
 

 

ABSTRACT 

Title of Thesis:  THE COMPARISON OF TOTAL AND PHASED EVACUATION 

STRATEGIES FOR A HIGH-RISE OFFICE BUILDING 

Luying Zhai, Master of Science, 2019  

Thesis Directed by:  Dr. James Milke 

Department of Fire Protection Engineering  

 

This research work aims to explore the difference between total and phased 

evacuation strategies in high-rise office buildings and provide guidance on evacuation 

strategies for decision-makers in determining allowable occupant load. 

This work focuses on evaluating the principal factors (building height and occupant 

load) that may have an impact on egress time and provides a comparison of total versus 

phased evacuation in a hypothetical high-rise office building through a computer 

simulation using MassMotion. The comparison is separated into two aspects: total egress 

time and floor clearing time. 

The current thesis determined that the difference of total egress time between these 

two strategies increases with increased building height. The difference of total egress time 

between total and phased evacuation is from 165 to 878 seconds with the heights of 



building from 11 stories to 31 stories, respectively. The floor clearing time for the affected 

floors is similar in total evacuation strategy in different building heights. Also, in various 

building heights, the floor clearing time for affected floors has little difference in phased 

evacuation strategy. Moreover, this thesis depicted a graph of the floor clearing time in 

these two fire strategies with different occupant load factors. If a phased evacuation 

strategy is implemented, a decrease in the occupant load factor can be accommodated 

which results in the same floor clearing time as for a total evacuation strategy.  The current 

thesis generated an equation to estimate the decrease in the occupant load factor between 

total and phased evacuation based on the same floor clearing time.  

There is a limited research work available for the comparison of total and phased 

evacuation. This research work provides guidance for building planners and engineers in 

determining total and phased evacuation strategies for high-rise office buildings.  For the 

buildings studied, an equation is provided for engineers to quantify the impact of 

differences in total and phased evacuations.    
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CHAPTER 1: INTRODUCTION 

1.1 HISTORY OF THE DEVELOPMENT IN HIGH-RISE BUILDINGS 

The early high-rise buildings were built from 1884 to 1939 predominantly in New 

York City and Chicago in the United States. This period can be separated into three 

stages: emergence of the skyscraper (from 1880 to 1899), the "First Great Age" (from 

1900 to 1919), and inter-war period, boom and depression (from 1920 to 1939). The 

early skyscraper developed in the U.S. because of monetary development, the 

budgetary association of American organizations, and the escalated utilization of land 

(Condit, Carl W., 1968). The first high-rise building, William Le Baron Jenney’s Home 

Insurance Building, was constructed in the 1880s, and was a ten-story building built in 

the city of Chicago using advances in the technology of construction (O'Hagan, 1977). 

The development of the technology of construction, which paved the way for high-rise 

buildings, were iron frame, wind bracing and fireproofing products, deeper foundations, 

available safe elevators, and new environmental advances in heating, lighting, 

ventilation and sanitation.  

In the first stage of this period, high-rise buildings were mainly built in the United 

States, such as the 16-story Manhattan Building in Chicago (1888), New York World 

Building with a height of 106.6 meters in New York City (1890), Milwaukee City Hall 

with a height of 108 meters in Wisconsin (1895), and Central Tower with a height of 

91 meters in California (1898). Many high-rise buildings were constructed from the 

late 1880s until the early 1890s in the city of Chicago, which led the way in high-rise 

construction. During this time, high-rise buildings were constructed combining the 
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concerns of aesthetics and the practical use of buildings. This concern led to palazzo-

styled buildings containing stores, shops, and restaurants on the first floor for 

commercial use, with office space usually located on the upper floors. Around the same 

time, high-rise buildings in narrower towers that were of an eclectic style were built in 

New York City. However, after 1892, Chicago prohibited the construction of buildings 

over 46 meters (150 feet) in height. In 1888, the term ‘skyscraper’ was used for the first 

time to refer to high-rise buildings.  

In the second stage of this period, more high-rise buildings were constructed such 

as One Calvert Plaza (76 meters) in Baltimore (1900), Flatiron Building (86.9 meters) 

in New York City (1902), Ford Building (83.82 meters) in Michigan (1908), Royal 

Liver Building (98.2 meters) in Liverpool, England (1911), and PNC Tower (151 

meters) in Ohio (1913).  

High-rise buildings were constructed all over the world in the last stage of this 

period, such as Palacio Barolo (100 meters) in Buenos Aires, Argentina (1923), Royal 

Bank Tower (121 meters) in Montreal, Quebec (1928), Majorca Building (eight stories) 

in Melbourne, Australia (1930), Torrione INA (57.25 meters) in Italy (1932), and 

Aiqun Hotel (64 meters) in Guangzhou, China (1937). Between 1918 and 1939, high-

rise buildings were constructed in many cities of the United States. During the 20th 

century, the number of high-rise buildings increased with the construction of buildings 

such as the Woolworth Building, the Metropolitan Life Insurance Tower and the 

Chrysler building, which expected to raise the name recognition of those companies.  

From the 1930s, modern high-rise buildings came to the fore and replaced early 

high-rise buildings. Modern high-rise buildings are produced with structural frame of 
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reinforced concrete and steel and utilize mechanical equipment. High-rise construction 

spread all over the world, including Latin America and Asia. Economics played a key 

role in the development of high-rise buildings in 1960s and 1970s. From 1931 to 1971, 

the Empire State building at a height of 380 meters, was the tallest building constructed 

during the Depression in the city of New York in the United States. In 1972, the Sears 

Tower, at 443 meters height (Council on Tall Buildings and Urban Habitat, 1997) 

replaced the Empire State building as the highest building in the world. Moreover, other 

tall buildings constructed during this period are listed in Table 1-1. 

 

Table 1- 1: The List of Tallest Buildings for Modern High-rise Buildings Based on 

Council on Tall Buildings and Urban Habitat (CTBUH) 

Years Tallest Name Location Height 

1931 - 1971 Empire State 
Building New York City 381 meters 

1971 - 1973 1 World Trade 
Center (WTC) New York City 417 meters 

1973 - 1998 Sears Tower Chicago 442 meters 
1998 - 2004 Petronas Towers Kuala Lumpur 452 meters 
2004 - 2008 Taipei 101 Taipei 509 meters 

2008 - 2010 Shanghai World 
Financial Center Shanghai 492 meters 

2010 - present Burj Khalifa Dubai 828 meters 
 

Focusing on high-rise office buildings, the first one showed up in 1931, which is 

the Empire State building in New York (Council on Tall Buildings and Urban Habitat, 

1997). The rapid development period for high-rise office buildings occurred in the 20th 

century, during which the growth of the height of office buildings increased appreciably. 

Also, after World War II, there were a significant number of very tall high-rise office 

buildings that was constructed all over the world. The WTC in New York City was 
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made up of typical high-rise office buildings built during this period, and its complex 

of buildings included landmark twin towers with the height of 427 meters and 415 

meters (National Bureau of Standards [NBS], 1979). 

Building high-rise real estate construction is significantly active by creating usable 

floor area in vertical space. On the one hand, it is advantageous to solve some problems, 

such as the lack of land, especially for China and India where there is a high population 

density. On the other hand, there are also disadvantages, such as creating more 

problems for evacuation and also the potential problems of the glass wall reflections. 

1.2 LAYOUT OF HIGH-RISE OFFICE BUILDINGS 

The geometry of typical floor plans is presented in Figure 1-1 for ten of the tallest 

office buildings in the world and seven of those ten buildings are square or have similar 

floor geometry (Özgen, 2009). Square configuration is common since the loads from 

each of the four directions are the same, and it is more stable which has led to that 

design becoming the preference of engineers. 

	

    

Figure 1- 1: Geometry of Typical Floor Plans of Ten Tallest Office Buildings of the 

World (Özgen, 2009). 
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1.3 THE DEFINITION OF HIGH-RISE OFFICE BUILDINGS 

It is essential to define the various high-rise buildings before performing the egress 

modeling in following chapters, since this is the baseline of the height of the buildings 

set up in the egress models for this research. The efficient hypothetical high-rise office 

building developed in this thesis is based on the various definitions of high-rise 

buildings. 

In section 3.3.37.7 of NFPA 101, the Life Safety Code (2018), the definition of a 

high-rise building is “A building where the floor of an occupiable story is greater than 

75 ft (23 m) above the lowest level of fire department vehicle access. (SAF-FUN)”. 

Moreover, in Annex A in NFPA 101 (2018), the terminations of the highest occupiable 

floor and the level of fire department access are related to reasonable judgment from 

an enforcing agency. 

International Building Code (IBC) has also been used as the basic guideline of the 

design of buildings. In Chapter 2 of the IBC (2018), the definition of a high-rise 

building is similar to the definition in NFPA 101 (2018), which is that “A building with 

an occupied floor located more than 75 ft (22,860 mm) above the lowest level of fire 

department vehicle access.”  

According to the database of Emporis GmbH, the Emporis Standards ESN 18727 

states the definition of high-rise buildings is either in terms of height (35 meters to 100 

meters) or in terms of the stories (12 stories to 40 stories) of the building. In 2005, Hall 

stated that the high-rise and the low-rise buildings are usually divided by seven stories 

such as NFPA 101 and IBC, while some standards considered more than seven stories 
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as the boundary between the high-rise and the low-rise buildings such as EMPORIS 

STANDARD ESN 18727. 

All in all, the high-rise buildings defined as about seven to ten stories buildings as 

Knoke ME stated in Protection of Assets Manual (2016) “Generally, a high-rise 

structure is considered to be one that extends higher than the maximum reach of 

available fire-fighting equipment. In absolute numbers, this has been set variously 

between 75 feet (23 meters) and 100 feet (30 meters)”.  

Table 1-2 is a summary of various definitions of high-rise buildings. The definition 

of a minimum height of high-rise buildings used in this thesis is from NFPA 101, which 

is 22.86 meters (75 feet) from the lowest level available for fire department vehicle 

access to the highest level of floor occupied by occupants.  
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Table 1- 2: Definitions of High-rise Office Buildings. 

Source Definition of High-Rise Buildings 

NFPA 101, Life Safety 

Code (NFPA, 2018)  

"	A building where the floor of an occupiable story is 

greater than 75 ft (23 m) above the lowest level of fire 

department vehicle access. (SAF-FUN)"  

International Building 

Code (IBC, 2018)  

"A building with an occupied floor located more than 

75 ft (22,860 mm) above the lowest level of fire 

department vehicle access."  

EMPORIS 

STANDARD ESN 

18727  

" A high-rise building is a structure whose 

architectural height is between 35 and 100 meters. A 

structure is automatically listed as a high-rise when it 

has a minimum of 12 floors, whether or not the height 

is known. If it has fewer than 40 floors and the height 

is unknown, it is also classified automatically as a 

high-rise." 

Hall JR. (2005)  

“For most purposes, the cut-off point for high-rise 

buildings is around seven stories. Sometimes, seven 

stories or higher define a high-rise, and sometimes the 

definition is more than seven stories. Sometimes, the 

definition is stated in terms of linear height (feet or 

meters) rather than stories.” 
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1.4 CONCERNS OF HIGH-RISE BUILDING EVACUATIONS  

There are many reasons for a rapid evacuation in tall buildings, such as fire, 

terrorism, extreme weather, earthquake, and so on. Recent concerns of evacuation of 

high-rise buildings are fire and terrorism. 

1.4.1 FIRE 

Fire is a crucial reason triggering an evacuation of high-rise office buildings. 

Occupants may be trained through fire drills in office buildings. As a result of fire drills, 

occupants become generally familiar with the evacuation routes (Proulx, 2001). There 

were a high number of high-rise buildings that suffered fire accidents which also 

include many office buildings fires. From 2009 to 2013, an average of 14,500 fires 

occur every year in high-rise buildings in the U.S. and two percent of those were high-

rise office building fires (Ahrens, 2016).  

Examples of serious fires in high-rise buildings include the Cook County 

Administration Building, One Meridian Plaza, and the First Interstate Bank Building. 

In March, 2019, a high-rise office building in Bangladesh's capital had a fire, which 

caused 17 deaths and about 70 injures. In October 2003, the Cook County 

Administration Building at 69 West Washington had a fire accident that killed six 

occupants with several more occupants injured (Madrzykowski and Walton, 2004). In 

the 20th century, the most significant fire occurred in an office building, the One 

Meridian Plaza in Philadelphia, Pennsylvania, which is the largest scale fire in the 

history of modern United States. For this 38-story office building with three enclosed 

stairwells, the fire started in a vacant 22nd floor and the duration was more than 19 

hours. This fire resulted in three firefighters deaths and 24 firefighters injuries in 
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February 1991 (Routley, Jennings, and Chubb, 1991). Another fire in Los Angeles was 

in May 1988, in the 62-story First Interstate Bank Building. The fire started on the 

fourth floor and also damaged the fifth floor. 383 firefighters took part in rescuing 

victims and caused an estimated $50 million dollars property loss in this fire (Los 

Angeles Fire Dept., 1988). Around 90% of this building installed sprinklers, but the 

control valve was closed waiting for installation of the rest of the fire protection system. 

On August 5th, 1970, the 50-story office tower called the 1 New York Plaza located 

less than one mile away from the WTC towers (Lipton and Glanz, 2002) had a fire 

which continued for more than six hours. This fire caused two deaths and 35 injuries. 

1.4.2 TERRORISM 

Terrorism is also a principal cause for rapid evacuation in high-rise office buildings. 

In the United States, the worst three attacks in its history leading to evacuation occurred 

during attacks of the twin towers of the WTC (1993), Oklahoma Federal Building 

(1995), and the WTC Towers (2001). 

On February 26, 1993, the WTC in New York City was a target where a bomb burst 

in the underground parking garage of the twin towers of the WTC. This attack damaged 

electricity at the beginning with an approximate pressure of 150,000 psi and caused 

smoke up to spread to 93 floors in both towers. Six occupants died as a result of the 

event and a large number of people were injured. More than 40,000 occupants in the 

building started to evacuate in this incident (Fahy and Proulx, 1995). 

On April 19, 1995, the Alfred P. Murrah Federal Building located in Oklahoma 

City’s downtown was attacked by a truck bomb. There were 168 people killed in this 
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incident. This terrorist attack triggered the evacuation of 361 occupants in the building 

(Mallonee, Shariat, Stennies, et al,1996). 

On September 11, 2001, the worst terrorist attack occurred on the WTC Twin 

Towers located in New York City. Around 3,000 people lost their lives and caused a 

total building evacuation which ranged from 10,000 to 14,000 occupants in each of 

these two towers (Pauls, 2002). 

1.5 CAPACITY CONCERNS OF HIGH-RISE BUILDING EVACUATIONS 

Egress time varies principally with the number of occupants, the distribution of 

occupants, the number and width of stairwells, building heights, travel distance to reach 

stairwell, the training level of occupants and the mental and physical capabilities of 

occupants. The number and distribution of occupants and building heights can affect 

travel distance, while the number and width of stairwells have an impact on the density 

of occupants and traveling speed. The travel distance and the speed of evacuation 

directly affect egress time.   

For most performance-based design projects which utilize an egress model, the 

objective is to confirm that the Available Safe Egress Time (ASET) is greater than 

Required Safe Egress Time (RSET). Normally, the RSET is determined from an egress 

model or hand calculations, while the ASET is resolved through a fire modeling 

analysis. Typically, the ASET is unique to each room or space and relies upon room 

setup, fuel load, suppression and detection systems, and various other different 

components. 

At the end of the 1960s, the research focused on high-rise building fire strategy to 

improve codes and standards for these structures (Melinek and Booth, 1975). After the 
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terrorist attack occurred on the WTC Towers in 2001, this topic was brought to the 

forefront again. The effects of the efficiency of the evacuation is the main topic to be 

discussed in this section. 

Dangerous fire events do occur in high-rise buildings. The vertical characteristics 

of the building are emphasized in research on the fire safety of high-rise buildings. 

Even the codes and standards (NFPA 101 and IBC) focus on the characteristics related 

to horizontal configuration of a building, the height of the building and the number of 

stories can also have a significant impact on the duration of evacuation. The research 

from Campbell shows that the mean and minimum time to clear each floor in total 

evacuation is related to the height of the building (Campbell, 2018). After the 

September 11 attacks, there were 30 recommendations from NIST (National Institute 

of Standards and Technology) affected the standards and codes according to WTC 

investigation recommendations (NIST, 2005). One accepted recommendation is to 

require one additional exit if the height of the building is over 128 meters.   

The stairwell was the primary focus of discussions of high-rise buildings evacuation 

at the end of the 1960s. Stairwell width, i.e. stairwell capacity, is related to occupant 

load. The capacity of each exit and the location of exits on the floor plan affect the time 

needed for evacuation. Dwyer and Flynn did research to compare the different number 

of stairwells between the Empire State Building and the WTC Towers (2005). The 

Empire State Building had five stairwells with 0.2 million m2 floor area and estimated 

15,000 occupants, while WTC towers had three stairwells located in the core of floor 

plan serving an estimated 20,000 occupants. The number and location of stairwells was 

controversial.  
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The concerns of evacuation in high-rise office buildings includes building heights 

and occupant loads which will be the focus of research to be described further in 

following chapters. 

1.6 TYPES OF EVACUATION STRATEGIES IN HIGH-RISE OFFICE 

BUILDINGS 

NFPA 101 Life Safety Code (2018 edition) states in chapter 4.2.1 Occupant 

Protection, “A structure shall be designed, constructed, and maintained to protect 

occupants who are not intimate with the initial fire development for the time needed to 

evacuate, relocate, or defend in place.” Like the statement above, four basic evacuation 

strategies are phased evacuation, total evacuation, defend-in-place, and delayed 

evacuation. These different evacuation strategies are chosen mainly based on the 

characteristics of the buildings and the occupants.  

1.6.1 TOTAL EVACUATION STRATEGY 

The definition of total evacuation in this thesis consists of the simultaneous 

evacuation of all occupants in the building, reaching a designated safe place outside of 

the building.  Previous studies on the total evacuation strategy has included the use of 

stairwells only, the combination of stairwells and elevators, and the combination of 

vertical (stairwells and elevators) and horizontal (transfer floors and sky-bridges) 

evacuation paths (Ronchi and Nilsson, 2014).  This current research focuses on a simple 

building layout and considers an evacuation strategy that does not include the use of 

elevators.  
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Total evacuation may be necessary for some situations such as earthquake, 

hurricane and some other extreme incidents for high-rise buildings. Since a large 

population is involved in high-rise building total evacuations, the evacuation time 

increases with the increase in height of the building, which may lead to a worse 

situation for the safety of occupants. Evacuation of a great number of occupants in the 

entire building causes a high level of flow density in the stairwells of high-rise 

buildings. Also, in high-rise buildings, occupants get fatigued because of the long travel 

distance, where physical performance leads to a decrease in evacuation speed (Ronchi, 

Reneke, & Peacock, 2016). Some occupants on higher floors may need to go across the 

floor in a fire.	 

The General Services Administration stated that “We learned that total evacuation 

is neither feasible nor necessary since fires can be contained on one floor or a portion 

of a floor. Total evacuation may result in certain occupants going to areas where there 

is smoke and exposing themselves to increasing risks." (GSA, 1971).  In a total 

evacuation strategy, because all of the occupants on all floors attempt to enter the 

stairwells at the same time, queues are likely to form in the stairwells and the entrances 

to stairwells. Hence, because of the expected queuing to enter the stairwell in this 

evacuation strategy, occupants on affected floors who are in immediate danger may not 

be able to quickly enter stairwells and reach a place of relative safety.  Thus, it is 

necessary to consider phased evacuation strategy during an emergency evacuation in 

order to optimize the use of available stairwells flows for those people most in danger 

(Pauls 1994).  
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1.6.2 PHASED EVACUATION STRATEGY 

For phased evacuation, Ronchi and Nilsson have stated that “This strategy is 

adopted in order to decrease the queuing time in the egress components and reduce 

people densities in the means of escape.” (2013). In a phased evacuation strategy, the 

occupants on the affected floors including the fire floor, as well as one or more floors 

above and below the floor with fire, are the only ones involved in the evacuation.  As 

such, the reduced number of floors are selected to give the occupants on these floors 

the highest priority in relocating to a safe place (the stairwell) given they are threatened 

first. The number of adjacent floors in the definition of the affected floors varies with 

the needs of research i.e. two adjacent floors above and one floor below the fire floor, 

while Ronchi and Nilsson have stated that “…the fire floor and floors nearby will be 

prioritized.” (2013). For this thesis, the term “phased evacuation” will be meant to 

include evacuation of three affected floors: the fire floor and one adjacent floor above 

and below the fire floor.  

The definition of phased evacuation is not uniform. Pauls had another definition of 

phased evacuation in the handbook (Proulx, 2002) which is a little different than the 

definition above. His approach for phased evacuation is the occupants on the floors that 

are below the fire floor and those above the fire floor up to the top floor should evacuate 

to a designated safe place and then all other occupants get out of the building. In 

Hartmann’s thesis, the affected floors are the fire floor plus two adjacent floors above 

and below the fire floor (Hartmann, 2005).  

There are some cases in which the total evacuation is not efficient, especially in 

high-rise buildings. In the 1970s, the necessity of total evacuation strategy for high-rise 
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buildings was debated, along with use of an alerting system, including fire alarm system 

with zoned smoke detectors and a voice evacuation alarm. In 1970, the consideration 

of shifting from total to phased evacuation was discussed in Confederation of Fire 

Protection Association (CFPA) conference, which stated, “Basically, taller buildings 

and high-rise buildings should be designed with structural and technical measures and 

facilities aimed at safety, so that in the event of fire, only the fire story and the stories 

immediately above and below would need to be evacuated.” (CFPA, 1977, p. 26).  

In 1971, the fire safety design of a 36-story building with an occupant load of more 

than 3,000 triggered the consideration of efficient evacuation strategy in high-rise 

buildings during a conference. In the same conference, they chose phased evacuation 

as their evacuation strategy. Therefore, the Seattle Federal Building became the first 

high-rise office building designed for the phased evacuation strategy. Petronas Towers 

located in Kuala Lumpur, Malaysia (Ariff, 2003), and Prudential Tower in Boston 

(Boston Properties, 2012) are other examples which utilized the phased evacuation 

strategy in its fire safety design. The performance-based design presents that the 

occupants in three floors with a fire, above and below floors should relocate to the three 

floors below these three floors. 

Since the defend-in-place strategy and delayed evacuation are outside the scope of 

this study, this section will not introduce defend-in-place evacuation strategies. 
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CHAPTER 2: LITERATURE REVIEW 

2.1 EVACUATION STRATEGIES 

In 2012, Ronchi and Nilsson reviewed the literature on the assessment of total 

evacuation for tall buildings. In their report, the egress components that affect total 

evacuation, were introduced including stairwells, evacuation elevators, and sky-bridges 

(Ronchi and Nilsson, 2012). 

Research work studied for stairwells include: the design of the stairwells (number 

of the stairwells, the width and length of stairwells, and the location) (Pauls, 2002, 

Pauls et al., 2007); the specific features of stairwells (the slope of the stairwells) (Graat, 

Midden and Bockholts, 1999); and the capacity of stairs (Pauls and Jones, 1980; Pauls, 

1988). For the virtue of the merging streams in stairwells, Galea stated that “in high-

rise buildings, floors should be linked to the landing on the opposite side to the 

incoming stair.” (Galea et al., 2008c). The merging ratio is always about 50:50 which 

is independent of the location of doors for stairwells (Boyce et al., 2009). Moreover, 

Kratchman (2007) and Peacock (2009) performed research for counter-flow in 

stairwells considering the fire-fighters walk in the opposite direction of occupants in 

the building. Second, research work of elevator evacuation started in 1930s (Bukowski, 

2009). WTC attack accelerated the debate of adding elevators in evacuation process 

(Kuligowski, 2011; Galea & Blake, 2004). The possibilities and availabilities of using 

elevators during evacuation was researched by Chien and Wen (smoke entrained into 

elevators causing by negative pressure in the shafts) (2011), Bukowski (special 

requirements for emergency power supply) (2005; 2010b), and Weismantle (the floor 

levels of pick-up and arrival for elevators) (2007). Third, current research analyzed the 
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use of sky-bridges. The main contribution is from Wood (2003, 2005, 2007). Wood 

stated that sky-bridges should be placed in the level where the elevator zone transitions 

are present and also between buildings of dissimilar heights.  

Moreover, some research considered the combination of egress components during 

evacuation (Nilsson and Jönsson, 2011; Heyes, 2009; Kinsey, 2011). In 2002, Siikonen 

found that if only elevators are used during total evacuation for more than 15 story 

office buildings, the evacuation time is less than that if stairwells are the only the means 

of egress used. The amount of decrease in egress time depends on the occupant load on 

each floor. The use of stairwells and elevators both can decrease the egress time as 

compared to the use of only one of those options during evacuation. In very tall high-

rise buildings, using elevators as a mean of egress can reduce egress times from 2 to 3 

hours to 15 to 20 minutes (Siikonen, 2002). 

In 2014, Ronchi and Nilsson performed research to explore various methods to 

utilize for total evacuations of high-rise buildings. They compared the egress time 

during seven different total evacuation strategies for 50-story twin towers using 

different combinations of egress components including  

(1) 2 stairwells 

(2) 3 stairwells  

(3) 2 stairwells and 24 occupant evacuation elevators  

(4) 24 occupant evacuation elevators 

(5) 2 stairwells, 24 occupant evacuation elevators and service elevators serving as 

shuttles 
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(6) 2 stairs and occupant evacuation elevators (mid-rise elevators serving as 

shuttles) 

(7) 2 stairs, 24 occupant evacuation elevators, 2 transfer floors and 2 sky-bridges.  

They found that methods (4) and (7) are the most efficient variations. Method (7) 

is highly dependent on the information provided to occupants (Ronchi and Nilsson, 

2014). 

For phased evacuation strategies in high-rise office buildings, Kadokura, Sekizawa, 

Sano, and Fujii (2015) performed research to study the flow and congestion in 

stairwells based on the data from a fire drill in a 25-story building in Tokyo. They found 

that congestion formed because of the flow merging of people from both upstairs and 

the floor area.  They attributed the reason of congestion forming in the stairwell to the 

high density population in the stairwells.  

The literature on the comparison of total versus phased evacuation in high-rise 

office buildings is limited. Proulx stated that “Evacuation of multistory office buildings 

can be thought of as being of two types: uncontrolled total evacuation, and controlled 

selective evacuation. The former is dependent largely on the nature of evacuation 

sequencing or deference behavior required, and the latter on the type of control 

imposed and the availability of voice communication system to manage the evacuation.” 

(2002).  

The main research to compare total and phased evacuation was accomplished in the 

1970s and 1980s. Pauls performed two analyses focusing on total and phased 

evacuation based on the data from fire drills. In his research, fire drills were conducted 

in two medium-size high-rise office buildings in Ottawa, Canada. The buildings had 
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similar occupancies and floor area. The significant differences are the floor plan and 

the four times effective width of stairwells compared ‘Building A’ to ‘Building B’.1 A 

total evacuation drill was performed in ‘Building A’ consisting of 15 stories with four 

exits (1709 workplaces from 2nd floor to 15th floor), while a phased evacuation drill 

was performed in ‘Building B’ a 21-story building with two exits (2404 workplaces 

from 2nd floor to 21st floor). The procedure of phased evacuation used in this fire drill 

started with evacuation from the fire floor followed by the evacuation of two floors 

directly adjacent to the fire floor. The occupants of the rest of the floors evacuated at 

the end. Floor 3 was treated as fire floor during this fire drill. In this research, Pauls did 

not compare total and phased evacuation directly, though Pauls did provide two graphs 

to depict the evacuation process tracing the observers’ movements and showing the 

time of end of the main flow and first evacuees into exit in these two buildings (Pauls, 

1980). From these two graphs, the basic difference between total and phased evacuation 

is evident. While the floor cleared from the bottom to the top in total evacuation, phased 

evacuation is cleared from the top floor to the bottom floor after the fire floor cleared 

first (Pauls, 1980). 

There is some research work available on either the total or phased evacuation, but 

a comparison of total and phased evacuation is limited. One comparison for high-rise 

office buildings was performed by Hartmann (2005), where the difference of floor 

clearing time between total and phased evacuation was not identified. Hartmann 

conducted her research using EXIT89 (2005). Hartmann defined phased evacuation as 

consisting of occupants from five floors evacuating including those on the fire floor 

																																																								
1	The definition of effective width of stairwell is the clear width of the stairwell excluding the boundary 
layer along the edges.	



	 20	

and two adjacent floors above and below the fire floor. She considered the top five 

floors to be the affected floors, which means the fire floor she chose in her thesis is the 

second from last floor. Hartmann set up four different building sizes (929, 2,560, 4,703, 

and 13,064 m2) with two occupant load factors (9.3 and 25.9 m2 per person) in different 

heights of building (11, 21, and 31 story tall buildings) to explore the comparison of 

total versus selected evacuation related to both the total time to clear the entire building 

and egress time to clear each floor. Clearing time for each floor Hartmann defined as 

the last occupant to pass to the next level of floor stairwell. In other words, Hartmann 

considered the time clearing both floor area and the landing in the same floor as the 

floor clearing time.  

Hartmann determined that the difference in total egress time is more significant 

than floor clearing time. For total egress time, Hartmann identified that the difference 

between total and selected evacuation increases with the increase in building heights in 

office buildings with 2,560, 4,703, and 13,064 m2, other than the 929 m2 office building. 

In respect to the floor clearing time, the difference in the total and selected evacuation 

ranged from 5 to 9 seconds at the top floor to 66 seconds, 407 seconds and 698 seconds 

at the first floor in 11-story, 21-story, and 31-story office buildings. 

2.2 EVACUATION MODELING 

Interest in evacuation modeling developed in 1982. Evacuation modeling can be 

used to assess the egress time of entire buildings or parts of buildings to support life 

safety design. In this field, much research has been done by numerous researchers. 

Predtechenskii and Milinskii (1978), Fruin (1987) and Pauls (1980) provided the data 

that contribute to the initial development of egress modeling. 
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Numerous factors have an impact on the egress time of high rise buildings, such as 

the characteristics of occupants (i.e. size, age, and disabilities), density of occupants 

(i.e. occupant load), the number and width of stairwells, notification systems, and the 

familiarity of the egress routes. The developing process of egress models is to permit 

the effect of these factors to be analyzed.  

There are various types of egress models available. A hydraulic-based model is one 

type of egress models. The evacuation of occupants is treated similarly the water flow 

through pipes (Gwynne and Rosenbaum, 2016). Like water flow, the movement of 

occupants is homogenous without interruption of individual decision-making. All 

occupants are the same size and moving at the same time. As for this kind of models, 

the density of occupants, movement speed, number of exits, width of exits, distance of 

exits, and floor area are keys contributing to evacuation time (Gwynne and Rosenbaum, 

2016). Most of the recently developed egress models pay more attention to aspects of 

human behavior that affect egress time.  

Gwynne and Galea (1999) reviewed the methodologies of 22 egress models, 

including 16 models (BGRAF, CRISP, DONEGAN'S ENTROPY MODEL, EGRESS, 

EXODUS, E-SCAPE, EVACNET+, EVACSIM, EXIT89, EXITT, MAGNETMODEL, 

PAXPORT, SIMULEX, TAKAHASHI'S MODEL, VEGAS, and WAYOUT) that 

existed at the time and 6 models under development. The description of methods and 

purpose of each model is provided by Gwynne and Galea. Kuligowski describes a 

further comprehensive review of evacuation models in 2003. In Kuligowski’s M.S. 

thesis (2003), the review of models is demonstrated in aspects of purpose, availability, 

method, structure, and perspective of models as well as behavior and movement of 
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occupants. Except for the models described by Gwynne and Galea, there are 12 other 

models listed in Kuligowski’s thesis, including FPETool, Pathfinder, TIMTEX, 

EESCAPE, EgressPro, STEPs, Gridflow, ALLSAFE, AERI, BFIRES-2, Legion and 

Myriad. Kuligowski generated a table representing 26 models with their background 

and characteristics (see Table 2-1). 

 

Table 2- 1: Model Features (Kuligowski, 2016). 
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Table 2- 2: Key to Reading the Table 2-1 (Kuligowski, 2016). 

 

Three approaches including optimization, simulation and risk assessment are 

available for evacuation modeling (Gwynne and Galea, 1999). Optimization is the 

method in which, occupants tend to find an optimal route to exits without any 

interruption. Optimization models, such as EVACNET+ (Kisko TM, 1985; Taylor IR, 

1996) incorporate homogeneous ensemble that indicates no human behavior 

considered (Gwynne and Galea, 1999). Another significant model type is “simulation” 

in which human behavior and the movement of agents are taken into account. As human 

behavior and decision-making vary in different models, simulation models vary 

accordingly. This model type includes EXIT89 which is used by Hartmann, and will 

be compared with MassMotion based on this research later in Section 3.1. The last 
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model type is “risk assessment” such as WAYOUT (Shestopal VO, 1994) which 

incorporates hazards based on analyzing fire and emergency. 

In 2005, Kuligowski and Gwynne stated that the current characteristics of 

evacuation models include: modeling method, scope of representation (people, 

structure, phases of evacuation, emergency conditions, and application area), output 

(textual, general, quantitative), distribution and cost of model, age of model (generation 

of model), and refinement of representation.  

The modeling method “describes the level of sophistication used to calculate 

evacuation times for buildings,” including movement models, partial behavior models, 

and behavioral models (Kuligowski, 2016). Movement models calculate the movement 

of occupants without considering the behavioral component. Partial behavior models 

primarily simulate the movement of occupants while taking some behavior into 

consideration. Behavioral models combine the performance and movement of 

occupants. 

There are five generations of egress models. The first generation is manual 

calculations applying prescriptive assumptions. The second generation is computer-

based hydraulic models. From the third generation, models started to consider 

individuals. The third and fourth generation are ball-bearing models and rule-based 

models, respectively. The last generation of model is sensitive to local conditions which 

attempt to imitate behaviors depending on conditions experienced and data accessible. 

From these reviews, egress models typically use one of the two methods (coarse 

and fine networks) for the representation of enclosure. Coarse network model which 

requires inputs of nodes and arcs to create building floor plans. The geometry of the 
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coarse network is represented with nodes and arcs. Corridors and rooms are considered 

as nodes, while arcs connect all nodes. Contrast with the coarse network, the fine 

network seems more accurate when the structure is able to be represented by thousands 

of nodes (Gwynne and Galea, 1999). The difference between coarse network and fine 

network is that the former does not require uniform nodes and the latter produces 

uniform nodes (Kuligowski, 2016, p. 2158). Due to the needs of tracking individuals, 

the fine network is chosen from this research. Coupled with these two methods 

mentioned by Gwynne and Galea, there is another method presented by Kuligowski 

which is continuous network. Continuous network allows the structure floor plan layout 

in two-dimensional space and occupants are able to walk throughout the entire building 

(2016). Kuligowski also stated that the choice of travel route from occupants can be 

affected by barriers in both fine and continuous network, while coarse network “move” 

occupants from one portion to another (2016). 

Models can represent a population individually (MassMotion) or as a homogeneous 

group (EXIT89). Considering individuals, decision-making contributes to the 

movement of each agent, while people within the homogenous group are treated as the 

same identities without individual recognition. As for behavioral perspectives, there 

are five types of behavioral systems of egress models generally, including No 

Behavioral Rules, Functional Analogy Behavior, Implicit Behavior, Rule-Based 

Behavioral System, and Artificial Intelligence Based Behavioral System (Gwynne and 

Galea, 1999). Implicit behavior models “...do not declare behavioral rules, but instead 

assume them to be implicitly represented through the use of complicated physical 

methods.” (Gwynne and Galea, n.d., p. 9). Moreover, implicit behavior is 
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“…represented by pre-evacuation time distributions among the occupants, unique 

occupant characteristics, overtaking behavior, and the introduction of smoke and its 

effects on the occupants.” (Kuligowski, 2016, p. 2157). 

Hartmann’s used EXIT89 to explore the difference based on its availability, but 

EXIT89 was a relatively crude egress model at the time, and is even more so given 

developments since 2005. EXIT89 is a coarse network model which does not consider 

the formation of queues. Given that Hartmann’s analysis was not able to show a 

quantitative difference in the two evacuation strategies with the EXIT 89 model, this 

current research seeks to revisit the comparison of phased versus total evacuation 

strategies with contemporary software, MassMotion. The comparison is based on 

estimates of the floor clearing time, because the occupants considered as safe when 

they are in stairwells. 

2.3 MODEL DESCRIPTION 

Computational modeling is a method to predict the evacuation duration for almost 

any type, size and height of building considering various elements, such as ratio of 

male to females, proportions in a variety of ages and the physical mobility of occupants. 

A brief review of some of elements is indicated in this section to present the advantages 

and disadvantages of MassMotion that has been chosen for this research work. Also, a 

review of EXIT89 is presented in Section 2.3.2 given that it was utilized in Hartmann’s 

research (2005). 
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2.3.1 MASSMOTION 

MassMotion was developed by Oasys (Ove Arup SYStems). This software is a 

behavioral model taking various elements of occupant behavior into account. Based on 

the consideration of probability, and programming of performing movement and 

decision-making, agents have partial thoughts and judgments behaving like actual 

humans in this type of model, i.e., occupants have a consciousness to take another route 

with a shorter queue even though they may travel a longer distance to exit. MassMotion 

also takes into account social forces method to account for occupant behavior. 

The density (persons/m2) of agents is relatively calculated according to the 

accessible spacing and the other surrounding agents. The agent is able to discern the 

walking speed and location of other agents near them (Arup, 2015). Increasing density 

contributes to a decrease in walking speed following the research by Fruin (1970). 

Figure 2-1 and Figure 2-2 illustrate his proposed six levels of density. Level of service 

A, B, C, D, E, F are greater than 3.3 m2/person (35 ft2/person), 2.3 to 3.3 m2/person (25 

to 35 ft2/person), 1.4 to 2.3 m2/person (15 to 25 ft2/person), 0.9 to 1.4 m2/person (10 to 

15 ft2/person), 0.5 to 0.9 m2/person (5 to 10 ft2/person), and less than 0.5 m2/person (5 

ft2/person), respectively.  The default speeds in MassMotion are shown in Table 2-3 

based on Fruin’s level of service. 
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Figure 2- 1: Levels of Service for Walkways (Fruin, 1970). 

	

 

Figure 2- 2: Level-of-service Standards for Stairwells (Specific flow versus Density) 

(Fruin, 1970). (1 m2 = 10.8 ft2) 
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Table 2- 3: Default speed ratio ranges. 

Level of Service m/s Ratio of max 1.35m/s 
A 1.35 1 
B 1.321 0.963 
C 1.270 0.941 
D 1.219 0.904 
E 1.143 0.844 
F 0.762 0.563 

 

The movement of agents is confined and the step length decreases with an increase 

in density. The movement force is driven by two other forces known as a neighbor 

force and a desire force. Developers of MassMotion describe the neighbor force as the 

sense of privacy distance, or personal space, that humans keep with others in 

physiological terms. Desire force is treated as the force impelling agents to seek exit 

portals. Simply, the magnitude and direction of movement force equal the vector sum 

of the neighbor force and desire force (Arup, 2015). The body size of agents established 

in MassMotion is assumed to be a circle with a radius of 0.25 meters in the default 

setting (Arup, 2015), while users can define their models in various body size and size 

distribution of agents. 

MassMotion with three-dimensional (3-D) output views generates geometric 

components of portals, floors and stairwells, as well as 3-D elements such as agents. 

Agents enter and exit the building user set up, by entry portals and exit portals. Agents 

have an awareness of the geometry of spaces and are aware of the route to exit doors 

as default. Coupled with the awareness of agents the essential characteristic of agents 

in MassMotion is that they have awareness of the shortest egress time of various routs 

(Ahrens, 2018). In other words, agents are available to change their original evacuation 
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route to another route with less time evacuating, while in a real fire event, humans 

would not have the same awareness of exiting with shorter evacuation time. 

The walking speed in corridors is considered constant in MassMotion and it derives 

the walking speed for both upward and downward movement in a stairwell with a factor 

according to the stair incline that is listed in Table 2-4.  MassMotion derives walking 

speed that varies in corridors and stairwells and the equation for horizontal walking 

speed is given in Equation 2-1 by Oasys (Arup, 2017). 

𝑆"#$%&#'()* =
,-../	#'	,()%$	×	2#3(,()%$	5'2*%'.	6'7*.)

,()%$	,-../	9./:2(%#'	;)2(#$
                   2-1  

 

Table 2- 4: MassMotion Default Agent Attributes for Stairs (Arup, 2017). 

Stair Incline (degrees) Upward Stair Factor (%) Downward Stair Factor (%) 

> 27 42.5 57.4 

27 - 32 42.5 - 37.8 (interpolate) 57.4 - 49.8 (interpolate) 

< 32 37.8 49.8 

 

In 2017, Ove Arup & Partners, Ltd. set up several verification tests including 

corridor walking speeds, stair walking speeds, exit flow rates, pre-evacuation time, 

movement around corners, assignment of parameters, counter-flow, crowd exit usage, 

exit allocation, stair congestion, movement disabilities, affiliation, dynamic availability 

of exits, stair merging and stair flows (Arup, 2017). The test results conformed to 

International Maritime Organization (IMO) and National Institute of Standards and 

Technology (NIST) guidance.  
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Door way flow rates for door widths ranging from 0.8m to 1.5m were tested by 

Oasys and the relationship shows a linear dependence between the increase of door 

width and flow rate (Arup, 2017). Moreover, this research tested pre-evacuation time 

in terms of different types of distribution: uniform distributions, triangular distribution, 

and normal distribution. For all three of the distribution types, the pre-evacuation time 

increased with the growth of agent numbers (Arup, 2017). 

Other defaults in MassMotion used in this research are listed in Table 2-5 (Arup, 

2015). 
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Table 2- 5: Default Agent Attributes (Arup, 2015) (Reproduced). 

Parameter Default Data Basis of Default Values 

Preferred 
Horizontal Terrain 

Walking Speed 
Distribution (m/s) 

Minimum = 0.65 
Maximum = 2.05 

(Mean = 1.35 
Standard Deviation 

= 0.25) 

The default preferred horizontal terrain 
walking speed distribution range (0.65m/s 
to 2.05m/s – uniformly distributed) is 
based on Fruin’s (1971, 1987) 
observations of commuter speed profile 
for a range of ages and genders. 

Maximum 
Acceleration (m/s2) 

 

3.0 

 
The default maximum acceleration, 
turning rate and shuffle factor is based on 
qualitative model observations and 
sensitivity analysis by Oasys. 

Maximum Turn 
Rate (degrees/s) 45.0 

Shuffle Factor (% 
of Preferred 

Horizontal Terrain 
Walking Speed 
Below Which 

Agents can Shuffle 
in Any Direction) 

0.1 

Direction Bias 
Direction: Keep 
Right Strength: 

Strong 

The default direction bias is calibrated to 
yield crowd characteristics (in terms of 
flow and motion) that are consistent with 
Fruin’s Levels of Service A to F (1971, 
1987). 

The ‘Keep Right’ value was selected 
based on an observed preference (in a 
number of countries) to favour moving to 
the right when resolving movement 
conflict. 

Horizontal Distance 
Cost (factor) 

Vertical Distance 
Cost (factor) 

Queue Cost (factor) 

Processing Cost 
(factor) 

Minimum = 0.75 
Maximum = 1.25 

Minimum = 0.75 
Maximum = 1.25 

Minimum = 0.75 
Maximum = 1.25 

Minimum = 0.75 
Maximum = 1.25 

The underlying network route costs, that 
the agents respond to, are based on the 
costs for journey segments in the 
Transport for London, Business Case 
Development Manual (2003). 

The default variability ranges are intended 
to produce stochastic variation within a 
population where route options have very 
similar costs, without significantly altering 
the mean distribution of route choices. 
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2.3.2 EXIT89 

Since the advance phase preparation of this research work is to verify the feasibility 

of MassMotion comparing with EXIT89, here it is essential to describe EXIT89. 

EXIT89 (Fahy, 1999b, p. 819) is a partial behavior model based on data from the 

research work of Predtechenskii and Milinskii (1978) that demonstrates the relationship 

between density and speed of occupants for different types of building components. 

This model is a coarse network model. There are ten inputs available for users that 

include units of values, body sizes, movement types, route, smoke data, contra flow, 

output parameters, number of stairwells, stairwell travel directions, and delay time. One 

of the user-manipulated options is the evacuation route of individuals that is either the 

shortest one chosen automatically or the route defined by the user. However, when the 

exit is not accessible due to certain reasons, such as smoke blockage, individuals 

evacuate in other ways rather than the original route. The output includes tables 

showing the movement of individuals, the evacuation time, the number of stuck 

occupants and the clearing time of each floor. (Fahy, 1999) 

Human behavior modeled in EXIT89 is implicit. There are three body sizes 

available: 0.0906 m2, 0.1130 m2 and 0.1458 m2 representing American, Soviet, and 

Austrian populations, respectively (Fahy, 1999). Body sizes contribute to occupant 

density. The equation of the occupant density is given in Equation 2-2. 

𝐷 = =×>
?×@

																																																										2-2	

Where N is the number of occupants; f is the area of horizontal projection of a 

person; w and L are the width and length of the flow. As mentioned earlier, the speed 
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of occupants is related to occupant density given by Predtechenskii and Milinskii (1978) 

who also indicate that the speed may be adjusted for emergency evacuation. 
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CHAPTER 3: EVALUATION METHODOLOGY 

In this chapter, the research methodology is introduced. This research is separated 

into two phases: The comparison with Hartmann’s thesis (2005), and the comparison 

of total versus phased evacuation for high-rise office buildings using MassMotion. The 

goal of the former is to determine if MassMotion is a reasonable egress model to 

explore the comparison between total and phased evacuation strategies. The second 

phase uses MassMotion to compare the impact of building heights and occupant loads 

on these two evacuation strategies in high-rise office buildings. 

3.1 COMPARISON OF RESULTS WITH HARTMANN’S THESIS 

As mentioned in Chapter 2.1, Hartmann performed the research to compare the 

difference between total evacuation and phased evacuation for high-rise office 

buildings using EXIT89. However, Hartmann did not identify a quantitative difference 

between these two evacuation strategies. Thus, this section introduces the comparison 

of current thesis results using MassMotion and Hartmann’s results using EXIT89 in 

order to determine if MassMotion can get different results as compared to EXIT89 and 

verify that it is worth continuing the comparison of total and phased evacuation 

strategies using MassMotion.  

EXIT89 (Hartmann, 2005) was used to compare the total evacuation and phased 

evacuation in high-rise office buildings. The results of the comparison depict “The 

relative time difference is not as significant as had been originally anticipated and is 

relatively stable as building height varies.” (Hartmann, 2005). The phased evacuation 

that was described in the above-mentioned thesis includes selected occupants in five 
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floors that include one fire floor and two adjacent floors above and below the fire floor 

evacuating during phased evacuation fire strategy. As mentioned in Section 2.1, she 

considered the top five floors as the affected floors, which means the fire floor she 

chose in her thesis is the second from last floor. It is worth mentioning that, Hartmann 

selected the heights of 11-story, 21-story, and 31-story buildings in order to have 

occupants traveling in stairwells of 10 stories, 20 stories, and 30 stories to reach first 

floor equivalently. In other words, occupants on the second floor to the top floor 

evacuate. For more information about EXIT89 refer to section 2.3.2.  

The methodology of the first phase of this research includes setting up the models 

in MassMotion with the same inputs as Hartmann’s thesis (see Section 3.1.1), and 

comparing the results of total evacuation time and floor clearing time from EXIT89 

and MassMotion (see Section 3.1.3) using the definition of floor clearing time utilized 

by Hartmann. 

The current research attempts to compare the results between MassMotion and 

EXIT89, where MassMotion is used for the same purpose as EXIT89 used in Hartmann 

(2005), which is the comparison of total and phased evacuation using the same model 

inputs introduced in Section 3.1.1. The results of hypothetical buildings in these two 

software packages are compared and discussed in this chapter, which is divided into 

two parts. Section 3.1.1, Section 3.1.2 and Section 3.1.3 describe model inputs, 

comparison of the model results from this research and Hartmann’s thesis, and the 

analysis of the results respectively. 
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3.1.1 MODEL DESCRIPTION 

 In order to compare the results of this thesis with Hartmann’s thesis, the simulation 

set up in MassMotion has the same inputs as with Hartmann’s EXIT89 simulation. The 

user options in EXIT89 utilized by Hartmann are shown in Figure 3-1.  

 

 

Figure 3- 1: The Ten User Options Chosen For The Hypothetical Buildings 

(Hartmann, 2005). 

 

 For these ten user options in Figure 3-1, Hartmann chose English units. The body 

size used in her thesis is Austrian (0.1458 m2). She considered the speed based on a fire 

(emergency) condition and chose the shortest route for the evacuation. She did not 

consider smoke blockage of the egress route in her simulations. No contra flow was 

chosen. The number of stairwells in her thesis ranged from two or four for different 

buildings, though only the cases with two exits were used in this comparison. Also, no 

time delay was considered. 

 Model inputs are separated into four significant parts, including occupant load 

factor, building size, building height, and building layout. The first essential input is 
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occupant load factor. This was considered as 9.3 m2 per person which is based on “gross 

floor area”. It was defined as “the floor area within the inside perimeter of the outside 

walls of the building under consideration with no deductions for hallways, stairs, 

closets, thickness of interior walls, columns, or other features.” in NFPA 101 (Life 

Safety Code) (NFPA, 2003a). Because 9.3 m2 per person value is the minimum 

occupant load factor required in the code (NFPA 101, 2003), this research work only 

focuses on the comparison with her thesis using the 9.3 m2 per person occupant load 

factor.  

The second input is the building size. The floor area is considered to be 930 m2. 

Thus, the corresponding floor dimension would be 30.5 meters by 30.5 meters. Because 

Hartmann identified that the total evacuation time increases with the increased building 

heights in 2,560, 4,703, and 13,064 m2 office buildings, the comparison with her thesis 

will only consider 930 m2 floor area.  

As a third input, the height between two floors is 3.7 meters. As a result, the 

corresponding heights of the 11-story, 21-story, and 31-story buildings are 40.2 meters, 

76.8 meters, and 113.4 meters, respectively.  

 Other than occupant load factor, building size, and building height, another 

important input is building layout (see Figure 3-2). NFPA 101 (Life Safety Code) 

(NFPA, 2003a) stated that two exits are required with up to 499 occupants per floor. 

To meet the requirement of maximum occupant load per floor, there were two exits 

designed in the floor plan for all three heights of buildings based on the number of 

occupants per floor. Moreover, 138 persons chosen by Hartmann’s thesis will be set up 

in MassMotion. In addition to that, the total cumulative occupant load assigned to each 
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stairwell is less than 2,000 persons. For these inputs, as stated in NFPA 101 (Life Safety 

Code), a new stairwell width was chosen to be 1.12 meters in 11-story and 21-story 

buildings from Hartmann, while 1.42 meters was selected in 31-story building as the 

total cumulative occupant load assigned to each stairwell was greater than 2,000 

persons (NFPA101, 2003a). The two stairwells were designed in the outer edges of the 

floor plan with the steps of tread 7 inches deep by 11 inches high. Doors leading into 

stairwells and as exits to the outside are 0.914 meters wide. Landings in the stairwells 

are located in the middle between two floors that is 1.829 meters high away from the 

lower floor. Each floor has a core layout that allows elevators and restrooms to be 

designed in the core of the floor plan with an open office plan area surrounding the 

core. Table 3-1 explains the inputs of models that were used in this thesis for the 

comparison between MassMotion and EXIT89. 

 

Table 3-1: Inputs of Models Used in This Comparison. 

floors 11 stories 21 stories 31stories 
occupant load factor 9.3 m2/person 9.3 m2/person 9.3 m2/person 

floor area (m2) 930 930 930 
number of occupants 

(total evacuation) 1,380 2,760 4,140 

number of occupants 
(phased evacuation) 690 690 690 

number of exits 2 exits 2 exits 2 exits 
exits width (meters) 1.12 1.12 1.42 

 



	 40	

 

Figure 3- 2: 930 m2 Building Floor Layout (not to scale) (Hartmann, 2005). 

 

In addition to the user inputs chosen from EXIT89 and the inputs Hartmann utilized 

in her thesis, there are some defaults and more details introduced below which can 

impact the egress time, based on the difference between EXIT89 and MassMotion. By 

default, path traversal does not affect the speed of occupants. The speed of occupants 

will decrease in order to follow the occupant which is immediately in front. Occupants 

walk at an assigned speed when there is nothing around them. However, the 

acceleration or deceleration of speed (3 m/s2) will be utilized to adjust the original 

speed from other occupants or barriers around them. Default speeds in MassMotion are 

listed in Table 2-3 (Chapter 2.3.1). Moreover, the default body size is 0.5 meters 

(diameter). All other defaults in MassMotion are as mentioned in Table 2-5 (Chapter 

2.3.1). 

Stairwell	

Stairwell	
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3.1.2 MODEL RESULTS 

Based on the description of models in the previous section, the simulation results 

of Hartmann’s research and this research are given in Appendix A to Appendix C. The 

results are divided into the total egress time and the floor clearing time (the time for the 

last occupant to pass to the next stairwell). 

3.1.3 RESULTS ANALYSIS 

With the same inputs as Hartmann’s models described in Chapter 3.1.1, this 

research obtained different results. One essential difference is that the difference in the 

values between total evacuation and phased evacuation increases with the height of the 

building in MassMotion, while in Hartmann’s research the dependence on building 

height is not present (see Figure 3-3).  

	

	

Figure 3- 3: Total Evacuation Time for Total and Phased Evacuation Strategies in 11-

story, 21-story and 31-story High-rise Office Building with 930 m2 Floor Area from 

Hartmann and Luying. 
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Figure 3- 4: Time Difference: Total – Phased Evacuation for 11-story, 21-story and 

31-story Office Building with 930 m2 Floor Area from Hartmann and Luying. 

	

The differences of the time to clear a floor for the total evacuation versus phased 

evacuation strategies determined by Hartmann are 132 seconds, 100 seconds, 178 

seconds in 11-story, 21-story and 31-story office buildings, respectively. In 

comparison, these differences are 165 seconds, 585 seconds and 878 seconds 

accordingly was observed from using MassMotion. The results from MassMotion are 

more reasonable as the difference of occupant numbers between total evacuation and 

phased evacuation increases with the increasing height of a building. This is expected 

because the number of occupants increases with the number of stories which should 

lead to an increase in total evacuation time. On the other hand, the phased evacuation 

time also increases with the height of the building but not as rapidly as the egress time 
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during total evacuation. Thus, the difference of phase evacuation and total evacuation 

should increase with the height of the building. 

 Coupled with the discussion of the comparison between total and phased evacuation 

in total evacuation time, the essential part of this comparison is also to discover the 

difference of the evacuation time clearing each floor. This is described in the Figure 3-

6, 3-8 and 3-10 for 11, 21 and 31 stories buildings. 

	

	

Figure 3- 5: Floor Clearing Time of a 930 m2 11-story Office Building from 

Hartmann and Luying. 
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Figure 3- 6: Floor Clearing Time Difference Between Total and Phased Evacuation 

for a 11-story Office Building from Hartmann and Luying. 

	

The results of the difference in time to clear each floor for total and phased 

evacuation are similar in both the research by Hartmann and current thesis for the 11-

story building (see Figure 3-6), but it is not the case for 21 and 31 story buildings (see 

Figure 3-8 and Figure 3-10). For 21 and 31 story buildings, the difference in floor 

clearing time determined by Hartmann does not change much with the floor level but 

it changes rapidly in this current research. Thus, in the current analysis it is evident that 

the difference in floor clearing time increases from top floor to the bottom floor. For a 

total evacuation strategy, occupants continuously evacuate into stairwells which is a 

major reason the clearing time increases for each floor. The accumulated process is the 

principal cause of an increased difference in the floor clearing time. 
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Figure 3- 7: Floor Clearing Time of a 930 m2 21-story Office Building from 

Hartmann and Luying. 

	

	

Figure 3- 8: Floor Clearing Time Difference Between Total and Phased Evacuation 

for 21-story Office Building from Hartmann and Luying.  
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Figure 3- 9: Floor Clearing Time of a 930 m2 31-story Office Building from 

Hartmann and Luying. 

	

	

Figure 3- 10: Floor Clearing Time Difference Between Total and Phased Evacuation 

for 31-story Office Building from Hartmann and Luying. 
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The difference in MassMotion becomes even more apparent in the comparison of 

total and phased evacuation in the 31-story and 21-story buildings versus the 11-story 

building (see Table 3-5, Table 3-6, and Table 3-7). These results support the 

observation that after agents finish moving to the floors below the top five floors, the 

walking speed becomes constant in a phased evacuation (see orange line in Figure 3-7 

and Figure 3-9) as the slope is constant. Hartmann’s thesis does not show this different 

pattern as mentioned before. 

In summary, results from MassMotion more clearly demonstrate the difference of 

clearing time from the top to the bottom floor is increases as the height of the building 

increases, which EXIT89 does not show. The main reason why the different results 

generated from the same inputs in these two egress models relates to the basic 

differences between the two models. EXIT89 uses a coarse network and MassMotion 

use a continuous network for the representation of enclosure as mention in Chapter 2.3. 

EXIT89 is a crude egress model which cannot simulate queues forming.  

 The results indicate that it is worth performing the second phase of this research to 

utilize MassMotion for a detailed comparison of total versus phased evacuation 

strategies in high-rise office buildings, as described in the following parts of this thesis. 

3.2 INTRODUCTION OF METHODOLOGY 

Technically, this research work attempted to explore any difference between total 

and phased evacuation in high-rise office buildings through egress modeling, 

MassMotion. Moreover, this research tends to analyze the difference between these 

two fire strategies to provide limited guidance for building owner and reference of life 

safety design for engineers.  
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The prior preparation for this research work demonstrated the obvious difference 

between these two evacuation strategies based on the models in MassMotion. Thus, 

this will evaluate the magnitude of the difference between total and phased evacuation 

in various building design conditions by conducting simulations with MassMotion of 

three building heights, one building size and occupant loads ranging from 70 to 150 

persons per floor. 

In this phase of the research, there are some important differences with the research 

by Hartmann. Here, the phased evacuation plan will consist of three floor levels as 

opposed to the five by Hartmann. Thus, difference is based on the tendency for 

engineers to design contemporary high-rise office buildings based on this evacuation 

strategy considering only three floors. During phased evacuation, since the occupants 

on affected floors will be in danger first, occupants on the other floors will evacuate 

after the occupants on affected floors evacuate into stairwells. In other words, the floor 

clearing time of occupants on the affected floors will not be affected by the evacuation 

from occupants on the other floors. Thus, the simulation of evacuation for the phased 

evacuation strategy considers movement of occupants only on the affected floors. 

Another principal difference is that the metric “floor clearing time” is defined as the 

time for all occupants to leave the office space of the floor and enter the stairwell. This 

is a more relevant measure of the achievement of evacuation rather than departure from 

a landing in a stairwell which was used by Hartmann. 

The first comparison conducted by this research is to assess the influence of 

building heights in total and phased evacuation strategies. The second comparison 

relates to the influence of occupant load on the floor clearing times using phased versus 
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total evacuation. Pre-evacuation delays are not considered in this second phase of the 

research, as the goal is to explore the difference between total and phased evacuation.  
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CHAPTER 4: EVACUATION MODEL 

4.1 INTRODUCTION OF EVACUATION MODEL 

MassMotion is an egress model that is able to predict the egress time and track the 

location and movement of occupants in high-rise office buildings with a large 

population as mentioned in the introduction of MassMotion in Chapter 2.3.1. 

This chapter aims to describe the parameters including occupant load, building size, 

building layout, and building height used in the simulations conducted using 

MassMotion. These parameters are described in Section 4.2 through 4.6. The Figures 

4-1 and 4-2 illustrate the view of the egress model with multiple stories, and the 

geometry included in the model. 

	

Figure 4- 1: View of Egress Model with Multiple Stories. 
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   45.72 meters 

 

Figure 4- 2: Geometry of Egress Model Typical Floor. 

	

4.2 OCCUPANT LOAD 

The first input is occupant density, represented by the occupant load for each floor. 

NFPA 101 (2018) defines occupant load in Section 3.3.170.2, as “The total number of 

persons that might occupy a building or portion thereof at any one time.” In Table 

7.3.1.2 (Life Safety Code, 2018), the occupant load factor is 13.95 m2 per person for 

business use. This research considers this number as the minimum occupant load factor. 

To discuss the impact of occupant load for total and phased evacuation, different 

occupant load factors are chosen in order to depict a much more accurate graph of the 

comparison. The current thesis includes a range of 70 to 150 occupants per floor. 
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4.3 OCCUPANT CHARACTERISTICS 

First, the general setting of agents in MassMotion includes profile, radius, speed, 

and movement of agents. Profile and movement of agents in MassMotion utilizing in 

current thesis are set as ‘Fruin Commuter’. The size of agents is treated as a circle with 

‘constant’ radius of 0.25 meters. The minimum, maximum, mean, and standard 

deviation speed of agents are 0.65, 2.05, 1.35, and 0.25 m/sec. 

Moreover, agents are considered to be single set up in current simulations. All 

agents are aware of the route evacuating to exits. As for the route choice, the horizontal, 

vertical, queue, and processing route cost weights are set as ‘uniform’ with a minimum 

of 0.75 and maximum of 1.25.  In the aspect of agent behavior, the direction bias is 

right strong. In MassMotion, there is no setting for age and gender of agents. Also, 

considering the distribution, agents are randomly located on the floor before 

evacuating. Other defaults in MassMotion are stated in Chapter 2.3.1. 

4.4 BUILDING SIZE 

The third significant parameter is building size. This research focuses on the 

influence of occupant load and the building height. Here the scope of this research work 

is limited by single building size. Thus, only one building size is chosen for all models 

in this research work. According to the minimum occupant load factor (13.95 m2 per 

person) mentioned before, the dimension of the floor area is considered to be 45.72 m 

x 45.72 m. Thus total 2,090 m2 floor area was considered for this hypothetical building. 

Accordingly, there is 150 persons on each floor based on the minimum occupant load 

factor. 
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4.5 BUILDING LAYOUT 

The layout of the floor plan of each floor mainly includes the number of means of 

egress and exits, door width, stair width and travel distance and distribution of 

stairwells. Being the maximum occupant load on each floor is 150 persons, NFPA 101 

requires a minimum of two stairwells (Section 7.4.1.1, NFPA 101, 2018). In IBC 

(2018), Table 1006.3.2 also requires minimum number of exits or access to exits from 

story is two for occupant load not more than 500 persons per floor. Thus, two stairwells 

are included in the building design for this research. 

Doors are located on the edge of the floor plan (see Figure 4-2) and the door width 

is set as 0.914 meters as per NFPA 101 7.2.1.2.3.2, which states that “Door openings 

in means of egress shall be not less than 32 in. (810 mm) in clear width.” As all models 

in this research do not exceed the limit of 2000 persons evacuating per stairwell, two 

1.118 meters clear width stairwells are designed in all models. (NFPA 101 Table 

7.2.2.2.1.2(B)).  

In the stairwells, the landing is taken as 1.12 meters in the direction of travel as per 

NFPA 101 7.2.2.3.2.4, which says that “Landings shall not be required to exceed 48 

in. (1220 mm) in the direction of travel, provided that the stair has a straight run.” 

Also, the landings are positioned in the middle of two floors as well as at each floor 

level. The intermediate landings are 1.829 meters from each floor. 

Each floor is designed following a core plan with elevators, stairwells, and 

restrooms in the core area of the floor plan. The hypothetical office building in this 

research is designed as an open-plan office layout. Stairwells are located in the core of 

each floor with step size of 0.18 meters deep by 0.28 meters high. The size of restrooms 
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and elevators are selected to be 9 m2 and 8.12 m2 respectively, according to the typical 

industrial requirements. 

4.6 BUILDING HEIGHT 

Three building heights of 10-story, 20-story and 30-story are arbitrarily selected, 

other than to select heights that quality them for consideration as a high-rise building, 

as defined in Chapter 1. The distance between two floors is considered to be 3.66 

meters. Therefore, the building heights for 10-story building 20-story building and 30-

story building are 36.6 meters, 73.2 meters and 109.8 meters respectively. 

Table 4-1 includes a list of the parameters of the buildings used in these simulations 

for the purpose of exploring the impact of building heights on the total and phased 

evacuation, while Table 4-2 includes a list of occupant loads used to assess the 

influence of occupant loads on the results. 

 

Table 4- 1: Parameters of Buildings and Input of Occupant Load for the Impact of 

Building Heights on the Total and Phased Evacuation 

Floors 10 stories 20 stories 30 stories 
Building height 

(meters) 36.6 73.2 109.8 

Floor area (m2) 2090 2090 2090 
Number of exits 2 exits 2 exits 2 exits 

exits width (meters) 1.12 1.12 1.42 
Occupant load - total 

evacuation 
(persons/floor) 

70, 80, 90, 100, 115, 125, 140, 150 70, 80, 90, 100, 
115, 125 

Occupant load - phased 
evacuation 

(persons/floor) 
70, 80, 90, 95, 100, 110, 125, 135, 150 
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Table 4- 2: Parameters of Buildings and Input of Occupant Load for the Impact of 

Occupant Loads on the Difference Between Total and Phased Evacuation 

Floors 10 stories 
Building height (meters) 36.6 

Floor area (m2) 2090 
Number of exits 2 exits 

exits width (meters) 1.12 
Occupant load - total and phased 

evacuation (persons/floor) 
70, 80, 90, 95, 100, 105, 110, 115, 

120, 125, 130, 135, 140, 150 
	
	

Here, it is worth clarifying why the specific occupant loads included in Table 4-1 

were chosen.  Because the first comparison (see Table 4-1) in the second phase of this 

research includes the impact of building heights on floor clearing time for the two 

evacuation strategies separately, rather than comparing the difference of floor clearing 

time between total and phased evacuation. The occupant loads are arbitrarily chosen 

from 70 to 150 occupants in the analyses of 20-story and 30-story buildings for both 

total and phased evacuation. In other words, the occupant loads chosen in 20-story and 

30-story buildings for total and phased evacuation can be different. For the 30-story 

building, the range of occupant loads is from 70 to 125 occupants per floor. In order to 

utilize the same width of stairwells, 125 occupants per floor is the largest occupant load 

selected for the 30-story building. 
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CHAPTER 5: MODEL RESULTS 

5.1 OVERALL RESULTS 

The prior work in Chapter 3.1 of this research discusses the difference between the 

floor clearing time for total evacuation and phased evacuation processes. The results in 

this chapter focus on the floor clearing time on the top three floors, where the difference 

between total and phased evacuation strategies is the smallest case comparing to any 

other three floors randomly picked in the same building. Thus, it is the most 

conservative case to estimate the decrease of occupant load factor between total and 

phased evacuation based on the floor clearing time on the top three floors. 

5.2 MODEL OUTPUT 

The outputs of MassMotion are separated into two parts, details and overall 

information. The details incorporate the number of agents exiting the building in a unit 

time (one minute) along with the number of total agents in the building. Also, the details 

of agents “removed with errors” are mentioned in the output, including an identification 

of which agents were removed and the reason for their removal. The overall 

information includes the number of agents created in the simulations (how many agents 

that users set) and successfully evacuated, simulation time, total evacuation time, the 

date completed, and the version of MassMotion.  

Based on the rendering video generated along with each simulation, several details 

including the location and egress time of each agent can be observed. Since this 

research is focused on the floor clearing time that is not available on the output window, 

the data for floor clearing time were collected from a review of the rendering videos. 
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5.3 EGRESS TIME 

The results in this chapter are focused on the floor clearing time for the top three 

floors (time for the last occupant to enter the stairwell). When the last occupant steps 

for that floor into the stairwell on that same floor, this floor is considered to be cleared. 

The evacuation time is defined as the time period from the start of the evacuation to the 

time when the floor is cleared.  

5.4 FLOOR CLEARING TIME FOR EACH BUILDING 

The floor clearing time of the top three floors is given in Table 5-1 to Table 5-6. 

Table 5-1 and Table 5-2 include the results for total and phased evacuation processes 

in the 10-story building respectively. In Table 5-3 and Table 5-4, the results of the floor 

clearing time for the 20-story building are presented for total and phased evacuation 

processes, while Table 5-5 and Table 5-6 are for the 30-story building.  
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Table 5- 1: Floor Clearing Time (seconds) of Total Evacuation for the 10-story Office 

Building. 

 Floor Level 

Occupant Load 10 9 8 

70 persons/floor 85 104 133 

80 persons/floor 82 111 158 

90 persons/floor 87 124 178 

95 persons/floor 86 122 196 

100 persons/floor 85 131 206 

105 persons/floor 92 135 212 

110 persons/floor 92 140 214 

115 persons/floor 103 149 224 

120 persons/floor 91 165 244 

125 persons/floor 96 153 260 

130 persons/floor 93 165 282 

135 persons/floor 96 186 310 

140 persons/floor 102 186 326 

150 persons/floor 107 198 370 
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Table 5- 2: Floor Clearing Time (seconds) of Phased Evacuation for the 10-story 

Office Building. 

 Floor Level 

Occupant Load 10 9 8 

70 persons/floor 80 99 134 

80 persons/floor 85 108 145 

90 persons/floor 102 112 158 

95 persons/floor 91 129 165 

100 persons/floor 97 133 176 

105 persons/floor 93 146 184 

110 persons/floor 97 147 191 

115 persons/floor 95 155 201 

120 persons/floor 98 158 204 

125 persons/floor 99 163 209 

130 persons/floor 91 156 219 

135 persons/floor 101 171 226 

140 persons/floor 97 171 230 

150 persons/floor 109 184 243 
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Table 5- 3: Floor Clearing Time (seconds) of Total Evacuation for the 20-story Office 

Building. 

 Floor Level 
Occupant Load 20 19 18 
70 persons/floor 85 104 140 
80 persons/floor 86 105 153 
90 persons/floor 92 118 175 
100 persons/floor 92 130 204 
110 persons/floor 95 152 220 
115 persons/floor 93 150 228 
125 persons/floor 95 138 266 
140 persons/floor 102 193 328 
150 persons/floor 106 220 375 

 
Table 5- 4: Floor Clearing Time (seconds) of Phased Evacuation for the 20-story 

Office Building. 

 Floor Level 
Occupant Load 20 19 18 
70 persons/floor 82 95 131 
80 persons/floor 95 101 141 
90 persons/floor 88 126 157 
95 persons/floor 97 114 165 
100 persons/floor 89 125 174 
110 persons/floor 98 142 191 
125 persons/floor 101 159 210 
135 persons/floor 96 170 227 
150 persons/floor 108 189 241 
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Table 5- 5: Floor Clearing Time (seconds) of Total Evacuation for the 30-story Office 

Building. 

 Floor Level 
Occupant Load 30 29 28 
70 persons/floor 84 104 136 
80 persons/floor 90 120 152 
90 persons/floor 89 109 170 
100 persons/floor 90 117 196 
110 persons/floor 90 121 202 
115 persons/floor 99 137 223 
125 persons/floor 98 148 258 

 

Table 5- 6: Floor Clearing Time (seconds) of Phased Evacuation for the 30-story 

Office Building. 

 Floor Level 
Occupant Load 30 29 28 
70 persons/floor 90 97 138 
80 persons/floor 95 103 142 
90 persons/floor 97 120 160 
95 persons/floor 95 115 166 
100 persons/floor 99 122 168 
110 persons/floor 98 135 183 
125 persons/floor 97 156 209 
135 persons/floor 100 176 227 
150 persons/floor 107 194 247 
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As an example to illustrate the results obtained, one selected graph is provided in 

Figure 5-1. Graphs for all simulations are presented in Appendix D and E. Analysis of 

the results will be presented in Chapter 6. 

 

Figure 5- 1: Floor Clearing Time in Top Three Floors in 10-story, 20-story and 30-

story Office Buildings with 2,092.5 m2 Floor Area for 80 persons/floor Occupant 

Load in Total Evacuation. 
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CHAPTER 6: ANALYSIS OF RESULTS 

6.1 OVERALL ANALYSIS 

Before analyzing the results, it as a reminder the goal of this research is to explore 

any difference between the performance of total and phased evacuation fire strategies 

in high-rise office buildings. Furthermore, it is also an essential aspect of this thesis to 

determine the impact of various building heights and occupant loads on these two fire 

strategies. The metric used for the comparison of the strategies is the floor clearing time 

for affected floors.  

In Section 6.3, this thesis compares the effect of various occupant loads between 

total and phased evacuation in a hypothetical 10-story high-rise office building. The 

analysis includes a 20-story and a 30-story building with the same floor plan to assess 

whether the trends identified are dependent on the heights of the building. 

6.2 ANALYSIS OF RESULTS OF FLOOR CLEARING TIME FOR 

DIFFERENT BUILDING HEIGHTS 

Instead of comparing the different occupant load in all 10-story, 20-story and 30-

story buildings first, it is worthwhile comparing the floor clearing time for different 

heights of buildings for both total and phased evacuation. If the floor clearing time for 

10-story, 20-story and 30-story buildings is similar, the results analysis in Section 6.3 

can be used to be a reference regardless of building heights. 

6.2.1 TOTAL EVACUATION 

The floor clearing time during total evacuation of the top three floors for different 

occupant loads (70 persons/floor, 80 persons/floor, 90 persons/floor, 100 persons/floor, 
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115 persons/floor, 125 persons/floor, 140 persons/floor, and 150 persons/floor) 

between 10-story, 20-story, and 30-story buildings are similar. The results for three 

occupant loads that cover the range of occupant loads analyzed (70 persons/floor, 90 

persons/floor, and 125 persons/floor) are presented in Figure 6-1. The results for the all 

of the other occupant loads included in the analysis are presented in Appendix D. 

	

	

Figure 6- 1: Floor Clearing Time in Top Three Floors in 10-story, 20-story, and 30-

story Office Buildings with 2,092.5 m2 Floor Area for 70 persons/floor, 90 

persons/floor, and 125 persons/floor Occupant Load in Total Evacuation. 

	

The difference in floor clearing time between the top floors of the buildings those 

are 30th floor, 20th floor and 10th floor is from 0 second to 10 seconds for above 

mentioned occupant loads, while the difference between 29th floor, 19th floor and 9th 

floor of 30-story, 20-story and 10-story building respectively is from 0 second to 19 
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seconds (see Figure 6-1 and Appendix D). Moreover, it can be seen in Figure 6-2 that 

the absolute difference value between 10-story and 20-story buildings in 8th floor and 

18th floor for floor clearing time is from two seconds to seven seconds. The difference 

of floor clearing time between the 10-story and 30-story buildings in 8th floor and 28th 

floor is from one to 12 seconds (see Figure 6-2 and 6-3). Thus, all differences for this 

comparison are lesser than 12 seconds that is negligible comparing to total egress time 

in the top three floors (which is the worst case). Focus is on the floor clearing time in 

the bottom of the affected floors, being the greatest egress time. 

	

Figure 6- 2: Time Difference Between 20-story and 10-story Office Buildings with 

2,092.5 m2 Floor Area in the Bottom Floor of the Top Three Floors for Total 

Evacuation. 
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Figure 6- 3: Time Difference Between 30-story and 10-story Office Buildings with 

2,092.5 m2 Floor Area in the Bottom Floor of the Top Three Floors for Total 

Evacuation. 

	
6.2.2 PHASED EVACUATION 

The floor clearing time during total evacuation of the top three floors in different 

occupant loads (70 persons/floor, 80 persons/floor, 90 persons/floor, 95 persons/floor, 

100 persons/floor, 110 persons/floor, 125 persons/floor, 135 persons/floor, and 150 

persons/floor) between 10-story, 20-story and 30-story buildings are similar that is the 

same as total evacuation. Figure 6-4 depicts the evacuation time in the top three floors 

for three occupant loads those are 70 persons/floor, 110 persons/floor, and 150 

persons/floor. Comparison for the rest of the occupant load can be observed in 

Appendix E. 
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Figure 6- 4: Floor Clearing Time in Top Three Floors for 10-story and 20-story 

Office Buildings for 70, 110, and 150 persons/floor Occupant Load in Phased 

Evacuation. 

	

	

Figure 6- 5: Time Difference Between 20-story and 10-story in the Bottom Floor of 

the Top Three Floors for Phased Evacuation. 
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Figure 6- 6: Time Difference Between 30-story and 10-story in the Bottom Floor of 

the Top Three Floors for Phased Evacuation. 

	

For phased evacuation, the absolute difference between 10-story, 20-story and 30-
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first three floors to clear. In other words, the higher the floor level is, the more priority 

occupants have to evacuate into stairwells. Thus, the number of floors below the top 

three floors would not be expected to affect the floor clearing time for the top three 

floors. 

6.3 ANALYSIS OF RESULTS OF FLOOR CLEARING TIMES IN 

DIFFERENT OCCUPANT LOAD IN 10-STORY OFFICE BUILDING 

This section compares the floor clearing time for total and phased evacuation 

strategies with different occupant load factors. Being the floor clearing time in the 

bottom most floor of the top three floors is the longest egress time, Figure 6-7 depicts 

the floor clearing time on the eighth floor (the bottom floor of the top three floors) with 

14 different occupant loads (70 persons/floor, 80 persons/floor, 90 persons/floor, 95 

persons/floor, 100 persons/floor, 105 persons/floor, 110 persons/floor, 115 

persons/floor, 120 persons/floor, 125 persons/floor, 130 persons/floor, 135 

persons/floor, 140 persons/floor, and 150 persons/floor). Figure 6-7 using occupant 

load depicts egress time in the bottom floor of the top three floors in total and phased 

evacuation in 10-story office building with 2,092.5 m2 floor area. In order to provide 

the graph independent of the floor area, the Figure 6-8 is using occupant load factor 

transferred from occupant loads in Figure 6-7. 
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Figure 6- 7: Egress Time in the Bottom Floor of the Top Three Floors in Total and 

Phased Evacuation in 10-story Office Building with 2,092.5 m2 Floor Area (Occupant 

Load). 
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floor clearing time is achieved with a greater occupant load using a phased evacuation 

strategy as compared to that with a total evacuation strategy. 

 

 

Figure 6- 8: Egress Time in the Bottom Floor of the Top Three Floors in Total and 

Phased Evacuation in 10-story Office Building with 2,092.5 m2 Floor Area (Occupant 

Load Factor). 

	
In order to provide a more common graph, Figure 6-8 is represented as using the 

occupant load factor, converted from Figure 6-7. Moreover, to provide a more accurate 

equation, the x-axis is presented in terms of ‰ second in Figure 6-8. In other words, 

the actual egress time is equal to the time in x-axis multiply 1000. Figure 6-8 indicates 

that the available occupant load factor can be chosen in these two fire strategies under 

the same floor clearing time of the top three floors in high-rise office buildings. If a 

phased evacuation strategy is implemented, an increase in the occupant load can be 

accommodated which results in the same floor clearing time as for a total evacuation 

y	=	-1198.6x3 +	1253x2 - 453.54x	+	71.111

y	=	-12074x3 +	7694.9x2 - 1723.5x	+	151.42
14.0

16.0

18.0

20.0

22.0

24.0

26.0

28.0

30.0

0.130 0.160 0.190 0.220 0.250 0.280 0.310 0.340 0.370

O
cc
up

an
ts
	Lo

ad
	F
ac
to
r(
m

2 /
pe

rs
on

s)

Egress	time/1000	(seconds)

total	evacuation

phased	evacuation

Poly.		(total	evacuation)

Poly.		(phased	evacuation)



	 72	

strategy. This equation is equal to the equation of total evacuation minus the equation 

of phased evacuation (see Figure 6-8). 

𝑦 = 10875.4𝑥J − 6441.9𝑥N + 1269.96𝑥 − 80.31        6-1 

(0.134 ≤ 𝑥 ≤ 0.243) 

In the equation, 

y: decrease of occupant load factor (m2/person); 

x: ‰ time of floor clearing time (‰ seconds). 

This equation is limited to the floor clearing time for phased evacuation strategy 

less than 243 seconds which is the time for an occupant load of 14 m2/person (the 

minimum occupant load in NFPA101 (2018) mentioned in Chapter 4.2). Equation 6-1 

can be used only for top three floors in comparison of total versus phased evacuation 

for high-rise office buildings. On the other hand, this equation is independent of 

building heights for high-rise office buildings.  

So far, the nationally recognized codes and standards do not provide a limitation of 

the time to evacuate to a designated safe place for high-rise office buildings. This 

equation can allow engineers to have an awareness of the difference of total and phased 

evacuation strategies in terms of floor clearing time, and to determine the difference in 

the occupant load factor between total and phased evacuation strategies based on the 

same floor clearing time. From this equation, if considering 230 seconds floor clearing 

time, ‘x’ is equal to 0.23 and ‘y’ obtained from Equation 6-1 is 3.3 m2/person. It means 

that the occupant load factor in phased evacuation strategy can be maximum 3.3 

m2/person less than the occupant load factor in total evacuation strategy considering 

230 seconds floor clearing time.  
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CHAPTER 7: CONCLUSION 

7.1 CONCLUSION 

As mentioned before, the current thesis attempts to support design engineers 

determining the fire evacuation strategy in high-rise office buildings. The values 

generated by the simulations in MassMotion are provided by this thesis to assist 

decision-makers to have a clear sense of the difference between total and phased 

evacuation for high-rise office buildings. This thesis also can assist building owners 

and standards organizations in determining the allowable occupant load in high-rise 

office buildings with any height while comparing total and phased evacuation 

strategies. For high-rise buildings, the evacuation time may be long if queues form 

either in or to enter in the stairwell.  The likelihood of queue formation is related to 

occupant load. Thus, the relationship of floor clearing time between total and phased 

evacuation is generated regardless of buildings size but depends on occupant load. 

Specifically, this research work focuses on the effect that the evacuation strategy has 

on the allowable occupant load in each floor of a high-rise office building. The research 

also explores if the building height has an impact on the floor clearing time of the 

affected floors (the top three floors) during total and phased evacuation. The 

comparison of the results obtained by Hartmann using EXIT89 (one of the earlier 

evacuation models developed) with a contemporary model, MassMotion, regarding the 

total egress time for total and phased evacuation strategies for the top five floors. 

In summary, this research has identified that the difference of egress time clearing 

the entire office building for total versus phased evacuation increases with increased 

building heights. The difference of total egress time between total and phased 
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evacuation ranges from 165 to 878 seconds with the heights of building from 11 stories 

to 31 stories, respectively. Moreover, the time of evacuating the affected floors (the top 

three floors) is not affected by the building heights in both total and phased evacuation 

fire strategies, as such the results are applicable to a wide range of building heights. 

Based on this identification, the current thesis provides information for decision-

makers to determine a reasonable occupant load when applying total or phased 

evacuation fire strategies. In particular, the occupant load factor can be decreased if a 

phased evacuation strategy is used as compared to a total evacuation strategy without 

impacting the floor clearing time according to the equation: 𝑦 = 10875.4𝑥J −

6441.9𝑥N + 1269.96𝑥 − 80.31. For example, if engineers consider the occupant load 

factor as 21 m2 per person in a total evacuation fire strategy, a reduced occupant load 

factor (i.e. increase in the number of occupants) of approximately 17 m2 per person 

with a phased evacuation fire strategy will result in the same floor clearing time. 

7.2 LIMITATIONS AND FUTURE WORK 

This research work did not account for some elements that may affect egress time, 

such as the effects of smoke and human behavior, e.g. egress delay and response under 

stress. Fatigue is one essential element of human behavior and it is reasonable to take 

fatigue into consideration for high-rise office building, because the travel distance may 

be very large, thereby causing an additional extension in the egress time (Averill et al., 

2005, Galea et al., 2008a; Spearpoint & MacLennan, 2012). In addition, another 

limitation is that the MassMotion has the body area in circular shape, since Ahrens 

stated the circular body area may affect the egress time (2018). 
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Even though this research work attempted to explore any identical difference of 

total versus phased evacuation in high-rise office building, the limits of the aspects lies 

in how occupant load and building heights affect the egress time during these two fire 

strategies. Moreover, this research did not get a chance to explore the difference in the 

floor clearing time with the two evacuation strategies with data from fire drills. 

Based on the current thesis, some additional research is recommended, as listed 

below: 

• Consider human behavior, especially fatigue into the same models to 

discuss its effects to egress time.  

• Explore the effects of smoke during total and phased evacuation using the 

same model inputs. 

• Assess the impact of stairwell width, location of stairwells and number of 

stairwells on evacuation strategies. 

• Assess the impact of body area and shape (elliptical vs. circular). 
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Appendix A  

The Evacuation Time of All Compared Models. 

Stories & 
Evacuation 

Strategy 

Total 
Number of 
Occupants 

Number of 
Occupants per 

Floor 

Time 
(seconds) 

from 
Hartmann 

Time 
(seconds) 

from Luying 

11-story Total 1380 138 635 692 

11-story Select 690 138 503 527 

21-story Total 2760 138 1047 1346 

21-story Select 690 138 947 761 

31-story Total 4140 138 1607 1775 

31-story Select 690 138 1430 897 
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Appendix B  

Time for the Last Occupant to Pass to the Next Stairwell In 11-story, 21-story, and 31-

story Buildings from Hartmann’s Research. 

floors	 total_11	 phased_11	 total_21	 phased_21	 total_31	 phased_31	
31	 -	 -	 -	 -	 83.08	 77.11	
30	 -	 -	 -	 -	 150.36	 130.43	
29	 -	 -	 -	 -	 220.56	 170.06	
28	 -	 -	 -	 -	 294.46	 223.8	
27	 -	 -	 -	 -	 363.1	 278.45	
26	 -	 -	 -	 -	 434.56	 329.95	
25	 -	 -	 -	 -	 501.69	 382.95	
24	 -	 -	 -	 -	 562.28	 429.34	
23	 -	 -	 -	 -	 600.85	 472.21	
22	 -	 -	 -	 -	 640.71	 524.58	
21	 -	 -	 83.08	 77.11	 682.84	 573.76	
20	 -	 -	 150.36	 130.43	 732.4	 625.47	
19	 -	 -	 220.56	 170.06	 781.96	 671.98	
18	 -	 -	 294.46	 223.8	 831.51	 716.91	
17	 -	 -	 363.1	 278.45	 872.95	 772.58	
16	 -	 -	 434.57	 329.95	 900.64	 820.06	
15	 -	 -	 501.69	 382.59	 950.2	 870.68	
14	 -	 -	 562.27	 429.34	 997.34	 926.71	
13	 -	 -	 600.85	 472.21	 1037.38	 980.17	
12	 -	 -	 628.62	 491.64	 1063.39	 994.6	
11	 83.08	 77.11	 668.28	 540.6	 1116.51	 1044.43	
10	 150.36	 130.43	 723.58	 588.11	 1173.72	 1096.02	
9	 220.56	 170.06	 758.44	 634.74	 1227.88	 1133.28	
8	 294.46	 223.8	 814.84	 685.46	 1282.73	 1188.6	
7	 363.1	 278.45	 871.35	 722.26	 1342.15	 1219.52	
6	 434.57	 329.95	 895.98	 777.68	 1403.04	 1258.68	
5	 501.69	 382.59	 932.97	 833.05	 1453.29	 1298.84	
4	 562.28	 429.95	 972.35	 865.23	 1518.91	 1344.1	
3	 600.85	 472.21	 1030.39	 926.03	 1577.52	 1401.3	
2	 628	 498.54	 1046.71	 940.79	 1607.31	 1426.07	
1	 634.87	 503.02	 1046.71	 946.96	 1607.31	 1429.53	
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Appendix C 

Time for the Last Occupant to Pass to the Next Stairwell In 11-story, 21-story, and 31-

story Buildings from Current Research. 

floors	 total_11	 phased_11	 total_21	 phased_21	 total_31	 phased_31	
31	 -	 -	 -	 -	 108	 98	
30	 -	 -	 -	 -	 157	 146	
29	 -	 -	 -	 -	 240	 218	
28	 -	 -	 -	 -	 336	 268	
27	 -	 -	 -	 -	 410	 306	
26	 -	 -	 -	 -	 491	 339	
25	 -	 -	 -	 -	 574	 369	
24	 -	 -	 -	 -	 654	 397	
23	 -	 -	 -	 -	 731	 421	
22	 -	 -	 -	 -	 809	 446	
21	 -	 -	 107	 96	 883	 470	
20	 -	 -	 241	 190	 953	 493	
19	 -	 -	 340	 271	 1022	 516	
18	 -	 -	 421	 320	 1087	 538	
17	 -	 -	 513	 362	 1147	 561	
16	 -	 -	 593	 394	 1200	 584	
15	 -	 -	 668	 423	 1249	 606	
14	 -	 -	 732	 454	 1298	 628	
13	 -	 -	 797	 482	 1346	 647	
12	 -	 -	 856	 509	 1395	 669	
11	 95	 102	 910	 534	 1436	 689	
10	 173	 190	 972	 558	 1476	 710	
9	 269	 267	 1026	 582	 1513	 731	
8	 363	 318	 1077	 607	 1550	 753	
7	 432	 362	 1125	 626	 1587	 775	
6	 488	 392	 1169	 652	 1624	 796	
5	 543	 450	 1212	 677	 1659	 818	
4	 589	 468	 1250	 710	 1691	 838	
3	 627	 482	 1284	 732	 1722	 859	
2	 667	 503	 1318	 747	 1751	 880	
1	 692	 527	 1346	 761	 1775	 897	
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Appendix D 

Floor Clearing Time in Top Three Floors for 10-story, 20-story and 30-story Office 

Buildings with 2,092.5 m2 for 80, 100, 115, 140, and 150 persons/floor Occupant Load in 

Total Evacuation. 
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Appendix E 

Floor Clearing Time in Top Three Floors for 10-story, 20-story and 30-story Office 

Buildings with 2,092.5 m2 for 80, 90, 95, 100, 125, and 135 persons/floor Occupant Load 

in Phased Evacuation. 
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