ABSTRACT

Title of dissertation: SMALL MASS ASYMPTOTICS FOR
PROBLEMS IN STOCHASTIC
DIFFERENTIAL EQUATIONS
Jong Jun Lee, Doctor of Philosophy, 2014
Dissertation directed by: Professor Mark Freidlin and

Professor Sandra Cerrai
Department of Mathematics

Small mass asymptotics of the motion of a particle moving in a force field
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showed in 2011 [1] that a type of the Smoluchowski-Kramers approximation works
in the case of the motion of a charged particle moving in a constant magnetic field
and Freidlin and Hu showed in 2011 [5] that a type of the Smoluchowski-Kramers
approximation works in the case of the motion of a particle moving in a space with
friction coefficient dependent upon position. We summarize these results in Chapter
1.
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a charged particle moving in a variable magnetic field dependent upon position



[10] in Chapter 2, the Smoluchowkski-Kramers approximation in the case of linear
differential operators in Chapter 3, and the small mass asymptotics in the case of

random mass in Chapter 4.
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Chapter 1: Introduction

1.1  Smoluchowski-Kramers Approximation

1.1.1 Introduction

Suppose a particle of mass p > 0 is moving in R? in a force field with random
noise and friction proportional to the velocity of the particle in the system. We can

model this system using the Newton’s second law of motion:

wdy =0(q) — oy +olgy)
(1.1.1)

@ =q R Gy =po e RY,
where ¢}' is the position of the particle at time ¢, b : R? ++ R? and o :
R? — My(R) are functions such that b(q}') and o(q¢}') w; are the deterministic and
random part of the force respectively, w; is a d-dimensional Wiener process, and
a > 0 is a positive constant such that ag) is the friction with the surrounding
medium. It is clear that, in general, the process ¢} is not Markovian. To consider
the Markov process and to use the machinery developed for Markov processes, one
should consider process (q/', ¢') in R??. The generator of (g, ¢;) is degenerate, which

makes the study of this process more difficult.

Now, suppose that the mass p is small. It is tempting to replace the solution



q)" of equation (1.1.1) with the solution ¢, of the following equation

0=0(q:) — gy + o(qe) 1y

(1.1.2)
g € RY,

which is equation (1.1.1) with g = 0. The process ¢; in R? is Markovian.
Moreover, if the diffusion matrix a(q) = o(q)o*(q) is non-degenerate, the process ¢
has a non-degenerate generator. If we can justify that ¢} is close to ¢; in some sense,
then we can replace ¢ with ¢;, which reduces the computation efforts significantly.
The Smoluchowski-Kramers approximation tells us that ¢ can be approximated by
q:, because ¢)' converges to ¢, in probability in the space of continuous functions

C([0, T]; R?) with usual maximum norm and with the measure given by the Wiener

process. We will state this theorem in the next subsection.

1.1.2 Main Result

For the proof of the Smoluchowski-Kramers approximation, we require some
conditions on b(q) and o(q). It is enough that b : R? — R? and o : R? —~ My(R) are

Lipschitz continuous.

Theorem 1.1.1. Assume thatb : RY — R? and o : R? s My(R) are Lipschitz
continuous. Then,

limE max |¢"" — ¢;|F =0
110 O§t§T|qt Qt| )

for k> 1, so q' converges to q; in probability in C([0,T]; RY).

We skip the proof of this theorem, since we prove a more general statement
in Chapter 3. In the original paper by Freidlin [4], he proved the same result in the
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case that b and o were bounded. The case of unbounded b and o was considered in

Cerrai and Freidlin [1].

1.1.3 Asymptotic Problems

Freidlin considered various asymptotic problems related to the Smoluchowski-
Kramers approximation in his paper [4]. In this section, we summarize the ideas of
approximation of noise and homogenization. In Section 1.1.3.1, we approximate the
Wiener process w; with a d-correlated smooth process V)2 in equation (1.1.1) and
describe the two-parameter asymptotic problem as g and § tend to 0. In Section
1.1.3.2, we consider a homogenization problem related to the Smoluchowski-Kramers

approximation.

1.1.3.1 Approximation of Noise

Let
1 t
V0= — / Esds,
' Voo °
where & is a mean zero stationary Gaussian process with a fast enough decreasing

smooth correlation function R(|t|) such that

lim max |w, — V{’| = 0.
510 0<i<T

It is known that if we replace w; with V, in a stochastic differential equation,
then as ¢ | 0, the solution of the SDE will converge to the solution of the SDE with

the stochastic term understood in the Stratonovich sense [14]. We may replace w;



in equation (1.1.1) with V}° and consider two-parameter asymptotic problem as
and d go to 0.

Note that equation (1.1.1) can be rewritten as a system of first order equations:

Pt = ub(a) — Spif + Lo(a)

\ g =q € R, ph =po e R

From this expression, we can easily check that ¢} is continuously differentiable and

T T
/ o(¢t) duw, / o(qt) o duy,
0 0

where the second integral is understood in the Stratonovich sense; however, note

SO

that the solution ¢; of equation (1.1.2) is not continuously differentiable, and in

general,
T T
| otardu £ [ ota)e du,
0 0

From this observation, we can expect that if y | 0 first and ¢ | 0, then the
solution ¢/’ of equation (1.1.1) with V,® in place of w, will converge to the solution
G of equation (1.1.2) with the stochastic integral in the Stratonovich sense. On
the other hand, if § | 0 first and p | 0, then ¢} 0 will converge to the solution ¢,
of equation (1.1.2) with Ito’s integral. We state a sharper result in the following

theorem, the proof of which can be found in [4].

Theorem 1.1.2. Let b and o be Lipschitz continuous and bounded. The solution
qé"é of equation (1.1.1) with V;° in place of w, converges in probability in C([0, T]; R)
to the solution q; of equation (1.1.2) as u . 0 and § | 0 so that § < f(u) for some
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positive function f. If w0 and 6 | 0 so that ue% 4+ 0, then q, o converges to the

solution G of equation (1.1.2) with the Stratonovich’s stochastic term.

1.1.3.2 Homogenization

Consider the following variant of equation (1.1.1):

I,€ H,€
cpe 1 q: o, M€ 1 q: .
o= () =gt o (%)

L QS7€ = qo S Rda pg76 = Po S Rd)

where b and o are 1-periodic and a(q) := o(q)c*(q) is uniformly nondegenerate.
This equation models the motion of a particle moving in a periodic force field with
period e.

We can think of weak limits of the solution ¢/"“ in the space C([0,T]; R%) as 1 |
0 and € | 0. It turns out that depending on the relative speed of convergence of p and
€ to 0, there exist different weak limits. If € | 0 first and p | 0, then we can expect
that due to the continuously differentiability of ¢;", homogenization with respect to
Lebesgue measure holds first and then the Smoluchowksi-Kramers approximation
holds. If p | O first and € | 0, then we can expect that the Smoluchowski-Kramers
approximation holds first and then homogenization result for Stochastic differential
equations holds [2,11,12]. We state this result in the following theorem, the proof

of which can be found in [4].

Theorem 1.1.3. Assume that the functions b(q) and o(q) are 1-periodic in each

variable, twice continuously differentiable, and the matriz a(q) = o(q)o*(q) is non-



degenerate. Let T be the d-dimensional unit torus.
1. Suppose p | 0 and € | 0 so that for any C' > 0,

C
1L €XP <6—2> 4 0.

Then, for any T > 0, process ¢ converges weakly in C([0,T];R?) to the

Gaussian Markov process
G = q + bt + cw,.

Here,

b= /Td b(q)m(q)dq,

(NI

G =az,

and
a= /Td a(q)m(q)dq,

where m(q) is the unique solution of the problem

Z aq?aqj (aij(Q)m(Q» =0, y m(q)dq = 1.

,j=1

2. Suppose that 1 | 0 and € | 0 so that
Inp\?
€ (_M) 4 0.
14
Then the process ¢, converges weakly to the Gaussian Markov process
Gy = q + bt + Gwy,

where



Q»
Il

Q>
[ I

and

a= /T alg)dg

1.2 Small Mass Asymptotics in the Case of a Constant Magnetic

Field

1.2.1 Introduction

Consider a charged particle of mass p > 0 moving on a plane. Let the position
of this particle at time ¢ be ¢' € R?2. We may express the force field with random

noise on the plane as
b(q;') + o(q )i,

where b : R? — R? is a vector-valued function, o : R? — My(R) is a matrix-valued
function, and w, € R? is a two dimensional Wiener process.

Now, suppose that the motion of the particle is subject to a constant magnetic
field perpendicular to the plane. The force on the particle due to this magnetic field

can be expressed as

Aq' = aAyq), (1.2.1)
where o > 0 is a constant and
0 —1
AQ =
1 0



The motion of this particle is governed by the Newton law, so that

pay =ba) + Ag' + o(qr) e
(1.2.2)
@ =aq € R? 45 =po € R%
Let ¢; be the solution of the following first order SDE with u = 0 from equa-

tion (1.2.2):

G =—A""b(q) — A7 o)y
(1.2.3)

qo € R2.

On the first glance one can expect the convergence of ¢ to ¢, in probability as
1 1 0; however, this is not true in general. From the fact that the real parts of the

eigenvalues of A are zero, we will have the stochastic integral terms as

t
/ sin (f) dw}
0 H

from (1.2.2), where w! is the first component of the two dimensional Wiener process
wy. We require this to go to 0 in probability as p | 0 for the convergence, but this

is not the case due to the property of stochastic integrals:

t t t
Var (/ sin (f) dwi) =EK / sin (i> dwl| = / sin? (£> ds = E
0 H 0 H 0 H 2

Nonetheless, we may regularize the problem in different ways and check if the con-

2

vergence similar to the Smoluchowski-Kramers approximation holds.

Firstly, it is physically reasonable to introduce small friction proportional to
the velocity. We may write A, = A—e¢ I and approximate ¢;' and ¢; with ¢;" and ¢,
the solutions of (1.2.2) and (1.2.3) with A, in place of A. This small friction term

makes the real parts of the eigenvalues of A, negative and gives us the exponential



decay of the terms
1 1 1 c cOS ( > — sin
— exp (—AJ) = —exp (——t)
u u It fu . ( ) <
sin cos

/N

)
)

= |~

=l
==

as 0.

As another regularization method, we may approximate the Wiener process w;,
with a d-correlated smooth process w? such that w? converges to w; in probability.

From the fact that w? is a smooth function, we now have

K s K s
lim [ sin (—) dw’ =lim [ sin (—) Wlds = 0
o Jo H #o Jo H

almost surely thanks to the Riemann-Lebesgue lemma.

We state the results of these approximations in the next subsection.

1.2.2 Main Result

First, we state the results of the first approximation: we include a friction

term with the friction coefficient € in the system.

Theorem 1.2.1. Assume that b : R* — R? and o : R? — My(R) are Lipschitz

continuous. Then, for any T >0 and k > 2,

NIk

-1

E max ¢ — gi" < Ok, Topo.0) (£ A1)

0<t<T
where ¢," and qf are the solutions of equations (1.2.2) and (1.2.3) respectively with
Ac in place of A.

In particular, for any eg >0 and k > 1,

limsup |¢{"* — ¢;|* = 0.

w0 €€



Theorem 1.2.2. Assume that b : R? — R? and o : R? — My(R) are Lipschitz
continuous. Then,

limE max |¢¢ — ¢,|* =0
i O%T\qt |

for k> 1.

The proofs of the above theorems can be found in Cerrai and Freidlin [1].

Thanks to the above two theorems, we have the small mass asymptotics result:

Corollary 1.2.3. Assume that b : R* — R? and o : R? — My(R) are Lipschitz
continuous. Then,

lim E max |¢"° — qt|k =0
t
1i0,el0, 440 0<t<T

for k> 1.

Next, we consider the second approximation: we replace the Wiener process w;
with a d-correlated smooth process w?. There can be many different ways of choosing
such w?. We follow the method introduced in Tkeda and Watanabe [8, Example 7.3

Chapter VI]: define w? as a mollification of the Wiener process wy.

Definition 1.2.4.

1 [ s—t
wf::g/o w(s)p( 5 )ds,

where p: R — RT U {0} is smooth, has the support in [0,1], and satisfies

/01 o(s)ds = 1.
1

wy is a smooth approximation of w, satisfying

lim E max |w? — w,|* = 0.
510 0<t<T

10



To give enough regularity for the problem, we assume the following conditions

on b(q) and o(q).

Hypothesis 1. b: R? — R? and 0 : R? — My(R) are differentiable and bounded

with their derivatives.

Under Hypothesis 1, Ikeda and Watanabe [8, Theorem 7.2 Chapter VI tells

us that we have the relation

lim E max |¢"° — ¢/'|* = 0,
510 0<t<T

where @' is the solution of equation (1.2.2) with the stochastic integral in the
Stratonovich sense. From the continuous differentiability of ¢}’ in ¢, the stochas-

tic integral in the It6 sense and the Stratonovich sense coincide in equation (1.2.2):

T T
/ o (gt) duwy = / o(qt) o duy,
0 0

where the integral on the right is understood in the Stratonovich sense. So, we can
conclude ¢' = ¢; and

: 5
limE max |¢/"° — ¢/'|* = 0,
510 0<t<T

The following theorem can be proved using the methods in Cerrai and Freidlin
[1] and Lee [10]. We state the theorem without proof since we will see the proof of

a more general case in Chapter 2.

Theorem 1.2.5. Under Hypothesis 1, there exists a constant C' > 0 depending on
T, qo, Po, |bloos |Dbloo, |0, and |Dols such that for any 0 < p < 1,0 < § <1,

and k> 1,

C
0 41k k
L < J—
Eorgtegc g, qy | exp ((52> W,

11



where ¢*° and ¢¢ are the solutions of equations (1.2.2) and (1.2.3) respectively with

w? in place of w;.

In particular, for any fired 0 < 6 <1,

limE max |¢/° — ¢?|* = 0.
pl0  0<t<T

The limit of ¢’ as § | 0 can be found as an application of Ikeda and Watanabe

[8, Theorem 7.2 Chapter VI]. We state the result without proof:

Theorem 1.2.6. Under Hypothesis 1,

limE max |¢? — ¢|*> =0
i Jax |g; — Gl ,

where §; is the solution of the first order stochastic differential equation
G = —A7'0(Gr) — (A" (Gr)) © thy
Go = qo € R*.
We state the combination of the above two theorems in the following corollary.

Corollary 1.2.7. Under Hypothesis 1, q; 2 converges to G, in probability in C([0,T); R?)

as it} 0 and 6 | 0 so that ueé% 4 0 for each constant C' > 0.

1.3  Smoluchowski-Kramers Approximation in the Case of Variable

Friction

1.3.1 Introduction

In this section, we generalize the results of the Smoluchowski-Kramers approx-
imation in Section 1.2 by allowing the friction coefficient to be dependent upon the

12



position of the particle. We replace (1.1.1) and (1.1.2) with the following equations

by replacing the constant o with a function o : R? — R7:

wdt =bq) — alg)dt + ol(q')
(1.3.1)
g =q €RY gl =py e R?

and

0= b(q) — aqe)Ge + o(qe)
(1.3.2)

q € RY.

Freidlin and Hu [5] showed that in this case, the Smoluchowski-Kramers ap-
proximation does not hold: ¢/' does not converge to ¢; in probability in C([0, T]; R?)
as 1t 0. A way to overcome this difficulty was introduced in [5] (See also Cerrai and
Freidlin [1]). We may replace w; with w? from equations (1.3.1) and (1.3.2), where
w? is a smooth d-correlated process which converges to w; in probability as § | 0.
The solutions ¢’ * and ¢ of the new equations now don’t have the erratic behavior
inherent from the Wiener process w;. It can be shown that ¢}’ 0 converges to ¢’ in
probability in C([0, T]; RY) as u . 0. The limit of ¢’ in probability in C([0, T]; RY)
as 0 | 0 is calculated in Ikeda and Watanabe [8], so that we can find the limit of

¢° as ;L 0 and 6 | 0 in order [1,5,10].

1.3.2 Main Result

We first state the required conditions on the coefficients for the proof of con-

vergence:

Hypothesis 2.

13



1. b: R = R? and o : R — My(R) are differentiable and bounded with their

derivatives.

2. o : R?T — R is differentiable and bounded with its derivative. Moreover,

inf =y > 0.
qleI%Rda(Q) ap

Now, we are ready to state the main theorems.

Theorem 1.3.1. Under Hypothesis 2, there exists a constant C > 0 depending
on T, qo, Po, @0, |lee, |V oo, |blocs |Dbloos |0lee, and |Do|s such that for any

0<pu<l,0<0<1,andk >1,

C
;va(s _ d1k < k
Eorgg; 4" — q;|" < exp (—52) T

In particular, for any fived 0 < 9§ <1,

: 5
lim E max |¢"° — ¢|* = 0.
pl0  0<t<T

Theorem 1.3.1 can be proved by a combination of methods in Freidlin and
Hu [5] and Lee [10]. We skip the proof of this theorem since we will give a proof of
a more general problem in Chapter 2. In combination with the following theorem,
which is an application of [8, Theorem 7.2 Chapter VI], we can find a limit of ¢/

as i 0 first and § | 0.

Theorem 1.3.2. Under Hypothesis 2,

mE max |¢? — G|> =0
i OStglqt G| ;

14



where §; is the solution of the first order stochastic differential equation

G = —b(G) — o(q) oy
(1.3.3)
do = qo € R

The following corollary is the main result of this section.

Corollary 1.3.3. Under Hypothesis 2, qé"‘s converges to G; in probability in C([0, T]; R?)

as (14 0 and § | 0 so that ,ueé% 4 0 for each constant C' > 0.

15



Chapter 2:  Small Mass Asymptotics of a Charged Particle in a Mag-

netic Field

Small mass asymptotics of the motion of a charged particle moving in a force
field combined with a constant magnetic field was considered by Cerrai and Freidlin
in 2011 [1]. Later in 2014, Lee [10] showed that this result can be generalized in the
case of the magnetic field which varies depending on the position on a plane. We

summarize this result in this chapter.

2.1 Introduction

Recall that we consider the motion of a charged particle of mass ¢ > 0 moving
on a plane as in section 1.3. We define ¢/' as the position of this particle on the

plane at time t,
b(qi’) + o(q;)

as the force on the particle due to the force field with random noise on the plane,

and

Alg)dr

16



as the force on the particle due to the magnetic field. Dependence of the magnetic

field on the position can be expressed as

A(q) = a(q)A, (2.1.1)
where a : R? — Rt and
0 —1
AQ =
1 0

We replace (1.2.2) and (1.2.3) with the following equations by changing the

constant a with a function « : R? — R*:

wgy = b(q) + Alg gy + o(qr) wy
(2.1.2)

ah =qo € R?, ¢ =po € R?

and

G = —A(q)b(q) — A (q)o (g
(2.1.3)

qo € R2.

It is shown in Section 1.3 that even in the case of constant A, the Smoluchowski-
Kramers approximation does not work. We don’t have the convergence of ¢}’ to ¢; in
probability in C([0, T]; R?). Nonetheless, we may regularize the problem and check
a convergence similar to the Smoluchowski-Kramers approximation as in Sections
1.3 and 1.4.

Firstly, we may regularize the problem by introducing small friction propor-
tional to the velocity. We may write A.(q) = A(q) — € I and approximate ¢} with

¢,", the solution of the following SDE, which is equation (2.1.2) with A, in place of

17



pay =bg') + Adgl)g + o(ql') uy
g =q € R?, ¢ =po € R%

This small friction term makes the real parts of the eigenvalues of A.(q) neg-

ative and gives us an exponential decay of the term

1 1 [t 1 cos ( £2) —sin ( -

X (— / Ac(gf) ds> = —exp (—5t> ) )

H HJo H H . (B B
S111 < m > COS ( m >

=

=

By
w
o€

R

where
t
Bl :_/ a(gh)ds,
0
as u J 0; however, it turns out that this approximation does not support us with

enough regularity for the convergence of the system. This follows from the fact that

t s 2
/ l exp (—%s) (/ exp (£r> dwi) ds,
0 1 I 0 I

where w! is the first component of the two dimensional Wiener process w,, does not
converge to 0 in probability as p | 0. Details of the proof can be found in Freidlin
and Hu [5].

As another regularization method, we may approximate the Wiener process
w; with the é-correlated smooth process w? as defined in Definition 1.2.4 of section
1.3. We substitute w? for w; in equations (2.1.2) and (2.1.3) and let the solutions
of the new equations be ¢; ? and @°. The strength of this approximation is that it
makes ¢, * differentiable as many times as we want in ¢ depending on the regularity
conditions on b and o. For instance, if b and o are differentiable, g, ° i twice

differentiable in ¢. It allows us to solve the problem for each realization using the
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usual techniques of differential equations and analysis; however, a new difficulty
arises from the fact that we cannot use the properties of martingales, especially the
Burkholder-Davis-Gundy inequality. We resolve this difficulty by finding a bound
of each realization as a function of the Wiener process w, and showing that the
expectation of this expression is bounded. In the following Sections 2.2 and 2.3,
we will state and prove that as p | 0 and 6 | 0 in the way that ues% 4 0 for each
constant C' > 0 , the solution ¢} % of approximated second order equation (2.2.1)

converges to the solution §; of first order SDE (2.2.4) in the sense that

A

lim  E max |¢"° — G| =0
¢ T o<t<T

140,610,ue 6% 10

for all £k > 1. In Section 2.4, we consider an application of this approximation, a

homogenization problem.

2.2  Main Result

Recall the definition of w? in Definition 1.2.4. We rewrite (2.1.2) and (2.1.3)

with w? in place of w;:

pdl’ = b(g) + A(g) g + o(gf’) i
(2.2.1)

) R
a’ =q €R* ¢’ =po € R?

and

g = —A(a))b(a?) — AN ap)o(g))wy
(2.2.2)

q@ = qo € R2.

Note that (2.2.1) can be rewritten as the system of first order differential
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equations:
(

.lu‘76 — ﬂv‘s
4G =Dt

nif® = b(gl) + Alg*®) pi® + o (g*®) i (2.2.3)

| &' =w R g =p R

Now, we consider the case that p J 0 from (2.2.1):
Theorem 2.2.1. Under Hypothesis 2, there exists a constant C' > 0 depending on
qo, Po, o, |Oé|oo, |va|oo7 |b’007 |‘Db|oo7 |O-’007 and |D0-|OO such that for any 0< M S 17

0<6<1,andk>1,

C
we Sk 3\, k
Eorg%le(Jt 6" < exp <52<1+T> >M '

In particular, for any fived 0 < 9§ <1,

: 5
lim E max |¢° — ¢’|* = 0.
w0 0<t<T

We postpone the proof of Theorem 2.2.1 to the next section. Now, we tend o

to 0 from ¢’. By [8, Theorem 7.2 Chapter VI], we have the following result.

Theorem 2.2.2. Under Hypothesis 2,

limE max |¢0 — ¢|*> =0

510 0<t<T ’

where §; is the solution of the first order stochastic differential equation

G = = A7 (G0)b(dr) — (A7(Gr)o(dr)) o
(2.2.4)
do = qo € R*.
We state the combination of the above two theorems in the following corollary.

Corollary 2.2.3. Under Hypothesis 2, q, 2 converges to G, in probability in C([0,T]; R?)

as (4 0 and § | 0 so that ,uezs% 4 0 for each constant C' > 0.
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2.3  Proof of Theorem 2.2.1

For the proof of Theorem 2.2.1, it is necessary to find some auxiliary bounds.
In the following three lemmas, we find these bounds. First of all, in Lemma 2.3.1,
we find a uniform bound of

14,0
Joax [p”|

in C([0, T); R?) independent of u.
Lemma 2.3.1. Under Hypothesis 2, there exists a constant C > 0 depending on py,

ap, |oo,s [bloos |Dblsos |0loe, and |Do|s such that for any 0 < § <1,

sup {max \pf"s]] < exp (%(1+T)(1+XT)) P—a.s.,
where

Xr:= max |w. (2.3.1)

0<t<T-+1
Proof. Suppose 0 <t <T. From equation (2.2.3),
1 1 1
11,0 RN 5 Sy -
P = Al )P = b + o) uf.

Multiplying both sides by

we get



Define 4" as
t
1= [ atas as
0
Considering the definition of A(¢/°) in (2.1.1), we have
¢ t
| Aty s = [ ey ds a = e a,
0 0
So, we may rewrite the above equation as
/
BIM(S 1 /8“76
exp | —2—Ag | P ) == exp | —F—4y | b(g™)
7 7 7
1 {0 _
e (<2 a0) (g af
pu pu

Integrating both sides with respect to t, we get

/1‘76 1 H’é t /L,(S
Pf’é = exp ﬁt—Ao Do + — exp 6t—Ao / exp <—BS Ao) b(qg’é) ds
pu pu pu 0 fu
1 /1‘76 t u,d
+ — exp Bt—Ao / exp (—65—140) o(¢™?) dw’
p pu 0 pu

= L(t) + L(t) + I (t). (2.3.2)

By the definition of Ay in (2.1.1), we can calculate the matrix exponentials

o6 H,8

1,0 cos (t—) Fsin (’T)
exp [ £5—A4 | = g . (2.3.3)
12 . w8 w8
=+ sin (f—> coS (t—)
1 1

Since (2.3.3) is an orthogonal matrix, for any v € R?,
14,0

exp jzﬁt—Ao v
L

[1(8)] < lpol-

= ], (2.3.4)

so that
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As Ap and Ay commute, we have

L(t) = exp (%A()) /0 t (—O‘(Cf’é)Ao exp (—55’6,40» (—a((lzﬁ)Aglb(qg"s)) ds

t

& (‘BT(;‘Q (_aéé“)AO_lb(qg ’5))}0

Va(ghd) - pt® 1
(—(q l)Qp Ag'b(gl) — AolDb(qé"‘s)p’S’é) dS)

(gl T a(gd?)
exp M L At exp B, b)) + —— A=1b(go)
— ex L S X _ -
[ 0 O{(q#ﬁ) 0 [ 0 t a(qo) 0 0
B

TN AN 1
(Va(qs )5 Ps Aalb(qgﬁ) - AalDb(qéL,é)pgﬁ) dS)

afgs™)? o)
1 1 Buﬁ
=— Ab(g) + A-lexp | A4, | b
Oé(q,f"a) o b(at™°) (%) 0 P( i o | b(q)
t ,u,&_ 1,8
_/ eXp t /Bs AO
0 ¥
VO((QM) p,“s —1 5 1 ) 5>
5 5 AT b(g" A" Db(g")p° | ds 2.3.5
( Oé(q.é“;)Z 0 (qs ) Oé( 55) 0 (qs )ps ( )

Considering Hypothesis 2,

Ab(g) | +

1 B
on ! exXp <7A0> b(qo)

M?é _ ,LL,(;
exp (AAO>

L) < ‘

o
ofq””)

t
/
0

I

ds

TN AR 1
(TR AT — 7 Db
a(gs)? a(gs”)

bloo IV o oo [B] oo Db|so
| | +/ | |2’ | ‘pgﬁ’_'_' | |pg’5\ds
(7)) 0 OZO (%))

= o

t
<Ci+ 02/ p9|ds.
0
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The same method can be used for I3(t) and we get

1,0 t w,0
I3(t) = - exXp (ﬁt—z%) / exp (—ﬁS—A(J) o (gl )yirids
M M 0 K

1 1 PN 1 1 B 5
= — Ao (g Vil + —— A exp | B=—Ay | o(qo)w
Ol(qf’d) 0 (Qt ) t a(qo) 0 p 1l 0 (qo) 0

t o pud 14,0 14,0
_/ exp t 55 AO (Voz(qs ) b Aala(qs ) ;5
0 1% a(gh?)?

1 1 _ .
—WA Do (ql°)pl i — N A010(qg,a)wg) ds.

To find a bound of I3(t), we need bounds of w? and %?. In view of Defini-

tion 1.2.4, we note that (w?)™ the nth derivative of w? with respect to t, satisfies

(wh)™ = ﬁ#/ommw (Sgt) as= ) /Olw(t+57‘)p(”)(r)dr.

Hence, for any 0 <t < T,

D0 < 50 [+ 851 6l

L Cn.p)
< — ™) ()| ds =
max I/I g odnax |w(t)],

where C'(n, p) is a constant depending on n and p.

Letting
Xr:= max |w],
0<t<T+1
we have
C(n, p)
1 (n) < ?
orgtag}gf’uwt) = o Xr.

In particular, we can find a constant C' > 0 such that

C
<
Joax ! | 5 —Xr (2.3.6)
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and

max || < XT
0<t<T

Now, we are ready to find a bound of I3(¢).

and (2.3.6) to (2.3.5), we get

Agto(gl )il | +

) <)

1
,0
alaf”)
t
)
0
1

———— A" Do (¢!)phou] +

a(q

a(gt”) a(q

1 A—le ﬁtH’éA ( ) )
—_— X —_— g w
a(q) 0 TP\ T )

WS s VCY 10,0
exp <—t Mﬂs Ao) <—< #2;)21) Ayto(gh)iy

Applying Hypothesis 2, (2.3.4)

ds

1u5)f4 ()i ?)

< Clowlrls) ., Clowl)

C Dol t C
+ (Oé07|5 O-’ )XT/ |pg’6‘d8+ (OCO
0

Xr+

C C t
< S +0x+ S [ jpdlas
0

t
(Oéo, |vf;|007 |O-’00>XT/ |pg,5‘d8
0

2 [0]oo )t

52 Xr

Applying the bounds of I1(t), I5(t), and I3(t) to (2.3.2), we get a bound of

1,0,
by -

1 < ()] + Ta(6)] + [L(0)]

t Cs
S \po\ + 01 +02/ ]pg’6|d8—|— —(1 +t XT + XT/ ]p |d8
0

02
Cs
02

By Gronwall’s lemma,

Cs
) < 30+ DL+ Xy

Cs C
Sexp(52(1—|—T)(1—l—XT)+—6

<o (S0 10+ 20

25

< 22(14+T)(1 4 Xp) + = (14 X7p) /|p“5|d3

%(1 + XT)t)

5 (1+ XT)t)



for sufficiently large C' > 0.

So, we have

max [pi*’| < exp (%(1 +T)(1+ XT)) .

0<t<T

[]

Remark 1. Note that by Lemma 2.5.1, ¢’ 9 s Lipschitz continuous with its Lipschitz

constant independent of u on the interval [0,T]. That is, for 0 <t; <ty <T,

g — | < C(T,6, Xp)ta —ta] P —as.

Next, we find a bound of the integral of a highly oscillating function. The
result is similar to that of the Riemann-Lebesgue lemma. This result guarantees

that ¢}’ % converges to ¢ in C([0, T]; R?) for each realization.

Lemma 2.3.2. Let f : R? — R be a bounded Lipschitz continuous function with the
Lipschitz constant Ky. Under Hypothesis 2, there exists a constant C' > 0 depending
on K¢, |floos Do, 0, |0]oo, [V, |blocs |Dbloo,s |0]oo, and |Do|s such that for any

nw>0and0<d<1,

/Ot cos (%5) f(g™)ds| + /Ot sin (%6) f(@™)ds| < C(t,6, X)) (2.3.7)
and
/t cos (Bié) F(g")idds| + /t sin <5i6) f(g™)ilds| < C(t,8, X)) (2.3.8)
0 K 0 H

P — a.s., where

C(t, 0, X:) = exp (%(1 +1)(1+ Xt)) :
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Proof. Since a(g?) is strictly positive,

t
1= [ ataryis
0

is strictly increasing, so that

s
u= =
1
provides a good change of variables.
Then, as
0,0
= &) g (2.3.9)
1
we have
' B0 £ F(@)
cos [ 22— ) f(g™)ds = u cos(u) W 1y,
s 0,0
0 2 0 Oé(qs(u))
If we define
flde
g (u) = ( (5)>, (2.3.10)
a(Qf(u))
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we get

VAN

2m(k+1)
/27rk

om(k+1)
/27rk

6
Bi

s / " cos(u) ¢ (u)du

gi®

©w

|

cos(u) g"° (u)du + ,u/

w6
o | 21

2T

J cos(u) g™ (u)du

cos(u) ((¢"°(u) — ¢"°(2mk)) + g"°(27k)) du

cos(u) (g"°(u) — g"°(27k)) du

(2.3.11)
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We first find a bound of |[;(t)].

|90 (u) — " (2mk)| =

1

o #’5 1,0 11,6
e qs U o qS T — q - o qs u
a(qg‘(’j))a(qg(gm)) ‘f( ( )) ( (2 k)) f( s(2 k)) ( ( ))
1 P r 5 ;
< oz(% f(qg(u))a(q{:(QWk)) - f(qf(awk))a(q;‘(u))‘

1 P 5

)

,0
q{:(u) s(27rk ‘ + |a’00Kf

) )

IA

R
s(u) qg(m) D

_g(

<Oy

s R
q“(u) — qg(%k) ) (2.3.12)

From Lemma 2.3.1 and Remark 1, we have

d ua 5 ds(u) Ws M H
su ps,u = |Ps(u O(t757Xt)_
for 0 < s(u) < t, where
C

So, from (2.3.12),

19" (1) — g"° (2k)| < CLO(t, 6, Xy)ulu — 27k|.
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This implies

gyl
27w

om(k+1) 5 S
L) < x §j / cos(u)lg"(u) - o (2mh) du

,0
T
2 (k+1)

<u Z / CoC(t, 0, Xy)u(u — 27k)du

k=0 2rk
w0
]
_y CoC(t, 8, X, 2
k=0

1,0
_ 26 2 | Pt
= CyC(t, 0, Xy)pu“2m {QWMJ )

Since

10 < afat,

we get

|I,(t)] < CoC(t, 6, Xi) | o] oot

= C3C(t, 8, X )tp. (2.3.14)

A bound of |I5(t)| can be found relatively easily. From (2.3.11),

)
s s(u
OIS [ [ [ du
2{J )
S /,(// " s |f|OOd
2WVQ; J 0
[flee _
< u2r = Cypt. (2.3.15)
Qo
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Applying the bounds of I1(¢) and I5(t) to (2.3.11),

[/ () s
0 2

S CgC(t, (5, Xt)t,u + C4,U

< C5(1+t)exp (%

5 (1+1)(1 +Xt)> I

< exp (%(1 +6)(1+ Xt)> i

This proves inequality (2.3.7) for the cosine part. The sine part can be treated

analogously. Now consider inequality (2.3.8). As in (2.3.11),

p°
27w
27 (k+1)

< |n Z / cos(u) (g1 () — gt (2mh)) du

B{L,é
+ u/ oo | 91 (w)du

L

=: [Li()] + [12(2)], (2.3.16)

where

Fld,

g0 (u) = ( #(,5))71)?(1‘)-
oz(qs(u))

By a similar argument as in (2.3.12), we obtain

6 §
f(q;‘(u)) ,5( - flq f(gwk))w(;@ o
0 s(u B s(2m
a(qf:(u)) a(q#(%rk))

(rfroo —

0<s<t

gt (u) — gi* (2mh)| =

| /\

,0
qs u) qg(Qﬂ'k) ‘

) )
qg(u) - qg(zwk) ‘

.5
+ ferloo max, {1

£ Lol floo max {Ji2]} Js(u) - s(%k)\) |

0<s<t
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Considering inequalities in (2.3.6) and Remark 1,

C
a0 = | + 2 Xels(u) — s(2mk)

C
5 o 8
977" (u) — g (27#{?)‘ < =X serh)| T 52

J

< %XtC'(t, 6, Xy)|s(u) — s(2mk)| + %Xt\s(u) — s(27k)|

< O, 6, X)X s(u) — s(27k)).

The last inequality was from the fact that % or % can be absorbed in the term
C(t, 0, X;) by possibly changing the constant inside C(t, d, X;).

Note that from (2.3.9),

Therefore,
gt (u) — 9?’6(27%)‘ < CuoC(t, 0, Xo) Xop|u — 2mk].
By the same procedures as in (2.3.14) and (2.3.15),
| (t)] < %C’(t,é, X)Xt

and

C
a(t)] < =2 Xop.

Now from (2.3.16), we get

02 0

t 0,0
/ cos 557 f(qg"‘s)wgds‘ < @C(t, 8, X)Xty + @Xtﬂ
0
S Cl3c(t7 57 Xt>Xt,u

< exp <%(1 1)1+ Xt)) N
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In the next lemma, we show that the expectation of the exponential of the
uniform norm of the two dimensional Wiener process in C([0, ¢+1]; R?) is finite. This
property guarantees that the approach of analyzing the problem for each realization

is working.
Lemma 2.3.3. For a € RT,

E (e(HX‘)“) <16exp ((t+1)a*+a),

where
Xy = max |wl.
0<s<i+1
Proof. Since wy, = (w!,w?), where w! and w? are independent one dimensional

Wiener processes, defining

X;; = max |w]
0<s<t+1

for 1 = 1,2, we have

Xy < X+ Xoy.

By independence of X;,; and X,

E (6(1+Xt)a) < ¢°F (e(Xl,t+X2,t)a) < R (eXlata)z . (2.3.17)

To find the bound of E (eXU“), we may use the symmetry of the Wiener

process and the reflection principle. For = > 0,

1 _ 1 . 1 .
P(max w,| > 2) = P({ max {w,} > v} U{ min {w,} < —z})

1 . 1 o
< P(max {w,} > &) + P(min {w,} < —7)

. 1
= 2P(0ré13§)%{ws} > ).
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By the reflection principle,

00 1 2
1 1 - 42
P(orgg}%“|w3| > 1) <4P(wp > x) = 4/:0 s °T dy.
So, for T =1t +1,
o) 1 2
P(Xy;>2) < 4/ Ty,

Using this inequality,

[e.9]

I~ 1
E<€X1,ta) _ / P(eXl’t“ > .Z’)dl’ — /Ov P(Xl,t > g lnﬂj')dl'

y2
e 2 dy dx

0
<4 N
0 %ln:v \/ 27T<t -+ 1)

t+1
§4exp( —g az).

Applying these bounds to (2.3.17),

E (eM¥)e) < e*16exp ((t + 1)a?)

=16exp ((t+1)a” +a) .

Remark 2. Note that the boundedness of

EetXt

15 a simple consequence of the Fernique’s theorem. We did calculations in Lemma 2.3.3

for the necessity of finding the relationship of the bound with a.

Finally, we are ready to prove the main theorem, Theorem 2.2.1.
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Proof of Theorem 2.2.1. Consider 0 < ¢t < T'. First, we find representations of ¢’ 0

and ¢°. Integrating equations (2.3.2) and (2.2.2),

5 ! B0
¢ =q+ / exp <S—A0> pods
0 H

1 t /.1,,5 s ,u,,é

+ - / exp (ﬂs AO) / exp <—6T—A0) b(g™?) dr ds
- Jo H 0 H
1 t 14,0 s 14,0

+ - / exp (ﬁs AO) / exp (—ﬁr Ao) o(g"?) du? ds
K Jo H 0 H

and

t t
@ = q —/ A7 (@) b(q)) ds—/ AT ) o(ql) dw?
0 0

t t
I s Lo sy s
=qy — Ay b(qe ds—/—A o(q;) dws.
’ /o o b1ds) o a(q) 0 old,)

a(q?) .

Subtracting q from qt ,

0
q’ —q = eXp <—A0> pods

t 1,0 s 0,0
o) [oe( e

| |
- Ayt b(g° ds—/ —— A b(g ds)
(/0 a0 M A = Sy M)

| _ | _
- (/0 a(qu75)A010(qg7é) dwg - /0 a(q(g)Aolg(qg) dwg)

=t L1(t) + I(t) + Is(t) + Ls(t) + Is(t). (2.3.18)

To get a bound of ¢/*° — ¢f, we will find bounds of the terms from I;(¢) to
I5(t). First, consider I(t).
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From (2.3.3), expressing py = , we have

d b Bé“s ds p?
L |[ oo~ fsinasat
fo si —|—f0 )dspo
t /B,u& t ' 65’6
< |po </0 cos(—— . )ds| + /Osm( . )ds>

< oo ( S0+ X0 )

— exp (%(1 FO)(1+ Xt)) i

In the last inequality, we used Lemma 2.3.2.

Now, let’s consider I5(t). Note that the commutativity of Ag and Ay' justifies

the commutativity of matrix exponentials. Applying integration by parts,

1 [t 6 s 0
— / exp (53 A0> / exp (—5T AO) b(g"?) dr ds
K Jo H 0 H

t w,0 10,0 1 s 1,0
= / (4! )AO exp (63 AO) 5 A_l/ exp (_57“_A0) b(g"?) dr ds
o M H a(gs?) 0 H

o () g [ oo (4]

| 576 > ((\{ ) ' 5 ( ﬁ75 ) '
J— A _— A _— ?
/Oep< p 0 (qs’) 0 /0 exp P Ao ) b(gt°) drds
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This yields

X t 4
1 s
exp ﬁt—Ao —5A51/ exp (—ﬁ—A ) b(g"?) ds
K alg;”) 0 p
t 0,0 1,0 s 14,0
— [ exp BS_AO MA exp B Ao ) b(g"°) dr ds
1,6\2 T
0 H a(gs”)? 0 0
g [ 54
exp| — Ay | ———A exp (| ——— Ao | b(¢t°) ds
(”O&(Qf’é)oo p o) e
t w,0 1,0 1,0 s ,0
/ exp (BS—AO) W(QS%A(Q/ exp (—BT—AO) b(g"?) dr ds| .
0 H (QS ) 0 2
Considering (2.3.4) and Hypothesis 2,
t 1,6
eXp ( b A ) b(g"?) ds
w

1,6
/’v O | /eXp (_BT_AO) b(gi®) dr
0

Applying Lemma 2.3.2,

[I2(8)] =

+

L(1)] < i

ds.

o
10 < Caoxp (14004 X))
+C’5/ |pt |exp< (1+s)(1 +Xs)>/1/d5
Cs Ce Lo
< exp T(l—irt)(l—l—Xt) [+ exp 7(1+t)(1—|—Xt) w | |pt°ds.
0
Note that by Lemma 2.3.1,

t s C

0
Cs

and so,

[ I>(t)| < exp (%(1 +1)(1+ Xt)) L.
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We can apply a similar procedure as in getting the bound for I5(¢) in the case

of I3(t) and get the bound

|I5(t)] < exp <%(1 +6)(1+ Xt)) 1

Now, we find a bound of I,(t). From the expression of I4(t) in (2.3.18),

o= [ 4 () - il ) o
/OAO_ (b(%“s) a(gl) — b(ai)@(aé"6)>d8’

algfald:")
<[

bt o(af) ~ baolat)
< - [ et )alad) — bat)alel)| + 16aa(ad) — HaDalat s

ds

a(gd)a(ds”)

| /\

o [ alelbat) = e+ blclalah) - alet )

I/\

€z / (ool Dbl — @] + Ploo|Valuelg? — ¢%)ds

By a similar method, a bound for I5(¢) can also be found. We have
C
0 < 22, [ g2 — s

Combining these results and applying the bounds of I;(t) to I5(t) to (2.3.18),

we obtain
g:"" — q;| < exp g(1+t)(1+Xt) {4+ exp g(1+t)(1+Xt) 10

C t
+ exp <§(1 +6)(1+ Xt)) i+ C’/ |q§"‘5 — qglds
0

t
_Xt/ g™ — ¢0|ds
0

C C t
< exp (E(l +1)(1+ Xt)) p+ g(l + Xt)/ g2 — gl|ds.
0
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Then, from the Gronwall’s lemma, we can conclude

C C
g — | < exp (3(1 +6)(1+ Xt)) [1€xp (5(1 + Xt)t>

< exp (%(1 L)1+ Xt)> n

This gives
max |/ — ¢;| < exp £<1 +T)1+ X7) |
o<t<T ' th= ) ’
so that
max |¢/° — ¢*|F < exp g(1 +T)(1+ X7) ) p*
o<t<T 't th = ) '

By taking expectation and applying Lemma 2.3.3,

C
po _ Sk < k
Eoréltzgc g q,| E {exp (5(1+T)(1+XT))] !

< 16 exp ((1 +T) (%(1 +T)> + %(1 +T)> T

< exp (5—2(1 + T)‘5> k.

2.4 Homogenization

In this section, we consider the case of a fast oscillating periodic magnetic

field. Consider the solution ¢/ of

.o11,0,€ ,0,€ p:,€ - 11,0,€ .
P = b(gl) + o (L) Mg 4 i

167 J 757
QSezq06R2a QSLEZPOERza
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where o : R? — R is a 1-periodic function and € > 0 is a constant. By periodicity
of a, we can consider the domain of o as T? = R?/Z?, the two dimensional unit
torus. In this case, a unique weak limit of the process ¢; € as wd 0,640, and
€ | 0 in order exists and we find this limit by applying homogenization results
in the literature [2-5,11,12] to our system. Note that we solve for o(q) = I for
computational convenience. In general, if o(q)o(q)* is positive definite for all ¢ € R?,
we can find a weak limit. For the proof of homogenization results, we need more

restrictive assumptions than Hypothesis 2.
Hypothesis 3.

1. b:R? — R? is twice continuously differentiable and bounded with its deriva-

tives.

2. a: R? = R is twice continuously differentiable and bounded with its deriva-
tives. Moreover,

inf =ap > 0.
Inf, a(q) = ag

Proposition 2.4.1. Under Hypothesis 3, q; 0¢ converges to §; weakly as i 0,6 ] 0,
and € | 0 wn order, where ¢; solves

ét = 6(@) + 0wy

do = qo € R2.
Here,
bg) = (W [ =Dty Ao> b(a)
and
v 1 B B *
o = ot oty (¢ PX@) (= D) dg



with x(q) = (x'(¢), x*(q)) solving

, 1 Oa
Lx'(q) = — ,
X'(@) = —55 Orr (9),
where L is the operator
11 1Va(q)
L=— A, — = - V,.
2a2g) " " 2 aig)

Proof. By Corollary 2.2.3, as p | 0 first and 0 | 0, ¢/ e ¢ in probability in

C([0,T]; R?), where ¢¢ solves

1i = — iy Ao b)) — iy
==y M) - 2.41)

QSZQO € R2.

Considering

where

and

’U~)t = Agwt.

Note that 1w, is also a Wiener process in R2.
Under Hypothesis 3, we can apply [12, Theorem 6.1, Chapter 3] to §;.
The normalized solution m(q) of the adjoint equation L*m(q) = 0 can be found as

1
m(q) = ma@
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as in [5] and the statement of the proposition follows.
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Chapter 3: A Generalization of the Smoluchowski-Kramers Approx-
imation in the Case of Linear Differential Operators with

Constant Coefficients

3.1 Introduction

In this chapter, we consider another generalization of the results in Chap-
ter 1. We may consider a Smoluchowski-Kramers type approximation for general
differential operators. Then we can reduce the problem to a simpler one.

Consider the equation

pAg 4+ Bq;' = b(q)) + o(q; )y

with A and B differential operators. Our ultimate goal is to find conditions on A

and B such that the solution ¢}’ of the equation converges to the solution ¢; of

Bg = b(Qt) + a(Qt)wt

as i | 0. In this chapter, we show that in the case of A and B linear differen-
tial operators with constant coefficients, the Smoluchowski-Kramers approximation

works.
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3.2 Main Result

We consider the case A = Y"1 a; d; and B =) ", Ly, 4o

i 977, where n > 2 and

a;’s and b;’s are real numbers such that a, and b,,_; are nonzero and of the same
sign.

Let ¢/ and ¢; be the solutions of the following equations respectively :

NZZ Oazdtt Qt + zn ' bldtz Qt = b(Q#) + O-(Q;fu)wt (3 9 1)

qN(Z) q()GRd OSZSn—l
and

Z:L 01 b7f dtt qt b(Qt) + U(Qt)wz

gV eRY,  0<i<n-—2,

(3.2.2)

where g > 0, ¢* : R — R% b : R — R4 o : R? — My(R), and w; is a

d-dimensional Wiener process. Then, the following theorem holds.

Theorem 3.2.1. Suppose b: R — R? and o : R? — My(R) are Lipschitz continu-

ous and 0 < u < 1. Then,

n—2
li E () _ (@)
i 3 E (o |~

=0

) -o

for k> 1.

3.3 Proof of Theorem 3.2.1

We show the identity for £ > 2. Then, it is a trivial consequence that it holds

for £ > 1. Note that we may assume that a, = 1 and b, ; = 1 without loss of
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generality: we may divide (3.2.1) by b, and redefine ' = p3%—, V/(q) = bbﬁ)lv and
7(q) = 72

Let ¢/ and ¢ be the nth derivatives of ¢}’ and ¢; in time and ¢;"~" and ¢; "
be the nth integrals of ¢} and ¢; in time. Then, we may rewrite (3.2.1) and (3.2.2)

as the systems of n first order differential equations and n — 1 first order differential

equations :
(
gt = gt
Q" =gt
gt =gt
1 n—2 ' 1 n—2 4 1 1
gt + <— - anl) ¢ == aigl = = b 4 —b(g) + —o (")
( H i=0 L H H
(3.3.1)
and
(
@ =q
Qtl = G
(3.3.2)
G =g
n—2
G = =) big + b(q) + o (g )i
( i=0
Define pu; as
1 1
— = =+ ap
M1
Then, since
lim 2 — 1
[Ty
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without loss of generality, we may assume that p; > 0 and

m < Cp

for some C' > 0.
By the definition of 1, we also note that there exists a constant C' > 0 such
that

g — pl < Cp? (3.3.3)
for small p.

Multiplying the last equation of (3.3.1) by e*Ttl,

; 1 &
(em ¢ Zaleﬂtl @ — Zb et @+ —em #b(g"0) + ~e o (g )by
w

Integrating with respect to t and multiplying by e_ﬁ,

n—2 t
t _t s ;
¢l =e Mlq" T g a;e M/ eﬂlqwds—— E bie” #1/ ergtds
i=0

=0 0

1 _t t S 0 1 -t ¢ = 0
+ e m/ erb(gh)ds + —e “1/ e o(gd”)dws.
1% 0 H 0

Integrating with respect to t one more time,
t S
@ 2—Q32+/6_“1d5q ZaZ/e Hl/ et gidr ds

——Zb/e H1/ eﬂlq’“drds+ /e m/ eﬂlb 20V dr ds

/e “1/ 6“10' (") dw,ds. (3.3.4)

Integrating the last equation of (3.3.2),

n—2 t t t
Q=g — Z bz-/ q.ds + / b(q°)ds +/ o (q?)dws,. (3.3.5)
— /o 0 0
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Subtracting (3.3.5) from (3.3.4), we get
t S
¢t g = / e mdsqy
0
n—2 t s
—Zai/ 6“1/ er1gtttdrds
=0 0 0
1 n—2 t . s . n—2 t
(A [ [Cemgaras =3 n [ das
K= Jo 0 o 0

1 t s s o ¢
+ (—/ e m/ er b(qﬁ’o)drds—/ b(qg)ds)
K Jo 0 0

I Y L :
: / e i / e o () dw,ds — / a(qS)dws)
0 0

K Jo

_|_

=L+ +1}+ I+ 1. (3.3.6)

A bound for I} can easily be found:

s k
11k -\ n-1
max |/|" = max <1 —e “1> ‘
0§s§t|8| 0<s<t 251 9o
k —1|k
< }qg ‘
< Cp.

Considering 2, by integration by parts,
t S S T .
/ e " / ergtdrds
0 0
t ¢ s . ¢ .
—pae / erqytds + ,Ul/ qs"ds
0 0
t t—s .
/ <1 —e M ) qt'ds
0
n—2 t
<y [ fari|as
i=0 70

n—2
7
< Gty | max [g2].
=0 = =

n—2
7<)
=0
n—2
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So,

E(gE?éH? )<C’tk kZE(gggict| | )

A bound of I? can also be found after applying integration by parts:

n—2
bl( /6 #1/ 6#1q’“d7“d8—/ quS)
0

1=

n—2 t s . Iu ¢ . ¢ .
= (——e “1/ emqs"’lds—l——l/ qs’“ds—/ qzds)
0 K Jo 0

Z (——e I / eﬁq’;’ids—l— B ,u/ qg"zds—I—/ QL — q;ds)
0 K 0 0

=0
n—

<C’5Z/ ’ul ’q%‘ds—i—CwZ/ {qs”ds—l—C%Z/ ‘qs’ qs}ds.

=0

17| =

The last inequality follows from (3.3.3).

So,

k
(i) <o (f o) = (sl
n—2
+ CﬁtukZ]E (&12%‘ st }k)
+CGtZ/O E <Or£13§9|q q,ﬁ‘ )ds
n—2
<Oty E (ggagt }qé""lk)
=0 -

t
+C’7Z/E(Orga<xs‘q —qf;|k) ds.
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Considering I},

\]4\—‘ /e “1/ eﬂlb “0 Ydr ds — /b(qg)ds

t t
:‘__e [ (s + / b(q"0)ds + / b(a") — b(g")ds
2 0 0

1% 0
t s t
| e T otazyas / b(q0)ds
0 0

t t—s t 3
< Cg/ e m [b(gh?)|ds + Cgu/ |b(q4%)| ds + Cs/ |b(q%) — b(q))| ds
0 0

S Cg + Cg,u + Cg

/0 () — b(¢?)ds

gcg/ e (1+\q50|)ds+09u/ 1+ |gi] ds
-I—C/‘q — q?| ds.

This leads to

E <max |I2)* ) < Cyoptf 4+ Crop™E (max |q |k)

0<s<t <s<t

t
0|k
+CIO/O E<Orgg<xs|q — | )ds

The bound for I} can also be found similarly.

t
|]5|—‘ /e “1/ it o qﬁo)dwrds—/ o(q?)dw,
0

H1 -t = 0 M1 — [ ! 0 ! 0 0
= |—1=¢ M ero(gh”)dws + / o(gt”)dws +/ a(¢t”) — o(q5)dws
1% 0 0

2 0
t t—s ¢
< Cll / 6_710(q570)dw3 + Clllu/ / O'(qgho)dws
0 0
t
+Cu| [ ol - olad)aw,.
0

Using the Burkholder-Davis-Gundy inequality in addition to the above tech-
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nique,

| e oo,
0

0<s<t 0<s<t

k
E (max |15 ) < C2E (max )
s k
| otaryio, )
0

| ota) - ata)a,
0

<s<t

-+ Cuu E (max

k
-+ ClgE <max )
0<s<t
t —s 2 2 t 2 2
< C;3E (/ e o(gt O)‘ dS) + Cy3uFE (/ ‘U(qg’o)‘ dS)
0
+ C3E </ |0 g(qg)f ds) >
(=1 ) ([ uentas)
0
+C14ME</ ()] dS)
+ CE (/ |0’(q570) - U(qg)}k dS)
0
t t
< O 2K (/ 1+ |q5’0|kds> + O3 E (/ 1+ \qé"o\kds)
0 0
t
+CE (/ |qu’0 - qg‘kds>
0

< C’lg,u 2L ,uk ® (max }q ‘k>

0<s<t
¢ k
+C’16/ E (max 0 )ds.
0 0<r<s

¢’ —q,
Applying these bounds to (3.3.6), we get
n—2
(gl ) < ot (1 #3 (gu r ))
e -
+Cl7;/0 E <Or£13<xs |q — q,?} ) ds.  (3.3.7)

Our next goal will be finding a bound of

n—2
k
E max|q
0 0<s<t

7

_t—s
(& M1

< CpE

20



independent of .

For 0 <7 <n — 3, we can easily see that

o k

t
7 b + / gt ds
0

t
0

t
< Ci+ C'19/ |qg’i+1’kd3-
0

k
< Cig }qé}k + Cis

So,

t
E (max {qé”’k> < Cio + 019/ E (max ’qﬁ’”l‘k) ds. (3.3.8)
0

0<s<t 0<r<s
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For i =n — 2, from (3.3.4),
t S 2 t S S T .
{qf’n_Q} < }qg_Q‘ + Oy / e nids qg_l / em/ er1gttdrds
0 — 1o 0
g T AP
—i—CzoZ —/ eM/ ergttdrds| + ‘—/ eﬂl/ erb(g0)dr ds
i—o | HJo 0 - Jo 0

1 t _ s S or
+ ‘—/ e “1/ e o (g0 dw,ds
H Jo 0

n—

+

n=2 t t s . t .
< Oy + Co1p+ Cy Z —pne m [ ermgttds + / . ds
i=0 0 0

+ 0212 ——6_“1/ e gitds + —/ q'ds

i—0 H 0 HJo

t t

b=t [ ctagyas + 2 [ aaoyas

1% 0 K Jo

M1 -t ! - 1,0 251 ! 1,0
+|——e m [ emo(¢d)dws +— [ o(¢”)dws
H 0 K- Jo

n2 ¢ t—s .
<Oy + CQ1LL + OQQ,UZ (/ (67W + 1) ’qgﬂ‘ dS)
= 0
n_2 t t075
e i
+CQQZ(/O (6 —i—l)’qs ‘dS)
t
C Kz 0
+ Ca (/0 (6 + 1) |b(q" )]ds)
¢
C i 10) duy,
+ Ca ( /0 <6 + 1) o(gt”)dw
i=0
¢
C i 0
+ Ca2 </0 (6 +1> |b(q" )‘ds)

n—2
¢ t—s
+ Oy ( / <67W + 1) o (q"0)dw, > :
0

=0
¢ t—s .
< Cyz+Cag y (/ (e_ ot 1) |g| ds)
0
Thanks to Burkholder-Davis-Gundy inequality and the Lipschitz continuity of
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b and o,

n—2 t
E (&1?%% ‘qg,n2|k) < Cy+ Cyy Z(; </0 Orgﬁ?ugxs |qu’z|k ds>
i=

t

t
+ Cay 0 Olfg?é}b(fﬂ’o)‘kd5+024/o |0(¢%)|" ds

n—2 t
< 024 + 024 Z (/ Orgaz( |qﬁ,l|kd3>
im0 \J0 =T

! t
+O25/0 1+£§§9’qﬁ’o|kd3+025/0 14 \qé"olkds

n—2

¢
< O + Oy g (/ nax |qu’i|kds) ) (3.3.9)
o 0<r<s

1=0

Using the results of equations (3.3.8) and (3.3.9),

n—2 t n—2
k i
Y7 (mlet) o [0 (o) o

By Gronwall’s lemma,

V]

n—

E (max |Q§”|k) < Cyre®™ < Og.

0<s<t

Il
o

7

Applying this bound to (3.3.7),

n—2 t
n—2 n—2|k k—2 i ik
E(ggggt!qﬁ — ¢ ) < Chopt +02920/0 E (Orggé\ﬁ —q| )dS-
(3.3.10)

Note that for 0 <7 <n — 3,

t
E (maX |qg‘,i — q;|k’) < 030/ K (max ‘qﬁ,i—&—l _ gt k) s
0

0<s<t 0<r<s

as in (3.3.8).

Adding

w

n—

B (g l — )
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to (3.3.10),

n—2 tn—2

i ik k—2 L
ZE(OIQ%\CIQH—QQ\ ) < Caop +031/0 ZOE(%%W_QH )dS-
= 1=

=0

By Gronwall’s lemma, we get

n—2
ZE (max }qu - qi}k> < Coge ' pF =2 < o2,
=0

0<s<t
Especially,
n—2 ' A
lim E(max ‘qt’z—qﬂ ) =0.

0 0<i<T

1=
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Chapter 4: Small Mass Asymptotics in the Case of a Random Mass

4.1 Introduction

Suppose a particle is moving and the particles of the surrounding medium
randomly adhere to or detach from the moving particle after the collision. Then,
the mass of the moving particle will randomly change and it will affect the whole
system. This idea of randomly changing mass was considered by M. Gitterman
for various physical problems recently [6]. In this chapter, we consider small mass
asymptotics for the randomly changing mass problem.

Let ¢} be the solution of the following stochastic differential equation :

pmady = b(pmy, qt') — a(pume) gy + o (g )i
(4.1.1)
@ =q €RY g§ =po € R
Here, pm,; € R* is the mass and ¢/ € R? is the position of the moving particle.

We assume that m; is a continuous time discrete Markov chain taking positive values

such that it is independent of w;. As before,

o(pmy) qr

is the friction term and
b(pmy, q;') + o(q) )i
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is the force field with random noise term. It is reasonable to assume that a and b
are depending on the mass in addition to the position of the moving particle.

Now, suppose that 0 < p < 1 so that pum, is small. Then we may compare the
solution ¢;' of (4.1.1) with the solution ¢, of the following equation, which is (4.1.1)
with = 0.

0=>5(0,q) — a(0)g; + o(q:)uy
(4.1.2)

qo € R,

In Section 4.2, we will rigorously state the conditions and the result of this

approach. In Section 4.3, we will prove the statement in Section 4.2.

4.2 Main Result

We first give conditions for the problem. Let N(7) be the number of jumps

of my in the time interval [0, 7.
Hypothesis 4.

1. There exist constants o, m,, m* such that 0 < o, < a(z) and 0 < m, < my <

m*. « is continuous in a neighborhood of 0.
2. b:RxRY— R? and o : R — My(R) are Lipschitz continuous.
3. The continuous time discrete Markov chain m; is independent of wy.
4. N(T) < oo almost surely.

Now, we are ready to state the main theorem:
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Theorem 4.2.1. Consider 0 < pu < 1. Under Hypothesis 4,

ImE sup |¢ — ¢/ =0
w0 o<t<T

for any 1 < k.

4.3 Proof of Theorem 4.2.1

We first consider the case k > 2. (4.1.1) can be written as

o(qt

1 1 1
..M ./“’L — b M . )
gt + umt&(umt)qt T (pmy, ¢') + e )y

By multiplying by the integrating factor

1 rt a(pms) d

S
en o ms

)

Q(Mms)ds i l ta(ﬂms)d m 1 fa(ﬂms)ds I
(b 50 = L0, gy L g,
,umt Nmt

Integrating in time,
1 ta(#ms)ds' ft a(#’ms)ds ¢ ]_ 1 sa(Mmrd
Gy — e wlo ms qo=—e wlo ", w0 T b (pms, g5 )ds

7

1 t a(pms) s G(Hmr)
+ —emnd T e o (gl )dw,.
K ms

Solving for ¢} and integrating in time,

N O‘(Mmr) r .
quqO+/ W I SR g
0

1 t s a(,umr f’f a(ﬂmu)d
+ — e o “mu Mb(um,., ¢*)drds
K Jo mr
]_ t s alpmr 'r a(pmey
L1 / 5 el g / 5 2 du g () du, s
K Jo mr
=:qo+ (I) (]I) (III (4.3.1)

27



Next, we take integration by parts to (/1) and (/1) to change them into more

desirable form:

t
(II) = / (_la(u—ms)) efifdg a(ﬁirfr)dr
0 o myg

s 51 1 r alpmy) g
. (— o ) — i do T b(um,., g)dr ds
0

a(pms) m;
S t
= {e_;lt osa(/:r:”dr <_—m5 ) Lei )’ (fnuu)dub(ummqﬁ)dr
O‘(NmS) o My 0
s a( my) s s ]_ 1 pr a(pmy)
0<s<t (,ums) 0 1w
t
_/ e :L 0 <:‘an)d (_—ms )ie;ltos (fan)drb(MmS’qg)dg
0 a(pms) ) ms
t
my _ 1 fOt alpms) g 1 Lfs alpmyr) 4.
= — ms —eu 0 " mr Th(ums, gt )ds
) (nms, gf)
s a(pmy) TOé( my) s
LY ekl d/ 78 d“b(ﬂmr,qﬁ)drA( i )
0<s<t mT a(pms)
t 1
—l—/ b(ums, ¢~ )ds
o alpms)
and
my ft a(Hms)d t ]_ lfS Oé(Hmr)d,,,
(I11) 0 ms ento o(gt)dws
Oz(,umt
e oc( my) s 04( may,) s
+ Y el T S du (qﬁ)der< - )
mr a(pm)
0<s<t
¢ 1
—i—/ o(g!)dws.
o a(ums)
So,
| |
- = b(ms, ¢")d Mdw, + RY 4.3.2
Qt qo+/0 a(ﬂms) (/j“ms qs> S+/0 a(MmS>J<QS> w$+ to ( )
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where

t
_1 s a(pmr) .
B = [ g
0

t
— UL 6_}‘ Ot O‘(Z::S)ds iei OS Miﬁ@drb(umsu qg)dS
a(pmy) 0 Ms
+ 3 ek e —eifJ sl du b(ummqr)dm< m )
0<s<t a(ulmS)
B my 1 fg a(ﬁmTS)d / fOS a(fnT:’")dr (qﬁ)dws
a(pumy)© m,©
s a(pmy T D‘( muy) S
b 3 e [T g, a ()
mr a(MmS)
0<s<t
=+ I+ I+ I+ I
From (4.1.2),
t 1 t 1
q: = qo —|—/ —b(O, qs)ds +/ _U(qs)dws- (433>
0 04(0) 0 a(O)

Comparing (4.3.2) and (4.3.3),

o 1 g
E | su o k}<CE su / b(ums, ") — ——=b(0, q5)ds
|:0<th |qt Qt| = V1 ogth o Oz(ums) (/L QS) O{(O) ( q )
t 1 1 k
+CiE | su / o(qt) — —=o(gs)dws
2y aGen 7 Gy

+CLE { sup |Ré‘]k}

0<t<T

=. Al +A2—|—A3
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Now, we find the bounds of A; to Az. First we consider A;.

k
ds]
T 1 b
=C,E b My —p dt
C'2 _/0 oz(,umt) (Mmta qi ) O[(O) (07 Qt) ]
1

™o . 1 g
=G E _/0 (ome) (b(pme, q;') — 6(0, 1)) + (a(umt) - a(O)) b(0, q:) dt]

t
A1 S CQE sup /
0

0<t<T

wy_ L
mb(ﬂms,qs) a(O)b(O’qs>

k

< C3E /0 ! (b(pmy, qi') — (0, 1))

apmy)
i ‘ (Oz(ulmt) - a(10)> b0, ¢:) kdt]
1

| i (41t = at) + | -~

T T
< CG;E [/ lg)" — qt|kdt} + Csp” <T+E [/ Ak dt])
0 0
T T
< Cs / E {sup ]qu—qs|k] dt + Cs <T~|—/ E]qt|kdt) )
0 0<s<t 0

The second line from the last was from the property

K|pm; — 0|

2
Q%

_[a(0) — afum)
alpum;)a(0)

a(umy)  a(0)

< C(K, o, m*) .

1 1 ’

Now, we find a bound of As,.

o ey
Ay < CE (/O a(umt)a((zt) - wg(qt) dt)
E_q T 1 my 1 o k

S C167_’2 E /0 Oé(,umt) U(Qt ) Oé(()) (Qt) dt]

T T
< CTEIE [/ " — gl dt} + O 2 + T P E [/ jadl" dt]
0 0

T T
§O7T’51/ E{sup !qé‘—qs\’“] dt+O7T’5u’“+O7T’51u’“/ E|q.|" dt
0 0

0<s<t
thanks to the Burkholder-Davis-Gundy inequality.
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Now, we consider As. An upper bound of Az can be split into the following

five terms:

A3 < CgE [ sup |Itl|k] + CsE [ sup |[t2|k] + s E { sup |It3|k]
0<t<T

0<t<T 0<t<T

+ G E [ sup |It4|k] + CsE { sup |I?| } :

0<t<T 0<t<T

Before finding bounds of the terms above, we first note that for any ¢ > 0,

(8%
0<p,:= *;g
m Ty

< p (4.3.4)

for some [, and * for small > 0.

So,

sup
0<t<T

E [ sup |Itl]k] =E

0<t<T

|

b s atmn g
e w0 TmeTdsqy
0

T k
1
— Loyt
/ e n*'ds
0

[do
k

1 ko
< % (1 e ua*T) ldo|*

< K

< Cop*.
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r k
my a(pms) s a(pmr)
E { sup |I,52|k’} =E | sup i do s / i o S (s, ¢ )ds
0<t<T 0<t<T Oé(,umt) ms
- K st ot k
< E sup sup —6 " b(:umsa qs )d
0<t<T Oé(umt) 0<t<T |Jo Ms

k
]. T ]. a(pms)
< E( L g et dﬂbmmt,qf)\dt)
0

my

L e T - T w |kt
k—1Jt m
<a=E|([ | e
T, k=1 .1
< CyE (/ e‘uH“*”‘“dt) /1+u’“+|qé‘!’“dt]
0 0

k—1 -t T
< Cy [ﬁT (1—6_%"kl T>] E [/ 1+Nk+|Qf|kdt}
* 0
T
< Cnpt'E [/ 1+ |Qf|kdt}
0
T
= O Tkt + Oll,uk_l/ E|q/'|*dt
0

and

r k
a(pms) s a(umy)
E[Sup |L?|]=E sup | e i s / 15 = ) dw, ]
—

0<t<T 0<t<T Oé(,wmt)
r k k
mt ]_ 1 tQ(Hm'r)
<E| sup sup | [ —e uh o (gt dw,
0<t<T Oé(,umt) o<t<T |Jo Ms
k
1 O ¢ a(ums)
< B | swp | [ e m T (g dw,
. o<t<T |Jo Ms

2. #fT a(ums)ds

m
- U(Qt )

T 9 &
<cu( [ dt>
0

T 1T alma) g0\ 7 E T ik
< CuE / (e b ) at / o (g dt
0 0

k—2 r
3014((5 %) ]E(/ 1+\qf|kdt)
* 0

T
k k
< C15T,u5_1 +015,U2_1/ [|q | ]
0
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thanks to the BDG inequality and Hoélder inequality.
To find a bound of I, we first rearrange the terms inside the summation sign
to change it into more desirable form. Let {7;},—012.. be the sequence of stopping

times at which m has its ith jump. Note that 7y = 0 almost surely. Define
,—Ti =T ANT.

Then, we may rewrite I in the following way:

> T 1 alpmr X
N R e N )

1 T; alpmr) s ;
= ((Z/ —e — Je b(ums,qé‘)ds) A (—Q(T;T.))N

_ ZZ( L, if”z:?”drbmms,qs)dsA(—mTf ))‘

=1 j=t a/('umTj)

es] T;
i1 a(pmy)
= Z( e g, g2)ds

i1 \JTiy s

. a(MmTj)

Jj=t

Note that the justification for changing the order of summations came from
the fact that since N(T') < oo almost surely, the summation above is in fact finite
summation almost surely.

It is easy to see that

(bt (1Y)
3 a{jum)

j=i

0< < 23"

from (4.3.4) and decreasing property of

1 (T a(pmy)
o fTi e

as j increases.
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So,

_1 rT; Oéll«m'r)d
"b

(/’Lms7 qS )

oS (L

“)

1 fT a(pmr) 4

me Ch(ums, g4 | ds

ds.

26 1 [T et
|, g

The rest of the calculation follows exactly the same way as we did for I

T
E { sup Ilflk] < Ot +016u’“_1/ E|gy'|*dt.
0

0<t<T
A bound of I} can be found using the methods used for finding bounds of I}

and I}':

E [ sup |It5|k] < C’17T,u§_1 +C'17M§_1/ Elqg}'|*dt.
0

0<t<T

Combining the bounds of I} to I}, we get

T
Ay < Cigp2! (1 +/ Elqﬂkdt) :
0

Combining the bounds of A; to As, we get

T
B [ sup |qt' qﬂ < Croph! (1 v Elqé‘l’“dt>
0<t<T 0

T
+ Ch / E [Sup lgt — qs|k} ds. (4.3.5)
0 0<s<t
If we can show that
sup E|q}'|*
0<t<T

is bounded, we can apply Gronwall’s lemma to find a bound of

k
E[sup iqf—qti].

0<t<T
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Applying almost the same technique as above to (4.3.2), we can conclude that

T
sup Elgl'F < Coop2 ™" <1 —i—/ sup E|q§|kdt) :
0

0<t<T 0<s<t

Applying Gronwall’s lemma, we conclude

sup Elgl'|* < Car.
0<t<T

Enforcing this bound to equation (4.3.5) and applying Gronwall’s lemma one

more time, we get

k k_ k_
E [ sup g} — ¢l } < Cyop21eT = Cogpz .
0<t<T

So,

limE sup |¢f — " =0
w0 o<t<T

for k£ > 2.

By Holder inequality, this means that this holds for all 1 < k.
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