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Abstract

Once a computer system has been infected with mal-
ware, restoring it to an uninfected state often requires
costly service-interrupting actions such as rolling back
to a stable snapshot or reimaging the system entirely.
We present CRIU-MR: a technique for restoring an in-
fected server system running within a Linux container
to an uninfected state in a service-preserving manner us-
ing Checkpoint/Restore in Userspace (CRIU). We mod-
ify the CRIU source code to flexibly integrate with ex-
isting malware detection technologies so that it can re-
move suspected malware processes within a Linux con-
tainer during a checkpoint/restore event. This allows for
infected containers with a potentially damaged filesys-
tem to be checkpointed and subsequently restored on a
fresh backup filesystem while both removing malware
processes and preserving the state of trusted ones. This
method can be quickly performed with minimal impact
on service availability, restoring active TCP connections
and completely removing several types of malware from
infected Linux containers.

1 Introduction

Malware attacks remain a persistent threat to computer
security from year to year. Symantec alone recorded
over 20 billion malware alerts across customer machines
during 2010-2011, while both botnet infections and par-
ticularly damaging ransomware attacks are growing in
number annually [28, 38]. In response, the security com-
munity continues to develop intrusion prevention tech-
niques meant to stop malware from propagating to new
machines and intrusion detection systems (IDS’s) meant
to detect malicious processes running on computer hosts
[15, 26, 27, 30, 41]. Despite these efforts, many malware
infections go undetected and infect new hosts daily.

Once malware has been detected on a host, remov-
ing the malware and restoring the host to a trustwor-

thy, unharmed state proves challenging. The malware
removal and remediation capabilities of many commer-
cial malware detectors fail to completely erase a malware
program’s effects [34]. Other recovery solutions record
meticulous logs about the processes running on a sys-
tem in order to rollback and then forward restore infected
hosts [25, 33]. However, while these methods are more
effective at removing and recovering from malware, they
prove slow, memory and monitoring intensive, and are
not known to be used in practice.

Virtual Machine (VM) based approaches can quickly
restore an infected host to a known trustworthy state us-
ing snapshots, but doing so will lose the state of any
computations or network connections that were running
on the host unless costly logging is implemented as well
[18, 35]. In light of these shortcomings, we seek to de-
velop a malware recovery technique which can preserve
the state of trusted services running on an infected host
without the overhead of log-based schemes.

We present a malware recovery system which extends
the Checkpoint/Restore In Userspace project (CRIU)
[40] to quickly restore an infected Linux container
(LXC) to a safe state while removing malware and pre-
serving running services in the process. This technique,
which we call CRIU for Malware Recovery (CRIU-MR),
allows CRIU to be flexibly integrated with existing mal-
ware detection systems. When malware is detected on
a Linux container, the container process and its children
are first checkpointed with CRIU. Malware processes are
identified during this step and marked to be ignored dur-
ing the subsequent container restore. The container pro-
cess can then be migrated and restored on a trustworthy
backup filesystem with CRIU, excluding the identified
malware processes. We show that CRIU-MR only takes
2.8 seconds to complete on average regardless of the type
of malware infection across several Linux malware sam-
ples. We find CRIU-MR is primarily useful for hosts
with filesystems such as web servers, preserving active
network connections to the host without drastically in-
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creasing response latency. By quickly restoring running
services while removing malware from a system, CRIU-
MR presents a lightweight alternative to log-based and
VM-based malware recovery schemes.

2 Related Work

Many techniques for recovering from malware infections
have been proposed over time. We group these works
into the following categories: tradtional, log-based, and
VM-based. We discuss these categories, as well as CRIU
and LXC, which CRIU-MR relies upon.

2.1 Traditional Malware Recovery
The most basic solution to malware remediation is to re-
install the infected host’s operating system and reformat
any disk drives. While this method is sure to remove
the malware and its effects, it is obviously undesirable
as it removes all data and processes on the host. Less
destructive malware remediation techniques have thus
been packaged into the signature-based antivirus pro-
grams typically installed on a computer host. Unfortu-
nately, Passerini et al. [34] find that even when these
programs detect malware, they may fail to remove mal-
ware executables for over 20% of infections. Further-
more, they typically fail to reverse secondary changes to
the infected filesystem or changes to registry keys in the
case of Windows hosts. While more effective malware
remediation techniques have been developed, these solu-
tions remain the most commonly used.

2.2 Log-Based Malware Recovery
Log-based recovery techniques, long used in database
implementations [32], restore a system’s state to a known
stable state by using log information to undo undesired
operations, correctly reapply valid changes, or both. The
Taser [20] recovery system records all file, network, and
process operations performed on the system and attempts
to use such logs to undo the effects of a malware pro-
gram once it is flagged by an IDS. Taser however will be
forced to undo all operations logged on the system if the
intrusion is not caught in a timely manner, and its recov-
ery method can take many minutes to run in the worst
cases. Hsu et al. [25] attempt to differentiate trusted and
untrusted applications, logging only unstrusted ones in
order to rollback their operations if necessary. The down-
side of this method is that untrusted processes are heav-
ily restricted in terms of their filesystem resources and
ability to interact with other processes, requiring user in-
put in most cases for any program to run successfully. It
additionally incurs significant runtime and logging over-
head for each untrusted process.

Palieri et al. [33] develop a technique for automati-
cally generating a remediation executable which can be
run to reverse the effects of a given malware program.
While mostly successful, these executables failed to re-
verse effects in some cases, can accidentally reverse valid
changes, and fail to reverse changes an attacker may
manually make if the malware provides shell access.

2.3 VM-based Malware Recovery
Modern VM hypervisors allow for “snapshots” of a sys-
tem’s filesystem and process state to be taken at any
time, which can later be reverted to if necessary. If an
older, malware-free snapshot is available, malware can
be quickly removed from an infected VM by restoring
the VM to the prior snapshot. The downside is that the
operations/state of any trusted processes are lost when
the snapshot is restored. While not a VM-based tech-
nique, MalTRAK [39] uses the concept of “views” or
system snapshots in a similar manner to undo the effects
of a malware program.

ExecRecorder [18] is a VM-based recovery method
which also integrates logging to restore a system to a
trusted snapshot before replaying log events for non-
malware processes to restore the system state. The costly
logging process incurs a 4% runtime overhead and pro-
duces an average of over 5GB of logs per hour, and no
analysis of how long the recovery process takes is pro-
vided. The Secom [35] system attempts to avoid such
a logging overhead by first writing a process’s changes
to an OS-level VM. It then attempts to remove poten-
tial malware effects by clustering changes according to
higher-level behavioral profiles before merging the non-
malware clusters to the VM host. This method is prone
to identifying false positives and still degrades program
performance by intercepting each system call run on the
VM. Finally, the TimeVM [19] system uses a blend of
log-based recovery and live backup VMs in different
time states to quickly identify a backup VM free of a de-
tected malware infection. This VM can then be rapidly
updated to a clean, up-to-date state by replaying the logs
of non-malware processes. The expected recovery time
using this system was still often higher than 30 seconds,
and the effects of a malware process that goes undetected
for a long period of time may still be unable to be re-
versed with this method.

2.4 LXC and CRIU
LXC is an open-source Linux project which aims to al-
low for the virtualization of a Linux system or process
within privilege-constrained containers [6]. These con-
tainers are meant to be lightweight alternatives to virtual
machines, allowing for Linux virtualization without em-
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ulating system hardware and running a separate kernel.
LXC containers can be run in a privileged or unprivileged
state, and it is generally recommended that containers be
run as unprivileged to minimize potential system dam-
age should an attacker discover a way to “escape” the
container. Given their own recommendation for unpriv-
ileged container use, the LXC maintainers do not con-
sider container escape exploits a serious concern, stating
"as privileged containers are considered unsafe, we typ-
ically will not consider new container escape exploits to
be security issues worthy of a CVE and quick fix" [8].

Checkpoint/Restore in Userspace (CRIU) is another
open-source project developed for Linux [40]. CRIU al-
lows for individual Linux processes to be checkpointed
during execution, saving their allocated memory and ex-
ecution progress in image files. These files can subse-
quently be used by CRIU to restore the process to its
prior state of execution when need be. One attractive fea-
ture of CRIU is that it is able to restore TCP connections
by using the TCP_REPAIR socket option [3]. This feature
prevents interruptions for TCP connections which are es-
tablished before the checkpoint/restore process. While
the more obvious applications of this technology may be
for the live migration of processes between hosts or load
balancing, Araujo et. al previously used CRIU in the
context of security by redirecting attackers attempting to
use known vulnerabilities to dynamically created honey-
pots [14].

CRIU has been incorporated into the LXC project, al-
lowing for an entire container and the processes running
within it to be checkpointed or restored. This is done via
the lxc-checkpoint utility, which directly calls the lo-
cally installed version of CRIU on the container host to
checkpoint or restore running containers.

3 Design Objectives

After considering previous attempts at malware recovery,
we seek to improve on the state of the art in several ways.
To this end, we select five desirable properties to guide
the design of our solution.

1. Fast: The method should minimize the downtime of
the system.

2. Availability-maximizing: The method should avoid
interruptions to services which are not directly af-
fected by the malicious processes.

3. Flexible: The method should accept alerts from a
variety of sources and make use of the information
provided by them.

4. Information-Gathering: The method should collect
information about the malicious processes to aid in

detecting them more easily and quickly in the fu-
ture.

5. Comprehensive: The method should fully remove
malware traces and record which changes were re-
verted.

With these goals in mind, we constructed CRIU-MR.
In order to achieve these goals, a few simplifying as-
sumptions were required. First, we suppose the filesys-
tem is “mostly-static”, meaning that updates are rela-
tively infrequent, and when they do occur, they can be
applied to both the real filesystem and the backups si-
multaneously. This is the case for many web servers, es-
pecially when the data is retrieved from a database on an-
other network node instead of being locally present. This
assumption allows for rapid restoration of the filesys-
tem, as the backup can be quickly swapped back into
the container root filesystem location in case of an in-
fection without file loss. Additionally, because we make
use of Linux container technology, we assume that the
attacker cannot escape from the container to the host ma-
chine. With this assumption, we are able to make use
of an isolated environment which can be independently
checkpointed and restored. In the following sections, we
describe this system and demonstrate its effectiveness
before returning to challenge these assumptions in the
“Discussion and Limitations” section (§6).

4 Implementation and Architecture

The majority of the implementation of our recovery
method exists as modifications to the CRIU source code.
Our changes are available as a fork of the CRIU repos-
itory on GitHub1. These changes are separated into the
two main actions of CRIU: checkpoint and restore. Over-
all, 659 lines of C code were added to implement these
features.

4.1 Checkpoint

The changes made to the checkpoint process mostly cen-
ter around reading a “policy” file and using this policy
to build a list of container processes which should not
be restored. The policy is read into CRIU using Pro-
tocol Buffers (also known as protobuf) [21], which is a
binary serialization format developed by Google. Proto-
buf was selected based on its high performance serializ-
ing and deserializing data relative to other formats, such
as XML or JSON [31], and also because it was already
used extensively for the image files generated by CRIU
checkpoints. The policy can be composed of a variety of

1https://github.com/ashtonwebster/criu
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user-defined or dynamically generated rules that are used
to omit processes from being restored, including:

• Executable Name Match: Whether the executable
filename of a process matches a given string

• File Match: Whether any opened file of a process
matches a given string

• TCP IP Match: Whether the IP address for any es-
tablished TCP connection of a process matches a
given IP address

• Memory Match: Whether the process contains the
specified ASCII or Hex encoded string

• PID Match: Whether the PID of a process matches
the given PID

• Parent PID Match: Whether the parent PID of a
process matches the given PPID

• Parent Executable Name Match: Whether the par-
ent executable filename matches the given string

In choosing these rule types, we seek to provide a flex-
ible policy language which can identify malware to omit
during the restore process based upon alerts provided by
various intrusion detection triggers, such as potentially
malicious TCP connections, executables which match a
virus signature, and flagged PIDs. Using these rules,
both dynamic and static policy elements can be created.
Dynamic policies are created from alerts generated by
other systems, such as IDS’s or antivirus scanners. For
instance, outbound firewall rule violations might trigger
the generation of a policy to terminate any process at-
tempting to communicate which a suspicious IP address.
Users can also define static policies which have a base
of assertions that are always enforced, regardless of the
type of malware. For example, perhaps some processes
should never have child processes under normal execu-
tion, or perhaps it is not expected for any process to have
a sensitive file open. These assertions can be encoded
as static policies, to which dynamic policies are added
as attacks are detected. The combination of static and
dynamic policy rules allows for detection of a wide vari-
ety of malware, including malware which may run exclu-
sively in memory, such as the meterpreter metasploit
payload [9].

These changes to CRIU source code are mostly addi-
tions at the point when information about files, connec-
tions, or process identifiers are being dumped to disk.
Essentially, we check if there are any matching policy el-
ements for each of these resources, and if there are, the
PIDs of relevant processes are written to an additional
protobuf formatted file named omit.img. It is important
to note that no process dump information is discarded

in this phase; it is simply logged for later action. This
is so that information about potentially malicious pro-
cesses can be forensically analyzed at a later time, but
not restored.

Modifications were also made to the
lxc-checkpoint command to accept the same
parameters as the ones that were added for CRIU.
Specifically, parameter processing for the –policy
(path to the policy to use) and –base-path (path to
the container filesystem) parameters was added. This
required 44 lines of C code added across 3 files. The
modified version of LXC is available on GitHub as
well2.

4.2 Restore
The core modifications for the CRIU restore process en-
sure that malicious processes flagged by the checkpoint
process in omit.img are not restored. This is as simple
as iterating over this list of omitted processes and remov-
ing the corresponding PIDs. Additionally, the way that
missing files are handled by vanilla CRIU is changed.
Vanilla CRIU will crash immediately if any process is
missing a referenced file. Instead, CRIU-MR is adjusted
to simply omit any process with a missing file refer-
ence. This is performed by checking to ensure files refer-
enced by file descriptors are actually present on the target
filesystem during the reconstruction of the container pro-
cess tree. In the case of a process with an omitted parent,
the child is omitted as well. These changes ensure that as
the container is restored on the backup filesystem, pro-
cesses referencing potentially malicious files that are no
longer present will be gracefully omitted during the re-
store, even if these processes were not directly flagged
via a policy rule. This will not harm non-malware pro-
cesses given the “mostly-static” filesystem assumption.

4.3 Architecture
In order to allow for manual or automatic triggering of
the checkpoint/restore process and dynamic generation
of policies, we write a simple program to act as the re-
covery agent. The recovery agent listens on a given TCP
port for JSON formatted information specifying how to
construct a policy. It can receive these JSON alerts from
other processes or even other hosts, as demonstrated in
Figure 1. These JSON alerts constitute the dynamic pol-
icy rules and can be added to static policies which are
defined in the agent and used as the default. This com-
bined policy is written in the protobuf format and passed
to CRIU for execution. The recovery agent also handles
the filesystem restore, preparation, and cleanup opera-
tions needed to perform quick malware recovery, which

2https://github.com/ashtonwebster/lxc
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Figure 1: The CRIU recovery agent can receive alerts
from a variety of sources, both at the host and network
level.

will be covered in more detail below. The agent code
was implemented in python and is available as a sepa-
rate open source GitHub repository3. With these compo-
nents, a typical malware recovery follows these steps:

Infection: Malware is introduced to the system. This
may be through a backdoor, network exploit, or other
method. At some point it begins executing and may mod-
ify the filesystem.

Detection: As a result of the malware on the system,
one or more “triggers” may send an alert to the recovery
agent. The recovery agent accepts a JSON file specifying
the trigger type (e.g. AV scanner, IDS, IPS) and relevant
information (e.g. filename, TCP connection). This JSON
file is used to build the policy used by CRIU for mali-
cious process removal. We have created example JSON
generators for Snort [17] (a rule based IDS) and ClamAV
[16] (an antivirus scanner). The example code used to
generate the JSON alerts and send them to the recovery
agent are shown in Appendix A.

Preparation: The recovery agent for CRIU-MR lis-
tens on a TCP port for a JSON message. Upon receipt
of a message, a new rule for process omission will be
generated and added to the policy file of existing rules.
The policy is then compiled as a protobuf formatted file
which is read by our modified version of CRIU. Next, a
folder is created for storing the checkpoint/restore data
generated by CRIU.

During the subsequent checkpoint/restore, the con-
tainer will be unavailable for a few seconds. To avoid
the loss of any packets arriving during this time, it may
be necessary tp use the iptables target NFQUEUE on the

3https://github.com/ashtonwebster/CRIU-MR-agent

container host to buffer packets. Essentially, NFQUEUE
allows traffic to be sent to userspace for processing, and
in this case it can be used to buffer packets while the mal-
ware recovery process is being executed. We provide a
code listing and further description in appendix B.

CRIU Checkpoint: CRIU dumps the relevant image
data for all processes (including malicious processes) on
the container. Processes will be flagged as malware if
they match a specified policy and are written to disk in a
protobuf file named omit.img.

Filesystem Restore: In order to allow for fast filesys-
tem restore, CRIU-MR maintains two backups. One
backup, which we denote the “swap backup”, is sim-
ply renamed to match the Linux container root filesystem
path via the mv command. The other backup, denoted the
“master backup”, is used to restore the swap backup so
this process can be repeated. Using these backups, the
filesystem for the container is restored with a few simple
shell commands:

mv $ l x c _ p a t h / r o o t f s $ i n f e c t e d _ f s _ d i r / i n f e c t e d f s
mv $backup_pa th / r o o t f s . swap_backup \

$ l x c _ p a t h / r o o t f s

One benefit of this method is that the infected filesys-
tem can be later inspected (with the assistance of the
CRIU-MR log files) to collect malware samples and de-
tect malicious filesystem changes.

CRIU Restore: At this point, the CRIU restore of
the checkpointed non-malware processes begins. Dur-
ing construction of the process tree, processes may be
omitted for two reasons. First, processes which refer-
ence missing files are omitted. Next, processes contained
in the omit.img file previously created are omitted. Any
children of these processes are also ignored. Restore then
continues as normal, with established TCP connections
also being restored.

Cleanup: Finally, a few cleanup tasks are performed to
return the system to its normal state. If NFQUEUE was
used, the process is stopped so that buffered packets are
forwarded along to the container. The swap backup for
the container is also restored from the “master” backup
to allow for a quick filesystem restore in the event of an-
other breach using the following command:

cp $backup_pa th / r o o t f s . mas t e r_backup \
$backup_pa th / r o o t f s . backup_swap

The preparation, CRIU checkpoint, filesystem restore,
CRIU restore, and cleanup steps are all automated via the
CRIU-MR recovery agent program. Thus, the response
to malware can be completely independent of human in-
teraction for rapid recovery from attacks.
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5 Experiments

We conduct experiments to address two questions. First,
we seek to answer the question “How long does it take to
successfully remove various malware from the system?”
In order to answer this question, we measure the recovery
time for six different malware programs. Then, we ad-
dress the question “What is the availability impact of the
recovery process on a running service?”. To answer this
question, we devise an experiment using Apache Bench-
mark [1] to simulate HTTP requests to an Apache web
server running on the container. We observe the impact
of the checkpoint/restore process on the active connec-
tions and find that no connections fail while the maxi-
mum response time increases by only a few seconds. All
experiments were run on a Virtual Machine with 4 In-
tel Xeon 2.4GHz cores and 4 GB RAM running Ubuntu
16.04 hosting a linux container. The container used ran
Ubuntu 16.04 with AMD64 architecture.

5.1 Experiment I: Malware Recovery Du-
ration

For our first experiment, we measure the duration of the
recovery process and ensure that all malware processes
and files are removed. To conduct the experiment, we
collect six Linux malware samples.

• linux_lady: This malware was written in Go and
attempts to mine bitcoin using the resources of in-
fected computers. It primarily works by download-
ing the mining script payload and adding itself as
a cronjob to the victim host. This sample was col-
lected from the Contagio malware repository[2].

• ms_bind_shell: This is a simple payload from the
Metasploit framework [9] which binds on a spec-
ified port and IP and provides shell access to the
attacker.

• ms_reverse_shell: This is another malware from the
Metasploit framework which creates a reverse shell
by initiating a connection with the specified host.
The reverse shell method is often more effective
than the bind shell method in practice because it can
more easily evade firewalls by initiating the connec-
tion rather than accepting a connection to an unused
port.

• wipefs: This malware was found on the Hybrid
Analysis website [5]. It uses the stratum mining
protocol to mine bitcoin on the victim’s machine.

• Linux.Agent: This malware, first discovered by
Tim Strazzere [29] attempts to exfiltrate either the
/etc/shadow file with encrypted passwords (if

root access is available) or the /etc/passwd file
(otherwise).

• goahead_ldpreload: This is actually a vulnerabil-
ity in GoAhead [36], a lightweight embedded web-
server and not a malware sample. However, we are
able to inject a long-running malware script via the
remote code execution vulnerability explained by
Daniel Hodson of Elttam [24] with associated CVE-
2017-17562 [10]. Unlike the other samples, this
is an example of a benign process being infected
with a malicious payload (instead of a malware bi-
nary being executed). To simulate a long-running
malicious payload, we remotely execute commands
which create a file each second on the filesystem,
but any arbitrary C code can be executed.

Each experiment consists of the following: first, an ssh
session is started, and the malware is started as root in the
background and using the unix command nohup to avoid
termination when the ssh session ends. The exception is
the goahead_ldpreload exploit, which begins by running
the GoAhead server as root and remotely executing the
malicious payload). Next, detection is simulated by trig-
gering the checkpoint/restore process with a JSON file
specifying the executable file to omit4. After 3 seconds
of allowing the malicious processes to execute, the re-
covery process is triggered, as described in §4. The tim-
ing measurements are taken by using the timeit library
in Python [11]. Each malware is removed 10 times with
timing results shown in Figure 2, and the time for each
stage of checkpointing is shown in Table 1. In addition
to an experiment for each malware sample, we also run
the malware recovery process with no malware present
for comparison (labeled as “None”).

By restoring the infected filesystem to a safe backup
state, we observe that any file state changes made by
the malware were undone. We also observed that for
each experiment, each malware process was successfully
omitted and no longer running on the restored container.
We acknowledge that it is possible that the malware also
changed memory or features of other restored processes,
and we discuss this in more detail in the Discussion sec-
tion (§6).

The results for this experiment suggest that the type
of malware does not affect the time for recovery in a no-
ticeable way. In fact, the removal of malware appears
to match the time taken for a checkpoint and restore
actions even in the absence of malware or policies (de-
noted “None” in Figure 2). This suggests that our modi-
fications to the underlying CRIU checkpoint and restore

4For goahead_ldpreload we observe that the re-
mote code execution occurs in a separate process
/root/goahead/test/cgi-bin/cgitest handling CGI scripts,
which is the executable name used in the policy for that exploit.
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Figure 2: Boxplots summarizing duration of malware re-
covery process for six different malware.

Table 1: Mean (Std. Dev.) Time per Recovery Step
Step Time (s)
Prep. Time 0.022 (0.003)
Checkpoint Time 2.157 (0.202)
FS Swap Time 0.012 (0.005)
Restore Time 0.572 (0.110)
Total Time 2.763 (0.265)

methods do not have a significant impact on their per-
formance in terms of duration. Furthermore, we see that
the time taken for the recovery process (see Table 1) is
mostly dominated by the checkpoint process, with the
restore process taking only about a fifth of the total time.

5.2 Experiment II: Availability Impact

Next, we address the question of the recovery process’s
impact on the availability of trusted services running on
the host that is infected with malware. To evaluate this,
we measure the impact of removing malware on a web
server container with many active clients. For this, we
use the ab tool (Apache Benchmark), which is able to
simulate repeated HTTP connections and measure their
duration and the number of failed requests. In order
to mimic a realistic setting with a variety of request/re-
sponse durations, we serve seven different pages ranging
in size from 1kB to 1GB by powers of 10. We execute
one instance of ab for each file size in parallel and vary
the number of concurrent requests per process at 1, 5, 10,
and 20 for a total concurrency across all processes of 7
to 140. For each experiment, we first start the apache
benchmark script. After 30 seconds of normal execu-
tion of ab, we start the linux_lady malware on the host
using ssh and trigger the recovery process in a method
similar to Experiment I. The results of this process are
summarized in Table 2.

In each experiment, all requests complete successfully.
We observe that relative to the median request comple-
tion time, the “Max Request Time” for each file tends to
increase by an amount of time comparable to the time it
takes for CRIU-MR to execute as measured in Experi-
ment I. These results show that while some connections
are subjected to a latency increase of 3-6 seconds by the
checkpoint/restore process, CRIU-MR still ensures that
each request succeeds.

6 Discussion and Limitations

Overall, our experiences using CRIU-MR confirm that
it is a viable strategy for removing malware while pre-
serving a variety of services. For example, we manually
observed that ssh connections interrupted by the CRIU-
MR recovery process continue gracefully after the recov-
ery completes, even without the use of NFQUEUE. How-
ever, when the recovery process occurs during down-
loads of large files using curl or browsers, NFQUEUE
usage is required in order to preserve the download pro-
cess. We therefore conclude that our modifications for
CRIU-MR do not impact CRIU’s underlying TCP restore
abilities.

Beyond faster system restore, one benefit of the CRIU-
MR method over methods which log every filesystem
modification, such as Taser [20], is that there is no over-
head for writing to logs during normal execution of the
container. However, there is some performance over-
head associated with using Linux containers that should
be considered. Work comparing LXC to native perfor-
mance and other virtualization techniques reveals that it
often performs similarly to the native operating system
[37]. This is likely due to the fact that Linux containers
rely mostly on partitioning resources using Linux names-
paces and control groups instead of more complex solu-
tions, such as hardware virtualization used by conven-
tional VMs.

Another concern is the security of the container in
terms of isolation. Is it possible to escape the Linux
container and infect the host operating system? Unfor-
tunately, some proof of concept attacks have been found
for Linux containers. Two whitepapers from the NCC
Group explore this problem, one focusing on attacks [23]
and one focusing mostly on mitigations [22]. This re-
search reveals that ptrace(2) can be used to escape
Linux containers, and an escape from the security bound-
ary of the container can be executed via direct com-
munication with the hardware. Fortunately, mitigations
for these attacks are available, and the simplest method
(which will fix both of these issues) is to simply use un-
privileged Linux containers.

As alluded to previously, the malware process that
triggered an intrusion detection alert might not be found
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Table 2: Connection Stress Test
Concurrent Requests File

Size
Median Re-
quest Time
(s)

Max Request
Time (s)

Completed Requests Failed Requests

7

1 kB 1 3,695 51,973 0
10 kB 1 3,695 50,568 0
100 kB 1 3,697 36,937 0
1 MB 4 3,701 11,823 0
10 MB 34 3,731 1,580 0
100 MB 393 4,081 146 0
1 GB 5,415 8,777 11 0

35

1 kB 4 3,776 51,803 0
10 kB 4 3,776 58,479 0
100 kB 5 3,782 41,953 0
1 MB 20 3,821 11,385 0
10 MB 130 4,115 1,776 0
100 MB 1,256 6,066 205 0
1 GB 12,482 26,098 19 0

70

1 kB 7 6,307 60,647 0
10 kB 7 6,307 59,976 0
100 kB 10 6,310 40,300 0
1 MB 42 6,343 11,595 0
10 MB 242 6,343 1,810 0
100 MB 2,474 10,047 207 0
1 GB 43,088 43,097 12 0

140

1 kB 13 4,614 78,377 0
10 kB 13 4,614 77,497 0
100 kB 19 4,641 53,338 0
1 MB 77 4,706 14,494 0
10 MB 583 5,351 1,953 0
100 MB 5,712 10,933 191 0
1 GB 62,474 62,474 1 0

by the specified policies in some cases. For example,
if botnet malware is detected via an IDS based on a TCP
connection to a command and control server, the connec-
tion may end before the alert is processed and CRIU-MR
begins the checkpoint process, meaning the malware will
fail to be flagged for omission during restore. In such a
case, if the malware runs from an executable placed on
the system via a malicious channel, CRIU-MR will still
successfully remove it from the container during the re-
store process since the botnet executable isn’t located on
the safe filesystem backup. Such an event can be verified
by checking the logs of CRIU-MR, which report which
policy elements were triggered and any missing files that
resulted in the removal of a process.

Nonetheless, the system may be infected with malware
that both runs entirely within memory via code injection
and evades being flagged during a checkpoint event as
just described. In such an instance, it is prudent for the
user to not only restore the filesystem to a safe point but
to also restart the system and bring services back online.

Users with active connections to services may experience
an interruption in this case, but such mitigation will be
necssary if no malware process was found. Similarly,
there may exist malware which interfere with the mem-
ory and connections of other processes. These changes
will not be detected by the current CRIU-MR system as
they are not directly a part of the malware process (unless
the interference somehow triggers another policy rule).
The best solution for avoiding this issue is to use con-
tainers which have only one main service to reduce the
potential attack surface. Alternatively, assertions about
the memory spaces of benign processes could be checked
during the restore process to verify their integrity, an idea
we consider future work (§7).

This method is specific to Linux operating systems
as it relies heavily on CRIU and LXC, which are obvi-
ously specific to that operating system. However, Linux
is a popular operating system for web servers, with ap-
proximately 66.8% of web servers from the Alexa top
ten million sites using some flavor of it, according to a

8



survey conducted by W3Tech in February 2018 [12]. It
might also be possible to extend the main ideas of this
method using container technology for other operating
systems, such as Docker, by using or creating the appro-
priate checkpoint/restore methods.

Finally, it is important to take appropriate actions
even after malware removal. Namely, any vulnerabil-
ity that resulted in a malware payload being delivered
or executed needs to be patched. For example, the
goahead_ldpreload exploit can be immediately ex-
ploited again after the first malware recovery if the GoA-
head web server is not patched. Therefore, CRIU-MR
needs to be coupled with a patching process in order to
avoid repeated exploitation of the same vulnerabilities.

7 Future Work

One avenue for future work is in the verification of the in-
tegrity of processes. We previously noted that it is possi-
ble that malware may seek to change the memory spaces
of benign processes outside of its process tree. One way
to check if this has occurred is to instrument these pro-
cesses with additional code to verify they are still exe-
cuting properly. We refer to these checks as “dynamic
assertions”, where the processes are expected to dynam-
ically respond to queries about execution state in order
to verify the integrity of the process. Research into this
area may reveal more robust ways of ensuring that mal-
ware effects have been reverted even if it interfered with
other processes.

Because any maliciously uploaded files are archived
in a separate filesystem, CRIU-MR could also be used
as part of a framework which discovers and analyzes
new malware. For example, checkpointed malware pro-
cesses with corresponding executables could be executed
in sandboxes to collect more information. Cuckoo [4] is
one option for local analysis, or, if an external service is
preferred, VirusTotal [13] or Hybrid Analysis [5] can be
used to learn more about the nature of the collected pay-
load. These results could then be integrated into other
systems responsible for malicious activity alerts to more
rapidly detect attacks of this type.

In addition to improvements to this particular compo-
nent, we intend to explore how CRIU-MR can fit into a
broader framework of intrusion detection. Related work
we are currently conducting seeks to use machine learn-
ing techniques to analyze payloads of network traffic and
could act as a trigger for this malware cleaning operation.
We are also considering employing elements of moving
target defense, such as changing the IP address, pass-
words, or even the physical host machine of a restored
container to complicate and delay attacks while more ro-
bust defenses can be deployed.

8 Conclusion

The main contribution of our work is a new method for
malware recovery. Rather than using logging or VM-
based methods for removing malware, CRIU-MR uses
Linux containers and CRIU to quickly restore a system
to a safe state in the event of an infection. Furthermore,
our method improves upon prior work by very quickly
recovering the state of trusted services after recovery
with minimal impact to clients. We conduct two exper-
iments to test the speed and availability of CRIU-MR
and find promising results. Our test of the duration of
the malware recovery process finds that malware recov-
ery does not take significantly more time than a CRIU
checkpoint/restore with no policy. Furthermore, our sec-
ond experiment indicates that CRIU-MR is capable of
restoring container processes and TCP connections after
malware recovery, even when many concurrent connec-
tions are present. The success of this tool is dependent
on its use in the context of other systems, such as IDS’s,
firewalls, and antivirus scanners. Information from these
systems, along with static application-specific knowl-
edge, can form a robust policy for malware removal.
CRIU-MR can now be used by both administrators and
researchers to build systems which are responsive and
service-preserving when faced with malware infections.
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Appendices
A Logstash Pipelines for Snort and Cla-

mAV Triggers

Logstash [7] can be a useful tool for parsing and for-
warding alerts from a variety of sources. The “grok”
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filter, a filtering action in the Logstash pipeline, can
be used to parse alerts from arbitrary sources (such as
files, network ports, etc.) into easily parseable JSON.
Listing 1 shows an example of using Logstash with the
grok filter to parse Snort alerts and send them to the
CRIU-MR agent. The Snort command used to gen-
erate the alerts is snort -c snort.conf -i lxcbr0
-A full -k none, where -A full denotes full alert
syntax. The -k none parameter indicates no checksums
should be calculated, which we anecdotally observe is re-
quired for obtaining alerts on both inbound and outbound
traffic.

The ClamAV parsing is very similar. The command
to execute the scanner is clamscan path/to/scan
–no-summary –infected > output.log. The Snort
example is modified slightly for the different output
format. Namely, the path is changed to point to
output.log, the multiline code is not needed (each
line of output.log corresponds to one alert), and the
add_field codec is modified for the appropriate trigger
type. Finally the grok parsing code in the filter step sim-
ply becomes:

%{GREEDYDATA: f i l e p a t h } :
%{GREEDYDATA: malwarename } FOUND

B NFQUEUE Buffer

Listing 2 shows an example implementation of a buffer
for packets intended for the interface lxcbr0, which is
the default interface used for the Linux container net-
working. This simple python script uses the netfil-
terqueue library (available via pip) to hold packets until
the program terminates via a kill signal. Packets are then
released to the kernel and forwarded along to or from the
container.
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Listing 1: Logstash Pipeline for Snort Alert Parsing
i n p u t {

f i l e {
# s t a n d a r d pa th f o r s n o r t a l e r t s
p a t h => " / v a r / l o g / s n o r t / a l e r t "
# combines m u l t i p l e l i n e s as a s i n g l e l o g e v e n t
codec => m u l t i l i n e {

p a t t e r n => " ^ \ [ \ ∗ \ ∗ \ ] "
n e g a t e => t rue
what => " p r e v i o u s "

}
# add ing a f i e l d t o t h e par se d j s o n so t h a t CRIU−MR knows
# how t o p a r s e i t
a d d _ f i e l d => { " t r i g g e r _ t y p e " => " s n o r t " }

}
}

f i l t e r {
grok {

# P a r s i n g o u t p u t o f s n o r t i n t o JSON
# n e w l i n e s added f o r r e a d a b i l i t y
match => { " message " => " \ [ \ ∗ \ ∗ \ ] \ [%{NUMBER: v e r s i o n }:%{NUMBER: s i d } :

%{NUMBER: r e v i s i o n } \ ] %{GREEDYDATA: r u l e } \ [ \ ∗ \ ∗ \ ] ∗ \ n \ [ P r i o r i t y :
%{NUMBER: p r i o r i t y } \ ] \ n%{MONTHNUM: month } \ /%{MONTHDAY: day}−%{HOUR: hour }
:%{MINUTE: minu te }:%{SECOND: second } %{IP : s r c _ i p }:%{NUMBER: s r c _ p o r t }
−> %{IP : d s t _ i p }:%{NUMBER: d s t _ p o r t }∗ \ n ∗ \ n ∗ \ n∗ " }

}
}

o u t p u t {
t c p {

h o s t => <CRIU−MR_HOST_IP>
p o r t => <CRIU−MR_PORT>

}
}
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Listing 2: NFQUEUE Python Buffer
i m p o r t os
from n e t f i l t e r q u e u e i m p o r t N e t f i l t e r Q u e u e
i m p o r t s i g n a l

def s e n d _ p a c k e t s ( s i g n a l , f rame ) :
p r i n t ( " s e n d i n g p a c k e t s and s h u t t i n g down " )
os . sys tem ( " i p t a b l e s −D INPUT − i l x c b r 0 − j NFQUEUE −−queue−num 1 " )
os . sys tem ( " i p t a b l e s −D OUTPUT −o l x c b r 0 − j NFQUEUE −−queue−num 1 " )
os . sys tem ( " i p t a b l e s −D FORWARD −o l x c b r 0 − j NFQUEUE −−queue−num 1 " )

f o r p a c k e t in p a c k e t s :
p a c k e t . a c c e p t ( )

n fqueue . unb ind ( )

def h o l d _ p a c k e t ( p k t ) :
g l o b a l p a c k e t s
p r i n t ( " h o l d i n g " + s t r ( p k t ) )
p a c k e t s . append ( p k t )

p a c k e t s = [ ]
s i g n a l . s i g n a l ( s i g n a l . SIGTERM , s e n d _ p a c k e t s )

os . sys tem ( " i p t a b l e s −I INPUT − i l x c b r 0 − j NFQUEUE −−queue−num 1 " )
os . sys tem ( " i p t a b l e s −I OUTPUT −o l x c b r 0 − j NFQUEUE −−queue−num 1 " )
os . sys tem ( " i p t a b l e s −I FORWARD −o l x c b r 0 − j NFQUEUE −−queue−num 1 " )

n fqueue = N e t f i l t e r Q u e u e ( )
n fqueue . b ind ( 1 , h o l d _ p a c k e t )

t r y :
n fqueue . run ( )

e x c e p t K e y b o a r d I n t e r r u p t :
s e n d _ p a c k e t s ( None , None )
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