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This dissertation deals with an investigation of the nature of asymmetry in

�uid criticality, especially for vapor-liquid equilibra in one-component �uids and

liquid-liquid equilibra in binary �uid mixtures. The conventional mixing of physical

variables in scaling theory introduces an asymmetric term in diameters of coexis-

tence curves that asymptotically varies as
����eT ���1��, where �eT = (T � Tc) =Tc is

the relative distance of the temperature T from the critical temperature Tc. "Com-

plete scaling" implies the presence of an additional asymmetric term proportional

to
����eT ���2� in diameters which is more dominant near the critical point. To clarify

the nature of vapor-liquid asymmetry, we have used the thermodynamic freedom of

a proper choice for the critical entropy to simplify "complete scaling" to a form with

only two independent mixing coe¢ cients and developed a procedure to obtain these

two coe¢ cients, responsible for the two di¤erent singular sources for the asymmetry,

from mean-�eld equations of state. By analyzing some classical equations of state



we have found that the vapor-liquid asymmetry in classical �uids near the critical

point can be controlled by molecular parameters, such as the degree of association

and the strength of three-body interactions. By combining accurate vapor-liquid

coexistence and heat-capacity data, we have obtained the unambiguous evidence for

"complete scaling" from existing experimental and simulation data. A number of

systems, real �uids and simulated models have been analyzed. Furthermore, we have

examined the consequences of "complete scaling" when extended to liquid-liquid co-

existence in binary mixtures. The procedure for extending "complete scaling" from

one-component �uids to binary �uid mixtures follows rigorously the theory of iso-

morphism of critical phenomena. We have shown that the "singular" diameter of

liquid-liquid coexistence also originates from two di¤erent sources. Finally, we have

studied special phase equilibria that can only be described by including non-linear

mixing of physical �elds into the scaling �elds. Based on scaling and isomorphism,

an approach is presented to represent closed-loop coexistence curves and expressions

to describe the critical lines near a double critical point (DCP) are derived. The

results demonstrate the practical signi�cance of applying scaling and isomorphism

theory to the treatment of phase equilibria in chemical engineering.
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CHAPTER 1

INTRODUCTION

A variety of physical systems exhibit critical phenomena which have been a

popular subject of many theoretical and experimental studies since the 19th century.

Among them, studies of critical phenomena in �uids, such as vapor-liquid critical

phenomena and liquid-liquid critical phenomena, are very important for chemical

engineering.

It is well known that the thermodynamic properties of �uids exhibit anom-

alous behavior near the critical point. Asymptotic non-analytic behaviors near the

critical point can be described by asymptotic power laws. For example, the isother-

mal compressibility obeys a power law with an exponent larger than unity, and the

isochoric heat capacity diverges at the critical point.1, 2 Another important prin-

ciple is critical-point universality, which means that the e¤ects of the microscopic

structure of �uids on thermodynamic properties become unimportant in the critical

region.4, 5 Both the nonanalytic singular behavior of the thermodynamic properties

and critical-point universality are consequences of the presence of long-range critical

�uctuations of an order parameter (density in one-component �uids or concentration

in liquid mixtures). In the vicinity of a critical point the spatial extent (correlation

length) of these long-range �uctuations is much larger than any molecular length

scale. This is the physical origin of critical-point universality. Furthermore, because

the correlation length diverges at the critical point, the behavior of the thermody-

namic properties becomes singular. However, the asymptotic scaling laws are only

1



valid in a narrow range around the critical point. Corrections to the scaling laws are

necessary if thermodynamic-property data are to be represented in a larger range.6

The long-range �uctuations of the order parameter can be neglected far away

from the critical point. Then, classical (mean-�eld) models, such as the Van der

Waals equation or a Landau expansion, may be appropriate to describe the state of

�uids. The earliest qualitative explanation of critical phenomena was proposed by

Van derWaals who presented his famous equation of state in 1873. This equation, as

well as all its further modi�cations, implies a quadratic parabolic coexistence curve

and a �nite jump in the isochoric heat capacity.7 Although it can not describe

quantitatively the anomalous behavior of �uids near the critical point, the Van der

Waals equation of state is still notable and remarkable because of its great conceptual

importance and simplicity.

Between the immediate vicinity of the critical point and the range in which

the mean-�eld theory is valid, a so-called �crossover model� is needed in order to

accommodate the correct critical behavior near the critical point and properly cross

over to the regular behavior in the mean-�eld region.8 Nicoll et al.9, 10 and Chen

et al.11, 12 have developed a procedure to implement the crossover by incorporating

the critical �uctuations into a truncated classical Landau expansion. Within the

critical domain, the crossover is the so-called "asymptotic crossover", which is the

crossover between asymptotic scaling behavior and asymptotic classical critical be-

havior. However, to deal with global crossover behavior of �uids with short range

forces, nonasymptotic aspects of crossover behavior are to be considered.4 Among

nonasymptotic e¤ects the vapor-liquid asymmetry plays an important role, which
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must be correctly incorporated into the crossover procedure.

It has been over one hundred years since the law of the rectilinear diame-

ter was �rst proposed by Cailletet and Mathias.13 It states that the diameter of a

vapor-liquid coexistence curve is a linear function of the temperature T . In the early

70�s several theoretical models predicted non-analytic deviations from the rectilin-

ear diameter. These models, such as Mermin�s decorated lattice-gas model14 and

Widom and Rowlinson�s penetrable-sphere model,15, 16 all predict that the temper-

ature derivative of diameter should diverge as the speci�c heat at constant volume

CV: The heat capacity diverges as CV �
����eT �����, where �eT =(T � T c) =Tc and

� = 0:109 an universal critical exponent. Pestak et al.17 analyzed accurate data of

vapor-liquid equilibria near the critical point in several normal �uids. They con-

cluded that the slope of the diameter far from the critical point and the amplitude

of a deviation from the law of rectilinear diameter within the critical region in-

crease systematically with the increase of Tc and are proportional to the critical

polarizability product, which is a dimensionless measure of three- versus two-body

interactions. However, after studying the rectilinear diameter for a larger number of

normal �uids, Singh and Pitzer18 found that the slope shows a linear dependence on

the acentric factor and concluded that the shape of the pair potential is the primary

factor in determining the slope of the diameter, rather than the relative strength of

three-body interactions. They also argued that close to the critical point the shape

of the two-body potential should have equally important e¤ect on the increase of

the amplitude of
����eT ���1�� term.

From analyzing heat capacity data in two phase region for propane (C3H8)
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and carbon dioxide (CO2), Fisher and coworkers,19, 20 proposed that both d2e�cxc=deT 2
and d2 ePcxc=deT 2 diverge like the speci�c heat when approaching the critical point
along the phase boundary, where � is chemical potential, P is pressure and "cxc"

means the path along the vapor-liquid coexistence. This is known as the so-called

Yang-Yang anomaly.22 To account for this phenomenon, Fisher et al.19, 21, 20 have

developed a concept of "complete scaling" in which the pressure is mixed into the

scaling �elds equally with the temperature and the chemical potential. As a result

of "complete scaling", a new
����eT ���2� term where � = 0:325, which dominates the����eT ���1�� term near the critical point, should contribute to the diameter of vapor-

liquid coexistence curves. The strength of the Yang-Yang anomaly is directly related

to the linear pressure mixing coe¢ cient in ordering �eld:

Anisimov et al.23, 24 have developed a general isomorphism approach to de-

scribe a relation between vapor-liquid critical phenomena in one-component �uids

and liquid-liquid critical phenomena in binary liquid mixtures. This is accom-

plished by generalizing the scaling �elds to linear combinations of three physical

�eld variables related to the temperature, pressure and the chemical potentials of

the components.23, 24 This approach provides a powerful tool to predict the ther-

modynamic properties of �uid mixtures in the critical region.

Liquid-liquid phase equilibrium with an upper critical point or a lower crit-

ical point is exhibited by many liquid mixtures, which has been studied by many

investigators, such as Greer,25 Ley-Koo and Green,26 and Kumar et al..27 In 1983

Greer and coworkers28 analyzed the diameters of the liquid-liquid coexistence curves

of several binary liquid mixtures to study the deviation from the law of rectilinear
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diameter. They concluded that the diameter in some systems could have a singu-

lar term with an exponent 1 � � following the theoretical prediction at that time,

but also a term with an exponent 2�, because of the "wrong" choice of the order

parameter. Damay and Leclercq29 studied the molecular size e¤ect on the asymme-

try of the coexistence curve in binary mixtures. They argued that the asymmetry

of the liquid-liquid coexistence is either due to a molecular-size di¤erence between

components that produces a
����eT ���2� term or to the conventional mixing scaling that

produces a
����eT ���1�� term. Recently, Cerdeiriña et al.30 extended the "complete scal-

ing" to liquid-liquid coexistence in binary mixtures and examined the experimental

consequences.

Some systems show the phase transition twice upon increase of temperature

and �nally return to a state which is macroscopically similar to the initial state.32

An example is a liquid mixture that possesses a closed solubility loop with both

an upper critical point and a lower critical point. With the change of an exter-

nal variable, such as pressure or a chemical potential, the upper critical point and

lower critical point may approach each other and the closed-loop may shrink until

they converge into a double critical point (DCP).32 A simple approach is devel-

oped to describe liquid-liquid closed-loop coexistence curves,31 in which the reduced

temperature is �UL = j(T � TL) (T � TU) = (TLTU)j ; where TL and TU are the lower

critical solution temperature (LCST) and the upper critical solution temperature

(UCST), respectively. Such a procedure was earlier introduced empirically by Davi-

dovich and Shinder.33, 34 Following Malomuzh and Veitsman35, 36 and Anisimov et

al.,23, 24 we show that such a substitution follows from a speci�c nonlinear relation
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between the scaling �elds and the physical �eld variables. Based on the general

isomorphism approach, we have derived equations in terms of temperature, concen-

tration and pressure to describe the critical lines (CL). A complete description of

the phase equilibrium at various pressures including the closed-loop coexistence and

the critical line requires only four system-dependent parameters.31

Contemporarily, chemical engineers often use various molecular models for

process and product design. One popular class of theoretical models is a "lattice

model". It is an important question how real systems can be mapped into "lattice

models". For example, the lattice-gas model is perfectly symmetric, but real �uids

exhibit strong vapor-liquid asymmetry. Even when asymmetry was introduced into

the �lattice model�, it was not clear that all sources of vapor-liquid asymmetry were

taken into account. The motivation of our research is to clarify the origin of the

asymmetry in �uid criticality.

In chapter 2 the classical theory of critical phenomena, based on the Lan-

dau expansion, is discussed. The scaling laws and universality are discussed in

more detail because they are the basis of the modern theory of critical phenomena.

Then the crossover theory is introduced brie�y. Furthermore, the scaling �elds

and isomorphism theory are reviewed to explain how they can be extended for a

description of �uid mixtures. In chapter 3 we introduce the "complete scaling" orig-

inally formulated by Fisher and coworkers,19 and show that only two independent

mixing coe¢ cients are responsible for the vapor-liquid asymmetry upon an approx-

imate choice for the entropy at the critical point. We develop a method to calculate

these coe¢ cients from classical equations of state and demonstrate which molecu-
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lar parameters are responsible for tuning the asymmetry. By combining accurate

vapor-liquid coexistence and heat-capacity experimental and simulation data, we

provide in chapter 4 the unambiguous proof for the "complete scaling". We exam-

ine a number of systems, real �uids and simulated models, and separate the two

scaling-�eld coe¢ cients from two di¤erent sources of the vapor-liquid asymmetry.

In chapter 5 we examine experimental consequences of "complete scaling" when ex-

tended to liquid-liquid coexistence in nearly incompressible binary liquids. We have

shown that "singular" diameter of liquid-liquid coexistence curves also originates

from two di¤erent sources, one associated with a correlation between concentration

and entropy and another one associated with a correlation between concentration

and molar density. In chapter 6, we study some phase equilibria that can only be

described by nonlinear scaling �elds. Based on the scaling theory and isomorphism

theory, an approach to describe the closed-loop curves is elucidated. In addition,

expressions to describe critical lines near a double critical point (DCP) are derived

from the isomorphism theory. The results of this dissertation are summarized in

chapter 7.
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CHAPTER 2

CRITICAL PHENOMENA

2.1 Critical points

Basic observations of critical phenomena were done almost a hundred years

ago, while the modern era of critical phenomena just started in the middle of the

previous century. Although a wide variety of systems exhibit critical phenomena, in

this dissertation, we only discuss vapor-liquid critical phenomena in one-component

�uids and liquid-liquid critical phenomena in binary mixtures.

Assuming an equation of state for �uids in the form F (P; �; T ) = 0; which

de�nes a three-dimensional surface in pressure P; density �; temperature T coordi-

nates, we may consider its projection on to PT plane, as shown in Fig. 2.1. There

are three separate regions in this plane, corresponding to the solid, liquid and gas

phases. The liquid and gas phases are in equilibrium along the vapor-pressure curve

and the triple point is the equilibrium state in which all three phases coexist. The

vapor-pressure curve terminates in the critical point (CP) that is speci�ed by a criti-

cal pressure Pc; a critical density �c; and a critical temperature Tc; which also means

that one can convert a gas to a liquid continuously without crossing the vapor-liquid

phase equilibrium line.3 Since the thermodynamic potentials are continuous at the

transition point, the �rst derivatives such as molar volume and molar entropy along

isotherms or isobars are also continuous, but the second derivatives such as molar

heat capacity and isothermal compressibility are discontinuous, the phase transi-

tion at the critical point is classi�ed as a second-order phase transition. When the
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Figure 2.1: Projection of the P�T surface in the PT plane.

critical point is approached from a temperature T > Tc, some inhomogeneous re-

gions appear and they may have a size of the order of the wavelength of light when

it is close enough to the critical point.3 Therefore, near critical points the light is

scattered strongly, the phenomenon called critical opalescence.3

The critical point is the common point of a binodal and a spinodal, which

means that the critical parameters are determined by (@P=@�)T = 0 and (@
2P=@�2)T =

0: Furthermore, since the isothermal compressibility is de�ned as ��1 (@�=@P )T , it

will diverge to in�nity as the critical point is approached.3 This divergence means

that the response of the density to a very small pressure �uctuation is in�nite, which

causes huge density �uctuations. This is the origin of critical opalescence.

2.2 Classical (mean-�eld) critical behavior

The classical theory of critical behavior in �uids corresponds to the mean-

�eld approximation which assumes that the �uctuations of density or concentration
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are negligible near the critical point. The classical theory is commonly formulated

in the form of a Landau expansion in powers of the order parameter associated with

density.43

For a one-component �uid the molar Helmholtz energy Am satis�es a di¤er-

ential relation

d (�Am) = ��SmdT + �d� = �sdT + �d�; (2.1)

where Sm is the molar entropy, � is the molar Gibbs free energy, � is the density and

s = �Sm is the entropy density. We make all variables in Eq. (2.1) dimensionless

as follows,

T =
T

T0
; � =

�

�0
; A =

�Am
�0RT0

; � =
�

RT0
;

P =
P

�0RT0
; s =

s

�0R
; CV =

CV
R
; � =

�

RT0�20
;

�T = T � 1; �� = �� 1; (2.2)

where CV is the isochoric molar heat capacity, A = �Am is the Helmholtz energy

density, � = (@2A=@�2)T is the susceptibility, P0, �0 and T0 are the classical critical

parameters which may be di¤erent from the actual critical parameters Pc, �c and

Tc, and R is the molar gas constant. Then expanding the thermodynamic poten-

tial A
�
�T ;��

�
as a power series of the order parameter �� and temperature �T

at the critical point, after truncating the expansion and neglecting the asymmetric

terms which are of higher-order than the 4th power term, the following equation is
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obtained:

A
�
�T ;��

�
= A0

�
�T
�
+ �0

�
�T
�
��+ [

1

2
a0�T��

2 +
1

4!
u0��

4]; (2.3)

where a0; and u0 are system-dependent coe¢ cients. The term A0
�
�T
�
is the me-

chanical background and the second term ( linear in �� ) is the caloric background.

The remaining higher-order terms constitute �Acr
�
�T ;��

�
, which represents the

critical part of the classical Helmholtz-energy density,

�Acr
�
�T ;��

�
=
1

2
a0�T��

2 +
1

4!
u0��

4: (2.4)

For this symmetric equation, the following equilibrium condition that comes from

the minimization of �Acr is applicable to solve the vapor-liquid equilibrium curve,

�
@�Acr
@��

�
�T

= 0: (2.5)

The corresponding solution is

��cxc =
�l � �g
2�0

� 1 = �
r
6a0
u0

���T ��1=2 ; (2.6)

where the � correspond to the liquid and vapor branches, respectively. It is clear

that the coexistence curve in this approximation is symmetric. Higher-order odd

terms are responsible for asymmetric features of ��cxc. Therefore, for the asym-
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metric equation the simple equilibrium condition
�
@�Acr=@��

�
�T
= 0 is not valid.

Instead, the general phase equilibrium conditions, Tl = Tg, Pl = Pg and �l = �g

should be applied to get the asymmetric coexistence curve, where subscript l and g

represent the liquid and vapor phase respectively.

The reduced isochoric molar heat capacity CV =T
�
@Sm
@T

�
�
= �T

�
@2Am

@T
2

�
�

exhibits a �nite jump upon crossing the critical temperature,

�
CV

T
= lim

T!Tc

�
CV

T
(T � Tc)�

CV

T
(T � Tc)

�
=
3a20
u0

: (2.7)

The inverse dimensionless susceptibility

��1 =

�
@2�Acr

@ (��)2

�
�T

: (2.8)

varies asymptotically as

T � Tc; � = �c ��1 = a0
���T �� ; (2.9)

T � Tc; � = �cxc ��1 = 4a0
���T �� :

The nonclassical critical behavior is a consequence of the long-range critical

�uctuations of the order parameter. As a result of the density �uctuations, the local

density will actually be a function of the position �!r . In the classical theory such a

spatial dependence leads to the presence of a gradient term proportional to (r�)2
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in the local Helmholtz-energy density. Therefore, the critical part of the classical

local Helmholtz-energy density �Acr corresponding to Eq. (2.4) will actually have

an expansion of the form

�Acr
�
�T ;�� (�!r )

�
=
1

2
a0�T [�� (

�!r )]2 + 1

4!
u0 [�� (

�!r )]4 + 1
2
c0 (r�)2 ; (2.10)

where c0 is an additional system-dependent coe¢ cient which determines the am-

plitude of the correlation length of the density �uctuations.44 c0 is associated with

the range of intermolecular forces and u0 re�ects the energy of interaction between

�uctuations.45 The classical expression of the correlation length � is proportional to

the square root of the susceptibility �

� = (c0�)
1=2 : (2.11)

It thus follows from Eq. (2.9) that � in the one-phase region diverges along the

critical isochore as

� = �
+

0

���T ���1=2 ; (2.12)

where �
+

0 = (c0=a0)
1=2 is the classical correlation length amplitude and + means

above the critical temperature. The presence of the gradient term does not a¤ect the

near-critical behavior of the thermodynamic properties in the �rst approximation.

They still follow the asymptotic power laws with classical critical-exponent values.

However, in the next approximation, square-root corrections appear. Thus, the
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susceptibility in the one-phase region becomes46, 45

� =
�
a0�T

��18><>:1 + u0v0

8�a20

�
�
+

0

�3 ���T ���1=2
9>=>; ; (2.13)

where v0 is the molecular volume. Therefore, the classical theory is valid only when

�T >> NG =
u20v

2
0

64�2a40

�
�
+

0

�6 ; (2.14)

where the parameter NG is the so-called Ginzburg number. This condition for the

range of validity of the classical theory is commonly referred to as the Ginzburg

criterion.47 A discussion can be found in a review by Anisimov and Sengers,4 who

give a rough estimate of NG �= 0:01 for simple �uids near the vapor-liquid critical

point so that the classical equations of state cannot be valid unless �T >> 0:01: If

condition (2.14) is not satis�ed, the �uctuations will give a major contribution to

the thermodynamic properties.

2.3 Asymptotic scaling (�uctuation induced) critical behavior

For one-component �uids, the critical point is speci�ed by the critical tem-

perature Tc, critical density �c and critical pressure Pc. Their thermodynamic

properties near the critical point are best described by the quantities reduced by
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critical parameters. These quantities are de�ned as follows:

eT =
T

Tc
; e� = �

�c
; eA = �Am

�cRTc
; e� = �

RTc
; eP = P

�cRTc
;

es =
s

�cR
; eCV = CV

R
; e� = �

RTc�2c
; �eT = eT � 1; �e� = e�� 1;

�e� = e�� e�c; �es = s� sc
�cR

; � eP = P � Pc
�cRTc

; (2.15)

where e�c is the chemical potential at the critical point.

Power laws: critical exponents and amplitudes: As the critical point is ap-

proached along selected thermodynamic paths such as the critical isotherm �eT = 0,
the critical isochore �e� = 0; or the coexistence curve �e� = �e�cxc =�l��g

2�c
� 1, the

thermodynamic properties of one component �uids satisfy the asymptotic power

laws,43

Path Power law

T � Tc; � = �cxc

T = Tc

T � Tc; � = �c

T � Tc; � = �c

T � Tc; � = �c

T � Tc; � = �cxc

�e�cxc = �B0 ����eT ���� ;
�e� = D0�e� j�e�j��1 ;
eC+V = A+0

����eT ����� ;
eC�V = A�0

����eT ����� ;
e� = �+0 ����eT ���� ;
e� = ��0 ����eT ���� ;

(2.16)

where �, �,  and � are universal critical exponents, B0, D0, A�0 and �
�
0 are system-
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dependent critical amplitudes and the superscripts + and � correspond to T � Tc

and T � Tc, respectively. The singular behavior of the thermodynamic properties

near the critical point is caused by long-range �uctuations of the order parameter

(density in one-component �uids and concentration in incompressible binary liquid

mixtures). The magnitude and spatial character of these �uctuations are described

in terms of a correlation function G, de�ned as43

�2G
�����!r ��!r 0

���� = Df� (�!r )� �g
n
�
��!r 0

�
� �
oE

=
D
� (�!r ) �

��!r 0
�E
� �2; (2.17)

where the brackets h i indicate an equilibrium average over a grand canonical

ensemble, � (�!r ) is the local number density at a position �!r and � = h� (�!r )i is the

average equilibrium density which is independent of the position�!r . The correlation

function G(r) = G
����!r ��!r 0��� measures the joint probability of �nding molecules

in volume elements d�!r and d�!r 0
.43 At the critical point the spatial correlation

function G (r) of the order parameter decays as

G (r) s
1

rd�2+�
e�r=�; (2.18)

where d = 3 is the dimensionality of space and � is a universal critical exponent.

The parameter � in the above equation is called the correlation length, which is

the characteristic range of the correlation function and is de�ned by a normalized

second moment43, 49

�2 =

R
r2G (r) drR
G (r) dr

: (2.19)
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Critical exponent 3-d Ising system classical value
� 0.110 � 0.003 0
� 0.3255 � 0.002 1/2
 1.239 � 0.002 1
� 4.80 � 0.02 3
� 0.630 � 0.002 1/2
� 0.033 � 0.004 0

Table 2.1: Universal critical exponents for three-dimensional Ising systems

The correlation length � diverges at the critical point according to the power law

T � Tc; � = �c � = �+0

����eT ����� ; (2.20)

T � Tc; � = �cxc � = ��0

����eT ����� ;
where ��0 is a system-dependent amplitude of the order of the molecular radius and �

is a universal critical exponent.43 All near-critical anomalies of the thermodynamic

properties, shown in Eqs. (2.16) can be expressed in terms of the correlation length:

eCV s ��=� ; �e�cxc s ���=� ; e� s �=� ; �e� s ����=� : (2.21)

The universal values of the six critical exponents �, �, , �, � and � for three-

dimensioned Ising systems are given44, 50, 51, 52 in Table 2.1. These six exponents

are related to each other by the following exponent relations,

2� � = d�; (2.22)
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A+0 =A
�
0 0.523 � 0.009

�+0 =�
�
0 4.95 � 0.15

�A+0 �
+
0 =B0 0.0581 � 0.001

�+0D0B
��1
0 1.57 � 0.23

�+0 =�
�
0 1.96 � 0.01

�A+0 (�
+
0 )
3=v0 0.0188 � 0.0002

Table 2.2: Universal scaling amplitude ratios for three-dimensional Ising systems

� = �� (2� d� �) =2; (2.23)

 = � (2� �) ; (2.24)

�� = � (2 + d� �) =2: (2.25)

Therefore, only two of the six critical exponents are independent. By taking � =

0:630 and � = 0:033, the other four exponents can be reproduced within their

uncertainties.8

Although the values of critical amplitudes are system-dependent, they are

related by universal ratios so that only two critical amplitudes are independent.

The values of these ratios for 3-dimensional (3-d) Ising systems44, 52, 53 are shown in

Table 2.2.

Critical universality and scaling hypothesis: To characterize the critical be-

havior, systems are grouped into universality classes depending on the nature of the

order parameter. It is commonly accepted that the critical behavior of �uids and

�uid mixtures, regardless of variety and complexity in their microscopic structures,

belong to the universality class of the 3-d Ising model because of possessing a scalar

order parameter.1 This means that they have the same universal critical exponents
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(Table 2.1)54 and the same critical amplitude ratios (Table 2.2),53 which is an exam-

ple of critical-point universality. The modern theory of critical phenomena predicts

that the appropriate �eld-dependent thermodynamic potential 	 contains a regular

background contribution 	r that depends analytically on the physical �elds and a

singular part 	cr,23, 4

	 = 	cr (h1; h2) + 	r: (2.26)

Near a critical point the critical (�uctuation-induced) part 	cr is a universal function

of two scaling �elds, �ordering�h1 and �thermal�h2:

	cr (h1; h2) = h2��2 f�
�

h1

h�+2

�
: (2.27)

The corresponding �order parameter��1 and the �thermal density��2 are

de�ned as �1 = �@ (	cr) =@h1 and �2 = �@ (	cr) =@h2. The universal function

contains two system-dependent amplitudes f�
�

h1
h�+2

�
, and the superscript � refers

to h2 ? 0, respectively.4

The Ising model, which is the simplest prototype of magnetic systems, when

reformulated for the vapor-liquid transition in one-component �uids, is known as

the lattice-gas model. In the lattice-gas model the �eld-dependent thermodynamic

potential 	 is the density of the grand thermodynamic potential �P = 
=V , where


 is the grand thermodynamic potential. To specify the thermodynamic behavior

19



of the lattice-gas models for �uids near the critical point, we have

dP = sdT + �d�: (2.28)

P is decomposed as23

P = Pcr (h1; h2) + P r (T; �) ; (2.29)

where P r (T; �) = Pc + (@P=@T )� �T is a regular background term as function

of temperature T and molar Gibbs energy �, Pcr(h1; h2) is a singular function of

two scaling �elds, a "strong" ordering �eld h1 associated with the order parameter

�uctuations and a "weak" temperature-like �eld h2 associated with the entropy

�uctuations:4, 54

h1 = �e�; (2.30)

h2 = �eT : (2.31)

Thus the ordering scaling �eld is related to the chemical-potential di¤erence �e�.
By de�nition, the ordering �eld is zero along the critical isochore above the critical

temperature Tc and along the vapor-liquid coexistence curve below Tc. The cor-

responding scaling densities �1 (order parameter) and �2 conjugate to the scaling

�elds h1 and h2 are

�1 = �e�; (2.32)

�2 = �es: (2.33)
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Near the critical point the singular part Pcr(h1; h2) satis�es a scaling law in the

form,2, 54, 55

Pcr=�cRTc = ePcr = h2��2 f (z) ; (2.34)

with

z = h1=h
�+
2 ; (2.35)

where f (z) is a universal scaling function.

The scaling densities conjugate to h1 and h2 are

�1 =

 
@ ePcr
@h1

!
h2

= jh2j� f
0
(z) ; (2.36)

�2 =

 
@ ePcr
@h2

!
h1

= h2 jh2j��  (z) ; (2.37)

where

f
0
(z) = df = dz; (2.38)

and

 (z) = (2� �)f (z)� (� + ) zf
0
(z) : (2.39)

The scaling susceptibilities �1 (strongly divergent) and �2 (weakly divergent) are

associated with �1 and �2

�1 =

�
@�1
@h1

�
h2

= jh2j� f 0
0
(z) ; (2.40)
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�2 =

�
@�2
@h2

�
h1

= jh2j��	(z) ; (2.41)

where

f 0
0
(z) = d2f=dz2; (2.42)

	(z) = (1� �) (z)� (� + ) z 
0
(z) ; (2.43)

 
0
(z) = d =dz: (2.44)

In zero �eld h1 = 0 and in the one-phase region, the susceptibility �1 exhibits

a strong singularity, but the reduced isochoric heat capacity density eCV has a weak
singularity:

�1; h1=0 =

�
@�1
@h1

�
h2 , h1=0

= �+0 jh2j
� = �+0

����eT ���� ; (2.45)

 eCVeT
!
h1=0

=

�
@�2
@h2

�
�1 , h1=0

= A+0 jh2j
�� = A+0

����eT ����� ; (2.46)

where

�+0 = f 0
0

+ (0) ; (2.47)

A+0 = (2� �) (1� �) f+ (0) : (2.48)

The order parameter in zero �eld varies along the two branches of the phase bound-
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ary below the critical temperature as

�1 = �e�cxc = �B0 jh2j� = �B0 ����eT ���� ; (2.49)

where

B0 = f 0� (0) : (2.50)

The system-dependent amplitudes are interrelated by the universal amplitude ratios

(see Table 2.2).

Wegner corrections: In practice the scaling laws with theoretical exponent values

are only valid at reduced temperatures less than 10�3.56 It is necessary to make some

corrections to the asymptotic scaling laws in order to describe the data in a larger

range accurately. The renormalization theory predicts the presence of con�uent

singularities in the dependence of the thermodynamic properties on h2 of the order

h�s2 , h
2�s
2 ; h3�s2 ; and so on,6, 57 where�s =0.52 � 0.02 is a new independent universal

correction-to-scaling exponent.58, 59 The expansions are often referred to as Wegner

expansions,6

ePcr = h22 jh2j
�� f0 (z)

�
1 + h�s2 f1 (z) + :::

�
: (2.51)

With the �rst correction to scaling, the power laws for the susceptibility along the

critical isochore become

�1 = �
+
0

����eT ���� �1 + �+1 ����eT ����s + :::

�
; (2.52)
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�2 = A+0

����eT ����� �1 + A+1 ����eT ����s + :::

�
: (2.53)

The order parameter (along the coexistence curve) is

�1 = �e�cxc = �B0 ����eT ���� �1 +B1 ����eT ����s + :::

�
: (2.54)

The system-dependent amplitude �+1 , A
+
1 and B1 are also interrelated by two uni-

versal amplitude ratios A+1 =�
+
1 = 0:9 � 0:1 and B1=�+1 = 0:8 � 0:2, which means

that only one of these amplitudes is independent.60, 61 In addition, the Wegner cor-

rections are also universal: they are present in the thermodynamic properties of any

systems that exhibit scaling behavior near a second-order phase transition.

In principle, including higher-order terms in the Wegner expansion might be

helpful to extend the scaling procedure. However, there is evidence that the Wegner

series has a poor convergence, which means that the range of applicability of a

truncatedWegner series is rather restricted.26 Therefore it is necessary to develop an

alternate procedure that takes a resummation of the Wegner expansion into account

in order to extend the scaling approach to a practical range of temperatures and

densities.

2.4 Crossover between classical and asymptotic scaling critical behavior

The asymptotic crossover is a simple crossover problem, namely the crossover

between the asymptotic singular behavior and the asymptotic classical behavior

within the critical domain. Chen et al.12 have developed a procedure to transform
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an expansion of the classical Helmholtz-energy density into an equation that in-

corporates the �uctuation-induced singular scaling laws near the critical point and

reduces to the classical expansion far away from the critical point.99

As a result of the order parameters �uctuations, the local density will actually

be a function of the position �!r . In the classical theory such a spatial dependence

leads to the presence of a gradient term proportional to (r�)2 in the local Helmholtz-

energy density. Therefore, the critical part of the classical local Helmholtz-energy

density �Acr corresponding to Eq. (2.4) will actually have an expansion of the form

�Acr
�
�T ;�� (�!r )

�
=
1

2
a0�T [�� (

�!r )]2 + 1

4!
u0 [�� (

�!r )]4 + 1
2
c0 (r�)2 ; (2.55)

where c0 is an additional system-dependent coe¢ cient which determines the ampli-

tude of the correlation length of the density �uctuations. We rewrite it in a rescaled

form8

�Acr =
1

2
tM2 +

1

4!
u�M4 +

1

2
(rM)2 ; (2.56)

with

t = ct�T ; M = c���; u = u�u; u�u� = u0=c
4
�; (2.57)

where

ct = a0 (�0)
2=3 =c0; c2� = c0v

�2=3
0 ; ctc

2
� = a0: (2.58)

Here ct and c� are system-dependent scale factors. It should be emphasized that

the crossover transformation is characterized by two important parameters � and

u. The dimensionless cuto¤ wave number � = qD=q0 � qD�
1=3
0 characterizes a
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discrete structure of matter with spacing q�1D , where qD is the actual maximum

cuto¤ wave number of the �uctuations, q0 � �
�1=3
0 is a wave number associated

with the microstructure of the system and v0 is the average molecular volume. For

simple �uids � ' 1 and for a polymer solution with a high molecular weight �! 0.

The second parameter u = u�u is a so-called coupling constant, where u� �= 0:472

is the �xed-point value of the universal coupling constant48 and u = u=u� is a

reduced system-dependent coupling constant. The coupling constant is related to

the strength and range of the intermolecular interaction, such as for the mean �eld

with weak long-range interaction u! 0 and for the short-range interaction u ' 1.

One takes approximate expressions for the rescaling functions T ; D; K; and

U as:

T = Y (2��1)=�s ; (2.59)

D = Y ���=�s ; (2.60)

U = Y �=�s ; (2.61)

K = �

�u�

�
Y ��=�s � 1

�
; (2.62)

where Y is a crossover function. Then replacing the variable t by tT DU�1=2, re-

placing the variable M in the even terms by MD1=2U1=4 and replacing the 1
2
(rM)2

by the �uctuation-induced kernel term �1
2
t2K, one obtains the renormalized critical

part of the Helmholtz free energy density:

� eAcr = 1

2
tM2T D + uu��

4!
M4D2U � 1

2
t2K: (2.63)
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The crossover function Y is to be evaluated from the equation

1� (1� u)Y = uY �=�s

�
1 +

�2

�2

�1=2
; (2.64)

with

�2 =

"
@� eAcr

@ (MD1=2)2

#
t

= tT +uu
��

2
M2DU ; (2.65)

where � is a measure of a distance from the critical point and related to the inverse

correlation length. The critical limit corresponds to �=� �! 1: From Eq. (2.64)

we have

Y �!
� �

u�

��s=�
: (2.66)

When �=� �! 0 which means that Y = 1 and hence T = D = U = 1 and K = 0

the classical limit is reached and the classical expression for the Helmholtz energy

density is recovered. Substituting Eq. (2.59) � (2.65) into Eq. (2.63), one obtains

a crossover equation for � eAcr:
The asymptotic crossover within a critical domain ( �eT < 10�2 ) is inade-

quate to deal with the complete crossover behavior of �uids with short-range forces.

The reason is that for such �uids the classical theory does not become valid until so

far from the critical point that any asymptotic critical behavior has become inad-

equate. Therefore, in real �uids there is no asymptotic crossover. However, in the

Ising model with the various range of interactions there is an asymptotic crossover.4

In order to deal with the extended critical region, where the correlation length is still

larger than the distance between molecules, nonasymptotic aspects of the crossover
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behavior should also be considered.4 The nonasymptotic crossover theory has been

successfully applied for a description of liquid-liquid equilibria in polymer solutions,

where crossover between asymptotic scaling behavior and mean-�eld theta-point be-

havior is controlled by the polymer molecular weight.38 In a polymer solution, like

in other liquid mixtures, u ' 1 and crossover is driven by � � 1=
p
N ! 0: However,

for low-molecular weight solutions, the necessity of using the crossover approach is

not as obvious as for polymer solutions. In this case, both u and � for liquid mix-

tures are usually very close to unity. The behavior of these systems is close to the

Ising limit in a large range. Therefore, for phase-equilibria in many liquid solutions,

especially with closed-loop coexistence, the asymptotic scaling plus �rst corrections

to the asymptotic laws may yield reasonable and practical approximations.

2.5 Isomorphism of critical phenomena

Thermodynamics itself does not specify uniquely which set of variables is to

be preferred in describing the critical behavior of �uids. Therefore, for real �uids it

is unknown which variables are to be preferred in describing critical behavior, and

the choice we have made is based on empirical considerations of symmetry.43 In the

lattice gas the coexistence curve would be perfectly symmetric. But in a real �uid

the lack of complete symmetry is evident from the average coexisting densities, which

is approximately a straight line, the rectilinear diameter, but which does not coincide

with the critical isochore � = �c. In �uid mixtures, additional thermodynamic

variables, concentrations, appear, while the number of the theoretical scaling �elds

remain equal to two. Therefore, the choice of the appropriate variables become
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even more ambiguous.

To understand the thermodynamic behavior of �uids and �uid mixtures near

critical points, one needs to distinguish between �elds that are intensive thermo-

dynamic properties and densities that are thermodynamic properties conjugate to

the �elds.117, 62 Fields (T; P; �; ��21; etc.) are to be the same for all coexisting

phases, while densities (S; V; �; x; etc.), in contrast, di¤er for coexisting phases.

��21 = �2 � �1 is the di¤erence of chemical potential between the two components

in the liquid mixtures. The order parameter is always related to a correspond-

ing density variable. The thermodynamic potentials depending on the �elds and

densities are transformed into each other by the Legendre transformations.

A general formulation of isomorphism has been implemented by Anisimov

et al.2. The rules for choosing the isomorphic thermodynamic values for three

systems, the vapor-liquid critical point of a pure �uid, and the vapor-liquid and

liquid-liquid critical points of a binary liquid mixture, are presented in Table 2.3.2

Scaling �elds and mixing of physical �elds: The lattice gas has a special sym-

metry: the order parameter is symmetric with respect to the critical isochore and

the ordering �eld is an anti-symmetric function of the order parameter. Real �u-

ids approach such a symmetry only asymptotically close to the critical point. The

vapor-liquid asymmetry is then commonly incorporated into the lattice-gas analogy

by linear mixing of two independent physical �elds (chemical potential and temper-
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Quantity
L-G Critical
Point of a one
component �uid

L-G Critical
Point of a binary
liquid mixture

L-L Critical
Point of a binary
liquid mixture

Density
Variable

Density

� =
�
@P
@�

�
T

Density of
a mixture

� =
�
@P
@�1

�
T;��21

Concentration of
solute

x2 = �
�

@�1
@��21

�
T;P

Field Vari-
able

Chemical Potential
� = Am + PVm

=
�
@�Am
@�

�
T

Chemical Potential
of solvent

�1 =
�
@�A�iso
@�

�
T;��21

Di¤erence of
chemical potentials
��21 = �2 � �1

=
�
@�
@x2

�
T;P

Thermo-
dynamic
potential
in density
variables

�Am = �P + ��
d (�Am) = ��SmdT

+�d�

�A�iso = �P + ��1
d (�A�iso) = ��SmdT
+�1d�� �x2d��21

� = �1 + ��21x2
d� = �SmdT+
VmdP + ��21dx2

Thermo-
dynamic
potential
in �eld
variables



V
= �P

�dP = ��SmdT
��d�



V
= �P

�dP = ��SmdT
��d�1 � �x2d��21

�1 = �� ��21x2
d�1 = �SmdT+
VmdP � x2d��21

Table 2.3: Thermodynamic potentials in terms of density and �eld variables
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ature) into the de�nition of the two scaling �elds23, 63:

h1 = a1�e�+ a2�eT ; (2.67)

h2 = b1�eT + b2�e�: (2.68)

where ai and bi are system-dependent coe¢ cients to be determined from a compar-

ison with experimental data. The scaling �elds may be normalized in such a way

that a1 = 1 and b1 = 1. The coe¢ cient b2 in expression (2.68) is often referred to as

the mixing coe¢ cient.64 It has an important physical consequence, since it causes

a nonclassical behavior of the coexistence curve diameter as discussed below.

Comparing

d ePcr = e�d�e�+ esd�eT ; (2.69)

with

d ePcr = �1dh1 + �2dh2; (2.70)

it is easy to get

�e� = a1�1 + b2�2; (2.71)

�es = a2�1 + b1�2: (2.72)

Solving above two equations, the densities conjugate to h1 and h2 are

�1 =

 
@ ePcr
@h1

!
h2

= h�2f
0
(z) =

b1
a1b1 � a2b2

�e�� b2
a1b1 � a2b2

�es; (2.73)
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�2 =

 
@ ePcr
@h2

!
h1

= h1��2  (z) =
a1

a1b1 � a2b2
�es� a2

a1b1 � a2b2
�e�; (2.74)

where f
0
(z) = df=dz and  (z) = (2� �)f (z)� (� + ) zf

0
(z).

It is clear that the order parameter �1 is not simply proportional to �e�, but
contains a contribution proportional to �es. As a consequence �e� along the two
branches of the phase boundary varies asymptotically as

�e�cxc = �1 + b2�2 = �B0
����eT ���� +Ba

����eT ���1�� ; (2.75)

with

B0 = f
0
(0) ; (2.76)

Ba = b2
�
A�0 = (1� �)

�
(Pc=�c) ; (2.77)

where the subscript a indicates the term associated with vapor-liquid asymmetry.

The term Ba

����eT ���1�� is an asymmetric correction to the asymptotic scaling law,
especially important for �uids.

From the above derivation we know that one-component �uids are completely

isomorphic to the lattice-gas model if temperature and chemical potential, being

thermodynamic variables, are replaced by their linear combinations.

Generalized isomorphism approach: A second-order phase transitions is called

�isomorphic� if the thermodynamic potentials of di¤erent systems have the same

functional dependence on temperature and order parameters, when the variables are

suitably chosen (isomorphic variables).2 Among real systems, only the vapor-liquid
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systems Scaling �eld h1 and h2

V-L critical point of lattice gas
h1 = �e�
h2 = �eT

V-L critical point of one component �uid
h1 = a1�e�+ a2�eT
h2 = b1�eT + b2�e�

V-L critical point of a binary �uid mixture
h1 = a0�e��21 + a1�e�1 + a2�eT
h2 = b0�e��21 + b1�eT + b2�e�1

L-L critical point of a binary liquid mixture
h1 = a0� eP + a1�e��21 + a2�eT
h2 = b0� eP + b1�eT + b2�e��21

Table 2.4: Relations between scaling �elds and physical �elds in �uids

critical point of a one-component �uid is an isolated point on the phase diagram.

In other cases there exist lines or even surfaces of second-order phase transitions.

The thermodynamic potential near the second-order phase transition-line or surface

depends on the temperature and order parameter in the same way as in the case of a

system with an isolated critical point, provided that all other �elds are kept constant.

The number of independent critical exponents will still be two and, if an increase

in the number of independent variables does not change the dimensionality of the

order parameter, then the values of the critical exponents will remain the same. The

isomorphism hypothesis has served as a powerful stimulus for the experimental study

of binary and multicomponent mixtures and has allowed considerable extension of

the class of systems belonging to the Ising model universality class.

Based on the isomorphism theory of critical phenomena mentioned above, the

concept of critical point universality has been extended to binary �uid mixtures. In

Table 2.4 the de�nitions of the scaling �elds h1 and h2 for four di¤erent systems are

listed.

(1) Vapor-liquid equilibrium for binary �uid mixtures:
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For vapor-liquid equilibrium for binary liquid mixtures, according to the Ta-

ble 2.3, we have

dP = sdT + �d�1 + �2d��21 (2.78)

where �2 = �x2 is the partial density of the solute and x2 is the molar fraction. The

scaling �elds are in general linear combinations of the three physical �eld variables

�eT = T�Tc
Tc

; �e�1 = �1��1c
RTc

; �e��21 = ��21���21c
RTc

:

h1 = a0�e��21 + a1�e�1 + a2�eT ; (2.79)

h2 = b0�e��21 + b1�eT + b2�e�1; (2.80)

where the coe¢ cients ai and bi as well as the critical parameters Tc, �1c, and ��21c,

depend parametrically on the actual position on the critical line. This position can

be speci�ed by any of the three variables Tc, �1c, and ��21c. The singular part of

the pressure satis�es a scaling law

Pcr
�0cRT

0
c
= ePcr = h2��2 f (z) ; (2.81)

where �0c and T
0
c are the critical density and critical temperature of the pure solvent.

We have

�e� = (�� �c0) =�
0
c = a1�1 + b2�2; (2.82)

�e�2 = (�2 � �2c0) =�
0
c = a0�1 + b0�2; (2.83)

�es = (s� sc0) =�
0
cRT

0
c = a2�1 + b1�2: (2.84)
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Thus the relevant densities �1 and �2 can be expressed as linear combinations of

any two of the three physical densities �e�, �e�2 and �es:
�1 =

�
b1

a1b1 � a2b2
�e�� b2

a1b1 � a2b2
�es� ; (2.85)

�1 =

�
b2

a0b2 � a1b0
�e�2 � b0

a0b2 � a1b0
�e�� ; (2.86)

�1 =

�
b0

a2b0 � a0b1
�es� b1

a2b0 � a0b1
�e�2� ; (2.87)

�2 =

�
a1

a1b1 � a2b2
�es� a2

a1b1 � a2b2
�e�� ; (2.88)

�2 =

�
a2

a2b0 � a0b1
�e�2 � a0

a2b0 � a0b1
�es� ; (2.89)

�2 =

�
a0

a0b2 � a1b0
�e�� a1

a0b2 � a1b0
�e�2� : (2.90)

(2) Liquid-liquid equilibrium for binary liquid mixtures:

For liquid-liquid equilibrium for binary liquid mixtures, according to the Ta-

ble 2.3, we have

d�1 = �SmdT + VmdP � x2d��21 (2.91)

The scaling �elds are now, in general, linear combinations of the three physical �eld

variables �eT = T�Tc
Tc

; � eP = P�Pc
Pc

; and �e��21 = ��21���21c
RTc

,

h1 = a0� eP + a1�e��21 + a2�eT ; (2.92)

h2 = b0� eP + b1�eT + b2�e��21: (2.93)
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When h1 = 0, and h2 = 0, we have the critical line (CL) in terms of temperature

and pressure

�eT = �a1b0 � a0b2
a2b2 � a1b1

�
� eP ; (2.94)

and the CL in terms of ���21 and pressure

�e��21 = �a2b0 � a0b1
a1b1 � a2b2

�
� eP : (2.95)

Introducing an activity, �, de�ned by65

e��21 = ln �

1� �
; (2.96)

and imposing the condition x2 = � on the critical-point line known as the "critical

line condition",65 we have

ln
x2c

1� x2c
=

�
a2b0 � a0b1
a1b1 � a2b2

�
� eP + ln x2c0

1� x2c0
; (2.97)

where x2c0 is the critical concentration of a reference point. This is the two-

dimensional critical point line in terms of concentration and pressure.

From Eq. (2.83), as � is constant for liquid-liquid equilibrium, we have

�ex2cxc = (x2cxc � x2c) =x2c = a1�1 + b2�2 = �B0
����eT ���� +Ba

����eT ���1�� : (2.98)
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where

B0 = a1f
0
(0) ; (2.99)

Ba = b2
�
A�0 = (1� �)

�
(Pc=�c) : (2.100)

This result is not exact, as we have neglected the e¤ect of the regular part of the

thermodynamic potential �1. It is well known that
2

Sm � (Sm)c = c1

����eT ���1�� + c2

����eT ��� ; (2.101)

where c1 and c2 are two coe¢ cients. The term c2

����eT ��� results from the the regular
part of the thermodynamic potential. Thus the entire expression for coexistence

curve should include a diameter term,

�ex2cxc = �B0 ����eT ���� +Ba

����eT ���1�� + d1�eT : (2.102)

where d1 is the coe¢ cient from the e¤ect of the regular part of the thermodynamic

potential.
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CHAPTER 3

VAPOR-LIQUID ASYMMETRY IN FLUIDS

3.1 Fluids and lattice-gas model

An appropriate choice of order parameter is necessary to describe critical

phenomena in �uids in terms of the general theory of phase transitions.2 As shown

in Fig. 3.1, the vapor-liquid coexistence curve of the Van der Waals equation of

state for carbon dioxide is very asymmetric when it is described in terms of the

traditional thermodynamic variables pressure P , volume V and temperature T:

Thermodynamics itself does not specify uniquely which set of variables is to be

preferred in describing the critical behavior of �uids.43 Therefore, for real �uids it

is unknown which variables are better in describing critical behavior, and the choice

is commonly based on empirical considerations.43 By replacing the volume V with

the density � the vapor-liquid coexistence curve may be more symmetric, but not

perfectly symmetric. The coexistence curve in the lattice gas is perfectly symmet-

ric. But in a real �uid the lack of complete symmetry is evident from the average

coexisting densities, which is approximately a straight line, the rectilinear diameter,

but which does not coincide with the critical isochore � = �c.
43

The most simple and important model to illuminate critical phenomena is

the so-called lattice-gas model, which is illustrated in Fig. 3.2. Imagining that

the entire �uid volume V is divided into a huge number of cells with volume v0

which is roughly the molecular volume of the �uid. If a cell is occupied by the

centre of a molecule, it is said that the cell is in the occupied state. It is not
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Figure 3.1: Van der Waals vapor-liquid coexistence curve in pressure P and volume
V coordinates. (This �gure is from homework of Ayan Ghosh for ENCH610 in
2004.)

allowed that a cell is occupied by more than one molecule since the volume of cells

and molecules is roughly the same. Furthermore, it should be emphasized that the

molecules themselves are not restricted to cells and the cell walls consisting of real

molecules should not impede the motions of the other molecules in the �uids.3, 16 On

the contrary, every molecule moves freely and may have access to any region of the

entire space. When one cell is occupied by two molecules, their interaction energy

will be in�nity, which is an imitation of the very strong repulsions that exist between

two molecules at short distances.16 For real molecules at intermediate distances with

a negative potential energies �� of interaction, the correspondence in the lattice gas

is every pair of molecules occupying neighboring cells.16 To imitate the short-range

nature of intermolecular forces, it is speci�ed that the interaction energy vanishes

when two molecules are separated by one or more cells.16

39



Figure 3.2: Illustration of lattice gas model.

For any con�guration a in the lattice gas, there exists a corresponding anti-

con�guration b in which the cells �lled by molecules in a are empty and the empty

cells in a are occupied. Therefore, the lattice gas has a certain symmetry between

any con�guration, which results in a symmetric coexistence curve about the density

of half �lling in the temperature-density plane as shown in Fig. 3.3.16 The density

of the con�guration in which half of the cells are occupied is the critical density.

Thus, the coexistence curve is symmetric about the critical isochore which is also

the arithmetic mean of the liquid and vapor branch and is the so-called diameter

of the coexistence curve. This diameter is rectilinear and, as a matter of fact, a

vertical straight line with no inclination at all. However, in real �uids, as shown in

Fig. 3.4 , there does exist an inclination.16 The data in Fig. 3.4 are from Weber76

and the plot is from Widom.16 The arrow on the horizontal axis in Fig. 3.4 (a)

points to the location of critical density on the density axis.
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Figure 3.3: Coexistence curve and critical isochore (dash line) of the lattice gas. �
is the number density.

(a) (b)

Figure 3.4: (a) Coexistence curve of oxygen in the entire temperature range.16 (b)
Coexistence curve of oxygen near the critical point corresponding to the part in
rectangle in (a).16
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3.2 Vapor-liquid asymmetry

It has been over one hundred years since the law of the rectilinear diameter

was �rst proposed by Cailletet and Mathias.13 It states that the diameter of a vapor-

liquid coexistence curve is a linear function of temperature �d =
�
�l + �g

�
=2 =

�c + d jT � Tcj, where d is the slope, �l and �g are the densities of coexistent liquid

and vapor. Extrapolation of this rectilinear diameter to the critical temperature is

often used to obtain the critical density which is known today to be di¤erent from the

real one in some cases, as shown in Fig. 3.5. Experimental data of diameters for some

�uids which follow the law of the rectilinear diameter have been obtained, such as for

oxygen byWeber76 and for xenon by Närger and Balzarini.77 Especially, the diameter

of helium-3 obtained by Hahn et al.78 is a straight line with an almost zero slope and

this symmetry goes far beyond the range of the asymptotic power law. However,

many �uids have been found whose diameters exhibit appreciable singularities near

the critical point, such as Freon-113 (tri�uorotrichlorethane C2F3Cl3) as obtained

by Shimanskaya et al.90 Of those �uids the diameter of SF6 reported by Weiner79 is

the �rst experimental evidence with su¢ cient precision to reveal a singular deviation

from the rectilinear law.26 Diameters for several �uids are represented in Fig. 3.6.

It is clear that there exists a curvature near the critical point in the diameters of

SF6 and Freon-113. However, the diameters of nitrogen17 and neon17 are almost

rectilinear or exhibit very small deviations from linearity.

The theoretical description of �uids diameters has been developed for several

decades by many researchers. The diameters of classical �uids exactly follow the
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Figure 3.5: Schematic illustration of a liquid-gas coexistence curve.17 Dashed line
is the rectilinear diameter. Dotted curve is the actual diameter. �0c is the critical
density value extrapolated with the rectilinear diameter. �c is the actual critical
density.
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Figure 3.6: The diameters for several �uids.
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rectilinear law with various slopes for di¤erent equation of states (EOS). In reduced

form one has

e�d = �l + �g
2�c

= 1 +D
����eT ��� : (3.1)

The lattice-gas model exhibits a perfect symmetry diameter which means the slope

D = 0. In the early 70�s several model calculations predicted singular deviations

from the law of the rectilinear diameter. Those models, such as Mermin�s decorated

lattice-gas model14 and Widom and Rowlinson�s penetrable-sphere model,15, 16 all

show that the diameter should diverge in proportion to the speci�c heat at constant

volume CV,

d�d
dT

/ CV /
����eT ����� . (3.2)

The existence of a weak singularity makes the reduced diameter behave like

e�d = �l + �g
2�c

= 1 +D1

����eT ���1�� +D0

����eT ��� : (3.3)

However, one more term has recently been obtained in the equation for e�d as a result
of the "complete scaling" developed by Fisher and coworkers,19, 21

e�d = �l + �g
2�c

= 1 +D2

����eT ���2� +D1

����eT ���1�� +D0

����eT ��� : (3.4)

The new singular term varying as
����eT ���2� actually dominates the earlier ����eT ���1��

term near critical point since 2� < 1 � �. In this theory the pressure di¤erence

P � Pc is mixed into the scaling �elds, especially into the ordering �eld h1: This
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feature changes the treatment of �uid asymmetry.

Pestak et al.17 studied the experimental data for diameters of several normal

�uids near the critical point in 1987. They concluded that the slope of the diameter

far from the critical point and the amplitude of singular deviation from the law

of rectilinear diameter within the critical region are all proportional to the critical

polarizability product which is a dimensionless measure of the relative signi�cance

of three- versus two-body interactions. They suggested that three-body interactions

play an important role in those properties relevant to the vapor-liquid symmetry of

pure �uids. However, after studying the amplitude of the rectilinear diameter for a

large number of normal �uids in 1990, Singh and Pitzer18 found that the diameter

slope shows a linear dependence on the acentric factor and concluded that the shape

of the pair potential is the primary factor in determining the slope of the diameter

rather than the relative strength of three-body interactions. They also mentioned

that close to the critical point the shape of the two-body potential has the equally

logical e¤ect on the increase of the amplitude D1 of 1� � term.

It is an interesting question which property of �uids is responsible for the

physical origin of the singular
����eT ���2� or ����eT ���1�� term. To clarify this, the true

amplitude of each term in Eq. (3.4) must be obtained. Unfortunately, the �tted

coe¢ cients are unlikely to represent the true amplitudes of each term since they have

exponents of a similar magnitude and correlate strongly in the �tting procedure.82

Therefore, how to unambiguously separate two competing singularities in diameters

is a challenge.
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3.3 "Complete scaling"

It has been generally assumed that the singular critical behavior of real �uids

and �uids mixtures may be characterized by the asymptotic scaling theory in terms

of a strong scaling �eld (ordering �eld) and a weak scaling �eld (thermal �eld) in

order to map the asymmetric �uid criticality into an symmetric lattice-gas model.

However, in the primitive lattice-gas model the ordering �eld is only related to the

reduced chemical potential di¤erence �e� whose conjugate density is the strongly
�uctuating order parameter �e� and the thermal �eld is merely proportional to �eT
which conjugates to the more weakly �uctuating density variable�es. Therefore, this
symmetric model is only a simple prototype of the vapor-liquid phase transition for

one component �uids which can not describe the asymmetric criticality actually

existing in most real �uids. To solve this problem, in early 70�s the concept of

mixing physical variables into the scaling �elds was proposed.64 According to this

concept the scaling �elds are linear combinations of �e� and �eT :
h1 = �e�+ a2�eT ; h2 = �eT + b2�e�; (3.5)

where a2 and b2 are mixing coe¢ cients. Furthermore, as suggested by Anisimov,23 if

the critical entropy density which is an arbitrary value is adopted as sc = ��1c
�
@P
@T

�
h1=0;�c

,

the coe¢ cient a2 vanishes. Thus, only one mixing coe¢ cient b2 is left, which con-

tributes to the asymmetric criticality in real �uids and leads to the
����eT ���1�� term

in the diameter of vapor-liquid coexistence curve. The thermodynamic potential
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P here is a function of the independent scaling �elds h1 and h2. In this conven-

tional mixing model the chemical potential � is an analytic function along the phase

boundary and the critical isochore just as it is in the lattice gas, with the result that

the second derivative d2e�cxc=deT 2 should remain �nite at the critical temperature Tc,
while d2 ePcxc=deT 2 should diverge like the isochoric heat capacity eCV.

Recently, the conventional scaling formulation has been challenged by Fisher

and coworkers19, 20 who analyzed the heat capacity data for propane (C3H8) and

carbon dioxide (CO2) in the two-phase region and proposed that both d2e�cxc=deT 2
and d2 ePcxc=deT 2 diverge like the speci�c heat when approaching the critical point
along phase boundary. This is called the Yang-Yang anomaly.19 To account for this

phenomenon, Fisher and Orkoulas19, 20, 21 developed a "complete scaling" in which

the pressure is mixed into the scaling �elds.

For a one-component �uid, the basic thermodynamic relation is

d� eP = e�d (�e�) + esd��eT� ; (3.6)

where P is the negative to the grand thermodynamic potential density, �P = 
=V ,

and

e� =  @� eP
@�e�

!
�eT

; es =  @� eP
@�eT

!
�e�
: (3.7)

Therefore, the full thermodynamic description is provided by,19, 20

F (P; �; T ) = 0: (3.8)
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Then the scaling hypothesis asserts that the thermodynamics may be asymptotically

described by,

	(
h3

h2��2

;
h1

h�+2

) = 0: (3.9)

Here h1, h2 and h3 are the nonlinear scaling �elds which are all combinations of

the three physical variables �eT , �e� and � eP . Hence, the scaling �elds in linear
approximation can be formulated by

h1 = �e�+ a2�eT + a3� eP ; (3.10)

h2 = �eT + b2�e�+ b3� eP ; (3.11)

h3 = � eP ��e�� esc�eT : (3.12)

where ai, and bi (i = 2; 3) are the mixing coe¢ cients. Then the thermodynamic

potential h3 for the �uid may be obtained by solving Eq. (3.9),

h3 = h2��2 f�
�

h1

h�+2

�
; (3.13)

where f� is a scaling function and the superscript � refers to h2 7 0. Since we have

the di¤erential relation

dh3 = �1dh1 + �2dh2; (3.14)
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both the generalized number density and entropy density obey the simple scaling

rules when they approach the critical temperature,

�1 =

�
@h3
@h1

�
h2

� � jh2j� ; �2 =

�
@h3
@h2

�
h1

� jh2j1�� : (3.15)

Comparing Eq. (3.14) with

dh3 = d� eP � d�e�� escd�eT ; (3.16)

we have

e� =

 
@� eP
@�e�

!
�eT
=

1 + �1 + b2�2
1� a3�1 � b3�2

; (3.17)

es =

 
@� eP
@�eT

!
�e�
=
esc + a2�1 + �2
1� a3�1 � b3�2

: (3.18)

Expanding the Eqs. (3.17) and (3.18) and neglecting the higher-order term, one

obtains expressions for the reduced density and entropy density:

e� = 1 + (1 + a3)�1 + a3 (1 + a3)�
2
1 + (b2 + b3)�2; (3.19)

es = esc + (a2 + esca3)�1 + a3 (a2 + esca3)�21 + (1 + escb3)�2 +
a23 (a2 + esca3)�31: (3.20)

Since in Eq. (3.19) there is a new term proportional to �21 � jh2j2�, the 2� term

will appear in the expression for the vapor-liquid coexistence-curve diameter. Kim
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and coworkers21 have also derived the equations of pressure and chemical potential

along the phase boundary:

ePcxc = p1

����eT ���+ p2

����eT ���2 + p3

����eT ���2�� + : : : ; (3.21)

e�cxc = u1

����eT ���+ u2

����eT ���2 + u3

����eT ���2�� + : : : ; (3.22)

where pi and ui (i = 1; 2; 3) are system-dependent coe¢ cients. The appearance

of terms proportional to
����eT ���2�� implies that d2e�cxc=deT 2 and d2 ePcxc=deT 2 diverge

like the speci�c heat when approaching the critical point along phase boundary.

Moreover, they also clari�ed how the singularity in eCV is shared by giving the
relation between the two second order derivatives,19, 20

a3
d2 ePcxc
deT 2 = �d

2e�cxc
deT 2 . (3.23)

and one has

�a3
1 + a3

eCveT =
d2e�cxc
deT 2 . (3.24)

Therefore, the strength of the Yang-Yang "anomaly" is determined by the mixing

coe¢ cient a3.

In the "complete scaling" formulation (3.10), (3.11) and (3.12), there are four

unknown mixing coe¢ cients, which make the asymmetry e¤ects not clearly de�ned.

In the conventional mixing with an appropriate choice of critical entropy density

sc; the number of unknown mixing coe¢ cients can be reduced from two to one. It
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is natural to ask whether a proper choice of sc may also simplify the "complete

scaling" formulation.

When thermodynamic potential depends on �eld variable, the basic thermo-

dynamic relation is

dP = �d�+ sdT; (3.25)

and at critical point it may be transformed to

�c

�
@�

@T

�
h1=0;c

+ sc �
�
@P

@T

�
h1=0;c

= 0: (3.26)

With the path h1 = 0, it is easy to get the following relation from the de�nition of

the ordering �eld in "complete scaling"

0 =
�e�
�eT + a2 + a3

� eP
�eT : (3.27)

As T �! Tc; Eq. (3.27) becomes a partial di¤erential relation at the critical point

1

R

�
@�

@T

�
h1=0;c

+ a2 + a3
1

�cR

�
@P

@T

�
h1=0;c

= 0: (3.28)

Since sc depends on the choice of zero entropy, we may select the critical entropy

density sc =
�
@P
@T

�
h1=0;c

and then obtain
�
@�
@T

�
h1=0;c

= 0 as a natural result from the

relation (3.26). Thus, it is straightforward to get the simple relation between a2 and
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a3 from Eq. (3.28)

a2 + a3
1

�cR

�
@P

@T

�
h1=0;c

= a2 + a3esc = 0: (3.29)

The lim
T�!Tc

�
h2
�eT
�
= 1 can help reduce the number of independent mixing coe¢ cients

further. Transforming the de�nition (3.11) of the thermal �eld in "complete scaling"

and taking T �! Tc, one obtains

lim
T�!Tc

�
h2

�eT
�
= 1 = 1 + b2

1

R

�
@�

@T

�
h1=0;c

+ b3
1

�cR

�
@P

@T

�
h1=0;c

: (3.30)

Since
�
@�
@T

�
h1=0;c

= 0 and
�
@P
@T

�
h1=0;c

= sc is not zero in vapor-liquid phase bound-

ary for pure �uids, b3 should be necessarily zero. Thus, the "complete scaling"

�elds (3.10), (3.11) and (3.12) with four unknown coe¢ cients are simpli�ed into the

following formulation with only two asymmetry coe¢ cients a3 and b2,

h1 = �e�+ a3

�
� eP � esc�eT � ; (3.31)

h2 = �eT + b2�e�; (3.32)

h3 = � eP ��e�� esc�eT : (3.33)
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Furthermore, Eqs. (3.19) and (3.20) reduce to

�e� = (1 + a3)�1 + a3 (1 + a3)�
2
1 + b2�2;

' � (1 + a3) jh2j� + a3 (1 + a3) jh2j2� + b2 jh2j1�� (3.34)

�es = �2 � jh2j
1�� : (3.35)

Hence, there are only two relevant coe¢ cients that in the �rst approximation control

the asymmetry in �uid criticality.

3.4 Experimental consequences of "complete scaling"

As a result of "complete scaling", while the order parameter in �uids is, in

general, a nonlinear combination of density and entropy �1 = (�e�+ b2�es) =(1 +
a3�e�); the weakly �uctuating scaling density �2 in �rst approximation is associated
with the density of entropy only, �2 = �es. There is an important thermodynamic
consequence of "complete scaling" that can be checked from experiments. The

"diameter" �d should contain two non-analytical contributions, associated with the

terms a3� eP and b2�e� in the scaling �elds,

e�d � 1 = D2

����eT ���2� +D1

����eT ���1�� +D0

����eT ���+ : : : (3.36)

Note, since 2� < 1��; the term D2

����eT ���2� should dominate near the critical point.
Experimental veri�cation of "complete scaling" is very di¢ cult. The nonanalyti-

cal contributions in the "diameter" are usually not large enough to be separated

53



unambiguously.

When applied to the two-phase region at �eT < 0 and � = �c, the reduced

form of the Yang-Yang relation22 is

eCVeT =
d2 ePcxc
deT 2 � d2e�cxc

deT 2 , (3.37)

where the subscript "cxc" denotes the vapor-liquid phase boundary. It has been

known that the heat capacity diverges as
����eT ����� when the critical point is ap-

proached along the coexistence curve since the observation by Voronel�and cowork-

ers83, 84 in 1960�s. Naturally this implies that one or both of the two second deriva-

tives d2e�cxc=deT 2 and d2 ePcxc=deT 2 must behave like eCV; that is, weakly diverge along
the same path. The lattice-gas model predicts that �cxc is analytic along an isochore

so that �"cxc must remain �nite. Of the three possible choices, Yang and Yang
22 pre-

ferred that both of the derivatives would diverge in real �uids. Recently, "complete

scaling" has substantiated this opinion.19, 20 Furthermore, Fisher and coworkers19, 20

have tried to �nd how the singularity in eCV is shared, in other words, to deter-
mine the strength of the Yang-Yang "anomaly", that is, the divergence of �"cxc (T ).

They carefully analyzed the extensive data for two-phase heat capacity of propane

(C3H8) and found that the singularity is split almost equally between �"cxc and P
"
cxc.

They also studied data for carbon dioxide (CO2) and obtained a similar result but

with �"cxc diverging in the opposite sense. In their study the Yang-Yang anomaly is

measured by the ratio

R� =
a3

1 + a3
, (3.38)

54



which is obtained from the experimental data for eCV: For propane R� � 0:56 and
a3 � 1:27; while for CO2 R� � �0:4 and a3 � �0:29. Their results have been

questioned by Wyczalkowska and coworkers100 in 2002. They have shown how such

an analysis done by Fisher and coworkers19, 20 may be a¤ected by the presence of a

small amount of impurity as well as by other nonasymptotic deviations from lattice-

gas symmetry. When corrections for a small amount of impurity are applied and

allowance is made for the leading asymmetric Wegner correction, the experimental

eCV data are not inconsistent with previous treatments in which the second derivative
of the chemical potential exhibits a cusplike singularity with a �nite limiting value

at the critical temperature. This discovery means that up to now experiments do

not yield conclusively the value of R�; the strength of the Yang-Yang "anomaly",

and further the mixing coe¢ cient a3.

The second derivative of the thermodynamic potential with respect to chem-

ical potential is the susceptibility e� = �@2 eP=@e�2�eT : The reduced susceptibility on
the two sides of the coexistence curve is given by Kim21

e�� = ��0 ����eT ���� � ��1 ����eT ���� � ��2 ����eT ����+�1 ; (3.39)

where the asymmetric correction amplitudes ��1 / a3 and ��2 / b2. Evidently, since

� < �+�1, near the critical point, the pressure mixing coe¢ cient a3 dominates the

susceptibility asymmetry. This results suggest that it may be possible to detect a3

experimentally by measuring the susceptibilities on the two sides of the coexistence

boundary.21
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3.5 Fluid asymmetry in mean-�eld approximation

It has been generally accepted that �uid criticality in real �uids may be

mapped into a lattice-gas model in terms of a strong scaling �eld h1 which conjugates

to the strongly �uctuating order parameter �1 and a weak scaling �eld conjugate

to the weakly �uctuating �2. The lattice gas has a special symmetry: the chemical

potential is antisymmetric and the order parameter is symmetric with respect to

the critical isochore. Therefore, for the lattice gas the critical part of Helmholtz free

energy density in the mean �eld has a symmetric form of Landau expansion,

�Acr =
1

2
a0h2�

2
1 +

1

24
u0�

4
1; (3.40)

and the critical part of grand thermodynamic-potential density is

��P cr =
1

2
a0h2�

2
1 +

1

4
u0�

4
1 � h1�1; (3.41)

where a0 and u0 are parameters. The critical part of chemical potential is of a simple

form,

h1 = �� = a0h2�1 +
1

6
u0�

3
1; (3.42)

and when h1 = 0 it gives the symmetric coexistence curve,

�1 = �
�
6a0
u0

� 1
2

jh2j
1
2 : (3.43)
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Simple lattice gas: In the primitive prototype the scaling �elds and their conju-

gate density are just the physical variables:

h1 = ��; h2 = �T ; (3.44)

�1 = ��; �2 = �s: (3.45)

Substituting Eqs. (3.44) and (3.45) into Eq. (3.42) and comparing it with the

expansion of �� in terms of �T and �� with only the third-order term, one obtains

a0���T +
1

6
u0��

3 = �11���T +
1

6
�30��

3 (3.46)

where �ij =
@i+j��

@��i�T
j , the parameters a0 = �11 and u0 = �30.

Conventional mixing scaling: Since the early 1970�s, the vapor-liquid asymme-

try has been commonly incorporated into the lattice-gas analogy by linear mixing of

two independent physical �elds �� and �T into the both theoretical scaling �elds

h1 and h2.14 Since the absolute value of entropy is arbitrary, mixing of �T into

h1 plays no role. Contrarily, mixing of �� (with b2 as a mixing coe¢ cient) into

h2 has an important consequence, known as the "singular diameter". However, the

chemical potential would remain an analytical function of temperature along the

vapor-liquid coexistence and �uid asymmetry would be eliminated by a rede�nition

of the order parameter as �1 = ��� b2�s:

With the convenient choice of the critical entropy value, the conventional
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mixing scaling is described by

h1 = ��; h2 = �T + b2��; (3.47)

�1 = ��� b2�s; �2 = �s; (3.48)

�� = �1 + b2�2; �s = �2: (3.49)

When �� in h2 is expanded by ��= �11���T +
1
6
�30��

3 and in the �rst approxi-

mation �s= �1
2
�11��

2, we expresses h2 and �1 in terms of �T and ��. Then the

Eq. (3.42) is described in terms of �T and ��, neglecting the higher order terms,

h1 = a0���T +
1

6
u0��

3 +

�
a20
2
+ a0�11

�
b2��

2�T +

�
1

4
u0a0 +

�30
6
a0

�
b2��

4:

(3.50)

This expansion generates the asymmetric terms _ b2��
2�T and _ b2��

4: If the

mixing coe¢ cient b2 = 0; both asymmetric terms vanish. However, in the simplest

equation of state that describes real �uid behavior, the van der Waals equation,

the term _��2�T is absent, while the term _��4 exists. Furthermore, in most

classical equations of state d��2=d�T
2
along the vapor-liquid coexistence exhibits

a discontinuity directly related to the existence of the independent 4th-order term in

Landau expansion of chemical potential. The existence of the independent 4th-order

term makes exact mapping of �uids into the lattice-gas model by the conventional

mixing of physical �elds impossible. This problem was recognized a long time ago43

but was never clearly articulated. h1 =�� may be expanded in terms of �T and
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�� with terms below the fourth order

h1 = �11���T +
1

6
�30��

3 +
�21
2
��2�T +

�40
24
��4: (3.51)

Comparing Eq. (3.50) and Eq. (3.51) we may obtain a0 = �11 and u0 = �30 and

the relation between �21 and �40

2�21
�11

=
3�40
5�30

: (3.52)

It is impossible to get an explicit relation between b2 and �ij since the number

of equations is one more than the number of unknown variables. Only the �uids

whose coe¢ cients of the Landau expansion follow relation (3.52) will be described

by the conventional mixing scaling. Thus, this scaling is not valid for those �uids

with a vanishing 2nd-order term �21 and non-zero 4th-order term �40 in the Landau

expansion for the chemical potential such as the Van der Waals �uid and most other

classical �uids. Moreover, since the di¤erence of the second derivative d��2=d�T
2

along the phase boundary and along the isochore above the critical temperature43

d2��cxc

d�T
2 �

�
d2��

d�T
2

�
�c

=
�211
�30

�
�2�21
�11

+
3�40
5�30

�
; (3.53)

it is straightforward that the discontinuity will disappear for �uids that follow rela-

tion (3.52).

"Complete scaling": In "complete scaling", the ordering �eld and thermal �eld
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are constructed by mixing the physical variables �P , �� and �T with only two

unknown mixing coe¢ cients a3 and b2,

h1 = ��+ a3
�
�P � esc�T � ; (3.54)

h2 = �T + b2��: (3.55)

In order to obtain the expressions of a3 and b2 for the mean-�eld �uids in terms

of �ij, the expansion of Eq. (3.54) as a function of �� and �T will be compared

with the expansion of Eq. (3.42) term to term. Since we have �01 =
�
@��

@�T

�
c
= 0,

a2 + a3P01 = a2 + a3

�
@�P
@�T

�
c
= 0 and �02 + a3P02 =

�
@2��

@�T
2

�
c
+ a3

�
@2�P
@�T 2

�
c
= 0,

the expansion of Eq. (3.54) in terms of �� and �T with terms up to 4th-order is

h1 = (�11 + a3P11)���T +
1

6
(�30 + a3P30)��

3 +

1

2
(�21 + a3P21)��

2�T +
1

24
(�40 + a3P40)��

4: (3.56)

The relation between the coe¢ cients43 �ij and Pij, such as P11 = �11, P30 = �30,

P21 = �21 + �11and P40 = �40 + 3�30, may help to simplify Eq. (3.56) further,

h1 = (1 + a3)�11���T +
1

6
(1 + a3)�30��

3 +

1

2
[(1 + a3)�21 + a3�11] ��

2�T +

1

24
[(1 + a3)�40 + 3a3�30] ��

4: (3.57)

By substituting �2 =
@�P
@h2

= �1
2
a0�

2
1 into Eq. (3.34), one obtains �� to be a
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function of �1 only;

�� = (1 + a3)�1 +

�
a3 (1 + a3)�

1

2
(1 + a3)

2 �11b2

�
�21: (3.58)

Solving this equation one can obtain �1 as a function of ��

�1 =
1

1 + a3
��+

�
�a3

(1 + a3)
2 +

1

2 (1 + a3)
�11b2

�
��2: (3.59)

The expansion of h2 (3.55) with terms up to the 3rd-order yields

h2 = �T + �11b2���T +
1

6
�30b2��

3: (3.60)

Then the Eq. (3.42) is expanded in terms of �T and �� by using Eqs. (3.59) and

(3.60):

h1 = a0h2�1 +
1

6
u0�

3
1

=
a0

1 + a3
���T +

1

6
u0

1

(1 + a3)
3��

3 +�
a0

1 + a3
�11b2 +

�a0a3
(1 + a3)

2 +
a0
2

�11
1 + a3

b2

�
��2�T +

1

6

�
a0

1 + a3
�30b2 + 3u0

�
�a3

(1 + a3)
4 +

1

2

�11
(1 + a3)

3 b2

��
��4: (3.61)

The coe¢ cients of each corresponding term between Eq. (3.57) and Eq. (3.61)

must be equivalent. The comparison will give four equations with four unknown

parameters a0; u0; a3 and b2: It is straightforward that terms ����T and ���3
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yield the relations a0 = (1 + a3)
2 �11 and u0 = (1 + a3)

4 �30, which make the Ising

model amplitude for the coexistence curve as

BIsing
0 =

�
6a0
u0

� 1
2

=
1

1 + a3
B0 =

1

1 + a3

�
6�11
�30

� 1
2

; (3.62)

which is not equal to the real �uids amplitude. The comparison of each asymmetry

term, which is proportional to ��2�T or ��4 in Eq. (3.57) and Eq. (3.61), results

in two very complicated equations involving only unknown a3 and b2: Theoretically

these two equations may be solved to obtain the expected expressions of a3 and b2 in

terms of Landau expansion coe¢ cients �ij. The slope of linear diameters in classical

�uids has been found for many years,43

D =
�21
�30

� 3�11�40
5�230

; (3.63)

which will be employed to make the task easier.

The de�nition, h1 = 0; of the coexistence curve can be solved by iteration to

obtain the slope of the diameter. Eq. (3.57) will be considered �rst since only a3

is involved in this expression. Comparing the slope obtained from Eq. (3.57) with

Eq. (3.63), the expression of a3 in terms of �ij is obtained

a3 =

2
3
�21
�11
� �40

5�30

1� 2
3
�21
�11
+ �40

5�30

: (3.64)

By transforming this expression we have a simple and clear equation which will be
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used frequently in our analysis,

a3
1 + a3

=
2

3

�21
�11

� 1
5

�40
�30

: (3.65)

Making Eq. (3.61) equal to zero and comparing the coe¢ cients with Eq. (3.63), we

obtain the expression of b2 in terms of �ij,

b2 =
1

�11

�
�21
�11

� 1
5

�40
�30

�
: (3.66)

Since "complete scaling" is assumed to be valid for both real �uids and clas-

sical equation of state (EOS), the expressions (3.65) and (3.66) may be checked

further by comparing our classical results to the description of real �uids derived

from "complete scaling". Dividing the slope of diameter in classical �uids Eq. (3.63)

into two part, a3 contribution and b2 contribution, one obtain

D =
a3

1 + a3

6�11
�30

� b2
3�211
�30

: (3.67)

The result is equivalent to the slope found from Eq. (3.58) in the �rst approximation

by substituting �1 = �
�
6a0
u0

� 1
2 ���T �� 12 ; a0 = (1 + a3)

2 �11 and u0 = (1 + a3)
4 �30.

One may notice that 6�11
�30

is the square of the mean-�eld amplitude B2
0 and

3�211
�30

is

the heat capacity jump �Cv
T
when heat capacity crosses the phase boundary from
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the one-phase region at the critical density. Finally,

D =
a3

1 + a3
B2
0 � b2

�Cv

T
: (3.68)

Since � = 0 and � = 0:5 in mean �eld, 1�� and 2� term both become linear term.

However, obviously in Eq. (3.68) a3
1+a3

B2
0 is the contribution from 2� term, while

�b2 �CvT comes from 1 � � term and linear term. Furthermore,
�
��Cv

T

�
may be

written down as

��Cv
T

=

�
Cv

T

�
�eT<0;c :�

�
Cv

T

�
�eT>0;c =

�
Cv

T

�
�eT<0;c �

�
Cv

T

�
ideal

: (3.69)

It is clear that the ideal-gas background of the heat capacity does not contribute

to the diameter. Furthermore, the contribution from the chemical potential to the

isochoric heat capacity jump �Cv=T for the classical �uids is

�a3
1 + a3

�Cv

T
=
�211
�30

�
�2�21
�11

+
3�40
5�30

�
=
d2��cxc

d�T
2 �

�
d2��

d�T
2

�
�c

; (3.70)

which corresponds to the result from "complete scaling" for real �uids given by Eq.

(3.24):

The critical parameters Tc, �c and Pc are a¤ected by long-range �uctuations

and they have di¤erent values for di¤erent �uids. However, "the law of corresponding

states", when the physical variables are reduced by the critical parameters, makes

physical properties of �uids much more similar. In the de�nition of two �elds h1 and

h2; the physical variables �e�, �eT , and � eP are all reduced by the actual critical
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parameters. This fact enables us to assume that the values obtained for a3 and b2 in

the mean-�eld EOS may be valid in the real �uids, at least in the �rst approximation.

This assumption implies that �uctuations of the order parameter do not strongly

a¤ect the values of a3 and b2 in the scaling theory.

3.6 Asymmetry coe¢ cients from mean-�eld equations of state

Assuming that �uctuations do not a¤ect the values of a3 and b2 we have

decided to obtain these two asymmetry parameters from the classical equations

of state. The earliest qualitative explanation of critical phenomena was proposed

by Van der Waals. His equation, as well as all its further modi�cations, imply

a quadratic parabolic coexistence curve and a �nite jump in the isochoric heat

capacity.7 We shall begin with the Van der Waals �uid due to its simplicity and

great conceptual importance.

Van der Waals model: The Van der Waals EOS in (P; �; T ) variables reads

P =
�RT

1� b�
� a�2; (3.71)

where a is an attraction parameter associated with the strength of the attractive

intermolecular forces and b a repulsion parameter related to the e¤ective molecu-

lar volume; both of them are system-dependent constants. Thus, b� = b� is the

dimensionless density and we have

bP
RT

=
b�

1� b� � bab�2RT
; (3.72)
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where bP = Pb and ba = a=b: For simplicity, when there is no confusion, we will use

P = bP ; a = ba and � = b�; and the Eq. (3.72) may be written in the form
P

RT
=

�

(1� �)
� a�2

RT
; (3.73)

which is equal to Eq. (3.71) with b = 1: The coordinates of the critical point can be

found from any pair of the stability conditions, either

�
@P

@�

�
T

=
RT

(1� �)2
� 2a� = 0; (3.74)�

@2P

@�2

�
T

=
2RT

(1� �)3
� 2a = 0; (3.75)

or

�
@�

@�

�
T

=
1

�

�
@P

@�

�
T

=
RT

� (1� �)2
� 2a = 0; (3.76)�

@2�

@�2

�
T

= � 1
�2

�
@P

@�

�
T

+
1

�

�
@2P

@�2

�
T

= �RT (1� 3�)
�2 (1� �)3

= 0: (3.77)

Solving the conditions, we obtain the critical parameters

TcR

a
=
8

27
; �c =

1

3
: (3.78)

By integration, one can obtain the density of the Helmholtz energy for Van der

Waals �uids,

�A� �A0
RT

= � ln
�RT

(1� �)
� �� a�2

RT
: (3.79)

66



where A0 =
Z
CigP (T ) dT � T

Z
CigP (T )

dT
T
is the ideal-gas caloric background.

Finally, we obtain the same result for the chemical potential

�� �0
RT

= ln
�RT

(1� �)
+

�

(1� �)
� 2a�
RT

: (3.80)

where �0 = A0 is a temperature-dependent integration constant. Taking derivatives

of chemical potential with respect to density � and temperature T , we have

@2�

@�@T
= R

�
1

�
+

2

1� �
+

�

(1� �)2

�
; (3.81)

@3�

@�2@T
= R

�
�1
�2
+

3

(1� �)2
+

2�

(1� �)3

�
; (3.82)

@3�

@�3
= RT

�
2

�3
+

8

(1� �)3
+

6�

(1� �)4

�
; (3.83)

@4�

@�4
= RT

�
�6
�4
+

30

(1� �)4
+

24�

(1� �)5

�
: (3.84)

Then, we have the Landau expansion coe¢ cients of chemical potential with respect

to �� and �T

�11 =

�
@2��

@��@�T

�
��=0;�T=0

=
�c
R

�
@2�

@�@T

�
�=�c ;T=Tc

=
9

4
; (3.85)

�21 =

�
@3��

@��2@�T

�
��=0;�T=0

=
�2c
R

�
@3�

@�2@T

�
�=�c ;T=Tc

= 0; (3.86)

�30 =

�
@3��

@��3

�
��=0;�T=0

=
�3c
RTc

�
@3�

@�3

�
�=�c ;T=Tc

=
27

8
; (3.87)

�40 =

�
@4��

@��4

�
��=0;�T=0

=
�4c
RTc

�
@4�

@�4

�
�=�c ;T=Tc

= �27
8
: (3.88)

Substituting �ij =
h
@i+j��=

�
@��i@�T

j
�i

into Eq. (3.63), Eq. (3.65) and Eq.
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(3.66), we have the rectilinear diameter slope D, a3 and b2 for Van der Waals �uids

D =
�21
�30

� 3�11�40
5�230

=
2

5
; (3.89)

a3 =
1

4
; b2 =

4

45
: (3.90)

Mean-�eld lattice gas: The mean-�eld lattice-gas68 is a symmetric model which

has a diameter with zero slope.

P

RT
= � ln (1� �)� a�2

RT
: (3.91)

The density of the Helmholtz energy and chemical potential are, respectively,

�A� �A0
RT

= � ln
�RT

(1� �)
� ln (1� �)� a�2

RT
; (3.92)

�� �0
RT

= ln
�RT

(1� �)
� 2a�
RT

: (3.93)

From the critical condition and stability condition, we �nd the critical parameters

TcR

a
=
1

2
; �c =

1

2
: (3.94)
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Figure 3.7: Chemical potential vs density of Van der Waals model and mean-�eld
lattice gas.

From the derivatives of chemical potential we obtain the Landau expansion coe¢ -

cients for lattice gas

�11 = 2; �21 = 0; �30 = 4; �40 = 0: (3.95)

Since the asymmetric coe¢ cients both �21 and �40 vanish, it is straightforward that

a3 = 0; b2 = 0 and D = 0: Fig (3.7) compares the chemical potential at critical

temperature between Van der Waals �uid and mean-�eld lattice gas. It is clear that

the curve for the lattice gas is symmetric about �c =
1
2
, while the curve implied by

the Van der Waals is not symmetric.

Other classical equations of state:
69



1. Debye-Hückel model:69 This EOS is a general equation of state with a Debye-

Hückel interaction between ions proportional to �3=2:

P

RT
=

�

1� �
� a�3=2

RT
: (3.96)

�� �0
RT

= ln
�RT

(1� �)
+

�

1� �
� 3a�1=2

(RT )3=2
: (3.97)

Solving the critical condition and stability condition we have critical parame-

ters

(TcR)
3
2

a
= 0:429; �c = 0:2: (3.98)

Furthermore, one obtains the mixing coe¢ cients

a3 = 0:364; b2 = 0:043: (3.99)

2. Redlich-Kwong EOS:70 This is the �rst cubic EOS that has been widely em-

ployed to do the routine engineering calculations of the fugacity. It is also

very successful for calculating properties of gas mixtures, but not adequate to

model both gas and liquid phases.

P

RT
=

�

1� �
� a�2

RT 3=2(1 + �)
: (3.100)
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�� �0
RT

= ln
�RT

(1� �)
+

�

1� �
+

a

RT 3=2

�
ln

1

1 + �
� �

1 + �

�
: (3.101)

Solving the critical condition and stability condition we obtain the critical

parameters

T
3
2
c R

a
= 0:203; �c = 0:260: (3.102)

Furthermore, the mixing coe¢ cients are

a3 = 0:400; b2 = 0:068: (3.103)

3. Peng -Robinson EOS:70 The Peng-Robinson EOS predicts better liquid vol-

umes for medium-size hydrocarbons and other compounds with intermediate

values of the acentric factor.

P

RT
=

�

1� �
� a�2�

RT (1 + 2�� �2)
Tr =

T

Tc
;

� =
�
1 +

�
0:37464 + 1:54226! � 0:26992!2

� �
1� T 1=2r

��2
; (3.104)

where ! is the acentric factor.

�� �0
RT

= ln
�RT

(1� �)
+

�

1� �
+
a�

RT

"
1

2
p
2
ln
1 + �

�
1�

p
2
�

1 + �
�
1 +

p
2
� � �

1 + 2�� �2

#
:

(3.105)

Solving the critical condition and stability condition we �nd for the critical
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Model �c �11 �21 �30 �40 D a3 b2

Lattice gas 0.5 2 0 4 0 0 0 0
Van der Waals 0.333 2.25 0 3.375 -3.375 0.4 0.25 0.089
Debye-Hückel 0.200 2.344 -1.172 0.977 -2.930 3.120 0.364 0.043
Redlich-Kwong 0.260 2.739 -0.815 2.145 -5.192 1.474 0.400 0.068
Peng-Robinson

! = 0
0.221 2.266 -0.979 1.658 -5.125 1.944 0.493 0.082

! = 0:1
0.221 2.516 -1.087 1.658 -5.125 2.158 0.493 0.074

! = 0:4
0.221 3.212 -1.388 1.658 -5.125 2.755 0.493 0.058

Table 3.1: Asymmetry parameters for classical �uids

parameters

TcR

a
= 0:158; �c = 0:221: (3.106)

When ! = 0, one obtains a3 = 0:493; b2 = 0:082:

The results are summarized in Table 3.1. One can see that for the Peng-

Robinson EOS, the value of a3 doesn�t change as ! increases but b2 decreases.

Fine-lattice discretization: Moghaddam and coworkers87 developed a �ne-lattice

discretization model in 2005, which represents a crossover between the lattice gas

and a continuous van der Waals �uid by introducing a discretization parameter

� = a=a0 � 1,
P

RT
= � ln

�
1 +

�

� (1� �)

�
� a�2

RT
: (3.107)

when � = 1 is the lattice gas limit and � �!1 approaches the Van der Waals �uid,

as shown in Fig. 3.8. This model makes it possible to transform a symmetric �uid

system to an asymmetric one by adjusting the discretization parameter �.
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Figure 3.8: Illustration of �ne-lattice discretization model.

The chemical potential of the model has the form

�� �0
RT

= ln
�RT

1 + � (1=� � 1) + � ln

�
1 +

�

� (1� �)

�
� 2a�
RT

: (3.108)

Then the critical density and temperature are both function of parameter �

0 = �3(1=� � 1)�2c + (2=� � 4) �c + 1; (3.109)

RTc
a

=
2�c

1��
1+(1=��1)�c

+ �
1��c

; (3.110)

which may be solved numerically. Then by substituting the critical parameters

into the derivatives of chemical potential, we obtain a full picture that shows the

transition of D; a3 and b2 from lattice gas to a continuum Van der Waals �uid, as

shown in Figs 3.9 and 3.10. This �ne-lattice discretization model makes it very clear
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Figure 3.9: Fine-lattice gas model: crossover from lattice gas to Van der Waals �uid.
Tc vs �c and diameter slope D vs �c.

that the ratio of molecular volume and lattice size � = a=a0 plays an important role

in the change of �uid nature with respect to the vapor-liquid asymmetry. When

the molecular volume is �xed, the smaller size of lattice increases the asymmetry in

�uids. Therefore, we may imagine that the lattice size is �xed while the molecular

volume changes continuously.

E¤ect of three-body interactions: In the �ne-lattice gas model we know that by

adjusting a parameter �, the symmetric �uid may transfer into an asymmetric �uid.

It is natural to think whether there is another parameter which can play a similar

role. The relative strength c of three-body interactions to two-body potentials is

a good choice just as was suggested for the Van der Waals model by Pestak and

coworkers.17 The lattice-gas model with extra three-body interactions has a chemical
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Figure 3.10: Fine-lattice gas model: crossover from lattice gas to Van der Waals
�uid. a3 vs �c and b2 vs �c.

potential of the form,

�� �0
RT

= ln
�RT

(1� �)
� 2a�
RT

+ c
3
2
a�2

RT
: (3.111)

Then both the critical density and temperature depend on the parameter c:

0 = 9c�2c � (6c+ 4) �c + 2; (3.112)

RTc
a

=
2� 3c�c
1
�c
+ 1

1��c

; (3.113)

which may be solved numerically. Then upon substituting the critical parameters

into the derivatives of chemical potential, we obtain a full picture that shows the

e¤ect of the relative strength c of three-body interactions to D; a3 and b2 for the

lattice-gas model as shown in Figs 3.11 and 3.12. There is no doubt that the e¤ect

of three-body interactions on the �uids nature related to their asymmetry is rather
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Figure 3.11: Lattice-gas model with three-body interactions: crossover from sym-
metric lattice gas to asymmetric lattice gas. Tc vs �c and diameter slope D vs
�c.

large. Our calculation indicates that the asymmetry of �uids does not increase

monotonically as the three-body interactions get stronger.

Flory-Huggins model plus three-body interactions: Considering the crucial

e¤ects of molecular volume and three-body interactions on the asymmetry in �uids,

we may construct a model which involves both of these two factors. Although the

�ne-lattice discretization model is very attractive, it only accomplishes the crossover

from the lattice gas to Van der Waals �uids. The �uids with a higher asymmetry

than Van der Waals �uids cannot be represented by this model. Thus, the Flory-

Huggins model is useful; it has a �xed lattice and a changing molecular size. In

general, molecules in the Flory-Huggins model are drawn like a pearl necklace with

a �exible chain and each pearl occupies one lattice. Here, we simply treat them as

rectilinear blocks with di¤erent molecular volume as shown in Fig 3.13. When its

76



0.1 0.2 0.3 0.4 0.5
0

0.05

0.1

0.15

0.2

0.25

ρ
c

a 3

Lattice Gas

0.1 0.2 0.3 0.4 0.5
0.2

0.15

0.1

0.05

0

0.05

ρ
c

b 2

Lattice Gas

Figure 3.12: Lattice-gas model with three-body interactions: crossover from sym-
metric lattice gas to asymmetric lattice gas. a3 vs �c and b2 vs �c.

volume is very large, the molecule may occupy more than one lattice as shown in

Fig 3.13 (d). In the opposite extreme, several molecules with very small volumes

may stay in one lattice as shown in Fig 3.13 (a).

The chemical potential of the Flory-Huggins model with three-body interac-

tions is

�� �0
RT

=

�
1

N
ln �� ln (1� �)

�
� 2a�
RT

+ c
3
2
a�2

RT
; (3.114)

where N = a=a0 > 0 is the e¤ective association number which is the ratio of

molecular characteristic length a and the lattice size a0 and c is the relative strength

of three-body to two-body interactions. The Flory-Huggins model was formulated

for N >> 1: However, we will consider N here as a phenomenological parameter

representing for molecular size. In contrast to the �ne-lattice discretization model,

the lattice size a0 is now �xed, while the molecular volumes change for di¤erent

�uids, as shown in Fig 3.13. The critical parameters �cand Tc of this model are both
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Figure 3.13: Illustration of the change of molecular volume relative to lattice size.
(a) a << a0 several molecules occupy one lattice. (b) a < a0 in one lattice only one
molecule. (c) a = a0 molecular size is equal to lattice size. (d) a > a0 molecular size
is larger than lattice size and one molecule occupies more lattices.

functions of N and c:

0 = 6c (N � 1) �3c + [3c (2�N)� 2 (N � 1) + 6c] �2c �

(6c+ 4) �c + 2; (3.115)

RTc
a

=
2� 3c�c
1
N�c

+ 1
1��c

: (3.116)

As shown in Figs. 3.14 and 3.15, the calculated results of a3 and b2 are very inter-

esting. Both of them start from a small negative value when N is small (< 1) and

then generally increase as the molecular volume becomes larger and larger. When N

or c increases, the critical density �c becomes smaller, which means that generally a

larger molecular volume and a stronger relative strength of three-body interactions

will give rise to a larger asymmetry. The solid curves in these two �gures are the

same as those in Fig 4.18 (a) and (b) which stand for the trend of a3 and b2 ob-
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Figure 3.14: a3 of Flory Huggins model with three-body interactions as a function
of N and c. * means N = 1:

tained from experimental data for real �uids, which will be discussed in detail in the

next chapter. From these results, we may describe real �uids by a simple classical

equation of state if a proper e¤ective association number N and a relative strength

of three-body to two-body interactions c are selected.

3.7 Asymmetric criticality in a crossover Van der Waals equation of state

It is well known that since the thermodynamic properties near the critical

point are strongly a¤ected by the �uctuations of the order parameter, the classical

equations, such as the Van der Waals equation of state, fail in this region. Wycza-

lkowska and coworkers99 presented a theoretical approach to correct a classical Van
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der Waals equation of state for the e¤ects of critical �uctuations by utilizing a

transformation deduced from the renormalization-group theory of critical phenom-

ena. They explained how critical �uctuations lower the critical temperature, �atten

the coexistence curve, induce a singularity in the isochoric heat capacity and so

on. However, the vapor-liquid asymmetry, as given by "complete scaling", was not

incorporated into that work.

Heat capacity: The reduced Yang-Yang relation for � = �c is

eCVeT =
d2 eP
deT 2 � d2e�

deT 2 , (3.117)

which is valid for both mean �eld and asymptotic critical region. From "complete

scaling", the presence of a3 term implies a so-called Yang-Yang anomaly: the diver-

gence of the heat capacity in the two-phase region near the critical point is shared

among the second derivatives of pressure and chemical potential.19, 21 Since we have

a3
d2 eP
deT 2 = � d

2e�
deT 2 , (3.118)

these two second derivatives may be calculated from eCv by the formula
d2 eP
deT 2 = 1

1 + a3

eCveT ; � d
2e�
deT 2 = a3

1 + a3

eCveT . (3.119)

Experimental tests of the Yang-Yang anomaly are even more controversial since

traces of impurities can easily mimic such an anomaly, thus making any conclusions
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unreliable.100 However, the development of a method to calculate a3 from a classical

equation of state which can be used for the critical region make this separation

much more practical. For classical Van der Waals �uids, we have already shown that

a3 = 0:25: Thus, since we know that heat capacity jump� eCv for Van derWaals �uids
is � eCv=eT = 3�211=�30 = 9=2, by using Eqs. (4.2) we may obtain the contribution

from pressure d2 eP=deT 2= 18=5 and from chemical potential is �d2e�=deT 2= 9=10.

Since Wyczalkowska and coworkers99 didn�t considered the existence of a3 term,

their results for d2 eP=deT 2 and d2e�=deT 2 are not consistent with "complete scaling".
By using their results for the isochoric molar heat capacity eCv; we present a simple
method to separate d2 eP=deT 2 and d2e�=deT 2 by introducing the asymmetric coe¢ cient
a3.

When �eT > 0 and �e� = 0, in the mean-�eld region, it is well known that
the isochoric heat capacity recovers the ideal-gas limit eCv = 3=2 and the second

derivative of pressure vanishes d2 eP=deT 2= 0. By employing the Yang-Yang relation
(3.117), the second derivative of chemical potential is

� d
2e�
deT 2 = eCVeT � d2 eP

deT 2 =
3
2eT . (3.120)

Considering the crossover from asymptotic critical region to mean �eld, since d2 eP=deT 2=
0 far from the critical point and d2 eP

deT 2 = 1
1+a3

eCveT in the critical region, we may construct
the crossover like

d2 eP
deT 2 = 1

1 + a3

 eCveT �
3
2eT
!
. (3.121)
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From Yang-Yang relation, d2e�=deT 2 is calculated
� d

2e�
deT 2 = a3

1 + a3

eCveT +
1

1 + a3

3
2eT = a3

1 + a3

 eCveT �
3
2eT
!
+

3
2eT . (3.122)

When �eT < 0 along the coexistence curve, in the mean �eld area, we may

construct the d2 eP=deT 2 and d2e�=deT 2 as
d2 eP
deT 2 =

18

5
+ C1

�eT � 1� ; (3.123)

d2e�
deT 2 = � 9

10
+ C2

�eT � 1�� 3
2eT ; (3.124)

where 18=5 and 9=10 are their respective contributions to the heat capacity jump,

and C1 =
�
d3 ePcxc
deT 3

�
�eT=0;�e�=0 ; C2 =

�
d3e�cxc
deT 3

�
�eT=0;�e�=0. From the Yang-Yang relation

we have eCVeT =
9

2
+ (C1 � C2)�eT + 3

2eT , (3.125)

which may be transformed to

eCV = 6 + (4:5 + C1 � C2)�eT + (C1 � C2)�eT 2. (3.126)

Since C =
�
d eCV
deT
�
�eT=0 ; it is clear that C = 4:5 + C1 � C2: Therefore, if we know

C and C1, we may calculate C2 easily. Considering the crossover from asymptotic

critical region to mean �eld, since in the asymptotic critical region d2 eP
deT 2 = 1

1+a3

eCveT and
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Figure 3.16: The coexistence curve of the Van der Waals �uid.101

far from the critical point d
2 eP
deT 2 � C1

�eT � 1�, we may add these two limits together:
d2 eP
deT 2 = 1

1 + a3

eCveT + C1

�eT � 1� : (3.127)

In the same way we obtain the crossover formula for d2e�=deT 2;
� d

2e�
deT 2 = a3

1 + a3

eCveT � C2

�eT � 1�+ 3
2eT : (3.128)

The calculated crossover heat capacity data for ct = 1 is obtained from

Wyczalkowska and coworkers.99 Then we calculate the �rst derivativeC =
�
d eCV
deT
�
�eT=0

= 14:5 numerically. From the coexistence curve of Van der Waals model obtained

by Barieau,101 as shown in Fig (3.16), we �nd C1 =
�
d3 ePcxc
deT 3

�
�eT=0;�e�=0 = 1:08 nu-

merically. Thus, C2 = 4:5 + C1 � C = �8:92:

Then, the heat capacity eCv; d2 eP=deT 2 and d2e�=deT 2 may be plotted as func-
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Figure 3.17: Reduced isochoric molar heat capacity eCV of the crossover99 for ct =
1 (solid line) and classical (dash line) Van der Waals equation along the critical
isochore as a function of T=Tc:

tions of temperature.

Diameter: As a result of "complete scaling", the �diameter��d contains two non-

analytical contributions
����eT ���2� and ����eT ���1��, associated with the terms a3� eP and

b2�e� in the scaling �elds. The term D2

����eT ���2� should dominate near the critical
point since 2� < 1 � �. It is very challenge to verify this consequence of "com-

plete scaling" experimentally. The nonanalytical contributions in the �diameter�

are usually not large enough to be separated unambiguously.

To unambiguously separate 1 � � term and 2� term and reliably determine

the two asymmetry coe¢ cients a3 and b2; we combine accurate experimental and
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Figure 3.18: Second derivative
�
@2 eP=@ eT 2�

�
of the crossover99 for ct = 1 (solid line)

and classical (dash line) Van der Waals equation along the critical isochore as a
function of T=Tc:
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Figure 3.19: Second derivative
�
@2e�=@ eT 2�

�
of the crossover99 for ct = 1 (solid line)

and classical (dash line) Van der Waals equation along the critical isochore as a
function of T=Tc:
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simulational vapor-liquid coexistence and heat-capacity data. We have exploited

the fact that the coe¢ cients D1 and D0 in Eq. (4.2) are actually not independent.

By introducing the critical background Bcr; as shown in Eq. (4.5), which can be

obtained theoretically46 and by analyzing heat-capacity data, Eq. (??) becomes

a formula with only two adjustable coe¢ cients, D1 and D2: We have examined a

number of systems, real �uids and simulated models, for which we could �nd both

heat-capacity and coexistence data in the range
����eT ��� < 0:01; which will be discussed

in the next chapter. Now let us consider how to separate 1� � and 2� term of the

calculated diameter for the crossover Van der Waals �uid.

The renormalized critical part of the Helmholtz free energy density is

� eAcr = 1

2
tM2T D + uu��

4!
M4D2U � 1

2
t2K; (3.129)

with

t = ct�eT ; M = c��e�; u�u� = u0=c
4
�; (3.130)

where

ct = a0 (�0)
2=3 =c0; c� = c

1=2
0 �

�1=3
0 ; ctc� = a0: (3.131)

One takes approximate expressions for the rescaling functions T ; D; K; and U as:

T = Y (2��1)=�s ; D = Y ���=�s ; (3.132)

U = Y �=�s ; K = �

�u�

�
Y ��=�s � 1

�
; (3.133)
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where Y is a crossover function and is to be evaluated from the equation

1� (1� u)Y = uY �=�s

�
1 +

�2

�2

�1=2
; (3.134)

with �2 = 2ct

����eT ��� T for two phase region where � is a measure of a distance

from the critical point and related to the inverse correlation length. The explicit

solution45 for the rescaled order parameterM along the two phase boundary is given

by

M2 = (�e�)2 = 6ctt

u�u�
Y (2��1)=�s : (3.135)

In principle this crossover equation contains two major parameters, namely, � and

ct. However, as the cuto¤ wave number qD for the critical �uctuations is of the

same order as q0 for molecular �uids, the dimensionless � = qD=q0 will be of order

unity.99 Therefore, just as for the lattice gas model, we can take � = 1. By adjusting

ct, which is related to the strength of the intermolecular interactions, the e¤ects of

the critical �uctuations is studied. The classical equation is recovered when ct = 0;

which corresponds to weak long-range interactions. The increase of ct means the

increasingly shorter-ranged interactions. The coupling constant u may be calculated

by u = u0
a20

c2t
u�� :

The diameter is e�d � 1 = a3 (1 + a3)�
2
1 + b2�2 and �2 = �es = @� eAcr=@�eT :

Substituting Eq. (3.135) into Eq. (3.129) and taking the �rst derivative with respect

to �eT ; we get the �es for the two-phase region. For the Van der Waals �uid, a3 = 1
4

and b2 = 4
45
: We can separate 1 � � and 2� term of the calculated diameter for
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Figure 3.20: Crossover diameter in a van der Waals equation of state modi�ed by
�uctuations with a short interaction range ct = 0:5. Thick solid curves are the
phase boundary. (a) two contributions in the singular diameter (solid line): 1 � �
and linear term (dashed line) and 2� (dotted line); (b) Crossover between rectilinear
diameter (dashed-dotted line) and singular diameter (solid line) in a broader critical
region.

crossover Van der Waals �uids. In Fig. 3.20 the crossover behavior for ct = 0:5

between rectilinear diameter and complete-scaling singular diameter is shown for the

van der Waals equation of state renormalized by �uctuations.99 A �uctuation shift

in the van der Waals critical density is mainly controlled by the
����T̂ ���2� singularity

since the van der Waals value of a3 is relatively large (a3=(1 + a3) = b2=�̂11 = 0:2).
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CHAPTER 4

VAPOR-LIQUID ASYMMETRY IN REAL FLUIDS AND

SIMULATED MODELS

4.1 Separating the two singular sources of asymmetry in diameters

As a result of "complete scaling", the order parameter �1 in �uids is, in

general, a nonlinear combination of density and entropy;

�1 =
�e�+ b2�es
1 + a3�e� , (4.1)

the weakly �uctuating scaling density �2 in �rst approximation is associated with

the density of entropy only, �2 = �es. There is an important thermodynamic conse-
quence of "complete scaling" that can be checked experimentally. The "diameter"

�d should contain two non-analytical contributions, associated with the terms a3� eP
and b2�e� in the scaling �elds:

e�d � 1 = a3 (1 + a3)�
2
1 + b2�2 + : : :

= D2

����eT ���2� +D1

����eT ���1�� +D0

����eT ���+ : : : (4.2)

where D2 = a3B
2
0=(1 + a3) and D1 = b2A

�
0 =(1 � �) with B0 and A�0 being the

amplitudes in the asymptotic scaling power laws for the liquid/vapor densities,

�e� = �B0 ����eT ����+ :::; and isochoric heat capacity in the two-phase region, CV=R =
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A�0

����eT ����� + :::(A�0 = A+0 =0:523).
43 Note, since 2� < 1 � �; the term D2

����eT ���2�
should dominate near the critical point . Experimental veri�cation of complete scal-

ing is a very challenging task. The nonanalytical contributions in the �diameter�

are usually not large enough to be separated unambiguously. Attempts to �t some

experimental and simulational data to Eq. (4.2) showed very poor conversions,21, 82

mainly because of a strong correlation between the linear and D1

����eT ���1�� terms. As
shown in Fig. 4.1, the �tting to only

����eT ���1�� and linear term (dot curve) or only����eT ���2� term (dash curve) cannot yield a good description of the experimental data

since the systematic variation is very clear. However, it is clear that
����eT ���2� term

plays a crucial role in describing the diameter of vapor-liquid coexistence curve in

SF6 near the critical point as the dashed curve in Fig. 4.1 qualitatively catches the

singularity near the critical point, while the dot curve is almost linear. The circles

in Fig. 4.1 represent the experimental data obtained by Weiner et al..79

The power law with the �rst correction to scaling to describe the heat ca-

pacity is

CV = A�0

����eT ����� + A�1

����eT �����+�s +B
����eT ��� ; (4.3)

where B = (Bcr +Bideal). Bcr is the so-called "critical background" that is induced

by the critical �uctuation and Bideal is the ideal-gas background that represents the

value of the speci�c heat far from the critical point.86 However, since the diameter

can be obtained from the equation of state in terms of P , V and T , the ideal-gas

background is irrelevant. Therefore, only the �uctuation-induced modi�cation of the

background speci�c heat capacity Bcr needs to be considered.
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Figure 4.1: The liquid-vapor coexistence curve of SF6. The circles indicate experi-
mental data of Weiner et al.79 Curves: solid - �t to Eq. (4.2), dashed - �t to only
2� term, dotted - �t to only 1� � and linear terms. Heat-capacity source.89, 88
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Now we are ready to determine the two asymmetry coe¢ cients, a3 and b2;

and to prove conclusively the validity of "complete scaling" by combining accurate

experimental and simulational vapor-liquid coexistence and heat-capacity data. We

have exploited the fact that the coe¢ cients D1 and D0 in Eq. (4.2) are actually

not independent. The weakly �uctuation scaling density is the critical part of the

entropy density. Neglecting the higher-order term A�1

����eT ���1��+�s in the two-phase
region at average density � = �c

�2 =

Z
�CV
RT

dT = � A�0
(1� �)R

����eT ���1�� + Bcr
R

����eT ��� ; (4.4)

where �CV is the critical part of the isochoric heat capacity, �uctuation-induced

analytical part of entropy. The critical background can be obtained theoretically46

and by analyzing heat-capacity data. If D0 = �Bcr is known, Eq. (4.2) becomes

e�d � 1 = D2

����eT ���2� +D1

�
� A�0
(1� �)R

����eT ���1�� + Bcr
R

����eT ���� ; (4.5)

with only two adjustable coe¢ cients, D1 and D2: Moreover, a3 and b2 may be

obtained by the simple relations

a3
1 + a3

=
D2

B2
0

; b2 = D1: (4.6)
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4.2 Asymmetry coe¢ cients in real �uids and simulated models

We have examined a number of systems, real �uids, including several hydro-

carbons, and simulated models, such as the hard-core square-well (HCSW) �uid and

the restricted primitive model electrolyte (RPM), for which we could �nd coexis-

tence data in the range
����eT ��� < 0:01. In this range the terms of higher-order than

linear in Eq. (4.2) are within experimental errors. Experimental data closer than����eT ��� < 10�4 were avoided as they might be a¤ected by errors in �c and Tc and by
other factors, such as gravity, impurities, etc.. For all systems studied we have been

able to obtain reliable values of Bcr and to conclusively separate two singular con-

tributions to the diameter. Tables 4.1 and 4.2 list all the parameters needed in the

�tting and the �tting results. Note, the HCSW �uids studied here consist of hard

spheres of diameter d with attractive square wells of depth � and interaction ranges

1:5d.97 The RPM electrolyte consists of an equal number of positive and negative

ions with hard-core diameter d.97 The ions are of charges �q0 and interact with

each other via the Coulomb potential, ' (r) = �q20=Dr, where r is the interparticle

distance and D is the dielectric constant of medium. The critical parameters listed

in Tables 4.1 for HCSW and RPM have been made dimensionless by ��c = �cd
3 and

T �c = kBTc=� (HCSW) and T �c = kBTcDd=q
2
0 (RPM), where kB is the Boltzmann

constant.

It is very di¢ cult to obtain the heat-capacity data within the critical region����eT ��� < 10�4 for all the �uids we have studied. Therefore, we have tried three ways
to obtain A�0 . For methane, ethane, pentane and heptane, we use the unpublished
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Figure 4.2: Heat-capacity data of methane in two-phase region.98 The solid line is
the �tting of Eq. (4.3).
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Figure 4.3: Heat-capacity data of ethane in two-phase region.98 The solid line is the
�tting of Eq. (4.3).
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Fluids Tc �c A�0 A�1 Bcr B0 10�
(K) ( mol

dm3
) ( J

mol�K ) ( J
mol�K ) ( J

mol�K )

HD17 35.957 16.07 65.00 -30.00 1.358 0.03
neon17 44.479 23.97 70.00 -30.00 1.497 0.04
methane91 190.551 10.14 74.54 35.95 -29.62 1.551 0.05
nitrogen17 126.214 11.20 78.19 0 -28.63 1.565 0.03
ethene17 282.377 7.665 90.00 -57.70 1.642 0.05
ethane17 305.363 6.851 98.34 35.98 -57.70 1.649 0.04
HCSW97 1.218* 0.3076* 68.51 0 -51.63 1.926 0.02
RPM97 0.0507* 0.0760* 96.60 0 -40.98 3.635 0.01
water95 647.096 17.84 116.4 0 -32.00 2.035 0.04
pentane92, 93 469.610 3.204 157.0 406.8 -183.6 1.776 0.08
SF679 318.707 5.012 143.1 0 -31.16 1.733 0.03
F11390 486.968 3.026 165.0 -30.00 1.841 0.04
heptane94 539.860 2.318 187.7 97.78 -152.8 1.843 0.09

Table 4.1: Critical parameters, heat-capacity coe¢ cients and amplitudes for various
�uids. Note: * means that the data are dimensionless.

heat-capacity data from Abdulagatov and coworkers.98 They have been �tted by

Eq. (4.3) to obtain A�0 and B. Figs. 4.2 and 4.3 show the heat-capacity data and

�tting results for methane and ethane. The A�0 and B for SF6, water and nitrogen

have been obtained from the literature.89, 85, 95 By plotting A�0 as a function of the

critical density �c for all A
�
0 obtained from experimental data and then by inter-

polating, we obtain A�0 for HD, neon, ethene and Freon113 due to the two-scale

factor of universality2 A+0 �c
�
�+0
�3
R�1 = 0:171 where �+0 is treated approximately

as a constant. A�0 of HCSW and RPM are calculated from three-scale factor of

universality2 A+0 �
+
0 =B

2
0 = 0:06 where �+0 and B0 are obtained from reference pa-

pers.97, 96 For those �uids we have experimental data for the heat capacity, Bcr may

be obtained by Bcr = B � Bideal; where Bideal may be calculated by well known

formula and coe¢ cients.75 For most other �uids Bcr = z0R�= (�u�) is employed to

calculate the approximate value of Bcr by using z0 ' 0:3; u = 0:5 and � = 1:44 Since
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Fluids �� D2 D1 a3 b2 103�

HD17 0.3469 -0.0237 -0.0593 -0.0127 -0.0593 0.03
neon17 0.3221 -0.0404 -0.0683 -0.0177 -0.0683 0.03
methane91 0.3025 -0.0586 -0.0730 -0.0238 -0.0730 0.08
nitrogen17 0.2884 -0.0442 -0.0701 -0.0177 -0.0701 0.04
ethene17 0.2506 -0.0094 -0.0745 -0.0035 -0.0745 0.28
ethane17 0.2293 0.0038 -0.0603 0.0014 -0.0603 0.41
HCSW97 0.3140 0.0306 -0.0529 0.0083 -0.0529 0.77
RPM97 0.1479 1.5876 -0.483 0.137 -0.483 0.51
water95 0.1861 0.2361 -0.0482 0.0618 -0.0482 0.45
pentane92, 93 0.1436 0.3136 0.0207 0.110 0.0207 1.00
SF679 0.1576 0.4607 0.0351 0.181 0.0351 0.40
F11390 0.1367 0.6074 0.0483 0.218 0.0483 0.53
heptane94 0.1201 0.9156 0.0941 0.369 0.0941 1.60

Table 4.2: Asymmetry parameters for �uids

the results usually are in the range of 30 J/(mol�K)< Bcr < 50 J/(mol�K); we just

take Bcr = 30 J/(mol�K).

The �uids we have studied may be classi�ed into three types, (1) a3 < 0

and b2 < 0; (2) a3 > 0 and b2 < 0; and (3) a3 > 0 and b2 > 0: This results is

similar to our results for the Flory-Huggins model plus three-body interactions in

the previous chapter. When a3 and b2 are both small negative numbers, i.e. a3 < 0

and b2 < 0, such as HD, neon, methane, nitrogen and ethene whose molecular

volume is very small, the contributions to diameters from entropy are positive while

the contributions of 2� terms are negative. As shown in Figs. 4.4, 4.5, 4.6, 4.7 and

4.8, the diameters produced by only the entropy have the same direction as that of

the actual diameters, while the diameters produced by 2� term have the opposite

direction. The compensation of the two contributions produces diameters which are

almost rectilinear. When a3 > 0 and b2 < 0; both of these two contributions to the

diameters have the same inclination as that of the actual diameters and their sum
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constructs the full diameters. As shown in Figs. 4.9 and 4.10, in ethane and HCSW,

contributions from the entropy are more important than those from 2� term. In

RPM and water, the results are opposite, although the two contributions are very

close, as shown in Figs. 4.11 and 4.12. For �uids with large molecular volumes, a3

and b2 are both positive. Notice that the values of a3 are relatively large, in general

> 0:1; while the value of b2 are small compared to a3, here in general < 0:1: In this

case, the 2� term yields a large positive contribution to the actual diameter, while

the terms from the entropy are small and negative. The net result of these two

kinds of contributions is an actual diameter with an appreciable curvature near the

critical point, as shown in Figs. 4.13, 4.14, 4.15 and 4.16.

From the above analysis, it is clear that there exist appreciable singularities

in diameters of �uids with large molecular volumes, and that these singularities

can only be described by a term proportional to
����eT ���2�. This means they have

relatively large and positive a3. For �uids with relatively small molecular volumes,

the diameters are almost rectilinear. The contributions from the entropy play a

crucial role in describing them, which means b2 must be negative and a3 should also

be less than zero but with a small absolute value. There exists a transition region

in which neither of these two contributions is dominant.

The quality of the �ts74 is assessed by the chi-square �2�

�2� =
1

N �M

P
(yi � byi)2
z2

; (4.7)

where the yi are the experimental data, byi are values of calculation, N is the number
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Figure 4.4: The liquid-vapor coexistence curve of HD. The circles indicate exper-
imental data of Pestak et al.17 Curves: solid - �t to Eq. (4.2), dashed -2� term,
dotted - 1� � and linear terms. Heat-capacity coe¢ cients are from interplation.
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Figure 4.5: The liquid-vapor coexistence curve of neon. The circles indicate exper-
imental data of Pestak et al.17 Curves: solid - �t to Eq. (4.2), dashed -2� term,
dotted - 1� � and linear terms. Heat-capacity coe¢ cients are from interplation.
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Figure 4.6: The liquid-vapor coexistence curve of methane. The circles indicate
experimental data.91 Curves: solid - �t to Eq. (4.2), dashed -2� term, dotted - 1��
and linear terms. Heat-capacity source.98
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Figure 4.7: The liquid-vapor coexistence curve of nitrogen. The circles indicate
experimental data of Pestak et al.17 Curves: solid - �t to Eq. (4.2), dashed -2�
term, dotted - 1� � and linear terms. Heat-capacity source.85
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Figure 4.8: The liquid-vapor coexistence curve of ethene. The circles indicate ex-
perimental data of Pestak et al.17 Curves: solid - �t to Eq. (4.2), dashed -2� term,
dotted - 1� � and linear terms. Heat-capacity coe¢ cients are from interplation.
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Figure 4.9: The liquid-vapor coexistence curve of ethane. The circles indicate ex-
perimental data of Pestak et al.17 Curves: solid - �t to Eq. (4.2), dashed -2� term,
dotted - 1� � and linear terms. Heat-capacity source.98
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Figure 4.10: The liquid-vapor coexistence curve of HCSW. The circles indicate
experimental data.97 Curves: solid - �t to Eq. (4.2), dashed -2� term, dotted - 1��
and linear terms. Heat-capacity source.97
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Figure 4.11: The liquid-vapor coexistence curve of RPM. The circles indicate ex-
perimental data.97 Curves: solid - �t to Eq. (4.2), dashed -2� term, dotted - 1� �
and linear terms. Heat-capacity source.96
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Figure 4.12: The liquid-vapor coexistence curve of water. The circles indicate ex-
perimental data.95 Curves: solid - �t to Eq. (4.2), dashed -2� term, dotted - 1� �
and linear terms. Heat-capacity source.95
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Figure 4.13: The liquid-vapor coexistence curve of pentane. The circles indicate
experimental data.92, 93 Curves: solid - �t to Eq. (4.2), dashed -2� term, dotted -
1� � and linear terms. Heat-capacity source.98
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Figure 4.14: The liquid-vapor coexistence curve of SF6. The circles indicate exper-
imental data of Weiner et al.79 Curves: solid - �t to Eq. (4.2), dashed -2� term,
dotted - 1� � and linear terms. Heat-capacity source.89, 88
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Figure 4.15: The liquid-vapor coexistence curve of Freon113. The circles indicate
experimental data.90 Curves: solid - �t to Eq. (4.2), dashed -2� term, dotted - 1��
and linear terms. Heat-capacity coe¢ cients are from interplation.
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Figure 4.16: The liquid-vapor coexistence curve of heptane. The circles indicate
experimental data.94 Curves: solid - �t to Eq. (4.2), dashed -2� term, dotted - 1��
and linear terms. Heat-capacity source.98
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of experimental data, M is the number of �tted parameters, and z is the average

standard deviation of the experimental values. If the �tting function is a good

approximation to the parent function, the value of �2� should be approximately

unity. If the �tting function is not appropriate for describing the data, one has

�2� > 1: Since it is di¢ cult to �nd z in the original paper, we just assume z = 1: �

is used to measure the accuracy of our �t.

�2 =
1

N �M

X
(yi � byi)2 ; (4.8)

Fig. 4.17 shows the residual plots from �ts of the diameters of (a) HD and (b)

Freon113. The �tting function is Eq. (4.5).

4.3 Discussion

As early as in 1930�s Eyring80, 81 essentially explained the existence of the law

of rectilinear diameter and discussed the origination of the slight inclination in the

vapor-liquid diameter. In his picture Eyring treated the cell walls in the lattice-gas

model as physical walls made up of other molecules. Since the lattice produced by

the molecular structure has its own thermal-expansion coe¢ cient, it will thermally

expand as the temperature increases. Therefore, the higher the temperature, the

lower the average density of the coexisting phases, which results in a slight inclination

in the right direction like that in the real �uids.

In 1972 Widom16 gave a comprehensive review of vapor-liquid asymmetry

and the nature of the critical point. By introducing the penetrable-sphere model,
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Figure 4.17: Residual plots from �ts of the diameters of (a) HD and (b) Freon113.
The �tting function is Eq. (4.5).
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he proved that the law of rectilinear diameter is to be violated and a singular term

/
����eT ���1�� ; which is related to the entropy, must appear. Pestak et al.17 studied

the experimental coexistence-curve diameters near the critical point of SF6; C2H6,

C2H4, N2 and Ne in 1987. They found that the slope of the diameter far from

the critical point, the amplitude of singular deviation from the law of rectilinear

diameter within the critical region, and order-parameter amplitude, all increase sys-

tematically with Tc and are all proportional to the critical polarizability product,

which is a dimensionless measure of the relative importance of three- versus two-

body interactions. They also have suggested that three-body interactions play an

important role in those properties relevant to the vapor-liquid asymmetry of pure

�uids. In their work the possibility of incorporating the e¤ects of three-body in-

teractions into an e¤ective pair potential is explored, in the critical region which is

equivalent to the thermal scaling �eld with a mixing of physical variables temper-

ature and chemical potential.17 Ultimately it leads to a breakdown in the classical

law of the rectilinear diameter. Furthermore, the magnitude of the �eld mixing and

the diameter anomaly scales with the product of the particle polarizability and the

critical number density.17 However, after studying the amplitude of the rectilinear

diameter for a large number of normal �uids in 1990, Singh and Pitzer18 found that

the diameter slope shows a linear dependence on the acentric factor and conclude

that the shape of the pair potential is the primary factor in determining the slope of

the diameter rather than the relative strength of three-body interactions. They also

mentioned that close to the critical point the shape of the two-body potential has

the equally logical e¤ect on the increase of the amplitude D1 of 1� � term. A new
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term /
����eT ���2� is found in the expression of diameters recently as a result of the

"complete scaling" developed by Fisher and Orkoulas,19, 21 The new singular term

actually dominates the earlier
����eT ���1�� term near the critical point since 2� < 1��.

It will be an interesting task to explore the origin of these two singular terms.

We have studied a number of �uids in this chapter. In the diameters of some

�uids, such as SF6; C2F3Cl3; n-C5H12 and n-C7H16; the
����eT ���2� term dominates

(a3 is relatively large and positive ) while in many other �uids, such as HD, Ne,

N2, and CH4; the two singular contributions in diameter largely compensate each

other (a3 is small and negative), creating an illusion of rectilinear diameter even

close to the critical point. In Fig. 4.18 the two asymmetry coe¢ cients are plotted

against the dimensionless density �� de�ned as �� = �c(8�
3
0); where �0 is the am-

plitude of the correlation length (representing the range of interactions) obtained

from the heat-capacity amplitude A+0 through the two-scale factor of universality,

A+0 �c�
3
0 = 0:171.43 A general trend in the two sources of asymmetry is clear: the����eT ���2�singularity, predicted by complete scaling, is a dominant contribution into the

singular diameter if the molecular size/interaction-range ratio is large. Apparently,

�0 does not change much with increase of molecular volume. Thus, we hypothesize

that when the molecular size is large, the
����eT ���2�singularity may be dominant.

According to "complete scaling", asymmetry in �uid criticality originates

from the coupling between density and entropy �uctuations which produces 1 � �

term in coexistence-curve diameter and from the nonlinear coupling between density

and volume �uctuations which produces 2� term in diameter. From Fig. 4.18, it
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Figure 4.18: Complete-scaling asymmetry coe¢ cients a3 (a) and b2 (b) versus re-
duced critical density �� = �c(8�

3
0): VDW is a modi�ed-by-�uctuations van der

Waals �uid99 with a short interaction range (R = (��)1=3 = 0:5). HCSW is a sim-
ulated hard core square-well model.82 For a similated restrictive primitive model
(RPM)82 a3 = 0:14 and b2 = �0:48 with �� ' 0:22: The solid curves are given as a
guidance.

is clear that both 2� and 1 � � terms depend strongly on the molecular volume.

Eyring�s idea80, 81 may give us some insight into this problem although it can not

be proved up to now. We may consider that the volume of lattice cells is the sum

of the molecular volume and the space between molecules. It is guessed that the

asymmetry from a3 depends on the molecular volume, but that from b2 depends

on the distance between molecules which is strongly related to the intermolecular

interactions (three-body or two-body).
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CHAPTER 5

ASYMMETRY OF LIQUID-LIQUID PHASE EQUILIBRIA

Liquid-liquid phase equilibria in �uid mixtures are fascinating phenom-

ena in thermodynamics that are also of great practical interest.111, 112 As discussed

in the previous chapter, Fisher and co-workers have shown that the most general for-

mulation of such linear mixing for one-component �uids ("complete scaling") should

also include a contribution from the pressure19, 21

h1 = a1�e�+ a2�eT + a3� eP ; (5.1)

h2 = b1�eT + b2�e�+ b3� eP : (5.2)

The mixing of the physical �elds into scaling �elds in the form of Eqs. (5.1) and

(5.2) means that all three physical �elds are mixed into two independent scaling

�elds. The appropriate �eld-dependent thermodynamic potential 	(h1; h2) is thus

associated neither with the molar Gibbs energy � nor with the density of the grand

potential �P , but rather with a linear combination of both. As a result, the or-

der parameter in one-component �uids is, in general, a nonlinear combination of

density and entropy. The "diameter" of the vapor-liquid coexistence curve, which

characterizes its asymmetry, contains two non-analytical contributions, associated

with the terms a3� eP and b2�e� in the scaling �elds
e�d = �l + �g

2�c
= 1 +D2

����eT ���2� +D1

����eT ���1�� +D0

����eT ��� : (5.3)
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The leading (2� < 1� �) nonanalytical termD2

����eT ���2� is absent in the conventional
scaling formulation.

The generalization of "complete scaling" to binary �uids has been initially

done by Cerdeiriña et al.30 In this chapter we will analyze it further. A controversial

issue of the proper de�nition of the order parameter in binary �uids will be clari�ed.

A straightforward analogy between "incompressible" binary liquids mixtures and

one-component �uids enables us to unambiguously con�rm the validity of "complete

scaling" by analyzing the coexisting curves of liquid solutions of nitrobenzene in

various hydrocarbons (from n-pentane to n-hexadecane). Another consequence of

"complete scaling" for binary mixtures, an e¤ect that is analogous to the Yang-Yang

anomaly in one-component �uids, is also elucidated.

5.1 Liquid-liquid critical phenomena

Let us consider the conventional scaling to study liquid-liquid critical phe-

nomena �rst. To understand the thermodynamic behavior of �uids and �uid mix-

tures near critical points, one needs to distinguish between �elds that are intensive

thermodynamic properties and densities that are thermodynamic properties conju-

gate to the �elds.117, 62 Fields remain uniform in the two-phase region, while densities

di¤er along the two sides of the phase boundary. The asymptotic critical behavior of

the thermodynamic properties can be completely characterized in terms of two in-

dependent scaling �elds, h1 and h2, that are analytic functions of the physical �elds,

such that at the critical point h1 = h2 = 0. The principle of isomorphic critical

behavior asserts that 	cr (h1; h2) is the same singular function for all �uids and �uid
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mixtures. The variety of actual critical phase behavior, observed experimentally, is

determined by the relation between the scaling �elds h1 and h2 and the physical

�elds.23, 4

In one-component real �uids the physical �elds are the pressure P , the tem-

perature T and the chemical potential �: The three �elds are not independent but

satisfy the di¤erential relation

dP = sdT + �d�: (5.4)

As we discussed in chapter 2, in traditional scaling the �elds h1 and h2 are functions

of the physical �elds and in linear approximation23, 4

h1 = a1�e�+ a2�eT ; h2 = b1�eT + b2�e�: (5.5)

Thus, we have that �e� along the coexistence boundary will asymptotically vary as
�e� = �1 + b2�2 = �B0

����eT ���� +Ba

����eT ���1�� ; (5.6)

Equation (5.6) contains the �rst asymptotic term of a so-called Wegner expansion.6

The leading con�uent singularity in the expansion is proportional toj�eT j�s , where
�s is a universal correction-to-scaling exponent.57 In addition, there is a contribution

from the regular analytic part of P r in accordance with Eq. (2.26), yielding in �rst

approximation a term in Eq. (5.6) that is proportional to �eT . Thus in the next
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approximation the expansion for �e� becomes57, 118

�e� = �B0 ����eT ���� �1 +B1 ����eT ����s�+Ba

����eT ���1�� + d1�eT : (5.7)

where B0, B1, Ba, and d1 are system-dependent coe¢ cients.

For a binary liquid mixture we can identify the physical �elds with the pres-

sure P , the temperature T , the chemical potential �1 of the solvent and the di¤erence

��21 = �2 � �1 between the chemical potential �2 of the solute and the chemical

potential �1 of the solvent. These �elds satisfy the di¤erential relation,

d�1 = �SmdT + VmdP � x2d��21: (5.8)

For nearly incompressible liquid mixtures near a consolute point, we take P , T , and

� as the independent �elds and �1 as the �eld-dependent potential. In the linear

approximation, the scaling �elds are

h1 = a0� eP + a1�e��21 + a2�eT ; h2 = b0� eP + b1�eT + b2�e��21: (5.9)

In this and in the subsequent section we consider liquid-liquid separation at a con-

stant pressure P , so that dP= 0. Then the scaling �elds reduce to

h1 = a1�e��21 + a2�eT ; h2 = b1�eT + b2�e��21: (5.10)

121



while at constant pressure

d�1 = �SmdT � x2d��21: (5.11)

Note that in binary liquids there exists a locus of critical consolute points as a

function of the pressure. Hence, �c and Tc, as well as the coe¢ cients a1; a2; b1; b2;

will depend on the actual pressure P .

On comparing Eq. (5.11) with Eq. (5.4) and Eq. (5.10) with Eq. (5.5)

we may conclude that �1 is analogous to the pressure P in a one-component �uid,

that ��21 is analogous to the molar Gibbs energy �, and that the mole fraction

x2 = �(@�1=@�)T;P is analogous to the density � = (@P=@�)T in a one-component

�uid. If there is no confusion, to simplify we will take x = x2. Hence, �x = x� xc

has the same expansion, Eq. (5.7), along the liquid-liquid phase boundary of a

binary liquid mixture (at constant pressure) as �e� along the vapor-liquid phase
boundary in a one-component �uid

x = xc �B0

����eT ���� �1 +B1 ����eT ����s�+Ba

����eT ���1�� + d1�eT : (5.12)

There exists some ambiguity in the precise de�nition of the order parameter which

we have here asymptotically identi�ed with the mole fraction x. The choice of order

parameter is a¤ected by symmetry considerations. For instance, if in the case of

one-component �uids we had selected T and P as the independent �elds and the

molar Gibbs energy � as the �eld-dependent potential, we would have obtained the
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molar volume as the asymptotic order parameter. While the volume does satisfy the

same asymptotic power laws as the density, vapor-liquid symmetry considerations,

con�rmed by the lattice gas, clearly indicate that the density is the preferred order

parameter.43 Similarly, if one adopts in the case of binary mixtures �1, T and � as

the independent �elds and the pressure P as the �eld-dependent potential and then

takes the limit of nearly incompressible liquid mixtures, one �nds the partial density

�x as the asymptotic order parameter.23 Other possibilities are mass fraction or

volume fraction. For the coexistence curves to be considered in the present chapter,

we found that it made little di¤erence whether the concentration is expressed in

mass fractions or mole fractions.28

With known experimental values for the critical temperature Tc and the crit-

ical concentration xc, Eq. (5.12) contains four system-dependent coe¢ cients. Start-

ing with the work of Greer,119 the validity of Eq. (5.12) for the representation of

coexistence curves of liquid mixtures, either with an UCST or a LCST, has been

well established.120, 121, 122, 123 As examples we show in Figs. (5.1) and (5.2) the

coexistence curves of 3-methylpentane+nitroethane and of n-heptane+acetic anhy-

dride, respectively. The values of the coe¢ cients in Eq. (5.12) resulting from �ts to

the experimental data,71, 72, 73 together with the standard deviations �,74 are listed

in Table 5.1. The coe¢ cients of the last two terms of Eq. (5.12) are strongly cor-

related, so that retaining only three terms in the expansion may be adequate in

practice. However, since these terms have di¤erent physical origins (the term pro-

portional to j�eT j1�� arising from the singular critical part of the order parameter

and the term proportional �eT from the analytic background), it is conceptually
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system Tu(K) xu B0 B1 Ba d1 10�
3-methylpentane +
nitroethane71, 72

299.607 0.497 0.95 -0.25 0.51 -0.32 0.04

n-heptane +
Acetic anhydride73

341.672 0.486 0.93 -0.52 1.05 -1.15 0.09

Table 5.1: Parameters for phase equilibrium in systems with an UCST

important to retain both terms in the subsequent extension of the theory to closed

solubility loops in chapter 6. Equation (5.12) is an expansion around the critical

point and has only a limited range of validity, but Figs. (5.1) and (5.2) indicate that

the equation is adequate in the temperature range of the experimental data. If one

wants to represent coexistence curves over much larger ranges of temperature, one

needs to extend Eq. (5.12) into an equation that accounts for the crossover from

�uctuation-induced singular behavior near the critical point to analytic behavior far

away from the critical point, which will not be considered here. The two systems we

examine here have relatively symmetric coexistence curves which may be described

very well by Eq. (5.12). However, if strongly asymmetric systems are studied, they

may require the "complete scaling" in order to characterize the large singularity of

the diameters near the critical point.

5.2 �Complete scaling�and order parameter for binary �uids

Generalization of critical-point universality to binary �uids is known as the

isomorphism principle.2, 23, 24 This principle assumes that a variety of critical phe-

nomena in binary �uids can be described in a universal way with two independent

scaling �elds, namely an "ordering" �eld h1 and a "thermal" �eld h2, and with a

�eld-dependent thermodynamic potential, given by Eq. (2.27), just as in a one-
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Figure 5.1: The coexistence curve of 3-methylpentane + nitroethane system. The
circles and stars indicate experimental data of Wims et al.71 and Khosla and
Widom.72 The solid curve is a �t to Eq. (5.12).
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Figure 5.2: The coexistence curve of n-heptane + acetic anhydride system. The
circles indicate experimental data of Nagarajan et al..73 The solid curve is a �t to
Eq. (5.12).
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component �uid. The actual variety of experimentally observed critical behavior in

binary �uids is hidden in the relations between the scaling �elds and physical �elds.

The concept of "complete scaling" implies that all physical �elds, independent and

dependent, are to be mixed into the scaling �elds. Thus, for a more complete treat-

ment the scaling �elds for binary �uids in linear approximation are no longer given

by Eq. (5.9), but should read

h1 = a0� eP + a1�e��21 + a2�eT + a3�e�1; (5.13)

h2 = b0� eP + b1�eT + b2�e��21 + b3�e�1: (5.14)

where �e�1 = �1��1c
RTc

(with the chemical potential of solvent �1 conjugate to molar

density �) and �e��21 = ��21���21c
RTc

(with the solute/solvent chemical potential dif-

ference ��21 conjugate to mole fraction x). The singular part 	cr of �eld-dependent

thermodynamic potential 	 is now a linear combination of the chemical potentials,

temperature, and pressure,

	cr = � eP � xc�e��21 ��e�1 � eSc�eT ; (5.15)

where xc is the critical mole fraction of solute and eSc = Sc=R. Noting that �1 =

�@ (	cr) =@h1, �2 = �@ (	cr) =@h2, ex = �@�1=@��21, eS = �@�1=@ eT and e� =
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@ eP=@e�1, we obtain from Eqs. (5.13), (5.14) and (5.15)

ex =
1 + a1�1 + b2�2
1� a3�1 � b3�2

; (5.16)

eS =
1 +

�
a2=eSc��1 + �1=eSc��2
1� a3�1 � b3�2

: (5.17)

e� =
1� a3�1 � b3�2
1 + a0�1 + b0�2

; (5.18)

Thus, the mole fraction, entropy, and density appear to be nonlinear combinations

of the scaling densities �1 and �2.

In the incompressible liquid-mixture limit the pressure-containing terms in

the scaling �elds vanish and Eqs. (5.13) and (5.14) reduce to

h1 = a1�e��21 + a2�eT + a3�e�1; (5.19)

h2 = b1�eT + b2�e��21 + b3�e�1: (5.20)

while Eq. (5.18) becomes linear,

e� = 1� a3�1 � b3�2: (5.21)

Equations (5.19) and (5.20) are analogous to Eqs. (5.1) and (5.2) with�e��21 serving
the same role as �e� and with �e�1 serving the same role as � eP . As experiments
on liquid-liquid equilibria are usually conducted at essentially constant (in practice,

saturation) pressure, the terms � eP in Eqs. (5.13), (5.14) and (5.15) containing

can also be neglected for weakly compressible liquid mixtures. In a completely
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symmetric incompressible binary liquid mixture (fully equivalent to the lattice-gas

model) h1 = a1�e��21, while the order parameter is solely associated with the mole
fraction x, �1 = a1�ex. Similarly, the thermal scaling �eld h2 = b1�eT , and the
second scaling density �2 = b1�eS, while 	cr is simply equal to the critical part
of e�1:2, 23, 24 Most binary liquids are asymmetric even when their compressibility
is negligible. Hence, the order parameter of binary liquids cannot in general be

represented in terms of concentration only.

Since two system-dependent amplitudes are incorporated into the scaling

function f�
�

h1
h�+2

�
, one can adopt a1 = 1 and b1 = 1. Moreover, in an incom-

pressible binary liquid a suitable choice of the critical-entropy (arbitrary) value

imposes constrains on other coe¢ cients in the scaling �elds.23, 24 With the choice

eSc = �@e�1@ eT �h1=0;c, a2� eSca3 = 0 and b3 = 0, such that the entropy can be associated
with the weakly-�uctuating second scaling density only, �2= �eS, and h2 = �eT (at
h1 = 0), while the mole fraction can be expanded as

ex = 1 + (1 + a3)�1 + a3(1 + a3)�
2
1 + b2�2 + : : : : (5.22)

or in terms of h2 = �eT :
ex = 1�B0

����eT ���� +D2

����eT ���2� +D1

����eT ���1�� + : : : : (5.23)

where B0 = lim
�eT!0 (1 + a3)�1 jh2j

��, D2 = B2
0a3=(1+a3), and D1 = b2A

�
0 = (1� �)R.

In Eq. (5.23) B0 is the asymptotic amplitude of the liquid-liquid coexistence curve
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andA�0 is the asymptotic amplitude of the isobaric heat capacity, CP;x = A�0

����eT �����+
: : :, in the two-phase region.

From Eq. (5.23), in the exact analogy with Eq. (5.3), it follows that the

"singular diameter" of concentrations x0 and x00 of the coexisting phases in a weakly

compressible binary liquid has the form

exd = x0 + x00

2xc
= 1 +D2

����eT ���2� +D1

����eT ���1�� + : : : ; (5.24)

while the dimensional di¤erence of the concentrations

x0 � x00

2xc
= B0

����eT ���� + : : : : (5.25)

Eq. (5.24) may be expressed in the form that the entropy is employed just as we

did for the vapor-liquid diameter,

exd � 1 = D2

����eT ���2� +D1

�
� A�0
(1� �)R

����eT ���1�� + Bcr
R

����eT ���� : (5.26)

Whereas the Ising-like order parameter �1 in �uids as a function of h2 = �eT
is symmetric with respect to a change of its sign, one can see from Eqs. (5.16)

and (5.23) that the molar concentrations of the coexisting phases as a function of

temperature may exhibit asymmetry. This asymmetry originates from two di¤erent

sources. One source, a correlation between entropy and concentration that generates
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a b2�2 = b2�eS / ����eT ���1�� term, has been extensively discussed in the literature.
However, as 2� < 1 � �, the leading asymmetric term is a3(1 + a3)�

2
1 /

����eT ���2�.
This term originates from the mixing of �e�1 into h1 and is a direct consequence of
"complete scaling".

In fact, experimental data on "diameters" of liquid-liquid coexistence system-

atically have called for the presence of the
����eT ���2� term.28, 29, 102 In the past, this

contribution was attributed to the choice of the composition variable. Speci�cally,

any concentration variable X can be transformed into a certain new concentration

variable Y through a non-linear relation Y = X= [X + (1�X) p], where p is a pa-

rameter characterizing the transformation.29, 102 As an example, mole fraction is

transformed into mass fraction with p = M2=M1, where M1 and M2 are the solute

and solvent molecular masses, respectively. It is easy to demonstrate that, if X is

the variable for which the XT coexistence curve is symmetric, the "diameter" of

the Y T coexistence curve exhibits a
����eT ���2� singularity. This is why ����eT ���2� term

was commonly regarded as a spurious e¤ect arising from a "wrong" choice of the

composition variable in the data analysis.28 The theory presented here shows that

the
����eT ���2� singularity cannot be completely eliminated for any conventional choice

of the concentration, expressed through molar, volume, or mass fractions. This

singular term is a fundamental consequence of "complete scaling". However, it is

interesting that in the incompressible limit, as follows from Eqs. (5.16) and (5.21), a

product of the mole fraction and molar density, the "partial density" �x, is a linear

combination of the scaling densities, being e�ex = 1+a1�1+b2�2, in which the ����eT ���2�
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singularity is eliminated. Taking the di¤erence of these products for two coexisting

liquid phases, in �rst approximation one obtains the true Ising-like order parameter

in the incompressible limit.

5.3 Experimental evidence for �complete scaling�in binary liquid solutions

Experimental evidence for "complete scaling" in liquid mixtures has re-

cently been presented by Cerdeiriña et al.30 For a systematic study of the nature

of asymmetry in liquid-liquid equilibria, we have followed Cerdeiriña et al. by fur-

ther analyzing experimental coexistence-curve data for nitrobenzene+n-alkane mix-

tures.103, 104, 105, 106, 107, 108, 109, 110 The reason for this choice is that for these mixtures

the asymmetry of liquid-liquid coexistence can be tuned by the number of carbon

atoms in n-alkane molecules, while the quality of the available experimental data is

relatively high. The mole fractions of the two coexisting liquid phases have been

analyzed within the range 3 � 10�4 �
����eT ��� � 1 � 10�2 to exclude data a¤ected

by uncertainties in the critical parameters (very close to the critical point) and

data a¤ected by higher-order contributions (far away from the critical point). The

critical parameters (adopted from the literature103, 104, 105, 106, 107, 108, 109, 110), the n-

alkane/nitrobenzene molecular-volume ratios, �alk=�NB (calculated), and the asymp-

totic amplitudes B0 (obtained from �ts of the mole fractions to (x0 � x") =2xc =

B0

����eT ����, for the systems studied are presented in Table 5.2. One can see that
with increase of the molecular-volume ratio, the critical mole fraction of n-alkane

(regarded as the solute) signi�cantly decreases while the amplitude B0 increases, as

shown in Fig. 5.3.
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system xc (alkane) Tc (K) �alk=�NB B0 10�
NB+C5105 0.610 297.10 1.12 1.14 0.02
NB+C6103 0.572 293.13 1.28 1.32 0.03
NB+C7103 0.529 291.94 1.44 1.47 0.02
NB+C8104 0.495 293.05 1.59 1.58 0.02
NB+C10105 0.425 295.96 1.91 1.84 0.03
NB+C11106 0.395 298.01 2.07 2.02 0.03
NB+C12107 0.369 300.37 2.22 2.07 0.04
NB+C13108 0.357 303.00 2.38 2.14 0.04
NB+C14109 0.324 304.94 2.54 2.22 0.05
NB+C16110 0.284 309.69 2.86 2.39 0.06

Table 5.2: Critical parameters and critical amplitudes for various binary liquid
mixtures

Figure 5.3: Mole fraction di¤erence �exA = (x0 � x00) =2xc of the liquid-liquid coexis-
tence curve for nitrobenzene+n-pentane (1), n-heptane (2) , n-octane (3), n-decane
(4), n-undecane (5), n-tridecane (6), n-tetradecane (7), and n-hexadecane (8) as a

function of �eT . The solid curves represent B0 ����eT ���� for �exA:
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The results of �tting the liquid-liquid coexistence-curve data to Eq.

(5.26) for all the systems are presented in Table 5.3, where we take A�0 = 42:9

J/(mol�K)2 and Bcr = 22:4 J/(mol�K)44 which is for Nitroethane-isooctane for all

systems as an approximation.

The D2

����eT ���2� term can be clearly observed in all systems analyzed, except

for nitrobenzene+n-pentane, as shown in Fig. 5.4. With understandable exceptions

for the mixtures with n-hexane and n-heptane, both exhibiting small D2

����eT ���2�
contributions. For the mixtures with n-hexane and n-heptane, which both have low

asymmetry, D1 and D2 are strongly correlated and thus less reliable. Nevertheless,

the overall trend is clear: the contribution of the
����eT ���2� singularity signi�cantly

increases with increase of the number of carbon atoms in n-alkane molecules, as

shown in table 5.3. The slopes increase dramatically with increase of the num-

ber of carbon atoms in n-alkane molecules or, equivalently, with increase of the

solute/solvent molecular-volume ratio. Figure 5.5 shows the mole fraction "diam-

eter" �exd = (x0 + x00) =2xc for the mixture nitrobenzene+n-hexadecane, the most

asymmetric system among studied. A strong deviation from the rectilinear diam-

eter in this mixture is evident. The solid curves in Fig. 5.5 represents a �t of

(x0 + x00) =2xc to Eq. (5.26). Obviously, the contribution fromD2

����eT ���2� term (dash
line) provides a crucial description of the "singular diameter" for nitrobenzene+n-

hexadecane, proving that this term is dominant. Fig. 5.6 is the residual plot from

�t of the diameter of nitrobenzene+n-hexadecane by �tting Eq. (5.26).
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system D2 D1 a3 b2 10�
NB+C5105 0.086 0.073 0.071 0.073 0.01
NB+C6103 0.180 0.043 0.115 0.053 0.01
NB+C7103 0.220 0.042 0.113 0.042 0.01
NB+C8104 0.285 0.029 0.129 0.029 0.01
NB+C10105 0.730 0.019 0.275 0.019 0.02
NB+C11106 0.978 0.014 0.315 0.014 0.03
NB+C12107 0.990 0.024 0.300 0.024 0.06
NB+C13108 1.16 -0.080 0.337 -0.080 0.02
NB+C14109 1.36 -0.072 0.383 -0.072 0.01
NB+C16110 1.85 -0.007 0.479 -0.007 0.02

Table 5.3: Asymmetry parameters for various binary liquid mixtures

Figure 5.4: Mole fraction reduced diameter �exd = (x0 + x00) =2xc � 1 of the
liquid-liquid coexistence curve for nitrobenzene+n-pentane (1), n-heptane (2) , n-
octane (3), n-decane (4), n-undecane (5), n-tridecane (6), n-tetradecane (7), and
n-hexadecane (8) as a function of �eT . The solid curves represent Eq. (5.26) for
�exd:
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Figure 5.5: The liquid-liquid coexistence curve of nitrobenzene+n-hexadecane. The
circles indicate experimental data of An et al.110 Curves: solid - �t to Eq. (5.26),
dashed -2� term, dotted - 1� � and linear terms.
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Figure 5.6: Residual plot from �t of the diameter of nitrobenzene+n-hexadecane.
The �tting function is Eq. (5.26).
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5.4 The nature of asymmetry of liquid-liquid equilibria

The behavior of the coe¢ cientD2 is basically controlled by the coe¢ cient

a3 originating from "complete scaling", since D2 = B2
0a3=(1 + a3). As follows from

Eqs. (5.21) and (5.22), in lowest approximation �e�=�ex = �a3=a1 (1 + a3), where
a1 = 1. Physically, it means that while the D1

����eT ���1�� term originates from a

correlation between entropy and concentration, the D2

����eT ���2� term originates from
a correlation between molar concentration and molar density. Estimating �e�=�ex
as

�e�
�ex � xc

�c
(�alk � �NB) � k

�
1� �alk

�NB

�
� �: (5.27)

where xc=�c�alk is approximated as a constant k, one obtains D2=B
2
0 = a3=(1+a3) �

��. Figure 5.7 illustrates that such a rough estimate is in reasonable agreement

with experiment. From Fig 5.8 (a), it is clear that the a3 increases when �alk=�NB

increases, which means the ratio of molecular volumes of two components plays

a crucial role in the asymmetry of liquid-liquid phase equilibrium. From Fig 5.8

(b), it is clear that the b2 decreases when �alk=�NB increases. The data of b2 are

scattered, which may be because we don�t have exact A�0 and Bcr for each binary

liquid mixture.

Another consequence of �complete scaling� in binary �uids is an analogue

of the so-called Yang-Yang anomaly. For one-component �uids there is a thermo-

dynamic relation between the isochoric molar heat capacity CV in the two-phase
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Figure 5.7: D2=B
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0 as a function of �� for nitrobenzene+n-alkane mixtures.

139



1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

νalk/νNB

a 3

(a)

1 1.5 2 2.5 3
0.08

0.06

0.04

0.02

0

0.02

0.04

0.06

0.08

νalk/νNB

b 2

(b)

Figure 5.8: (a) a3 as a function of �alk=�NB for nitrobenzene+n-alkane mixtures. (b)
b2 as a function of �alk=�NB for nitrobenzene+n-alkane mixtures.
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region and the second derivatives of chemical potential and pressure22

CV
T
=
1

�

�
d2P

dT 2

�
cxc

�
�
d2�

dT 2

�
cxc

, (5.28)

The presence of the a3� eP term in Eq. (5.1) implies that both the pressure and

chemical potential derivatives diverge as
����eT �����. A chemical-potential share in the

heat-capacity divergence is proportional to a3:19, 21 The analogue of Eq. (5.28) for

binary �uids follows from thermodynamics and reads

CP,x
T

= �x
�
d2��21
dT 2

�
P;cxc

�
�
d2�1
dT 2

�
P;cxc

, (5.29)

where, as follows from Eq. (5.19),

�
d2��21
dT 2

�
P;cxc

= �a3
a1

�
d2�1
dT 2

�
P;cxc

, (5.30)

By measuring CP,x
T
in the two-phase region at di¤erent overall compositions

x and plotting the data as a linear function of x, one can obtain �d2��21
dT 2

from the

slope and �d2�1
dT 2

from the intercept at x = 0, with both values diverging at the

critical point. In a symmetric binary liquid (a3 = 0) the contribution from d2��21
dT 2

should vanish.

We conclude that the asymmetry of liquid-liquid coexistence in weakly com-

pressible binary mixtures is a consequence of �complete scaling�. It originates from

two physically di¤erent sources: a correlation between concentration and entropy
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and a correlation between concentration and density. We have also resolved a con-

troversial issue regarding the nature of the order parameter for liquid-liquid transi-

tions.
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CHAPTER 6

CLOSED SOLUBILITY LOOPS IN LIQUID MIXTURES

Partially miscible liquid mixtures may either possess an upper critical solu-

tion temperature (UCST) above which the two liquid components are completely

miscible at any concentration or a lower critical solution temperature (LCST) be-

low which the two liquids are miscible at any concentration. In addition, there

are interesting mixtures that possess both a LCST and an UCST separated by a

miscibility gap inside a closed-loop phase boundary. Inside this phase boundary,

also referred to as (closed) solubility loop, the system consists of two liquid phases

with di¤erent compositions; outside this phase boundary the two liquid components

are completely miscible. A liquid mixture with a closed-loop phase boundary is an

example of a system that exhibits a re-entrant phase transition, i.e., the system can

pass through two liquid-liquid phase transitions as a function of temperature at a

constant overall concentration.32 In some systems with a miscibility gap inside a

closed-loop coexistence curve, the miscibility gap may shrink as a function of an

external variable such as pressure or upon a change of the overall concentration of

a third component so that the LCST and the UCST approach each other until they

converge into a double critical point.113, 114

In an early paper on the subject, Hirschfelder et al.115 proposed that re-

entrant miscibility is related to the presence of directional short-ranged interactions

associated with hydrogen bonding between unlike molecules. Attempts have been

made to incorporate this idea into various lattice models for re-entrant miscibility.
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While lattice models may provide a qualitative picture of the origin of miscibility

gaps, they are not suitable for obtaining a realistic representation for the location in

a temperature-concentration diagram of closed-loop phase boundaries of actual liq-

uid mixtures.116 For the latter purpose one needs to ensure that the known singular

thermodynamic critical behavior near both the LCST and the UCST is recovered.

Starting from the concept of isomorphic critical behavior in �uid mixtures,55, 2 as

systematically formulated by Anisimov et al.,23 we derive an equation for closed-loop

phase boundaries that both has a sound theoretical basis and is simple to use in

practical engineering calculations. The quality of the simple equation will be tested

by comparisons with experimental data for a variety of liquid mixtures. The inter-

esting phase-equilibrium behavior observed upon the approach to a double critical

point will also be elucidated. Fisher and coworkers19, 21 have argued that one should

also include in the de�nition (5.5) of the scaling �elds a term proportional to �P ,

which a¤ects the asymptotic singular behavior of the coexistence-curve diameter.

We do not consider this complication here, since its e¤ect in practice is well within

the resolution of the experimental data considered in this chapter.100

6.1 Non-linear mixing of scaling �elds

In the critical line (CL) of binary liquid mixtures, a di¤erent special point is

encountered when (dP=dT )CL = 0.
23 As shown in Fig. (6.1), in general this special

point is called a re-entrant critical point (RCP) such as the so-called double critical

point which is a point where a line of lower critical points and a line of upper critical

points merge.
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Figure 6.1: Illustration of re-entrant critical point (RCP).

Let �s consider the conventional linear mixing scaling Eqs. (5.9), when h1 = 0,

and h2 = 0, we have the critical line in terms of reduced temperature and pressure

�eT = �a1b0 � a0b2
a2b2 � a1b1

�
� eP : (6.1)

As we know when the critical entropy density is properly selected, a2 = 0 and the

normalization will make a1 = b1 = 1: Thus, (dP=dT )CL = 1=(a0b2 � b0) may not

vanish. Therefore, it is necessary to include the nonlinear terms in Eqs. (5.9) in

order to characterize critical lines with a special point where (dP=dT )CL = 0.

6.2 Liquid mixtures with closed-loop phase boundaries

As shown in Fig. (6.2), a mixture of 2,4-lutidine and water is an example of

a liquid mixture that possesses both a LCST and an UCST separated by a closed-

loop phase boundary. In principle Eq. (5.12) could represent the phase boundary
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in the vicinity of the LCST with Tc = TL; xc = xL and with appropriate amplitudes

B0, B1, Ba, and d1.124 Similarly, Eq. (5.12) could be used to represent the phase

boundary in the vicinity of the UCST with Tc = TU; xc = xU and with another set of

amplitudes. The question we want to address in this section is whether theory can

provide us with a single uni�ed equation for the entire closed-loop phase boundary.

From Eq. (5.10) we note again that the scaling �elds (at constant pressure)

are functions of the chemical-potential di¤erence ��21 and the temperature T . We

now expand the scaling �elds in a Taylor series around the values �L and TL at the

lower critical solution point

h1 = a1���21 + a2�T + a4 (�T )
2 ; h2 = b1�T + b2���21 + b4 (�T )

2 : (6.2)

It is necessary to point out that the "complete scaling" for liquid-liquid equilibrium

of binary �uid mixtures is not considered here since we now concentrate on the e¤ect

of the nonlinear terms. Adding of a3�e�1 and b3�e�1 to Eq. (6.2) would complicate
the derivation very much.

We need to emphasize that in this section the symbol � designates the dif-

ference between the actual value of the thermodynamic property and its value at

the LCST to be indicated by a subscript L. Thus in Eq. (6.2) ���21 = ��21���21L

and �T = T � TL. We want to describe miscibility gaps with a variety of temper-

ature di¤erences TU � TL. As we shall see in the subsequent section, in the limit

TU�TL �! 0 the terms in Eq. (6.2) proportional to �T will vanish. For this reason

we need to add in Eq. (6.2) terms proportional to (�T )2 to accommodate closed
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solubility loops with arbitrary values of TU � TL.

Along the phase boundary the strong scaling �eld h1 is zero, so that ���21 =

�a2a�11 �T�a4a�11 (�T )2 , which can be substituted into the expansion for the weak

scaling �eld h2 in Eq. (6.2). Thus along the phase boundary, h2 will depend on

temperature as

h2 = (b1 � b2a2a
�1
1 )�T + (b4 � b2a4a

�1
1 )(�T )

2: (6.3)

At a critical point both scaling �elds h1 and h2 must vanish. Thus the right-hand

side of Eq. (6.3) must be zero not only for T = TL, but also for T = TU. It thus

follows that Eq. (6.3) can be rewritten as

h2 = a(T � TU)(T � TL), (6.4)

with a = b4 � b2a4a
�1
1 . To retain consistency with the notation in the previous

section we normalize the scaling �eld h2 by taking a = 1=TUTL, so that

h2 = �UL =
(T � TU) (T � TL)

TUTL
: (6.5)

As explained in the previous section, the chemical potential �1 of the solvent plays

the role of the �eld-dependent potential 	 in Eq. (2.26). Its singular part depends

on the scaling �elds h1 and h2 such that

d (��1) = �1dh1 + �2dh2. (6.6)
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Substitution of the expansion (6.2) for the scaling �elds into Eq. (6.6) yields

d (��1) = [(a2 + 2a4)�1 + (b1 + 2b4)�2] d (�T ) + (a1�1 + b2�2) d (���21) . (6.7)

On the other hand Eq. (5.11) implies that (at constant pressure)

d (��1) = �Smd (�T )��xd (���21) : (6.8)

From Eqs. (6.7) and (6.8) we note that

�x = x� xL = �(a1�1 + b2�2): (6.9)

On comparing Eqs. (5.4), (6.5) and (6.9) we conclude that �x has the same asymp-

totic expansion as Eq. (5.6) for �e� but with �eT replaced by h2 = �UL. Adding the

correction proportional to jh2j1�� as in Eq. (5.7), as well as a regular background

contribution that now will be proportional to �T = T � TL, we obtain

x = xL �B0 j�ULj�
h
1 +B1 j�ULj�s

i
+Ba j�ULj1�� + d1

�
T

TL
� 1
�
: (6.10)

Since x = xU at the UCST, it follows that the coe¢ cient d1 must satisfy the condition

d1 = (xU � xL)TL= (TU � TL) : (6.11)

Equation (6.11) for a closed solubility loop is obtained from Eq. (5.12) for the
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coexistence curve of liquid mixtures when one replaces �T = (T � Tc)=Tc in the

singular part of the expansion by �UL de�ned in Eq. (6.5). This rede�nition of

the temperature variable for dealing with closed solubility loops is not new, but

has been adopted by several previous investigators.33, 34, 32 Here we have shown how

this procedure follows from the principle of isomorphism of critical behavior in �uid

mixtures. Our approach on the basis of isomorphism of critical behavior is similar

to the approach of Malomuzh and Veitsman35, 36 for dealing with phase equilibria

in systems in the vicinity of double critical points, a topic that we shall address

in the subsequent section. With known experimental values for the temperature

and concentration of both the lower critical consolute point and the upper critical

consolute point, Eq. (6.10) can be used to described closed solubility loops with only

three adjustable parameters, namely the coe¢ cients B0, B1, and Ba, with d1being

�xed by Eq. (6.11).

We have checked the validity of Eq. (6.10) for closed-loop phase boundaries

by comparing with experimental data for 2,4-lutidine+water, 2,5-lutidine+water

and 2,6-lutidine+water obtained by Andon and Cox,39 with experimental data for

tetrahydrofurane+water (THF+H2O) and tetrahydrofurane+heavy water (THF+

D2O) obtained by Matous and coworkers40, 41 and by Oleinikova and Weingärtner.67

The results are shown in Fig. 6.2 - Fig. 6.8 . The corresponding system-dependent

constants in Eq. (6.10), together with the standard deviation � of the �ts are

presented in Table 6.1. For THF+H2O and THF+D2O experimental have been

obtained by two di¤erent research groups. Since the actual location of the critical

consolute points and, hence, the location of the phase boundary, is very sensitive
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to small impurities, data of di¤erent laboratories have been analyzed separately.

The measurements of Oleinikova and Weingärtner only cover a limited temperature

range above the LCST, so that we cannot estimate the corresponding values of TU

and xU from the experimental data directly, so that they had to be included as

adjustable constants in the �tting process. The presence of an UCST in THF+H2O

and in THF+D2O does explain the upward curvature of the data of Oleinikova and

Weingärtner at the higher temperatures in Figs. 6.7 and 6.8.

Equation (6.10) represents an asymptotic expansion for the coexistence curves

of liquid mixtures around critical consolute points. It is possible to represent the

closed solubility loops on the basis of a more extensive theory of crossover critical

behavior.8 However, we have found that an equally good description is obtained with

Eq. (6.10) that is much simpler and convenient for practical calculations. While

the expansion (6.10) for coexistence curves becomes less accurate farther away from

the critical temperature, in the case of Eq. (6.10) this drawback is compensated by

the feature that on moving away from the LCST one approaches the UCST where

the equation becomes correct again. As a consequence, the simple equation (6.10)

is capable of representing solubility loops in a temperature range as large as 200 K,

as can be seen from Fig. 6.4.

6.3 Liquid mixtures with a double critical point

In the previous section we considered closed solubility loops in liquid mixtures

at atmospheric pressure. Liquid-liquid separation phenomena become even more

interesting when the pressure is added as a variable.113, 114, 125 As an example we
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system TU(K) xU TL(K) xL d1 B0 B1 Ba �
2,4-lutidine +
water39

461.85 0.630 296.55 0.745 -0.21 0.80 0.95 1.07 0.02

2,5-lutidine +
water39

480.05 0.630 286.25 0.720 -0.13 0.96 -0.30 1.04 0.03

2,6-lutidine +
water39

503.85 0.605 307.15 0.688 -0.13 1.06 -0.46 1.07 0.03

THF +
water40

410.25 0.480 344.95 0.530 -0.26 1.08 0.85 0.23 0.02

THF +
heavy water41

416.71 0.458 336.88 0.518 -0.25 1.22 -1.08 0.21 0.02

THF +
water67

408.75 0.484 343.45 0.534 -0.26 1.13 0.46 -0.16 0.01

THF +
heavy water67

414.93 0.464 335.10 0.509 -0.19 1.23 -0.51 0.25 0.01

Table 6.1: Parameters for phase equilibrium in systems with an UCST and a LCST.
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Figure 6.2: The coexistence curve of 2,4-lutidine + water system. The circles
indicate experimental data of Andon and Cox.39 The solid curve is a �t to Eq.
(6.10).
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Figure 6.3: The coexistence curve of 2,5-lutidine + water system. The circles
indicate experimental data of Andon and Cox.39 The solid curve is a �t to Eq.
(6.10).
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Figure 6.4: The coexistence curve of 2,6-lutidine + water system. The circles
indicate experimental data of Andon and Cox.39 The solid curve is a �t to Eq.
(6.10).
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Figure 6.5: The coexistence curve of THF + water system. The circles indicate
experimental data of Matous et al.40 The solid curve is a �t to Eq. (6.10).
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Figure 6.6: The coexistence curve of THF + heavy water system. The circles
indicate experimental data of Lejcek et al.41 The solid curve is a �t to Eq. (6.10).
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Figure 6.7: The coexistence curve of THF + water system. The circles indicate
experimental data of Oleinikova et al.67 The solid curve is a �t to Eq. (6.10).
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Figure 6.8: The coexistence curve of THF + heavy water system. The circles
indicate experimental data of Oleinikova et al.67 The solid curve is a �t to Eq.
(6.10).
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pressure
(atm)

TU(K) xU TL(K) xL d1 B0 B1 Ba 10�

200 380.45 0.374 288.35 0.404 -0.092 0.62 3.3 -0.23 0.07
300 373.45 0.376 297.05 0.399 -0.089 0.75 2.5 -0.35 0.07
400 369.35 0.378 302.45 0.394 -0.077 0.81 2.1 -0.44 0.10
500 365.55 0.378 309.15 0.390 -0.063 0.90 1.5 -0.40 0.10
600 360.95 0.379 314.95 0.386 -0.045 0.80 4.4 -0.14 0.08
700 355.45 0.380 322.05 0.383 -0.031 0.97 1.0 0.33 0.12
800 350.15 0.380 330.65 0.380 0 0.77 5.6 2.58 0.04

Table 6.2: Parameters for phase equilibria in the 2-butanol + water system

shown in Fig. 6.9 solubility data for 2-butanol+water obtained by Moriyoshi et al.42

at pressures ranging from 200 to 800 atm. The size of the miscibility gaps inside

the closed solubility loops decreases with increasing pressures until it shrinks into

what is called a hypercritical or double critical point (DCP) at PD = (845 � 5)

atm, TD = (340:0 � 1:5) K and xD = (0:131 � 0:002) mole fraction of 2-butanol.

In binary liquids there exists a one-dimensional locus of critical consolute points in

P � T � x space to which we refer as critical line (CL).117 At each pressure Eq.

(6.10) can still be used to represent these solubility loops as shown in Fig. 6.9, but

with system-dependent constants that now depend on pressure as shown in Table

6.2.

Closed solubility loops have also been observed in many ternary mixtures.113, 114, 125

As an example we shown in Fig. 6.10 some solubility data obtained by the research

group of Schneider for a mixture of hexadecane+1-dodecanol in carbon dioxide with

a constant CO2 mass fraction of 0.63.125, 126, 127 The phase behavior in this ternary

mixture is interesting, since it is an example of systems that display a miscibility

window instead of a miscibility gap.114 That is, the solubility loops in Fig. 6.10
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Figure 6.9: Pressure dependence of 2-butanol + water system. The stars are
experimental data obtained by Moriyoshi et al.42 The solid curves are �ts to Eqs
(6.10). The circles are the critical points.
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pressure
(MPa)

TU(K) xU TL(K) xL d1 B0 B1 Ba �

15 325.00 0.820 300.00 0.820 0.000 0.865 8.3 11.6 0.02
16 330.00 0.800 297.00 0.810 -0.090 0.914 6.9 6.2 0.02
25 397.10 0.590 292.90 0.790 -0.562 0.603 17.5 -1.7 0.06

Table 6.3: System-dependent constants and standard deviations as a function of
pressure for hexadecane+1-dodecanol+carbon dioxide with a 0.63 mass fraction of
carbon dioxide.

enclose a region where the system is completely miscible, while it is only partially

miscible outside these solubility loops. Thus now the system is homogeneous at tem-

peratures below the UCST and at temperatures above the LCST. Equation (6.10)

with system-dependent constants listed in Table 6.3 can also be used to characterize

solubility loops that enclose a miscibility window, although in this case an accurate

representation is hampered by a considerable spread of the experimental data at the

individual pressures.

Returning to the miscibility gaps displayed in Fig. 6.9, we want to address

the question whether the theory of critical phenomena enables one to derive an

equation for the solubility loops as a function of pressure. For this purpose we need

an equation for TU,L and xU,L as a function of pressure, where TU,L stands for TU or

TL and xU,L for xU or xL. Following Malomuzh and Veitsman35, 36 we now expand

the scaling �elds h1 and h2 around the double critical point (DCP):

h1 = a0�P + a1���21 + a2�T + a4 (�T )
2 + a5 (�T )

3 ;

h2 = b0�P + b1�T + b2���21 + b4 (�T )
2 + b5 (�T )

3 : (6.12)

We emphasize that in this section the symbol � designates the di¤erence between
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Figure 6.10: Solubility loops in hexadecane+1-dodecanol+carbon dioxide at a �xed
CO2 mass fraction of 0.63. The symbols indicate experimental data obtained by the
research group of Schneider.125, 126, 127 The curves represent values calculated from
Eq. (6.10).
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the actual value of the thermodynamic property and its value at the DCP indicated

by a subscript D. Thus in Eq. (6.12) �P = P � PD;���21 = ��21 � (��21)D, and

�T = T � TD. In Fig. 6.11 we have plotted the critical pressures as a function of

temperature for 2-butanol+water. The right branch represents the locus of upper

critical consolute points and the left branch the locus of lower critical consolute

points. The two branches meet at the DCP. The DCP is a special critical point

where (dPc=dT )CL = 0:23, 113 Hence, near the DCP �P will vary asymptotically as

�(�T )2. Since along the critical locus (�T )2 is of the same order of magnitude as

�P , one can readily verify that the terms in Eq. (6.2) with coe¢ cients a2 and b1

must vanish when h1 and h2 are expanded around the DCP. Instead we have added

terms proportional to (�T )3 to account for asymmetries that will become evident

shortly. At the critical locus h1 = 0 and h2 = 0. Solving Eq. (6.12) with h1 = h2 = 0

for �TU,L = TU,L�TD and �(��21)U,L = (��21)U,L� (��21)D by iteration we obtain

�TU,L = �aT j�P j1=2 + bT j�P j ; (6.13)

(���21)U,L = ax j�P j � bx j�P j3=2 ; (6.14)

where the coe¢ cients aT ; bT ; ax; bx are related to the coe¢ cients in the expansion

(6.12) for the scaling �elds by:

aT =

�
a0b2 � a1b0
a1b4 � a4b2

�1=2
; ax = �a4a�11 a2T � a0a

�1
1 (6.15)

bT = a2T

�
a1b5 � a5b2
a1b4 � a4b2

�
; bx = �a�11 a3T

�
a5 + 2

�
a1b5 � a5b2
a1b4 � a4b2

��
(6.16)
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It is important to note from Eq. (6.16) that a5 = b5 = 0 implies bT = bx = 0.

Thus in the absence of terms proportional to (�T )3 in Eq. (6.12) we recover the

symmetric asymptotic parabolic dependence of the critical pressure on �T , while

(��21)U would be equal to (��21)L at all pressures. Hence, the cubic terms in Eq.

(6.12) yield a �rst-order correction for asymmetric behavior of�TU,L and�(��21)U,L

as a function of �P .

We prefer to introduce dimensionless variables�eTU,L=�TU,L=TD,� eP=�P=PD,
and �(e��21)U,L= �(��21)U,L =RTD, so that Eqs. (6.15) and (6.16) can be rewritten
as:

�eTU,L = �a�T ���� eP ���1=2 + b�T

���� eP ��� ; (6.17)

(�e��21)U,L = a�x

���� eP ���� b�x

���� eP ���3=2 ; (6.18)

with dimensionless coe¢ cients a�T , a
�
x, b

�
T , and b�x. The solid curve in Fig. 6.11

represents the values for the critical pressure as a function of temperature calculated

from Eq. (6.17) with coe¢ cients given in Table 6.4. The expansions (6.17) and (6.18)

become less accurate further away from the DCP and at 200 atm the deviations

become substantial. Hence, the critical temperatures at 200 atm and below have

not been included in the �t of Eq. (6.17) to the experimental data. To extend the

representation of the critical locus till atmospheric pressure, one would have to add

additional terms to the expansion (6.12). We have not done so, since we want here

to concentrate on the mathematical behavior of the liquid-liquid phase-separation

phenomenon in the vicinity of the DCP as implied by the principle of isomorphic

critical behavior.
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PD (atm) TD (K) xD a�T b�T a�x b�x B0
845 340.0 0.380 0.133 -0.0239 0.0470 -0.0935 0.95

Table 6.4: Parameters for phase equilibrium in three dimensions for the 2-butanol
+ water system
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Figure 6.11: Critical line in terms of temperature and pressure. The circles are the
critical temperatures and the solid curve represents Eq. (6.17).
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To determine the relationship between the critical concentrations and the

pressure we �rst transform the �eld variable ��21 into another variable � such that

e��21 = ��21
RTD

�=
��21
RT

= ln
�

1� �
; (6.19)

The �eld variable � has the advantage that it varies from 0 to 1 as the concentration x

of the solvent varies from 0 to 1.128 The de�nition of the �eld variable � is not unique,

since it depends on the zero values of energy and entropy of the two components. In

practice one tries to use this freedom to impose the condition that � becomes equal

to the concentration x on the critical locus, referred to as critical-line condition

(CLC).65 While the transformation (6.19) is a bit too simple for the CLC to be

imposed rigorously,65 Eq. (6.19) together with the CLC has been used successfully

in many applications and appears to be a good approximation. From Eqs. (6.18)

and (6.19) together with the CLC it follows that

ln

�
xU,L

1� xU,L

�
� ln

�
xD

1� xD

�
= a�x

���� eP ���� b�x

���� eP ���3=2 ; (6.20)

Figure 6.12 shows the critical pressure for 2-butanol+water as a function of the

concentration of 2-butanol. The solid curves represent the values calculated from

Eq. (6.20) with coe¢ cients given in Table 6.4. Equation (6.20) predicts that the

upper and lower critical consolute branches meet in the DCP with a common tangent

(dPc=dx)CL = �PD=a�xxD(1� xD) in agreement with the experimental observation.

Finally, to represent the solubility loops as a function of pressure, we need

165



0.37 0.375 0.38 0.385 0.39 0.395 0.4 0.405 0.41
200

300

400

500

600

700

800

900
Critical line in terms of concentration and pressure

C
ri

tic
al

 p
re

ss
ur

e 
(a

tm
)

Mass fraction of 2butanol

DCP

Figure 6.12: Critical line in terms of concentration and pressure. The circles are
the critical mass concentrations and the solid curve represents Eq. (6.20).
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also to specify the pressure dependence of the amplitudes B0; B1;and Ba in Eq.

(6.12). An inspection of Table 6.2 shows that the dependence of the coe¢ cients on

pressure is erratic, because of the strong correlation between the coe¢ cients. This

suggests that, even with the coe¢ cient d1 �xed, one should be able to reduce the

number of terms in the expansion to represent the rather symmetric solubility loops

for the 2-butanol+water system. For a simpli�ed description of the solubility loops

we retain only the leading singular power law in Eq. (6.10), so that

x = xL �B0 j�ULj� + d1

�
T � TL
TL

�
; (6.21)

with d1 again given by Eq. (6.11). The e¤ective amplitude B0 is a constant of order

unity and only weakly dependent on pressure. Taking B0 = 0:95 independent of

the pressure in Eq. (6.21) and adopting Eqs. (6.17) and (6.20) with the values of

the coe¢ cients given in Table 6.4 for the critical locus at pressures above 200 atm,

we obtain for 2-butanol+water the liquid-liquid phase-separation diagram shown in

Fig.6.13.

Starting from the principle of isomorphic critical behavior of �uid mixtures

we have derived a simple equation for closed solubility loops in liquid mixtures at

constant pressure. The simple equation is able to represent closed solubility loops at

atmospheric pressure and at elevated pressures including solubility loops that span

a temperature range as large as 200 K. We have also elucidated the liquid-liquid

phase-separation behavior in the vicinity of a double critical point. Speci�cally, the

167



200 300 400 500 600 700 800 9000
0.5

1
280

290

300

310

320

330

340

350

360

370

380

390

Pressure (atm)

2butanol + water

Mass fraction of 2butanol

T
em

pe
ra

tu
re

 (K
)

DCP

Figure 6.13: Phase equilibrium of 2-butanol + water system. The stars are ex-
perimental data obtained by Moriyoshi et al.42 The solid curves represent Eqs
(6.17);(6.20) and (6.21).
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critical pressure exhibits an asymptotic parabolic dependence on temperature near

a double critical point, while the upper and lower critical consolute branches of the

critical pressure as a function of concentration meet at the double critical point

with a common tangent. We have shown how an equation for solubility loops as a

function of pressure can be developed from an expansion around a double critical

point.
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CHAPTER 7

SUMMARY

The nature of asymmetry in �uid criticality, especially for vapor-liquid equi-

libria of one-component �uids and liquid-liquid equilibria in binary �uid mixtures,

has been investigated. To clarify the nature of vapor-liquid asymmetry, we have

simpli�ed the "complete scaling" by a proper choice of the critical entropy density

sc = (@P=@T )h1=0;c to a form with only two independent mixing coe¢ cients a3 and

b2: We have also developed a method to obtain these two scaling-�eld coe¢ cients

a3
1+a3

= 2
3
�21
�11
� 1

5
�40
�30

and b2 = 1
�11

�
�21
�11
� 1

5
�40
�30

�
, responsible for two di¤erent sources

of the asymmetry, from mean-�eld equations of state. By analyzing some classi-

cal equations of state we have found that the vapor-liquid asymmetry in classical

�uids near the critical point can be controlled by molecular parameters, such as

the degree of association N and the relative strength of three-body interactions c.

By combining accurate vapor-liquid coexistence and heat-capacity data, we have

unambiguously proved the experimental and simulation evidence of "complete scal-

ing". A number of systems, real �uids and simulated models, such as hard-core

square-well (HCSW) �uid and restricted primitive model (RPM) electrolyte, have

been analyzed. The asymmetry in �uid criticality originates from coupling be-

tween density and entropy �uctuations which produces a
����eT ���1�� term and from

coupling between density and volume �uctuations which produces a
����eT ���2� term

in the coexistence-curve diameter. The molecular volumes appears to play a cru-

cial role in the asymmetry of �uids. We have demonstrated how the mean-�eld
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rectilinear diameter splits up in the critical region into two "singular diameters"

associated with two di¤erent sources of asymmetry. Since near-critical vapor-liquid

asymmetry is completely determined by Ising critical exponents, there is no need

for a special renormalization-group theoretical treatment of the asymmetric �uid

criticality. Furthermore, we have examined experimental consequences of "complete

scaling" when extended to liquid-liquid coexistence in binary mixtures. The proce-

dure for extending "complete scaling" from one-component �uids to binary �uids

mixtures rigorously follows from the isomorphism theory. We have shown that the

"singular" diameters of liquid-liquid coexistence curves originate from two di¤erent

sources, one is associated with a correlation between concentration and entropy and

another one is a correlation between concentration and molar density. Finally we

studied special phase equilibria that can be only described by non-linear mixing of

physical �elds into the scaling �elds. Based on the scaling theory and isomorphism,

an approach to describe the closed-loop curves is presented in which the reduced

temperature�eT = j(T � Tc) =Tcj is replaced by �UL = j(T � TL) (T � TU) = (TLTU)j.

The expressions to describe the critical lines near a double critical point (DCP) are

derived from the isomorphism theory.
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