
Handling Translation Divergences inGeneration-Heavy Hybrid Machine TranslationNizar Habash and Bonnie Dorrfhabash,bonnieg@umiacs.umd.eduInstitute for Advanced Computer StudiesUniversity of MarylandCollege Park, MD 20740http://umiacs.umd.edu/labs/CLIPAbstractThis paper describes a novel approach for han-dling translation divergences in a Generation-Heavy Hybrid Machine Translation (GHMT)system. The approach depends on the exis-tence of rich target language resources suchas word lexical semantics, including informa-tion about categorial variations and subcate-gorization frames. These resources are usedto generate multiple structural variations froma target-glossed lexico-syntactic representationof the source language sentence. The multiplestructural variations account for di�erent trans-lation divergences. The overgeneration of theapproach is constrained by a target-languagemodel using corpus-based statistics. The ex-ploitation of target language resources (sym-bolic and statistical) to handle a problem usu-ally reserved to Transfer and Interlingual MTis useful for translation from structurally diver-gent source languages with scarce linguistic re-sources. A preliminary evaluation on the appli-cation of this approach to Spanish-English MTproves this approach extremely promising. Theapproach however is not limited to MT as it canbe extended to monolingual NLG applicationssuch as summarization.1 IntroductionWe present a Generation-Heavy Machine Trans-lation (GHMT) system that is asymmetrical hy-brid approach to Machine Translation: our gen-eration component constrains the translationusing a combination of symbolic rules, lexicons,and corpus-based statistics. Source languagesare only expected to have a syntactic parser anda translation lexicon that maps source words totarget bags of words. No transfer rules or com-plex interlingual representations are required.The approach depends on the existence of rich

target language resources such as word lexi-cal semantics, including information about cat-egorial variations and subcategorization frames.These resources are used to generate multi-ple structural variations from a target-glossedlexico-syntactic representation of the source lan-guage sentence. The multiple structural vari-ations account for di�erent translation diver-gences. The overgeneration of the approachis constrained by a target-language model us-ing corpus-based statistics. The exploitation oftarget-language resources (symbolic and statis-tical) to handle a problem usually reserved toTransfer and Interlingual MT is useful for trans-lation from structurally divergent source lan-guages with scarce linguistic resources. A pre-liminary evaluation on the application of thisapproach to Spanish-English MT proves thisapproach extremely promising. The approachhowever is not limited to MT as it can be ex-tended to monolingual NLG applications suchas summarization.The work presented here focuses on the gener-ation component of this system and its handlingof translation divergences. The next section de-scribes the range of divergence types covered inthis work and discusses previous approaches tohandling them in MT. Section (3) and (4) intro-duce our approach and describes the di�erentcomponents and algorithms in the translationsystem. And �nally, section (5) describes a pre-liminary evaluation we undertook to assess theapplicability of this approach on a large scale toSpanish-English MT.2 BackgroundA translation divergence occurs when the un-derlying concept or \gist" of a sentence is dis-tributed over di�erent words for di�erent lan-guages. For example, the notion of 
oating



across a river is expressed as 
oat across a riverin English and cross a river 
oating (atraves�oel r��o 
otando) in Spanish (Dorr, 1993b). Aninvestigation done by (Dorr et al., 2002) foundthat divergences occurred in approximately 1out of every 3 sentences in a sample size of 19Ksentences from the TREC El Norte NewspaperCorpus. This analysis was done on the TRECSpanish Data1 using automatic detection tech-niques followed by human con�rmation. We willdescribe each divergence type before turning toalternative approaches to handling these in MT.2.1 Translation DivergencesWhile there are many ways to classify diver-gences, we present them here in terms of �vespeci�c divergence types that can take placealone or in combination with other types oftranslation divergences. Table (1) presentsthese divergence archetypes with Spanish-English examples. The last column displays apercentage of occurrence of the speci�c diver-gence type, taken from the �rst 48 verb-uniqueinstances of Spanish-English divergences fromthe TREC El Norte corpus. Note that thesenumbers do not re
ect the percentage of occur-rence of the divergence type in the corpus as awhole, but rather the percentage of occurrenceof the speci�c divergence type in the �rst 48divergent sentences|and there is often overlapamong the divergence types (e.g., categorial di-vergence occurs almost every time there is anyother type of divergence).2.1.1 Categorial DivergenceCategorial divergence involves a translationthat uses di�erent parts of speech. This is byfar the most common divergence type. In theSpanish-English example below, the light verband noun phrase are translated as another lightverb and an adjectival form of the noun.(1) tener celos (to have jealousy) , to be jealoustener plena conciencia (have full awareness) ,to be fully aware2.1.2 Con
ationCon
ation involves the translation of two wordsusing a single word that combines the meaningof the two. In Spanish-English translation, this1LDC catalog no LDC2000T51, ISBN 1-58563-177-9,2000.

divergence type has two forms: light verb con-
ation and manner con
ation. Light verb con-
ation involves a single verb in one languagebeing translated using a combination of a se-mantically \light" verb, i.e., it carries little orno speci�c meaning in its own right, and someother meaning unit (perhaps a noun) to conveythe appropriate meaning. English light verbsinclude give, make, do, take, and have.(2) dar una patada (give a kick) , to kickponer �n (put end) , to endtomar nota (take note) , to noteManner con
ation involves translating of asingle manner verb (e.g., 
oat) as a light verb ofmotion and a manner-indicating content wordthat is typically a progressive manner verb inSpanish.(3) to 
oat , ir 
otando (go (via) 
oating)to pass , ir pasando (go passing)2.1.3 Structural DivergenceA structural divergence involves the realizationof incorporated arguments such as subject andobject as obliques (i.e. headed by a prepositionin a PP) or vice versa.(4) entrar en la casa (enter in the house), to enterthe housepedir un referendum (ask-for a referendum) ,ask for a referendum2.1.4 Head SwappingThis divergence involves the demotion of thehead verb and the promotion of one of its modi-�ers to head position. In other words, a permu-tation of semantically equivalent words is nec-essary to go from one language to the other. InSpanish, this divergence is typical in the trans-lation of an English motion verb and a preposi-tion as a directed motion verb and a progressiveverb.(5) entrar corriendo (enter running) , to run inandar volando (go-about 
ying), to 
y about2.1.5 Thematic DivergenceA thematic divergence occurs when the verb'sarguments switch thematic roles from one lan-guage to another. The Spanish verbs gustar anddoler are examples of this case.2



Divergence Spanish English OccurrenceCategorial X tener hambre (X have hunger) X be hungry 98%Con
ational X dar pu~naladas a Z (X give stabs to Z) X stab Z 83%Structural X entrar en Y (X enter in Y) X enter Y 35%Head Swapping X cruzar Y nadando (X cross Y swimming) X swim across Y 8%Thematic X gustar a Y (X please to Y) Y like X 6%Table 1: Translation Divergence Types(6) Me gustan uvas (to-me please grapes) , I likegrapesme duele la cabeza (to-me hurt the head) , Ihave a headache2.2 Handling Translation DivergencesSince translation divergences require a combi-nation of lexical and structural manipulation, they are traditionally minimally handled atthe transfer level of the MT Hierarchy. A puretransfer approach is a brute force attempt toencode all translation divergences in a trans-fer lexicon (Dorr et al., 1999). However, moresophisticated techniques have been developedthat use Lexical Semantic knowledge to de-tect and handle these phenomena. An Inter-lingual approach, proposed by (Dorr, 1993b;Dorr, 1994), uses Jackendo�'s Lexical Seman-tic Structure (LCS) (Jackendo�, 1972; Jackend-o�, 1976; Jackendo�, 1983; Jackendo�, 1990)as an interlingua. LCS is a compositional ab-straction with language-independent propertiesthat transcend structural idiosyncrasies. Thisrepresentation has been used as the interlinguaof several projects such as UNITRAN (Dorr,1993a) and MILT (Dorr, 1997). LCS providesa granularity of representation much �ner thansyntactic representation and much more inde-pendent. As an example, the Spanish sentenceatraves�o el r��o 
otando can be \composed" intothe following LCS using a Spanish LCS lexiconas part of an interlingual analysis step.(7) [event CAUSE JOHN[event GO JOHN[path ACROSS JOHN[position AT JOHN RIVER]]][manner SWIM+INGLY]]In the generation phase, that same LCS is \de-composed" using LCS English lexicon entries toyield john swam across the river . A detailed

discussion of generation from LCS is availablein (Traum and Habash, 2000).An alternative approach using lexico-structural transfer enriched with lexicalsemantic features was proposed by (Nasr et al.,1997). In this lexicalized grammar approach auni�ed syntactic and semantic representationis used for each lexical item which includeappropriate cross-linguistic semantic features.Transfer lexicon rules are written as such tocapture generalizations across the languagepair. The transfer is done at the Deep Syntac-tic Structure (DSyntS) Level from Mel'cuk'sMeaning Text Theory (Mel'�cuk, 1988). Theapproach also uses Lexical Functions (alsofrom Mel'cuk's Meaning Text Theory (Mel'�cuk,1988)) to handle analysis and generation. Thefollowing transfer rule can be used to handlethe head swapping divergence discussed in thelast example:(8) @TRANS_CORR@EN V1 [cat:verb manner:M](ATTR Y [cat:prep path:P event:go](II N))@SP V2 [cat:verb path:P event:go](II NATTR Z [manner:M])Here, a transfer correspondence is estab-lished between the di�erent components of twoDSyntS templates, one for English and one forSpanish. Note how the manner variable M andthe path variable P switch dominance.A major limitation of the interlingual andtransfer approaches is that they require a largeamount of explicit lexical semantic knowledgefor both source and target languages.3 Our Approach: Generation-HeavyMachine TranslationOur approach is closely related to the hy-brid approach whose intuition was �rst de-3



scribed by the seminal work of (Knight andHatzivassiloglou, 1995; Langkilde and Knight,1998b; Langkilde and Knight, 1998c; Langk-ilde and Knight, 1998a). The idea is to com-bine symbolic and statistical knowledge in gen-eration through a two step process: (1) Sym-bolic Overgeneration followed by (2) Statis-tical Extraction. The hybrid approach hasbeen mainly used for lexical choice (includingmorphology and tense selection)(Langkilde andKnight, 1998c; Bangalore and Rambow, 2000a)and for linearization from semantic represen-tation(Langkilde and Knight, 1998a) or fromshallow unlabeled dependencies(Bangalore andRambow, 2000b).What we propose here is the extension ofthe hybrid approach to handle translation di-vergences without the use of a deeper seman-tic representation or transfer rules. We accom-plish this by extending the symbolic overgener-ation component to include structural and cat-egorial expansion of the source language lexico-structural representation. By overgeneratinglexico-structural combinations preferred by thetarget language, we make them available choicesfor ranking by the statistical extraction compo-nent. the overgeneration is constrained by lin-guistically motivated rules that utilizes targetlanguage lexical semantics and subcategoriza-tion frames and is independent of the sourcelanguage preferences.3.1 Overview of GHMTFigure (1) presents an overview of the com-plete MT system. The three phases of Anal-ysis, Translation and Generation are very sim-ilar to other paradigms of MT (Analysis-Transfer-Generation or Analysis-Interlingua-Generation)(Dorr et al., 1999). However, thesephases are not symmetrical. Analysis relies onlyon the source-sentence parsing and is indepen-dent of the target language. The output ofAnalysis is a deep syntactic dependency thatnormalizes over syntactic phenomena such aspassivization and morphological expressions oftense, number, etc. Translation converts thesource-language lexemes into bags of target-language lexemes. The dependency structureof the source language is maintained. The lastphase, Generation, is where most of the workis done to manipulate the input lexically andstructurally produce target sequences.

The generation component utilizes three ma-jor resources: a word-class lexicon, a categorial-variations lexicon, and a syntactic-thematiclinking map.3.1.1 Word-Class LexiconThe word-class lexicon currently contains onlyverbs and prepositions, as these are thepredicate-argument relations primarily involvedin translations|each of these categories aregrouped into \classes." In the case of verbs,there are 511 verb classes for 3,131 verbs, total-ing 8,650 entries. An example is shown here:(9) (DEFINE-WCLASS:NUMBER "V.13.1.a.ii":NAME "Give - No Exchange":SENTENCES ("He !!+ed the car to John""He !!+ed John the car"):POS V:THETA_ROLES(((ag obl) (th obl) (goal obl to))((ag obl) (goal obl) (th obl))):LCS_PRIMS (cause go possessional):SPEC ((ag (animate +))):WORDS (feed give pass pay peddle refundrender repay serve))In the case of prepositions, there are 43 prepo-sition classes, for 125 prepositions, totaling 444entries. An example is shown here:(10) (DEFINE-WCLASS:NUMBER "P.8":NAME "Preposition Class P.8":POS P:THETA_ROLES (time):LCS_PRIMS (path temporal):SPEC nil:WORDS (until to till from before back_toat after))Note that these entries are only available inthe system for English since it is the target lan-guage. There are no equivalent entries for thesource language.3.2 Categorial-Variation DatabaseThe Categorial-Variation Database (CatVar) isa database of words and their categorial vari-ants. Our investigation of the existence ofsuch a resource so far shows that none is avail-able.2 Our research has involved the creationof resource for English. The structure of this2The WordNet project is currently adding such linksbut only for Nouns and Verbs (Christiane Fellbaum, pc.).4
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at with an in-dexing �le that is accessible through a hash ta-ble. For a given word and its optional parts ofspeech, the lookup mechanism returns a list oflists of categorial variants of the word (includingthe word itself). An excerpt is shown here:(11) (:V (hunger) :N (hunger) :AJ (hungry))(:V (validate) :N (validation validity):AJ (valid))(:V (cross) :N (crossing cross):P (across))We have currently developed 28,305 catvarclusters for 40,443 POS sub-cluster, totaling46,037 words (lexemes). The database was de-veloped using a combination of resources andalgorithms including the LCS Verb and Prepo-sition Databases (Dorr, 2001b; Dorr, 2001a),the Brown Corpus section of the Penn Treebank(Marcus et al., 1994), an English morphologicalanalysis lexicon developed for PC-Kimmo (EN-GLEX) (Antworth, 1990), and the porter stem-mer(Porter, 1980).3.3 The Syntactic-Thematic LinkingMapThis is a large matrix that was extracted fromthe LCS Verb Database (LVD)(Dorr, 2001b)and the LCS Preposition Database (LPD)(Dorr,2001a). It relates syntactic \cases" to thematicroles. Thematic cases include 125 prepositionsin addition to :subj, :obj, and :obj2 . These aremapped to varying subsets of the 20 di�erentthematic roles used in our system. The totalnumber of links is 341 pairs. An excerpt of thisresource is shown below.(12) (:subj ag instr th exp loc src goal percmod-poss poss)

(:obj2 goal src th perc ben)(aboard loc goal)(about info mod-perc perc poss time purploc goal pred)(according_to purp)(across goal loc)(in_spite_of purp)(in loc mod-poss perc goal poss prop)4 The Generation ComponentThe input to the generation component is a deepsyntactic dependency tree similar to Mel'cuk'sMeaning Text Theory (MTT) (Mel'�cuk, 1988),but it is written in the format of the PEN-MAN Sentence Planning Language (SPL) (Pen,1989). The part-of-speech and roles de�ni-tions are very small. There are 10 parts ofspeech (verb, preposition, noun, proper noun,adjective, adverb, determiner, conjunction, in-terjunction and punctuation) and only 4 roles,Subject, object, indirect object (which map toI,II, and III in MTT) and modi�er. All nodes inthe dependency tree are expected to be ambigu-ous bags of lexemes. Our machine translationapproach involves a lexical translation of theparse-tree nodes corresponding to words in thesource-language sentence. No structural trans-fer is required.4.1 Thematic LinkingThe �rst step in our system is to turn the syn-tactic dependency input into a thematic depen-dency tree. The syntax-thematic linking here isachieved through the use of thematic grids asso-ciated with English (verbal) head nodes. Thisstep is done in the generation process using thetarget-language resources only. Therefore, it isa loose linking algorithm that is constrained by5
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Figure 2: Generationthe thematic grids of the predicates in the targetlanguage (verbs and prepositions).Prepositions are treated as syntactic casemarkers that constrain the option of thematicroles that can be assigned to their objects. Thenumber and nature (obligatory, optional) of thethematic roles are determined by the verb the-matic grid. We treat the linking problem as amaximum 
ow network variant that uses link-ing constraints from the verbs and prepositionsin addition to applying a Thematic Hierarchyconstraint3 and allowing all syntactic roles tobe treated as modi�ers as an option. There-fore, we are guaranteed to get a network in everycase. However, the di�erent resulting networksare ranked by a criterion that prefers obligatorythematic roles to be linked, prioritizing linkingsinvolving arguments ahead of those involvingmodi�ers.Figure (3) illustrates how the correct map-ping from syntax to thematic roles is done forthe two sentences Mary �lled the glass with wa-ter andMary �lled water in the glass . Althoughthe second example is not correct English (al-beit good Korean), the correct roles are assignedmainly because of the limitations imposed byallowable thematic assignments for the preposi-tions.The output of this phase is a thematic depen-3We make an assumption here that there is a Uni-versal Thematic Hierarchy that governs the generationof arguments. Predicates that violate the thematic hier-archy are expected to be marked as externalizing pred-icates in both source and target languages(Habash andDorr, 2001)

dency in which the relations of children to par-ents are thematic roles (and modi�ers) insteadof syntactic roles. The goals of this phase aremany: 1) Reduction of ambiguity. Since eachverb can have multiple verb class memberships(some of which have multiple thematic grids),this step reduces the verb/verb-class/grid possi-bilities to only those that rank highest accordingto the criteria described earlier. 2) Normaliza-tion: This step normalizes over structural varia-tion and thus approaches a solution to the struc-tural and thematic divergences on a thematiclevel.4 3) Accurate thematic assignment, whichis essential for handling structural variations.This step looks like analysis but it is fullydriven by resources and constraints from thetarget language. That is why it is a central stepin this generation-heavy approach.4.2 Structural ExpansionThis step is for exploring alternative structuralcon�gurations of the input. There are two op-erations that are applied here: Con
ation andHead Swapping. Lexical-semantic informationfrom the verb class lexicon (both theta grids andlexical conceptual primitives) is used to deter-mine the con
atability and head-swappabilityof combinations of nodes in the trees.4.2.1 Con
ationFor each one of the arguments of a given verbin the tree, the head verb (Vhead) and argument(Arg) pair are checked for con
atability. A pair4This also applies to expanding the possible set ofalternations eventually.6
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atable if (1) there exists a verb Vconfthat is a categorial variation of the argument(2) Vconf and Vhead both share the same mainlexical conceptual primitive and (3) Vconf canassign the same thematic roles that are assignedby Vhead except for the one that is assigned toArg. Take the following example for the Span-ish yo le di pualadas a Juan (I gave stabs toJuan) which results in the following thematicdependency tree after linking is done:(13) (3 \ |give|:ag (1 \ |I|):th (4 \ |stab|):goal (6 \ |juan|))The theme |stab| has a verb categorial vari-ation |stab| which belongs to two di�erentverb classes, the Poison Verbs (as in crucify,electrocute, etc.) and the Swat verbs (as inbite, claw , etc.). Only the �rst class shares thesame lexical conceptual primitive as the verb|give| (CAUSE GO). Moreover, the verb |stab|requires an agent and a goal for the stabbing.Therefore, a con
ated instance is created in thiscase:(14) (3 \ |stab|:ag (1 \ |I|):goal (6 \ |juan|))If the sentence were, say, I gave the stab aname, the categorial variation for stab wouldhave failed because it stood in a goal relation-ship with its parent.4.2.2 Head SwappingUnlike Con
ation, Head Swapping is restrictedto head-modi�er pairs. Every such pair's swap-pability is determined by the following criteria:(1) there exists a verb Vconf that is a categorialvariation of the modi�er (2) there is a catego-rial variation of Vhead that can become a child of

Vconf such as a noun, adjective, adverb or evena preposition. (3) all the arguments before theswapping retain their thematic roles regardlessof whether they move with the swapped verbor not. For example, the German ich esse gern(I eat likingly) results in the following thematicdependency tree after linking is done:(15) (3 \ |eat|:th (1 \ |I|):mod (6 \ |like|))Here the modi�er |like| and the main verb|eat| can be swapped to produce I like eatingor I like to eat . If the demoted verb can becomea preposition, the swapping is more complicatedsince prepositions are not part of the thematicdependency. For example, the Spanish Juancruz�o el r��o nadando (Juan crossed the riverswimming) results in the following thematic de-pendency tree after linking is done:(16) (3 \ |cross|:th (1 \ |Juan|):loc (4 \ |river|):mod (6 \ |swim|))The modi�er |swim| is itself a verb. Andthe main verb |cross| has a prepositional cat-egorial variation |across| which can assign thethematic role :loc to |river|:(17) (3 \ |swim|:th (1 \ |Juan|):mod (4 \ |river| :prep |across|))4.3 Syntactic AssignmentIn this step, the thematic dependency is turnedinto a full target syntactic dependency. Syn-tactic positions are assigned to thematic rolesusing the verb class subcategorization frames.Di�erent alternations associated with a single7



class are generated here too which allows for awidening range of expression that is speci�c tothe target language. Class category speci�ca-tions are enforced by picked appropriate cate-gorial variations of the di�erent arguments. Forexample, the main verb for the Spanish tengohambre (I have hunger) translates into (have,own, possess, and be). For the last verb (be),there are di�erent classes that have di�erentspeci�cations on the verb's second argument: anoun and an adjective. This of course resultsin I am hungry and I am hunger in addition toI (have/possess/own) a hunger. That is wherestatistical extraction is most valuable; to decidewhich sequence is more likely.4.4 LinearizationIn this step a rule based linearization gram-mar is used to create a word lattice that en-codes the di�erent possible realizations of thesentence. The grammar is implemented usingthe linearization engine oxyGen(Habash, 2000)and makes use of the morphological generationcomponent of the generation system Nitrogen(Langkilde and Knight, 1998b). The gram-mar is based on previous work we have donein Chinese-English LCS-based MT(Dorr et al.,1998; Traum and Habash, 2000).4.5 Statistical ExtractionThe �nal step, extracting a preferred sentencefrom the word lattice of possibilities is doneusing Nitrogen's Statistical Extractor withoutany changes. Sentences are scored using uni-gram and bigram frequencies calculated basedon two years of Wall Street Journal (Langkildeand Knight, 1998c).5 Preliminary EvaluationWe conducted the following evaluation to assessthe applicability of the approach on handlingSpanish-English translation divergences. Thedata we use for our evaluation is the �rst 48 verbunique instances of Spanish-English variationsfrom the El Norte Corpus. Out of the 48 sen-tences, 39 (81%) were con�rmed to be resolvedgiven our approach, i.e., these divergences couldbe generated using the simple lexical semanticswe employ together with the structural expan-sion and categorial variations.On the other hand, 7 cases (14.5%) wouldrequire more conceptual knowledge. For exam-

ple, the expression dar muerte a (to give deathto) which translates into kill cannot be gener-ated currently given that in our lexicon, kill anddeath are not linked at all. The only verbal cat-egorial variation of death is deaden and that isnot an appropriate translation here. Generat-ing a link between deaden and kill requires an-other more conceptual resource such as the Sen-sus Ontology (Knight and Luk, 1994). Even asimpler lexical database such as WordNet (Fell-baum, 1998) does not have a synset relatingthese two verbs. Such expansion is still verymuch in the spirit of generation-heavy machinetranslation since all of the new knowledge is rep-resented in the target language.The remaining 2 cases (4%) out of the 48sentences require pragmatic knowledge and/orhard-wiring of idiomatic non-decompositionalstructures. For example the Spanish ponerse depie (put-self of/on foot) should translate into tostand up.6 Future WorkOur immediate future work will involve an ex-pansion of the linearization grammar to be ableto handle large-scale Spanish-English GHMT.We also plan to explore extensions to the sym-bolic component of our system, e.g., a concep-tual representation that facilitates generationby linking concepts that are not related mor-phologically. In addition, we plan to exploreextensions to the statistical component throughthe use of structural bigrams. And �nally, weare interested in testing our source-language in-dependence claim by retargeting the system toChinese input.7 AcknowledgmentsThis work has been supported, in part, by ONRMURI Contract FCPO.810548265, DARPATIDES Contract N66001-00-2-8910, and DODContract MDA904-96-C-1250. We would liketo thank Lisa Pearl and Clara Cabezas for theirhelp collecting and translating the Spanish datafor our evaluation. We would also like to thankAmy Weinberg for helpful conversations.ReferencesE.L. Antworth. 1990. PC-KIMMO: A Two-Level Processor for Morphological Analysis.Dallas Summer Institute of Linguistics.8
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