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André L. Tits∗ Andreas Wächter† Sasan Bakhtiari∗

Thomas J. Urban‡

Craig T. Lawrence§

ISR Technical Report TR 2002-29

July 19, 2002

Abstract

An exact-penalty-function-based scheme—inspired from an old idea
due to Mayne and Polak (Math. Prog., vol. 11, 1976, pp. 67–80)—is
proposed for extending to general smooth constrained optimization
problems any given feasible interior-point method for inequality con-
strained problems. It is shown that the primal-dual interior-point
framework allows for a simpler penalty parameter update rule than
that discussed and analyzed by the originators of the scheme in the
context of first order methods of feasible direction. Strong global and
local convergence results are proved under mild assumptions. In par-
ticular, (i) the proposed algorithm does not suffer a common pitfall
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recently pointed out by Wächter and Biegler; and (ii) the positive
definiteness assumption on the Hessian estimate, made in the original
version of the algorithm, is relaxed, allowing for the use of exact Hes-
sian information, resulting in local quadratic convergence. Promising
numerical results are reported.

1 Introduction

Consider the problem

min
x∈Rn

f (x)

s.t. cj (x) = 0, j = 1, ..., me

dj (x) ≥ 0, j = 1, ..., mi

(P )

where f : Rn → R, cj : Rn → R, j = 1, ..., me and dj : Rn → R, j = 1, ..., mi

are smooth. No convexity assumptions are made. A number of primal-
dual interior-point methods have been proposed to tackle such problems; see,
e.g., [1, 2, 3, 4, 5, 6, 7, 8]. While all of these methods make use of a search
direction generated by a Newton or quasi-Newton iteration on a perturbed
version of some first order necessary conditions of optimality, they differ in
many respects. For example, some algorithms enforce feasibility of all iter-
ates with respects to inequality constraints [4, 5], while others, sometimes
referred to as “infeasible”, sidestep that requirement via the introduction of
slack variables [1, 2, 3, 6, 7, 8]. As for equality constraints, some schemes
include them “as is” in the perturbed optimality conditions [1, 2, 3, 4, 6, 7]
while some soften this condition by making use of two sets of slack vari-
ables [8] or by introducing a quadratic penalty function, yielding optimality
conditions involving a perturbed version of “c(x) = 0” [5]. Also, some pro-
posed algorithms (e.g., [2, 6, 7]) involve a trust region mechanism. In many
cases (e.g. [2, 4, 8]), promising numerical results have been obtained. In
some cases (e.g., [1, 2, 3, 6]), convergence properties have been proved under
certain assumptions. Often, however, it is not proved that the line search
eventually accepts a step size close enough to one to allow fast local conver-
gence, i.e., a Maratos-like effect [9] is not ruled out. An exception is [2], but
rather strong assumptions are used there.

Recently, Wächter and Biegler [10] showed that many of the proposed
algorithms suffer a major drawback in that, for problems with two or more
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equality constraints and a total number of constraints in excess of the dimen-
sion of the space, the constructed primal sequence can converge to spurious,
infeasible points. They produced a simple, seemingly innocuous example
where such behavior is observed when starting from rather arbitrary initial
points. They pointed out that, where global convergence had been proved,
it was under a linear independence assumption that often fails to hold in
the case of problems with such number of constraints. One exception to this
is [6], where the proposed trust-region-based method is proved to converge
globally under fairly mild assumptions; another is the recent paper [11].

In this paper, we propose a line-search-based primal-dual interior-point
algorithm of the “feasible” variety for which global and fast local convergence
are proved to hold under rather mild assumptions. In particular, it involves a
scheme to circumvent Maratos-like effects and is immune to the phenomenon
observed in [10]. A distinguishing feature of the proposed algorithm is that it
makes use of both a barrier parameter and an “exterior” penalty parameter,
both of which are adaptively adjusted to insure global and fast local conver-
gence. The algorithm originates in two papers dating back more than one
and two decades, respectively: [12] and [13]. The former proposed a feasible
interior-point method for inequality constrained problems, proven to con-
verge globally and locally superlineary, under appropriate assumptions. The
latter offered a scheme for dealing with equality constraints in the context of
a (largely arbitrary) algorithm for inequality constraint optimization.

In the 1980s, a feasible-iterate algorithm for solving (P ) was proposed
for the case without equality constraints, based on the following idea. First,
given strictly feasible estimates x̂ of a solution and ẑ of the corresponding
Karush-Kuhn-Tucker (KKT) multiplier vector, compute the Newton (or a
quasi-Newton) direction for the solution of the equations in the KKT first
order necessary conditions of optimality. Then solve again the same system
of equations, but with the right-hand side appropriately perturbed so as
to tilt the primal direction away from the constraint boundaries into the
feasible set. The amount of perturbation is determined from the solution of
the unperturbed system. Both the original and tilted primal directions are
directions of descent for f . Decrease of f is then enforced by the line search
to ensure global convergence. Maratos-like effects are avoided by means of
a second order correction (adapted from an idea of Mayne and Polak [14]),
allowing for fast local convergence to take place. These ideas were put forth
in [12]. The central idea in the algorithm of [12] originated in earlier work by
Herskovits and others [15, 16, 17]; see [18] for a detailed historical account.

3



Ideas were also borrowed from [19] and [20].
In the mid-seventies Mayne and Polak proposed an ingenious scheme

to incorporate equality constraints in methods of feasible directions [13].
The idea is to (1) relax each equality constraint (cj(x) = 0) by replacing
it with an inequality constraint (cj(x) ≥ 0); and (2) penalize departure
from the constraint boundaries associated with these relaxed constraints by
adding a simple penalty term (ρ

∑
cj(x), ρ > 0) to the cost function. For

fixed value of the penalty parameter ρ, the feasible direction method under
consideration is used. It is readily shown that, locally, convergence to KKT
points of the original problem takes place provided the penalty parameter is
increased to a value larger than the magnitude of the most negative equality
constraint multiplier (for the original problem) at the solution. Accordingly,
in [13] the penalty parameter is adaptively increased based on estimates of
these multipliers. While [13] is concerned with classical first order feasible
directions methods, it is pointed out in the introduction of that paper that
the proposed scheme can convert “any [emphasis from [13]] interior point
algorithm for inequality constrained optimization problems into an algorithm
for optimization subject to combined equality and inequality constraints.”

A careful examination of the proposed algorithm however reveals two
shortcomings. The first one concerns the computation of multiplier estimates.
In [13], this is done by solving a linear least squares problem for all equality
constraint multipliers, and all multipliers associated with ε-active inequality
constraints. (That is, with inequality constraints whose current value is less
than some fixed, prescribed ε—denoted ε′ in [13].) The price to pay is that, if
ε is “large”, then (1) the computational overhead may become significant and,
(2) the set of active constraints may be overestimated, leading to incorrect
multiplier estimates. On the other hand, if ε is selected to be very small,
the set of active constraints will be underestimated, again yielding incorrect
multipler estimates. The second shortcoming is that global convergence is
proved under the strong assumption that at every point in the extended
feasible set (where one-side violation of equality constraints is allowed) the
gradients of all equality constraints and of the active inequality constraints
are linearly independent. Indeed, as pointed out in [10], such assumption
does not hold in the example discussed there, and it is typically violated on
entire manifolds in problems with two or more equality constraints and a total
number of constraints in excess of n.1 In [17] it is suggested that the idea

1See discussion following the statement of Assumption 3 in Section 3 below.
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introduced in [13] could be readily applied to the interior-point algorithm
proposed there, but no details are given. The Mayne-Polak idea was used
in [21] in the context of feasible SQP. The ready availability of multiplier
estimates (for the penalized problem) in that context allows an improved
multiplier estimation scheme (for the original problem), thus improving on
the first shortcoming just pointed out; however, no attempt is made in [21]
to dispense with the strong linear independence assumption.

In the 1980s and 1990s, other penalty parameter update rules have been
proposed for �1 (as in [13]) or �∞ exact penalty functions, in the context of
SQP and trust-region methods, among others. (See, e.g., [14, 22, 23, 24].)
In most cases, just like in [13] and [21], the updating rule involves multi-
plier estimates whose computation requires the solution of a linear system of
equations or even that of a linear program. An exception is [24] where the
following simple rule is used: at iteration k, increase ρ if the constraint is
far from being satisfied, specifically, if ‖c(xk)‖ > υk, where υk appropriately
decreases to zero as k goes to infinity. This rule is proposed in the context
of a trust region method, and υk involves the model decrease. A challenge
when extending it to other contexts is that, if υk is chosen too small, ρ will
increase unnecessarily, perhaps without bound.

The contributions of the present paper are as follows. First it is shown
that all the convergence results proved in [12] for the algorithm proposed in
that paper still hold if the positive definiteness assumption on the Hessian
estimate is relaxed, and replaced with a significantly milder assumption. In
particular, the new assumption allows for use of the exact Hessian. Subject
to a minor modification of the algorithm, local quadratic convergence in the
primal-dual space is proved when the exact Hessian is indeed used. Second,
the algorithm is extended to general constrained problems by incorporating
a modified Mayne-Polak scheme. Specifically, a new, simple penalty parame-
ter update rule is introduced involving no additional computation. Such rule
is made possible by the availability of multiplier estimates for the penalized
problem through the primal-dual iteration. The resulting algorithm con-
verges globally and locally superlinearly without requirement that a strong
regularity assumption be satisfied, thus avoiding the pitfall observed in [10].

The balance of the paper is organized as follows. In Section 2 below,
the algorithm from [12] is described in “modern” terms, from a barrier func-
tion perspective. It is shown how certain assumptions made in [12] can be
relaxed, and quadratic convergence is shown for the case when the ”exact
Hessian” is used. The overall algorithm is then motivated and described in
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Section 3. In Section 4, global and local superlinear convergence are proved.
Preliminary numerical results are reported in Section 5, starting with results
on the example discussed in [10]. Finally, Section 6 is devoted to concluding
remarks. Throughout, ‖ · ‖ denotes the Euclidean norm or corresponding
operator norm and, given two vectors v1 and v2, inequalities such as v1 ≤ v2

and v1 < v2 are to be understood component-wise. Much of our notation is
borrowed from [4].

2 Problems Without Equality Constraints

We briefly review the algorithm of [12], in the primal-dual interior-point
formalism, then point out how the assumptions made in [12] can be relaxed
without affecting the convergence theorems.

2.1 Brief review of [12]

Consider problem (P ) with me = 0, i.e.,

min
x∈Rn

f (x)

s.t. dj (x) ≥ 0, j = 1, ..., mi .
(1)

The algorithm proposed in [12] for problems such as (1) can equivalently be
stated based on the logarithmic barrier function

β(x, µ) = f(x) −
mi∑
j=1

µ(j) log dj(x) (2)

where µ = [µ(1), . . . , µ(mi)]T ∈ Rmi and the µjs are positive. The barrier
gradient is given by

∇xβ(x, µ) = g(x) −B(x)TD(x)−1µ, (3)

where g denotes the gradient of f , B the Jacobian of d and D(x) the diagonal
matrix diag(dj(x)).

Problem (1) can be tackled via a sequence of unconstrained minimizations
of β(x, µ) with µ → 0. In view of (3), z = D(x)−1µ can be viewed as an
approximation to the KKT multiplier vector associated with a solution of (1)
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and the right-hand side of (3) as the value at (x, z) of the gradient (w.r.t. x)
of the Lagrangian

L(x, z) = f(x) − 〈z, d(x)〉.
Accordingly, and in the spirit of primal-dual interior-point methods, consider
using a (quasi-)Newton iteration for the solution of the system of equations
in (x, z)

g(x) −B(x)Tz = 0, (4)

D(x)z = µ, (5)

i.e., [
−W B(x)T

ZB(x) D(x)

] [
∆x
∆z

]
=

[
g(x) − B(x)Tz
µ−D(x)z

]
(6)

where Z = diag(z(j)) and where W is equal to, or approximates, the Hessian
(w.r.t. x) of the Lagrangian L(x, z). When µ = 0, a primal-dual feasible
solution to (4)-(5) is a KKT point for (1). Moreover, under the assumption
made in [12] thatW is positive definite2 and given any strictly feasible primal-
dual pair (x, z), the primal direction ∆x0 obtained by solving (6) with µ = 0
is a descent direction for f at x. In [12], such a property is sought for the
search direction and used in the line search. On the other hand, while any
primal direction is “feasible” when starting from an interior point, ∆x0 is
not necessarily a direction of ascent for “almost active” constraints, whereas
when the components of µ are chosen to be strictly positive, such desirable
ascent property is guaranteed but descent for f may be lost. Thus, the
components of µ should

• be positive enough to prevent the primal step length from collapsing
due to infeasibility,

• be small enough that significant descent for f is maintained, and

• go to zero fast enough to preserve the fast local convergence properties
associated with the (quasi-)Newton iteration for (4)-(5) with µ = 0.

This is achieved in [12] by selecting

µ = ϕ‖∆x0‖νz, (7)

2Below (Section 2.2) we show that this assumption can be relaxed.
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with ϕ ∈ (0, 1] as large as possible subject to the constraint

〈g(x),∆x〉 ≤ θ〈g(x),∆x0〉, (8)

where ν > 2 and θ ∈ (0, 1) are prespecified;3 condition (8) ensures that ∆x
is still a descent direction for f .

In [12] primal and dual strict feasibility is enforced at each iteration.
An arc search is performed to select a next primal iterate x+. The search
criterion includes decrease of f and strict primal feasibility. It involves a
second order correction ∆x̃ to allow a full Newton (or quasi-Newton) step to
be taken near the solution. With index sets I and J defined by

I = {j : dj(x) ≤ z(j) + ∆z(j)},

J = {j : z(j) + ∆z(j) ≤ −dj(x)},
∆x̃ is the solution of the linear least squares problem

min
1

2
〈∆x̃,W∆x̃〉 s.t. dj(x+ ∆x) + 〈∇dj(x),∆x̃〉 = ψ, ∀j ∈ I (9)

where

ψ = max

{
‖∆x‖τ ,max

j∈I

∣∣∣∣ ∆z(j)

z(j) + ∆z(j)

∣∣∣∣
κ

‖∆x‖2

}
, (10)

with τ ∈ (2, 3) and κ ∈ (0, 1) prespecified. If J �= ∅ or (9) is infeasible or
unbounded or ‖∆x̃‖ > ‖∆x‖, ∆x̃ is set to 0. The rationale for the first
of these three conditions is that computing the Maratos correction involves
some cost, and it is known to be of help only close to a solution: when
J �= ∅, the correction is not computed. Note that I estimates the active
index set and that J (multipliers of “wrong” sign) should be empty near the
solution when strict complementarity holds. An (Armijo-type) arc search is
then performed as follows: given η ∈ (0, 1), compute the first number α in
the sequence {1, η, η2, . . .} such that

f
(
x+ α∆x+ α2∆x̃

)
≤ f(x) + ξα〈g(x),∆x〉 (11)

dj

(
x+ α∆x+ α2∆x̃

)
> 0, ∀j (12)

dj

(
x+ α∆x+ α2∆x̃

)
≥ dj(x), j ∈ J (13)

3Note that ∆x depends on ϕ affinely and thus ∆x is computed at no extra cost once (6)
has been solved with, say, µ = ‖∆x0‖νz.
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where ξ ∈ (0, 1/2) is prespecified. The third inequality is introduced to
prevent convergence to points with negative multipliers. The next primal
iterate is then set to

x+ = x+ α∆x+ α2∆x̃.

Finally, the dual variable z is reinitialized whenever J �= ∅; if J = ∅ the new
value z+,(j) of z(j) is set to

z+,(j) = min{max{‖∆x‖, z(j) + ∆z(j)}, zmax} (14)

where zmax > 0 is prespecified. Thus z+,(j) is allowed to be close to 0 only if
‖∆x‖ is small, indicating proximity to a solution.

It is observed in [12, Section 5] that the total work per iteration (in
addition to function evaluations) is essentially one Cholesky decomposition
of size mi and one Cholesky decomposition of size equal to the number of
active constraints at the solution.4

On the issue of global convergence, it is shown in [12] that, given an initial
strictly feasible primal-dual pair (x0, z0) and given a sequence of symmetric
matrices {Wk}, uniformly bounded and uniformly positive definite, the pri-
mal sequence {xk} constructed by the algorithm just described (with Wk

used as W at the kth iteration) converges to KKT points for (1), provided
the following assumptions hold: (i) {x : f(x) ≤ f(x0), d(x) ≥ 0} is bounded,
so that the primal sequence remains bounded, (ii) for all feasible x the vec-
tors ∇dj(x), j ∈ {j : dj(x) = 0} are linearly independent, and (iii) the set
of feasible points x for which (4)-(5) hold for some z (with no restriction on
the sign of the components of z)5 is finite.

Superlinear convergence of the primal sequence—in particular, eventual
acceptance of the full step of one by the arc search—is also proved in [12]
under appropriate second order assumptions, provided that none of the KKT
multipliers at the solution are larger than zmax and that, asymptotically, Wk

suitably approximates the Hessian of the Lagrangian at the solution on the
tangent plane to the active constraints.

Finally, stronger convergence results hold for a variation of the present
algorithm, under weaker assumptions, in the LP and convex QP cases. In
particular, global convergence to the solution set X∗ takes place whenever

4There are two misprints in [12, Section 5]: in equation (5.3) (statement of Proposi-
tion 5.1) as well as in the last displayed equation in the proof of Proposition 5.1 (expression
for λ0

k), MkB−1
k should be B−1

k Mk.
5Such points are referred to in [12] as stationary points.
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X∗ is nonempty and bounded, the feasible set X has a nonempty interior,
and for every x ∈ X the gradients of the active constraints at x are linearly
independent. See [18] for details.

2.2 Global convergence under milder assumptions

Two assumptions made in [12] can be relaxed without affecting the conver-
gence results proved there. First, Assumption A4 (x0 is the initial point),

The set X ∩ {x s.t. f(x) ≤ f(x0)} is compact

can be eliminated altogether. Indeed, this assumption is invoked only in the
proof of Lemma 3.8 and 3.9 of [12]. The former is readily proved without such
assumption: convergence of {xk−1} on K directly follows from the assumed
convergence on K of {xk} and {dk−1} (in the notation of [12]) and from the
last displayed equation in the proof. As for the latter, a weaker statement
by which K is selected under the additional restriction that {xk} converges
on K is sufficient for the use made of that lemma, in Proposition 3.10 and
Theorem 3.11.

Second and more significantly, Assumption A6 of [12], (in the notation of
this paper)

There exist σ1, σ2 > 0 such that σ1‖v‖2 ≤ 〈v,Wkv〉 ≤ σ2‖v‖2, for
all k, for all v ∈ Rn

can be replaced with the following milder assumption.

Assumption PTH-A6∗. Given any index set K such that {xk}k∈K is
bounded, there exist σ1, σ2 > 0, such that, for all k ∈ K,

‖Wk‖ ≤ σ2

and

〈v,
(
Wk +

mi∑
i=1

z
(i)
k

di(xk)
∇di(xk)∇di(xk)

T

)
v〉 ≥ σ1‖v‖2 ∀v ∈ Rn.

(Here {xk}, {zk}, and {Wk} are the sequences of values of x, and z and W
generated by the algorithm outlined above. The restriction of this assumption
to bounded subsequences of {xk} is made in connection with our dropping
Assumption A4.)
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The difference with Assumption A6 of [12] is significant because, as is
readily verified the (exact) Hessian of the Lagrangian satisfies the relaxed
assumption in the neighborhood of any solution of (1) at which strong second
order sufficiency conditions of optimality hold. It is shown in the appendix
that all the results proved in [12] still hold under the new assumption. In
particular, it is proven that the direction ∆x0 (in the notation of this paper)
is still well defined and is a direction of descent for f . It should be noted
that, when W is not positive definite, there are two ways (rather than one)
in which (9) can fail to have a solution: when its feasible set is nonempty,
its cost function could possibly be unbounded from below. As observed in
the appendix, the analysis of [12] still implies that, locally around a “strong”
minimizer, (9) still has a solution.

2.3 Local quadratic convergence

As noted at the end of Subsection 2.1, superlinear convergence of {xk} is
proved in [12] under appropriate local assumptions. Here we show that,
under the further assumption that, eventually, Wk is the Hessian evaluated
at (xk, zk) of the Lagrangian associated with problem (1), the pair (xk, zk)
converges Q-quadratically provided the following minor modification is made
to the algorithm of [12]: replace (14) with

z+,(j) = min{max{‖∆x‖2, z(j) + ∆z(j)}, zmax},

i.e., allow zk to go to zero like ‖∆xk‖2 rather then merely ‖∆xk‖. It can be
checked that this modification does not affect the analysis carried out in [12].

The proof is based on Proposition 3.10 of [18], which we restate here for
ease of reference. (Related result are obtained in [3] and [25].)

Lemma 1 Let F : R� → R� be twice continuously differentiable and let
w∗ ∈ R� and r > 0 be such that F (w∗) = 0 and ∂F

∂w
(w) is nonsingular

whenever w ∈ B(w∗, r) := {w : ‖w∗ − w‖ ≤ r}. Let vN : B(w∗, r) → R� be

defined by vN(w) = −
(

∂F
∂w

(w)
)−1

F (w). Then given any Γ1 > 0 there exists
Γ2 > 0 such that

‖w+ − w∗‖ ≤ Γ2‖w − w∗‖2 (15)

for every w ∈ B(w∗, r) and w+ ∈ R� for which, for each i ∈ {1, . . . , �},
either
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(i) |w+,(i) − w∗,(i)| ≤ Γ1‖vN(w)‖2

or

(ii) |w+,(i) − (w(i) + vN
i (w))| ≤ Γ1‖vN(w)‖2.

Let w := [xT, zT]T, wk := [xT
k , z

T
k ]T, etc., let

Φ(w, µ) =

[
−(g(x) − B(x)Tz)

D(x)z − µ

]
(16)

and let M(w) denote the matrix in the left-hand side of (6) with W the
“exact Hessian”, i.e.,

W = ∇2
xxf(x) −

m∑
i=1

z(i)∇2
xxdi(x)

Thus M(w) is the Jacobian of Φ(w, µ) with respect to w. (Note that M(w)
does not depend on µ.) We will invoke Lemma 1 with F := Φ(·, 0). Observe
that

∆w0
k = −M(wk)

−1F (wk, 0)

and
∆wk = −M(wk)

−1F (wk, µk),

and, since µk = O(‖∆x0
k‖ν) andM(wk)

−1 is bounded (in view of Lemma PTH-
3.5∗ in the appendix), that

∆wk − ∆w0
k = O(‖∆x0

k‖ν). (17)

Next, we observe that, with a simple additional observation, the proof of
Lemma 4.4 in [12] establishes that

‖∆x̃‖ = O(‖∆w‖2). (18)

Indeed, in connection with the last displayed equation in that proof, since
under our strict complementarity assumption z

(i)
k +∆z

(i)
k (µk,i in the notation

of [12]) is bounded away from zero for large k, we can write

z
(i)
k

z
(i)
k + ∆z

(i)
k

− 1 = O(|∆z(i)
k |) = O(‖∆wk‖).
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and the claim follows.
Now, proceed analogously to the proof of Theorem 3.11 in [18]. Thus,

with reference to Lemma 1, let r > 0 be such that M(w) is nonsingular
for all w ∈ B(w∗, r) (in view of Lemma PTH-3.5∗ in the appendix, such r
exists). Since {wk} → w∗ as k → ∞, there exists k0 such that wk ∈ B(w∗, r)
for all k ≥ k0. Now let us first consider {zk}. For i ∈ I(x∗), in view of

strict complementarity, z
(i)
k+1 = z

(i)
k + ∆z

(i)
k for k large enough, so that, in

view of (17), condition (ii) in Lemma 1 holds for k large enough. Next, for

i �∈ I(x∗), for each k either again z
(i)
k+1 = z

(i)
k +∆z

(i)
k or (in view of our modified

updating formula for zk) z
(i)
k+1 = ‖∆xk‖2. In the latter case, since z∗,(i) = 0,

noting again (17), we conclude that condition (i) in Lemma 1 holds. Next,
consider {xk}. Since αk = 1 for k large enough, we have

‖xk+1 − (xk + ∆x0
k)‖ = ‖∆xk − ∆x0

k + ∆x̃k‖

which, in view of (17) and of (18) implies that condition (ii) again holds.
Thus the conditions of Lemma 1 hold, and Q-quadratic convergence follows.

3 Overall Algorithm

Suppose now that me is not necessarily zero. Denote by X the feasible set
for (P ), i.e., let

X := {x ∈ Rn : cj(x) = 0, j = 1, ..., me, dj(x) ≥ 0, j = 1, ..., mi}. (19)

Further, let A denote the Jacobian of c, let C(x) = diag(cj(x)) and, just as
above, let B denote the Jacobian of d and let D(x) = diag(dj(x)).

In [13], Mayne and Polak proposed a scheme to convert (P ) to a sequence
of inequality constrained optimization problems of the type

min
x∈Rn

fρ(x)

s.t cj(x) ≥ 0 j = 1, ..., me,
dj(x) ≥ 0 j = 1, ..., mi,

(Pρ)

where fρ(x) = f(x)+ρ
me∑
j=1

cj(x), and where ρ > 0. Examination of (Pρ) shows

that large values of ρ penalize iterates satisfying cj (x) > 0 for any j while
feasibility for the modified problem insures that cj(x) ≥ 0. Thus, intuitively,
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for large values of ρ, iterates generated by a feasible-iterate algorithm will
tend towards feasibility for the original problem (P ). In fact, the penalty
function is “exact” in that convergence to a solution of (P ) is achieved with-
out need to drive ρ to infinity. In other words, under mild assumptions, for
large enough but finite values of ρ, solutions to (Pρ) are solutions to (P ).

Let X̃ and X̃0 be the feasible and strictly feasible sets for Problems (Pρ),
i.e., let

X̃ := {x ∈ Rn : cj(x) ≥ 0, j = 1, ..., me, dj(x) ≥ 0, j = 1, . . . , mi}, (20)

X̃0 := {x ∈ Rn : cj(x) > 0, j = 1, ..., me, dj(x) > 0, j = 1, . . . , mi}. (21)

Also, for x ∈ X̃, let Ie(x) and I i(x) be the active index sets corresponding
to c and d, i.e.,

Ie(x) = {j : cj(x) = 0}; I i(x) = {j : dj(x) = 0}.

Before proceeding, we state some basic assumptions.

Assumption 1 X is nonempty.

Assumption 2 f , ci, i = 1 . . . , me and di, i = 1, . . . , mi are continuously
differentiable.

Assumption 3 For all x ∈ X̃, (i) the set {∇cj(x) : j ∈ Ie(x)} ∪ {∇dj(x) :
j ∈ I i(x)} is linearly independent; (ii) if x �∈ X, then no scalars y(j) ≥ 0,
j ∈ Ie(x), and z(j) ≥ 0, j ∈ I i(x) exist such that

me∑
j=1

∇cj(x) =
∑

j∈Ie(x)

y(j)∇cj(x) +
∑

j∈I i(x)

z(j)∇dj(x). (22)

Note that Assumption 1 implies that X̃ is nonempty and, together with
Assumptions 2 and 3(i), that X̃0 is nonempty, X̃ being its closure.

Our regularity assumption, Assumption 3, is considerably milder than
linear independence of the gradients of all ci’s and all active di’s. As observed
in [10], the latter assumption is undesirable, in that whenever there are two
or more equality constraints and the total number of constraints exceeds
n, it is typically violated over entire submanifolds of X̃ \ X. On the other
hand, as stated in the next lemma, Assumption 3(ii) is equivalent to the mere
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existence at every x ∈ X̃ \ X of a feasible (with respect to X̃) direction of
strict descent for the �1 norm of c(x). (Indeed Assumption 3(ii) simply states
that the sum in the left-hand side of (22) does not belong to the closed convex
cone generated by the listed constraint gradients and existence of such strict
descent direction amounts to strict separation of that sum from this cone.)

Lemma 2 Suppose Assumptions 2 and 3(i) hold. Then Assumption 3(ii) is
equivalent to the following statement (S): for every x ∈ X̃ \X, there exists
v ∈ Rn such that

〈
me∑
j=1

∇cj(x), v〉 < 0,

〈∇cj(x), v〉 > 0 ∀j ∈ Ie(x),

〈∇dj(x), v〉 > 0 ∀j ∈ I i(x).

In [10], a simple optimization problem was exhibited, on which many recently
proposed interior-point methods converge to infeasible points at which such
a direction v exists, in effect showing that convergence of these algorithms to
KKT points cannot be proved unless a strong assumption is used that rules
out such seemingly innocuous problems. On the other hand, it is readily
checked that directions v as in Lemma 2 do exist at all spurious limit points
identified in [10]. Indeed, in the problem from [10], for some a, b, c1(x) =
(x(1))2 −x(2) +a, c2(x) = −x(1) +x(3) + b,6 d1(x) = x(2), and d2(x) = x(3) and
the spurious limit points are points of the form [ζ, 0, 0]T, with ζ < 0, at which
both c1 and c2 are nonzero; v = [1, 0, 0]T meets our conditions at such points.
In fact, it is readily verified that Assumption 3(ii) is satisfied whenever a ≥ 0,
or a < 0 with b ≤ −

√
|a|, and that, when a < 0 and b > −

√
|a|, the only

point x ∈ X̃ \ X at which the condition in Assumption 3(ii) is violated is
(−
√

|a|, 0, 0)T, at which c1(x) = 0. In Section 5 we will discuss the behavior
on this example of the algorithm proposed below.

Before presenting our algorithm, we briefly explore a connection between
Problems (P ) and (Pρ). A point x is a KKT point of (P ) if there exist

6Our c2(x) is the negative of that in [10] because in our framework equality constraints
must take on positive values at the initial point, while at the initial points of interest (as
per Theorem 1 in [10]) c2(x) as defined in [10] is negative.
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y ∈ Rme , z ∈ Rmi such that

g (x) − A (x)T y −B (x)T z = 0, (23)

c (x) = 0, (24)

d (x) ≥ 0, (25)

z(j)dj (x) = 0, j = 1, ..., mi, (26)

z ≥ 0. (27)

Following [12] we term a point x stationary for (P ) if there exist y ∈ Rme ,
z ∈ Rmi such that (23)-(26) hold (but possibly not (27)). Next, for given ρ,
a point x ∈ X̃ is a KKT point of (Pρ) if there exist y ∈ Rme , z ∈ Rmi such
that

g(x) + A(x)T(ρe) −A(x)Ty − B(x)Tz = 0, (28)

c(x) ≥ 0, (29)

d(x) ≥ 0, (30)

y(j)cj(x) = 0, j = 1, ..., me, (31)

y ≥ 0, (32)

z(j)dj(x) = 0, j = 1, ..., mi, (33)

z ≥ 0, (34)

where e ∈ Rme is a vector whose components are all 1. A point x is stationary
for (Pρ) if there exist y ∈ Rme , z ∈ Rmi such that (28)-(31) and (33) hold
(but possibly not (32) and (34)). The following proposition, found in [13], is
crucial to the development and is repeated here for ease of reference.

Proposition 3 Suppose Assumptions 1 and 2 hold. Let ρ be given. If x
is stationary for (Pρ) with multiplier vectors y and z and c(x) = 0, then it
is stationary for (P ) with multipliers vectors y − ρe and z. Furthermore, if
z ≥ 0, then x is a KKT point for (P ).

Proof: Using the fact that c(x) = 0, equations (28)-(31) and (33) imply

g(x) − A(x)T(y − ρe) −B(x)Tz = 0 (35)

c(x) = 0 (36)

d(x) ≥ 0 (37)

z(j)dj(x) = 0 (38)
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Thus x is stationary for (P ) with multipliers y−ρe ∈ Rme and z ∈ Rmi . The
second assertion follows similarly. �

The proposed algorithm is based on solving Problem (Pρ) for fixed val-
ues of ρ > 0 using the interior-point method outlined in Section 2. The
key issue will then be to determine how to adjust ρ to force the iterate to
asymptotically satisfy c(x) = 0.

For problem (Pρ), the barrier function (2) becomes

β(x, ρ, µ) = f(x) + ρ

me∑
j=1

cj(x) −
me∑
j=1

µe
(j) ln(cj(x)) −

mi∑
j=1

µi
(j) ln(dj(x)).

Its gradient is given by

∇xβ(x, ρ, µ) = g(x) + A(x)T(ρe) −A(x)TC(x)−1µe −B(x)TD(x)−1µi. (39)

Proceeding as in Section 2, define

y = C (x)−1 µe, (40)

z = D (x)−1 µi, (41)

and consider solving the nonlinear system in (x, y, z):

g(x) + A(x)T(ρe − y) − B(x)Tz = 0, (42)

µe − C(x)y = 0, (43)

µi −D(x)z = 0, (44)

by means of the (quasi-)Newton iteration
 −W A(x)T B(x)T

Y A(x) C(x) 0
ZB(x) 0 D(x)




 ∆x

∆y
∆z


 =


 g(x) + A(x)T(ρe − y) − B(x)Tz

µe − C(x)y
µi −D(x)z


 ,

(L(x, y, z,W, ρ, µe, µi))
where Y = diag(y(j)), Z = diag(z(j)) and W is equal to, or approximates, the
Hessian with respect to x, at (x, y, z), of the Lagrangian associated with (Pρ).

System L(x, y, z,W, ρ, µe, µi) is solved first with (µe, µi) = (0, 0), then
with (µe, µi) set analogously to (7). Following that, a correction ∆x̃ is com-
puted by solving the appropriate linear least squares problem, and new iter-
ates x+, y+ and z+ are obtained as in Section 2.
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Now for the central issue of how ρ is updated. As noted in the introduc-
tion, Mayne and Polak [13] adaptively increase ρ to keep it above the mag-
nitude of the most negative equality constraint multiplier estimate. They
use a rather expensive estimation scheme, which was later improved upon
in [21] in a different context. A simpler update rule is used here, which
involves no computational overhead. It is based on the observation that ρ
should be increased whenever convergence is detected to a point—a KKT
point for (Pρ), in view of the convergence properties established in [12] and
reviewed in Section 2—where some equality constraints is violated. Care
must be exercised because, if such convergence is erroneously signaled (false
alarm), a runaway phenomenon may be triggered, with ρ increasing uncon-
trollably without a KKT point of (P ) being approached. We avoid this by
requiring that the following three conditions—all of which are needed in the
convergence proof—be all satisfied in order for an increase of ρ to be trig-
gered (here γ1, γ2 and γ3 are prescribed positive constants): (a) ‖∆x0

k‖ ≤ γ1,
indicating the proximity of a stationary point for (Pρk

); (b) yk + ∆y0
k �≥ γ2e,

i.e., not all cjs become strongly binding as the limit point is approached; (c)
yk + ∆y0

k ≥ −γ3e and zk + ∆z0
k ≥ −γ3e, i.e., no components of yk or zk is di-

verging to −∞ due to ρk being increased too fast (i.e., if ρk is growing large,
either yk and zk become nonnegative or their negative components become
negligible compared to ρk), violation of which would indicate that the limit
point is not KKT.

We are now ready to state the algorithm.

Algorithm A.

Parameters. ξ ∈ (0, 1/2), η ∈ (0, 1), γ1 > 0, γ2 > 0, γ3 > 0, ν > 2, θ ∈ (0, 1),
wmax > 0, δ > 1, τ ∈ (2, 3), κ ∈ (0, 1).

Data. x0 ∈ X̃0, ρ0 > 0, y
(i)
0 ∈ (0, wmax], i = 1, . . . , me, z

(i)
0 ∈ (0, wmax],

i = 1, . . . , mi; W0 ∈ Rn×n, such that

W0 +
[
A(x0)

T B(x0)
T
] [ C(x0)

−1Y0

D(x0)
−1Z0

] [
A(x0)
B(x0)

]
(45)

is positive definite.

Step 0: Initialization. Set k = 0.

Step 1: Computation of search arc:

i. Compute (∆x0
k,∆y

0
k,∆z

0
k) by solving L(xk, yk, zk,Wk, ρk, 0, 0). If ∆x0

k =
0 and me = 0 then stop.
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ii. Check the following three conditions: (i) ‖∆x0
k‖ ≤ γ1, (ii) yk + ∆y0

k �≥
γ2e, (iii) yk +∆y0

k ≥ −γ3e and zk +∆z0
k ≥ −γ3e. If all three conditions

hold, then set ρk+1 = δρk, xk+1 = xk, yk+1 = yk, zk+1 = zk, Wk+1 = Wk,
set k = k + 1 and go back to Step 1i. Otherwise, proceed to Step 1iii.

iii. Compute (∆x1
k,∆y

1
k,∆z

1
k) by solving L(xk, yk, zk,Wk, ρk, ‖∆x0

k‖νyk, ‖∆x0
k‖νzk).

iv. Set

ϕk =

{
1 if 〈∇fρk

(xk),∆x
1
k〉 ≤ θ〈∇fρk

(xk),∆x
0
k〉

(1 − θ)
〈∇fρk

(xk),∆x0
k〉

〈∇fρk
(xk),∆x0

k−∆x1
k〉

otherwise.

v. Set

∆xk = (1 − ϕk)∆x
0
k + ϕk∆x

1
k,

∆yk = (1 − ϕk)∆y
0
k + ϕk∆y

1
k,

∆zk = (1 − ϕk)∆z
0
k + ϕk∆z

1
k .

vi. Set

Ie
k = {j : cj(xk) ≤ y

(j)
k + ∆y

(j)
k },

I i
k = {j : dj(xk) ≤ z

(j)
k + ∆z

(j)
k },

Je
k = {j : y

(j)
k + ∆y

(j)
k ≤ −cj(xk)},

J i
k = {j : z

(j)
k + ∆z

(j)
k ≤ −dj(xk)}.

vii. Set ∆x̃k to be the solution of the linear least squares problem

min 1
2
〈∆x̃,Wk∆x̃〉 s.t. cj(xk + ∆xk) + 〈∇cj(xk),∆x̃k〉 = ψk, ∀j ∈ Ie

k

dj(xk + ∆xk) + 〈∇dj(xk),∆x̃k〉 = ψk, ∀j ∈ I i
k

(46)
where

ψk = max

{
‖∆xk‖τ ,max

j∈Ie
k

∣∣∣∣∣ ∆y
(j)
k

y
(j)
k + ∆y

(j)
k

∣∣∣∣∣
κ

‖∆xk‖2,max
j∈I i

k

∣∣∣∣∣ ∆z
(j)
k

z
(j)
k + ∆z

(j)
k

∣∣∣∣∣
κ

‖∆xk‖2

}
.

If Je
k ∪ J i

k �= ∅ or (46) is infeasible or unbounded or ‖∆x̃k‖ > ‖∆xk‖,
set ∆x̃k to 0.
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Step 2. Arc search. Compute αk, the first number α in the sequence
{1, η, η2, ...} satisfying

fρk
(xk + α∆xk + α2∆x̃k) ≤ fρk

(xk) + ξα〈∇fρk
(xk),∆xk〉

cj(xk + α∆xk + α2∆x̃k) > 0, ∀j
dj(xk + α∆xk + α2∆x̃k) > 0, ∀j
cj(xk + α∆xk + α2∆x̃k) ≥ cj(xk), ∀j ∈ Je

k

dj(xk + α∆xk + α2∆x̃k) ≥ dj(xk), ∀j ∈ J i
k

Step 3. Updates.

Set

xk+1 = xk + αk∆xk + α2
k∆x̃k.

If Je
k ∪ J i

k = ∅, set

y
(j)
k+1 = min{max{‖∆xk‖2, y

(j)
k + ∆y

(j)
k }, wmax} j = 1, . . . , me,

z
(j)
k+1 = min{max{‖∆xk‖2, z

(j)
k + ∆z

(j)
k }, wmax} j = 1, . . . , mi;

otherwise, set yk+1 = y0 and zk+1 = z0. Set ρk+1 = ρk and select Wk+1 such
that

Wk+1+
[
A(xk+1) B(xk+1)

]T [ C(xk+1)
−1Yk+1

D(xk+1)
−1Zk+1

] [
A(xk+1)
B(xk+1)

]

is positive definite. Set k = k + 1 and go back to Step 1.

Remark 1 The values assigned to yk+1 and zk+1 in Step 1ii are of no con-
sequence as far as the theoretical properties of the algorithm are concerned
provided dual feasibility is preserved. Rather than re-using the previous val-
ues as stated in the algorithm, it may be advisable to make use of the just
computed corrections ∆y0

k and ∆z0
k, e.g., by setting

y
(j)
k+1 = min{max{y(j)

k , y
(j)
k + ∆y

0,(j)
k }, wmax}, j = 1, . . . , me,

z
(j)
k+1 = min{max{z(j)

k , z
(j)
k + ∆z

0,(j)
k }, wmax}, j = 1, . . . , mi,
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which still insures dual feasibility. (A side effect of such rule is that the
components of yk and zk are possibly increased but never decreased when ρk

is increased, which makes some intuitive sense.)

Remark 2 Similarly, variations can be considered for the dual variable up-
date rule in Step 3 in the case when Je

k ∪ J i
k �= ∅. Indeed the convergence

analysis of [12] remains unaffected as long as the components of yk+1 and
zk+1 stay bounded away from zero (and bounded) over the set of iterates k at
which Je

k ∪ J i
k �= ∅. A possible choice would be

y
(j)
k+1 = min{max{wmin, y

(j)
k + ∆y

(j)
k }, wmax} j = 1, . . . , me,

z
(j)
k+1 = min{max{wmin, z

(j)
k + ∆z

(j)
k }, wmax} j = 1, . . . , mi;

where wmin ∈ (0, wmax) is prescribed. Unlike the update rule used in the
algorithm statement (taken from [12]) this rule attempts to make use of some
of the multiplier estimates even when Je

k ∪ J i
k �= ∅.

Remark 3 If an initial point x0 ∈ X̃0 is not readily available, a point x0 ∈ X̃
can be constructed as follows: (i) Perform a “Phase I” search by maximizing
minj dj(x) without constraints. This can be done, e.g., by applying Algo-
rithm A to the problem

max
(x,ζ)∈Rn+1

ζ s.t. dj(x) − ζ ≥ 0 ∀j.

A point x0 satisfying minj dj(x) ≥ 0 will eventually be obtained (or the con-
structed sequence {xk} will be unbounded) provided minj dj(x) has no sta-
tionary point with negative value, i.e., provided that, for all x such that
ζ := minj dj(x) < 0, the origin does not belong to the convex hull of {∇dj(x) :
dj(x) = ζ}. (ii) Redefine cj(x) to take values −cj(x) for every j such that the
original cj(x) is negative. As a result, x0 will be in X̃ for the reformulated
problem. If it is on the boundary of X̃ rather than in its interior X̃0, it can
be readily perturbed into a point in X̃0 (under Assumption 3(i)).

4 Convergence Analysis

We first show that Algorithm A is well defined. First of all, the conditions
imposed on W0 and (in Step 3) on Wk in Algorithm A are identical, for
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every fixed k, to the second condition in Assumption PTH-A6∗. Thus the
matrix in our (quasi-)Newton iteration is nonsingular, and it follows from
Proposition 3.4 of [12] that, if ∆x0

k = 0 for some k, then ∇fρk
(xk) = 0,

i.e., xk is an unconstrained KKT point for (Pρ); and it is readily checked
that, in such case, yk +∆y0

k and zk + ∆z0
k are the associated KKT multiplier

vectors, i.e., are both zero. Thus, if finite termination occurs at Step 1i (i.e.,
me = 0) then ∇f(xk) = 0, i.e., xk is an unconstrained KKT point for (P );
and if ∆x0

k = 0 but finite termination does not occur (i.e., me > 0) then
Conditions (i) through (iii) in Step 1ii are satisfied, and the algorithm loops
back to Step 1i. Thus Step 1iii is never executed when ∆x0

k is zero. It then
follows from Proposition 3.3 of [12] that, under Assumptions 1, 2, and 3(i),
Algorithm A is well defined. (Assumptions A4 through A6 of [12] are not
needed in that proposition.)

From now on, we assume that the algorithm never stops, i.e., that an
infinite sequence {xk} is constructed. Our next task will be to show that,
unless {xk} itself is unbounded, ρk is increased at most finitely many times.
Assumption 3(ii) will be crucial here. An additional assumption, adapted
from PTH-A6∗, will be needed as well.

Assumption 4 Given any index set K such that the sequence {xk} con-
structed by Algorithm A is bounded, there exist σ1, σ2 > 0 such that, for all
k ∈ K,

‖Wk‖ ≤ σ2

and

〈v,
(
Wk +

me∑
i=1

y
(i)
k

ci(xk)
∇ci(xk)∇ci(xk)

T +

mi∑
i=1

z
(i)
k

di(xk)
∇di(xk)∇di(xk)

T

)
v〉

≥ σ1‖v‖2 ∀v ∈ Rn.

Lemma 4 Suppose Assumptions 1–4 hold. If the infinite sequence {xk} gen-
erated by Algorithm A is bounded, then ρk is increased at most finitely many
times.

Proof: By contradiction. Suppose ρk is increased infinitely many times,
i.e., there exists an infinite index set K such that ρk+1 > ρk for all k ∈ K.
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The criteria that trigger ρk to increase must thus be satisfied for all k ∈ K,
i.e., with y′k = yk + ∆y0

k and z′k = zk + ∆z0
k ,

‖∆x0
k‖ ≤ γ1, ∀k ∈ K (47)

y′k �≥ γ2e, ∀k ∈ K (48)

y′k ≥ −γ3e, ∀k ∈ K (49)

z′k ≥ −γ3e, ∀k ∈ K. (50)

As per Step 1i of the algorithm, we have:

Wk∆x
0
k + g(xk) + A(xk)

T(ρke − y′k) − B(xk)
Tz′k = 0 (51)

YkA(xk)∆x
0
k + C(xk)y

′
k = 0 (52)

ZkB(xk)∆x
0
k +D(xk)z

′
k = 0 (53)

Since {ρk} tends to infinity, it follows from (48) that {‖ρke− y′k‖∞} tends to
infinity on K. Consequently, the sequence {αk}, with

αk = max {‖ρke − y′k‖∞, ‖z′k‖∞, 1} ,

tends to infinity on K as well. Define

ŷ′k = α−1
k (ρke − y′k), j = 1, . . . , me, (54)

ẑ′k = α−1
k z′k, j = 1, . . . , mi (55)

for k ∈ K. By construction max{‖ŷk‖∞, ‖ẑk‖∞} = 1 for all k ∈ K, k large
enough. Since in addition the sequence {xk}k∈K is bounded by assumption,
there must exist an infinite index set K′ ⊆ K and vectors x∗ ∈ Rn, ŷ∗ ∈ Rme ,
and ẑ∗ ∈ Rmi , with ŷ∗ and ẑ∗ not both zero, such that

lim
k→∞
k∈K′

xk = x∗

lim
k→∞
k∈K′

ŷk = ŷ∗

lim
k→∞
k∈K′

ẑk = ẑ∗.

Boundedness of {xk} and the continuity assumptions imply that {A(xk)} and
{B(xk)} are bounded. Further, {Yk} and {Zk} are bounded by construction.
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Dividing both sides of (52) by αk, letting k → ∞, k ∈ K′ and using (47)
shows that

α−1
k C(xk)y

′
k → 0 as k → ∞, k ∈ K′

implying that, for every j �∈ Ie(x∗),

α−1
k y

′,(j)
k → 0 as k → ∞, k ∈ K′.

Together with (54), this implies that {ρk/αk} converges to some limit ω ≥ 0
as k → ∞, k ∈ K′, with

ŷ∗,(j) = ω, ∀ j �∈ Ie(x∗).

Next it follows from (49), (50), (54) and (55) that

ŷ∗,(j) ≤ ω ∀j (56)

and that
ẑ∗ ≥ 0. (57)

Further, dividing (53) by αk and taking the limit as k → ∞, k ∈ K′ yields:

D (x∗) ẑ∗ = 0

Thus ẑ∗,(j) = 0 for all i �∈ I i(x∗). Finally, in view of (47) and of Assumption 4,
dividing (51) by αk and taking the limit as k → ∞, k ∈ K′, yields

A(x∗)Tŷ∗ − B(x∗)Tẑ∗ = 0,

i.e.,
me∑
j=1

ŷ∗,(j)∇cj(x∗) −
∑

j∈I i(x∗)

ẑ∗,(j)∇dj(x
∗) = 0. (58)

Since ŷ∗ and ẑ∗ are not both zero, (58) together with Assumption 3(i) implies
that Ie(x∗) �= {1, . . . , me} (i.e., x∗ �∈ X) and ω > 0. Dividing both sides
of (58) by ω and adding and subtracting

∑
j∈Ie(x∗) ∇cj(x∗) then yields

me∑
j=1

∇cj(x∗) −
∑

j∈Ie(x∗)

y(j)∇cj(x∗) −
∑

j∈I i(x∗)

z(j)∇dj(x
∗) = 0,

where we have defined y(j) = 1− ŷ∗,(j)

ω
and zj = ẑ∗,(j)

ω
. In view of (56) and (57)

and since x∗ �∈ X, this contradicts Assumption 3(ii).
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�
In the sequel, we denote by ρ̄ the final value of ρk.

Algorithm A now reduces to the algorithm described in Section 2 applied
to Problem (Pρ̄). It is shown in [12] that, under Assumptions 1–4, if the
sequence {xk} constructed by Algorithm A is bounded, then all its accumu-
lation points are stationary for (Pρ̄). To conclude that they are KKT points
for (Pρ̄), an additional assumption is used. Recall that ρ̄ is of the form ρ0δ

�

for some nonnegative integer �.

Assumption 5 For ρ ∈ {ρ0δ
� : � a nonnegative integer}, all stationary

points of (Pρ) are isolated.

Thus, under Assumptions 1–5, all accumulation points of {xk} are KKT
point for (Pρ̄). Now, since ρk eventually stops increasing, at least one of the
conditions in Step 1ii of Algorithm A is not eventually always satisfied. For
convergence to KKT points of (P ) to be guaranteed, the fact that Condi-
tion (ii) in Step 1ii of Algorithm A must eventually be violated if ρk stops
increasing is crucial, since this would imply that c(xk) goes to zero. A glance
at the three conditions in that step suggests that this will be the case if the
dual variables converge to the KKT multipliers for (Pρ̄) (since in such case
Conditions (i) and (iii) will eventually hold). To prove that the latter indeed
occurs, one more assumption is used.

Assumption 6 The sequence {xk} generated by Algorithm A has an accu-
mulation point which is an isolated KKT point for (Pρ̄) and at which strict
complementarity holds.

Proposition 5 Suppose Assumptions 1–6 hold. If the infinite sequence {xk}
generated by Algorithm A is bounded, then it converges to a KKT point x∗

of (Pρ̄). Moreover, with y∗ and z∗ the associated KKT multiplier vectors
corresponding respectively to the “c” and “d” constraints,

(i) {∆xk} → 0 as k → ∞, {yk +∆yk} → y∗ as k → ∞ and {zk +∆zk} →
z∗ as k → ∞;

(ii) for k large enough, Je
k = ∅ = J i

k, I
e
k = Ie(x∗), and I i

k = I i(x∗);

(iii) if y∗,(j) ≤ wmax for all j, then {yk} → y∗ as k → ∞; if z∗,(j) ≤ wmax

for all j, then {zk} → z∗ as k → ∞.
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Proof: Follows from Proposition 4.2 in [12], noting that our Assumption 6
is all that is needed from Assumption A8 of [12] in the proofs of Lemma 4.1
of [12] and Proposition 4.2 of [12]. �

Theorem 6 Suppose Assumptions 1–6 hold. If the infinite sequence {xk}
generated by Algorithm A is bounded, then it converges to a KKT point x∗

of (P ). Moreover, in such case, {yk+∆yk−ρe} converges to ȳ∗ and {zk+∆zk}
converges to z∗, where ȳ∗ and z∗ are the multiplier vectors associated to x∗

for problem (P ).

Proof: We know from Proposition 5 that (i) {xk} → x∗, a KKT point
for (Pρ̄); (ii) {∆xk} → 0; (iii) {yk + ∆yk} → y∗ ≥ 0, the multiplier vector
associated with the “c” constraints, and (iv) {zk + ∆zk} → z∗ ≥ 0, the
multiplier vector associated with the “d” constraints. Further, in view of
strict complementarity, it follows from Lemma PTH-3.1∗ in the appendix
that the matrix in L(x∗, y∗, z∗,W ∗, ρ̄, 0, 0) is nonsingular given any accu-
mulation point W ∗ of {Wk}. Together with (i), (iii) and (iv) above, and
since L(x∗, y∗, z∗,W ∗, ρ̄, 0, 0) admits (0, y∗, z∗) as its unique solution, this
implies that, on every subsequence on which {Wk} converges, {∆x0

k} goes to
0, {yk+∆y0

k} goes to y∗, and {zk +∆z0
k} goes to z∗. As a consequence (invok-

ing Assumption 4 and a simple contradiction argument), without need to go
down to a subsequence, {∆x0

k} → 0, {yk +∆y0
k} → y∗ and {zk +∆z0

k} → z∗.
Thus conditions (i) and (iii) in Step 1(ii) of Algorithm A are all satisfied for k
large enough. Since ρk = ρ̄ for k large enough, it follows from Step 1(ii) of Al-
gorithm A that condition (ii) must fail for k large enough, i.e., yk+∆y0

k ≥ γ2e
for k large enough, implying that y∗ ≥ γ2e. Since γ2 > 0, it follows from
complementary slackness that c(x∗) = 0. Since the algorithm generates fea-
sible iterates, we are guaranteed that dj(x

∗) ≥ 0, j = 1, ..., mi. Application
of Proposition 3 concludes the proof of the first claim. The second claim
then follows from Proposition 3 and Proposition 5(i). �

Rate of convergence results are inherited from the results in [12]. We
report them here for ease of reference. As above, let ȳ∗ and z∗ be the mul-
tipliers associated with KKT point x∗ of (P ). The Lagrangian associated
with (P ) is given by

L(x, ȳ, z) = f(x) − 〈ȳ, c(x)〉 − 〈z, d(x)〉.

With the correspondence ȳ = y − ρ̄e, it is identical to the Lagrangian asso-
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ciated with (Pρ̄), i.e.,

Lρ̄(x, y, z) = f(x) + ρ̄
me∑
j=1

cj(x) − 〈y, c(x)〉 − 〈z, d(x)〉.

Assumption 7 f , cj, j = 1, . . . , me, and dj, j = 1, . . . , mi are three times
continuously differentiable. Furthermore, the second order sufficiency condi-
tion holds (with strict complementarity under Assumption 6) for (P ) at x∗,
i.e., ∇2Lxx(x

∗, ȳ∗, z∗) is positive definite on the subspace {v s.t. 〈∇cj(x∗), v〉 =
0 ∀j, 〈∇dj(x

∗), v〉 = 0 ∀j ∈ I i(x∗)}.

It is readily checked that the second order sufficiency condition for (Pρ̄) is
identical to that for (P ).

As a final assumption, superlinear convergence requires that the sequence
{Wk} asymptotically carry appropriate second order information.

Assumption 8

‖Nk(Wk −∇2
xxL(x∗, ȳ∗, z∗))Nk∆xk‖
‖∆xk‖

→ 0 as k → ∞ (59)

where

Nk = I − ĜT
k

(
ĜkĜ

T
k

)−1

Ĝk

with

Ĝk = [∇cj(xk), j = 1, . . . , me,∇dj(xk), j ∈ I i(x∗)]T ∈ R(me+|I(x∗)|)×n,

Theorem 7 Suppose Assumptions 1–8 hold and suppose that y∗,(j) ≤ wmax,
j = 1, . . . , me, and z∗,(j) ≤ wmax, j = 1, . . . , mi. Then the arc search in
Step 2 of Algorithm A eventually accepts a full step of one, i.e., αk = 1 for
all k large enough, and {xk} converges to x∗ two-step superlinearly, i.e.,

lim
k→∞

‖xk+2 − x∗‖
‖xk − x∗‖ = 0.

Finally, it is readily verified that, under Assumption 7, for k large enough,
Assumption 4 holds when Wk is selected to be equal to the Hessian of the
Lagrangian Lρ̄. In view of the discussion in Section 2.3, Q-quadratic conver-
gence follows.
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Theorem 8 Suppose Assumptions 1–7 hold, suppose that, at every iteration
except possibly finitely many, Wk is selected as

Wk = ∇2
xxLρk

(xk, yk, zk),

and suppose that y∗,(j) ≤ wmax, j = 1, . . . , me, and z∗,(j) ≤ wmax, j =
1, . . . , mi. Then (xk, yk, zk) converges to (x∗, y∗, z∗), equivalently (xk, yk −
ρke, zk) converges to (x∗, ȳ∗, z∗), Q-quadratically; i.e., there exists a constant
Γ > 0 such that∥∥∥∥∥∥


 xk+1 − x∗

yk+1 − y∗

zk+1 − z∗



∥∥∥∥∥∥ ≤ Γ

∥∥∥∥∥∥

 xk − x∗

yk − y∗

zk − z∗



∥∥∥∥∥∥

2

for all k, (60)

equivalently,∥∥∥∥∥∥

 xk+1 − x∗

yk+1 − ρk+1e − ȳ∗

zk+1 − z∗



∥∥∥∥∥∥ ≤ Γ

∥∥∥∥∥∥

 xk − x∗

yk − ρke − ȳ∗

zk − z∗



∥∥∥∥∥∥

2

for all k.

5 Numerical Examples

We tested a MATLAB 6.1 implementation of Algorithm A with the following
differences in comparison with the algorithm statement of Section 3:

• The suggestion made in Remark 2 was adopted.

• In the update formulae for the multipliers in Step 3, ‖∆xk‖2 was
changed to min{wmin, ‖∆xk‖2} in both places. The motivation is that
‖∆xk‖ is meaningful only when it is small. This change does not affect
the convergence analysis.

The following parameter values were used: ξ = 10−4, η = 0.8, γ1 = 1, γ2 = 1,
γ3 = 1, ν = 3, θ = 0.8, wmin = 10−4 (see Remark 2), wmax = 1020, δ = 2,
τ = 2.5, and κ = 0.5.

In our tests, we allowed for the initial point x0 to lie on the boundary
of the feasible set X̃. It is readily checked that in such case, under our
assumptions, L(x0, y0, z0,W0, ρ0, 0, 0) is still uniquely solvable and, unless
∆x0

0 = 0, the initial iteration is still well-defined and yields a strictly feasible
second iterate. (When ∆x0

0 = 0 and c(x0) = 0, x0 is stationary for (P ).
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When ∆x0
0 = 0 but c(x0) �= 0, x0 is stationary for (Pρ0) but not for (P ),

and unless the sum of the gradients of inactive cj(x0)’s belongs to the span
of the gradients of all active constraints, increasing ρ forces a nonzero ∆x0

0

and the iteration can proceed.) When x0 is not in the interior of X̃, the
condition to be satisfied by W0 must be modified by replacing in (45) the
infinite (diagonal) entries of C(x0)

−1 and D(x0)
−1 by 0, and by requiring

positive definiteness of the modified expression merely on the tangent plane
to the active constraints, i.e., on{

v ∈ Rn : 〈∇ci(x0), v〉 = 0, 〈∇dj(x0), v〉 = 0, ∀i ∈ Ie(x0), j ∈ I i(x0)
}
.

In the numerical tests reported below, the initial value x0 was selected in
each case as specified in the source of the test problem. Initial values y0, z0
and ρ0 were selected as follows. Let y′0 and z′0 be the (linear least squares)
solution of

min
y′
0,z′0

‖g(x0) − A(x0)y
′
0 −B(x0)z

′
0‖2.

Then ρ0 was set to the smallest power of δ that is no less than max
{

1,maxj{γ2 − y
(j)
0 }
}

,

and, for all j, y
(j)
0 was set to y

′(j)
0 + ρ0 and z

(j)
0 to max{0.1, z′(j)0 }. In all the

tests, y0 and z0 thus defined satisfied the condition specified in the algorithm
that their components should all be no larger than wmax.

Next, for k = 0, 1, . . ., Wk was constructed as follows, from second order
derivative information. Let λmin be the leftmost eigenvalue of the restriction
of the matrix

∇2
xxLρk

(xk, yk, zk)+
∑
i∈Ie′

k

y
(i)
k

ci(xk)
∇ci(xk)∇ci(xk)

T+
∑
i∈I i′

k

z
(i)
k

di(xk)
∇di(xk)∇di(xk)

T,

where Ie′
k and I i′

k are the sets of indices of “c” and “d” constraints with value
larger that 10−10, to the tangent plane to the constraints left out of the sum,
i.e., to the subspace{

v ∈ Rn : 〈∇ci(xk), v〉 = 0, 〈∇dj(xk), v〉 = 0, ∀i �∈ Ie′
k , j �∈ I i′

k

}
.

Then, set
Wk = ∇2

xxLρk
(xk, yk, zk) + hkI
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where

hk =




0 if λmin > 10−5

−λmin + 10−5 if |λmin| ≤ 10−5

2|λmin| otherwise.

Note that, under our regularity assumptions (which imply thatWk is bounded
whenever xk is bounded), this insures that Assumption 4 holds. The moti-
vation for the third alternative is to preserve the order of magnitude of the
eigenvalues and condition number.

The stopping criterion (inserted at the end of Step 1i) was as follows, with
εstop = 10−8. First, accounting for the fact that, in our tests, we allowed the
initial point to lie on the boundary of X̃, we stopped with the error message
“initial point stationary for (P )” if ‖∆x0

0‖ < 0.001εstop and ‖c(x0)‖∞ <
εstop. Second, the run was deemed to have terminated successfully if at any
iteration k

max

{
‖c(xk)‖∞,max

j

{
−
(
y

(j)
k + ∆y

0(j)
k

)}
,max

j

{
−
(
z

(j)
k + ∆z

0(j)
k

)}}
< εstop

and either
‖∆x0

k‖∞ < εstop

or

max

{
‖∇xL(xk, yk, zk)‖∞,max

j

{
z

(j)
k dj(xk)

}}
< εstop.

Iterations at which only Steps 1i an 1ii are executed were not included
in our iteration counts. The reason is that the computational cost of these
iterations is dramatically less than that of “regular” iterations: no addi-
tional function evaluations and no additional matrix factorization—the same
factorization is later used at the next regular iteration. All tests were run
within the CUTEr testing environment [26], on a SUN Enterprise 250 with
two UltraSparc-II 400MHz processors, running Solaris 2.7.

We first considered two instances of the example from [10] briefly dis-
cussed in Section 3 (immediately following Lemma 2), specifically (a, b) =
(1, 1) with (−3, 1, 1)T as initial guess, and (a, b) = (−1, 1/2) with (−2, 1, 1)T

as initial guess, both of which satisfy the conditions in Theorem 1 of [10]. In
both cases we used f(x) = x(1) as objective function (as in the example of
Section 4 of [10]). Recall that, under those conditions, all methods of type
“Algorithm I” in [10] construct sequences that converge to points of the form
(ζ, 0, 0)T, with ζ < 0, where both c1 and c2 are nonzero. As noted in our
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earlier discussion, Assumption 3(ii) is satisfied in the first instance while,
in the second instance, the condition in that assumption is violated only at
x̂ := (−1, 0, 0)T (with c1(x̂) = 0). Thus, at x̂, there is no direction of strict
descent for c1(x) + c2(x) (the �1 norm of c(x) when x ∈ X̃) that is feasible
for c1(x) ≥ 0, d1(x) ≥ 0, and d2(x) ≥ 0.

In the first instance, our Algorithm A was observed to converge to the
unique global solution (1, 2, 0)T in 13 iterations, with a final penalty param-
eter value ρ̄ of 4. In the second instance, Algorithm A failed in that the
constructed sequence converged to the infeasible point x̂. Interestingly, it
can be checked that, at x̂, there is not even a descent direction for ‖c(x)‖1

that is feasible for the mere bound constraints d1(x) ≥ 0 and d2(x) ≥ 0.

Remark 4 For the second instance of the example of [10] just discussed,
directions do exist at x̂ that are of strict descent for the Euclidean norm
of c(x) and are feasible for the bound constraints. The existence of such
directions allows the algorithm proposed in [6] to proceed from such point.
(Also see the related discussion in the penultimate paragraph of [10].)

We then ran the MATLAB code on all but three of those problems
from [27] for which the initial point provided in [27] satisfies all inequal-
ity constraints. (While a phase I-type scheme could be used on the other
problems—see Remark 3—testing such scheme is outside the main scope of
this paper.) Problems 68, 69 and 87 were left out: the first two because of nu-
merical difficulties in connection with the use of Chebyshev approximations
in function evaluations, and the last one because the objective function in
that problem is nonsmooth. In problems 31, 35, 44, 55, 71, and 86, the given
x0 is stationary for problem (P ) and in problem 74, the given x0 is stationary
for (Pρ) for every ρ. Results on the remaining 63 problems are reported in
Table 1. The first column in the table gives the problem number from [27],
the second column the total number of iterations, the third column the final
value ρ̄ of the penalty parameter, and the last column the final value of the
objective function.

On three of the problems (66, 107, and 111) our stopping criterion was
not met after one thousand iterations. However in all three cases the final ob-
jective value was equal, with three or more figures of accuracy, to the optimal
value given in [27]. (Indeed, four figures of accuracy were obtained on prob-
lems 66 and 111, after 120 and 887 iterations, respectively; and three figures
of accuracy were reached on problem 107 after 95 iterations.) A large number
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Prob. #Itr ρ̄ ffinal Prob. #Itr ρ̄ ffinal

HS1 24 1 6.5782e-27 HS52 4 8 5.3266e+00
HS3 4 1 8.5023e-09 HS53 5 8 4.0930e+00
HS4 4 1 2.6667e+00 HS54 23 4 -1.6292e-54
HS5 6 1 -1.9132e+00 HS56 12 4 -3.4560e+00
HS6 7 2 0.0000e+00 HS57 15 1 2.8460e-02
HS7 9 2 -1.7321e+00 HS60 7 1 3.2568e-02
HS8 14 1 -1.0000e+00 HS61 44 128 -1.4365e+02
HS9 10 1 -5.0000e-01 HS62 5 1 -2.6273e+04
HS12 5 1 -3.0000e+01 HS63 5 2 9.6172e+02
HS24 14 1 -1.0000e+00 HS66 1000† 1 5.1817e-01
HS25 62 1 1.8185e-16 HS67 14 1 -1.1621e+03
HS26 19 2 2.8430e-12 HS70 22 1 1.7981e-01
HS27 14 32 4.0000e-02 HS73 16 1 2.9894e+01
HS28 6 1 0.0000e+00 HS75 28 16 5.1744e+03
HS29 8 1 -2.2627e+01 HS77 13 1 2.4151e-01
HS30 7 1 1.0000e+00 HS78 4 4 -2.9197e+00
HS32 24 4 1.0000e+00 HS79 7 2 7.8777e-02
HS33 29 1 -4.5858e+00 HS80 6 2 5.3950e-02
HS34 30 1 -8.3403e-01 HS81 9 8 5.3950e-02
HS36 10 1 -3.3000e+03 HS84 30 1 -5.2803e+06
HS37 7 1 -3.4560e+03 HS85 296‡ 1 -2.2156e+00
HS38 37 1 3.1594e-24 HS93 12 1 1.3508e+02
HS39 19 4 -1.0000e+00 HS99 8 2 -8.3108e+08
HS40 4 2 -2.5000e-01 HS100 9 1 6.8063e+02
HS42 6 4 1.3858e+01 HS107 1000† 8192 5.0545e+03
HS43 9 1 -4.4000e+01 HS110 6 1 -4.5778e+01
HS46 25 2 6.6616e-12 HS111 1000† 1 -4.7760e+01
HS47 25 16 8.0322e-14 HS112 11 1 -4.7761e+01
HS48 6 4 0.0000e+00 HS113 10 1 2.4306e+01
HS49 69 64 3.5161e-12 HS114 39 256 -1.7688e+03
HS50 11 512 4.0725e-17 HS117 25 1 3.2349e+01
HS51 8 4 0.0000e+00

Table 1: Results on Test Problems from [27]
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of iterations was needed on problem 85, on which the algorithm failed in the
last iteration to produce an acceptable step size due to numerical difficulties.
When the algorithm stopped, near x = (704.41, 68.60, 102.90, 282.03, 37.46)T,
the value of ‖∆x0

k‖ was less than 2 · 10−8, and the objective value obtained
was lower than the (locally) optimal value given in [27]. Overall, comparison
with published results obtained on the same problems with other interior-
point methods suggests that Algorithm A has promise. In particular, on 39 of
the 63 problems listed in Table 1, our results in terms of number of iterations
are better than those reported in [8] (on three other problems they are identi-
cal, and problem 67 is not listed in [8]). More extensive testing on larger size
problems is in order for a more definite assessment of the value of the pro-
posed approach. Such testing will require a more elaborate implementation
of the algorithm.

6 Concluding Remarks

An interior-point algorithm for the solution of general nonconvex constrained
optimization problems has been proposed and analyzed. The algorithm in-
volves a novel, simple exact penalty parameter updating rule. Global con-
vergence as well as local superlinear and quadratic convergence have been
proved under mild assumptions. In particular, it was pointed out that the
proposed algorithm does not suffer a common pitfall recently pointed out
in [10]. Promising preliminary numerical results were reported.

While the present paper focussed on applying a version of the Mayne-
Polak scheme to the algorithm of [12], there should be no major difficulty
in similarly extending other feasible interior-point algorithms for inequality
constrained problems to handle general constrained problems.

7 Appendix

We discuss the implications of substituting Assumption PTH-A6∗, as stated
in Section 2, for Assumption A6 of [12]. For the reader’s ease of reference,
throughout this appendix, we use the notation of [12]; Assumption PTH-A6∗

then reads as follows.

Assumption PTH-A6∗. Given any index set K such that {xk}k∈K is
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bounded, there exist σ1, σ2 > 0 such that, for all k ∈ K,

‖Hk‖ ≤ σ2

and

〈d,
(
Hk −

m∑
i=1

µk,i

gi(xk)
∇gi(xk)∇gi(xk)

T

)
d〉 ≥ σ1‖d‖2 ∀d ∈ Rn.

First of all, under this weaker assumption, a stronger version of Lemma 3.1
of [12] is needed.

Lemma PTH-3.1∗. Let x ∈ X, let µ ∈ Rm be such that µi ≥ 0 for all i and
µi > 0 for all i ∈ I(x), and let H ∈ Rn×n, symmetric, satisfy the condition

〈d,


H −

∑
i	∈I(x)

µi

gi(x)
∇gi(x)∇gi(x)

T


 d〉 > 0 ∀d ∈ T (x) \ {0} (61)

where
T (x) = {d ∈ Rn : 〈∇gi(x), d〉 = 0 ∀i ∈ I(x)}.

Then the matrix F (x,H, µ) as defined by

F (x,H, µ) =




H ∇g1(x) . . . ∇gm(x)
µ1∇g1(x)

T g1(x) ©
...

. . .

µm∇gm(x)T © gm(x)




is nonsingular.
Proof: It is enough to show that the only solution (d, λ) of the homogeneous
system

Hd+

m∑
i=1

λi∇gi(x) = 0 (62)

µi〈∇gi(x), d〉 + λigi(x) = 0, i = 1, . . . , m (63)

is (0,0). Scalar multiplication of both sides of (62) by d yields

〈d,Hd〉+

m∑
i=1

λi〈∇gi(x), d〉 = 0. (64)
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On the other hand, it follows from (63) and the assumption on µ that

〈∇gi(x), d〉 = 0 ∀ i ∈ I(x). (65)

Now, from (64) and (65), we get

〈d,Hd〉 +
∑

i	∈I(x)

λi〈∇gi(x), d〉 = 0. (66)

Solving (63) for λi (for i �∈ I(x)) and substituting in (66) yields

〈d,Hd〉 −
∑

i	∈I(x)

〈∇gi(x), d〉
µi

gi(x)
〈∇gi(x), d〉 = 0.

In view of (65), it follows from (61) that d = 0. It then follows from (63)
that λi = 0 for all i �∈ I(x). Assumption A5 together with (62) then implies
that (d, λ) = (0, 0). �

Next, the first inequality in Eq. (3.6) of [12] is unaffected. While the sec-
ond inequality in that equation still holds as well, it is not of much value now
that Hk is no longer assumed to be positive definite. However we note that,
denoting by Sk the Schur complement of Gk := diag(gi(xk)) in F (xk, Hk, µk)
(see page 794 of [12]), i.e.,

Sk := Hk − AkG
−1
k MkA

T
k ,

with Ak and Mk defined on p. 808 in [12], we get

d0
k = −S−1

k ∇f(xk)

yielding
〈∇f(xk), d

0
k〉 = −〈d0

k, Skd
0
k〉 ≤ −σ1‖d0

k‖2, (67)

where we have invoked Assumption PTH-A6∗. Where Eqn. (3.6) (of [12]) is
used in the analysis of [12], Eqn. (67) must sometimes be used instead.

Propositions 3.3 and 3.4 of [12] then readily follow. The only remaining
notable issue is that a stronger version of Lemma 3.5 [12] is needed, as follows.

Lemma PTH-3.5∗. Let K be an infinite index set such that, for some x∗

and µ∗

lim
k→∞
k∈K

xk = x∗ and lim
k→∞
k∈K

µk = µ∗.
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Suppose moreover that µ∗
i > 0 if gi(x

∗) = 0. Then, given any accumulation
point H∗ of {Hk}k∈K, F (x∗, H∗, µ∗) is nonsingular. Moreover there exists C
such that for all k ∈ K,

‖dk − d0
k‖ ≤ C‖d0

k‖ν .

Proof: Let K ′ ⊆ K be an infinite index set such that Hk → H∗ as k →
∞, k ∈ K ′. We first show that (x∗, H∗, µ∗) satisfies the assumptions of
Lemma PTH-3.1∗. Thus let v �= 0 be such that

〈∇gi(x
∗), v〉 = 0 ∀i ∈ I(x∗).

In view of our linear independence assumption, there exists a sequence {vk}k∈K ′

converging to v on K ′, such that for all k ∈ K ′

〈∇gi(xk), vk〉 = 0 ∀i ∈ I(x∗).

It then follows from Assumption PTH-6∗ (by adding zero terms) that for all
k ∈ K ′

〈vk,


Hk −

∑
i	∈I(x∗)

µk,i

gi(xk)
∇gi(xk)∇gi(xk)

T


 vk〉 ≥ σ1‖vk‖2.

Letting k → ∞, k ∈ K ′ shows that

〈v,


H∗ −

∑
i	∈I(x∗)

µ∗
i

gi(x∗)
∇gi(x

∗)∇gi(x
∗)T


 v〉 ≥ σ1‖v‖2 > 0.

Thus the assumptions of Lemma PTH-3.1∗ are satisfied. It follows that
F (x∗, H∗, µ∗) is nonsingular. Since F (xk, Hk, µk) is nonsingular for all k,
boundedness of {Hk} and our continuity assumptions imply that F (xk, Hk, µk)

−1

is uniformly bounded on K. The remainder of the proof is as in [12]. �
With these strengthened results, the remainder of the analysis in [12] is

essentially unaffected by the weakening of the assumption onHk. Specifically,
Lemma 3.6 of [12] (where the “old” Assumption A6 is invoked) still follows,
using the stronger Lemmas PTH-3.1∗ and PTH-3.5∗. While the “bounded-
ness of Hk” portion of Assumption A6 is used at many other places in the
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analysis of [12], the “positive definiteness” portion of that assumption (which
is the only portion that is relaxed in Assumption PTH-A6∗) is not used any-
where else. The strengthened Lemmas PTH-3.1∗ and PTH-3.5∗ are needed
in the proof of Lemma 4.1 of [12]: Lemma 3.1 of [12] is implicitly used in
the last sentence of that proof, to conclude that the limit system (4.1)–(4.2)
of [12] is invertible.

Finally, Lemma 4.4 still holds under the milder Assumption PTH-A6∗

(and so do Proposition 4.5 and Theorem 4.6), but again the strengthened
Lemmas PTH-3.1∗ and PTH-3.5∗ are needed in its proof. In particular, for k
large enough, the second order sufficiency condition still holds at the solution
of (LS3) and thus solving (LS3) is still equivalent to solving the stated linear
system of equations (in the proof of Lemma 4.4). (The notation ‖d‖2

Hk
used

in (LS3) is now inappropriate though, and should be replaced with 〈d,Hkd〉.)
Furthermore, it follows from Lemma PTH-3.5∗ and the fact that µk,i tends
to zero for i �∈ I(x∗) that, for k large enough, this linear system still has a
unique solution, i.e., (LS3) still has a well defined (unique) minimizer.
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