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AESTRACT

Title of Thesis: Completions
Robert Maurice Nielsen, Doctor of Philosophy, 196k

Thesis directed by: 'Professor John W. Brace

This paper presents a new approach to the theory of completions.
The treatment is based on the concept of convergence on filters and
related topologies [ B_J, For a given uniform Hausdorff space X
and a collection £ of Cauchy filters in Xu_, the basic result is
the construction of a uniform Hausdorff space ’§;E having the proper-
ties that X is isomorphic to s dense subspace of X and every

w g
filter in *8 converges to a point in S. As g special case, the com-
A

pletion X of X is obtained., The construction is so given as to
prcve the existence of the space X
g7

The technique involves embedding the object X +to be "completed"
in a space of functions F which has as its domgin a space of continuous
functions C(X) defined on X - The procedure is analogous to the

"

process of taking the bidual E of a locally convex topological

"
vector space. Indeed, E 1s obtained as a special case. 1In the

absence of sufficient structure on X, the space XTE is obtained as
the closure of X in F. 1In a locally convex space or an abelian

topological group having enough characters to separate points, 3{&:

is obtained as a bidual or a second character group of the object X,
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INTRODUCTION

This paper presents a unified theory of completions which is
applicable to linear topological spaces, topological groups and in
general, to any uniform Hausdorff space. The development is based on
the concept of convergence on filters and related topologies [_ Bi].
The central idea of this paper is to use the topology obtained from
the uniformity of convergence on a class of Cauchy filters to obtain
a representation of the completion or partial completion of a uniform
Hausdorff space Xu: The construction is so given as to yield a proof
of the existence of the completion. The completion of the space XZL

A

is understood to be a complete uniform Hausdorff space Xﬁv with the

property that Xu~ is uniformly isomorphic to a dense subspace XO

A
of Xu,o The partial completion of the space Xu’ is the smallest
~
uniform Hausdorff space Xﬂ_ having the property that Xu' is uni-

—~
formly isomorphic to a dense subspace of Xal and a prescribed family

of Cauchy filters in X converge to limits in ﬁfé;.

Section I introduces the concept of convergence on filters and
contains some elementary results that are not only important to
this development but also to obtsining characterizations of compact
subsets of function spaces in both the pointwise and uniform con-
vergence topologies [: 3 j .

Section II gives the theory of completion and partial completion

for a locally corvex topological space along with some applications.



This case is treated first for two reasons: first, because the theory
was initially conceived in this setting and secondly because the de-
tails of the construction are more transparent in a locally convex
space.

Section III desls with an arbitrary uniform Hausdorff space and
gives the Stone-Céch Compactification as an application.

Section IV treats topologicsl groups and is divided into two
parts, the first devoted to an abellian Hausdorff topological group
having enough characters to separate points and the second ﬁo an
arbitrary Hausdorff topological group.

Throughout this paper the notation (S, C) denotes the weak
topology on an abstract set § induced by a space of functions C
defined on S. That is, o~ (S, C) is the topology on S of point-
wise convergence on C., For a locally convex space E, &(E, E.) denotes
the topology on E of uniform convergence on equicontinuous subsets
of EH (the dual of E). It should be noted that if :ris the original
topology on E, then &(E, E“) =7 [.8,3+]o The strong topology on
E' will be written as B(E“, E) (uniform convergence on all bounded

subsets of E).



SECTION I

CONVERGENCE ON FILTERS

Let G(S, TR) denote a space of functions from an abstract set S into

the reals.

1.1 Definition [>§,i]: A filter & composed of subsets of G(s, TR)
converges to a function fo on s filter df of subsets of S if for every
€ >0 there is a D in.i? such that for each f€D there is an Ff in F

with the property that

|£(s) - fo(s) | <¢ for all s€F,. i

Note, that if‘gy converges to fo on 55, then Aﬁ converges to fo,on every
refinement of éFn The concept of convergence on filters is related to the
continuity properties of pointwise limits of continuous functions. This
is of fundamental importance to the whole developement. The precise

relationship is given in the following theorem.

1.2 THEOREM [3,1]: Iet £/ be a filter in G(S,TR) where S is a

topological space and every g in a member of ;y is continuous at a

point So 12 Se Thenijy converges EE So Eg a function fo which is
continuous at 8y if and only if x& converges to fo on the filter of

neighborhoods of s .

\N



1.3 THEOREM [ 3,1 ]t In G(s,TR), the clase of all filters which

converge on a filter £ in 8 has an associated topo.

v obtained from

its entourages, sets of the form:

vle , F ) = {(f"y g)] there is an F_ in F  zuch that

| £(s) - g(x)| <€ for all s € Ff’g I‘

The topology is Hausdorfr if and only if for each pair f and g in

a(s, TR) there exists an € > 0 such that for every F in F there

is an s & F such that |f(s

The above theorem extends easily to convergence on a family of

Ky

filters in S and it is in this form that it will be used throughout

this paper.
A duality exists bstween the topology on G’'S, R) of convergence on

a class of filters oe in 5 and the convergence of the members of ﬁand

s the content of the following theorem

single function having as its

1.4 THEOREM [ 3,4 J:

domain G(S, TR)XS and range inR. Consider filters 28 and F res-

pectively, with the property that 90 ( , 8) converges to ¢ (gf), 8)

for all s &S and (g (g, &) converges to ?(g s) for all gé& G(S, R).

Then the filter ﬁ converges to g, onm ? 1f and only if % con-

verges to s, on ,ﬁ .

There is a close relationship between the topologies,on a space of

continuous functions, of polintwise conver

ey and. the topology of convergence

R



on convergent filters in the domsin of the funotionsz. This relationshi P

is given in the next two propositions.

1.5 PROPOSITION: If 2(8) is a gpace of continuous real valued
functions on a topological space §, then the topology on C(8) of
convergence on all convergent filtersg in & is the same a5 the

o (c(8), S)-topology.

PROOF': ILet "EF be a filter in C(8) converging to fo in the
d’(C,S)--’copologyo Then g’ converges on every filter of neighbor-
hoods (x) in 8 (Theorem 1.2). Sincs every coavergent filter

refines some 7?/(3(), % converges on every convergent filter by a

n
o

remark following Def. 1l.1l. Converssly, suppose i converges to
.f‘o in the topology of comvergernce on all convergent filters. Then,
in particular, ﬁ converges to f_  on every 77, (x) end thus by

Theorem 1.2, F converges to f in the o-{(C, S)-topology.

1.6 PROPOSTTTON s Iet A be a

gukgpace of S, C )
filter in A 'with limit €S8 and & fllter in C(A) converging

to a function fOE(‘-(S) o C Thern, 1f every f in C(A) has

() l
—
o
r
.._
=
)
4
=
1]
-
r-h
s
T
®
=
A
o)
H

a unique continuous extengion

extended functions converges 4o £ at X

PROOF: Since %co:;vergﬂ%s to cn Cs a0 does EC . Thus for

every €> 0 +there iz a D “n & such that for 2ach €D there

exists & C_. in C such that |[f{x) - £ (x)| <« €&/3 for all xeC o

e

N R



[] "
Continuity of f and fo implies the existence of gets Cr and Cf

]
i
"
lfa(x) = fO(Q)l < €/3 for all xe&C.  The proposition now follows

contained ir. C, such that |£(X) - £(x)| < €/3 for all xeC, and

from the trisngle inequality.

.7 REMAREK: Brace has shown ,[ 5°2] that the topology on

(S, R) obtained from the uniformity of convergence on all ultrs filters
in S5 1is eguivalent to the topology of almost uniform convergence on S.
For a completely regular space S, this topology is then equivalent to
pointwise comvergence on the Stone-Cech Compactification of S [ 1uuln
This characterization,in conjunction with theorems 1.3, 1.4 and 1.5

hae yielded characterizations of compact sets of functions in both the

pointwise and uniform convergence topologies.



SECTION II

LINEAR SPACES

The following two known examples will indicate the point of view

being adopted.

i

1) Iet B be a Banach space, The bidual B  can be thought
9
of as the completion of the bounded subsets of B in the o (E, E )-

topology. This result also holds for E a locally convex space [8’5]

1

¥
2)  Crothendiek has shown [ 8, 3| that the space (E , @),
' 9 1
equipped with the é'CEq » E )-topology is the completion of E, where
@ denotes the finest locally convex topology which coincides with

7 ]
the o (E , E)-topology on every equicontinuous subset of E .

In the above cases the process of completing or partially com-
pleting a locally convex space can be viewed as a process of taking
biduals. The primary goal of this paper is to establish that the com-
pletion or partizl completion of any uniform Hausdorff space can be
obtained in a similar manner. In a locally convex space, this process
is exact, in the sense that precisely the desired completed space is
obtained. 1In the absence of gtructure or structural maps the desired
space is obtained as a closed subset of a certain "smalle&t“linear space,

In what follows, E will denote a locally convex Hausdorff space,

1 L3 ]
E its dual and E the algebraic dual of E . E will always be



1%
considered as a subspace of E under the natural embedding x - Q,
=N \] ] ‘
where x(x ) = x (x). In order to minimize notational entanglements,

" ? 1]
it will be convenient to denote by E, , the space (E, J) . That

is, the dual of the topological space (E', J) is EZTO

2.1 Definitiqg_: et )f be an arbitrary collection of Cauchy
filters in E. The ‘X’-topology on E' is defined as the topology
of convergence on a set L of filters in E, where a filter 5:‘ is
a member of L if and only if EF'is a member of,zg or 3L'is a con-
vergent filter, If.Qg is the family of all Cauchy filters in E,

this topology is referred to as the ® -topology.

" "

2.2 PROPOSITION: Bc EKCZ ES

1
PROOF: Since the o~(E , E)-topology is the topology of convergence

on all convergent filters (Prop. 1.5) we have,
) ?
5§ > € > (®E, B).

ks
Thus, from the natural embedding of E in E , the desired con-

clusion follows.

Since the topologies related to convergence on filters are
closely related to pointwise convergence topologies it is natural
to expect that convergence of the filters in JZF (Def. 2.1) will
be obtained, initially in a pointwise convergence topology. Thus,
the following lemma will be needed to obtain convergence of these

filters in the topology of E.



2.3 LEMMA : If ?‘ 1s a Cauchy filter in E and g 4is a linear

?
scalar valued function defined on E as follows:
g, ' ' ' '
(x) » gx) for all x &€ E ,

' %
then gf’(embedded in E ) converges to g uniformly on every

1
equicontinuous subset of E ,

PROOF:  See [ 11 |, lemma 8.5.

The next proposition establishes the fact +that not only is E

"
embedded in E\( , but every member of )Zf converges to a limit which

"

is in EX %

2.4 PROPOSITION: Every Cauchy filter % in the collection /@0
"

converges to a point f¢ EB’ for the topology of uniform convergence

1
on equicontinuous subsets of E .

] ]
PROOF': Take an arbitrary xoe E and let 7%, denote the filter

!
of neighborhoods of x, for the ¥~ -topology. The filter of Y?/X

?

converges to X, on every member of /Qf . let F be a filter
1% 1 1
in /‘J . There is a /LLOE E such that (x ) —>/u.o(x ) for
7 1] 1
all x EE . Also, /}%, (x) - xo(x) for each x&E. Thus by
Theorem 1.4, ;f"converges to M, on %X' Since each f in a
member of I is continuous for the Y-topology, M is continuous
1 "
on E for the Y -topology. That is, by Theorem 1.3, /U’OEEY .

By Proposition 2.3, 7}/ converges to /U'o uniformly on every equi-

7
continuous subset of E .



If we denote by Q the point set E U{limits of members of of
"

in E2r } » it has now been established that the linear span of Q
is algebraically embedded in E:, . The next objective is to make
this embedding a topological one. The followihg proposition and
corollaries are intended to establish this fact. That is, 1t will

"

be shown that the space EK can be topologized in such a manner that
"

the original topology on E ca‘n be induced on EC‘EK »

This is equiva-
"

= " 1
lent to showing that EB, can be equipped with the £ (E‘( , E) topology.

1]
2.5 PROPOSITION: The < (E , E)-topology is the same as the

?
Y -topology on every equicontinuous subset of E ,

]
PROOF: The ¥ ~topology is finer than the o (E o E)-—topology.
(See proof of prop. 2.2.) For the converse, consider an equicon-
1]
tinuous subset H of E and let (¢ be a member of oo (Def. 2.1).
"
By Proposition 2.4 there exists an xoe EX such that C converges
to X uniformly on H. Consider a filter I on H converging to
;]
f EH for the o~ (E, E)-topology. Given € > O there is a C in

é such that

| #x) - f(xo)| < ej3 for all x€C and all feH.

(By uniform convergence of C on H.)

Let y be fixed in C. There is an F in f’such that

10

?
| £(y) - fo(y)l < €/3 for all f€F. (By g~(E , E)-convergence of F.)



Thus,
l£(x ) - £,(x ) < |£(x) - £ + |2(y) - £, +{ £, () - £, ()]
< -§-—+ -5€—+3‘~‘— =€ for all fer.

Therefore, F (xo) > fo<xo)° Since each f € H is continuous at x_

"

for the U‘(EY 5

7
E ) topology, the filter I converges to £, on
the filter of neighborhoods of X - Since Cg converges to x.o for

a finer topology, %converges to fo on c .

"

2,6 COROLIARY: If x 1is an element of E_, then the restriction

¥ 1
of x to every equicontinuous subset H of E 1is o (E , E)-continuous.

]
2.7  COROLLARY: E(EY , E ) is a locally convex topology.

PROOF; All that needs to be shown is that the neighborhoods of O

" ¥ "
for é(E‘r’ E ) are absorbing, i.e. that for every xe¢E, , X‘H(H)

]
is bounded in the scslars for every equicontinuous subset HCE . Using
1
Corollary 2.6 and the fact that H is o (E , E)-relatively compact,
it is concluded that x‘ (H) is a relatively compact set of scalars,

H
hence bounded.

"

2.8 COROLILARY : The locally convex space /E’ exists and ’ECEY

Vo~

T
2.9 PROPOSITION: X -topology = o (E, Q) = o (E, E).

1L
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"

~" ?
PROOF: Since E is the linear span of Q in E, , the o (B,Q)-
| - :
topology is the same as the o—(E , E)—-1‘;::)pologyo Note that every filter
A g B E

é in the collection ie a convergent filter in E, for € (E, E )-

. : ,
topology. Thus the —(E , E)-topology is finer than the ¥~ -topology.

9 v

Conversely, suppose f is a filter in E converging to x  for the
Y —topology and let ;c\ be an arbitrary point in Q The filter ?‘

9
converges to x at

3]

, by Propositiocr 1.6, Thus the ¥ -topology
. . - ) -
is pointwise convergence on Q and since x is in the linear span of §

' ~
it follows that (f’converges tox on E ,

PN
2,10 COROILILARY: 5-topology = <= (E , E)-topology.

It is now possible to give the two principal results of this

section. They are contained in theorems 2.11 and 2.12.

N e
PROCF ; As a reeult of linear space duaslity theory, the following

relations are true [ 8, 3 :|

? 7

T-F,o0(F, -6, o€, -5

e
By Corollary 2,7 the space E& can be equipped with the
"

v
£ (E6 s E )-topology, which will induce the originsl topology on E.

" " 1l
2.12  THEOREM: The space E( equipp:d with the & (Er, E )-

topology is the smallest locally convex space F having the property




13
that E is a dense subspace and each a(' in/z? converges to a point

in F.

9 ) ' o
PROOF ¢ E is dense in E by Theorem 2.11 and Proposition 2.2. Each
"

d in £ converges to an x eE, by Proposition 2.4, Since
st N ? /\v v Nv
ECECE and E = E it follows that E = E . Thus, by the

duality theorem for locally convex spaces and Proposition 2.9 ,

~— v

&, o~(E,T)) = E

—~ o~ ~ —~ ] ]
E =

(E ,0(E , E))

i

k o
1" "

1
By Corollary 2.7, E)r can be equipped with the ¢ (Etr , E )-topology.

”

Since E 4is the Ilinear gpan of Q 5 EX is the smallest locally

convex space containing E and the limit points of all the filters

in the collection ,@0 ¢

It should be noted that the ¥— and &- topologies are the weak
) ? N ]
topologies with respect to the dual systems ( E, E ) and ( E, E ).
2: 13 APPLICATIONS OF THEOREM 2.12

1) Completions. ILet )f be the collection of all Cauchy filters.

2) Quasi~-completions, Iet)?f be the collection of all bounded

Cauchy filters. =

3) Biduals. Iet »‘8 be the collection of all bounded weak

Cauchy filters. In this situation the X -topology is the wcoarsest
19 [] "
topology f such that (E , 3“) = E . That is, X 1is the weak

]
topology with respect to the B(E , E)-topology.



1h

4) LE ,ng is taken to be the collection of all precompact Cauchy
"

filters ( f is precompact if it contains a precompact set), then E)"

hae the property that every precompact subset of E has a compact

1"

closure in E_ .
~losur v

5) By taking J to be the Frechet filters agsoclated with a

family cf sequences, arbitrary familjes of sequences can be "completed."

6) A set ACE 1is said to be ;Eal-comp.‘lete, if every Cauchy
filter in A +which contains a set of cardinality ;\\f q converges to a
point in A. [ i 2] . Such a filter is called an ;\t[: amCauchy filter.
By taking 2? to be a set of ;If a-Cauch‘y filters an ;\{:a-partial

completion of E can be obtained.



SECTION III

UNTFORM SFACES

Throughout this section Xy . will denote a point zet X with a
uniform structure 2{/ . The family C* (or Cu'(X% )) of all uniformly
continuous real valued functions defined on Xu’ will play a role
analogous to that of E' in Section II. The set X will always be
considered as a subset of (Cu)*' under the natural embedding x - ;(\
where x(f) = f(x). As in Section II, the main concern will be the

!
proper topologizing of the space Cu; Thus, the notation C: will be
convenient for the dual of the linear topological space (Cu, Y ) where
Y~ will be some locally convex topology. The Cu—uniformity on X will

be understood ‘to mean the uniform structure on X which has a base

consisting of sets of the form U(f,¢ ) = {(x, )| | £lx) - £(y)| <‘_E}.

Do L PROPOSITICN: X can be embedded as an algebraically free subset
¢
7

topology (the topology of pointwise convergence ),

for any ‘topology \7 which is finer than the U-(Cu', X)-

PROOF : X can be embedded in (C") by the remarks above. Iet EF be
R ) u . . e £ AU -
g filter in C converging to fo in the o~(C7, X)—'topologyu That
’ \ . [N " A A\ . ’
is, g (x) converges tc f (x) for each x 1in X, Then x( ¥ ) = ét(x)
v o . /

ity s D ool U !
converges to x:(f‘o)o hus x £(C”, o= (C", X)) .
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?
To prove that X is algebraically free in %: y, sSuppose that the
finite subset Xy § of X is given and that there exists a finite
) 7 I<i<k
set of scalars {éqg with the property that at least one a is
P retex 4
nonzero and
k- .
A\
a,x, = 0,
E 1
1
k k ‘
" . R '
That is, ( 2:: aixi) (£) =- E 'aix4(f) = 0 for all fecY, Since the
1 - 1 -

ﬁZ{; -topology is regular, finite sets in Xu' are closed. Hence for each
x,, there exists an £ €C" [9, 1 7] such that £,(x) =1 and

ok

fi(xj) = O for all i § j. Therefore,

oy
=

N = Posiy P
o = 8% (f,) = g aify(x) = ay for 1=, ..,k

in contradiction to the earlier assumpticn.

REMARK: In all that follows, X will always be considered as a subset
1
Sy

J

of

s Where Qj is some locally convex topology finer +than the
pl " 3 - PR L ,
o (€7, X)-topology. As in the linear space case, it is desirable to

have this embedding be a topological one, Thus, the next objective is
1

N ! U o " e oE
to equip the space C with a topology which will induce the 2/(

J
topology on X,



i

3.2 PROPOSITION: The oJ—(X, Cu)-topology on X is the same as the

u ~-topology.

PROOF: That the o~ (X, Cu)-topology is coarser than the L -topology
follows from the continuity of each f in Cu° Conversely, let U[_—_ x:_l
be a neighborhood of x for the Z{-topology, Since the 2{ ~-topology
is completely regular and XZL is a uniform space, there exists a
function f in Cu [9, l:] with the property that f(x) = O and

f(I}ExJ]) = 1. ILet € >0 be given and denote by Ve the open interval

(-, &€). Then f—'l(Vé ) U[_x]. Since I"-'L(‘Vé ) is a base set for

the o (X, C")-topology the desired conclusion is obtained.

v v

3o 3 COROLLARY : The O‘(C;1 5 Cu)-topology on C;' induces the

U -topology on X.

1
We note that the Cu-uniformity on the space C; does not

necessarily induce the uniformity Z( on X. It is clear that the
c'-uni formity on X is coarser than the 2{ -uniformity, but it is
evidently unknown as to whether or not the Cu-uniformity is identical
with 2( » It is identical in some cases. For example, the usual uni-

formity on the real line can be obtained from Cu(TR).

i

]
5.4  PROPOSITION: X is a closed subspace of (Cu, O‘(Cu, X)) Cdli
1]

for the O((;: B Cu)—topology.,
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PROOF : The proof is divided into two parts. First it is shown that

1

X is a closed subspace of its linear span, spX, in o for the
1

o
o= (spX, C')-topologysand then that spX = c:_ .
k
let v = E a.Xx., k>1, a L0 fori=1, ..., k, be an
1 &, I i 4
element of spX. Consider the neighborhood V of vy,
_k
(y) Bt " N
V=V =9 2EC || || (2.} -~ a.x, (f,)] <€ 1<i<k(,
f o~ J L R, =+ 2
Losiil
K, 1

where the fj's are defined as follows: There exist neighborhoods

fo.-] of the x,'s such that
i i

U[x;]ﬂUl:xj__] = ¢ for i1 {:j.

: : : u o 2&
Let f, be the member of C  satisfying f, (x,) = and £(U[x,]) = O.
J Jd" & J J
Thus, V can be written as
]
Vo= ?c‘ecc‘,:u?c(fj)_ee <€ l<i<k}.

Consider an x€X such that % is in V. If x,ﬁU[xi] for 1 < i <k,
N\ E

then x(fj) =0 for 1<1i<k and x¢ V. If st[xi] for some

index i, then x%U[xJ,] for all j £ i and again |3?(:f‘lj) -yl =2e>e€

for all j £ 1 and thus x#V. Therefore it is concluded that V()X = ¢

Thus X is o (spX, C")-closed in spX.
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For the final part of the proof, note that the locally convex
spaces  (spX, o (spX, C")) and (€%, o—(c%, spx)) are in duality
[ 8,5]° Since the c)-(cu, spX)-topology is the ssme as the

Cr'(Cu,X)—topology it follows that
? u u ‘ﬁ'
& £ (C s oC, X)) 5 (C 5 o—(c y SPX‘\/‘) = spX.

The importance of Proposition 3.4 in this development is to show
1

that the operation of closing X in g: does not add any new points to
X. The technique for obtaining the completion or partial completion of
the uniform space Xu- wi%l be to put a suitable topology \T on ¢% and
show that closing X in %: adjoins precisely the desired limit points
to X.

The ¥- and b®-topologies are defined on OV in precisely the same

manner as they were in Definition 2.1. Again, it is seen that the

¥ -topology is finer ?han the cr(Cu,X)-topology and as a result, X

can be embedded in c: . In all that follows, X will be identified
9
with its image in Cs'o
)

u 1 ; 2 A i s
By Corollary 3.3, the ercz , C7)=-topology induces the ZL topology

on X (since U.-topology = o=(X, Cu)-‘topology)° It is now necessary
)
: iy u uy .
to construct a uniformity for the CP(QK , C')-closure X of X in

¥
(B u

UY which will induce the uniform structure ZL on X This can be done

by simply closing each set U in el in the product topology
v ? ] '
Cy'(qi > Cu)X c7—(g; 5 Cu) on C:'x C;. Then V 1s a member of l/A
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if and only if V = U for some U in U . The uniformity thus obtained

will be denoted by 2A.

3.5 PROPOSITION: The W uniformity, defined above, is a uniformity
7

]
on the O.‘(C:‘ ’ c")-closure X of X in C:’ and induces the
2L -uniformity on X.

]

"X o—(‘: , ¢™)-topology in-

]
PROOF: First, note that the o~(c" , C
¥
duces the product uniformity topology ( U X 2L -topology) on Xx X.
That U is a uniformity on X then follows upon examination of the
bage sets for the product topology. Since Z( has & base of sets which
are closed in the product uniform topology it follows that l_fﬂ IxX =10

for any U 1in that base for the uniformity Z{ » Thus, 7I induces

U on x [10, 6].

5.6 PROPOSITION: The u -topology on X 1is the relative topology
?

]
generated on X by the (7-((.‘);l B Cu)-topology on C

o

th
¥
PROOF: The space Cu( 5(:21) consists of the unique extensions of the
functions in C7(X) ]:10, 6] . Thus C“=zc¢%{ X_ ) and the proposition
U

follows from Proposition 3.2,

The following theorem is the uniform space analogue of

Proposition 2.k,



Bl PROPOSITION: Every Cauchy filter in the collection & converges

v ¥

to a point in C; for the g—(C: , ¢)-topology.

PROOF : By the definition of the Y -topology, every filter of neighbor-

noods in (€%, ¥ ) converges on every member of of (Def. 2.1). Ilet g

be an arbitrary function in ct and %g_ be the filter of neighborhoods
of g for the Y-topo.‘logy, Let i be any member of &£ | Since &
is Cauchy and every g¢ Cu is uniformly continuous it follows that

F(g) is a base for a Cauchy filter of real numbers. Thus, there
exists a function h E(Cu)* such that < (g) »~ h(g) for each geC™
Also, 7%’ (x) > g(x) for each xe X. Applying Theorem 1.4 to the
filters &~ and 7%’ it is concluded that g:’converges to h on nr-
Since each x 1n a member of g’ is a continuous function on Cu for

the Y -topology, Theorem 1.2 implies that h is continuous for the
1

¥ -topology. Thus it is concluded that h 1is in C? o

It should be pointed out that, in the uniform space theory, there

1
is no need for an analogue to Lemma 2.% since the G‘(C; i Cu)-topology

induces the ?/{ -topology on X.

As in Section II, Q will denote the point set X U Elim'its in

]
C: of members of ,-Q j( . Proposition 3.7 establishes that the set Q
| §

exists and thus, XC q & X Cl\; , where all of these spaces are
7

equipped with the topology induced on them by the a‘(C;lr o 55 15

s 4
topology. The uniformity &L on X induces a uniformity W on Q

. . B .
(U = {U [\ R XQ for all U & u% ) which in turn induces the

21



uniformity U on X. Hence the following inclusions are valid:
X C Q,.,© X and it can be concluded that the space X (defined
u W w

1]
in the introduction) exists and is contained in C: . Since each function

in Cu has a unique uniformly continuous extension to f‘ﬂ_ it can be
acheluded that £° = cu(xu) = G Qu’ ) = o —ia) [10,8]. The uniform

space analogue to Proposition 2.9 can now be stated.

5.8 PROPOSITION: On C", the ¥-topology = o (C%, Q )-topology

- o (c%, sp & )-topology.

PROOF': See proof of Proposition 2.9.

A
Ietting X denote the point set X U {limits in C: of all Cauchy

filters in XZ{_E » the following corollary is also valid.

A
5.9  COROLLARY: The B&-topology on C” 1is the same as the o~(C%, X)-

topology.

1 ?
%.10 THEOREM: The T(c;- c")-closure X of X in c; , equipped

with the 2{ -uniformity, is the partial completion 7(/ of Xu.
Mo Bow o

PROQF: All the sets X, Q, and X are equipped with the relative

§
topology generated on them by the O—(C; 5 Cu)-topology on C%, Each
Cauchy filter in J converges to a point in Q by Proposition 3.7. By

the remarks following Proposition 3.7, the uniform space Qu, contains

X% as a dense subspace. Thus, all that remains to be proven is that

22
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X = § . This is done in the same manner as in Proposition %.4. That is,

by Proposition 3.8 and linear space duality theory, the linear span of
¥
is C~ . Hence, by the same argument used in Proposition 3.4, <§ is a
4 v

closed subspace of 9? . Since Xc:CRc: X 1t is concluded that X = CR,

5,11 THEOREM: The o(Cy , C")-closure X of X in C; equipped

-\
with the izwuniformity is the completion Xtt of X?’L'u

PROOF: All that needs to be proven is the completeness of X . This

—

VE
follows from the fact that every Cauchy filter in Xu. converges to a

o

point in X _ , and the density of X in X_
g U 7
An interesting application of Theorem 3.10 and Corollary 3.1l

is the obtaining of another representation of the Stone-Cech Compacti-

fication of a completely regular topological space.

e
5. 12 STONE-CECH COMPACTIFICATION

Iet X be a completely regular topological space, with topology :E
in which points are closed (a Tychonoff space) and ¢ - C*(X) be the
family of all bounded continuous real valued functions on X. The
functions in C* induce s Hausdorffuniform structure C* on X in a
natural manner., A base for the C*-uniformity consists of sets of the
form U(f,& ) = {Kx, y)| |£(x) - £(y)]| <&, f‘eC*.} . The C*-topology
on X is simply the topology of pointwise convergence on C* (i.e. the

.’:, ‘K.
g— (X, ¢')-topology). Furthermore, the C -topology is the same as o .



It is easy to see that the uniform Hausdorff space X , 15 precompact

(totally bounded) [ 6,6 ] . Thus the problem of compactifying X can
be interpreted as one of completing %E*f That is, the Stone~€ééh

/\
Compactification pX of X 1is the completion %t¥ of X s It

* e
should be noted that the space C is the same az C° (X

* U,
it is sufficient to use the space € in the role of CJ(%Q*) in
A\
Theorem %.10. Thus Corcllary 3.1l implies that X is the

Y % ) ¢ o @ *
o (s , C)-closure of X in the topological space (Cg a=(cs , C))

Corollary 3.9 combines with a theorem of Brace [ A T to
.* .
characterize the d-topology on C ag the topology of almost uniform

convergence on X.



SECTION IV

TOPOLOGICAL GROUPS

In order to maintain uniformity of notation and to make the
analogy between topological groups and linear spaces clearer, the
character group of & topological group G will be denoted by’G'
and will be called the dual of G.

It is not always possible to find a group completion of an
arbitrary Hausdorff topological group. Thus it will be convenient
to begin with a case for which it is, namely an abelian topological
group having enough characters to separate points. For such groups
there is a relationship between G and Gﬂ which is exactly the same
as that enjoyed by a locally convex linear spsce E and its dual Ev,
The precise relationship is the content of the following proposition.
4,1 PROPOSITION: Let G be an abelian topological group with enough
characters to separate points. Then G and Gv equipped with the
(G, GC) and cj‘{Ga, G)-topologies respectively are in duality.
That is, (G, (G, Gv))' =6 and (G-E, O'*(Gv, G)) = G.

g

bl
PROOF ; From the definition of the o~(G, G )-topology, G is the

[]
dual of (3, oG, G )). For the converse, let G, be the group G

d
i
equipped with the discrete topclogy sand denote by Gd the dual of

9 o0 ;
Gdu Equip Gd with the cr(Gd, G)mﬂopoisgy (note +that this is the
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topology of uniform convergence on compact subsets of Gd)“ Since the
]
discrete topology is finer than the original topology on G, G can
b 7 i i
be embedded in Gy, i.e. G < Gy It will now be shown that G is

9 ¢
dense in Gd for the c*(Gd, G)-tOpol,ogy; The topological group
] ¢ % ) .
<Gd~’ OniGd" G)) is a locally compact group, since it is the dual of

the leocslly compact group Gd equipped with the topology of compact

v g
convergence on Gg. It can be assumed that (G, o-(G, (G)) is a

. L0
closed subgroup of (Gd, cr{Gd, G)); ir not, close it. Thus, by a

?
corollary to the Pontrjagin Duality Theorem [ 7, 61, G is
. ? - v
g-*((}d, G)-dense in Gd" It can now be concluded that any character
9 1 o 9
on (G ,o=(G , G)) can be uniquely extended to acharacter on (Gd,d‘(Gd,G))
- 0 R
[ 10, 6 |. Thus, the dual of (G , o~(G ,G)) can be identified with

! ¥ 7 ’ q
the dual of' (Gd, o‘(,C-d, G)). Applying the Pontrjagin Duality Theorem
?

] 9 ] 1]
to the group Gy 1t is seen that (Gd, o—-(Gd, G)) =G. Thus (G ,o (G ,G))

!

~

= 3, which was to be proven.
In what feollows, G will denote a topological group, with topology

j and having enough characters to separate points. The ¥ and -

?
o]

topologies on G will be defined exactly as in Definition 2.1l. Both
1 —

X and & are Hausdorff group topologies for C [ 5 2:] and it is

clear that ¥ and ® are finer than O'(GI,G),,Thus_, it can be concluded

9 . i
that d\r = (G, ¥ ) is & topological group and G‘CG‘r . Furthermore,
0 " "
(G, g=(G, G )) is a subgroup of (Gr ¥ o-'(Gr , G)).
"
As in previous cases, the next cbjective is to topologize G_{ with

a topology J such that Y induces :7 on G. The next +two propositions



establish that such a topology can be constructed.

"

1" ]
4,2 PROPOSITION: G is og~(G_, G )-dense in Gx y

]

1 ? 7 ? ]
PROOF: Since G« G_ < (G, 4) and G 1is dense in (G ,d)

Y
1 " 1
for the topology of pointwise convergence on G , the U{GX ,G )-

1
density of G in G-X follows.

Denote by ?Z the filter of neighborhoods of the identity e

—

i 1}
for the j’v-'topology and by 72 the collection of U—(GX, G )-
1"

closures in G\( of the members of }2 o

L,3 PROPOSITION: The collection 72 is a basis of neighborhoods of

— "

e for a Hausdorff group topology J in G‘_ which induces Jon G.

FROOF : From the properties of the sets in 72 , 1t 1s clear that

6)?, satisfies the neighborhood axioms for a topology. Since :f

is Hausdorff, it follows that \7 is Hausdorff. It remains to show

e

1
that  is a group topology for G%’ . f(a), Let W be a member of

‘ﬁ . There is a V in 72 such that V'V W and hence V.V & W.

—

Thus in order +to show that there exists a V in ')’l such that
VeV o W it is sufficient to show that VeV € VeV . ILet xye ViV .
There are filters < and ,8 in V such that &F (h) + x(h)

o Vi v
and }27 (h) » y(h) for all h in G . Now, consider the filter

F Y in v-v. Since FeoH () = Fm)LY 1) > xMh)y)

] P~
= x.y‘(.h),\/ hgG, it is concluded that xy € V'V and hence that



T+Te W (b), Let W be a member of ‘Y. It must be shown that

—

there exists a U in N such that U < W. There isa U in
.| — __-"“L 1
% such that U~ < W . Thus it is sufficient to show that U C U 5
— 1 -1 = L
Let xgU ., Then x & U and there iz a filter 3 in U such

-1 = A ! . . . .
that :'F' (h) » x (.b.) for all heG . But this implies that
s (h) + x(h) and it is concluded that xe& U

It is noted that the J -topology has a base consisting of
1 ]
sets which are GJC“( s G )-closed.

7
w4  IEMMA [ U, II, 3]. Let J and J e two uniformities on

a set X such that J 1is coarser than :( and J has a basis of
I 7
sets which are closed in the T x J ~product topology. Then, if
-
3‘ ig a filter on X which 1s j -Cauchy and 3 -convergent

to a point x, }.LS jwcon:v'ergen't to X.

h,5 PROPOSITION ; Every member of the collection Af converges

" —

to a point in G for the J - topology.
.8
PROQOK: Ry the ssme argument used in Proposition 2,4k every
1] ; " ]
filter in x? converges to a point in GK‘ for the a—(Gx, G )-

topology. Applying the sbove lemma to the topologies J  and
0 ]
O.«(GX, G ), it is concluded that these filters converge in the

—

J -topology.



"
Now, denote by Q and P , the point sets G O {']_imits - GY of
filters in & } end ¢ (U { limits in G; of all Cauchy filters
in GE . The smallest subgroups of L; containing Q and P will
be deroted by E ) :l and [ P]o Propositions 4.3 and k.5 have
established the fact that the partial completion G and completion

A r uipped
G of G exist and are in fact the groups L S ] and I:P_] equippe

with the relative topology generated on them by the J -topology.

$
4.6 PROPOSITION: Y -topology = o=(G , & )-topology

= O"(f}, 1‘_‘ Q ] ;\...“r_,opology»

PROOQF: See Proposition 2.9.

\ — -— 1 1]
L.7  PROPOSITION L] 1 =¢.
A\
PROOF ; It has been established that GC[ Q _JC€ G and
. oA
since G = G the proposition follows.

—

"
4.8 THEOREM: The group Gy , equipped with the J -topology,

is the smallest Hausdorff topological group F containing G as

a dense subgroup and having the property that every Cauchy filter

in .J) converges to a point in F.

—

"
PROQF ; The group G can be embedded in (Gb’ : J ) by the remarks

preceding Proposition 4.2 and by Proposition 4.3, By Proposition 4.6,

29
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i ~
every filter in XF converges to a point in G for the J -topology.
Applying Proposition 4.1 to the group I: S :] in conjunction with

Propositions 4,6 and 4.7, it is seen that

[g]1-(87, LI, LI -E,orE,LolN-g..

"
Thus, by the definition of I: Q -J, Gy is the smallest group con-
taining G and the desired limit points,and the theorem follows.
" T
Lk, 9  COROLLARY: The Group Gg equipped with the :,7 -topology is
A
G

the completion of G.

The remainder of this section is devoted to the problem of

"completing" an arbitrary Hausdorff topological group G.

Now, let (G,*, J ) ve an arbitrary Hausdorff topological group
and consider the uniform space G, , where the R -uniformity has a

(d

base consisting of subsets of GxG of the form:
R(V) = {(x, ) xy_la V, for V a neighborhood of the identity e in G} .

The object of what follows is not necessarily to construct a group

o L
completion, but rather to construct a topological group (G,*, J )
with the property that an arbitrary collection of 771 -Cauchy filters
converge to points in ‘& and G is a dense subgroup of G. When a

group completion exists (e.g., when G is abelian) it can be obtained
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by the same methods used here. The space of all uniformly continuous

real valued functions defined on G_ will be denoted by C*. The

R

Y- and ®&-topologies will be defined in the Same manner as in

gection IIT.

5. 10 PROPOSITION: The q{ -topology and the o~ (G, Cr)-topology

are the same as the group topology :r.

PROOF': That the 'ﬁl -topology is the same as the CF(G, Cr)-topology »
see leo, 6:]. The ( -topology and the o—(G, Cr)-topology are

+he same by Proposition 3. 2.

By the results of Section III it is seen that the completion

[partial completion] of the uniform space GR, can be obtained by

1
closing G 1in the space Cg rcg | and equipping G with the

i

Ql‘-uniformity. The only question remaining is whether or not the group
operation can be extended to 5, i.e. is G a topological group? In
order that G be a topological group, the following maps must be extended:

1) (x, y)= «xy

2) x-—» i

since (x, y)—> xy is not uniformly continuous in general the usual
extension theorem will not work. However the following proposition

shows that this extension can always be made.




4.11 PROPOSITION I:S_l: Let F and /8 be two Cauchy filters

— XY, of :?X)g

on G‘R.“ Then the image, under the mapping (x, y)

1s a base for a Cauchy filter on G_ .

R

To be able to extend the map x = x T to G it is necessary
and sufficient that the image of a Cauchy filter on G‘R, by this map

be a Cauchy filter base on QR. . This is not always the case. There

are examples of topological groups for which this condition is not
satisfied [ 5:[_- If this condition is assumed, then it is easy 1o
see that both the partial completion and the completion of QE become

topological groups.
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