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The design of mechanisms to efficiently allow many users to maintain simultaneous

communications while sharing the same transmission mediumis a crucial step during

a wireless network design. The resource allocation processneeds to meet numerous

requirements that are sometimes conflicting, such as high efficiency, network utilization

and flexibility and good communication quality. Due to limited resources, wireless cel-

lular networks are normally seen as having some limit on the network capacity, in terms

of the maximum number of calls that may be supported. Being able to dynamically

extend network operation beyond the set limit at the cost of asmooth and small increase

in distortion is a valuable and useful idea because it provides the means to flexibly ad-

just the network to situations where it is more important to service a call rather than to

guarantee the best quality.



In this thesis we study designs for resource allocation in CDMA networks carry-

ing conversational-type calls. The designs are based on a cross-layer approach where

the source encoder, the channel encoder and, in some cases, the processing gains are

adapted. The primary focus of the study is on optimally multiplexing multimedia sources.

Therefore, we study optimal resource allocation to resolveinterference-generated con-

gestion for an arbitrary set of real-time variable-rate source encoders in a multimedia

CDMA network. Importantly, we show that the problem could beviewed as the one

of statistical multiplexing in source-adapted multimediaCDMA. We present analysis

and optimal solutions for different system setups. The result is a flexible system that

sets an efficient tradeoff between end-to-end distortion and number of users. Because in

the presented cross-layer designs channel-induced errorsare kept at a subjectively ac-

ceptable level, the proposed designs are able to outperformequivalent CDMA systems

where capacity is increased in the traditional way, by allowing a reduction in SINR.

An important application and part of this study, is the use ofthe proposed designs to

extend operation of the CDMA network beyond a defined congestion operating point.

Also, the general framework for statistical multiplexing in CDMA is used to study some

issues in integrated real-time/data networks.
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Chapter 1

Introduction

1.1 Motivation

The design of mechanisms to efficiently allow many users to maintain simultaneous

communications while sharing the same transmission mediumis a crucial step during

a wireless network design. Then, the problem of efficient distribution of network re-

sources among the calls in service has a direct impact on the network performance. Yet,

efficiency is not the only important issue in the design of thenetwork. From the point

of view of the network operator, maintaining a high utilization of the network is also

important to maintain a cost-effective operation. Even more, since upgrading a net-

work infrastructure may become an expensive venture, a network that has the ability to

flexibly adapt to changing operating conditions could add toa cost-effective operation.

Nevertheless, the network operator needs are not the only ones that need to be consid-

ered in the network design. Customers demand service availability at all times and with

good communication quality. This introduces the classic problem in engineering design

of conflicting requirements. For example, it is quite possible that a network operating

with high utilization may be frequently unable to provide service or service quality may

be sub par. Therefore, network need a carefully designed flowcontrol protocol to fairly
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distribute the shared resources as needed by each user whilemaximizing the network

utilization and guarantee that communications services are provided with good quality.

Coupled with the flow control protocol, a congestion controlprotocol is also neces-

sary to act when the network reaches its capacity. In general, these protocols provide

functions to many very different layers of the communication stack. In order to pro-

vide these functions, network protocols have been divided into a stack of layers, each

responsible for providing services to a layer of communication stack. In this approach,

each layer is designed independently of the others and only contiguous layers exchange

information through clearly defined interfaces. In this way, each layer knows little or

nothing at all of the state of the communication link as seen by another layer. A con-

trasting approach, known as “cross-layer” design, is to design these protocols in such a

way that their layers are designed and operate jointly. Thisis the approach taken in this

work and, as we shall see, it results in protocols that are efficient in allocating resources,

can flexibly adjust to changing operational conditions and are able to operate at high

network utilization while providing continuous service with good quality.

Wireless cellular networks are normally seen as having somelimit on the network

capacity, in terms of the maximum number of calls that may be supported. This limit

may be due to the number of available radio channels, time slots or, in the case of CDMA

networks, a maximum interference level. Being able to dynamically extend network

operation beyond the set limit at the cost of a smooth and small increase in distortion is

a valuable and useful idea because it provides the means to flexibly adjust the network

to situations where it is more important to service a call rather than to guarantee the best

quality. One example of such situations is a cellular user seeing its call disconnected

because there are no resources available when entering moving into a congested cell.

Reserving resources at the base station may mitigate this problem but it reduces network
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utilization. Instead, the network could deal with this situation by allowing a brief and

controlled reduction in quality until the congestion is alleviated. Another situation when

this idea can be applied is in the case of a cell that is affected by some disaster (a

tornado, for example) and goes out of service (Figure 1.1(a)). When this happens, the

surrounding base stations would most likely extend their radio coverage to replace the

lost one (Figure 1.1(b)). This action will increase the traffic in these neighboring cells

with the calls previously served by the base station that is out of service. This effect

may be compounded by customers in the area of the disaster wanting to talk with loved

ones. Also, the emergency personnel in the area of the disaster would increase the traffic

above normal. In summary it is likely that one or many of the neighboring cells will

become congested in a situation where having the best communication quality is not as

important as providing service. Other potential applications of this idea include military

communications and, in a broad view, dynamically reconfiguration of the network in

a controlled way without the need for costly new hardware. Note that this approach

is analogous to the operation of a wireline packet network when a router goes out of

service. In this case, traffic is routed through other routers. These alternate routers will

see an increase in traffic. If necessary, all the sources contributing traffic to a congested

network node may reduce their rate, and communication quality, upon notification of

the congestion [57].

Associated with the design of the network protocol (or some of its layers) is the

definition of a multiple access technique to allow users to share the same transmission

medium while preventing them from interfering with each other [34]. In Frequency-

Division Multiple Access (FDMA) users access the transmission medium all the time,

each using a different, non-overlapping fraction of the total available frequency band-

width. In Time-Division Multiple Access (TDMA) sharing of the same transmission

3



Figure 1.1: Cellular network reacting to a cell outage. (a) The marked cell goes out of

service. (b) The neighboring cells extend their coverage area.
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medium is achieved by allowing all the users to transmit overthe whole available band-

width on different, non-overlapping time intervals. This work will focus on a third ac-

cess method, Code-Division Multiple Access (CDMA). Here, all users transmit simul-

taneously in the same frequency band, separation between them is achieved by making

each user transmit using signals that are uncorrelated, or that have low cross-correlation,

with the signals sent by the other users. In practice, perfect separation between users

is not possible, thus, CDMA is said to be interference limited. Therefore, as much as

TDMA and FDMA-based network protocols deal with distributing the available band-

width between users, a primary goal in protocols intended for a CDMA systems is to

control inter-user interference.

In this work we will focus on the design of flow and admission control protocols

for conversational communications in CDMA networks. This implies that the proposed

schemes will be constrained by strict limits on the delay. Asmentioned above, our

approach is that of cross-layer designs. We choose the approach because of its efficiency

and flexibility. We will see that all the solutions we will present share the common

characteristic that they are able to extend operation beyond congestion (defined as the

maximum number of calls that can be accepted and still deliver communication service

at a promised level) at the cost of a smooth and controlled degradation of quality. The

contrasting approach to ours is one where calls are acceptedbut at the cost of a rapid

increase in channel-induced errors and distortion. In our scheme, this does not occur

because of the cross-layer adaptable approach and because the designs limit the channel-

induced distortion to perceptually acceptable ranges. Importantly, this work lead us to

develop an optimal solution to the problem of source-controlled statistical multiplexing

in CDMA.
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1.2 Previous Work

Since any reduction in interference translates into an increase in user capacity, a sig-

nificant portion of research in CDMA has been focused on interference control and

minimization. This includes techniques such as efficient processing of multipath, multi-

user receivers and use of directional antennas [17, 52, 49].Also, early works introduced

the idea of taking advantage of silence periods in between talk spurts to increase the

capacity [17, 52, 53]. In [51], Viterbi contended that this idea is one of the two most

practical methods (sectored antennas is the other) to increase the number of calls that

can be simultaneously serviced. Since it can be considered that voice activity follows a

talk spurt-silence model [6], interference can be reduced by avoiding transmission dur-

ing silence periods. A refinement to this idea, is to considermore than two levels of

speech activity. Such is the case in the TIA/EIA IS-95 standard [23], which proposed

a multi-state vocoder named QCELP. The QCELP encoder has four different operating

states, each of them associated with a different level of speech energy and a different

output rate (9600, 4800, 2400 and1200 bits/sec). The lowest rate is the one associated

with a silence period between talk spurts. The multi-rate source coder in IS-95 is used

to reduce interference by decreasing the transmitting power of a user when source rate

decreases following a reduction in speech energy. The relevant feature of these source-

based ideas to reduce interference is that there is no external control on the source en-

coder, i.e. source coder adaptations were driven by the source, not the network. Being an

evolution from IS95, these concepts and ideas have also beenextended to the cdma2000

standard [1, 55]. In [44], the authors analyzed coverage andcapacity in a cdma2000

network for voice and packet data services. Over the time, new vocoders, with better

performance than QCELP, have been introduced with the aim ofusing them in new cel-

lular standards. Yallapraga and Kripalani studied in [56] the effects that performance
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gains in the GSM Advance Multi-Rate (AMR) encoder [12] and the Selectable Mode

Vocoder (SMV) [15] have on voice capacity of GSM and CDMA networks. In the case

of the GSM system, the multi-rate encoder is used to adapt to different channel condi-

tions by switching between two possible encoding rates. Also, it is proposed in [56] that

capacity can be increased by reducing the source encoding rate. In GSM this operation

increases capacity by using up less frequency channels, time slots and by reducing inter-

ference and allowing a tighter frequency reuse. In the case of CDMA, the SMV codec

also reduces interference as done in IS-95 by switching between encoding rates based

on the speech characteristics. SMV differs from QCELP in that it has four different

operating modes, each associated with different thresholds to switch between encoding

rates, and thus it exhibits 4 different average encoding rates. In [56] these 4 different

encoding rates are used to estimate their associated changein capacity. The analysis

involves only calculation using bit rates as if each CDMA channel would be ideally

separated from the others with no inter-user interference.Our work in this thesis goes

beyond these works by addressing how a change in source encoding rate for one call

affects average distortion and system interference. Our approach is novel in addressing

the multiplexing dimension in CDMA using as main control element the source encoder.

[7] describes yet another feature of cdma2000, the high ratepacket data system IS-856

in this case, where source rate control is used to reduce interference. In this case, a bit

named ‘Reverse Activity’ (RA) bit is set at the base station whenever the interference

reaches some value. A change in the RA bit triggers a change inthe transmit bit rate.

Interestingly, this change is random, following an establish procedure.

Our approach, which was pioneered for a TDMA network in [4], is to add an element

of control into the application layer by introducing a source encoder with externally

adaptable encoding rate. In the area of adaptable CDMA, a popular research problem
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has been the optimal rate and power adaptation to channel conditions. Jafar, et. al.

studied in [25] the optimal transmit rate (from a discrete set) and power adaptation

subject to an instantaneous BER constraint and channel conditions. Other related work

studied rate adaptation for the data portion of traffic subject to the influence of voice

calls. In [22], Honig and Kim studied the assignment of powerand processing gain,

varied by changing the symbol duration, to satisfy a target QoS, which may be bit error

rate (BER) or delay. This initial work was extended in [29] toconsider a dynamic

algorithm to dynamically allocate power and processing gain to voice and data users.

The goals of the algorithm are to minimize the total receivedpower within a cell and

maximize the average throughput for data users subject to QoS constrains for voice

users. With the goal of relieving congestion in CDMA networks, Jacobsmeyer presents

in [24] an heuristic solution to reduce interference, wherethe power and bit rate of data

users is reduced while maintaining a constant energy per bit. In [42], Sampath et. al

studied total transmitted power minimization and sum of transmitted rates maximization

subject to feasibility conditions on power and rates assignments. Sampath recognized

that if the feasibility conditions are not met then either calls must be blocked or the

conditions would have to be relaxed somehow. Since most of these works focus on the

data portion of the traffic, the goal is to maximize throughput. In these works there is

no mechanism to adapt voice calls to network conditions other than power assignment,

blocking calls or dropping excessively delayed voice packets.

In the area of cross layer design, more recently, some works has extended the idea

of power-controlled networks to include also source and channel coding. In [50], Vish-

wanath, Jafar and Goldsmith determined the Shannon capacity region (i.e. the set of

rates that each user can achieve with arbitrarily small probability of error when assum-

ing the best coding scheme possible and no delay constraints) in the uplink of a mul-
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tiuser system. They also studied, as a function of each user channel state, power and

rate allocation policies to achieve this region. In [21], the authors present a dynamic

programming algorithm to optimally allocate power and source and channel coding pa-

rameters in a TDMA network with the goal of achieving delay guarantees for all chan-

nels. In [8], a variable rate video coder is used in a design for joint source rate and

power allocation that maximizes end-to-end Peak Signal-to-Noise Ratio (PSNR) for a

given bit SNR-source coding rate product. This design has the interest of considering

a cross layer design involving source coding and power allocation, yet it lack the anal-

ysis we will present in this work, assumes homogeneous sources and does not discuss

how to distribute each heterogeneous user’s contribution to system interference, i.e. the

multiplexing dimension is not considered.

Other researchers have focused on the integration of data traffic into the CDMA

network. With the purpose of integrating variable bit rate multimedia traffic into the

IMT-2000 third generation wireless system [11], Fantacci and Nannicini proposed in

[13] a multiple access protocol based on dynamic reservation assignment. The proposed

protocol is similar to Packet Reservation Multiple Access (PRMA) [18], [37], in that

data packets are transmitted using the bandwidth not being used by real-time sources.

It is also similar in that voice terminals release the channel during silence periods and

contend for a new one during silence-to-talk spurts transitions in a way similar to slotted

ALOHA but over a dedicated control channel and using spreading codes instead of

minislots. In essence, the main difference of this work withPRMA is that, instead of

allocating time-slots, the protocol allocates spreading codes to transmit in a wideband

direct-sequence CDMA system.

Our research can be also considered as an application of multi-resolution coding to

control user capacity of a system. Previous work on this areaincludes a framework that
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allocates the minimum power necessary to support a given QoSto each substream [58].

This approach is presented as an alternative to unequal error protection (UEP) since the

different levels of channel error protection are provided by a power assignment unique

to each substream.

As we shall show, the problem that we will study in this thesiscan be seen as the

one of source controlled statistical multiplexing in CDMA.In this type of problem it

is useful to understand what is the effects on the total system resources, and capacity,

a particular setting for a user has. In an asymptotic approach that considers that the

number of users and spreading signatures length grow, whilekeeping their ratio fixed,

Tse and Hanly introduced in [48] the concept of effective interference to study the effects

of interference on the system capacity considering different multiuser receivers and ideal

power control. This study was extended in [60] to the case of imperfect power control.

Finally, there is also a number of previous research work linked to our research

on video communication over CDMA. For a multiuser CDMA environment, Zhanget

al. studied a video bit allocation scheme that considers sourceand channel coding and

power allocation to minimize power consumption while satisfying maximum distortion

requirements [61]. The solution first allocates resources so that all calls satisfy the max-

imum distortion constraint. In [62], the authors present a solution to scalable video

distortion minimization subject to total transmit rate andpower constraint when com-

munication is carried over a fixed given number of CDMA channels. As we will see, our

approach, especially the one presented in chapter 3 is applicable in both [62] and [8] to

optimally distribute CDMA channels and system interference among calls, respectively.

Also, is applicable in [61] to prevent loss of calls when it isnot possible to satisfy the

maximum distortion constraint.

Most of the results in this thesis have been presented previously in [31, 30, 32, 20,

10



33, 46].

1.3 Thesis Summary

Chapter 2 is dedicated to the analysis of a simplified case of the resource allocation

problem in a DS-CDMA network through source coder adaptation. In this case all users

operate with the same real-time source coders with no changein their encoding rate

based on the level of source activity and with a fixed processing gain. This chapter is

important in introducing some elements of our study that arecommon to the rest of

this thesis. Such is the case of the description of the systemsetup and the introduc-

tion of the concept of quality goal, as well as the idea of extending operation beyond

congestion by accepting a smooth degradation in quality. Chapter 3 extends the study

in chapter 2 to the study of the most general problem of optimal adaptation to resolve

interference-generated congestion for an arbitrary set ofreal-time source encoders with

arbitrary Signal-to-Interference-plus-Noise ratio (SINR) goal and variable transmit bit

rate (variable spreading factor). Also important is the fact that the problem setup is one

of a true multimedia system, where our interpretation for this is a system where the

distortion-rate performance of each source may change within two consecutive transmit

periods and also within two different calls. As important result, we show that our prob-

lem, as stated in a multiuser environment subject to power feasibility constraint, can be

considered as the optimal source-controlled statistical multiplexing solution in CDMA.

In this chapter we also present two optimal solutions (each applicable to different system

setup) to the statistical multiplexing problem. Chapter 4 uses the statistical multiplexing

concepts and solutions developed in 3 to address the problemof integrating real-time

traffic with data traffic. In this chapter we study the sensibility of each section, real-time

11



and data, to the change in the equivalent bandwidth they are assigned. We use these

results to propose and study a scheme for real-time/data integrated congestion relief.

While chapters 2 to 4 study problems in the uplink, chapter 5 considers problems in the

downlink. In this chapter we consider both constant processing gain and a multicode

CDMA system. Finally, chapter 6 discusses the most important results obtained, as well

as future extension of this work to other projects.
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Chapter 2

Resource Allocation for Fixed Processing Gain

DS-CDMA Based on Single State Source Coder

2.1 Introduction

In this chapter we begin the study of the resource allocationproblem in a DS-CDMA

network through source coder adaptation. We first consider asimplified case where all

users operate with the same real-time source coders, which do not change their encoding

rate based on the level of source activity, and where the processing gain is assumed

constant. We will start by describing the system setup, followed by establishing the

mathematical framework that will form the base for the studyin this chapter. Next,

we will study the condition necessary for the network to support a given number of

active calls. We use this condition as the constraint of the optimization problem that

adapts each call operating parameters to allow network operation that avoids congestion.

Next, we present the solution to this design problem, as wellas an analytical study of

the relation between interference, the number of users in a CDMA network and the

reconstructed source quality at the output of the source decoder. This study allows us

to analyze how these variables can be properly balanced in our design. We will also
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consier practical implementation issues followed by the development of useful design

and modeling equations. Lastly, we discuss the teletraffic properties of our system. We

finish this chapter by summarizing the main conclusions and contributions.

2.2 System Description

Consider a Direct-Sequence Code Division Multiple Access (DS-CDMA) system. As-

sume, also, that the only calls present are those carrying real-time conversations. Al-

though, in general, each call could be carrying a conversational call of different media

(speech, video, etc.), in this chapter we will focus exclusively in calls carrying real-time

voice.

Figure refpropresfig shows the main components of the proposed system. The mo-

bile terminals have the same basic components blocks as those found in current com-

mercial DS-CDMA devices: a source encoder that removes unnecessary redundancy

from the real-time source, a channel encoder that adds controlled redundancy to the

encoded source so as to better protect it against channel errors, a spreader that imple-

ments the DS-CDMA functionality, and front-end hardware, such as the modulator and

power amplifiers. As shown in Figure refpropresfig, in contrast to current commercial

devices, our system introduces a source encoder that has as key property that the output

rate can be externally controlled. This can be implemented using either variable rate or

embedded encoders. In the former case, the coder generates one bit stream for each of

the possible encoding rates. Only one of these will be selected and transmitted based

on a control signal that indicates the rate assignment. Whencompared to embedded

encoders, variable rate encoders typically have better coding efficiency. On the other

hand, using embedded encoders presents the advantage that only one bit stream is gen-
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Figure 2.1: Block diagram of the proposed system

erated, making the adaptation to the rate assignment simpleby dropping as many bits

as necessary from the end of the bit stream. Although the “bitdropping mechanism” is

exclusive to the embedded stream, we will loosely use this term to mean a reduction in

the source rate regardless of the particular source encoderimplementation.

In the proposed system, the source encoder output is dividedinto variable rate source

frames. The length of these frames depends on the source encoding rate. Only one

source frame is sent per transmission period. While in current commercial DS-CDMA

systems the source frames are error protected by a fixed-ratechannel encoder (followed

by bit repetition if needed), in the proposed scheme source frames are error protected

by a variable-rate channel encoder. In this chapter we will consider a system that pro-

vides equal error protection for all source bits. Source andchannel rate allocation is

determined so that any reduction in source encoding rate is matched by an increase in

error protection in such a way that the bit rate at the output of the variable-rate channel

encoder remains constant. This means that all bits dropped from the source are replaced

by error protection bits from the variable-rate channel encoder and that the bitrate at
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the output of the variable-rate channel encoder is equal to the product of the maximum

source encoder output rate and the maximum channel coding rate. This follows the

fixed processing gain assumption and it also assures that delay is kept fixed and small,

as required by real-time services. Note that this operationimplies that the level of er-

ror protection is increased as the source rate is reduced. This approach also simplifies

implementation on current system by modifying only those baseband (often software-

based) processing unit that normally precedes the spreaderand other physical link units.

In fact, as shown in Figure refpropresfig (a), one possible implementation may concate-

nate the variable-rate channel encoder to the already existing fixed-rate one. Not shown

in Figure 2.1, is the assumed fact that the source encoder output contains also some bits

used to detect frames in error through (assumed ideal) cyclic redundancy check (CRC).

In a general setup the source encoder may be multi-state. This means that the max-

imum encoding rate will change based on the level of source activity. For the purpose

of the current system description we will continue to assumethat the source encoder is

multi-state. Nevertheless, for the rest of this chapter we will assume that the source is

such that the encoder operates always in the same state and wewill leave for the next

chapter to study the more general problem where each encoderwill change state. Since

the whole system behavior will follow the state of the encoder we will use the terms

”encoder state” and ”call state” interchangeably.

A flow control protocol is located in a centralized position (namely the base station)

and communicates with all the mobiles in the coverage area. In each transmission pe-

riod, each mobile terminal sends not only the encoded sourcedata sampled during the

previous period but also the rate requirement necessary to transmit the source data sam-

pled during the current period. In effect, transmission of asource frame is delayed by

one frame duration with respect to the time when the data was sampled. It is the protocol
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job to allocate rate and power to all the users based on the traffic demand estimated from

their rate requirements in such a way that average distortion per call is minimized. Rate

assignment is communicated to each active user jointly withthe power assignment so as

to proceed with transmission.

2.2.1 Quality Goal and Quality of Service (QoS)

An important goal for practical implementation of this scheme is to guarantee and pro-

vide good communication quality. To quantify quality we will measure the end-to-end

distortion, i.e. that composed of the source encoding distortion and the distortion intro-

duced by channel errors.

In general, we have observed during simulations that, for the same distortion mea-

sure, channel-induced errors are perceptible more annoying that source encoding distor-

tion. This is because channel-induced errors tend to concentrate the distorting effect on

a group of samples as opposed to spread the distortion at lower level to all samples in

a frame. This manifests as an artifact that many times is perceptually evident and an-

noying and that in some cases might affect the understandability of the message. Thus,

in this chapter we will have as design goal to keep the relative contribution of channel-

induced errors to the end-to-end distortion below a value small enough so that it remains

perceptually acceptable. This goal, that we will call thequality goal, will determine the

design values for target SINR.

We intentionally avoid calling this goal a ‘Quality of Service’ (QoS) goal. This is

because, for the type of problems we are studying, the definition of QoS tends to vary

for different publications depending on the particular approach. In the present case,

the most appropriate definition of QoS is that of the end-to-end quality. We will see

that in our design the end-to-end quality will not be kept fixed. In fact, end-to-end
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quality will be controllably traded for an increase in the supported calls. Nevertheless,

we will also see that our design will be able to effectively maintain the contribution of

channel-induced distortion below the threshold when it becomes annoying or it affects

the understandability of the message. Meeting this goal will mean that the communi-

cation quality remains perceptually good or acceptable, thus the chosen name ‘quality

goal’ for this design objective.

In essence, considering a quality goal in terms of the contribution of channel-induced

errors is equivalent to the practice in wireless design of meeting a target maximum

Frame Error Rate (FER). Nevertheless, our goal not only maintains a closer relation to

the end-to-end distortion measure, but it also better considers the source encoder sensi-

tivity to channel errors at different encoding rates. Note that in our scheme the target

Signal-to-Interference-plus-Noise ratio (SINR) necessary to meet the quality goal is a

function of the source rate. This is because reducing sourcerate corresponds to increas-

ing the source frame error protection, which, in turn, lowers the SINR needed to achieve

the same quality goal. Thus, by reducing some or all calls’ source rate, it is possible to

lower transmit power and interference, resolving congestion at the cost of higher source

encoding distortion but without increasing channel induced errors. Then, in our scheme

the cost of increasing the number of calls beyond congestionis a degradation of the

average received source quality. Then, the design problem is to determine what calls

should be affected and with what magnitude so as to resolve congestion while meeting

the quality goal and minimizing average end-to-end distortion per call.
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2.3 System Analysis

2.3.1 Ideal Power Control and Additive White Gaussian NoiseChan-

nel Case

Consider the uplink of a chip-sampled Direct-Sequence CDMAsystem, as in Figure

2.1, with ideal power control and subject to an additive, white, Gaussian noise (AWGN)

channel. Assuming that a matched filter is used at the receiver, power assignments and

interference from other users are related to the target SINRfor each of theN users by,

βi ≥
Pi

σ2 +
N
∑

j=1

j 6=i

Pjγ
2
ij

, i = 1, 2, · · · , N, (2.1)

wherePi is the power assigned to useri, as measured at the receiver, necessary to

obtain the target SINRβi, σ2 is the channel’s noise variance, andγij is the crosscor-

relation between usersi andj unit-energy spreading sequences. For an asynchronous

systemγ2
ij models the sum of the squares of the left, right and same-bit correlations.

In a synchronous systemγij models the correlation between pseudo-random spreading

sequences or the

If it is possible to find feasible power assignments that satisfies theN inequalities

(2.1) with equality, then these assignments minimizes the sum of the transmitted powers,

[42]. Therefore, we will consider (2.1) as an equality.

We next assume that our system is able to estimate in each frame an “equivalent

crosscorrelation”γ such that equation (2.1) can be equivalently written as [58],

βi =
Pi

σ2 + γ2

N
∑

j=1

j 6=i

Pj

, i = 1, 2, · · · , N. (2.2)
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We have found from simulations that this assumption is reasonable. Figure 2.2 shows

one of these simualtions. In the figure we show the power allocated to a user as the num-

ber of calls is increased. The curve labeled “From estimate”shows the result calculated

using the equivalent crosscorrelation. The curve “Real” shows the result calculated us-

ing the actual crosscorrelations between each call pair. Inthe simulations we modeled

the actual crosscorrelations as a Gaussian random variablewith zero mean and variance

equal to the inverse of the spreading sequence length (assumed equal to 64), [59]. To es-

timate the equivalent crosscorrelation we assume that it was possible to obtain a sample

of the total interference, with this result the equivalent crosscorrelation was estimated

so that
∑N Pjγ

2
ij = γ2

∑N Pj. We can see from Figure 2.2 that not only the result

using equivalent crosscorrelation is close enough to the real one but, more importantly,

using equivalent crosscorrelation allows for a good estimation of the point when the

power allocation start to grow rapidly. As we shall see in thenext pages, this condition

determines the congestion point in the CDMA network.

Writing equations (2.2) as a function of the unknownsPi, i = 1, 2, · · · , N , we obtain

the linear system,

MP = σ2
1, (2.3)

where1 = [1, 1, · · · , 1]T1⋊n, P = [P1, P2, · · · , Pn]
T and

[Mij ] =











1
βi

if i = j,

−γ2 if i 6= j.
(2.4)

Solving this linear system we obtain the power assignment,

Pi =
Ψiσ

2

γ2
(

1−
N
∑

j=1

Ψj

)

, i = 1, 2, · · · , N, (2.5)
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Figure 2.2: Comparison of allocated power as a function of the number of users with

and without using equivalent crosscorrelation.
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where

Ψi =
(

1 +
1

γ2βi

)−1

. (2.6)

The solution in (2.5) is the power at the receiver necessary to obtain a SINR such that

the expected channel induced distortion remains below a preset limit. It is clear that we

need
∑N

j=1 Ψi ≤ 1 for the power to be positive. This condition determines the maximum

number of users that can be accepted into the system. Furthermore, when
∑N

j=1 Ψi ≈ 1

the power assignments in (2.5) are likely to be too large to bepractically feasible. Thus,

the dynamics of the system are such that, as more users are admitted into the system,
∑N

j=1 Ψi grows up to a point where it exceeds a threshold1− ǫ, ǫ being a small positive

number set during design, that is the congestion point. Therefore, a practical limit on

the user capacity will be the one determined by the condition

N
∑

i=1

Ψi ≤ 1− ǫ. (2.7)

We note here that equation (2.5) is equivalent to equation(4) in [43] and the condition

(2.7) is equivalent to(6) in the same reference. As is the case for equation (2.7) above,

(6) in [43] is also intended to represent limitations on the receiver’s dynamic range

and system stability ([52]). Both equations differ in that we have used the equivalent

crosscorrelation instead of the processing gain. Our intention in doing so is to keep the

formulation sufficiently general so as to be able to also consider practical issues that

may cause the equivalent crosscorrelation to change over time and to differ from the

processing gain.

As explained in Section 2.2.1. The goal of our protocol is to resolve congestion by

renegotiating the target SINR (by reducing source rate) so as to bring the system back to

the operating point where (2.7) holds. Furthermore, we seeka rate adaptation rule that

is optimized in the sense that minimizes the average distortion per call. Letfi(xi) be
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the distortion-rate (D-R) performance function of theith user source encoder encoding

at ratexi. Then, the optimization goal can be equivalently written as

min
x1,x2,··· ,xN

N
∑

i=1

fi(xi), (2.8)

In what follows we will assume that all users use the same single state source en-

coder, i.e. the encoding rate does not change as a function ofthe source level of activity.

Also, it is reasonable to assume thatf(x) is convex and decreasing, as is the case for

most well designed source encoders. For simplicity, we willalso assume that the rate

can be changed continuously without bounds, i.e.xi, ∀i = 1, 2, · · · , N are real num-

bers. Obviously,f(x) is minimum when the rate is maximum;xi = xM , which would

be the rate assignment for all users in the absence of congestion. Furthermore, we as-

sumef(x) = α2−2kx. This is a very general form for D-R performance functions that

applies for the case of Gaussian sources with squared-errordistortion and when the

high-rate approximation holds, [16, 10]. In practice, realencoders are very complex;

thus, their distortion-rate functions do not strictly follow this rule for all encoding rates,

[62]. Nevertheless, we noticed that by carefully choosingα andk, this function is a

good representation of an upper bound for the real distortion-rate characteristic and can

be safely used as the representation for the worst-case behavior of the encoder. This fact

is further illustrated in Figure 2.3. Here we show the measured performance of the GSM

Advanced Multirate (AMR) Narrowband speech codec, as well as two approximations.

The overall configuration for the measurement was the same asthe one explained in

detail in Section 2.5. The measured performance representsthe worst-case result, i.e.

for each encoding rate we only show the result among the many speech sequences with

the highest distortion. Of the two approximations shown, wewant to focus here only on
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Figure 2.3: Measured worst-case speech codec performance and two approximations.

the one of the formα2−2kx. Therefore, our goal (2.8) can be equivalently written as

min
x1,x2,··· ,xN

N
∑

i=1

α2−2kxi. (2.9)

Note that we are considering a distortion-rate function that accounts only for source

encoding distortion. Nevertheless, will remain applicable to end-to-end distortion if the

design meets the quality goal that keeps channel induced errors at a small fraction of the

overall distortion.

The condition (2.7) for system stability and power amplifiers dynamic range in (2.7)

imposes a constraint on the design problem. This condition implicitly depends on the

target SINR, which is design to meet the quality goal and is a function of the source
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rate. With the goal of finding an analytical expression that approximates this function,

we performed a series of simulations to evaluate what is the target SINR required to meet

the quality goal. The setup was common to all simulations andis described in Section

2.5. Figure 2.4 is one of these simulations. It shows, as a function of the source encoding

rate, the target SINR required for the distortion due to channel induced errors to be less

than3% of that of the corresponding source encoding distortion. Weconcluded from

the simulations that a reasonable approximation for the relation between target SINR

and source encoding rate is

βi = 2Axi+B. (2.10)

The parametersA andB, which depend on the error control coding scheme, if we fixed

the source encoder, are obtained from the simulations. Notethat this is a convex function

that increases with the source rate. Using this expression in (2.7) we get

N
∑

i=1

1

2Bγ2 + 2−Axi
=

1− ǫ

2Bγ2
, (2.11)

which leads into the following proposition:

Proposition 1 The problem of optimal rate adaptation that resolves congestion is

min
x1,··· ,xN

N
∑

i=1

α2−2kxi subject to
N
∑

i=1

1

2Bγ2 + 2−Axi
= 2−Bγ−2(1− ǫ). (2.12)

The solution to this problem is

xi = x∗ =
1

A
log2

[2−B

γ2

(

N

1− ǫ
− 1

)−1
]

, ∀i, (2.13)

which corresponds to a target SINR assignment to all calls equal to

β∗ =
1

γ2

(

N

1− ǫ
− 1

)−1

(2.14)
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Proof: Let

Υ =
1− ǫ

2Bγ2
(2.15)

and

yi =
1

2Bγ2 + 2−Axi
. (2.16)

Then, since the distortion-rate function can be written as

f(yi) = α
(

y−1
i − 2Bγ2

)2k/A
, (2.17)

the problem in Proposition 1 becomes

min
y1,y2,··· ,yN

N
∑

i=1

α
(

y−1
i − 2Bγ2

)2k/A
subject to

N
∑

i=1

yi = Υ. (2.18)

It is easy to show that in the presence of congestion, averagedistortion is minimized

when the constraint (2.7) is active [45]. Note thatk is positive if the D-R performance

would be nonincreasing with the rate. Also,A is positive for the error protection to

increase with decreasing channel coding rate. Thus,f(yi) is always a convex function

in practice. Consider now the constraint
∑N

i=1 yi = Υ with N = 2, i.e. y1 + y2 = Υ.

Becausef(yi) is convex, we have in (2.8), as a function ofyi,

f(y1) + f(y2) ≥ 2f

(

y1 + y2

2

)

= 2 f
(Υ

2

)

. (2.19)

Then,min
y1,y2

[f(y1) + f(y2)] = 2 f(Υ/2), with the optimal assignmenty1 = y2 = Υ/2,

or, in the general case when there areN terms in the sum,

yi =
Υ

N
=

1− ǫ

N2Bγ2
,

Furthermore, sincexi andyi are related by the one-to-one expressionxi = (1/A) log2(y
−1
i −

2Bγ2)−1, (2.9) is minimized by choosing all source rates equal to

xi = x∗ =
1

A
log2

[

2−B

γ2

(

N

1− ǫ
− 1

)−1
]

. (2.20)
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Also, this implies that the optimal target SINR assignmentβ∗ is the one where all users

are assigned the same target SINR,βi = β∗ and, from (2.5), the same received power.

Then, from (2.7), we have

N

1 + 1
γ2β

= 1− ǫ, (2.21)

and

β∗ =
1

γ2

(

N

1− ǫ
− 1

)−1

. (2.22)

2

Let NM be the maximum number of users that can be supported without congestion,

i.e. those that can be supported when the source encoding rate isxM and target SINR is

βM = 2AxM+B.

Proposition 2 β∗ andNM can be approximated as

β∗ ≈ 1− ǫ

γ2N
(2.23)

NM ≈ 1− ǫ

βMγ2
. (2.24)

Proof: Consideringβ∗ from Proposition 1, its approximation follow fromN being gen-

erally one or two orders of magnitude larger than1 and1− ǫ being close to1. Proof for

NM follows from the fact that all users operate with maximum target SINR when source

encoding rate is maximum.2

Let DN be the average distortion per call when there areN ongoing calls andD∗
N be

the minimum attainable average distortion when the rate follows the optimal assignment

in Proposition 1 (i.e. when assignment is such that condition (2.7) holds). Also, let

δ = α2−2kxM be the absolute minimum distortion. Then,
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Proposition 3 The number of supported calls is related to the minimum attainable av-

erage normalized distortion per call through the expression

N

NM

≈
(

D∗
N

δ

)A/(2k)

. (2.25)

Also, the number of users in the system is related to the rate reduction per call through

the expression

N

NM
≈ 2AxMχ, (2.26)

whereχ = 1− x/xM is the source packet reduction relative to the maximum rate.

Proof: From Proposition 1, all source encoders are assigned the same rate. ThenDN =

f(x) = δ22k(xM−x) and

D∗
N = f(x∗) = δ

[

2(AxM+B)γ2
(

N
1−ǫ
− 1
)](2k/A)

. (2.27)

Next, as in Proposition 2, we can approximate

D∗
N ≈ δ 2

2k
A

(AxM +B)
(Nγ2

1− ǫ

)(2k/A)

. (2.28)

SinceβM = 2AxM+B, we have

D∗ ≈ δ
(βMγ2N

1− ǫ

)2k/A

, (2.29)

and using the approximation forNM in Proposition 2 we get

D∗
N

/

δ ≈ (N
/

NM)(2k/A). (2.30)

To prove the second part of the proposition consider that, using both approximations in

Proposition 2, we haveN
NM
≈ βM

β∗
= 2(AxM+B)

2(Ax∗+B) = 2AxMχ. 2

As discussed above, our distortion-rate assumption follows a well-known function in

rate distortion theory that, for the case of complex encoders, can be used as a good upper
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bound for the worst-case encoder performance. In the process of the same simulations

we carried out to test this function, we found that a functionthat represents a tighter

bound isf(x) = αx−k, with k > 0. This can be seen in the example codec performance

shown in Figure 2.3. Consequently, we study next how resultsare affected when using

this approximation.

Proposition 4 The solution to the problem of optimal rate adaptation to resolve con-

gestion whenf(x) = αx−k, k > 0, is

xi = x∗ =
1

A
ln

[

e−B

γ2

(

N

1− ǫ
− 1

)−1
]

, ∀i, (2.31)

which corresponds to a target SINR assignmentβ∗ = 1
γ2

(

N
1−ǫ
− 1
)−1

to all calls. Fur-

thermore, with this allocation the average distortion per call is

D∗
N = δ













AxM

ln

(

e−B

γ2

(

N

1− ǫ
− 1

)−1
)













k

. (2.32)

Also, the number of supported calls is related to the minimumattainable average nor-

malized distortion per call through the expression,

N

NM

≈ eAxM(1−(D/δ)−1/k), (2.33)

(2.34)

and to the rate reduction per call through

N

NM
≈ eAxMχ. (2.35)

Proof: For simplicity, we use a different base for the exponent of the target SINR-source

encoding rate function (2.10);βi = eAxi+B. When using these functions, equation (2.18)

30



becomes

min
y1,y2,··· ,yN

N
∑

i=1

αAk

[

ln
(

y−1
i − eBγ2

)−1
]k

subject to
N
∑

i=1

yi = Υ. (2.36)

with y−1
i = γ2eB + e−Ax and

Υ =
1− ǫ

eBγ2
. (2.37)

The proof follows as in Propositions 1 and 3 where we only needto show that the

function

f(y) =
[

ln
(

y−1 − eBγ2
)−1
]−k

(2.38)

is convex. This is equivalent to show thatd2f/dy2 > 0 for all values ofy in the domain

of f .

Let ζ = eBγ2, then, it is straightforward to show, after algebraic operations, that

d2f

dy2
=

ky−3

(

y−1 − ζ
)

[

ln (y−1 − ζ)−1
](k+1)

(

2 +

k+1
ln(y−1−ζ)−1 − 1

y−1
(

y−1 − ζ
)

)

(2.39)

Sincey = (γ2eB + e−Ax)−1, y−1
i − ζ = e−Ax > 0 andy > 0, using (2.39) the condition

d2f/dy2 > 0 becomes,

2 +
(

ζ + e−Ax
)

eAx

(

k + 1

Ax
− 1

)

> 0 (2.40)

Thus,

k + 1

Ax
>

−2

(γ2eAx+B + 1)
+ 1 (2.41)

Since the left hand side member is always positive,f is convex if the right hand side

member is less than or equal to zero. For this to occur we need thatγ2eAx+B +1 < 2, or

eAx+B < 1/γ2. SinceeAx+B is the target SINR andγ2 is a number in the order of10−2,
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f would be convex if the target SINR is less than20dB approximately, which is a very

likely condition. In the unlikely case that

−2

(γ2eAx+B + 1)
+ 1 > 0,

the convexity off depends on the design parametersk (from the source encoder) andA

(from the channel encoder).2

2.3.2 Design Considering Channel Gain and Transmit Powers

The equations developed so far follow a simplified approach that focus on studying the

core dynamics of the system. However, they don’t consider channel conditions and

constraints on each user’s transmit power. Specifically, users undergoing large channel

attenuation may be unable to transmit at a power level that meets the optimal target SINR

(2.22). Although this condition is not desirable, it is practically unfeasible to avoid this

situation due to limits on the mobiles’ transmit power, battery life, etc. These users will

not only be forced to transmit at a lower SINR, thus experiencing higher distortion, they

will also generate less interference to others, thus makingit possible for the rest of the

users to increase their transmit power and reduce end-to-end distortion.

Consider equation (2.1) modified so as to consider that userstransmit with powerTi

over a channel with power gainh2
i :

βi =
Tih

2
i

σ2 + γ2

N
∑

j=1

j 6=i

h2
jTj

, i = 1, 2, · · · , N (2.42)

Following the same procedure as before, the transmit power assignment,Ti, to user

i necessary to obtain the target SINR is,

Ti =
Ψiσ

2

γ2h2
i

(

1−
∑N

j=1 Ψj

) , i = 1, 2, · · · , N (2.43)
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Note that we have the same system feasibility condition as in(2.7). In addition to this

constraint, there is also a limit on each user’s maximum transmit powerTM , i.e. 0 ≤

Ti ≤ TM . From (2.43), and assuming that the target SINR for all usershave been set so

that (2.7) holds true, this limit becomes

0 ≤ σ2

h2
i

(

1

βi
+ γ2

)−1

≤ TM ǫ, (2.44)

or, writing this condition in terms of the SINR,

βi ≤
h2

i TMǫ

σ2 − γ2h2
i TMǫ

∆
= β̂i. (2.45)

LetS be the set of users’ indices such thatβ̂i ≤ β∗ and assume it has cardinalityN ′.

This set represents the users that are unable to transmit at apower level high enough to

reach the optimal target SINRβ∗. Modifying equation (2.7) to separate the sum in two

terms, one for those users in the setS and one for those that are not,

N
∑

i=1

i/∈S

(

1 +
1

γ2βi

)−1

+
N
∑

i=1
i∈S

(

1 +
1

γ2βi

)−1

= 1− ǫ. (2.46)

Since each user’s distortion is minimized by setting a target SINR as large as possible

(i.e. larger source encoding rate), the target SINR of usersin the setS is set by taking

equation (2.45) with equality, i.e.βi = β̂i. Since, for users inS, β̂i ≤ β∗, the reduction

in target SINR reduces also the system interference and, thus, allows an increase in the

target SINR for the users not in the setS (to reduce distortion). The new (higher) target

SINR for users not inS is calculated by modifying equation (2.46) as

N
∑

i=1

i/∈S

(

1 +
1

γ2βi

)−1

= Ω = 1− ǫ−
N
∑

i=1
i∈S

(

1 +
1

γ2β̂i

)−1

. (2.47)

This equation is of the same form as (2.7) with the sum in the leftmost member having

N ′′ = N −N ′ terms. Therefore, we can apply again all the conclusions developed from
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(2.7). Based on this, the new target SINR for users not in the set S can be calculated

from (2.22) and (2.47) asβ(2)
i = min[β̂i, β

∗(2)], where the superscript denotes the second

pass through the algorithm that allocates target SINR, power and rate, and

β∗(2) =
1

γ2
(

N̂
Ω
− 1
)

. (2.48)

Sinceβ∗ < β∗(2), there might be users for whicĥβi < β∗(2), i.e. they may be

unable (based on channel conditions) to set the transmit power necessary to achieve

β∗(2). Therefore, the above procedure is repeated until all SINR have been allocated.

Finally, note that the target SINR renegotiation is such that all users are assigned the

same SINR (to reduce average distortion) except those in badchannel conditions which

are assigned their highest possible SINR (to minimize individual distortion).

2.3.3 Practical Considerations

So far we have considered that the source encoding rate couldbe any real number be-

tween zero andxM . In practice, it is to expect that the source encoding rate could

only take a discrete number of values. To reconcile this reality there are two possible

approaches.

The first approach is to consider that the achievable target SINRs also take a dis-

crete number of values, each of them associated with one specific source encoding rate

throughβi = 2Axi+B or βi = eAxi+B. Once the finalβ∗ has been found, all users that

had not been assigned a target SINRβ̂ < β∗ are assigned as target SINR (or equiva-

lently, source encoding rate) the one from the discrete set that is immediately larger than

β∗. Then, one user at a time is assigned the target SINR from the discrete set that is

immediately smaller thanβ∗. The order of user assignment is from the users in worst

channel condition to those in the best one. This order is because, by reducing the trans-
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mit power to those users transmitting at larger values, the general effect is to roughly

equalize transmit power and battery life among users. Aftereach assignment, condition

(2.7) is tested. If the test results in compliance with the condition the assignment process

stops and power assignment is calculated using (2.43). The overall result is that both

the optimal target SINR and source encoding rate are achieved as an average among all

calls, with users’ source encoding rate differing in at mostone discrete step. The only

drawback of this solution is that is slightly sub optimal because it narrowly departs from

the goal of assigning all users the same encoding rate. In what follows we will denote

this approach astype 1 rate adapted.

The second approach is to consider that each source encodingrate is associated with

a range of possible values for target SINR where overall distortion is minimum. To see

this consider that, for a given rate, as the SINR decreases the distortion increases up to

a point where a lower encoding rate with better channel protection would have lower

overall distortion (although it would always have larger source encoding distortion than

the other larger rate). Then, with this approach, all users that had not been assigned a

target SINRβ̂ < β∗ are assigned the same encoding rate: the one such thatβ∗ is in its

range of SINR values. Power assignment is calculated using (2.43). The small drawback

of this approach is that it might be the case that some assignments corresponds to a

larger contribution of channel induced errors than the quality goal. In what follows we

will denote this approach astype 2 rate adapted.

Both approaches presents some differences but we will see inSection 2.5 that both

have the same performance. Nevertheless, type 2 implementation may be less preferable

over some restricted values of target SINR because in these ranges the subjective quality

may be worse than the one for type 1 implementation due to channel induced distortion

exceeding the quality goal.
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2.4 Theoretical Performance Analysis

In this section we will develop a theoretical model to analyze the performance of our

system. To this end we take a snapshot of the system at some random time and analyze

the performance based on the observations of the system state and the random processes

involved at that particular time.

The average distortion per call depends on two phenomena. One is the distortion

of users who can set their transmit power at a level such that meets the optimal target

SINR assignment. The other is the distortion of users who areundergoing deep fades

and have to transmit at an SINR lower than the optimal one. Thepercentage of user

in either of the two scenarios will depend on different design parameters as well as the

environment the system is operating in. In order to obtain anstatistical model for the

behavior of our system we will assume that the iterative procedure to allocate SINR (as

described in section 2.3.2) takes place in one stage; i.e. all users that cannot achieve the

optimal SINR are assigned the target value as in equation (2.45), the rest of users are

assigned the SINR as in (2.22). The results obtained with this assumption should ap-

proximate the optimal ones if very few users are assigned non-optimal SINRs in passes

through the algorithm after the first one, and if there are notsignificant differences be-

tween the optimal target SINR in the first pass and those in following passes through

the algorithm. These assumptions are likely to occur in practice since in well design

systems the expected situation is that some few users would be in such a bad channel

that they would be unable to reach any target SINR and most of the rest would be in such

a good channel state that they could achieve any operationaltarget SINR. Therefore the

expected distortion̄D is

D̄N = E[D] = D∗
N

[

1− Pβ∗

dB

]

+

∫ β∗

dB

−∞
D(y) fβdB

(y) dy (2.49)
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whereD(βdB) is the distortion of a call undergoing an SINR ofβdB, βdB is the SINR

assignment (2.45) andβ∗
dB is the optimal SINR assignment, both measured in dBs, and

fβdB
(y) is the probability density function (pdf) ofβdB. In effect, βdB is the SINR

assigned to users that cannot achieve the optimal target value. The probability of this

event is, from (2.45),

Pβ∗

dB
= P [βdB < β∗

dB] = P [β < β∗] = P

[

h2 <
σ2(1− ǫ)

TM ǫγ2N

]

If we assume a channel fading model following a normalized (E[h2
i ] = 1) Rayleigh

distribution with users’ gains being mutually independent, h2 follows an exponential

distribution with parameterλ = 1 and

Pβ∗

dB
= 1− e

−λ 1−ǫ

Θγ2N , (2.50)

whereΘ = TMǫ/σ2. This equation (2.50) is a valuable design tool to computeǫ, given

a target valuePβ∗

dB
and the maximum transmit powerTM . Equation (2.50) allows to

control the percentage of users that cannot reach the targetSINR in relation to practical

design parameters such asTM andǫ.

Next, from (2.45), we have

βdB = −10 log

(

1

h2Θ
− γ2

)

, (2.51)

which is a function of the random variableh2. Assuming thatβdB ≫ 10 log γ2, which

is reasonable for practical values ofβdB andγ2, it can be shown that

fβdB
(y) = λ

ln 10

10
10(y−ΘdB)/10 e−λ10(y−ΘdB)/10

, (2.52)

whereΘdB = 10 log Θ.

In order to be able to obtain a close form solution for the integral in (2.49) we used

Taylor approximation to obtain,

fβdB
(y) ≈ λ

ln 10

10
10(y−ΘdB)/10

(

t0 + t1y +
t2
2

y2

)

, (2.53)

37



where

t0 = e−10−λΘdB/10

t1 = −λ
ln 10

10
10−Θ̂/10e−λ10−ΘdB/10

t2 = λ

(

ln 10

10

)2

10−ΘdB/10e−λ10−ΘdB/10 (

λ 10−ΘdB/10 − 1
)

.

Also, we represented the distortion-SINR (in dB) function by piecewise linear approxi-

mation, i.e.D(βdB) ≈ aiβdB +bi in the interval[βdBi
, β̂dBi+1

], for i = 0, 1, 2, · · · , m−1

andβdB0 = −∞, βdBm = β∗
dB. Since it is to expect thatD(βdB) is an smooth function

that saturates at both large and small values ofβdB, the approximation could be done

reasonable well for a small number of intervalsm. Therefore, (2.49) becomes

D̄N = λ

m−1
∑

i=1

∫ βdBi+1

βdBi

ln 10

10
10

y−ΘdB
10 (aiy + bi)

(

t0 + t1y + t2
y2

2

)

dy + D∗
Ne

−λ 1− ǫ
Θγ2N ,

(2.54)

2.4.1 Dynamic Calls Model

The equations developed so far depend on the optimal SINR assignmentβ∗ obtained

using equation (2.22) converted to dBs, which in turn depends on the number of users

in the systemN . Then, the expected distortion is a function ofN , as emphasized in

equation (2.54). The number of users in the system is itself arandom variable that

depends on the traffic within the cell under consideration. Assume that calls enter the

cell at a rateν following a Poisson arrival process (i.e. exponential interarrival time)

and that the random calls duration follow an exponential distribution with mean1/µ.

We also assume that the system implements a call admission control policy that limits

the maximum number of users to a maximumNL > NM . The value ofNL is set by

a QoS goalD̄(NL) = DM , DM being the maximum tolerable distortion limit. Users

38



NM−1 NM
LN

LN

0 2

−1)µ +1)(NM (NM3µ

1

2µ NMµ µ µ µ

ν ν ν ν ν ν ν

Pseudo congested state

Figure 2.5: Markov chain representation of theM/M/NL/NL traffic model.

that arrive when there are alreadyNL ongoing calls in the system are denied service and

considered lost. Therefore, the traffic model follows anM/M/NL/NL queuing model.

To facilitate its study, the queue can be represented in the form of a transition diagram

as the one shown in Figure 2.5.

From the theory ofM/M/NL/NL queues the steady-state probability that at any

time there are N users in the system is, [3]

qn = P (n = N) =
aN/N !
NL
∑

i=0

ai/i!

(2.55)

wherea = ν/µ is the offered load. Therefore, over a sufficiently large period of time

the average distortion per call will be

E
[

D̄n

]

=

NL
∑

n=0

D̄na
n/n!

NL
∑

i=0

ai/i!

(2.56)

where we have assumed that processes are ergodic and that thechannel gain process

is independent of the number of users in the system. Note that, as stated,E
[

D̄n

]

is a

function of the offered loada. In addition, when evaluating and designing the proposed
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system it is important to also consider the average length oftime that users will be oper-

ating at an encoding rate lower than the maximum. Consider the following definitions:

Definition 1 We callpseudo congestionstate the operational state when users are oper-

ating at a source rate lower than the maximum. This corresponds to the situation when

NM + 1 ≤ N ≤ NL. We refer to the average time in this state as theaverage pseudo

congestion duration, Tpc

Definition 2 We call the operational state when new incoming calls need tobe blocked

as congestionstate. This corresponds to the situation whenN = NL and a new call

arrives. The probability of this event is queuing theory’sblocking probability.

The following theorem states the two most important operating magnitudes related

to the pseudocongestion state:

Theorem 1 The average pseudo congestion duration is equal to

Tpc =

NL
∑

n=NM +1

(nµ)−1qn

NL
∑

n=NM+1

[

1− ν(nµ)−1
]

qn

, (2.57)

and the average distortion while in the pseudo-congested state is

E
[

D̄n

∣

∣

∣
NM < n ≤ NL

]

=

NL
∑

i=NM+1

D̄i qi

NL
∑

i=NM +1

qi

. (2.58)

Proof: The proof for the average pseudo congestion length,Tpc is an adapted version,

to theM/G/NL/NL queue, of the approach followed in [38] to find the average busy

time of anM/G/1. The present case differentiates from the referenced in that we want

40



nc=3

NM

NM+1

1c 2 3τ τ

τ

τ

Figure 2.6: One realization in pseudo congestion state to study the average pseudo con-

gestion length.

to find he expression for the average time the system spends ina group of contiguous

states (those betweenNM + 1 andNL). Also, in the present case average service times

change for each state. Specifically, the event of interest starts when there areNM calls

in the system and a new call arrives. The call is serviced as soon as it arrives. As shown

in figure 2.6, we assume that the call spends a timec in the system before departing.

During this timenc new calls arrive into the system. As in [38], we define a busy period

τi as a random variable equal to the time interval fromt = ti when there areN(ti) calls

in the system tot = ti + τi whenN(ti + τi) = N(ti) − 1 for the first time. A useful

property associated with busy periods is that the variations of the number of calls in

the system,N(t), during the time interval do not depend on the number of callsat the

beginning of the interval. Hence, as shown in figure 2.6, the period of interestτ , which

is itself a busy period, can be considered as the sum of the first arrived call service time

and as many independent and identically distributed busy periods as calls arrived while

servicing the first arrived call. Hence

τ = c + τ1 + τ2 + · · ·+ τnc . (2.59)

Note thatE[nc] = νE[c], whereE[c] is the average time to service a call (or equiva-

lently, the average time for any call to finish) when the system is operating in the pseudo
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congestion mode. Hence

E[c] =

NL
∑

n=NM+1

(nµ)−1qn

NL
∑

n=NM+1

qn

. (2.60)

Also, assuming independence betweennc and all busy periodsτi the expectation of the

random sum
∑nc

i=1 τi is

E

[

nc
∑

i=1

τi

]

= E[nc]E[τi] = νE[c]E[τ ]. (2.61)

Therefore, taking expectation of (2.59) and using (2.61) wegetE[τ ] = E[c]+νE[c]E[τ ].

Thus,

Tpc = E[τ ] =
E[c]

1− νE[c]
.

With E[c] calculated as in (2.60). After doing some algebraic operations we conclude

that

Tpc =

NL
∑

n=NM +1

(nµ)−1qn

NL
∑

n=NM+1

[

1− ν(nµ)−1
]

qn

, (2.62)

2

So far we have considered aM/M/NL/NL queuing model. As discussed, this model

represents a system where users are admitted up to a maximum number of ongoing

calls (NM or NL). This represents a strict limit on the number of users set based on

the average distortion. On one side this model better represents the problem of call

admission control from the network operator’s viewpoint, i.e. calls requesting service

when there are a certain maximum number of calls already being served are rejected
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in order to maintain the quality for the existing calls. On the other side, in CDMA

it is possible to accept more calls beyond the set limit. Thisis why researchers have

studied the Earlang capacity of CDMA systems following aM/M/∞ model in terms

of the numbers of calls that can be supported such that the outage probability remains

below some threshold, where outage occurs when the system exceeds some operational

parameter (typically related to interference in CDMA) [52], [43]. Therefore, it is of

interest to also study the impact of our approach on this other capacity measure.

In [52] the outage condition was defined in terms of the relation between the amount

of interference density and background noise level. Noticing again the equivalence be-

tween equations (2.5) and (2.7) with(4) and(6) in Ref. [43] it is straightforward to show

that the outage condition derived from the feasibility constraint (2.7) can be written as

N
∑

i=1

ωi > (1− ǫ)

(

1 +
1

γ2β

)

(2.63)

whereωi is a binary random variables that is equal to one when useri is in a talk spurt.

Let ρ = P (ωi = 1). Typically ρ = 0.4. If the outage probability is defined as

Pout = P

[

N
∑

i=1

ωi > (1− ǫ)

(

1 +
1

γ2β

)

]

, (2.64)

the Erlang capacity is the maximum offered load such that theoutage probability is kept

below some target, typically1% or 2%. Let the random variableZ =
∑N

i=1 ωi. Defining

K0 = (1− ǫ)

(

1 +
1

γ2β

)

, (2.65)

and using the characteristic function it can be shown that, [52],

Pout = e−ρν/µ
∞
∑

⌊K0⌋

(ρν/µ)k

k!
(2.66)

SinceK0 increases as the target SINRβ is reduced we can see that the outage probability

is reduced as source encoding rate is also reduced. Equivalently, for the same outage
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probability, as the source encoding rate is reduced it is possible to support larger offered

loads.

2.5 Performance Evaluation

In this chapter we have so far studied how to renegotiate the target SINR in a CDMA

system by reducing the source encoding rate so as to extend operation beyond the nom-

inal congestion point while maintaining a quality goal (that of keeping channel induced

distortion at a perceptually acceptable level). This reduction in source encoding rate

increases the end-to-end distortion in a smooth and controllable way by setting as ‘qual-

ity goal’ a limit to the channel induced distortion. This section is concerned with the

evaluation of the techniques studied in this chapter and theoverall performance of the

proposed system. Most of this evaluation will be based on simulations. Since the fo-

cus of the study is on real-time sources, we will consider that the system is carrying

conversational voice traffic. As input for the simulation tests, we used eighteen speech

sequences from the NIST speech corpus [47]. These sequenceswere chosen to repre-

sent different male and female speakers. We encoded these sequences using the GSM

AMR (Advance Multi-Rate) Narrowband Speech Encoder [12]. This encoder operates

with 20 ms frames, 5 ms look-ahead and includes an error concealment mode, which

was used in simulations. Of the eight possible encoding rates: 12.2, 10.2, 7.95, 7.4, 6.7,

5.9, 5.15 and 4.75 kbps, we used only the six highest ones.

To measure the end-to-end distortion of the speech sequences we choose a percep-

tually weighted log-spectral distortion measure calculated by numerical approximation

of the function

SD(Â(f), A(f)) =

√

√

√

√

∫

|WB(f)|2
∣

∣

∣

∣

∣

10 log
|Â(f)|2
|A(f)|2

∣

∣

∣

∣

∣

2

df, (2.67)
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whereA(f) and Â(f) are the FFT-approximated spectra of the original and the re-

constructed speech frames, respectively.WB(f) is a subjective sensitivity weighting

function defined by [9],

WB(f) =
1

25 + 75(1 + 1.4(f/1000)2)0.69
. (2.68)

This distortion is measured on a frame-by-frame basis and then averaged over all frames.

Log-spectral distortions are frequently used to objectively measure speech distortion.

They see their most common application in the evaluation of speech vocoders. In the

present case, we choose this measure not only because of its good mathematical prop-

erties but also because of its good correspondence to subjective perception [41]. Con-

trasting to the application of this distortion measure to the evaluation of vocoders, we

included in the measure computation outliers frames. This is to better capture the ef-

fects of channel errors. For design and to report our results, we used a normalized

distortion measure, computed as the ratio of the spectral distortions with that of the

speech sequence encoded at the highest rate (12.2kbps) in the absence of channel noise,

δ. Incidentally, we noted that both approximations to the distortion-rate function (using

f(x) = α2−2kx andf(x) = αx−k) were applicable, as discussed in section 2.3.

Traditionally, it is possible to increase the number of users in a CDMA network

by accepting an increase in interference. Therefore, as more users are admitted, the

decrease in the SINR reduces the source quality at the receiver due to the increase in

channel-induced errors. Our scheme presents an alternative to this approach. In our

scheme, as more users are admitted into the system the sourcedistortion also grows

but, in this case, due to the source rate reduction. Channel-induced distortion does not

change since its contribution to the end-to-end distortionis kept constant. This idea

of increasing the number of users by source encoding rate adaptation is highlighted

in our results in equations (2.25) and (2.26) for a distortion rate function of the form
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f(x) = α2−2kx and in equations (2.33) and (2.35) for the more tight distortion-rate

approximation of the formf(x) = αx−k. Figures 2.7 (a) and (b) show different real-

izations of equations (2.33) and (2.35) respectively, for different values of the parameter

A. The parameters used in this figure were obtained from simulations. Specifically, the

different values of parameter A are representative of thosevalues obtained from differ-

ent configurations of the channel encoder subunit, with and without concatenation of

fixed and variable rate convolutional encoder. The analysisof these results shows these

equations substantiate the claim that our system is able to increase capacity at the cost

of a controlled smooth degradation of reconstructed sourcequality. For example it is

possible to increase 70% the number of users for a 20% increase in average normalized

distortion.

We have already emphasized the fact that in our system the ability to adapt the source

encoding rate allows for a change in the target SINR so that the system feasibility con-

dition (2.7) holds. In a traditional CDMA system the lack of control over the source

encoding rate allows for two options when increasing the number of users. One option

is to change the target SINR so that (2.7) still holds. In thiscase the received quality

would eventually be dominated by channel-induced distortion because a traditional sys-

tem is not able to change the source encoding rate and change the target SINR without

increasing the proportion of channel errors to the end-to-end distortion. We will denote

this option astype 1 non-rate adapted. The second option is the one where a call ad-

mission algorithm is responsible for preventing that the number of users reaches a value

such that (2.7) does not hold any more. This system has no functionality to change the

target SINR. If more users enter the system the first effect would be the one following

the rapid approach of the denominator in the power assignment (2.43) to zero. As a con-

sequence, the power assignment to meet the target SINR significantly increases, as does
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the number of users that become limited by the maximum power constrain. Therefore,

as the number of users increases beyond the congestion point, those of them that see

their SINR reduced also significantly increases. When eventually the number of users is

such that the power assignments become a negative value, thesystem would have gone

beyond the controlled operation range and would assign the maximum transmit power to

all users; i.e. an assignment where each user is left by itself. Even when assigning max-

imum transmit power to all users, all of them will suffer fromincreasing degradation of

SINR. We will denote this option astype 2 non-rate adapted.

We evaluated the performance of our scheme by comparing it with an equivalent

CDMA system. This system is one that shares the same operational blocks and config-

uration as our system in Figure 2.1 with the difference that no adaptation is possible,

i.e. the system operates always at the maximum source encoding rate and correspond-

ing larger channel encoding rate. Operation beyond the congestion point is carried out

following either type 1 or type 2 non-rate adapted options asdescribed above. For all

the systems under consideration we assumed BPSK modulation. For channel error pro-

tection we choose a memory 4, puncturing period 8, mother code rate1/4 (variable rate

in our system) Rate-Compatible Punctured Convolutional (RCPC) code [19] decoded

with a soft Viterbi decoder. The constant frame size that is input into the spreader was

chosen to be equal to 500 bits.

Based on this configuration our source rate-adapted system can change between

six possible operating modes, one for each possible source encoder rate. Describing

the modes by pairs (source encoding rate, channel code rate)the six possible modes

are (12.2 kbps, 1/2), (10.2 kbps, 8/19), (7.95 kbps, 1/3), (7.4 kbps, 4/13), (6.7 kbps,

2/7) and (5.9 kbps, 1/4). Figure 2.8 shows the distortion as afunction of an AWGN

channel SNR for each of the six possible operating modes. We set the quality goal so
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that the end-to-end distortion was 3% more than the one for the same source encoding

rate with no channel errors. By approximating the interference to an AWGN process,

we found from simulations the target SINR for each mode so that the quality goal was

met. The equivalent traditional CDMA system is the one that always operates at the

maximum source encoding rate, i.e. it only uses the mode (12.2 kbps,1/2). The target

SINR for this mode was set with the same criteria detailed above. Assumingǫ = 0.05

andγ2 = 0.01, we set the maximum number of users that can be supported without

congestion toN̂M = 85. From this operating point we increased the number of users

by adapting the source rate (changing mode and target SINR) in our system and by

reducing the SINR in the equivalent CDMA system following the two above options.

We modeled the channel gain as having a normalized (E[h2
i ] = 1) Rayleigh distribution.

The limit on transmit power,TM , was set so that at the congestion point no more than

approximately 6% of users were unable to achieve the target SINR due to bad channel

conditions. We also assumed that the base station could perfectly estimate the users’

channel gains. For the cases we did simulations, we used Monte Carlo method setting

as stopping criteria a convergence in the relative error below 1%.

Figure 2.9 shows the simulations results. Our first observation is that there is no

statistical difference (less than 1 %) in the performance ofthe two types of rate-adapted

approaches described in Section 2.3.3. In addition, we can see that the proposed system

significantly outperforms the traditional approach for anyadmissible additional distor-

tion. Specifically, when compared to the type 1 non-adapted system, our system can ac-

cept 30% and 55% more users for 15% and 25% extra distortion, respectively and when

compared to the type 2 non-adapted system, the proposed system can accept 32% and

76% more users for 15% and 25% extra distortion, respectively. These distortion values

were of interest because they correspond to acceptable quality for telephone commu-
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nication when considering subjective perception and results variability due to channel

errors. Even larger gains are achievable if higher levels ofdistortion can be accepted. It

is also interesting to note that, as predicted, the type 2 traditional CDMA system under-

goes a steep increase in distortion shortly after the congestion point. In practical terms,

this observation justifies the choice for the congestion point since it follows the natural

guideline of accepting the largest possible number of userswhile avoiding the region of

steep increase in distortion. Even more, notice that this concept is also implied in the

definition of outage condition (2.63). In addition to this simulation results, Figure 2.9

includes results from the analysis in sections 2.3 and 2.4. The curve labeled “Approx-

imate” corresponds to equation (2.33) using parameters measured from the simulation.

We can see that this result is a very good one as an initial design prediction of the system

behavior that only requires knowledge of a few simple parameters from the source and

channel encoder units. The difference between this result and simulations are readily

justified by the fact that equation (2.33) considers all channel fadings equal to one and

that the distortion-rate function is a tight bound on the worst case performance of the

source encoder. In fact, examining this result, and in view of the simplified model it

represents, we can consider that the approximations for thedistortion-rate curve and

the SINR-source encoding rate function are sufficiently representative of the system be-

havior. Figure 2.9 also includes, labeled as “Theoretical”, the analytical prediction of

the system behavior using equation (2.54). Because the relative error between this re-

sult and the one from simulations never exceed 4% (and in manycases it is much less

than this value), we can say that equation (2.54) is a good representation of the system

behavior. Finally note that forNM users the distortion is1.07 instead of1.03. The dif-

ference is due to the users that are in deep fades and cannot achieve the target SINR.

This difference could be controlled at design time using hequations (2.50) and (2.54).
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When considering dynamic change over time in the number of ongoing calls and

assuming aM/M/NL/NL model, i.e. acceptance of calls up to a maximum number,

the performance of the rate adaptable system could be assessed by considering three el-

ements: expected distortion, average duration in pseudo congestion state and call block-

ing probability (probability that an incoming call cannot be provided with service). Us-

ing the same system setup as for the previous simulation, we show in Figure 2.10(a) the

analytical results for both the expected normalized distortion and expected normalized

distortion while in pseudo congested state as a function of offered loada = ν/µ. In

the model we assumed also an average call duration of three minutes andNL = 240

(maximum average normalized distortion equal to1.4 approximately, which we found

corresponds to the maximum acceptable distortion). As expected, as the offered load

increases, both expectations converge to the same value because the probability of the

system being in the pseudo congestion state increases with the offered load to a value

of 1. In Figure 2.10(b) we compare the blocking probability of our system with a non

adaptable system, i.e. one that is either congested or uncongested with no pseudoconges-

tion operation or increase in distortion due to source rate adaptation. For these systems,

calls are blocked when the number of users in the system isNM . As our system can

extend operation up toNL calls by reducing source encoding rate, it can support much

higher offered loads for the same level of blocking probability. The increase in offered

load depends on the maximum acceptable expected normalizeddistortion. For example,

the increase in offered load is 27% ifNL = 106 (acceptable maximum expected nor-

malized distortion is 1.1 or 10% additional distortion, which is almost imperceptible),

or 61% if NL = 132 (maximum distortion equal to 1.2, which is slightly perceptible),

or 205% ifNL = 140.

Figure 2.11 shows the average pseudocongestion duration. The figure does not show
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a range of offered load values as large as the others because the duration in the pseu-

docongestion state for large offered loads become “infinite”, meaning that the system

is permanently in the pseudo congestion state. This result is useful in highlighting the

fact that although the extension of operation beyond a congestion point comes at the

cost of increasing distortion (albeit being always controllable and often small), this in-

crease is only transient in many cases. As a complement to this figure, Figure 2.12

shows the expected normalized distortion while in pseudo congested state as a function

of the expected duration of time the system would spend each time it transitions into the

pseudocongestion state.

Figure 2.13 shows the Erlang capacity for each operating mode assuming aM/M/∞
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Figure 2.13: Erlang capacity for the different operating modes and end-to-end normal-

ized distortion for each operating mode.

model. Of course, a non adapted system coincides with the (12.2 Kbps, 1/2) mode. To

obtain the curves we used equation (2.66), changingK0 with each mode’s target SINR,

to find what was the maximum offered load so that the outage probability was1% and

2%. We assumedρ = 0.4. Figure 2.13 also includes, with scale on the right, the normal-

ized distortion corresponding to each operating mode. It can be seen that, depending on

the acceptable increase in distortion, the erlang capacitycould be notably increased with

values ranging from approximately40% increase in Erlang capacity for a distortion of

1.1 to approximately220% increase in Erlang capacity for a distortion of1.35. Roughly

speaking, results considering this model where comparableto the ones obtained with

theM/M/NL/NL model.

Finally, note that our system has the extra advantage that the increase in distor-
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tion is smooth, controllable and predictable. This is because, as the dominant process

is the reduction in source encoding rate, performance follows the D-R curve. By set-

ting the target SINR according to the quality goal, channel induced distortion is kept

small. In contrast, in a traditional CDMA approach, the increase in distortion is a con-

sequence of the increase in channel-induced errors. Here, the system behavior is much

less predictable and distortion is subjectively more annoying, because performance is

dominated by the random errors in the channel.

2.6 Conclusions

In this chapter we have presented a design for real-time communication in a CDMA

network that is able to dynamically extend system operationbeyond a congestion point

at the cost of smooth, controllable quality degradation. The basis of the idea lies in opti-

mally renegotiating the target SINRs with the goal of accommodating the real-time traf-

fic demands while minimizing average distortion. Target SINRs are adapted by changing

the source-encoding rate while the contribution of channel-induced distortion to overall

quality is kept below a fixed small threshold. This changes the phenomena by which

distortion in CDMA increases with the number of calls from the one dominated by the

growth in channel-induced errors to one that follows the source encoder distortion-rate

performance. From this viewpoint, a contribution in this chapter is the departure from

the established idea that quality settings of a real-time call are set at least for the duration

of the call. Our contributed idea of extending operation beyond congestion at the cost

of a smooth degradation of quality has very important application in many situations

where servicing a call is more important than guaranteeing an strict quality setting.

Another contribution in this chapter is the mathematical model and analysis of a sim-
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ple model where all source encoders are the same and operate in the same state, ideal

power control is assumed, processing gain is fixed and the channel is AWGN. The sim-

plicity of this approach allowed isolating the main elements of our design and focused

on the core elements affecting performance. The study was presented for two assumed

distortion-rate functions; one that is directly related with popular such functions in rate-

distortion theory, and another that was observed to be a better fit for complex practical

encoders. As part of this study, we were able to develop useful design equations that

permit predicting a fairly accurate behavior of our system.An important conclusion

from this approach is that our system is able to significantlyincrease capacity at the cost

of a moderate controlled smooth degradation of reconstructed source quality.

Next we showed how this study could be extended for situations where transmit

powers and channel gains are taken into considerations. Forthis case, SINR adaptation

is made in such a fashion that all users are assigned the same SINR (to reduce average

distortion) except those in bad channel conditions that areassigned their highest possible

SINR (to minimize individual distortion). Based on this model, and assuming a channel

dominated by Rayleigh fading, we were able to develop an expression that predicts the

performance of our system within a small relative error. In addition, we also discussed

practical considerations related to the practical design implementation.

The final part of our study is a traffic analysis where we developed expressions for

the performance of the system considering the offered load.As part of this study we

developed an expression for the average duration in the pseudo congestion state assum-

ing that the system behaves as anM/M/N/N queue. We also developed expressions to

calculate the Erlang capacity following the model used in [52] (M/M/∞ queue).

Based on the analytical study in this chapter, we presented new results that show

that it is possible to increase the number of serviced calls by a smooth reduction in
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quality. Numerical results from this analysis show that it is possible to increase 70% the

number of users for a 20% increase in average normalized distortion or that it is possible

to support at least a 100% increase in offered load for also a 20% additional expected

normalized distortion for both call admission models considered. Finally we compared

through simulations the proposed scheme with an equivalentsystem that cannot perform

adaptation. The results show that the proposed system can accept 30% and 55% or 32%

and 76% more users for 15% and 25% extra distortion, respectively depending on the

type of non adapted system.

We finally highlighted the fact that the rate adapted system is also preferable from

the subjective quality viewpoint due to the different process that dominate the increase

in distortion: a smooth and predictable increase followingthe source encoder distortion-

rate performance as opposed to a random process that increases distortion through chan-

nel induced error.
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Chapter 3

Resource Allocation Through Statistical Multiplexing of

Multimedia Calls in Variable Processing Gain

DS-CDMA

3.1 Introduction

In this chapter we will extend the study of resource allocation in CDMA systems carry-

ing real-time traffic. We now consider the most general problem of optimal adaptation

to resolve interference-generated congestion for an arbitrary set of source encoders with

arbitrary SINR goal and variable transmit bit rate (variable spreading factor). As im-

portant result, we show that our problem, as stated in a multiuser environment subject

to a system stability and power amplifier dynamic range constraint, is analogous to the

problem of efficient bit budget allocation to an arbitrary set of quantizers [45] and, more

importantly, can be further considered as the optimal source-controlled statistical mul-

tiplexing solution in CDMA. The overall result of the proposed solution is a flexible

system that inherently establishes an efficient tradeoff between end-to-end distortion

and number of conversational calls. Also important is the fact that the problem setup is

one of a true multimedia system, where our interpretation for this is a system where the
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distortion-rate performance of each source may change within two consecutive transmit

periods and also within two different calls.

In the previous chapter we used speech as real-time source. In this chapter we change

the type of real-time source we use as application example and in simulations and we

consider layered, embedded conversational video. This choice maintains our assumption

of an externally controllable source encoder and adds extranew challenges due to video

high and widely variable demand for network resources.

As we have seen in the previous chapter, our solution is a centralized scheme that

requires for the true multimedia setup addressed in this chapter the transmission of in-

formation about each source encoder distortion-rate performance. Clearly, this approach

might in principle add a notable overhead to the communication and become bandwidth-

inefficient. In this chapter we solve this potential problemby presenting a scheme that

compressed the distortion-rate information, i.e. reducedthe overhead to acceptable val-

ues, and does not affects performance.

Finally, we study the teletraffic characteristics of our system and its relation with

end-to-end distortion, traffic load and resource demand. Here we also design a simple

call admission control rule. We finish this chapter by summarizing the main conclusions

and contributions.

3.2 System Model

3.2.1 Model Description

Consider the uplink of a single cell, chip-sampled Direct-Sequence CDMA system with

bandwidthW . Assume that there areN users in the system, each carrying on an inde-

pendent conversational call. Figure 3.1 shows the block diagram of the main compo-
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Figure 3.1: Block diagram of the proposed system

nents of the proposed system. This system is similar to the one presented in 2. A block

of samples from a real-time source is encoded into asource frameusing an encoder with

the key property that it is possible to externally control the encoding rate. This means

that, for each useri, it is possible to choose the source encoding ratexi. We will assume

here that the possible choices for source encoding rate belong to a finite set. Each user

could be operating with a different encoder and although users will not change encoder

during a call, its distortion-rate (D-R) performance is allowed to change from frame to

frame based on the changing source statistics. A variable rate channel encoder provides

channel error protection for the source frame. In this chapter we are not going to impose

a restriction of equally protecting all sources-encoded bits. As will become clear later in

this chapter, the proposed design could be applied to certain Unequal Error Protection

(UEP) schemes. The channel encoder output, with a transmit bit rate equal tori, is fed

into the spreader for transmission. In contrast to the system studied in chapter 2, the

system in Figure 3.1 has a Variable Spreading Factor (VSF) spreader that can adapt the

call’s processing gain.
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Note that this system design allows for each user to dynamically switch between dif-

ferent combinations of a source and a channel coding rate. Each such combination will

form anoperating mode. A flow control protocol located at the base station allocates

to each mobile in the coverage area an operating mode and power, which are jointly

communicated to each mobile terminal so as to proceed with transmission. We will see

that its function is analogous to the one of a statistical multiplexer. In this chapter we

will focus on the design and analysis of this protocol. The design optimization crite-

ria will be that the allocation needs to minimize mean end-to-end distortion subject to

traffic demand. As was the case in chapter 2, we will require the allocation to satisfy a

quality goal. The quality goal represents a condition that ensures that that the commu-

nication will not be noticeably impaired by channel-introduced errors. In chapter 2 the

quality goal was specified as a limit on the proportion of channel-induced distortion to

the overall distortion. Alternatively, the quality goal could also be specified using the

Frame Error Rate (FER) or, as will be the case in this chapter,the Bit Error Rate (BER).

Because we consider that each call distortion-rate performance may change from one

transmission period to the next, each call needs to send information about this perfor-

mance to the flow control protocol. The flow control protocol performs optimal statisti-

cal multiplexing using the estimates of traffic demands fromeach call D-R performance

information. Therefore, during each transmission period,each mobile sends not only

the encoded source data sampled during the previous period but also information about

the source encoder D-R performance corresponding to the source data sampled during

the current period. In effect, transmission of a source frame is delayed by exactly one

frame duration with respect to the time when data was sampled. We will discuss later in

this work how the transmission overhead associated with theD-R information could be

kept small.
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3.2.2 Video Telephony Calls as Application Example

Consider the application of the proposed system in Figure 3.1 to provide a conversa-

tional video communication service. Assume that all mobileterminals use an MPEG4

FGS (Fine Granularity Scalability) coder [36] that is error-protected with Rate compat-

ible punctured convolutional (RCPC) codes [14]. Transmission parameters are chosen

so that the end-to-end quality is good for conversational communication, which means

that source encoding distortion should be kept as small as possible and channel-induced

errors should not introduce annoying effects. This case matches well our model since

the MPEG4 FGS encoder generates a two-layer (base and enhancement) source coded

bit stream. The enhancement layer bit stream is embedded, which easily allows control-

ling encoding bit rate. Furthermore, the D-R performance ofthis encoder (in fact, all

video codecs) may change for each call and frame because it depends on various char-

acteristics such as frame texture and type of temporal prediction (I or P) used and the

amount of motion in the video sequence. This is illustrated in Figure 3.2, which shows

the D-R performance of several representatives frames fromtwo QCIF, 30 frames per

seconds, video sequences: Foreman (with high motion) and Akiyo (with low motion).

Both sequence were encoded with 29 P frames between each I frame. The figure shows

results with and without channel errors. Channel errors were introduced at a BER equal

to 5 ⋊ 10−6 and 10−5 for the base and enhancement layers respectively. These val-

ues were chosen following thequality goalcriterion: after exhaustive simulations using

the MPEG4 FGS encoder with error resilience and concealmentwe noticed that these

BER values corresponds to the limit where the end-to-end subjective quality was good

(comparable to ‘toll’ quality in telephone communications) and channel errors did not

introduced annoying artifacts or impaired understandability of the source. Notice, then,

that in this case the quality goal is specified in terms of BER.Also note that the dif-
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Figure 3.2: Distortion-Rate performance for different video frames.

ferentiated target BER specification for the base and the enhancement layer constitute

in effect a simple but effective Unequal Error Protection scheme. Importantly, note in

Figure 3.2 that the D-R performance changes from frame to frame, being more stable for

sequences with low motion. Also, in most of the cases the contribution of channel errors

to the end-to-end distortion is negligible. Nevertheless,there are cases, as in Foreman’s

frame 303 (part of a camera panning section), where this is not true. In these cases,

channel-induced distortion is approximately the same for all encoding rates.

Overall, we can see that the application example just describes matches well the sys-

tem setup described in the previous section. Although we will keep the study in the rest

of this chapter general, in the sense of addressing real-time multimedia sources, we are
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occasionally used this well matched application as a reference in our study. Neverthe-

less, it is worth noticing that this is not the only application example that matches well

the system setup. In fact, the setup is general enough that itis applicable to many other

real-time communication examples. Finally, we note that, in this case, at 30 frames per

second the single-frame delay introduced in our system is completely acceptable for

conversational video.

3.3 CDMA Statistical Multiplexing Resource Allocation

and Flow Control

This section discusses the problem of allocating operatingmodes and power to all users

based on traffic load and subject to the conditions that average source distortion per call

is minimized, a maximum distortion is not exceeded and BER requirements are satisfied.

3.3.1 Multiuser Power and Rate Allocation

Assume the system setup in Section 3.2 with ideal power control, an additive, white,

Gaussian noise (AWGN) channel and that a matched filter at thereceiver. Then power

assignment and interference from other users are related tothe target SINR required by

each call as [29],

βi ≥
(W/ri) Pi

σ2 +
∑

j 6=i Pj
, i = 1, 2, · · · , N, (3.1)

wherePi is the power assigned to useri, as measured at the receiver, necessary to obtain

the target SINRβi andσ2 is the background noise variance, which accounts for intercell

interference [29]. The target SINRs are set based on the quality goal, i.e., following the

discussion in Section 3.2, the target SINRs are set so as to not exceed the BER threshold
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that limits channel errors to an acceptable magnitude.W/ri is the processing gain. If it

is possible to find feasible power assignments that satisfiestheN inequalities (3.1) with

equality, then these assignments minimizes the sum of the transmitted powers, [42].

Taking (3.1) as an equality and following the same procedureas in chapter 2, Equations

(2.3)-(2.5), and [42] the power assignment is

Pi =
Ψiσ

2

1−∑N
j=1 Ψj

, i = 1, 2, · · · , N. (3.2)

where, again,

Ψi =
(

1 +
W

riβi

)−1

. (3.3)

As in 2, from (3.2) we can derive the following condition thatlimits the number of

simultaneous serviced calls
N
∑

i=1

Ψi ≤ 1− ǫ, (3.4)

whereǫ is a small positive number set during design. Recall from chapter 2 that (3.4)

represents limitations on the power amplifier dynamic rangeand system stability.

3.3.2 Source Encoder

We want the same optimization criterion for the flow control protocol adaptation rule as

the one used in chapter 2, i.e. the adaptation needs to minimizes the average distortion

per call. Letfi(xi) be the distortion-rate (D-R) performance function of theith user

source encoder at ratexi. Then, the optimization goal can be equivalently written as

min
x1,x2,··· ,xN

N
∑

i=1

fi(xi), (3.5)

Typically, fi(xi) would be a decreasing function. Since it is possible that goal (3.5)

might be achieved with some users undergoing excessive distortion, we will limit each
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user’s source rate to some minimum value. On the other extreme, fi(xi) is minimum

when the rate is maximum; i.e.xi = xMi
. Also, as in chapter 2, we assumefi(xi) =

αi2
−kixi. Since now we allow the processing gain to change, the channel coding rate

is not automatically specified once the source encoding rateis know. Yet, the channel

coding rate is specified once both the source encoding rate and the transmit bit rate

(equivalently the processing) are know. Therefore, the optimization problem can be

written as,

min
x1,r1,x2,r2,··· ,xN ,rN

N
∑

i=1

fi(xi) subject to
N
∑

i=1

Ψi(βi, ri) ≤ 1− ǫ, (3.6)

In addition, as discussed in Section 3.2, channel-induced distortion need to be consid-

ered. When the design follows a quality goal that aims at preventing annoying channel

impairments, in most of the cases this distortion can be neglected. Nevertheless, this

distortion could be numerically significant in some cases ofvideo sources, as is the case

in our application example. Because in these cases the channel-induced distortion is in-

dependent of the source encoding rate, i.e. it is approximately constant for all encoding

rates with a magnitude that is made acceptable by system design, we can ignore it from

our formulation without loss of optimality. Note that meeting the quality goal is implied

in the constraint of (3.6) sinceΨi depends on the target SINR.

3.3.3 CDMA Statistical Multiplexing, Flow Control and Resource

Allocation

Next, we state the optimization problem in a form that highlights its close relation to a

family of problems in source encoding research.

Proposition 5 Let bi be useri’s transmit rate and target SINR allocation pair(ri, βi).

Then, the problem (3.6) of optimal operating mode and power allocation to minimize
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average end-to-end distortion in the uplink of multiuser, single cell CDMA system with

an arbitrary set of source encoders can be stated as

min
b1,b2,··· ,bN

N
∑

i=1

Di(bi), s.t.
N
∑

i=1

Ψi(bi) ≤ 1− ǫ, (3.7)

whereDi is a distortion function.

Proof: The proof shows the equivalence between source and channel rate (operating

modes) and the pairbi = (ri, βi) and the functional relation betweenbi andDi. From its

definition, clearlyΨi is a function of onlyri andβi. Let Di be user’si source encoder

distortion, which depends only on useri’s source encoder ratexi when the target SINR

is set to prevent annoying channel impairment (as discussedin the previous section).

Consider that in our setup each call’s transmit bit rate is divided between source coding

and channel error protection bit rates. Then, given any two of useri’s source encoding,

channel coding and transmit bit rate, the third is automatically determined. This is

because the natural allocation guideline is to maximize thetransmit bit rate utilization

by maximizing source encoding rate or minimizing channel coding rate (maximizing

error protection). Also, ifβi is given, useri’s channel coding rate is automatically

determined as the one that provides enough error protectionto achieve the quality goal.

Therefore, if user’si target SINR is changed, then the channel rate will need to be

changed so as to maintain the quality goal andxi will change for a fixedri. Also, if ri is

changed,xi will need to be changed for a fixedβi. In summary, the source coding rate

xi implicitly depends onri andβi through the purpose of maintaining a quality goal and

maximizing transmit bit rate utilization. Even more, each pair bi has associated only one

valueDi(bi). Therefore,Di is a function ofbi. 2

The problem stated in (3.7) is analogous to the problem studied in [45] of allocating

a bit quotaRb to an arbitrary set of quantizers. The problem is also analogous to the
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one studied in [4] of allocating a fixed bandwidth among a number of users in a TDMA

network. This analogies allows us to note thatΨi can be considered as theequivalent

bandwidthassigned to useri out of the total1 − ǫ. This definition is consistent to the

definition of equivalent bandwidth in [8] and to the definition of effective interference

in [48]. In fact the solution to (3.7) studied next can be considered as the solution to

effective bandwidth assignment between real-time calls ina multiuser CDMA system,

which is unsolved in [8]. Clearly, there is a direct analogy between problem (3.7) and

statistical multiplexing. In essence, Proposition 5 states that the problem of modes and

power allocation in the uplink of CDMA can be considered as performing statistical

multiplexing in a multiuser CDMA setup. Furthermore, the formulation as presented is

general but powerful enough that it allows including other related resource allocation

problems in CDMA such as the ones studied in [26, 27]. The problem (3.7) differs from

the one in [45] in that distortion now is a function of two variables, namely transmit

bit rate and target SINR (as opposed to source bit rate only) and that the constraint

function is the sum of functions of transmit bit rate and target SINR instead of just sum

of allocated bits. We next extend the results in [45] and apply them to optimally solve

(3.7).

Let S(i)
r andS(i)

β be the finite set of all useri’s possible transmit rates and target

SINRs, respectively. LetS(i) be the set of all useri’s possible allocation vectorsbi =

(ri, βi) andS be the set of all possible allocationsB = {b1, b2, · · · , bN}. Let H(B) be

some real-valued function, called the objective function of B, defined for allB ∈ S.

Let R(B) be some real-valued function, called the constraint function ofB, defined for

all B ∈ S.

Theorem 2 There exists aλ ≥ 0 such that the optimal solution,B∗(λ), to the constraint
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problem

min
B∈S

H(B), subject toR(B) ≤ Rc,

with R(B∗(λ)) = Rc is the solution to the unconstraint problemmin
B∈S
{H(B) + λR(B)}

also.

Proof: The proof is in [45]. We next summarize the proof to emphasizethat it still holds

for the case of the problem under study here.

H(B∗) + λR(B∗) ≤ H(B) + λR(B)

for all B in S. Then, we have

H(B∗)−H(B) ≤ λR(B)− λR(B∗),

which is true for allB in S. Thus, (3.8) is true for allB in the subset ofS, S∗ = {B :

R(B∗) ≤ R(B∗)}. Sinceλ ≥ 0

H(B∗)−H(B) ≤ 0.

This means thatB∗ is the solution to the constrained problem withRc = R(B∗). 2

For the particular case of problem (3.7) we can say the following: Let H(B) and

R(B) be of the formH(B) =
∑N

i=1 Di(bi) andR(B) =
∑N

i=1 Ψi(bi), respectively.

Then, the unconstrained problemminB∈S {H(B) + λR(B)}, λ ≥ 0, can be written as

min
B∈S

{

N
∑

i=1

Di(bi) + λ

N
∑

i=1

Ψi(bi)
}

. (3.8)

Note that the solutionB∗(λ) = {b∗1(λ), · · · , b∗N (λ)} can be obtained by minimizing each

term of the sum in the unconstrained problem separately, i.e. b∗k(λ) solves

min
bi∈S(i)

{Di(bi) + λΨi(bi)} . (3.9)
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Theorem 3 LetDi(bi) andΨi(bi) be real-valued functions over some closed domain on

the real line. Letb∗i (λ1) be a solution tominbi∈S {Di(bi) + λ1Ψi(bi)} and letb∗i (λ2) be

a solution tominbi∈S {Di(bi) + λ2Ψi(bi)}. Then for any functionDi(bi),

0 ≤ (λ2 − λ1)
(

Ψi

(

b∗i (λ1)
)

−Ψi

(

b∗i (λ2)
)

)

.

Proof: Following [45], by definition ofb∗i (λ1)) andb∗i (λ2)), we have

Di(b
∗
i (λ2)) + λ2Ψi(b

∗
i (λ2)) ≤ Di(b

∗
i (λ1)) + λ2Ψi(b

∗
i (λ1))

Di(b
∗
i (λ1)) + λ1Ψi(b

∗
i (λ1)) ≤ Di(b

∗
i (λ2)) + λ1Ψi(b

∗
i (λ2)).

From this we get,

Di(b
∗
i (λ1))−Di(b

∗
i (λ2)) ≤ λ1 [Ψi(b

∗
i (λ2))−Ψi(b

∗
i (λ1))]

Di(b
∗
i (λ2))−Di(b

∗
i (λ1)) ≤ λ2 [Ψi(b

∗
i (λ1))−Ψi(b

∗
i (λ2))] .

Adding both sides of these inequalities proves the theorem.2

Corollary 1 The solutionsΨi(b
∗
i (λ)), for all i, and the corresponding constraint func-

tion R∗(λ) =
∑N

i=1 Ψi(b
∗
i (λ)) are monotonically nonincreasing withλ, i.e. if λ2 ≥

λ1 > 0, thenΨi(b
∗
i (λ2)) ≤ Ψi(b

∗
i (λ1)), andR∗(λ2) ≤ R∗(λ1).

Proof: Theorem 3 says that asλ increases, the minimizing value forb(λ) makes the

resultingΨi(b
∗
i (λ)) either increase or stay the same. This proofs the corollary for

Ψi(b
∗
i (λ)) and hence for the sumR∗(λ) =

∑N
i=1 Ψi(b

∗
i (λ)). 2

Figure 3.3 shows a typical behavior of
∑N

i=1 Ψi(bi) as a function ofλ. The curve in

this figure was obtained from actual simulations, which are later detailed in this chapter.

We next use the theory just presented to develop two algorithms that solved problem

(3.7) by optimally allocating resources among calls. We first describe the simpler, but
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also important, case where the resource that is adapted is the transmit bit rate while

the target SINR is kept unchanged. After this we discuss the general case where both

transmit bit rate and target SINR are jointly adapted.

3.3.4 Flow Control by Transmit Bit Rate Adaptation

In this case, channel coding rate and, consequently, targetSINR are assumed fixed, thus

bi = ri. As discussed in Section 3.2 we assume that each call’s D-R performance is

known at the base station. Based on this information, the flowcontrol protocol will

choose, for each call, a transmit bit rate,ri = r̂i, large enough so as to reach a target

small distortion. If the network is lightly loaded and the total requests from all calls

meets (3.4), all users are allocated resources so that they operate with best quality. If the

network is congested ((3.4) fails) then a congestion resolution algorithm needs to solve

(3.7). Because the problem in Proposition 5 is analogous to the ones studied in [4] and

[45], we relied on these works to find a low-complexity greedybut optimal solution.

Given a finite set of available transmit ratesr = {rt1 , rt2 , · · · , rtM}, we define∆(j)
i ,

the ith incremental distortion associated with callj , as the distortion reduction caused

by increasing the transmit rate one discrete step∆q = rti+1
− rti , i.e.,

∆
(j)
i = Dj

(

Ψj(rti+1
)
)

−Dj (Ψj(rti)) .

The algorithm is based on a table associated with the incremental distortions. The table

stores all pairs of indices(j, i) in increasing order of their associated incremental distor-

tions, while also respecting each user’s rate reduction order. The pair(j1, i1) precedes in

the table the pair(j2, i2) if i1 > i2 andj1 = j2, or if ∆
(j1)
i1

< ∆
(j2)
i2

andj1 6= j2. There is

a ”0” in the first location of the table. In the second locationof the table, there is a pair

(j, i) corresponding to the smallest possible incremental distortion. There is a pointerp

that addresses a location in the table.
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The overflow resolution algorithm proceeds through iterations that we denote with

the indexm. For themth iteration, we letr(m)
i andΨ

(m)
i denote transmit rate and ef-

fective bandwidth associated with theith call, respectively. Also, letS(m) =
∑N

i=1 Ψ
(m)
i

denote the total effective bandwidth assigned at themth iteration. The overflow resolu-

tion algorithm is described next.

Algorithm 1:

1. Initialize the variables: m = 0, r
(0)
i = r̂i, Ψ

(0)
i (r̂i) for i = 1, 2, · · · , N , and

S
(0) =

∑N
i=1 Ψ

(0)
i . Set the pointer p = 1 to the first entry in the table.

2. If S
(m) ≤ 1− ǫ then there is no overflow, and so GO TO STEP 4; else, an

overflow has occurred, and so GO TO STEP 3.

3. Set p ← p + 1. If p exceeds the table length, it is not possible to perform

allocation subject to the minimum per-user distortion constraint, then EXIT

and report OUTAGE. Else, the pth entry of the table is a pair (j, i), indicating

that to optimally resolve the overflow, the transmit rate of the jth user need

to be updated, i.e. for r
(m)
j = rti+1

, r
(m+1)
j ← rti and r

(m+1)
l ← r

(m)
l for l 6= j.

Update Ψ
(m+1)
i and S

(m+1). GO TO STEP 2 and proceed with next iteration.

4. EXIT STEP: if S
(m) < 1 − ǫ, it means that the network is not fully loaded.

Also, if p 6= 1, it means that overflow has occurred and has been resolved.

The following theorem demonstrates that this greedy algorithm is optimal.

Theorem 4 If the D-R functionsDi(ri) are convex and decreasing (as is commonly the

case), then the proposed greedy algorithm for overflow resolution provides the optimal

rate assignment minimizing the average distortion per call.
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Proof: We establish this assertion by mathematical induction. Since initialization as-

sures the minimum absolute average distortion, the claim holds true form = 1. As-

suming optimal assignment at themth iteration, we prove that at iterationm + 1 the

algorithm is optimal too. To do this, it suffices to show that the rate reduction in the

optimal assignment in themth step will not be required for the optimal assignment in

them + 1st step. In other words, the optimal rate assigned to each call at themth step is

no less than the optimal rate assigned to each call at them + 1st step.

If βi is fixed, so is the amount of error protection (channel codingrate) necessary to

achieve the quality goal. Also, in the most general setting it is possible to use an unequal

error protection (UEP) scheme where different source-encoded bits receive different

error protection. In this case, the source encoding rate is the result of an affine mapping

xi =
∑

k xik =
∑

k Rikrik, whereRik is the fixed channel coding rate for each group

of source bits andrik is the corresponding transmit bit rate withri =
∑

k rik. Also,

it is assumed that the functionshk(ri) that specifies how a change inri affects each

rik are of the formrik = hkri + ro
ik, wherero

ik ≥ 0, hk ≥ 0 and
∑

k hk = 1. Then,

Di(ri) = αi2
−ki(ri

∑

k hkRik+
∑

k ro
ikRik) is a convex function, decreasing inri. We have

asserted that the solution to the constrained problem (3.7)can be obtained by minimizing

each term of the sum separately, i.e.,

min
ri

{Di(ri) + λΨi(ri)} , i = 1, 2, · · · , N. (3.10)

It is important to notice that the sameλ appears for all the terms independently ofi

and thatΨi(ri) is increasing. At themth step of the algorithm, the network obtains

the optimal solution for a total assigned equivalent bandwidth S
(m). Equivalently, from

Theorem 2, at themth step of the algorithm, there exists a positiveλ(m) corresponding

to min
{

∑N
i=1 Di(r

(m)
i ) + λ(m)

∑N
i=1 Ψi(r

(m)
i )

}

. At the next step, if overflow persist,

the rate assignment to at least one of the calls has to decrease so as to lower its equiv-
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alent bandwidth. Because, from Corollary 1, the optimal equivalent bandwidth for this

rate assignment is a nonincreasing function of the value ofλ(m+1), this suggests that

λ(m+1) > λ(m). However,λ(m+1) is the same for all calls, independently ofi. There-

fore, as the algorithm proceeds, the Lagrange multiplier coefficient increases or remains

unchanged, and the optimal rates (and equivalent bandwidths) for all calls decrease or

remain unchanged. As a result, to achieve the optimal solution in a given step, the

algorithm never needs to increase back the rate assignment to a call whose rate was re-

duced in previous steps; therefore, the proposed iterativegreedy algorithm provides the

optimal solution. 2

3.3.5 Flow Control by Transmit Bit Rate and Target SINR Adapta-

tion

This case requires a different algorithm than the one just described because it cannot be

asserted thatD(bi) is convex and decreasing on the pairbi. Nevertheless, based on the

theory discussed above, we describe next an iterative algorithm to optimally allocate the

pairsbi = (ri, βi) to all calls, where we use againm as the iteration index.

Algorithm 2:

1. Initialize λ(0) with some positive number.

2. Solve each of the N unconstrained problems

min
bi(λ(m))

{

Di(bi) + λ(m)Ψi(bi)
}

, (3.11)

and update S
(m) =

∑N
i=1 Ψi

(

bi(λ
(m))

)

.

3. (a) If S
(m) > 1− ǫ and stopping criteria is false then update λ(m+1) such

that λ(m+1) > λ(m), so that the effective interferences, Ψi(bi), will be

reduced. GO TO STEP 2.
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(b) If S
(m) < 1− ǫ and stopping criteria is false then update λ(m+1) such

that λ(m+1) < λ(m), so that the effective interferences, Ψi(bi), will be

increased. GO TO STEP 2.

4. Stopping criteria: Iterations stops whenever one of the following occurs: (a)

S
(m) is sufficiently close to, but less than, 1 − ǫ, this is optimal allocation

in the presence of congestion; (b) S
(m) < 1 − ǫ and all allocations bis cor-

respond to the threshold minimum target distortion, this corresponds to a

lightly loaded network; (c) S
(m) > 1− ǫ and all allocations bis correspond to

the maximum allowable distortion, this corresponds to an outage condition

and could be avoided with high probability by proper admission control.

Note that in practice both the number of available transmit bit rates and target SINRs

are finite and typically small. Therefore, each minimization in step 2 is easily solved

by exhaustive search, where each possibleΨi(bi) could be calculated offline and each

Di(bi) is essentially the D-R performance information communicated to the base station.

For example, if there are eight possible channel coding rates and target SINRs each, the

problem reduces to choosing the smallest element in a matrixresulting from adding two

8-by-8 matrices. The updates ofλ in steps 3a and 3b can be done following any of the

methods suggested in the literature ([45]), in our cased we used a simple bisection.

Finally, the following algorithm discusses optimality of algorithm 2.

Theorem 5 Algorithm 2 is optimum.

Proof: The proof is straightforward by noticing that the algorithm performs an iterative

search for the allocation that meets the optimality criteria in Theorem 2.2
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3.3.6 Rate-Distortion Data Overhead

As highlighted in Section 3.2, the centralized algorithms just described need an added

communication overhead to learn each call D-R performance information. This over-

head is clearly largest in the case of Algorithm 2 because it needs the distortion values

corresponding to each possible pairbi of transmit bit rate and target SINR. This also

adds to the complexity of mobile terminal’s encoder since itneeds to compute each of

these distortion values (this is a problem in a distributed algorithm also). We solved

both problems by summarizing the D-R performance. Instead of sending the distortion

and rate data for each operating mode, each mobile sends the following: one reference

encoding bit rate and three distortion values at predefined bit rate points. These three

predefined bit rate points are separated from the reference encoding bit rate (the one

that is sent) by fixed bit rate values which are suitable picked to represent high, medium

and low distortion values The base station use the transmitted data to first calculate the

encoding rate of the three distortion points and then approximates two curves of the

form f(x) = α2−kx, one for the high distortion section of the D-R performance using

the high and medium bit rate distortion points and another for the low distortion sec-

tion using the low and medium bit rate distortion points. Therest of the distortion-rate

points are calculated by interpolation using the approximate D-R curves. As we shall

see in Section 3.5, this scheme allows a representation for the D-R performance that has

low-overhead, involves computing only three distortion points at the mobile station and

that does not degrades performance of the overall allocation algorithm .
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3.4 Analysis for Dynamic Call Traffic and Admission

Control

So far we have considered a static network model where the number of callsN is fixed.

In reality, this number is a random variable that depends on the traffic in the cell under

consideration. Therefore, we want next to study the proposed scheme when the num-

ber of calls dynamically changes over time and, based on this, address the problem of

admission control.

We assume that calls enter the cell at a rateν following a Poisson arrival process

and that the random calls duration follow an exponential distribution with mean1/µ.

As discussed in chapter 2 one possible approach is to model the CDMA network as an

M/M/∞ queue and base admission control on the outage probability,where outage

occurs when the system exceeds some operational parameter.In particular, the failure

of (3.4) has been typically considered as an outage condition [43, 52]. One key feature

of our system is that it prevents condition (3.4) from failing at the cost of a smooth in-

creased in end-to-end distortion. Therefore, the relevantoperation for the call admission

control is to limit the maximum number of calls to a maximumNL, whereNL is set so

that D̄NL
= DM , DM being the maximum tolerable expected distortion andD̄N the

expected distortion per call when there areN calls. Then, considering the operational

principles of the proposed scheme, for the purpose of call admission control it is more

pertinent to model the network as aM/M/NL/NL blocking system. Note, again, that

this model better represents the problem of call admission control from the network

operator’s viewpoint, because it rejects new calls once a maximum number has been

reached so as to maintain quality for the existing calls.

This queue model can be represented in the form of a state transition diagram as in
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Figure 3.4: Markov chain representation of theM/M/NL/NL traffic model.

Figure 3.4. From queuing theory, the steady-state probability that there are N calls in

the network is, [3],

qn
∆
= P

[

n = N
]

=
φN

∑NL

i=0 φi

,

whereφi = ρi/i! andρ = ν/µ is the offered load. Therefore, assuming ergodic pro-

cesses, over a sufficiently large period of time the average distortion per call as a function

of the offered load will be

E
[

D̄n

]

=

∑NL

n=0 D̄nφn
∑NL

i=0 φi

. (3.12)

In contrast to our study in chapter 2, the fact that we are considering arbitrary source

encoders, coupled with the use of our algorithms to allocateresources, makes it difficult

to obtain a close form solution for̄DN . In our simulations we address this issue by

estimatingD̄N from Monte Carlo simulations.

As in the study in Section 2.4, it is possible to recognize three different operating

conditions in our system. When the system is lightly loaded and it is possible to allocate

resources to all users such that they all meet their target distortion, the system would

be operating in a congestion-free situation. New calls arriving when there areNL calls

in the network are denied serviced and dropped from the system. This corresponds to
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network congestion. The third operating condition is that where new calls are accepted

but at least one call cannot be granted resources to operate at the target distortion. We

called this state aspseudo congestion state. Note that there is a fundamental difference

between the pseudo congestion state in this case and the one in chapter 2. Because now

we are dealing with an arbitrary set of source coders, in the pseudo congestion state

some calls may still be operating at target distortion (while the rest not). In contrast,

because the setup in chapter 2 assumed all source encoders sharing the same state and

D-R performance, in the pseudo congestion state all calls were operating above target

distortion. Based on this discussion, consider the following definitions

Definition 3 We callpseudo congestion statethe operational state when one or more

users are operating at a source rate lower than the one corresponding to the target

distortion goal. With

Pout
∆
= P

[

N
∑

i=1

Ψi(b̂i) > 1− ǫ

]

, (3.13)

the steady state probability of this state is given by

Psc =

NL
∑

N=0

Pout qn =

∑NL

N=0 PoutφN
∑NL

i=0 φi

, (3.14)

whereb̂i is user’i allocation such that it meets its target distortion.

Definition 4 We call the operational state when new incoming calls need tobe blocked

as congestion state. This corresponds to the situation whenN = NL and a new call

arrives. The probability of this event is queuing theory’sblocking probability. From the

PASTA property [3], this probability is given byPb = qNL
.

From these definitions we see that the maximum number of usersand the blocking

probability can be determined from the maximum tolerable expected distortion. Also
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the probability of operating in the pseudo congestion statedepends on the traffic load

and each user’s target distortion and source encoder D-R performance. Note that in

(3.14),Pout corresponds to the outage probability inM/M/∞ models, [43, 52]. The

outage states in [43, 52] have now been divided into a a congestion state and a pseudo

congestion state, where new calls are still admitted, with the probability of at least one

call operating with a distortion larger than the minimum target given byPsc. We can see

that the system studied in this chapter performs statistical multiplexing in such a way

that it avoids congestion (or outage) by smoothly increasing source distortion up to the

point where a maximum expected distortion is reached. Further discussion of this issue,

for the specific case of real time MPEG4 FGS video, follows in the next section.

3.5 Performance Evaluation

We evaluated the performance of the designs studied in this chapter through Monte

Carlo simulations. As discussed in Section 3.2.2, a CDMA system carrying video calls

is an application that matches very well our problem setup. Because of this, we based

the simulations on this application case. We designed the simulation so as to have a

system that could support a reasonable number of video callsat good quality. Roughly

half of the calls used the “Foreman” sequence and the rest used “Akiyo”, both with the

same characteristics as described in Section 3.2.2. To assure that all user’s sequences

where desynchronized with respect to the others, each sequence started at a random

frame and were assumed to be a circular loop, i.e. the first frame followed the last frame

once the end of a sequence was reached. The sequences were encoded using a MPEG4

FGS coder [36]. In order for the source encoded sequence to betransmitted over a

noisy channel we divided, as error resiliency feature, the bit stream into packets. Those

84



packets for which errors were detected at the receiver afterthe error control coding block

were discarded and replaced using an error concealment scheme. The error concealment

replaced lost packets by using the corresponding correctlyreceived previously packet

and then applying motion compensation as necessary. For variable-rate channel coder

we choose an RCPC code with mother code rate 1/4, K=9 and puncturing period 8

[14]. We assumed system bandwidth equal to 40 Mhz. with available transmit rates of

5000, 2500, 1250, 625, 312.5, 156.25, 78.125 and 39.0625 Kbps. This corresponds to a

choice for possible variable spreading factors similar to the OVSF (Orthogonal Variable

Spreading Factor) chosen for the UMTS standard [54]. Each user requested resources

so as to achieve a target PSNR of at least 36 dB, correspondingto a reasonable good

quality for both high and low motion sequences. As explainedin Section 3.2.2, we set

a target BER of5 ⋊ 10−6 for the base layer and10−5 for the enhancement layer, which

corresponds to a simple form of unequal error protection. For the solutions that could

adapt the target SINR, the possible values were 1.93, 1.76, 1.63, 1.47, 1.35, 1.16,1 and

0.81 dBs. For these target SINRs and in order to guarantee thetarget channel BER, the

corresponding available channel coding rates were 8/16, 8/17, 8/18, 8/20, 8/21, 8/24,

8/27 and 8/32 for the base layer and 8/16, 8/17, 8/18, 8/19, 8/20, 8/23, 8/26 and 8/31

for the enhancement layer. Other simulations parameters were σ2 = 10−6 andǫ = .1,

unless otherwise noted.

We evaluated three different systems: one where the calls request resources so as

to achieve some quality level but cannot perform any adaptation, another where calls

can change transmit rate by changing source encoding rate with a fixed target SINR

using Algorithm 1 and a third system where both transmit rateand target SINR are

adapted and are allocated using Algorithm 2. We denoted the three systems as “No

Adaptation”, “Transmit Rate Adaptation” and “Full Adaptation”, respectively. For both
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the system with no adaptation and the one with only transmit rate adaptation we used

the highest possible channel coding rate. Figure 3.5 shows the simulation result, where

we gradually increased the number of users in the system and we measured the PSNR

averaged over all calls and frames. Note how the performanceof the system with no

adaptation rapidly degrades as the number of calls increases. This behavior, which is

justified by the inability of this system to perform any adaptation, have been already

observed in [8]. Here, as more users are admitted it eventually becomes impossible to

set the powers at a level such that the target SINRs and condition (3.4) are all met. Thus,

each mobile user becomes constrained by the power amplifier dynamic range limit, their

SINRs decrease and quality degrades due to the increase in BER. Simulations for this

system stopped at 19 calls because at that point the degradation was so severe that the

error concealment scheme essentially kept reproducing a frozen frame with no change

in the sequence. Also, we can see in Figure 3.5 that both adapted systems are able to

achieve both the target SINR and condition (3.4) for a largernumber of users and that

as more user are admitted into the system the distortion increases smoothly allowing an

increase of roughly three times in the number of calls. In addition, we can see that the

“Full Adaptation” system outperforms the “Transmit Rate Adaptation” one by roughly

0.8 dB in most of the operating points.

In Section 3.3.6 we addressed how to reduce the communication overhead necessary

to send each call’s source encoder D-R data. Figure 3.5 also includes, labeled as “Com-

pressed D-R data”, the simulations results for the same system with full adaptation but

with the D-R performance information sent using the low overhead scheme described in

Section 3.3.6. In this case the required overhead is equal toonly five bytes per frame,

one byte for each of the three distortion values and two to represents the number of bits

in the base layer (rate data). In contrast, without implementing any scheme it would have
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Figure 3.5: Comparison of three CDMA systems supporting video calls
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been necessary to send a total of 64 D-R values per frame because in our setup there are

eight possible channel coding rates and eight possible target SINRs. During simulations

we noted that although in some cases the error in estimating distortion when using the

reduced D-R representation were as high as 10 %, the algorithm was robust enough

that there was no performance loss. Also, we noted that usingextra data compression

techniques could further reduce the overhead.

Similarly to the simpler scheme studied in chapter 2, we can make the important ob-

servation that both adapted systems (those performing statistical multiplexing) present

the extra advantage that the increase in distortion is smooth and controllable. This is

because channel-induced errors are kept at a perceptually acceptable and small value

while distortion mostly follows the predictable rate-distortion function. This manifests

mostly as a gradual blurring of the images. This is not the case for the system with no

adaptation. In this case, the increase in distortion is a consequence of the uncontrolled

increase in the BER and the associated random effects from increased channel-induced

errors which are subjectively more annoying (mostly appearing as noticeable blocking

artifacts and freezing of frames sections). This observation is further illustrated in Fig-

ures 3.6-3.11. This figures show results from frames that arerepresentative of the results.

Figures 3.6-3.8 show results corresponding to the system with no adaptation. We can see

how the increase in BER and channel errors creates artifactsthat, at the very least, are

clearly noticeable, and in many cases affect understandability of the frame content. As

expected, we observed that these artifacts were more frequent as the number of ongoing

calls increased. Figures 3.9 and 3.11 show results when using algorithm 2. In Figure 3.9

the blurring associated with the smooth increase in distortion starts to become notice-

able, especially in the region of the eyes and eyebrows. Nevertheless, there is clearly no

annoying artifacts or important loss of understandabilityof the frame content. In 3.11
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Figure 3.6: A frame from the sequence ‘Foreman’ when the network operates with the

scheme with no adaptation and there are 13 ongoing calls in the network.

we can see how the blurring effect increases with the number of calls. Finally, in Figure

3.10 we can see the result when using algorithm 1 and the setupbeing the same as for

Figure 3.9. As expected from the objective measurements, there is some degradation

in the performance of algorithm 1 when compared to algorithm2, but still many of the

behavioral properties still hold.

As already discussed, since the problem under study focuseson a real-time commu-

nication network, it is not enough to evaluate results by fixing the number of calls. It

is also important to consider a dynamic system and evaluate performance as a function

of the traffic load. The results in figures 3.12 through 3.15 focuses on this evaluation

approach, following the system setup described in Section 3.4 with µ = 3 min. and

DM = 30 dB. Figure 3.12 shows the expected distortion per call as a function of the

offered load. We can see that the “Full Adaptation” system can support an offered load

89



Figure 3.7: A frame from the sequence ‘Foreman’ when the network operates with the

scheme with no adaptation and there are 14 ongoing calls in the network.

Figure 3.8: A frame from the sequence ‘Foreman’ when the network operates with the

scheme with no adaptation and there are 18 ongoing calls in the network.
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Figure 3.9: A frame from the sequence ‘Foreman’ when the network operates with using

algorithm 2 and there are 30 ongoing calls in the network.

Figure 3.10: A frame from the sequence ‘Foreman’ when the network operates with

using algorithm 1 and there are 30 ongoing calls in the network.
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Figure 3.11: A frame from the sequence ‘Foreman’ when the network operates with

using algorithm 2 and there are 60 ongoing calls in the network.

roughly 50 % larger than the “No Adaptation” system. Figure 3.13 shows the probabil-

ity of pseudo congestion as a function of the offered load fordifferent values ofǫ. We

can see here that there is a range of offered loads where the probability of pseudo con-

gestion transition from 0 to 1. This is the typical region of focus when studying Erlang

capacity ofM/M/∞ CDMA networks [43, 52]. For larger offered loads we can see

that although the probability of pseudo congestion is 1 (equivalently the outage prob-

ability in [43, 52]) the system is still able to accept more calls. Figure 3.14 highlights

the fact that the extension of operation into the pseudo congestion state is achieved at

the cost of a smooth and controlled degradation of quality byshowing expected dis-

tortion as a function of probability of pseudo congestion. Finally, Figure 3.15 shows

blocking probability as a function of the offered load when call admission control for

both the “Full Adaptation” and the “No Adaptation” systems is performed so that the
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Figure 3.12: Expected distortion (PSNR in dBs) as a functionof the offered load.

average distortion when the number of calls is maximum does not exceeds 30 dB. For

this performance measure the difference between a smooth increase in distortion, as is

the case for the “Full Adaptation” system, and the steep increase, as is the case for the

“No Adaptation” system, translates into the “Full Adaptation” system supporting for

the same limiting blocking probability more than 5 times theoffered load than the “No

Adaptation”.

3.6 Conclusions

In this chapter we have studied the solution to the problem ofoptimal adaptation to re-

solve interference-generated congestion for an arbitraryset of real-time source encoders
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in the uplink of a CDMA network carrying real-time multimedia calls. From this study

we have developed several key contributions. First, we showed that the problem (alloca-

tion of spreading factor, source coding rate and channel coding rate to minimize average

distortion) could be considered as the optimal source-controlled statistical multiplexing

in multimedia CDMA. In this case, an statistical multiplexer needs to perform resource

allocation so as to assign anequivalent bandwidth, which depends on target SINR and

transmit bit rate, among calls in such a way that average distortion is minimized. This

viewpoint is a powerful abstraction to the studied problem and present many applica-

tions. Based on this, we then presented two solutions to the source-controlled statistical

multiplexing problem and we showed them to be optimal. One ofthe solution keeps the

target SINR (or equivalently, the channel coding rate) fixedand only transmit bit rate is

changed through the source encoder rate adaptation. The other solution allows both the

transmit rate and the target SINR to be adapted.

Also, we solved the practical implementation issue of communication overhead re-

lated with our centralized algorithm and we studied the behavior of our system when

the number of calls changes dynamically. We recognized three possible operating con-

ditions for our system: congestion-free, pseudo congestion and congestion. From here

we showed that our system is able to extend operations beyondwhat has been normally

considered an outage region at the cost of a smooth increase in distortion. We also ad-

vocated a call admission control based on rejecting new calls once a maximum number

has been reached. This maximum number of calls is determinedwith the goal that the

expected distortion per call when the number of calls is maximum does not exceed a

tolerable limit.

Simulations results using MPEG4 FGS video show that the contributing solutions

significantly outperform systems with no adaptation (whichrepresents current imple-
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mentations). In particular while the system with no adaptation reaches a break down

point where the network is congested and no operation is possible, ours can support

more than 3 times that number of calls while the quality degrades gracefully. Also,

when the number of calls changes dynamically, our system cansupport a 50 % increase

in offered load for the same level of expected distortion. The smooth increase in distor-

tion also increases more than five times the offered load supported for the same level of

blocking probability and maximum tolerable distortion.

Similarly as the observations made in chapter 2, we noticed that the mechanisms

by which distortion increases in the statistical multiplexed systems is subjectively much

more preferable than the mechanisms followed by the system with no adaptation. This

does not only pertains to the fact that in the system with no adaptation the distortion

increases rapidly beyond congestion, while the statistical multiplexed systems this in-

crease is smooth. The mechanism to increase distortion in the statistical multiplexed

system is preferable because it always meets the quality goal (a target BER in this case),

limiting the channel errors to acceptable limits and increasing distortion by the subjec-

tively more acceptable adaptation of the source encoders, which is a fully predictable

mechanism. In the case of the system with no adaptation, there is no mechanism to meet

the quality goal beyond congestion, thus the distortion increases due to the subjectively

more annoying channel errors.
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Chapter 4

Real-time and Data Traffic Integration

4.1 Introduction

In this chapter we apply the ideas and concepts developed in chapter 3 to study the

integration of real-time calls with data traffic. The integration of these two traffic classes

is based on considering the idea of allocating a portion of the total equivalent bandwidth

to the real-time traffic and the remainder to data.

The chapter is divided in three main parts: the study of the data subsection, the

study of the real-time subsection and the study of the integration of real-time and data

traffic. In the study of the data subsection, we consider a system with a number of data

calls, each associated with an infinite-size waiting queue and with packet retransmission

when received in error. The main contribution of this part isthe study of the influence

of the equivalent bandwidth assignment on the data subsection performance. The main

observation here is that small absolute changes in equivalent bandwidth assignment to

the data section generate important changes in the data subsection performance. In

the case of the real-time subsection study, the main focus ison the relation between

distortion and total equivalent bandwidth. The main observation here is that distortion

does not change much when modifying the portion of equivalent bandwidth assigned to
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the real-time subsection. The analysis in this part revisits the study in chapter 2, to study

resource allocation for uniform sources when the processing could change for each call.

Also, we derive formulation that justifies our approximation of the relation between

target SINR and source coding (or equivalently channel coding rate with the setup in

chapter 2) to be exponential. Finally, we argue that although generally the data traffic

is considered to be not delay-limited, there are many practical cases where this is not

the case, thus it is important to implement methods that resolve congestion and control

delay. An integrated environment that services both real-time and data traffic, such as the

one being studied, allows for a transient reduction in the equivalent bandwidth assigned

to real-time calls so as to notably increase the traffic capacity for the data section at the

cost of a small increase of distortion for the real-time calls. We finish this chapter by

summarizing the main conclusions and contributions.

4.2 Real-time and Data Integration Through Equivalent

Bandwidth Allocation

An important observation from the previous chapter is that the problem of resource

allocation in CDMA that meets constraints on system stability and power amplifiers

dynamic range could be viewed as statistical multiplexing atotal equivalent bandwidth.

Mathematically,
∑K

i=1 Ψi = 1 − ǫ = Ω, whereK is the total number of calls. In our

current formulation, this total equivalent bandwidth isΩ = 1 − ǫ. From (3.3), we note

that the equivalent bandwidth assigned to each call dependson both the call’s processing

gain and target SINR.

A likely requirement for a practical system would be to be able to effectively inte-

grate both real-time and non-real-time (data) traffic. Thisimplies that resource sharing
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needs to be implemented across the two types of traffic. Following our approach, this

means that the total equivalent bandwidth will need to be divided into a portion used by

the real-time traffic and a portion used by the data traffic, i.e. we haveΩ = Ωd + Ωr,

whereΩd is the equivalent bandwidth assigned to the data section andΩr is the equiva-

lent bandwidth assigned to the real-time section.

4.3 Data Subsection

We are going to focus next on the data subsection design. Our approach is based on [28],

but in our case the goal is to assign the data section equivalent bandwidth among the

data users when integrated with real-time calls. We assume that there areNd data users

present, all communicating over the uplink of a DS-CDMA system and all receiving the

same service. This means that we will assume that the chip rate and processing gain is

the same for all users. Figure 4.1 illustrates the operationof the data section. Each data

user generate packets of fixed lengthL following a Poisson arrival process with average

rateλd. These packets are error protected with a fixed-rate error control coder with rate

πr and placed in a FIFO buffer. The buffer content is then sent tothe base station using

a processing gainZd. If a packet is received with errors that cannot be correctedby

the error protection scheme, a request for retransmission is sent back to the transmitter

using a feedback channel that is assumed error free and with no delay.

101



If pr is the data packet retransmission probability, the packet average service time

(packet average transfer time)Sd is,

Sd =
LZd

W (1− pr)
. (4.1)

As before,W is the system bandwidth. Note thatSd not only depends on the processing

gain, but it also depends on the call SINR. This is becausepr depends on the SINR. If

Pr is the total received power of real-time users, the target SINR for data calls,βd, can

be specified as,

βd =
ZdPd

σ2 + Pr + IPd

, (4.2)

whereI is a random variable that represents the number of active interfering calls (not

the number of calls). The probability that each data call is active is equal to the traffic

load of that data callρd = λdSd, [35]. Therefore, the probability mass function ofI is

P [I = j] =

(

Nd − 1

j

)

ρj
d(1− ρd)

Nd−1−j. (4.3)

Since the total received power of real-time users is

Pr =
σ2

ǫ

Nr
∑

i=1

Ψri
=

σ2Ωr

ǫ
, (4.4)

whereΨri
is the equivalent bandwidth for real-time users only, the target SINR for data

calls can be written as

βd =
ZdPd

σ2
(

1 + Ωr

ǫ

)

+ IPd

. (4.5)

The packet error probability not only depends on the target SINR βd but it also

depends on the number of active data callsI (by creating interference). Ifpbd is the

average bit error probability andpbd(I = j) is the bit error probability given that there

arej active calls, the packet error probability is

pr = 1− [1− pbd]
Lπr = 1−

[

1−
Nd−1
∑

j=0

pbd(I = j)P [I = j]

]Lπr

. (4.6)
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Also, using (4.1), we have

ρd = λdSd =
λdLZd

W (1− pr)
. (4.7)

Both equations (4.7) and (4.6) form a system of two equationsthat need to be solved

to find ρd andpr. This solution is equivalent to finding the set of operating parameters

Zd andβd. It was shown in [28] that the solutions to this system may represent three

possible system states, named “phases”. Of the possible phases, only one corresponds

to a stable system. Thus, in order to operate in the correct phase, it was shown in [28]

thatZd should be chosen larger than a thresholdZ∗
d . This threshold can be computed

from (4.6) and (4.7) by noting thatZ∗
d corresponds to the situation whenρd = 1 bothpr

from (4.6) and (4.7) are the same. This means thatZ∗
d can be found by solving for

1− [1− pbd(I = Nd − 1)]Lπ =
λdLZ∗

d

W
. (4.8)

Note thatpbd(I = Nd−1), the bit error probability when there areNd−1 interfering

users, depends on the target SINR and, thus, depends implicitly on the processing gain.

Due to the system stability and power amplifiers dynamic range constraints already

discussed, the processing gain assigned to active calls is related to theI ′ active calls

and the data subsection equivalent bandwidthΩd by,

I ′

1 + Zd/βd
= Ωd. (4.9)

SinceI ′ = I + 1, the target SINR that determinespbd(I = Nd − 1) corresponds to the

case whenI ′ = Nd. This target SINR should be related to the processing gain by,

βd =
ZdΩd

Nd − Ωd
. (4.10)

In general there might be at most three solutions to (4.8). Ofthese, the optimal

choice to minimize delay is to pick theZd > Z∗
d equal to⌈Ẑ∗

d⌉, whereẐ∗
d is the smallest

of the solutions to (4.8) that satisfies1 < Z∗
d ≤ ⌊W/(λdL)⌋.
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Once the assignment for processing gain has been computed, the average data packet

delay is given byDd = Wd + Sd, whereWd is the average waiting time in queue.Wd

can be found using the theory for M/G/1 systems. From [35], with ∆D being the packet

transfer time,Wd is given by

Wd =
λdE[∆2

d]

2(1− ρd)
. (4.11)

∆D is a random variable with probability mass function equal toP [∆D = jTd] =

pj−1
r (1− pr), whereTd = LZd/W is the single packet transmission time. Then

E[∆2
d] =

T 2
d (1 + pr)

(1− pr)2
. (4.12)

Using this result we have

Dd =
λdT

2
d (1 + pr)

2(1− pr)2(1− ρd)
+

LZd

W (1− pr)

=
LZd(2− λdLZd/W )

2W (1− pr − λdLZd/W )
(4.13)

4.4 Influence of Equivalent Bandwidth Assignment on

the Data Subsection

In a typical setup were data is integrated with real-time calls, the data calls will be

assigned the portion of the total equivalent bandwidth leftunused by real-time calls.

Also, it is possible that a minimum portion of the total equivalent bandwidth is reserved

for data traffic. It is of interest to used the equations in theprevious section, (4.1)-(4.13)

to study the performance of the data subsection as its total equivalent bandwidth,Ωr, is

changed.

We first consider the case where the number of data calls is fixed. For30 data calls

(Nd = 30), Figure 4.2 shows the average data packet delay from (4.13)as a function
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of the per-call average packet arrival rate as the data section total equivalent bandwidth

is changed from0.1 to 0.9. For each data call, the packet size was kept constant with

L = 2400 bits. For channel error control coding we used the rate 1/2, memory 8, convo-

lutional encoder used in the IS-95 standard, [40]. The generator functions for this coder

are 753 (octal) and 561 (octal). Also, we choose a system bandwidth W = 40MHz

(same as in chapter 3) with the processing gain taking valuesbetween 1 and 1024. Fig-

ure 4.2 shows the expected behavior, where the delay increases with decreasing data

section total equivalent bandwidth. Also, it is clear from the figure that there is a maxi-

mum average packet arrival rate that the system can support before it becomes instable

and delay becomes infinite.

Figure 4.3 shows the optimum processing gain, computed as described in the previ-

ous section, as a function of the per-call average packet arrival rate. The setup for this

figure is the same as for Figure 4.2. We can see that for the larger data section total

equivalent bandwidth, the assignment does not change much.As the data section total

equivalent bandwidth becomes smaller the optimum processing gain increases with the

per-call average packet arrival rate. This means that the solution for optimum processing

gain that minimizes average delay tends to do so by increasing the target SINR to reduce

the probability of retransmission rather than by increasing the transmit bit rate. Also, we

can see that, for any fixed per-call average packet arrival rate, processing gain increases

with the decrease in data section total equivalent bandwidth. Note that the change in

processing gain becomes larger as the data section total equivalent bandwidth becomes

smaller. Here, again, the implication is that the solution for optimum processing gain

that minimizes average delay tends to do so by increasing thetarget SINR to reduce the

probability of retransmission rather than by increasing the transmit bit rate.

As noted in the discussion of the results in Figure 4.2, thereis a maximum average

105



0 20 40 60 80 100 120 140 160
0

0.05

0.1

0.15

0.2

0.25

Mean data packet arrival rate, λ
d

A
ve

ra
ge

 p
ac

ke
t d

el
ay

 (
se

c)

Ω
d
=0.3

Ω
d
=0.25

Ω
d
=0.2

Ω
d
=0.15

Ω
d
=0.1

N
d
=30 

Figure 4.2: Average data packet delay as a function of average packet arrival rate for a

single data call. The total number of data calls was assumedNd = 30.
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Figure 4.3: Optimum processing gain as a function of averagepacket arrival rate for a

single data call. The total number of data calls was assumedNd = 30.
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packet arrival rate that the system can support before it becomes instable. This maximum

average packet arrival rate changes with the data section total equivalent bandwidth.

With the same setup as Figure 4.2 and considering three different number of data calls

(Nd = 10, Nd = 30 andNd = 50), Figure 4.4 shows the maximum average packet

arrival rate per data call as a function of the total equivalent bandwidth assigned to

the data section. Interestingly, the figure shows that the relation is practically linear,

independently of the number of data calls. Also, the figure shows that the slope of

this linear relation decreases with the growth in number of data calls. This is because,

in terms of effect on the whole system, a change in the per-call packet arrival rate is

multiplied by the number of calls present.

Next, we consider the case where the per-call average packetarrival rate is fixed

and we let the number of data calls change. For an average arrival rate of100 packets

per second and per call, Figure 4.5 shows the average data packet delay as a function

of the number of data calls. In this case, the observations related to performance are

conceptually the same as for Figure4.2, i.e. the delay increases with the number of data

calls in the system and there is a maximum number of data callsthat the system can

support before it becomes instable and delay becomes infinite. This maximum number

of data calls depends on the data section total equivalent bandwidth.

Figure 4.6 shows the optimum processing gain as a function ofthe number of data

calls. The setup for this figure is the same as for Figure 4.5. We can see that the optimum

processing gain increases with the number of data calls. Also, for a fixed number of

data calls, note that the processing gain increases with thedecrease in data section total

equivalent bandwidth.

As noted in the discussion of the results in Figure 4.5, thereis a maximum number of

data calls that the system can support before it becomes instable. This maximum number
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Figure 4.4: Maximum average packet arrival rate per data call as a function of the total

equivalent bandwidth assigned to the data section for totalnumber of data callsNd = 10,

Nd = 30 andNd = 50.
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Figure 4.5: Average data packet delay as a function of the number of data calls. The

average packet arrival rate per data call was assumedλd = 100.
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Figure 4.7: Maximum number of data calls that can be supported as a function of the

total equivalent bandwidth assigned to the data section.

of calls changes with the data section total equivalent bandwidth. With the same setup

as Figure 4.5 and considering three data packets arrival rates (λd = 50, λd = 100,

λd = 150), Figure 4.7 shows the maximum number of data calls as a function of the

total equivalent bandwidth assigned to the data section. Here again, the results shows

the same interesting behavior as in Figure 4.4 with the relation between the maximum

number of calls and the data section total equivalent bandwidth being practically linear.

Also, similarly to Figure 4.4, the slope of this linear relation decreases with higher per-

call packet arrival rates.
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4.5 Real-time Traffic Subsection Dependence on Total

Assigned Equivalent Bandwidth

In the previous chapters we have studied how to allocate resources, performing statisti-

cal multiplexing, to a number of calls carrying real-time traffic given the total equivalent

bandwidth assigned to this traffic subsection. Next, we wantto study the relation be-

tween distortion and total equivalent bandwidth.

Consider again the same system setup for real-time communication as the one de-

scribed in chapter 3, i.e a system where the processing gain and both the source and the

channel encoder can be externally controlled. Let’s assumethat all calls have the same

distortion-rate performance. This is a condition necessary to maintain this study mathe-

matical tractable. In this case we know from chapter 2 that all calls will be operating at

the same operating mode.

Clearly, with this setup we have that the transmit bit rate atthe input of the spreader

is x/πr = W/Zr, wherex is the source encoding rate,πr is the channel coding rate,

W is the system bandwidth (or, equivalently the chip rate in this case) andZr the real-

time calls processing gain. Here, to minimize average distortion if the rate-distortion

performance is convex and decreasing, the source encoding ratex = πrW/Zr needs to

be chosen as large as possible.

As discussed in chapter 3 the channel coding rate needs to be chosen so as to

maintain the BER at a value small enough so that channel-induced distortion remain

negligible. We want to find next an expression for this assignment. As in previous

chapters, let’s assume that the variable rate channel coderis implemented through an

Rate-Compatible Punctured Convolutional (RCPC) code [19]. From [19], the bit error
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probability after decoding can be upper bounded by

pRCPCb
≤ 1

PT

∞
∑

d=dfree

cdPd, (4.14)

wherePT is the puncturing period,dfree is the code’s free distance,cd is information

error weight andPd is the probability that the wrong path at a distanced is selected.

When the SNR in the communication channel is large or, equivalently, operation is at a

low BER, we may approximate (4.14) as

pRCPCb
≤ 1

PT

∞
∑

d=dfree

cdPd ≈
1

PT

cdfree
Pdfree

(4.15)

In the case of communication over an AWGN channel, we have [39],

Pd = Q
(

√

2dβr

)

, (4.16)

whereβr is the SNR of a real-time source, or SINR if the CDMA interference is ap-

proximated as a white Gaussian noise process. In this equationQ is the complementary

error function:

Q(x) =
1√
2π

∫ ∞

x

e−z2/2dz <
1√
4π

e−x2/2. (4.17)

Combining (4.15), (4.16) and (4.17) we get

pRCPCb
(βr, πr) ≤

1

PT
cdfree

(πr)
e−dfree(πr)βr

√
4π

. (4.18)

DefiningC1 = 1/(PT

√
4π), we make the approximation,

pRCPCb
(βr, πr) ≈ C1cdfree

(πr)e
−dfree(πr)βr . (4.19)

Tables that describes values forcdfree
anddfree for different RCPC codes and coding

ratesπr can be found in [19] and [14]. From these tables we noticed that cdfree
(πr) does

not present any definite pattern, other than taking values ofroughly the same order of
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Figure 4.8: Free distance as a function of code rate for two different RCPC codes.

magnitude. Then we make the approximationC1cdfree
(πr) ≈ C, C being a constant. In

Figure 4.8 we plot the free distance as a function of code ratefor two different RCPC

codes: a memory 4, puncturing period 8, mother code rate1/4 from [19] and a memory

8, puncturing period 8, mother code rate1/4 from [14]. The figure shows also an ap-

proximation for each of these curves. It is clear from the figure that the free distance as

a function of code rate can be accurately represented by the expression

dfree(πr) ≈ C ′e−Aπr . (4.20)

Thus, we have

pRCPCb
(βr, πr) ≈ Ce−C′e−Aπr βr . (4.21)
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If the target SINRs are designed so as to meet some constant target BER (as was the

case in chapter 3) that we denote byBT , we have that

BT = Ce−C′e−Aπrβr . (4.22)

From this equation we can see that

βr =
eAπr

C ′ ln(C/BT ). (4.23)

Note that this result is consistent with the observations and approximation for the target

SINR discussed in chapter 2. Also,

πr =
1

A
(C ′′ + lnβr) , (4.24)

where

C ′′ = ln

[

C ′

ln(C/BT )

]

= ln





C ′

ln
(

Cdfree

PT BT

√
4π

)



 . (4.25)

Therefore, using (4.24) the goal of choosingx = πrW/Zr as large as possible

to minimize average distortion now becomes choosingZr and βr to maximizex =

W (C ′′ + ln βr) /(ZrA). Zr andβr are constrained by a relation similar to (4.10). In

this case we have that

Zr

βr

≥ Nr − Ωr

Ωr

. (4.26)

Then, the optimization problem is

max
Zr,βr

W (C ′′ + ln βr)

ZrA
s.t. Zr ≥ βr

Nr − Ωr

Ωr
. (4.27)

Using Lagrange multipliers the solution to this optimization problem is

β∗
r = e1−C′′

. (4.28)

Z∗
r = e1−C′′ Nr − Ωr

Ωr
. (4.29)
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This solution is useful to study the relation between distortion and total equivalent

bandwidth. If we assume a distortion-rate function of the form D(x) = α2−kx, using

with the optimum solution forβr andZr, we will have thatx∗ = W (C ′′ + ln β∗
r ) /(Z∗

r A)

and the distortion-rate performance is

D∗ = α2−
kWΩreC′′

−1

A(Nr−Ωr) . (4.30)

For the purpose of this analysis we will consider that the real-time source is a video

sequence. We will assume that the distortion-rate performance of the video codec does

not change between users or from frame to frame. This assumption is to some extend

artificial but it becomes necessary to maintain mathematical tractability of the present

study. Figure 4.9 shows the distortion-rate performance ofthe MPEG4-FGS codec av-

eraged over all frames. The results shown are for the two sequences used in chapter 3:

‘Foreman’ and ‘Akiyo’. Also included in the same figure are the two approximations to

the distortion-rate curve of the formD(x) = α2−kx. Note for this setup the assumed

distortion-rate performance matches well the one obtainedfrom measurements.

We used the parameters from the approximations in Figure 4.9to evaluate the dis-

tortion as a function of the real-time section total equivalent bandwidth, given by (4.30).

The results are shown in Figure 4.10. In the figure we measure distortion as the mean

squared error normalized to the minimum measured such value. The figure not only

shows results for ‘Foreman’ and ‘Akiyo’, but it also shows result when using as param-

eters the average of those corresponding to the two sequences.

In a practical situation, the distortion-rate performanceof the source codec changes

both between users and from frame to frame. To study the impact that the change of

the real-time traffic subsection total equivalent bandwidth has on the statistical multi-

plexer system studied in chapter 3 we measured the quality atthe receiver (using PSNR

in decibels) of a conversational video system as a function of the number of calls in the
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Figure 4.9: Averaged distortion-rate performance for two video sequences.
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Figure 4.11: Quality at the receiver (using PSNR in dBs) of a conversational video

system as a function of the number of calls in the system, using the real-time traffic

subsection total equivalent bandwidthΩr as parameter.

system. In this measurement we used the real-time traffic subsection total equivalent

bandwidth as a parameter. The setup for this measurement wasthe same as the simu-

lations in chapter 3. Figure 4.11 shows these results. Clearly, the quality is better the

more equivalent bandwidth is assigned to the real-time traffic subsection.

Figure 4.12 summarizes the results from Figures 4.10 and 4.11. The quality at the

receiver is measured as the PSNR loss, in decibels, with respect to the best quality mea-

sured (that is the one with maximum total equivalent bandwidth). From the analytical

we can see that ‘Foreman’ is the sequence that presents the largest increase in distortion
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for a reduction in real-time section total equivalent bandwidth. In this case the loss is

of approximately 2.7 dB in PSNR for a 33 % reduction in total equivalent bandwidth.

Under the same conditions ‘Akiyo’ presents a loss of approximately 1.8 dB for a 33

% reduction in equivalent bandwidth. The results obtained from simulations show a

smaller quality loss than any analytical results. This is due to the approximations and

bounds (such as (4.15))used to derived the analytical results but also due to the fact that

the system in the simulation takes advantage of the video sequences changes in resource

requirement from frame to frame to perform an statistical multiplexing that efficiently

assigns resources. Overall, we can conclude that the analytical results used in Figure

4.12 work well to represent an approximation of the system behavior as an upper bound

to the quality loss if the total equivalent bandwidth for thereal-time subsection is re-

duced.

4.6 Real-time/Data Traffic Integrated Congestion Relief

Historically, the prevalent approach to integration of real-time traffic and data is to as-

sign to the data traffic only those resources that the real-time traffic is not using. The

justification for this approach is that data traffic is not delay sensitive, thus data packets

can wait in a queue as long as necessary whenever the resources for the data section

become scarce. In reality, there are many classes of data services that have different de-

grees of sensitivity to delay. In fact, even an activity suchas downloading a file become

sensitive if the delay is sufficiently large. This is not onlydue to the end-user needs

and expectations but also because excessive delay could create resource starvation, es-

pecially at the mobile. As a justification to this, consider that the data traffic is carried

using a transport protocol such as TCP. In this case, the transmitter will need to keep in
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a buffer all transmitted packet that has not been acknowledged yet. Therefore, the larger

the delay, the more packets that need to be kept in the buffer.This may create buffer

overruns since the mobiles are typically resource limited,including memory. Therefore,

there is a clear need to control the delay of the data traffic and to implement mechanisms

to reduce delay when necessary so as to avoid congestion.

The results just presented show that a small change in the total effective bandwidth

assigned to the real-time subsection only generates a smalldegradation in the overall

quality. From our previous study of the data subsection, we can see that, conceptually,

the effect is the opposite, i.e. a small increase in the data subsection total equivalent

bandwidth allows for a large increase in either the maximum number of data calls or

the maximum per-call mean packet arrival rate (see Figures 4.4 and 4.7). Therefore, the

results obtained so far in this chapter suggest that it is possible to implement an inte-

grated congestion control mechanism for the real-time and data subsections. The main

tools used by the integrated congestion control system are the statistical multiplexing

of real-time sources and an adaptive distribution of equivalent bandwidth between the

real-time and the data subsections. The general idea here isthat whenever the data

subsection is supporting a large number of calls or a high mean packet arrival rate the

real-time subsection could undergo a transient and small degradation in quality by re-

assigning more equivalent bandwidth from the real-time section to the data section. As

soon as the traffic in the data section is alleviated, the equivalent bandwidth is reassigned

to the real-time section. Therefore, there is a constant balance between the equivalent

bandwidth assigned to the real-time section and its distortion.

To illustrate the interaction between real-time traffic anddata when adapting the

equivalent bandwidth assignment, we measured the relationbetween the maximum

number of data calls or the maximum data mean packet arrival time versus real-time
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Figure 4.13: Normalized distortion of real time calls versus the maximum mean data

packet arrival rate.

normalized distortion whenΩr + Ωd = Ω = 1− ǫ = 0.9. In the measurement we used

the same setup as in previous experiments in this same chapter. Figure 4.13 shows the

normalized distortion of real time calls versus the maximummean data packet arrival

rate, assuming that there are 30 real-time calls and having the number of data calls as

a parameter. We can see that the relation is approximately linear in all cases and that

for a 15 % increase in distortion (0.6 dB reduction in PSNR) itis possible to increase

the maximum mean data packet arrival rate approximately 60 %when there are 50 data

calls, 70 % when there are 30 data calls and 50 % when there are 10 data calls.

Figure 4.14 shows the normalized distortion of real time calls versus the maximum

number of data calls, assuming that there are 30 real-time calls and having the mean

124



10 20 30 40 50 60 70 80 90 100
1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

Max. number of data calls

N
or

m
al

iz
ed

 d
is

to
rt

io
n

30 real−time calls

λ
d
=50

λ
d
=100

λ
d
=150

Figure 4.14: Normalized distortion of real time calls versus the maximum number of

data calls.

per-call data packet arrival rate,λd, as a parameter. We can see that the relation is

again approximately linear in all cases and that for a 15 % increase in distortion (0.6 dB

reduction in PSNR) it is possible to increase the maximum mean data packet arrival rate

approximately 60 % whenλd = 150, 50 % whenλd = 100 and 55 % whenλd = 50.

Clearly, both Figures 4.13 and 4.14 show that a small increase in distortion for

the real-time sources allow for an increase in the data subsection traffic capacity large

enough that the congestion would be rapidly resolved.

We next consider the case when the number of real-time calls (assumed to be con-

versation video as in Chapter 3) changes dynamically over time. For this purpose we

assume the same real-time traffic behavior as in Section 3.4,i.e. calls enter the cell
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following a Poisson arrival process and that the random calls duration follow an expo-

nential distribution. All other setting for the real-time calls were the same as in Chapter

3. We denote the real-time traffic offered load asρr. For the data section we kept the

number of data calls fixed at 50 and we assumed a mean packet arrival rate equal to

λd = 30. Other parameters for the data subsection were the same as the ones used so

far in this chapter. By performing Monte Carlo simulations on the real-time section, we

measured the quality at the receiver for real time calls and the mean data packet delay

as a function of the real-time subsection offered load and maximum allowed total equiv-

alent bandwidth. In the cases where the real-time traffic didnot used all its assigned

equivalent bandwidth, the unused portion was allocated to the data section. Since we

assumed real-time maximum allowed total equivalent bandwidth values from0.6 to 0.8

while ǫ is still 0.9, the data subsection was always guaranteed a minimum equivalent

bandwidth in the range0.1 to 0.3. Figure 4.15 shows the result for the quality at the

receiver for real time calls Figure 4.16 shows the mean data packet delay.

Table 4.1 tabulates together the results from Figure 4.15 and 4.16. The results con-

firm our previous observations when the number of real-time calls was assumed fixed,

i.e. for relative small increases in distortion of the real-time traffic due to a reduction

in its maximum allowed total equivalent bandwidth, the meandelay of the data section

could be significantly reduced. Being the nature of the reduction in the real-time max-

imum allowed total equivalent bandwidth transient it is to expect that the overall effect

on the perceptual quality should be small.
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Table 4.1: Comparison of results from Figures 4.15 and 4.16

Change in

ρr real time PSNR loss Delay diff. (%)

eq. bandwidth

50 0.8 to 0.6 0.68 87

50 0.8 to 0.7 0.43 73

40 0.8 to 0.6 1.38 86

40 0.8 to 0.7 0.72 78

30 0.8 to 0.6 0.23 87

30 0.8 to 0.7 0.09 78

20 0.8 to 0.6 1.29 73

20 0.8 to 0.7 0.19 53

4.7 Conclusions

In this chapter we have studied the integration of real-timeand data calls in a CDMA

system. The concept used in the integration is the ‘equivalent bandwidth’ discussed in

the previous chapter. The study focus on a system where real-time and data calls are

divided in two traffic subsection; both subsection are integrated by distribution the total

equivalent bandwidth.

The chapter is divided in three main parts. In the first part weconsidered the data

subsection. Our contribution here is the study on how the data section performance

depends on its total assigned equivalent bandwidth. Here wenoticed that small abso-

lute changes in equivalent bandwidth assignment to the datasection generate important

changes in the data subsection performance.
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In the second part of this chapter we considered the real-time subsection with a

focus on studying the dependence of performance on the totalequivalent bandwidth

assigned to this section. We first revisited the study in chapter 2 to analyzed resource

allocation for uniform sources when the processing gain canalso change. Also, we

derive formulation that justifies our approximation of the relation between target SINR

and source coding (or equivalently channel coding rate withthe setup in chapter 2) to be

exponential. The main observation here is that distortion does not change much when

modifying the portion of equivalent bandwidth assigned to the real-time subsection.

In the third part we argue that although generally the data traffic is considered to be

not delay-limited, there are many practical cases where this is not the case, thus it is

important to implement methods that resolve congestion andcontrol delay. Our contri-

bution here shows our proposed integrated environment allows for a transient reduction

in the equivalent bandwidth assigned to real-time calls so as to notably increase the

traffic capacity for the data section at the cost of a small increase of distortion for the

real-time calls.
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Chapter 5

Other Related Work

5.1 Introduction

In this chapter we conclude our study of cross-layer designsfor multimedia CDMA

by discussing other related works. These works focus on problems similar to the ones

discussed so far, the most notable difference being that they considering the downlink.

Despite the fact that in these problems the link is synchronous, inter-user interference

is still an issue due to multipath propagation. Also, in these cases the constraining re-

sources are the total transmit power at the base station and the spreading codes. It is

important to remark here that the contributions in this chapter were developed in the

context of collaborative work with members of the University of Maryland’s Communi-

cation and Signal Processing Laboratory and were presentedin [20, 33, 46].

The first part of this chapter will discuss a design that adapts a real-time source

encoder to the channel and traffic conditions in the downlinkof a CDMA system. The

goal of the adaptation is to minimize the average distortionsubject to constraints on

the total power, each user distortion and a quality goal thatlimits the channel-induced

distortion to a small proportion of the total.

The second part of this chapter will discuss an algorithm forresource allocation in
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the downlink of multicode CDMA network. This means that among other resources,

there is a pool of spreading codes that need to be allocated among real-time calls. The

number of codes allocated to a call is directly proportionalto its transmit bit rate. The

design in this section is aimed at systems that use a real-time source encoder that gener-

ates a layered and embedded bit stream. This certainly applies to the MPEG4 FGS that

is the center of the application example discussed in chapter 3, but is also applicable in

other sources.

The chapter concludes with a summary of the main results and contributions.

5.2 Resource Allocation in the Downlink of CDMA by

Real-Time Source Encoder Adaptation

Consider the downlink of a single cell CDMA system with N users. Fig. 5.1 shows

the block diagram of the proposed cross layer design where itis possible to control the

users’ source encoding rates, channel coding rates and transmitted powers. A protocol

located at the base station performs the allocation function for all calls.

As before, in the proposed system, the real time source encoder has the key property

that the output rate can be externally controlled. We assumethe source encoder have

output ratexi = Rir bits/s, whereRi is the variable channel coding rate andr is the

transmit bit rate, assumed to be fixed. This means that, as wasthe case in chapter 2

source and channel rate allocation is determined so that anyreduction in source encoding

rate is matched by an increase in error protection in such a way that the bit rate at the

input of the spreader remains constant. Also, this means that once either the source

coding rate or the channel coding rate has been specified, theother is automatically

determined. We use BPSK modulation with power control in themodulator. Also,
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Figure 5.1: Proposed system block diagram

for simplicity, we assume that all the transmitted bits are equally important for error

protection purposes.

As was the case for the designs in previous chapters, here again we will have as

design condition aquality goal. In this case, this would be that channel induced errors

would account for a small proportion of the overall end-to-end distortion. Thus, the

design will be constrained by the condition of meeting a target SINR that achieves the

desired small channel-induced distortion. Note again thatthe target SINR required to

satisfy the quality goal is a function of the source rate. Thus, by reducing some or all
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calls’ source rate, it is possible to lower transmit power and interference at the cost of

higher source encoding distortion but without increasing channel induced errors.

We assume the system is synchronous and each user is assigneda unique spreading

code within each cell. Also, we assume a multipath channel. Because of this environ-

ment, the orthogonality between codes could not be maintained and each mobile user

is subject to interferences from other users in the cell [2].Under these conditions, the

SINR of mobilei is given by:

βi =
W

r

PiGi

Gi

N
∑

k=1
k 6=i

θkiPk + σ2

(5.1)

whereW is the total bandwidth,Pi is the transmitted power from the base station to

mobile i, Gi is the corresponding path loss,θki is orthogonality factor andσ2 is the

background AWGN variance.W/r is the processing gain.θki is the orthogonality factor

between mobilek and mobilei and represents the fraction of the received downlink

power that is converted by multipath into the intra-cell interference. We assume that all

fading profiles are the same andθ = θki, ∀i, k.

Let fi(xi) be the distortion-rate performance function of theith user’s source coder

encoding at ratexi = Rir. Generally, for most well designed encoders,fi is a convex

and decreasing function. The minimum distortion occurs at maximum source ratexM .

Assumingfi(xi) = α2−kxi, in chapter 2, the source encoder distortion-rate performance

function can be expressed as:

fi = δ22k(xM−Rir) (5.2)

whereδ is the minimum distortion andk is a parameter depending on the encoder. Note

again that this approximation can effectively represent the end-to-end behavior because

the quality goal keeps the contribution of channel induced errors to the overall distortion
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within negligible values. DefineD = 22kxM /δ, the normalized distortion is given by:

Di(Rir) =
fi

δ
= D2−2kRir. (5.3)

Due to the multipath environment, the system under consideration still exhibits inter-

user interference. Therefore, as the system admits more users, the increase in interfer-

ence will prevent allocating resources so that all users operate at their target (minimum)

distortion. This is may occur even when the base station use all the available power

during the transmission. Therefore, in this situation, some users will have to operate at

an increased distortion. Thus, when designing the algorithm that allocates resources and

decides operating parameters for each call, the problem is to decide which user will be

configured to operate at non-minimum distortion and how these users will increase their

distortions.

The basic effect of the adaptation that solves this allocation problem is to choose

for each user a target SINR. From the discussion in the previous chapters, we have seen

that each target SINR is associated to a distinct source encoding rate, or equivalently, a

channel coding rateRi. Furthermore, we have seen that the target SINR to achieve the

quality goal can be approximated as a function of channel coding rate, when transmit

rate is fixed, by

βi = 2ARi+B. (5.4)

Recall thatA andB are parameters of the error control coding scheme.

Therefore, the adaptation goal would be to find the channel coding rate for each

user that minimize the overall system distortion, under theconstraint that each user’s

distortion is smaller than a maximum acceptable value and that the total transmitted

power from the base station,Psum =
∑N

i=1 Pi, does not exceeds a maximum. The
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problem is formulated as:

min
Ri

N
∑

i=1

Di (5.5)

subject to























Distortion Range: 1 ≤ Di ≤ Dmax, ∀ i,

Transmitted Power:Psum ≤ Pmax,

Meet quality goal.

In this problem formulation,Pmax is the maximum transmit power available at the

base station andDmax is the maximum acceptable distortion that we assume is the same

for all users. Note thatRi is implicitly constrained by the combination of equation (5.3)

with the above distortion range constraint.

The problem in (5.5) is a nonlinear nonconvex problem with possibly many local

minima. Methods such as Lagrangian or nonlinear integer programming do not appear

to yield a solution. Moreover, the computation complexity will grow exponential as the

number of users increases. We next a suboptimal algorithmicsolution developed by Z.

Han. [33] that is fast and exhibits near-optimum performance.

5.2.1 Resource Allocation Algorithm

As noted, when the system is lightly crowded, each user couldobtain a share of re-

sources so as to operate at the minimum distortion and the necessary total transmitted

power could still be less than the maximum available from thebase station. As the sys-

tem admits more calls, it may become not possible for all calls to operate at minimum

distortion. In this operational condition, there is a need to have a graceful distortion

control so that those users in bad channel condition or who introduce too much inter-

ference to others may sacrifice their performance slightly and in a controlled way so as

to allow an optimal resource allocation. Note that the constraint on the channel-induced

errors (the quality goal) will allow the increase in distortion to be smooth, controllable,
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and predictable. This is because the dominant process in increasing distortion is the

reduction in source encoding rate, thus the system behaviorfollows the rate-distortion

curve. Also, this will keep the random and subjectively moreannoying channel-induced

distortion at a negligible value. Channel induced distortion is kept at a sufficiently small

value by appropriately setting the rates and powers.

In order to decide the calls that will be operating at a largerdistortion we consider

the effect that a change in each user’s distortion have on thetotal transmit power. For

this, we derive a simple approximation forPsum. Define

Ti =
2ARi+Br

W
=

PiGi

Gi

∑

k 6=i

θkiPk + σ2
. (5.6)

If the processing gain is large, i.e.,W/r is large,Ti is small. We know thatθki < 1, thus

θkiTi is also small. Therefore, we have

Psum = 1T [I − F]−1u ≈ 1T [I + F]u, (5.7)

where1 = [1 . . . 1]T , u = [u1, . . . uN ]T with ui = σ2Ti/Gi, and

[F]ji =











0 if j = i,

θjiTi if j 6= i.

Therefore,

Psum ≈
N
∑

i=1

σ2Ti

Gi

+
N
∑

i=1

N
∑

j 6=i

σ2θjiTiTj

Gj

, (5.8)

We find the gradient of the overall transmitted power with respect to each user’s

distortion,gi. The gradient can be written as a function of three differentials, as follows:

gi =
∂Psum

∂Di
=

∂Psum

∂Ti

∂Ti

∂ri
/
∂Di

∂ri
, (5.9)
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where

∂Psum

∂Ti
=

σ2

Gi
+

N
∑

j 6=i

σ2θjiTj

Gj
, (5.10)

∂Ti

Ri

=
Ar2ARi+B ln 2

W
, (5.11)

∂Di

∂Ri
= −2kDr2−2kRir ln 2. (5.12)

Therefore, the final gradient can be written as:

gi = C2(A+2kr)Ri

(

1

Gi

+
N
∑

j 6=i

θjiTj

Gj

)

(5.13)

whereC is a negative constant. The absolute value ofgi is determined by three factors:

current rates (the term before the parentheses), channel gain (the first term inside the

parentheses), and interferences to others (the second terminside the parentheses).

If Pmax is large enough for every user in the cell to operate at minimum distortion,

the algorithm assignsDi = 1 to all calls. If the system is lightly loaded, there might be

some total transmit power left from the maximum available.

If Pmax is not large enough for every user to operate at minimum distortion, the

algorithm initially assignsDi = Dmax to all calls. If there is not enough power for

this allocation, i.e. if there is not enough power to satisfythe maximum distortion

constraints, the system is in an outage condition. If allocation corresponding toDi =

Dmax, ∀i requires less power than the maximum available, the unused extra power

could be used to reduce distortion. The user that will reduceits distortion is chosen by

determining the gradient∂Psum/∂Di. If the absolute value of the gradient is small, it

means that a reduction in distortion will have a small effecton the total consumed power.

From (5.9), for this user, the current rates are low (i.e. thedistortion is high), channel

gain is good, or interferences to others are small. In other words, this user can reduce

138



Table 5.1: Downlink CDMA Resource Allocation Algorithm

1. Initialization:

If all calls can be configured toDmin, then allocate the powers and stop;

else allocateDmax to all calls.

If Psum > Pmax, report outage.

2. Repeat:

• Calculate|gi|

• Increase the rate of the user with smallest|gi| to the next available

discrete rate, unless the rate is1/2 already.

• If Psum > Pmax, return the previous rate allocation and break.

3. Rate and Power Assignment.

its end-to-end distortion while creating the smallest strain on the available resources.

Consequently, this user is a good choice to reduce its distortion and the algorithm assigns

a higherRi to this user to let the distortion become small. After a user has been assigned

a higherRi, the operation involving estimated the gradient and increasing the rate to a

call is repeated until reaching an allocation that does not allow increasing the total power

beyond. Note that, in practice, there are only a finite numberof possible values forRi.

Therefore, the assignment of a higherRi is done in incremental discrete steps.

On the whole, the adaptive resource allocation algorithm isgiven in Table 5.1. As

we have mentioned before, (5.5) is extremely difficult to solve by traditional methods in

which the complexity grows fast with the number of usersN . In the proposed algorithm,

the complexity lies in computing the gradients in (5.13) andcalculating the overall trans-

mitted power in (5.26). So the complexity isO(N2) and can be easily implemented in

practice.
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5.2.2 Performance Bound

In order to evaluate the performance of the proposed algorithm in Table 5.1, we provide

a computable performance upper bound. This bound might havea better performance

than the optimal, but not viable to implement in practice, solution to the problem (5.5).

If the proposed algorithm has a similar performance as the bound, we can conclude that

the proposed algorithm is at least near optimal.

Assuming the transmit rate as fixed and the channel coding rate as a continuous real

variable, the modified problem definition from (5.5) can be expressed as:

min
Ri

N
∑

i=1

2−2kRiri (5.14)

subject to











Rmin
i ≤ Ri ≤ Rmax

i , ∀ i,

Psum ≤ Pmax,

whereRi is a real number. From (5.6) and (5.26), the power constraintis a nonlinear

function ofRi. If we assume the channel coding as a continuous variable, the problem

in (5.5) becomes the nonlinear constrained problem (5.14).To solve this case there ex-

ist useful nonlinear optimization methods. Therefore, we implement an algorithm that

combines the barrier and Newton methods [5] that calculatesthe performance upper

bound. The basic idea for the barrier method is to add barrierfunctions to the opti-

mization goal such that the constrained optimization problem becomes an unconstrained

optimization problem. The sum of optimization goal and barrier functions approaches

infinity if the constraints are not satisfied. On the other hand, if the constraint is sat-

isfied, the barrier function does not affect the optimization goal. The barrier function

is commonly approximated by logarithmic functions [5]. In the case of the nonlinear

constrained problem (5.14), the barrier function is given by:

Iconstaint ≈ Φ1 + Φ2 + Φ3, (5.15)
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where

Φ1 =















−
N
∑

i=1

ln(Ri −Rmin), Ri > Rmin,

∞, otherwise,

(5.16)

Φ2 =















−
N
∑

i=1

ln(Rmax − Ri), Rmax > Ri,

∞, otherwise,

(5.17)

and

Φ3 =











− ln(Pmax − Psum), Pmax > Psum,

∞, otherwise.
(5.18)

Φ1 andΦ2 correspond to the channel coding rate range andΦ3 to the overall power.

As said, the barrier method approach solves the constrainedoptimization problem

by solving a sequence of iterated unconstrained problems, each initialized by the results

in the previous iteration. Rewrite (5.14) as:

min
Ri

f = t̃

N
∑

i=1

2−2kRiri + Iconstraint (5.19)

wheret̃ is a value that increases from iteration to iteration. Because, the barrier func-

tions become more and more like the ideal barrier function ast̃ increases, the solution

becomes increasingly optimal. Within each iteration, the Newton method [5] is used

to solve the unconstrained optimization problem. The complete algorithm is given in

Table 5.2, whereR = [R1 . . . RN ]T , m is the iteration number for barrier method,ep

determines the accuracy of the proposed algorithm,t′ is the optimal step for the Newton

method,t0 is the initial value for barrier function, whose value determines the conver-

gence rate of the first iteration, andCt > 1 is the constant that multiplies̃t in each

iteration.

The performance bound determined by algorithm in Table 5.2 cannot be imple-

mented in practice. This is because the rate is assumed to be continuous, which is
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Table 5.2: Barrier Method for Performance Bound

1. Initial:

R = any feasible value,̃t = t0 > 0, Ct > 1, ep > 0.

2. Repeat:

• Compute newR by minimizingf , using

Newton Method:

1. Compute Newton stepvnt and decrementλ2.

vnt = −▽2 f−1▽ f

λ2 = ▽fT ▽2 f−1▽ f

2. quit if λ2 is stable.

3. Line search: compute step sizet′ by

backtracking line search.

4. Update:R=R+t
′∗vnt .

• if m/t̃ < ep, returnR.

• t̃ = Ctt̃.
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not true in practical channel coding coder. Because of this assumption, the algorithm

will find a performance upper bound with a performance betterthan the optimal solution

in (5.5). Also, the algorithm in Table 5.2 cannot be implemented in practice because its

complexity is much higher than the proposed algorithm in Table 5.1. The complexity

lies in that to find the solution, one iteration is needed for the Newton method and an-

other iteration is needed for the barrier method. Yet another reason why the algorithm in

Table 5.2 cannot be implemented in practice is that the problem in (5.14) is non-linear

and non-convex with possibly many local optima. Multiple initializations or even an-

nealing is necessary to find the global optimum. Thus, despite being hard to implement

in practice, the algorithm in Table 5.2 can be used to judge the performance of the pro-

posed fast implementable algorithm in Table 5.1. We will seein the simulation results

in the next section the proposed algorithm has a similar performance as the performance

bound. Consequently, the proposed algorithm is at least near optimal.

5.2.3 Performance Evaluation

The algorithm in Table 5.1 is applicable to any real-time source. To evaluate its per-

formance we use an approach similar to the one in chapter 2. Then, we evaluated the

performance of the proposed algorithm using speech at source. Similarly to the setup

in chapter 2 we used the same eighteen speech sequences from the NIST speech corpus

[47] and we used as source encoder the GSM AMR (Advance Multi-Rate) Narrow-band

Speech Encoder [12]

To determine the end-to-end distortion, we used the same perceptually weighted

log-spectral distortion measure discussed in chapter 2:

SD(Â(f), A(f)) =

√

√

√

√

∫

|WB(f)|2
∣

∣

∣

∣

∣

10 log
|Â(f)|2
|A(f)|2

∣

∣

∣

∣

∣

2

df (5.20)

143



10 20 30 40 50 60 70
1

1.5

2

2.5

Number of calls

N
or

m
al

iz
ed

 D
is

to
rt

io
n

Rate adapted, P
max

=150
Rate adapted, P

max
=200

Rate adapted, P
max

=350
Rate adapted, P

max
=500

No source adaptation, P
max

=150
No source adaptation, P

max
=200

No source adaptation, P
max

=350
No source adaptation, P

max
=500

Figure 5.2: Normalized distortion vs. number of calls

whereA(f) andÂ(f) are the FFT-approximated spectra of the original and the recon-

structed speech frames, respectively, andWB(f) is the subjective sensitivity weighting

function [9]:

WB(f) =
1

25 + 75(1 + 1.4(f/1000)2)0.69
. (5.21)

For the proposed system, we used of the eight possible sourceencoding rates: 12.2,

10.2, 7.95, 7.4, 6.7, 5.9, 5.15 and 4.75 kbps, we used only thesix highest ones. We also

used a memory 4, puncturing period 8, mother code rate1/4 RCPC code, [19], decoded

with a soft Viterbi decoder. We assumed BPSK modulation and achannel affected by

normalized Rayleigh fading (average power loss equal to 1) and normalized path loss

(with propagation constants assumed equal to 1), with a pathloss exponent equal to
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Figure 5.3: Normalized distortion vs.Pmax

3 (typical of urban areas). The total bandwidth was 1.5616MHz. Users are randomly

located in a cell with radius 500 m. Background noise level was assumed equal to10−6.

k = 3.3 ⋊ 10−5. Rmax = 12.2 kbps. Finally, we fixed the transmit rate at 24.4kbps and

processing gain at 64.

To evaluate the proposed system, we analyzed its performance as the system be-

comes increasingly loaded. In Fig. 5.2, we show the normalized distortion versus the

number of calls with the total transmit power as a parameter.The figure also includes,

for comparison purposes, results for an equivalent CDMA system that shares the same

configuration as the proposed scheme but is forced to operatewithout adaptation. For

the case of this equivalent system, all calls operate at a source encoding rate equal to

12.2 Kbps and channel coding rate 1/2. From these results we can draw several con-
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clusions. When the number of users is small, all the schemes show approximately the

same performance. This is because there is enough power for every call to be configured

for minimal distortion. When the number of users increases,the proposed scheme can

reduce the normalized distortion relative to the traditional system setup. This is because

the proposed scheme controls the distortion smoothly by adapting the source and chan-

nel coding rates. In particular, if examplePmax = 350, the proposed system can support

30 users with 6 % less distortion, 40 with 12 % and 50 users with37 % less distortion.

When the ransmitted power is increased, the distortion is also reduced. In Fig. 5.3, we

compared the normalized distortion as a function of the maximal available power for a

fixed number of users in the system (N = 30, N = 40, andN = 50) that represents

different network loading conditions. It shows the proposed system can deliver the same

level of average end-to-end distortion by a much lower maximum transmitted power.

We also compared the performance of the proposed algorithm with the upper bound

in Table 2 by measuring the relative difference. We define therelative difference as

the average distortion of the proposed algorithm minus the average distortion obtained

from the upper bound divided by the average distortion of theupper bound. In Fig. 5.4,

we show the relative difference versus the number. To obtainthe global optimization

using the bound algorithm, we applied multiple initializations. Since the channel rate

is assumed continuous for the algorithm in Table 5.2, the global optimum is always

better than the one defined in the problem (5.5). Although theproposed algorithm is

suboptimal, the difference in performance between the proposed algorithm and the upper

bound is very small. This shows that the proposed algorithm is at least near optimal.

Note that the performance of the proposed algorithm gets worse when the number of

users increases. This can be justified by the fact that, in practice, the adaptation changes

in the proposed algorithm are limited to a discrete number ofpossibilities; as the system
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becomes increasingly loaded it becomes harder to find adaptations that would reduce

distortion while not exceeding the constraints. This is notthe case for the upper bound

since the coding rates are assumed continuous.
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Figure 5.4: Evaluation of the proposed algorithm as compared to the performance

bound.

5.3 Resource Allocation in the Downlink of Multicode

CDMA for Layered and Embedded Real-Time Video

Consider the downlink of a single-cell Multicode CDMA (MC-CDMA) system withN

users. In this system different transmit rates for each callare achieved by assigning a
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number of spreading codes to the call. Each code is essentially used as a communication

channel, thus the transmit bit rate of a given call is equal tothe number of assigned codes

times the transmit bit rate of each code. We assume that thereare a total ofC codes to

be used.

Figure 5.5 shows a block diagram of the proposed design to transmit a layered and

embedded real-time source, MPEG 4 FGS conversation video from now on, over the

downlink of multicode CDMA. An allocation algorithm, implemented at the base sta-

tion, allocates resources among each call with the goal of minimizing average distor-

tion. These system resources are spreading codes and transmit power. The algorithm

allocates resources based on rate-distortion (R-D) information received from each call.

The algorithm assigns a variable number of spreading codes to each call according to

its resource demand (based on the time-varying characteristic of each video sequence,

as discussed in chapter 3) and channel condition. Also, according estimations of the

downlink channel, the algorithm assigns channel coding rates and power allocations

to the data transmitted over each code. In allocating resources, the design goal is to

maintain good received quality, even when transmitting through a noisy channel with

interference. As was the case of all designs presented in this work, we will have aqual-

ity goal to limit the effects of channel errors. In this case, the approach is similar to the

one in chapter 3, since we will define the quality goal in termsof guaranteeing a target

BER. Because the number of spreading codes and the total transmit power are limited,

the challenge for the proposed algorithm is to efficiently allocate these resources while

minimizing average distortion and meeting the quality goal.

As discussed in Section 5.2, because of the multipath environment, the orthogonality

between codes could not be maintained and each mobile user issubject to interferences

from other users in the cell. If theith code is assigned to userj, the received SINR when
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decoding data spreaded with this code is:

βi =
W

r

PiGj

Gj

C
∑

k=1,k 6=i

θkiPk + σ2

(5.22)

whereW is the total bandwidth and is fixed,r the transmit bit rate associated with a

code,Pi the transmitted power from the base station for codei, θki is the orthogonality

factor between codes,Gj is thejth user’s path loss, andσ2 the thermal noise level that

is assumed to be the same at all mobile receivers. The ratioW/r is the processing gain.

To meet the quality goal, the received SINR should be no less than a target SINR,

which is a function of channel coding rate. Here, again, we use the approximation for

the target SINR as a function of channel coding rate

βi = 2ARi+B (5.23)

whereβi is the required targeted SINR.A andB are parameters of the error control

coder, andRi is the channel coding rate with range[Rmin, Rmax].

In this muticode system, we denoteaij as an indicator to specify whether theith code

is assigned to userj. The maximum total power isPmax, and a valid allocation requires

that each user’s source data throughput,xTj
, should be larger than the base layer bit rate

x0
j (to guarantee a baseline quality) and smaller than the maximum source ratexP

j .

The design optimization problem is, then,

min
Ri,aij

N
∑

j=1

Dj (5.24)

subject to











































N
∑

j=1

aij ≤ 1, aij ∈ {0, 1}, ∀i;

Psum =
C
∑

i=1

Pi ≤ Pmax;

x0
j ≤ xTj

= r

C
∑

i=1

aijRi ≤ xP
j , ∀j.
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The challenge in solve (5.24) lies on the power and the code constraint. Each call

could reduce its operating distortion by increasing its allocated transmit power. Be-

cause different users experience different channel conditions, users will need different

increases of power to have the same distortion reduction. However, the total transmit

power at the base station is limited. Therefore, it is important to allocate power to each

user efficiently. Moreover, as discussed in chapter 3, the bit rate necessary to transmit

a video frame at a target quality level changes practically from one frame to the next.

Them it is necessary to allocate codes based on each user’s transmit bit rate needs and

when doing so, the resulting effect will be different reductions of the average distortion

for each call. Next, we present an algorithm to efficiently allocate the limited power and

codes to reduce the overall distortion.

5.3.1 Distortion Management Algorithm

The algorithm is divided in two stages. The first stage allocates resources to guarantee

delivery of the base layer data (so as to provide a baseline video quality for each user).

The second stage allocates resources deciding the number ofbits from the enhancement

(FGS) layer to be delivered to reduce the average distortion. The goal for the second

stage adjustment to each call total bit rate is to fully utilize the codes and power resources

and to avoid exhausting only one resource first while having the other resource left

underutilized, which leads to a local optimal solution. Theproposed algorithm can

overcome the problem mentioned above by keeping a balance between code and power

allocation during the process of resource allocation.
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Figure 5.6: Base layer initialization algorithm.

Base Layer

Figure 5.6 shows the initialization procedure, where codes, channel coding rates, and

power are assigned to each user so that all of them can transmit the base layer with bit

ratex0
j , while the power constraint is satisfied. First, the algorithm allocates only the

maximum channel coding rateRmax and computes the number of codescj necessary

for each user to transmit the base layer. If there are no codesleft, an outage is reported,

indicating that there are too many users in the system and there are no resources even

for accommodating the base layers only. If there are enough codes for the base layer, the

algorithm evaluates whether the power constraint is met or not. If yes, the initialization

stage is done and the algorithm proceeds to the second stage that allocates resource for

the FGS layer. Otherwise, the algorithm reacts by “relieving Psum”. Relieving Psum

means that a previously unassigned spreading code is allocated to a user to reduce its
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Table 5.3:Psum Relieve Algorithm

1. For hypothesisj = 1 to N :

• Assign a candidate code to userj.

• Calculate the optimalRi for all codes assigned to

userj including the candidate code, such that

Psum is reduced most, whilexTj
is unchanged.

2. Pick the call with the largest reducedPsum and

assign it a real code.

transmit powerPsum. The unassigned code is allocated to the user that can reducethe

power most when assigned an extra code while the distortion is kept. This operation is

repeated until the power constraint is satisfied.

To derive thePsum relieve algorithm, we first need to find an approximate expression

for Psum. Depending on which user a code is assigned to, we define

Ti =











0, if code is not assigned;

2ARi+Br

W
=

PiGj

Gj

∑

k 6=i θkiPk + σ2,
for user j.

(5.25)

Since the processing gainW/R is large andTi2 is small,Psum can be approximated

as:

Psum = 1T [I − F]−1u ≈ 1T [I + F]u (5.26)

=

C
∑

i=1

σ2Ti

Gi
+

C
∑

i=1

C
∑

k 6=i

σ2θkiTiTk

Gk
,

where1 = [1 . . . 1]T , u = [u1, . . . uC]T with ui = σ2Ti/Gi, and [F]ij = 0 if j =

i; [F]ij = θjiTi if j 6= i.. Note that this simplification is similar to (5.8), but now for the

multicode scheme, each code, not a user, appear as an individual interfering call.
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ThePsum relieve algorithm is shown in Table 5.25 Before assigning anactual code

to a specific user, the algorithm makesN hypotheses. For thejth hypothesis, it assigns a

candidate codeto thejth user while keeping the settings for the other users unchanged.

Thejth call will keep its source coding rate,xj unchanged and will redistribute this bit

rate evenly among the assigned codes (including the candidate code). Therefore, the

channel coding rates corresponding to those codes assignedto userj are reduced which

allows for a reduction in target SINR and total transmit power. In performing this op-

eration the goal is to allocate the source coding rates and channel coding rates to the

already assigned codes plus the candidate code such thatPsum is minimized and distor-

tion is kept fixed. A simple solution for this problem is to usethe water filling method.

First, the candidate code is assigned a channel coding rateRmax, which means that the

new throughput will be larger thanxj. SinceTi is a monotonic increasing function of

Ri, Psum can be reduced by searching for the code with the largest|gT
i = ∂Psum

∂Ri
| and

reducing its channel coding rate. The algorithm repeats thesearching procedure until

the throughput is equal toxj . From all hypotheses, the user reducingPsum the most is

selected and assigned an actual spreading code.

FGS Layer

After initialization, the algorithm proceeds to the algorithm shown in Figure 5.7 that ef-

ficiently allocate resources to the enhancement layers so asto reduce average distortion.

This algorithm starts by deciding whether all spreading codes have been used up. If this

is the case, the algorithm uses the remaining transmit power(the difference between the

currentPsum andPmax to reduce the distortion as described in Table 5.3.1. If there are

unassigned spreading codes the allocation algorithm proceeds to one of two possible

sub-algorithms that assigns a new code, one to reduce transmit power and the other to
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Figure 5.7: Resource allocation algorithm for enhancement(FGS) layer.
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reduce distortion, depending on whether the system is powerunbalanced. The whole

algorithm is terminated under two conditions: First, all available codes are distributed

and the power is within the acceptable range. This is the situation when the system is

heavily loaded. Second, all the users have the minimal distortion. This is the lightly

loaded situation.

The criterion to judge whether the system is power unbalanced is based on the av-

erage consumed power per assigned code. If the currentPsum over the total assigned

codes
∑N

j=1 cj is greater thanPmax over the total available number of codesC, the sys-

tem is power unbalanced. Then, the algorithm in Table 5.3.1 is applied to reduce the

power. Otherwise, the algorithm listed in 5.4 is used to reduce distortion.

In 5.4, the algorithm reduces the overall distortion by assigning one spreading code

to a user at a time. Before an actual spreading code is assigned to a specific user, the

algorithm makesN hypotheses. For thejth hypothesis, acandidate codewith associated

channel coding rateRmax is assigned to thejth user while keeping the settings of the

other users unchanged. Then, the total power required for transmission,Psum, and the

source distortion reduction, are calculated using (5.26) and:

∆Dj = Dj(xj)−Dj(xj + rRmax), (5.27)

respectively. In (5.27)xj is the user’s current source rate. IfPsum is smaller thanPmax,

this hypothesis is added into a candidate list. Then, the algorithm assigns an actual

spreading code to the call among the candidate hypotheses list that can reduce the dis-

tortion by the largest magnitude. If the candidate list is empty, it means the average

distortion cannot be further reduced without the corresponding required transmit power

exceedingPmax. To achieve further distortion reduction in successive iterations, the

power needs to be reduced using the algorithm in Table 5.3.1.

If all the spreading codes have been assigned and there is still some transmit power

156



Table 5.4: Code Assignment to Reduce Distortion

1. For hypothesisj = 1 to N :

• Assign userj a candidate code, analyze∆Dj ,Psum

• If Psum < Pmax, add hypothesisj to candidate list.

2. If there is no candidate user, do not assign the code

and go to the algorithm in Table 5.3.1.

3. Among the candidates, choose the one with the

largest∆Dj and assign an actual spreading code to userj.

left, it is useful to reduce the distortion by increasing thetransmit power. The algorithm

is listed in Table 5.3.1. Here the algorithm makesC hypotheses, i.e. one for each

spreading code. In hypothesisi, the algorithm checks whether the channel coding rate

for the spreading codei, Ri, is less thanRmax. If not, it checks the next hypothesis.

Otherwise, it increasesRi by a discrete step∆Ri while it keeps the settings of the

restC-1 codes unchanged. If this code belongs to thejth user, the algorithm calculate

the reduced distortion∆Dj and the increase in total transmit power∆Psum. If the

new total transmit power does not exceedsPmax this hypothesis is added to a candidate

list. Among the candidates in the list, the algorithm picks the code with the largest

|∆Dj/∆Psum| and setRi = Ri + ∆Ri. The above process is repeated until there is no

transmit power left.

5.3.2 Performance Evaluation

We evaluated the performance of the proposed algorithm through simulations. The re-

sults shown here were obtained by G.-M. Su as part of our collaborative work [46].

The simulations are set up as follows. We assumed bandwidth equal to 7.5 MHz.
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Table 5.5: Distortion Reduction by Increasing Power

1. For hypothesisi = 1 to C:

• If Ri of codei is equal toRmax, do next hypothesis.

• For codei, calculate the corresponding decrease in

channel coding rate of one discrete step,∆Ri.

• Given∆Ri, calculate∆Dj, and∆Psum.

If Psum < Pmax, add hypothesisi to candidate list.

2. If no candidate left, exit. Otherwise, choose the

code with the largest|∆Dj/∆Psum| and change

the channel coding rate of the chosen code.

3. Empty candidate list. Go to step 1.

and spreading factor 64. We assumed a fading channel with path loss factor equal to 4

and delay profile typical of urban area. The noise power was assumed10−9 Watts and

maximum transmit power equal to 280 Watts. The mobiles are uniformly distributed

within a cell at a distance from 20 m. to 700 m. For error protection we used the memory

4, puncturing period 8, and mother code rate1/4 RCPC codes from [19]. Through

simulations we found that in order to meet a target BER=10−6 for the MPEG-4 FGS

codec, the parametersA andB in (5.23) areA = 4.4 andB = −1.4.

As input sequence we concatenate 15 classic video sequences(Akiyo, Carphone,

Claire, Coastguard, Container, Foreman, Grandmother, Hall objects, Miss American,

Mother and daughter, MPEG4 news, Salesman, Silent, Suzie, andTrevor). To all se-

quences we applied a temporal down sampling factor equal to 2. This resulted in a

video sequence with 2775 frames and video refresh rate of 15 frames per second. The

base layer of the encoded video sequence was generated usingan MPEG-4 encoder

158



with a fixed quantization step of 30 and a GOP pattern of 14 P frames between each I

frame. All frames of the enhancement (FGS) layer have up to six bit planes. For each

call we choose as input sequence a section from the main concatenated testing video

sequence of 100 frames of length. For theith user this sequence corresponded to frames

173×(i-1)+1 to 173×(i-1)+100.

Figure 5.8 shows a simulation result for the convergence track of the total trans-

mit power (solid line and scale on the right) and overall distortion Dsum =
∑N

j=1 Dj

(dashed-doted line and scale on the right) as the spreading codes are gradually assigned

using the proposed algorithm. After initialization (shownas point A), 17 codes have

been assigned so as to accommodate the base layer of each user. The overall distor-

tion (shown at point A’) is large because only the base layer is to be transmitted so far.

When the system is power unbalanced, i.e. the operating point is above the balanced

resource allocation line (the situation at point A, for example), the algorithm uses the

power relieve algorithm in Table 5.3.1 to reduce total transmit power while keeping the

distortion fixed. When the system is not power unbalanced (such as the case at point B),

the algorithm assigns new codes to reduce distortion (consequently, the required power

is increased) using the algorithm in Table 5.4 until all the codes are used up. Finally,

the algorithm uses the sub-algorithm in Table 5.3.1 to further reduce distortion until the

transmit power has been use as much as possible (shown at point C).

To further evaluate performance we compare the proposed algorithm with the al-

gorithm in Section 5.2, modified so that code assignment for the FGS layer follows a

greedy approach. For each iteration, this greedy algorithmtries to assign a candidate

code by calculating|∆Dj/∆Psum| for each call, and assigning the new code to the user

with the largest such value. Figure 5.9 shows the PSNR results in a four-user system.

The first three users receive video with a better quality using the proposed algorithm.
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Figure 5.9: PSNR results for the sequences corresponding to4 users.

Since the greedy algorithm assigns codes to the users who canuse the least power to ob-

tain the largest decreased distortion, which is the fourth user in this example, it cannot

reduce the overall distortion much. Also, we can see that when using the proposed algo-

rithm all users maintain good video quality (with PSNRs above 35 dB in all cases). This

is not the case for the greedy algorithm, since some users (users 1 and 2 most notably)

see their PSNR reach levels of approximately 30 dB. Figure 5.10 shows the number

of users versus average total distortion over 100 frames from 50 different mobiles’ lo-

cations. The simulation results demonstrate that the proposed algorithm performs an

efficient resource allocation function since the averageDsum of the proposed algorithm

outperforms that of the greedy algorithm by at least 45%.
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5.4 Conclusions

In this chapter we conclude our study of cross-layer designsfor multimedia CDMA

by discussing two designs, developed as collaborative workwith members of the Uni-

versity of Maryland’s Communication and Signal ProcessingLaboratory, that allocate

resources in the down link. We started by noticing that due tothe multipath propagation

environment, inter-user interference is still an issue. Wealso noted that the constraining

resources are the total transmit power at the base station and the spreading codes.

We then presented as contributions two algorithms. The firstalgorithm adapts the

real-time source encoder to the channel and multiuser traffic conditions. In this case,

we assume that the processing gain is fixed and that the parameters to be adapted are

transmit power, source coding rate and channel coding rate.The algorithm performs

this adaptation by minimizing the average distortion subject to constraints on the total

power, each user distortion and a quality goal that limits the channel-induced distortion

to a small proportion of the total. Simulations results shows the superior performance of

this algorithm when compared to an equivalent system that cannot perform adaptation.

Also, using a performance upper bound we showed that the proposed algorithm is near-

optimum.

The second algorithm was designed to perform resource allocation in the downlink

of multicode CDMA network. This means that, in addition to allocating transmit power,

source coding rate and channel coding rate, the algorithm assigns to each real-time call

spreading codes from a finite pool. This design was aimed at systems that use a real-time

source encoder that generates a layered and embedded bit stream. During simulations,

we used the MPEG-4 FGS video codec and we observed that the proposed algorithm

both performs an efficient resource allocation and it outperforms an equivalent algorithm

that assigns spreading codes using a greedy rule.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this thesis we have study designs for resource allocationin CDMA networks carry-

ing conversational-type calls. The designs are based on a cross-layer approach where

the source encoder, the channel encoder and, in some cases, the processing gains are

adapted. The primary focus of the study is on optimally multiplexing multimedia sources.

We first started by presenting the general model for our design. One of the charac-

teristics of this model is that we constrain our design so that channel-distortion is kept at

subjectively acceptable levels. The reason for this is thatwe noticed that, for the same

distortion measure, channel-induced errors are perceptible more annoying that source

encoding distortion because they manifests as artifact that many times are perceptually

evident, annoying and that in some cases might affect the understandability of the mes-

sage. We called this goal thequality goal. The use of adaptable elements in our designs

allow for an increase in the number of calls while meeting thequality goal. The tradeoff

involved in this operation is that distortion also increases but now in a smooth and con-

trollable way, following the source encoder distortion-rate performance. The result is

a flexible system that sets an efficient tradeoff between end-to-end distortion and num-
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ber of users and that clearly outperforms equivalent CDMA systems where capacity is

increased in the traditional way, by allowing a reduction inSINR.

We first consider the design for only real-time sources in theuplink of the DS-

CDMA system. This study was divided into two parts, with chapter 2 dedicated to a

simple model where all sources are encoded using the same single-state source encoder

and processing gain is constant, and chapter 3 addressing the most general problem of

optimal resource allocation to resolve interference-generated congestion for an arbitrary

set of real-time variable-rate source encoders in a variable spreading factor multimedia

CDMA network.

From the mathematical analysis in chapter 2 we concluded that the proposed system

is able to significantly increase capacity at the cost of a moderate controlled smooth

degradation of reconstructed source quality. We reach similar conclusions when we

modified the design to consider a Rayleigh fading channel. When considering that the

calls present in the system change over time, we found that the proposed design can sup-

port much larger offered loads as compared to a traditional equivalent CDMA system.

In chapter 3 we presented the important conclusion that the design problem (allo-

cation of spreading factor, source coding rate and channel coding rate) could be fur-

ther considered as the optimal source-controlled statistical multiplexing in multimedia

CDMA. In this case, the statistical multiplexer needs to perform resource allocation so

as to assign anequivalent bandwidth, which depends on target SINR and transmit bit

rate, among calls in such a way that average distortion is minimized. Two solutions were

discussed, one where the transmit bit rate is adapted through the source encoder rate and

the other where both the transmit rate and the target SINR areadapted. We showed that

both solutions are optimal in the sense of minimizing average distortion while meeting

the quality goal and the system stability/power amplifiers dynamic range limits. We
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also showed that the proposed system is able to extend operation beyond what has been

normally considered an outage region at the cost of a smooth increase in distortion.

The analogy between the problem under study and statisticalmultiplexing prompts

the design of a system that integrates both real-time and data traffic. Since our focus is

the statistical multiplexing technique we studied in chapter 4 the effects that changing

the equivalent bandwidth have on a system carrying real-time and data traffic. In this

chapter we studied the sensibility of both the real-time anddata traffic subsections to

changes in their assigned total equivalent bandwidth. We observed that while the data

subsection mean delay is clearly sensible to this changes, the real-time subsection qual-

ity remains relatively insensible. Finally, we used these results to propose an integrated

congestion relief scheme that temporarily accepts small increases in real-time distortion

to relieve the congestion in the data subsection.

Finally, in chapter 5 we have presented two algorithms to allocate resources in the

downlink of the CDMA system. The first of the algorithms was aimed at being used for

voice calls since only one spreading code is used per call. Because the second algorithm

can allocate more than one spreading code per call, it is applicable to any type of real-

time source that uses a layered and embedded source encoder.For these solutions we

showed their near-optimality and efficiency in the allocation of resources.

6.2 Future Work

In this thesis we observed that the problem of resource (spreading factor, source coding

rate and channel coding rate) allocation that minimizes average distortion could be con-

sidered as the optimal source-controlled statistical multiplexing in multimedia CDMA.

This is a powerful abstraction for the studied problem and could be used as a frame-
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work to solve many problems in this area. Some potential future research problems that

can be derived from this thesis involves the design of protocols to efficiently integrate

heterogeneous traffic in the CDMA network and the study of statistical multiplexing in

networks that feature combined time-division and code-division multiple access.

An important application of the study in this thesis is the use of the proposed de-

signs to extend operation of the CDMA network beyond a definedcongestion operating

point. As noted, this feature increases the CDMA cellular network resiliency in a way

analogous to rerouting of traffic in a packet network where a router goes out of service.

Future work in this area involves considering practical implementation issues beyond

the academic study in this thesis.
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