts from the two hypotheses. Instead of optimizing the above bound
directly, we proceed in an ad hoc way to determine the nonlinearity. Basically there are two

different forms of exponents in B,, namely

— — 110)? - — )2
By, == V2rp2c, exp[—f%-a—gy—o)—] + V2r(1 - p)2c, eXP[_z(nza'—'iﬂ‘)—] (85)
0 1
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and

n(n — o)’

2
— n{n —
B,, = V2rpeg exp| T+ po)ol —nln =)’ (86)

R

As discussed in the case of a weak signal, we first simplify the problem by posing the balance

conditions
(n— po(9))? _ (a(g) — n)?
208(s) . 20%(3) (87)
for B,, and
(n=ro(9))® _  (mlg) —n)? (88)

1+ po(9))od(9) — (1 + pa(9))oi(9)
for B,,, such that the threshold can be set for the design criterion. The solutions of (87) and

(88) are

_ 01(9)ro(g) + go(g)p1(9)
= a1(9) + oo(9) (89)

and

_ (L4 pi(9))2a1(9)mol9) + (1 + po9))? o0(g)i(g)
- 1 1
(1+p1(9))201(9) + (1 + po(9))2 00(9)
respectively. Again conditions (18)-(21) and (28) are satisfied with both choices of threshold.

(90)

We notice that, by using the above thresholds, the exponents in B,, and B,, essentially take

the form

(11(g) = po(g))?
™ (0x(9) T 00l9) ? (o)

and

_ (p1(g) — po(9))? (92)
[(1+ pr(9))Z 01(g) + (1 + po(g))? oo(g)]?

Since the optimization of either (91) or (92) with respect to g(-) leads to nonlinear integral
equations, we use approximations similar to the one in Subsection IV.A In summary, the criterion

for optimum nonlinearity g(-) are

__ (m(g) — po(9))?
Ja9) = 7001(9) + (1 = 7a)o3(9) (93)
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and

(11(g) — po(g))? (94)
(1 + p1(9))oi(g) + (1 = 1)(1+ po(g))od(g)’

Then, for fixed vy, and 73, we maximize J, and J, with respect to g(-) independently to obtain

Jo(g) =

two different forms nonlinearities g,(-) and g(-), respectively; the respective v, and v, are chosen

by maximizing J(g; ,,) and J(g;.,)- Finally, the nonlinearity employed by the two sensors is
9" (2) = 1eg5(2) + (1 = 75)g5 () (95)

where the parameter 7, is set by numerical tests.
The maximization of (93) with respect to g and -, has been discussed in Subsection IV.A.

The linear integral equation satisfied by the optimum g is
11(@) = fo(@) = [ K(a,0)a3(w)dy = g2()rafi(®) + (1 = 70) fola) (96)
where
K(e,y) = gml{va[fl,j(w,y) = 2/ AW+ (1 - 1)l osl#,9) - 2fal@) o)}
B0 (L~ 1 ) (97)
is the kernel of integration and
fii(@y) = fuX1 = 2, Xjp1 = 9) + fi(X1 = 9, Xj11 = 2). (98)

Because Jp is also invariant under the scaling of ¢ [J5(sg) = Jiy(g) for constant s], equivalently,

we maximize the following form

Hy(g) = p1(9) — 1o(g) + Ave(1 + p1(9))02(9) + (1 = 7)(1 + po(9))od(9)] (99)

with respect to ¢ for fixed 7;, where A is the Lagrange multiplier. Using the same technique as

in Subsection IV.A, we obtain the following linear integral equation satisfied by the optimum g;
fi(z) = fol(x) - /[Kc(a:, ¥) + Koz, »)o5(w)dy = I flz) + (1= 1) fo(2)lgi(=)  (100)
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where

Edayy) = 23 lfP@v) - A@AW+ 1 - mUE 1) - fol@) o))}
7=1

—fi(2) fily) = (1 = ) fo(2) fo(y) (101)

is the kernel of integration and

Ko(z,9) = iy - A@A]+ Q- 1), 9) - folz) fo(¥)]
123 (@ w) - @ AG]+ Q= Wy — fole)folw)]} (102)

j=1

with fi(j )(., -) the joint density of X ](1) and Xﬁ)l across sensors.
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V. NUMERICAL RESULTS

To support the analysis for the proposed scheme in previous sections, we consider the p-
mixing Cauchy noise for the weak signal model characterized in Section III, and the observations
of p-mixing Rayleigh densities (under Ho) vs. the ones of p-mixing log-normal densities (under
H,) for the strong signal model characterized in Section IV. The ms are truncated to values which
are large enough for the simulations in different examples. The sample size of the simulations
is 100000 for weak signals and 1000 for strong signals.
V.A. Weak Signals

We first consider a weak signal in additive Cauchy noise which is symmetric with respect to
its medium. The performance by using the optimal nonlinearities is compared with the one by
ignoring the dependence across time and/or sensors for the two cases given in Section III.

Without loss of generality, the the weak signal 6 is assumed to be 0.06 for convenience. The

univariate density of the Cauchy noise in our numerical examples is given by

1 .
(14 (2% — 5,)?]’

(k)Y =
fe(2\)) - 1,2

where —00 < 9% < 00 is the median (assumed known).
Although the second-order joint density of a Cauchy noise is difficult to characterize directly,
it can be calculated from the second-order joint density of a Gaussian process by a nonlinear

transformation (see [6]). Let

fo(a®)) = P [—(w\(j;_; 7%)*/2]

and

fo(a®, ) = [(&® =72+ (y ™ )" =208 (e X =) oW -]}

{

-1
exp 3
an(1-pP) 21— pl)
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be the univariate and the second-order joint densities of the underlying Gaussian process, where
pgc) is the correlation coefficient. Then the nonlinear transformation mentioned above has the
form T'(z) = tan[r - er f(z/v2)/2] (see [9]). In addition, we assume that the underlining Gaus-
sian process for the corresponding Cauchy noise of each sensor is characterized the following

autoregressive model with the correlation coefficients ~1 < py <1 for k = 1,2

NO =
PkN-(ﬂ +4/1- sz,-(k); i>1

where both V'-(k), fori=1,2,---,n; k = 1,2, are sequences of i.1.d. Gaussian random variables

N®

i

and have standard Gaussian densities. In the following examples, for the cases of dependence
across time only (Examples 1 and 3), V;-(l), V,-(z) fori=1,2,.-.,n are generated independently
of each other; for the cases of dependence across time and sensors (Examples 2 and 4), they are

generated dependently as follows
V) = p VD 41— 2w

where V,-(I) and W; are two independent i.i.d. Gaussian processes and —1 < p. < 1 is another
correlation parameter.

In the following examples, we give the plots of the optimal nonlinearities and figures of the
receiver operating characteristic (ROC) type for the above weak signal in additive noise. In the
figures of ROC, the two types of average cost, Ey and Ej, are normalized with respect to p and
1 — p, respectively.

Example 1: This example is for the case of dependence across time only. The parameters of
the above noise model are set to be y; = 0.0, p; = 0.95 and m = 150 for sensor 1; v, = 0.50,

p2 = 0.90 and m = 100 for sensor 2. The costs are chosen as ¢; = ¢f = 1.0 and ¢ = ¢}, =
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0.50. The optimal nonlinearities giop:(z) (K = 1,2), and the ones obtained by ignoring the
dependence g ia(z) = —fi(z)/ fi(z) (k = 1,2), are given in Figures 1.1 and 1.2 for the two
sensors, respectively. The average costs resulted by employing these two forms of nonlinearities
are shown in Figure 1.3 for sensor 1 under two fixed thresholds of sensor 2 which give the best
performances of sensor 2 (at their individual crossing points in Figure 1.4 for two distinct ROCs),
and in Figure 1.4 for sensor 2 for two fixed thresholds of sensor 1 which give the best performance
of sensor 1 (at their individual crossing points in Figures 1.3 for two distinct ROCs). In Figures
1.3 and 1.4 the solid lines represent the ROCs of employing the gi op¢ (K = 1,2) and the dot-
dash lines represent the ROCs of employing the giiiq (K = 1,2). From Figures 1.3 and 1.4 we
conclude that the performance obtained by employing gi iia is better than the one obtained by
ignoring the dependence across time for this specific example.

Example 2: This example is for the scheme in the case of Subsection IIL.B. Here we set
71 = 72 = 0.0, p1 = p2 = 0.95 and m = 200 for both sensors, and the correlation parameter
across time is set to be p. = —0.90. After numerical tests, we obtain 7, = 0.0225 in Eq. (57).
In Figure 2.1, we draw the nonlinearity g; given in Eq. (57), which is used by both sensors.
In that figure, the optimal nonlinearities obtained by ignoring the dependence across sensors
gida (represented by dash lines), as well as across time and sensors g;;4 (represented by dot-dash
lines) are also included. Notice that g*(z) = giga(z) in Eq. (57). In Figure 2.2, we give the
plots of the average costs Eg/p and F;/(1 — p) (ROC) as a function of the threshold used by
both sensors. The solid lines represent the ROC of employing the gop: = T gidd + (1 — 7)) g}, the
dash lines represent the ROC of employing the g;44, and the dot-dash lines represent the ROC
of employing the g;;4. From Figure 2.2 we conclude the performance obtained by employing g,

is the best for this specific example.
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V.B. Strong Signals
Similarly, we now show the performance for the strong signal model described in Section
IV. The two observations hypotheses under considerations are characterized by the stationary
log-normal densities (univariate and second-order joint) under Hp, and the stationary Rayleigh
densities (univariate and second-order joint) under Hy. The log-normal processes Xl(f:-) (1=
(k

1,2,---;k = 1,2) are obtained from the nonlinear transformations X{ﬁ) = exp[Nl(f? + ux’%] in

which N l(li) are generated as follows
k k
MR o= WY
Ky .
Nl(,ki) Pl,kNl(,ki)-l +4y1- p%,kvl(,i); 1>1

where p;  are correlation coefficients and Vl(f) (1 = 1,2,--+,n) for sensor k (k = 1,2) is a

il

sequence of ¢.7.d. Gaussian random variables and has Gaussian density N (/,(a,(:’&o)e). In the
case of dependence across time only Vl(;) and Vl(f) are generated independently; in the case of

dependence across time and sensors, they are generated dependently as
, .
Vi = p VD +4/1- 02,71,

where Vl(,l,-) and Wy ; are two independent ¢.i.d. Gaussian processes and —1 < p, ;1 < 1is an cor-

relation parameter. The Rayleigh processes under Hy, X(gﬁ.), are generated by two independent

Gaussian processes Yo(,lf) and Z((,ﬁ-) (t=1,2,--5k = 1,2) as Xéﬁ-) = \/(YO(,];))2 + (Z((,{?)2 where

Yo(f) and Z(gﬁ) are generated as follows

k k
Yo( 1) = VO(,I)

YA = oo Y&+ 1-p2, Vi1
and

k k

z$) = U
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Z(()ﬁ) = pokZ(()) +\/1-p0kU((,Ii),1,>1

where po 1 are correlation coefficients and for sensor k (k =1,2) Vo('f), Uék) (i=1,2,---) are
two i.i.d. Gaussian sequences with the same density A’ (I,UE’,). In the case of dependence across
time only (Vo(lz), V(2)) are generated independently, so is the pair (U((,}i (2))), in the case of

dependence across time and sensors, they are generated dependently as
VD = puoVay) + /1= poWos

and
U(2) - U( )+ 1— p2 o Wo,;

where Wy ; is another i.i.d. Gaussian sequence with the density N1, (a(°°))€) and -1 < py0 <1
is an correlation parameter; U(gl,), Vo(f), and Wp,; are mutually independent.
Example 3: This example is for the case of dependence across time only characterized in
Subsection IV.A. The ms are set to be 300 for both sensors under the two hypotheses. For
sensor 1, the parameter values are set to be o, (1) = 2.0 and p1o = 0.926 under Hp and
1(,1) 0.242, ug = 0.798 and py,; = 0.992 under Hy; for sensor 2, a,(fg = 2.20 and p20 = 0.90
under Hy, and af,l) 0.242, p(2) 0.893 and pz; = 0.990. After numerical tests for the
optimization search, we obtain y; = 72 = 0.9231 in Egs. (75)-(77) and (79)-(82). In Figures
3.1 and 3.2, the two optimal nonlinearities gi op: (k = 1,2) for the strong signal model are given
for the two sensors; there the nonlinearities giiia(z) = In[fr1(2)/ fro(2)] (k = 1,2) are also
described by dot-dash lines. The ROCs similar to the ones in Example 1 are drawn in Figures
3.3 and 3.4 for the two sensors, respectively. In Figures 3.3 and 3.4, the distinct ROCs are
represented by lines similar to the ones in Example 1. The ROCs of employing gin (k = 1,2)

which are obtained by using 71 = 72 = 0.5 are also included in Figures 3.3 and 3.4 (represented
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by dotted lines). From the figures of ROCs we conclude that the performance obtained By
employing the g .+ of this strong signal model is the best for this specific example.

Example 4: This example is for the case of dependence across time and sensors characterized
in Subsection IV.B. The parameter values are the same as those of sensor 1 in Example 3 except
that m = 600. We also set p,o = 0.90 and p,; = 0.99. By using numerical tests, we set
Ya = Y5 = 0.9231 in Subsection IV.B, and 7, = 0.95 in Eq. (95). The nonlinearity g; of this
strong signal model which is used in Eq. (95) and is shown in Figure 4.1; there the nonlinerities
obtained by ignoring the dependence across sensors g;44 (represented by dash lines), and across
time and sensors g¢;;4 (represented by dot-dash lines) are also included. The ROCs similar to
the ones in Example 2 are drawn in Figﬁre 4.2, where distinct ROCs are represented by lines
similar to those in Example 2. Again in Figure 4.2, we include the ROCs of employing g which
is obtained by using 7, = 75 = 0.5 (represented by dotted lines). From the ROCs we conclude
that the performance obtained by employing gopt = Twgidd + (1 — Tw)g; is better than the one
obtained by ignoring the dependence across time, or across time and sensors for this specific

example.
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VI. CONCLUSIONS

In this paper, we extended the scheme of memoryless single-sensor detection to distributed
detection for two types of signal: the weak and the strong singles which have stationary univari-
ate and second-order densities. The model of dependence used in this paper for the correlation
of noise (across time and/or sensors) is characterized by one of the mixing sequences: the m-
dependent, the ¢-mixing and the p-mixing sequences. The performance is measured by the
average cost which couples the sensor decisiﬁns together and consists of the error probabilities
involved in distributed detection. By using the two-dimensional Chernoff bounds on the error
probabilities and some approximation techniques, we derived the design criteria for the memo-
ryless nonlinearities of the sensors, which are the generalizations of the AREs in corresponding
single-sensor detection. Optimization of the design criteria for the nonlinearities in different
cases led to linear integral equations.

The numerical results from simulations indicate that in performance, the proposed schemes
by employing optimal memoryless nonlinearities which consider the dependence (across time
and/or sensors) overmatch the corresponding ones by ignoring that dependence for different
cases of observation descriptions (weak signal and strong signal) and dependence (dependence
across time only and dependence across time and sensors).

Although we focused on two-sensor detection, the schemes and the techniques which are used
in this work can be applied to multi-sensor detection in which frequently the continuous-time

optimization methods are necessary.
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