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Diesel engine propulsion has been the largest driver of maritime trade and transportation 

since its development in the early 20th century and the technology surrounding the operation and 

maintenance of these systems has grown in complexity leading to rapid advancement in amount 



and variety of data being collected. This increase in reliability data provides a fantastic 

opportunity to improve upon the existing tools troubleshooting and decision support tool used 

within the maritime engine community to enable a more robust understanding of engine 

reliability. This work leverages this opportunity and applies it to the Coast Guard and its 

acquisition of the Fast Response Cutter (FRC) fleet powered by two MTU20V4000M93 engines 

integrated with top of line monitoring and control equipment. 

The purpose of this research is to create procedures for creating a Failure Detection and 

Diagnosis (FDD) model of a maritime diesel engine that updates existing Probabilistic Risk 

Analysis (PRA) data with input from the engine monitoring and control system using Bayesian 

inference. A literature review of existing work within the PRA and Prognostics and Health 

Management (PHM) fields was conducted with specific focus on the advancement and gaps in 

the field specific to their use in maritime engine applications. Following this, a hierarchal ruleset 

was created that outlines procedures for integrating existing PRA data and PHM metrics into a 

Bayesian Network structure. This methodology was then used to build a Bayesian Network 

based FDD model of the FRC engine. This model was then validated by Coast Guard Engineers 

and run through a diagnostic use case scenario demonstrating the model’s suitability in the 

diagnostic space. 
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1. Introduction 

1.1 Motivation 

 Diesel engine propulsion has been powering maritime trade and transportation since its 

development in the early 20th century. The first commercial vessel, the Motor Liner Selandia, 

was commissioned in 1912, and was followed by the first United States diesel-powered military 

ship, the USS MAUMEE, in 1916 [1], [2]. Now over 100 years later, the U.S. Bureau of 

Transportation reports that over 62,000 cargos ships visit the U.S annually, accounting for nearly 

55% of the value of all U.S. imports [3]. In response to the high demand on the shipping 

community and increasing awareness of shipping related pollutants, there has been a global call 

to optimize the shipping economy with a focus on both shipping routes and propulsion 

efficiencies [4], [5]. With the rapid development of system control and monitoring equipment, 

more data than ever is being produced, spurring changes to how assets operate and how they are 

maintained. 

On the cusp of technological revolution exists the United States Coast Guard, a 

department of Homeland Security branch with a maritime fleet of over 150 cutters. From a new 

acquisition program to replace the Icebreaker POLAR STAR commissioned in the 1970s to the 

Offshore Patrol Cutter line currently in production, the Coast Guard is rapidly transitioning its 

aging fleet to a modern more capable fleet [6]. During the 2022 State of the Coast Guard 

Address, Commandant Admiral Shultz noted that the U.S. Coast Guard is currently amid its 

largest shipbuilding effort since World War II and has focused acquisition efforts on providing 

technology that enables and empowers the workforce to work smarter and more efficiently. This 

mantra extends past the acquisition of existing technology and requires the integration of modern 
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technology into how assets are operated and maintained. While technological improvement come 

in waves, the evolution of a workforce mindset is a much slower, iterative process that requires 

buy-in and innovation at every level of an organization. No project better characterizes this 

evolution of ideologies than the Fast Response Cutter (FRC), a 154’ Patrol Boat whose 

acquisition started in 2012 with 46 of 64 assets delivered [7]. 

 The FRC was created to fill an operational gap between existing Coast Guard Coastal 

Patrol Boat and Medium Endurance Cutter fleets. The FRC was designed to perform 

multifunctional missions in support of Coast Guard operations involving drug and migrant 

interdiction, port and waterways security, fisheries patrols, search and rescue, and national 

defense [8]. The FRC utilizes two MTU20V4000 M93L series engines in a two-shaft geared 

drive propulsion system where each shaft line operates independently. Each engine can produce 

more than 5700 hp and is equipped with advance control and monitoring equipment capable of 

preserving the engine’s long-term health. This system optimizes performance for engine health 

by altering the engine power output or, in extreme cases, shutting down the engine in response to 

adverse operating conditions caused by internal component failures or external factors [9]. 

Engine life preservation features such as these enhance long-term reliability of the engine but are 

exponentially more complicated than legacy systems. This has created a knowledge gap in the 

workforce leading to a reliance on commercial assistance for engine repairs and troubleshooting. 

While the Coast Guard has invested heavily in developing workforce knowledge, alternative 

options to close this gap must be explored to lower the knowledge ceiling required to service the 

engines while maintaining high reliability for an always ready fleet [7]. 

Along with the acquisition of the FRC the Coast Guard acquired reliability engineering 

analyses including a life cycle maintenance plan for the engine, a Failure Mode Effects & 
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Criticality Analysis (FMECA), and additional technical publications providing insight into the 

inner workings of the engine [9]. Data packages such as the above are extremely detailed, and 

the package for the FRC meet all requirements described in the contract. However, technical data 

packages such as these are based off initial projections and are unable to be adapted to a 

changing use case. Improvements to the engine monitoring and tracking system present an 

opportunity for the Coast Guard to integrate the detailed sensor and alarm information into their 

existing reliability program. One opportunity is to address how the changes to FRC operational 

profile affect the reliability of the engines. 

The current asset maintenance plan for the FRC diesel engines is primarily based upon 

the manufacturer recommended life cycle plan [9] created from a combination of in-house 

factory testing and comparisons to existing/operating engine models. The Coast Guard utilizes 

maintenance tracking software to make generalized updates to this plan at the fleet level, but the 

current feedback system relies on field level operators to manually enter a text-based narrative 

regarding their issue and recommended solution. The Coast Guard has a global presence, and the 

FRC platform specifically is the organization’s most versatile asset with permanent duty stations 

ranging from Sitka, Alaska to Key West, Florida and even across the Atlantic to Bahrain [7]. 

Current maintenance and operating practices, with limited exceptions, do not account for the 

changes to the operating location. In addition to operational location-based issues, the FRC 

platform is now 10 years into operations, and the mission profile has changed significantly from 

the use case presented during acquisition. Considering these issues, the Coast Guard requires a 

mechanism that will allow the FRC maintenance plan to be adjusted for both operational location 

as well as operational tempo/mission. 
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This thesis proposes a methodology to integrate existing data and evidence regarding 

causal effects of operating conditions to create an adaptable FDD model capable of 

troubleshooting faults within the FRC engine. This model-based approach draws on concepts 

from both systems and reliability engineering to provide a data driven representation of the 

engine that can be utilized for failure detection and diagnosis. By utilizing concepts of Bayesian 

inference, this work creates a framework to show the feasibility of creating a generalized model 

for a series of similar complex systems that can account for the effects of various operational 

changes on both the system and individual component reliabilities allowing for informed life 

cycle actions. The resultant model enables improved life cycle management and maintenance 

decisions for maritime diesel engines across various operational profiles. 

1.2 Objectives and Approach 

The purpose of this research is to propose a methodology that utilizes principals of 

Bayesian inference to integrate existing PRA data with input from the engines PHM system to 

garner a deeper understanding of maritime diesel engine reliability. Leveraging this improved 

understanding allows for improvements in the process of diagnosing failures on maritime diesel 

engines. This process leverages existing PRA practices, identifies collectable data, gaps in 

current usage, and creates an integrated framework for creation of usable models capable of 

iterative enhancement. To achieve this there are three main objectives: 

 Objective 1: Identify current approach to PRA and PHM for maritime diesel 

engines and identify knowledge gaps therein. 

 Objective 2: Develop a methodology for updating existing PRA data with PHM 

input into a hierarchal Bayesian Network (BN) model of a maritime diesel engine. 
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 Objective 3: Demonstrate methodology application through creation and testing 

of a model. 

 These three objectives make up the core of this research and are presented visually below 

in Figure 1. 

 

Figure 1: Overview of Thesis Objectives 

1.2.1 Objective 1: Identify Current Approach to PRA and PHM for Maritime 

Diesel Engines and Identify Knowledge Gaps Therein. 

Objective 1 consists of Tasks 1a and 1b summarized below: 

a. Review current uses of PRA and PHM data in the reliability field broadly and 

specifically for diesel engines in the maritime community. 

b. Identify opportunities to improve existing reliability engineering processes used 

for maritime diesel engine by integrating multiple data sources through Bayesian 

inference. 
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By first assessing the status of the reliability field, it is possible to identify the range in 

which PRA and PHM data is being used to gain an understanding of the method maturity and 

reach. This process will enable a comparison of the reliability methods used on maritime diesel 

engines with more experimental methods being implemented in other engineering disciplines. 

Additionally, these tasks will work to outline potential areas for improvement in the reliability 

practices used on maritime diesel engines through integration of data sources using Bayesian 

inference. 

1.2.2 Objective 2: Develop a Methodology for Updating Existing PRA Data with 

PHM Input into a Hierarchal BN Model of a Maritime Diesel Engine. 

Objective 2 focuses on development of a methodology for creating a model that organizes 

and updates existing PRA with direct input from a systems PHM monitoring component in the 

context of maritime diesel engines. The proposed methodology offers opportunities to utilize 

limited existing PRA data with the systems-integrated monitoring capabilities to create a macro 

model of systems performance that can be used to reason about both system and component level 

failures. The methodology allows for continued modular updating, representation of complex 

inter-system relationships, and consideration of external causal factors. The use of Bayesian 

inference to incorporate both the observation-based data sets and consideration of complex 

causal relationships makes it possible to gain a more accurate depiction of the systems 

performance and reliability at a given point in time as well improving the adaptability of 

maintenance plans to changing operational profiles. 

 This methodology will focus on developing a model that addresses the gaps identified in 

Objective 1. It outlines the structural framework necessary for use on maritime diesel engines as 

well as the potential use in other Complex Engineering Systems (CESs). By replacing traditional 
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FDD and life cycle tools with models integrating this methodology, stakeholders can make 

informed life cycle logistics changes as the asset age, operating location, or operational profile 

changes. Part of this process is the utilization of agile development concepts to hone the model’s 

accuracy by increasing granularity, thus allowing the integration of more specific data, and 

enabling better predictive and diagnostic capabilities. Early models based on this methodology 

will focus on producing a working model that provides stakeholders immediate usability, 

resulting in a less complex model that provides the most insight at a system level but sacrifices 

lower-level granularity. The operational use case for this model is shown below in Figure 2. 

 

Figure 2:Approach to Development of the BN FDD Model for Maritime Diesel Engines 

While the focus of this research is on providing results for immediate application to the 

maritime diesel engine community, a secondary result is to produce a methodology with 

applicability across all CESs of interest to the Coast Guard. 
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1.2.3 Objective 3: Demonstrate Methodology Application Through Creation and 

Testing of a Model 

Objective 3 consists of Tasks 3a and 3b summarized below: 

a. Utilizing the methodology proposed in Objective 2, create a BN-based FDD 

model representing a FRC diesel engine. 

b. Demonstrate model capability through execution of a use case scenario on the 

FRC engine model created in Objective 3a. 

Together these tasks show the application of the methodology created in Objective 2 and 

demonstrated potential use cases for the resultant model. 
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2. Literature Review 

The purpose of this literature review is to provide sufficient background information 

regarding the methodologies used in this research in addition to outlining ongoing efforts in the 

PRA and PHM fields with a focus on identifying recent advancements and areas of potential 

improvement. As the focus of this study is on the methodology application to a maritime diesel 

engine, focus will be placed on outlining efforts within the maritime engineering community and 

identifying gaps or deviations from advancements in other disciplines. 

2.1 Complex Engineering Systems 

As technology and system design increase in capability and complexity, traditional 

methods of PRA must improve to match the need for a more comprehensive risk analysis 

process. To create a distinction between simple and complex models, Modarres proposed the use 

of the term “CES” (Complex Engineering System), which he defines as a system that possesses 

the characteristics of being evolving, integrated, dynamic, large, and intelligent [10]. As with 

system complexity, the coinciding models required for CESs should be evolving and integrated 

in nature allowing for modular changes to the system based on dynamic feedback. While the 

focus of much CES research [11] focuses on high consequence systems such as nuclear power 

plants [12], hydrogen facilities [13], and the gas production line, there are opportunities outside 

of these high consequence disciplines to apply CES reliability concepts [14]. This study is the 

first conducted with the complex system being a Coast Guard operated FRC. 

An ideal designed system is one that will respond and complete the requested mission 

without issue whenever operation is demanded. Real life constraints make this concept of perfect 

system performance infeasible, but the necessity of the system being available when needed has 
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led to development of the reliability engineering field tasked with determining what affects this 

metric and how to optimize it. The term availability be defined as the probability that a given 

system or asset, when operating under ideal conditions, is available for use when required [15]. 

With the understanding that any system of simple or complex design will eventually break or 

require maintenance to continue operations, it is unfeasible to achieve an availability of 1.0. A 

simplified equation to illustrate the relationship between availability (𝐴), uptime (𝑢) and 

downtime (𝑑) is shown below in Equation 1 where uptime refers to the time the asset is available 

to operate, and downtime is all the time the asset is unavailable to operate: 

Equation 1: General System Availability 

𝐴 =
𝑢

𝑢 + 𝑑
 

The Coast Guard utilizes an asset-specific form of operational availability to determine the 

effectiveness of an asset and its support structure. The FRC’s health is measured in terms of the 

percentage of total operational time in which the asset is Fully Mission Capable (FMC), Partially 

Mission Capable (PMC), Not Mission Capable Depot (NMCD), Not Mission Capable 

Maintenance (NMCM), Not Mission Capable Supply (NMCS), and Not Mission Capable Repair 

(NMCR). The terms FMC refer to the total asset up time, terms NMCD and NMCM refer to 

planned down time, and NMCS and NMCR refer to unplanned downtime [16]. For the purposes 

of availability calculations, PMC time is considered uptime. 

As NMCM or NMCD periods represent planned down time, these metrics are more 

applicable to the material availability of a system; understanding NMCM and NMCD allows for 

inference into how the system was designed to operate and the inherent reliability of the system. 

The NMCS and NMCR metrics provide insight into the effectiveness of the support system and 

its ability to prevent unplanned downtime. 
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2.2 Modeling System Reliability and Health 

Reliability metrics and consideration provide stakeholders crucial information required to 

make risk-informed decisions regarding the operation of multiple million-dollar CESs [17]. As 

technology advances, exponentially more reliability data is being produced to inform 

increasingly granular failure models, and monitoring and tracking practices are improving. In 

this context, reliability engineers are challenged to adapt current practices to take advantage of 

the opportunities to improve how systems are modeled [18]. Areas of improvement are typically 

focused on two categorical areas: PRA and PHM. Traditionally seen as separate practices with 

their own research communities, both methodologies share the same end goal of minimizing the 

occurrence of risk by improving the accuracy of assumptions regarding system health and 

reliability [11]. 

2.2.1 Probabilistic Risk Analysis 

Probabilistic Risk Assessment (PRA) is the act of estimating the risk of an activity based 

on the probability of events whose occurrence can lead to adverse consequences [19], [20]. Risk 

defined simply is the identification of a hazardous scenario, defining the probabilities of that 

scenario, and determining the consequence of the scenario taking place. By utilizing various 

physics and/or data-based analyses of system failures to determine the likelihood of each failure 

mode, it is possible to gain a deeper understanding of how systems fail. PRA therefore allows 

engineers to predict the occurrence of these failures when the system is operating [15]. The 

origins of PRA can be traced back to the aerospace field in the 1960s. A series of critical failures 

during the National Aeronautics and Space Administration Apollo test runs resulted in the 

creation of quantifiable safety goals and criteria before mission execution [21]. This 

methodology of acknowledging and quantifying risk was adapted by the U.S. Nuclear 
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Regulatory Commission in the publication of the Reactor Safety Study WASH-1400 in 1975, 

referred to by many as the first modern PRA [22]. Since its inception, the practice of utilizing 

PRA principles has transcended engineering fields to become standard practice in the design and 

operation all CESs. By providing a structurally sound quantitative method to identify failure 

scenarios and estimate their probability and consequence, PRA practices work to identify 

opportunities to mitigate risk in a controllable and quantifiable manner [11]. 

Along with challenges related to increasing system complexity and multi-state system 

operation, one of the largest challenges the field faces is how to handle re-assessment and 

updating of PRA artifacts throughout a system’s lifecycle [23]. System degradation and changes 

to operational use can lead to vast changes in system element wear/operating characteristics and 

lead to less accurate reliability estimations. Classical PRA methods have historically struggled to 

adequately model failure dependence on causal factors and the interdependency of sub systems 

existing within CESs [11]. These and other limitations have led the field to develop newer 

methodologies utilizing advanced computing software capable of quantifying more complex 

relationships and a more robust information feedback loop [17]. Newer PRA methods looking to 

address the limitations of classical PRA can be categorized as hybrid or simulation-based 

methods. 

One form of input PRA data exists as a Failure Modes and Effects Analysis (FMEA) and 

its expanded form, FMECA. In its base form, a FMEA is a systematic procedure for analyzing a 

system to identify all the potential failure modes, their causes, how they are detected, and what 

effects on they have on the systems performance [24]. Widely accepted as the standard for these 

analysis, MIL-STD 1629 provides guidance on procedures for conducting an FMEA and 

discusses its use as both a design and decision-making tool [25]. Since its conception, the FMEA 
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process has evolved with private companies altering the process to fit their specific needs, as 

illustrated by the adaptation of a seven-step process in auto manufacturing to improve how risk is 

communicated [26]. One of the largest noted issues regarding the FMEA format is the lack of 

data reusability and applicability, stemming from how the data is collected and organized [27]. 

Current research in this area has proposed utilizing hybrid PRA models such as model-based 

methods (e.g., hierarchal trees or BNs) to capture complex causal relationships within a complex 

system, using structures based on Fault Tree Analysis (FTA) [26], [28], [29]. The use of a BN 

model allows for a structured knowledge representation in which variables are represented as 

nodes and whose structure represents dependencies between variables, allowing for complex 

modeling of dependency across inter-variable dependencies [30]. These and similar methods 

seek to introduce non-discrete causal factors into reliability calculations, allowing for the 

consideration of previously unaccounted human, organizational, environmental, or socio-

technical factors [31]. Applicability of these hybrid methods has been shown across engineering 

disciplines with developments stemming from the nuclear, aerospace, and pipeline communities 

[14], [32], [33]. While these methods show promise in modeling dependency across components, 

the static structure of a BN struggles to model the dynamic relationships that are perpetuated 

over time [34]. 

Simulation-based PRA methods, otherwise known as Dynamic PRA (DPRA), evaluate a 

model in which states, element, and variable values are changed as functions of time either in a 

discrete or continuous manner [17]. The methodology allows for the creation of time-dependent 

probabilities, facilitating a more accurate reflection of the state of the coinciding system in a 

specific instance. This additional granularity allows for the removal of model assumptions 

regarding accident/failure progression by enabling safety and reliability evaluations of event 
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sequence/timing [35]. DPRA models, specifically Dynamic Bayesian Networks (DBN), have 

been a focal point in the development of methods to handle complex time-dependent causal 

relationships, and models have shown validity for use as both an accident prevention tool and 

fault diagnosis software [36], [37]. 

2.2.2 Prognostics and Health Management 

The practice of implementing PHM is done to gain insight into the health or Remaining 

Useful Life (RUL) of components or systems to provide stakeholders a more informed means of 

developing system life cycle plans. On a more granular level, PHM processes work to improve 

the ability to detect, diagnosis, and predict potential failures within a system. To accomplish 

these overarching goals, PHM models rely on the collection and analysis of component, sub 

system, and system level performance data to make inferences on potential failures or 

degradation [38]. By identifying likely failure times, stakeholders can alter the maintenance 

cycles for components and sub systems to improve the RUL of the system and reduce the need 

for time-based or inspection-based maintenance procedures [39]. PHM methods are categorized 

by the source data used and can be generally grouped as physics, reliability, data-driven, or 

probability-based methods [40]. While each methodology has intricacies regarding the accuracy 

and applicability, the PHM challenges can be generalized to a lack of accurate, applicable data 

and issues with scalability. 

Data related issues in the PHM field can be extrapolated further to issues regarding data 

collection processes and the Physics-of-Failure (POF) or probability inputs that serve as the basis 

of PHM models [41]. Data inconsistencies in failure documentation reduces the overall 

effectiveness of data-based PHM metrics as many failures remain unreported or lack the 

requisite information to determine causal factors leading to the failure. This data inaccuracy is 
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also seen when looking at POF models that are created under the assumption of a given condition 

and are often rigid in their adaptability to operational changes [42]. Traditional PHM processes 

share this challenge with PRA methodologies in that they both struggle to model component 

failure probabilities/health metrics with regards to equipment operational status and or external 

causal factors [11]. Cai et al. have conducted research regarding component degradation and its 

effect on the health of components within the sub system and proposed the use of DBNs to 

quantify the dependency across systems and sub systems throughout a CES’s operation [43]. 

Along the same line, Liu et al. proposed the use of BNs as a method to organize and interpret 

large fleet PHM data to gain insight on the effects of operating conditions and other external 

causal factors on the performance of CESs [44]. 

Due to the maritime transportation industry’s heavy dependence on diesel engine-based 

propulsion, numerous studies have been made to integrate PHM methods into maintenance 

practices for use on diesel engines with research focused on component level wear analysis [45]. 

Soleimani et al. explored the use of DBNs in conjunction with Hidden Markov models to 

condition sensor input to gain insight into component performance/degradation [30]. Zhang built 

upon this concept by creating a DBN providing a constant filter data stream that acted as a fault 

test input into the health of a given sub system [46]. 

Hybrid methods using tools such as the Hidden Markov models were successful in 

providing a picture of the general health of the components or sub systems, they analyzed but 

these methods were not expanded to cover the system as a whole. 

2.2.3 Integration of PRA and PHM Data 

Systematic Integration of PHM and PRA (SIPPRA) is an methodology presented by 

Moradi and Groth [11] that outlines a method for combining PRA and PHM data to create 
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informed PRA models for CESs that incorporate PHM concepts to update the accuracy of the 

model throughout its operation. This field utilizes concept Bayesian inference in the form of 

either static BNs or DBNs to structure PHM data with supporting PRA networks, allowing for 

informed failure diagnosis capabilities and reduction of uncertainty in reliability calculations 

through informed system health parameters. Application of this data fusion on CESs was 

explored by Moradi and Groth in 2020 [11] with Lewis and Groth summarizing the process in 

Figure 3 [47]. 

 

Figure 3:SIPPRA methodological process. Figure from [46]. 

The main driver behind this branch of research lies in providing the energy production 

field with a method of improving the accuracy of reliability estimates specific to each system and 

its given operational conditions. Most studies in this field focused on the application of these 

principles on CESs within the energy production field, such as nuclear power plants, hydrogen 

infrastructure, and more traditional energy production methods like combustion engines [48]. 

One of the most relevant intersections of the PRA and PHM fields comes in the form of linking 

the end product of FTA or Event Tree Analysis structures to PHM-based health metrics using 

either static BNs or DBNs to gain insight into condition-based failure probabilities [49]. 

Wang et al. proposed BN structures for fault detection on mechanical systems and 

explored the application of the process to a diesel engine injection system [50]. Other studies 
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focused on diesel engines using SIPPRA methodology revolved around fault diagnosis in fluid-

based sub systems with lube oil systems being the most prevalent due to the criticality of the sub 

system within the greater engine hierarchy. For example, Ren et al. explored mapping a diesel 

engine lube oil system FTA onto a static BN structured to match the branching of a fault tree 

[51]. Pernestål et al. conducted a similar study but with a focus on the fuel system of a diesel 

engine [52]. These works were complemented by Liu et al. who combined BN FTAs with oil 

analysis reports to provide stakeholders insight into the health of engine lube oil systems and 

other relevant system components [53]. 

The opportunities for improvements withing the maritime diesel engine community using 

the SIPPRA ideology, and the existing work done on BN FDDs were found to be: 

 Expansion of existing methods that utilize FTA and ETA based BN mapping to a 

system wide level verse the current use cases that focus on component and or sub 

system modeling. 

 Using BN to represent subsystem and component dependency across the system. 

 Introducing causality-based failure definition by creating a structure that defines 

failure based on the propagation of failure mode effects. 

 Integration of sensor-based input into existing BN FDD structures at a system level 

to optimize use of data streams coming from newer maritime diesel engine systems. 

2.3 Chapter Summary 

This chapter provided background information on the CESs and difficulties in quantifying 

risk during their operation. The current state of PRA was discussed, detailing work 

improvements through utilization of hybrid and simulation methods, while also identifying the 

need for a means to evaluate the dependency of system and component reliability in a changing 
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operational environment. Advancements in the PHM field, driven by the rapid development and 

integration of sensor equipment into CESs, have led to advancements in the modeling of 

component failure mechanisms. These advancements mark significant improvements in the field 

and spotlight issues regarding the management of an exponentially increasing quantity and 

variety of data streams. These issues make the scalability of models based on traditional 

methodologies increasing difficult. The SIPPRA methodology was explored and examples of 

data fusion in both the energy production and diesel engine specific fields were provided. 

Finally, gaps withing the maritime diesel engine FDD field were outlined providing a path for 

future research. 
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3. Methodology 

This chapter focuses on development of a methodology for creating a model that organizes 

and updates existing PRA with direct input from a systems PHM monitoring component in the 

context of maritime diesel engines. This will be done in two parts, with the first focusing on data 

collection and organization and the second focusing on the structure of the BN. 

3.1 Develop Background Framework for Data Integration 

The purpose of this methodology is to provide a step-by-step process to create an FDD tool 

for use on maritime diesel engines using BNs. It first provides guidance on organizing existing 

PRA data and documenting current PHM capabilities of the system before presenting a 

hierarchical ruleset for data integration in a BN software. This ruleset is a crucial part of the 

framework as it provides a set of causal rules that guides creation of the structure. This ruleset 

must: 

 Provide guidance on network node structure by mapping system, sub system, 

component, system measurements, and causal factors onto a BN structure. 

 Identify possible parent and child nodes for each node level within the BN structure 

based on causal flow. 

 Identify node states for each node level within the BN structure. 

 Identify methods to quantify nodes in each hierarchical level. 

The combination of data organizational methods and the BN structural ruleset enable 

creation of the BN-based FDD. 
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3.1.1 System Decomposition 

The purpose of this step is to create a detailed list of sub systems and components that 

comprise the system. The first aspect of this process is to identify the elements of the sub system 

level of the system. Utilizing the principles of functional decomposition [54] when breaking 

down the system into hierarchical categories is recommended as it allows for the easiest 

integration of sensor/observational data. In many cases, functional groups serve multiple 

purposes for the system and should be documented prior to continuing forward in this process to 

allow for additional granularity when building the accompanying system structure. Depending on 

the granularity level used when grouping components into sub systems, each sub system may 

have more than one purpose. For example, when looking at the lube oil system as a sub system 

of a diesel engine, the sub system’s purpose(s) are to a) Lubricate components and b) Provide 

cooling to components. This example shows that that a failure for the lube oil system would be 

failure to properly lubricate and/or failure to provide adequate cooling. Said in other words, a 

lube oil system failure is characterized by the failure to properly lubricate or failure to properly 

cool specified components. An example format for this breakdown is provide below in Table 1. 

 

Table 1: Example System Functional Decomposition 

Once the creation of sub systems is complete, a list of components should be created and 

grouped by most applicable sub system. In many complex systems, components serve or are 

affected by multiple systems. This dependency should be documented as this will be used later to 

Sub System Primary Function
Sub System 1 Function A  Function B ~
Sub System 2 Function C ~ ~
Sub System 3 Function E Function F Function G
Sub System 4 ….

….. ….

Sub System X …

Tertiary Function(s)



  
 

21 
 

assist in the creation of the FDD causal connections. An example format for this process is 

shown below in Table 2. 

 

Table 2: Example Sub system Component Breakdown 

3.1.2 Sub System Characteristics 

Performance metrics remain an excellent way to measure a system’s performance 

throughout its life or across different operational conditions, but it is critical to document all 

characteristics of the system rather than just focusing on the readily measurable metrics. The 

process of describing each sub system performance should be done without regard to feasibility 

of measurement, as this process aims to create a model that captures the dynamic relationships 

within a complex system. As a rule, if a measurement could be used as evidence to change the 

understanding of the system, sub system, or components performance, it should be listed. In 

systems that transport a medium such as lube oil, this process can be initially viewed as simple 

but when expanded to include locational measurements, the breadth of data can rapidly expand. 

An example of this process is shown below in Table 3. 

Component Primary Sub System
Component 1 Sub System 1 Sub System 2 Sub System 3 ~
Component 2 Sub System 1 Sub System 3 ~ ~
Component 3 Sub System 2 ~ ~ ~
Component 4 Sub System 2 Sub System 1 Sub System 3 Sub System 4
Component 5 Sub System 3 ~ ~ ~
Component 6 Sub System 3 Sub System 1 ~ ~
Component 7 Sub System 4 Sub System 3 Sub System 1 ~

….. ….

Component X ….

Tertiary Touch Points
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Table 3: Example Sub System Measurement Breakdown 

While many of these measurements are not normally available in traditional engine 

monitoring, they illustrate what is possible in an ideal environment with perfect knowledge. 

Furthermore, this process provides stakeholders input on potential areas to improve system 

monitoring. 

Once this list is generated, each sub system function/purpose must be defined and linked 

to system characteristics. While sub system functions may share characteristics, there usually 

exist distinctions in either the defining characteristics or the reliance on the effectiveness of 

components. Using the previous example of a diesel engine lube oil system, both functions have 

a strong dependency on the system’s pressure, but the lubrication function has a strong 

dependence on the quality of the lube oil medium whereas the cooling function has a very weak 

dependency on quality and could be defined without this characteristic. 

An example of the sub system function breakdown is provided below in Table 4. 

Location of Measurement Type 1 Type 2 Type 3
Location 1 X X X
Location 2 X
Location 3 X X X
Location 4 X X X
Location 5 X X
Location 6 X X X

…. X X

Location X X X

Sub System 1
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Table 4: Example of Sub System Function Breakdown 

As this framework is meant to be usable across system states, measurement ranges that 

categorize the measurement output as either normal, degraded, or failed must be generated for all 

possible system states. This aspect of the network can either be integrated using a front-end 

interface such as GeNIe SMILE [55] or be updated manually by the system user. 

3.1.3 Component Failure Modes and Causal Factors 

A failure, for the purposes of this research, will be defined as the inability for the system, 

sub system, or component to fulfill its designed purpose [15]. The component level portion of 

this framework relies heavily on the availability of component level PRA data existing for the 

subject system. Current industry standards for this data are provided in a format like that found 

in a FMECA [25]. If this data is available, it is critical to understand the operational profile in 

which the FMECA data was generated, as it provides details on how various causal factors play 

into the base calculations even if they are not specifically called out in the data. This type of 

analysis is executed with the end goal of outlining the below information for every relevant 

component within a system: 

a) What are the component failure mechanisms? 

b) What are the component failure modes? 

Sub System Function #1 #2 #3
Sub System 1 Function A Measurement 1 Measurement 2 ~
Sub System 1 Function B Measurement 2 Measurement 3 ~
Sub System 2 Function C Measurement 4 Measurement 5 Measurement 6
Sub System 2 Function D Measurement 4 Measurement 6 ~
Sub System 3 Function E Measurement 7 ~ ~

….

Sub System X …. ….

Characteristic / Measurement
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c) What are the effects of this failure on the component, sub system, and system as a 

whole? 

d) How does this failure mode manifest itself/how is it detected? 

e) What is the base probability of this failure mode occurring? 

f) What provisions are in place to prevent or detect this failure mode? 

g) What is the relative severity of the failure mode? 

h) What is the probability of occurrence for the failure mode? 

An example of this process is shown below in Figure 4: 

 

Figure 4: Example FMECA for a Maritime Diesel Engine 

It is critical to understand the role each component plays in the overall performance of 

the sub systems it touches and how each failure mode can affect the associated performance 

characteristics. This process should be built iteratively as the system design matures, operating 

experience is gained, and additional knowledge regarding the causal ties are discovered. Methods 

for categorizing, grouping, and propagating component failure effects will be explored later in 

the structural portion of methodology. 
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Often, the most under-extrapolated portion of this data set are the causes and failure 

effects, as their contributions remain hard to quantify. This aspect of the analysis represents the 

greatest opportunity for integrating causality in the model and creating a model that can be easily 

updated to integrate changes in the operational profile and is a key input to the methodology. 

Causal factors include varied aspects, from how the system was operated in the past to the 

quality of the manufacturing process. The ability to identify these factors is critical to 

understanding how the system and individual components operate and degrade. Development of 

the knowledge of the cause of one component’s failure can provide insight into the state of other 

components within the system. The process of identifying these causal factors for each 

component failure is currently done in a simplified manner in traditional FMECAs, but FMEA 

does not rigorously identify the probability of the failure cause happening and how the presence 

of that condition affects the failure rate for that specific failure mode. 

 The process of documenting causal factors should strive to identify every possible factor 

that can influence the occurrence of a certain failure mode. If existing data is being used such as 

a FMECA, failure mechanisms should serve as a starting point. In addition to operator level 

input, a feasibility check should be applied to each item based on whether the underlying 

condition can be quantified and if there were existing data that would allow a prior probability 

distribution to be generated. 

3.2 Creating the BN Structure 

With the data generated in the above steps, a model representing the system structure can 

be made. The core principle behind this model’s use is forward and backwards propagation of 

data using Bayesian inference. The model must be made in a program capable of representing 

these complex relationships. 
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This methodology proposes a network consisting of five major levels with intermediate 

step levels for added granularity. A summary of framework levels is presented below in Figure 5. 

 

Figure 5: Framework Node Hierarchy 

When combined in a modeling software for Bayesian inference, the above nodes can be 

utilized to create model capable of representing causality and propagating evidence throughout 

the model.  This functionality allows the model to be used as a both a diagnostic and predictive 

tool. BN cannot function if there is a loop connection where a node is both simultaneously 

informing and being informed by a node. To prevent the creation of loops connections between 

nodes should always flow in the direction of causality and if there exists an situation where a 

node may have relationships that create a loop, the most prominent relationship should be 

modeled while the less likely is removed from the model.  

For the purposes of this research the BN software used to create the model was Bayes 

Fusion’s GeNIe3.0 Academic [55]. An example structure demonstrating the hierarchical 

structure of the model is shown in Figure 6 with level denoted on the side: 
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Figure 6: Example BN Structure. Rectangular nodes represent Sub Models which are further decomposed into their own 

structure. 

As outlined in Figure 6, nodes may be represented in either a binary or ternary state 

configurations based on how the system or component responds while in operation and the 

granularity level stakeholders are attempting to achieve by creating the model. The 

recommended configuration for binary nodes is operation/failed while the ternary state 

configuration is normal/degraded/failed. As the number of nodal connections increases, the 

complexity of Conditional Probability Tables (CPTs) will increase exponentially with the 

addition of nodal states, so it is recommended to minimize the number whenever possible. The 

representation of both binary(green) and ternary(blue) state nodes is shown below in Figure 7. 
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Figure 7: Binary and Ternary Node Representation 

3.2.1 Level 1 Node: System 

Level 1 of this framework represents the overall failure probability of the system. This 

framework utilizes a bottom-up construction process focusing on fully defining levels before 

moving up the framework. This nodal level should be represented as binary with the designation 

of operational/failed. Level 1 nodes will not have any child nodes. The system’s only possible 

parent nodes are level 2 sub system nodes. The determination of which sub system nodes are 

added to the model is driven by the results of the system functional decomposition conducted 

prior to model construction. Level 1 system node construction is shown in Figure 8 

demonstrating the relationship between the system nodes and the three constituent sub system 

nodes as parents. 
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Figure 8: Example Level 1 Node Modeling 

Quantification of the system nodes’ associated reliability is fully dependent on the status 

of the sub systems nodes. Methods to quantify the CPT for the system node rely on either 

expression-based probabilities or input from expert elicitation. As a rule, the failure of a sub 

system should result in the failure of the system while sub system degradation requires a more 

detailed approach to determine the effect on the system. In the case where the system node is 

defined by three sub systems with three states each, the resultant system CPT requires the 

definition of 27 possible scenarios. Quantification difficulty grows exponentially with the 

addition of more parent nodes. Expression-based quantification provides a method that reduces 

the need for either expert elicitation or data informed relationships and simplifies quantification. 

An example CPT created using GeNIe is provided below in Figure 9 to illustrate the scope of 

quantification efforts required for a binary system node with three ternary sub system nodes as 

parents. 
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Figure 9: Example CPT for Level 1 Node 

3.2.2 Level 2 Nodes: Sub Systems 

Level 2 nodes in this framework represent the sub systems defined during the functional 

decomposition of the system. The sub system nodes act as parents to the system nodes and 

children of the level 2a sub system functions. Sub system nodes can be represented with either a 

binary or ternary configuration, but the addition of the intermediate degradation state offers a 

significant increase in diagnostic capabilities with only a minor addition of quantification 

complexity as the node relies solely on level 2a functions as parents. Quantification of the CPT 

for sub system nodes follows like the system level CPT in that failure of a sub system function 

will result in failure of the sub system function of the sub system while degradation of individual 

functions requires input either in the form of an expression or expert elicitation. An example of 

level 2 node construction is provided in Figure 10 showing the construction of Sub System 1 

(SS1) and Sub System (SS2) nodes. 
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3.2.3 Level 2a Nodes: Sub System Functions 

Level 2a nodes represent the various function each sub system fills for the system. These 

functions are derived from the functional decomposition of the system and provide a more 

granular view of the sub systems purpose within the system. Their presence provides a means to 

bridge causality across sub systems.  Sub system functions are best represented in a ternary 

configuration but may be simplified to binary if the situation allows it. 

Input into the sub system nodes can come from level 3, level 4 and 4a, and level 5 nodes. 

The primary source of dependency when defining sub system functions should be level 3 

measurements as they offer the greatest opportunity for integration of evidence during diagnostic 

actions. The use of direct causal pathways from level 4/4a nodes to sub systems’ functions 

should be limited to instances where the failure of the component directly affects the sub system 

function, and its effect cannot be routed through a system characteristic measurement such as 

mechanical power transmission or functions that have parent and a child system measurement 

node such as a coolant system function of Cool Lube Oil. Additionally, consideration of level 5 

causal factors should again be limited to only those that have a direct impact on the systems 

functionality. Figure 10 below provides an overview of possible parents of level 2a nodes. 

 

Figure 10: Example of Level 2a Sub system Function Parent-Child Modeling 

SS1 

Function 1 Function 2

Measurement 1 Measurement 2  Measurement 3 Measurement 4

Causal
Factor 1

Component
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Sub system function nodes can inform multiple levels of nodes including level 2, 3, and 

4/4a. The relationship between level 2 and 2a nodes was considered when outlining sub system 

quantification and could be categorized as hierarchical but the remaining causal relationships are 

not tied to this concept and instead focus on flow of causality. Sub systems’ functions may act as 

parents to level 3 nodes, but only for measurements outside of their sub system. This prevents an 

informing relationship with a level 3 nodes within the same sub system grouping as the sub 

system’s ability to execute a function is defined by the characteristic measurements within the 

system. As in most complex systems, there exist touch points between the various functional 

grouping the framework allows, for functions to inform measurements outside the functional 

grouping, especially in the case where the function has direct impact on the other systems 

measurement. This relation is the first instance of a parent-child relationship that exists “up” the 

hierarchical representation of the system, and in doing so introduces sub system dependency into 

the model. In addition to their influence on measurement nodes, direct causal links up the 

hierarchal structure between sub system functions and component failure modes may be drawn if 

there exists a direct causality between the sub system’s ability to perform the function and the 

failure mechanism of the component. As with the relationship to measurements, this relationship 

should be limited to components receiving input from the sub system and not those enabling the 

system function. Examples of sub system and component dependency are shown below in Figure 

11Figure 11. 
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Figure 11: Example of Sub System Dependency Modeling 

 As there are a variety of inputs into level 2a nodes, quantification efforts can be 

challenging as the inputs are often not provided in the same form. In the absence of data 

supporting CPT creation, expert elicitation of probabilities is the preferred method for 

quantification. Use of an expression-based approach is possible but accounting for data variety 

require a more complex expression. 

3.2.4 Level 3 Nodes: System Measurements 

Level 3 nodes represent the characteristic system measurements and act as the main 

integration point for PHM data while using the model as a diagnostic tool. Measurement nodes 

should be represented as ternary, as this configuration allows for early identification of issues 

within the sub system due to the high dependency of sub systems on level 3 nodes. While it is 

possible to have a system degrade in either up or down, for example, a system would be 

considered degraded/failed if the pressure was both too high and too low, it is recommended to 

characterize the measurement with a degradation direction to simplify the resultant CPT. 

Level 3 nodes can act as parents only for system functional nodes and measurement 

nodes within the same system. As discussion in the previous section regarding level 2a nodes, 

SS1 SS2

Measurement 1

SS1 Function 1 SS1 Function 2 SS2 Function 1 SS2 Function 2 SS2 Function 3

Component
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measurements cannot affect other sub systems characteristics directly. Measurement nodes 

receive definitional input from functional nodes in level 2a, level 3 nodes existing within the 

same sub system, level 4/4a component failure modes, and level 5 causal factors. A change to a 

node serving as parents to level 3 should have a direct causal relationship with the measurement 

and not a secondary effect. Figure 12 below illustrated possible causal pathways influencing the 

state of level 3 measurements nodes. 

 

Figure 12: Example Level 3 Measurement Node Construction 

Quantification of level 3 nodes is dependent on a wide array of factors thus complicating 

the process. The preferred method is to use expert elicitation to create initial CPTs based on 

system level PRA data and operating experience, and then updating these CPTs with operating 

data once it becomes available. 
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3.2.5 Level 4 Nodes: Components and Component Failure Modes 

Level 4 of this model’s framework represents components. In systems that contain 

multiple instances of the same component(s), models may simplify initial construction by 

representing the component in question as a single node. 

A level 4 node may exist as an independent node with its own reliability considerations 

or as a product of its failure modes existing in level 4a of the model. If the decision to include 

granular failure modes is made, the use of sub models in the BN allows for a simplified macro 

view of the model while allowing for granular construction of component failure modes. Figure 

13 below shows the macro view of the component sub model compared to the expanded view 

contained within the components sub model. 

 

Figure 13: Example Level 4 and 4a Sub Model Representation 

Level 4 component nodes can be parent nodes to level 2a, 3, or 4/4a nodes. These 

pathways are applicable only when the level 4 node is not defined by 4a nodes and exists 

independently, or when the all the constituent 4a nodes have the same failure effect. CPT 

quantification of these nodes can be simplified by drawing the causal pathway from the 

component level. Similarly, to its treatment as a parent, level 4 nodes are defined solely by its 4a 
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failure modes unless it only has a single failure mode that defines the components failure. In this 

case the node would follow the ruleset for a 4a node where it can receive input from level 

2a,4/4a, and 5 nodes. Component nodes should be represented binarily with states operational or 

failed unless they are defined by any failure mode in which they may have a ternary 

configuration to account for levels of failure effects. 

As previously discussed, an increase in the number and/or complexity of parent nodes 

can lead to an exponential increase in the complexity. In the case of component nodes dependent 

on 4a failure modes, the CPT should reflect a Boolean “OR” gate representing that the 

realization of any failure mode would mean the failure of the component. This can be coded as 

an equation or deterministic node in the BN software. 

Quantification of level 4 nodes should be driven by PRA data collected in the first 

portion of this methodology, unless additional factors outside of level 4a failure modes are being 

considered. If additional factors are being considered, base PRA data should be used as a prior 

and the CPT should be modified using either additional PRA data or input from expert elicitation 

to determine the effect of the external factors on the initial prior. 

Level 4a component failure mode nodes are treated identical to independent level 4 nodes 

in that they can be parents to level 2a, 3, and 4/4a nodes and children to level 2a,4/4a, or 5 nodes. 

Nodal structure for level 4a should be binary unless a specific failure mode has multiple levels 

such as a leak being classified as minor or critical. Quantification methods for level 4a nodes are 

identical to those used on level 4 nodes in that they heavily depend on existing PRA data and 

utilize data-driven or expert elicited input to determine effect or constructing factors. 

To reduce CPT complexity in lower levels of the hierarchy, it may be necessary to link the 

failure effects of multiple components failure modes together in an intermediate level 4a node. 
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When determining areas where an intermediate node is needed, it is best to determine whether 

the effect of a failure mode is the same or similar enough to another failure mode existing in the 

system. These common failure effects can be found across multiple components and instead of 

having multiple connection between these failure modes and the associated system measurement, 

an intermediate node is created that combines the total effect and probability of the results from 

this group of failure modes as illustrated in Figure 14 below. 

 

Figure 14: Example Level 4a Intermediate Failure Effect Node Modeling 

3.2.6 Level 5: Causal Factors 

The final level of the framework is the addition of causal factor considerations into the 

failure and degradation of system functionality. Level 5 nodes only receive input from other 

level 5 nodes but can provide input as parent nodes to level 2a, 3,4/4a, and level 5 nodes. This 5 th 

level represents operational conditions or aspects of the system resulting from a certain type of 

mission set and offers the greatest potential for adding in adaptability to the model. 

When creating level 5 nodes from the list of causal factors for component failure modes, 

the causal factors tree should only be broken out as far as needed to show the full range of 
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external factors the system may experience. Implementing this methodology allows for easy 

integration of readily available operational data that can be used to create an accurate prior 

compared to the more specific data required to inform lower-level items. Figure 15 below shows 

this concept when applied to the operation of a diesel engine. Early models may only choose to 

utilize information regarding the operating mission or area of responsibility an asset is operating 

in but in later iterations of the model this causal factor can be expanded upon to a more granular 

level being used to inform more complex eternal operational characteristics which have been 

noted as causal factors in the failure probabilities of certain components. 

 

Figure 15: Example Causal Factor Network 

3.3 Chapter Summary 

This chapter completed Objective 2 by laying out the methodology for creating a BN-based 

failure detection network that utilizes a combination of PRA data and condition-based PHM 

sensor input to provide increased troubleshooting capability to stakeholders. The first step to 

complete this goal was to document procedures for collecting and organizing existing PRA and 

PHM data sources with example formats provided. Following guidance on data collection, the 

hierarchal structure of the methodology was laid out detailing node location and causal 
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relationship of nodes across hierarchal level. An example BN structure was provided with this 

structure to illustrate placement of nodes within the network. Each nodal level was then 

discussed in detail with guidance on node quantification for state format(s) for each node 

provided. 

 

  



  
 

40 
 

4. Results 

This chapter demonstrates the validity of the framework outlined in the previous section by 

first developing a maritime diesel engine model utilizing existing PRA data and fixed PHM 

structure and then running the model through a diagnostic procedure to show its capability as a 

FDD tool. 

4.1 Developing Coast Guard Specific Model 

To show the validity of the above framework, a proof-of-concept model was created for 

the Coast Guard FRC diesel engine. The resulting model exists to prove the validity of the 

modeling approach by demonstrating the principles of structure and operations. This model is a 

first iteration and has reduced system complexity to provide a clearer picture of the model’s 

developmental process and use cases. 

In organizations such as the Coast Guard where the number of identical assets numbers 

over 100, a generalized maintenance plan is created as it is often seen as the most cost-effective 

approach to designing a best fit plan for each asset. In Figure 16, taken from a 2021 FRC Engine 

Health Report, it is clear there is a large discrepancy in the distribution of planned operational 

loading changing the how the engine internally wears and performs [56]. As the Coast Guard 

maintenance plan relies on the PRA data-based on the expected load profile, this divergence has 

introduced a large amount of uncertainty regarding component performance and failure 

probability. 
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Figure 16: Example of engine power history data collected. From [56] Engine Power(Kw) Provided in Percentage of Rated 

Power 

To close this gap, the Coast Guard has embraced and implemented additional condition-

based maintenance concepts aimed at optimizing maintenance actions by utilizing PHM 

indicators to reduce the need for periodic based maintenance items or inspections. Assets in 

acquisition are being produced with sensors and indicators integrated into the system design, 

however, the current Coast Guard infrastructure does not have adequate processes in place to 

manage the increase in reliability monitoring data. In addition to the benefits conferred from a 

reduction in maintenance actions, the addition of improved monitoring capabilities will enable 

the Coast Guard to develop a more targeted approach to asset maintenance. 

Input into the proof-of-concept model relies on a unique blend of PRA, PHM, and expert 

elicited data. Input data for this model was derived from a FMECA conducted by the engine 

Original Equipment Manufacturer (OEM) prior to commissioning of the first FRC in 2012 [57]. 

In addition to the failure modes outlined in the FMECA, Coast Guard Subject Matter Experts 

(SMEs) requested the addition of various consumable/degradation-based failures including 
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various filter failures and cooler effectiveness losses. Probabilities for these added failure modes 

were created using expert elicitation. Measurement nodes were created using Piping and 

Instrumentation Drawings (P&ID) drawings with guidance for discretization taken from the FRC 

Engine Health Report [56], [58]. It was determined that the control and monitoring system for 

the engine was outside of the scope of this study and that all measurements provided by the 

system would be treated as perfect evidence. 

4.1.1 FRC Engine Sub System Breakdown 

To start the system decomposition, a list of sub system groups was created that will be 

used to group components later in the process. The engine OEM provides a recommend sub 

system breakdown based on functional grouping [9] which was followed with the exception of 

breaking down the combustion process and mechanical drive system. To reduce model 

complexity, these functional groups were combined into one sub system labeled “drive train” 

which provides the functions of providing torque to the propulsion line and providing exhaust to 

the exhaust manifold. The grouping and functions of each sub system is shown below in Table 5. 

 

Table 5: FRC Engine Sub System Breakdown 

Sub System Primary Function

Lube Oil System
Lubricate Engine 

Components
Cool Engine Components ~

Coolant System Cool Lube Oil Cool Charge Air
Cool Engine 
Components

Air System
Provide Charge Air to 
Combustion Chamber

Exhaust Combustion Gases 
to Environment

~

Fuel System Provide Fuel to Injectors ~ ~
Raw Water System Cool Coolant ~ ~

Drive Train System
Provide Torque to 

Propulsion Line
Provide Exhaust Gases to 

Exhaust System
~

Tertiary Function(s)
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With the sub systems decided upon, the next step is creating Block Flow Diagrams 

(BFDs) for each medium transfer system. BFDs are built with information from Coast Guard 

provided P&IDs [58] and validated by Coast Guard SMEs. The participating SMEs consistent of: 

 Coast Guard Diesel Engine Equipment Specialist: 48 Years’ Experience 

 Coast Guard Diesel Engine Equipment Specialist: 35 Years’ Experience 

 Coast Guard Diesel Engine Data Analyst: 32 Years’ Experience 

 Coast Guard Diesel Engine Data Analyst: 16 Years’ Experience 

The BFDs contain additional components not considered in this study to allow for use of 

the diagrams in future studies, including the addition of various valves and pre-operation features 

such as the lube oil system pre-lube pump. Figures 17 – 21 show P&IDs for the lube oil system, 

coolant and raw water system, air system, and fuel system, respectively. 

The lube oil system for the FRC’s diesel engine is a self-contained system drawing and 

depositing lube oil from a central sump and utilizing a combination of internal step filters and a 

centrifugal oil purifying system to remove carbon buildup from the oil. The lube oil system must 

be manually filled from an external system; for the purposes of this study, the system will be 

assumed to have had adequate lube oil prior to start. The lube oil is pumped from the sump 

through the lube oil cooler then fed through the filtration system before being sent throughout the 

engine to provide lubrication and cooling to a variety of components located central to the engine 

in the main gallery. The loop is then closed as all lubrication points drain down to the lube oil 

sump before the process begins again. 

  The lube oil system has multiple points of interaction with other systems. This 

introduces performance dependencies across sub systems. Points of interaction include the 

coolant system via the lube oil cooler, which in addition to being the main source of lube oil 
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cooling also introduces the possibility of coolant contaminating the lube oil. Additional fluid 

touch points exist with the fuel system at the point of combustion and the exhaust system at the 

point of combustion as well as in the turbo chargers. The lube oil BFD is shown below in Figure 

17. 

 

 

Figure 17: Coast Guard FRC Engine Lube Oil System BFD 

Due to the relevantly small size of the raw water system and its limited interaction with 

the engine, the coolant and raw water system BFDs were combined into one BFD. The coolant 

system on the FRC’s diesel engine is a self-contained, closed loop system requiring external 
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intervention to fill. The coolant system path has two loops: low temperature side and high 

temperature side. The low temperature side of the system, shown in a light purple color in the 

BFD, provides cooling to the lube oil cooler, charge air cooler, and turbo intakes. The high 

temperature loop, shown in dark purple in the BFD, flows to the combustion and exhaust 

portions of the engines which operate at a higher temperature. The coolant system does not have 

a sump where coolant accumulates but does include a head tank placed above the engine that 

maintains positive pressure throughout the system. As the coolant system provides cooling to the 

lube oil system and both sides of the air system, there is dependency across these sub systems as 

well as a dependency between the coolant and raw water systems. 

The raw water system for the engine pulls sea water from a dedicated sea chest through a 

strainer before splitting the stream, with part of the flow being routed to the propulsion reduction 

gear and the other being fed into the coolant cooler before being sent overboard. The other 

stream of raw water will not be considered in this research as it continues to feed into other 

systems outside of the engine. As stated above the raw water’s only interaction with the engine is 

via the coolant cooler, making the two systems heavily dependent. The coolant and raw water 

BFD is shown below in Figure 18. 
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Figure 18: Coolant and Raw Water Systems BFD 

The air system for the FRC diesel engine consists of the intake/charge air side and the 

exhaust side. The air system draws from external to the ship utilizing vacuum created by the 

intake portion of the turbo(s). The pressurized air, referred to as charge air, is then sent through 

the charge air cooler before it is distributed via a charge air manifold to the individual 

combustion chambers, where it is used as a component in the combustion process. Coming out of 

the combustion chamber, the now exhaust-laden air is fed through the exhaust manifold before 

being distributed to the exhaust sides of the turbos, while also siphoning fumes from the 
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crankcase via the crankcase breather before it is eventually sent overboard. The turbochargers on 

this engine are load-activated and the exhaust flap in from the exhaust portions of Turbo A2, B1, 

and B2 will systematically open as the demand on the engine is increased. The exhaust system 

has multiple touch points with other systems as outlined in previous sections, but its largest 

dependence comes from the coolant system’s interaction in the charge air cooler. The air system 

BFD is shown below in Figure 19. 

 

Figure 19: Air System BFD 

The fuel system for the FRC diesel engine is responsible for taking fuel from the diesel 

service tanks, running it through various step filters, and pressurizing it prior to delivering it to 

the combustion chamber via cylinder fuel injectors. Fuel is drawn directly from the service tank 

by the fuel delivery pump and then sent at a lower pressure through a series of three filter 

assemblies to remove sediment and other impurities from the fuel. Following filtration, the fuel 
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is pressurized further in the high-pressure pump before being sent through the high-pressure 

accumulator and fuel manifold to be distributed to each fuel injector. Fuel not expended in the 

combustion process is recirculated back to the fuel delivery pump, passing through a fuel cooler 

before returning to the draw point to run through the system again. The fuel system diagram is 

provided below in Figure 20. 

 

Figure 20: Fuel Oil System BFD 

 Using the above diagrams as well as input from SMEs, a component list was generated 

that served as the bounds for the system scope. The list of components was reduced to only 

include those necessary to the operation of the engine and which had sufficient base FMECA 

data to create a model structure without additional data collection. This list in shown below in 

Table 6. 
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Table 6: FRC Diesel Engine Major Component List 

The Coast Guard FRC’s diesel engine consists of a 20-cylinder configuration with four 

turbos whose operation is dependent on requested load. For the purposes of this study, 

components with a population greater than one will be treated as a single entity. The model 

complexity necessary to accurately depict the dependency between cylinders both in pairs and in 

a whole, and dependency amongst turbos was deemed outside the scope of this research. 

 Using the list of components, the BFDs, and OEM specifications, components were 

categorized according to the system they provided the greatest value to. The resultant breakdown 

is shown in Table 7 with the primary and tertiary function of each sub system grouping. 

Lube Oil Pump Fuel Delivery Pump
Lube Oil Centrifugal High Pressure Fuel Pump

Lube Oil Cooler High Pressure Fuel Accumulator
Lube Oil Filter Raw Water Pump
Lube Oil Pan Crankshaft

Crankcase Breather Drive Gear
Coolant Pump Vibration Damper
Coolant Cooler Crankcase
Intake Air Filter Camshaft

Exhaust Manifold Pistons
Air/Exhaust Control Flaps Valve Drive

Exhaust Flap Actuating Cylinder Cylinder Head
Charge Air Manifold Cylinder Liner
Charge Air Cooler Fuel Injector

Turbos HP Fuel Line

Fuel Filters

Diesel Engine Component List
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Table 7: FRC Diesel Engine Component Sub System Allocation 

4.1.2 System Measurements 

The next step in the process was to list out areas for potential measurements and compare 

that to the sensors that the system has available. These values will be entered into the BN as 

direct evidence allowing for increased diagnostic capability. As system measurements are the 

primary areas for evidence to be input in the model, this process draws heavily from the PHM 

Component Primary Sub System
Lube Oil Pump Lube Oil System Drive Train

Lube Oil Centrifugal Lube Oil System
Lube Oil Cooler Lube Oil System Coolant System
Lube Oil Filter Lube Oil System
Lube Oil Pan Lube Oil System

Crankcase Breather Air System Lube Oil System
Coolant Pump Coolant System Drive Train
Coolant Cooler Coolant System Raw Water
Intake Air Filter Air System

Exhaust Manifold Air System Coolant System
Air/Exhaust Control Flaps Air System

Exhuast Flap  Actuating Cylinder Air System
Charge Air Manifold Air System

Charge Air Cooler Air System Coolant System
Turbos Air System Lube Oil System Coolant System

Fuel Filters Fuel System
Fuel Delivery Pump Fuel System

High Pressure Fuel Pump Fuel System Drive Train Lube Oil System
High Pressure Fuel Accumulator Fuel System

Raw Water Pump Raw Water System Drive Train
Crankshaft Drive Train Lube Oil System
Drive Gear Drive Train Lube Oil System

Vibration Dampner Drive Train Lube Oil System
CrankCase Drive Train Lube Oil System Coolant System Air System
Camshaft Drive Train Lube Oil System
Pistons Drive Train Lube Oil System Air System

Valve Drive Drive Train Lube Oil System Air System
Cylinder Head Drive Train Coolant System Lube Oil System Air System
Cylinder Liner Drive Train Coolant System Lube Oil System Air System
Fuel Injector Drive Train Fuel System

HP Fuel Line Drive Train Fuel System

Tertiary Touch Points
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processes that the Coast Guard is currently implementing. Current PHM processes on the FRC 

engine rely heavily on OEM recommendations and the control and monitoring system integrated 

into the engine. As the Coast Guard’s experience in the FRC field has grown, they have 

developed an internal PHM methodology that relies on trend analysis and expert elicitation to 

supplement the existing OEM structure. 

The MTU20V4000M93 engine senor package is detailed in the Alarm Limit document 

that provides insight into the OEMs view of alarm importance and how each sensor relates to 

engine performance [59]. The engine is outfitted with an integrated control system that initiates a 

warning alarm if a set point is reached, followed by an automatic shutdown of the engine if 

parameter continues to degrade to another alarm point. For some alarms, an engine slowdown 

limit can be reached in which the control system will decrease the engine revolutions per minute. 

For the purposes of this research, slowdown limits on alarms will be viewed the same as 

shutdown alarms as they both indicate a failure to operate in the given condition. 

Alarm set points are typically designated as either a fixed number, or in some cases 

follow a curve with set points varying throughout the RPM range of the engine [60]. Sensors 

with limits that included warning and shutdown points were easily transferable to the BN node 

states, as a shutdown point will translate directly to a failure of any functions that measurement 

is tied to. There are multiple sensors without slowdown or shutdown limits; an issue in this type 

of sensor cascades to a critical sensor capable of shutting down the system. Examples of these 

sensors are lube oil filter pressure differential that would cascade to affect the overall system 

pressure, or the system raw water pressure that would ultimately affect the temperature of the 

coolant. In cases where the OEM does not designate a failure state, expert elicitation was used. 
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The OEM onboard monitoring system does not provide any diagnostic capabilities that 

would provide insight into the cause(s) of an alarm. Instead, Coast Guard and OEM technicians 

use a proprietary tool to extract detailed logs of the engine performance including alarm history 

and sensor outputs over an extended period. These logs are prepared via a Python based filtering 

program developed by the Coast Guard and then manually reviewed by SMEs to isolate the 

source of the engine failure or performance degradation using base PRA data regarding 

component failure modes and effects, as well as experience-based input regarding past failures. 

The Coast Guard provides feedback on the engine in the form of an “MDE Health Report” which 

provides guidance on how to approach correcting the issue [56]. 

Using the list of sensors on the engine as well as input from Coast Guard SMEs regarding 

what additional input would assist in troubleshooting efforts, the below tables were generated. 

Table 8-11 below show the potential measurements with the integrated measurement points 

denoted in yellow. 

 

Table 8: FRC Engine Lube Oil System Measurement Locations 

Location of Measurement Pressure Temperature Quality
Lube Oil Pump Outlet X X

Lube Oil Filter Outlet X X
Lube Oil Cooler Outlet X X X

Main Gallery Outlet X X
At Main Bearing X X X

At Crankshaft Bearings X X X

At Lube Oil Pan X X

Centrifugal Outlet X X

Lube Oil System
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Table 9: FRC Engine Coolant System Measurement Location 

 

Table 10: FRC Engine Air System Measurement Location 

 

Table 11:FRC Engine Fuel System Measurement Location 

 

Location of Measurement Pressure Temperature Quality
Coolant Pump Outlet X X

Coolant Cooler Outlet X X X
Lube Oil Cooler Outlet X X X

At Temperature Control Valve X X
Exhaust Manifold Outlet X X X

Turbo Outlet X X X

Cylinder Liners Outlet X X X

Cylinder Head Outlet X X X

Coolant System

Location of Measurement Pressure Temperature Quality
Into Air Filter X X X

Out of Air Filter X X
Out of Turbo (Compressor Side) X X X

Out of Charge Air Cooler X X X
Out of Cylinder X X X
Exhaust Comb X X X

Exhaust Manifold X X
Out of Turbo (Exhaust side) X X X

At Charge Air Sequence Valve X X X

Air System

Location of Measurement Pressure Temperature Quality
Delivery Pump Outlet X X X

Pre Fuel Filter Outet X X
Primary Fuel Filter Outlet X X

Secondary Fuel Filter Outlet X X
HP Pump Outlet X X

High Pressure Accumulator Outlet X X X

HP Line Outlet X X

Fuel System

Location of Measurement Pressure Temperature Quality
Raw Water Pump Outlet X X X

Coolant Cooler Outlet X X X

Raw Water System
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Table 12:FRC Engine Raw Water System Measurement Location 

A common theme across the sub systems was that each sub system was equipped with 

both pressure and temperature monitoring equipment but did not have a variety of sensor 

locations within the system. Additionally, none of the systems had internal quality control 

sensors as the Coast Guard relies on manual extraction and testing of each medium. In addition 

to the fluid medium-based sensor reading, Coast Guard SMEs requested that the initial model 

also include consideration of the turbo(s) speed as well as the fuel injection quantity requested by 

the control unit. In future models, turbo speed will provide a more crucial role in determining the 

operational status of each of the engine’s four turbos, allowing for inference into load issues. 

Currently, the model will only use this information to inform charge air pressure and exhaust 

comb temperatures measurement. Similarly, the fuel injection quantity is an excellent indicator 

of the external load being placed on the engine, but in the current model is limited to allowing 

inferences to be made regarding the status of the drive train equipment rollers. Future iterations 

of this model will be able to consider these factors to improve model accuracy and diagnostic 

capabilities. 

4.1.3 PRA and Causal Factors 

For this research, the Coast Guard provided an FMECA provided to the organization 

during acquisition by the OEM. Due to the proprietary information regarding component design, 

the resultant FMECA will not be displayed in this research but can be requested from the author 

of this publication. 

When considering what causal factors to integrate into this model, the main goal is to find a 

way to adapt the model to a varying operational profile. While there exist other external factors 

that may play into the failure probability of the engines, the concept of operational profile 
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combines the largest differences a cutter crew experiences. The operational profile describes 

where the FRC is operating and its operational use. The first iteration of this model focused on 

where the FRC was being operated. Much of the engine is self-contained, but it requires input 

from external sources for both the raw water and the air systems, as these are open to the 

environment, and both are subject to large temperature and characteristic differences depending 

on the FRC’s operating location. This research focused on the effect of the temperature of each 

of these mediums as it varied the most across operational locations, while characteristics such as 

water salinity or air humidity were found to have a smaller effect on performance. 

 With the above taken into consideration, the two causal factors integrated into the model 

were Raw Water Temperature and Intake Air Temperature. Obtaining priors accurate to the FRC 

fleet would require detailed analysis of projected asset location accounting for time of year. As 

the main use case for this model is diagnostic capability and evidence will always be provided to 

this node, a generic prior was provided that reflected low probability of being in a high or 

degraded area. Future iterations of this model can integrate operational tasking information to 

develop more detailed priors regarding the environmental conditions. 

4.1.4 Model Structure 

The resultant model static BN was created using Bayes Fusion GeNIe [55]. The model 

consists of 225 nodes with the level breakdown down presented in Table 13. 

 

Node Level Nomenclature Quantity
5 Causal Factors 2
4a Failure Modes and Effects 144
4 Components 42
3 Measurements 19
2a Sub System Functions 11
2 Sub Systems 6

1 System 1

Total 225
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Table 13: Summary of FRC Engine Model Nodes by Framework Level 

 Tables showing node nomenclature along with child and parent relationships is provided in 

Appendix A with the model structure shown below in Figure 21. A larger version of Figure 21 as 

well as a breakdown of all Sub Models is shown in Appendix B. 

 

Figure 21: Coast Guard FRC Model 

Quantification of the model showed a baseline system failure probability of 1.67E-03 

failures per operating hour. The sub system with the highest failure probability was found to be 

the lube oil system, followed by the coolant and raw water systems. These results along with the 

remaining level 2 nodes are shown below in Table 14. 

System
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Table 14: FRC Engine Summary of Level 1 and Level 2 Nodes 

The main use case of this model in its current iteration is diagnostic reasoning, making 

the system node number less important than the proportion of this number given to each sub 

system and component. In future iterations when less assumptions are made, the model can 

provide greater insight into the likelihood of engine failure. 

4.1.5 Model Verification and Discussion of Results 

Verification efforts were conducted with Coast Guard SMEs focusing on model utility and 

the representation of causal dependency amongst sub systems. Coast Guard SMEs had over 30 

years of combined experience with the FRC platform and over 100 years of engine maintenance 

and analytic experience. A consensus was reached that the model provided meaningful utility for 

diagnostic capabilities on the engine’s main fluid systems, and that it successfully provided 

additional insight into the causes of these sub system faults beyond that currently available 

onboard the ships. Additionally, Coast Guard SMEs agreed that the model has limited usability 

for diagnosing drive train and air system issues, as the current model oversimplifies these 

components, severely limiting the model’s ability to account for degradation within these sub 

systems. The model does provide indications of issues within the system, but the model depth in 

this area must be improved before it could be an diagnostics tool for these issues. As previously 

Node ID Nomenclature Normal Degraded Failed
DT Drive Train System 1.00E+00 1.20E-06 2.93E-05
RW Raw Water System 9.99E-01 7.80E-04 1.65E-04
FS Fuel System 1.00E+00 1.16E-06 2.70E-05
AS Air System 1.00E+00 1.35E-07 2.23E-05
CS Coolant System 9.97E-01 1.81E-03 7.00E-04
LO Lube Oil System 9.98E-01 5.37E-04 1.31E-03

System Engine 9.98E-01 - 1.67E-03
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mentioned, the addition of these components is critical for the next model’s iteration but will 

require extensive work to quantify the effects of component dependency. 

4.2 Use Case: Diagnostic Capability for Elevated Lube Oil Temperature 

To demonstrate the model’s usability as a diagnostic tool, the model was run through a 

troubleshooting scenario initiated by the operator of the FRC engine receiving an alarm 

indicating an elevated lube oil temperature. In this scenario, the engine has been running a 

constant load and there are no contributing external factors. This model can accept all sensor-

based evidence at one time, but as this model is improving upon traditional methodologies, a 

step-based evidence approach will be used to show the effect of each evidence node first. After 

each layer of evidence, the resultant causes and ramification of the evidence will be explored and 

documented. While every node in the model is affected by the application of evidence to nodes 

withing the model, the below tables only show the effect on the most relevant nodes to the 

troubleshooting process as displaying the effect across all 225 nodes isn’t needed to show the 

failure diagnostic capabilities. 

Introduction of the initial evidence was completed by setting node M6 representing 

“Lube Oil Temperature out of Cooler” to the degraded intermediate step representing an elevated 

temperature. The result of this change on node M6’s direct parents is outlined in Figure 22 

below: 

 

Figure 22:FRC Engine Model Propagation of Initial Evidence of Elevated Lube Oil Temperature 

Evidence

Node ID Level Node Nomenclature Parents Normal Degraded Failed Normal Degraded Failed

M6 3
Lube Oil Temperature out of 

Cooler 
CS1, M2 9.97E-01 1.74E-03 9.56E-04 0.00E+00 1.00E+00 0.00E+00

M2 3 Lube Oil Pressure out of Pump
C1A, 

C1B, C5, 
FE1

1.00E+00 3.36E-05 9.72E-06 9.96E-01 3.88E-03 5.60E-09

CS1 2a Cool Lube Oil
C3E, M7, 

M8
9.97E-01 2.31E-03 4.81E-04 3.85E-03 9.96E-01 8.85E-11

Lube Oil 
Temperature 
"Elevated"

Prior Posterior

Direct Parents
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Analysis of these results show high dependency on the “Cool Lube Oil” (CS1) node and 

the “Lube Oil Pressure” (M2). As CS1 is not a measurable metric, it must be quantified by 

analyzing the parents while M2 can be informed by using the ship’s monitoring system. 

In this scenario, the sensor representing the M2 node came back with a reading of 

normal. This evidence was then entered into the model, informing the remainder of the target 

nodes as shown below in Figure 23.

 

Figure 23: FRC Engine Model Propagation of Lube Oil Pressure Evidence 

 The results from the expansion of CS1 and the evidence M2 above indicate that the initial 

evidence is a direct result of the degradation of the CS1 which is influence by “Lube Oil Cooler 

Effectiveness” (C3E), Coolant Temperature (M7), and Coolant Pressure (M8). With this level of 

information, the most probable cause of the initial issue is the degradation of C3E. As C3E is not 

a measurable function, it must be broken into its constituent parts for further analysis, while M7 

and M8 can be informed using the ships monitoring system. 

 In this scenario the sensor representing M7 provides a reading of elevated temperature 

while the M8 Sensor provides a reading within the normal range. M7 is informed by RW1 and 

M8, but as M8 was found to be within normal operating range, it will be excluded from further 

analysis. RW1 was broken into its parent nodes as it cannot be informed with direct evidence. 

Evidence

Node ID Level Node Nomenclature Parents Normal Degraded Failed Normal Degraded Failed

M6 3
Lube Oil Temperature out of 

Cooler 
CS1, M2 0.00E+00 1.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00

M2 3 Lube Oil Pressure out of Pump
C1A, 

C1B, C5, 
FE1

9.96E-01 3.88E-03 5.60E-09 1.00E+00 0.00E+00 0.00E+00

CS1 2a Cool Lube Oil
C3E, M7, 

M8
3.85E-03 9.96E-01 8.85E-11 0.00E+00 1.00E+00 0.00E+00

C3E 4a Lube Oil Cooler Efectivness M1 1.21E-01 8.47E-01 3.24E-02 1.18E-01 8.50E-01 3.25E-02

M7 3
Coolant Temperature out of 

Cooler
M8, RW1

8.82E-01 9.22E-02 2.54E-02 8.82E-01 9.25E-02 2.55E-02

M8 3 Coolant Pressure out of Pump C8C, FE2
1.00E+00 3.57E-04 4.69E-06 1.00E+00 3.59E-04 4.67E-06

Lube Oil 
Pressure 

"Normal"

Prior Posterior

Direct Parents
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Using the additional information regarding the M7 and M8 sensors, the model was updated 

providing the results shown below in Figure 24. 

 

Figure 24: FRC Engine Model Propagation of Coolant Temperature and Pressure Evidence 

 The addition of the evidence regarding M7 and M8 reduced the likelihood of C3E being 

the primary cause of the initial issue but did not remove it. This probability can be further 

informed by getting evidence on the “Lube Oil Quality” (M1) node, which in this system 

requires a manual test. In addition to the inference on the state of C3E, the evidence showed a 

high dependency on “Coolant Cooler Effectiveness” (C9E), “Raw Water Temperature” (CF2), 

and “Raw Water Pressure” (M18). Information of C9E cannot be found without depot-level 

maintenance on the engine, but nodes CF2 and M18 are monitored via the engine monitoring 

system. 

 In this scenario, both sensors for M7 and M8 came back reading in the normal range and 

the manual lube oil test came back with a reading of normal as well. This evidence was then 

entered into the model providing the results shown in Figure 25. 

Evidence

Node ID Level Node Nomenclature Parents Normal Degraded Failed Normal Degraded Failed

M6 3
Lube Oil Temperature out of 

Cooler 
CS1, M2 0.00E+00 1.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00

M2 3 Lube Oil Pressure out of Pump
C1A, 

C1B, C5, 
FE1

1.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00 0.00E+00

M7 3
Coolant Temperature out of 

Cooler
M8, RW1 8.82E-01 9.25E-02 2.55E-02 0.00E+00 1.00E+00 0.00E+00

M8 3 Coolant Pressure out of Pump C8C, FE2 1.00E+00 3.59E-04 4.67E-06 1.00E+00 0.00E+00 0.00E+00

CS1 2a Cool Lube Oil
C3E, M7, 

M8
0.00E+00 1.00E+00 2.78E-07 0.00E+00 1.00E+00 0.00E+00

C3E 4a Lube Oil Cooler Efectivness M1 1.18E-01 8.50E-01 3.25E-02 9.93E-01 7.06E-03 1.22E-04

RW1 2a Cool Coolant
C9E, 
CF2, 
M18

8.82E-01 1.01E-01 1.70E-02 0.00E+00 1.00E+00 0.00E+00

M1 3 Lube Oil Quality
C2A, 

C4FM2
1.00E+00 3.50E-05 4.99E-05 1.00E+00 2.80E-06 2.63E-06

C9E 4a Coolant Cooler Effectiveness N/A 8.86E-01 1.02E-01 1.15E-02 4.16E-02 9.14E-01 4.44E-02
CF2 5 Raw Water Temperature N/A 9.95E-01 3.77E-03 1.37E-03 9.58E-01 2.94E-02 1.28E-02

M18 3
Raw Water Pressure out of 

Pump

C25A, 
C25B, 
FE7

1.00E+00 1.77E-05 2.10E-04 1.00E+00 1.63E-04 2.41E-04

Coolant 
Temperature 
"Elevated"  

Coolant 
Pressure 

"Normal"

Direct Parents

Second Level Parents

Prior Posterior
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Figure 25: FRC Engine Model Propagation of Lube Oil Quality, Raw Water Pressure, and Raw Water Temperature Evidence 

 The results shown above outline potential causes of the initial issue being the Coolant 

Cooler Effectiveness(C9E) or Lube Oil Cooler Effectiveness(C3E). The model shows that either 

or both nodes, being degraded, failed or a combination of both, are the source of the elevated 

lube oil temperature. As both nodes cannot be informed any further without depot-level 

maintenance, the most time and cost-efficient maintenance methodology would be to first 

replace/repair the Coolant Cooler as the model states it is either degraded or completely failed, 

while the Lube Oil Cooler has a high probability of not being the issue. The posterior model 

showing the propagation of the evidence chain following discovery of the initial issue and 

investigation efforts is show below in Figure 26. 

Evidence

Node ID Level Node Nomenclature Parents Normal Degraded Failed Normal Degraded Failed

M6 3
Lube Oil Temperature out of 

Cooler 
CS1, M2 0.00E+00 1.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00

M2 3 Lube Oil Pressure out of Pump
C1A, 

C1B, C5, 
FE1

1.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00 0.00E+00

M7 3
Coolant Temperature out of 

Cooler
M8, RW1 0.00E+00 1.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00

M8 3 Coolant Pressure out of Pump C8C, FE2 1.00E+00 0.00E+00 0.00E+00 1.00E+00 0.00E+00 0.00E+00

CF2 5 Raw Water Temperature N/A 9.95E-01 3.77E-03 1.37E-03 1.00E+00 0.00E+00 0.00E+00

M18 3
Raw Water Pressure out of 

Pump

C25A, 
C25B, 
FE7

1.00E+00 1.77E-05 2.10E-04 1.00E+00 0.00E+00 0.00E+00

M1 3 Lube Oil Quality
C2A, 

C4FM2
1.00E+00 2.80E-06 2.63E-06 1.00E+00 0.00E+00 0.00E+00

CS1 2a Cool Lube Oil
C3E, M7, 

M8
0.00E+00 1.00E+00 2.78E-07 0.00E+00 1.00E+00 0.00E+00

C3E 4a Lube Oil Cooler Efectivness M1 9.93E-01 7.06E-03 1.22E-04 9.93E-01 7.06E-03 1.22E-04

RW1 2a Cool Coolant
C9E, 
CF2, 
M18

8.82E-01 1.01E-01 1.70E-02 0.00E+00 1.00E+00 0.00E+00

C9E 4a Coolant Cooler Effectiveness N/A 4.16E-02 9.14E-01 4.44E-02 0.00E+00 9.54E-01 4.64E-02

Raw Water 
Pressure 

"Normal"

Lube Oil 
Quality 

"Normal"

Prior Posterior

Direct Parents

Raw Water 
Temperature 

"Normal"
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Figure 26: FRC Engine BN FDD Final Posterior Model 

4.3 Chapter Summary 

The purpose of this chapter was to validate the methodology proposed in Objective 2 by first 

creating and then testing a BN created using the framework outlined in the previous chapter. 

Using the existing PRA data, the Coast Guard had for the FRC diesel engines data was first 

organized and then mapped onto a BN using Bayes Fusion GeNIe. This model’s failure 

diagnostic capability was then evaluated using a test case where the operator receives an alarm 

notifying them of an elevated lube oil temperature. Results for the case study were presented 

stepwise to show comparison to traditional troubleshooting methods with evidence applied as its 

need is discovered. The resultant posterior model was then presented, and the results discussed. 
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5. Conclusions 

5.1 Technical Contributions 

This research provided the following technical contributions: 

1. A structured analysis of gaps in the reliability field as applied to maritime diesel 

engines. 

2. A methodology outlining an iterative approach to updating existing PRA data 

with PHM input using a BN to support maritime diesel engine fault diagnosis. 

 Created a hierarchal organization of a maritime diesel engine integrating 

functional decomposition with sub system health metrics. 

 Outlined procedure for manipulation of existing FMECA data for a maritime 

diesel engine into a BN-based FDD structure. 

 Defined causal relationships amongst hierarchical levels allowing for 

representation of causal dependency across sub systems. 

 Identified avenues for integration of operational environment and concepts 

into existing structure allowing for increased model accuracy across varying 

operational profiles. 

3. A model that demonstrates applicability through the creation and testing of a 

model based on the engine for a Coast Guard FRC. 

4. A validated model that demonstrates usability through execution of diagnostic use 

case scenario. 

In the modern era of military operations, asset capabilities are stretched and altered on 

nearly a yearly basis, presenting decision makers the unique problem of either having to create a 
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generalized maintenance plan that tends to decrease asset availability or to develop an adaptable 

condition-based maintenance plan that accommodates a more fluid operational profile. By 

applying the framework developed herein to a project such as the Coast Guard’s FRC diesel 

engine, stakeholders will receive a model that can be utilized immediately to detect system 

abnormalities that integrates the PHM capabilities built into the system as well as the base PRA 

knowledge received during acquisition and collected over the first 10 years of the platforms 

operation. Integration of this framework into daily maintenance and troubleshooting allows for 

improved data usage as well as provides stakeholders with key information regarding effects of 

changing operations and mission profile on life cycle logistics consideration. 

5.2 Recommendations and Future Work 

Current research within the maritime engine reliability field has been focused on gaining 

insight into individual component and sub system health. The methodology developed in this 

research presents a structured format for integrating the work currently being conducted into a 

single model that provides a holistic view of the engine’s health. While the model created in  

Chapter 4 primarily focused on utilizing FMECA mapping and quantification of failure effects, 

the causal reasoning and nodal structure presented in Figure 5 serves as a foundation for future 

integration of other PRA methodologies. 

The model created and tested in Chapter 4 makes simplifications to the overall structure of 

the engine that lowered diagnostic capabilities of the model and decreased the usability of the 

model as a predictive tool. Expanding the model to incorporate a greater range of components 

within the engine will also facilitate a more detailed view of the system but will result in a much 

larger and potentially more complicated model. Additional research must be conducted to apply 

this framework to model the drive train and air sub systems of the engines. These two sub 



  
 

65 
 

systems were the principal areas of simplification in the engine as multiple iterations of similar 

components were combined under a single node. The expansion of these sub systems to 

accurately represent the operations of 20 cylinders within the engine and four turbochargers will 

require further research into the common cause failures as well dependency across the multiple 

iterations of components. As the engine can operate in a degraded state where one or more of the 

cylinders or turbos is partially failed, quantification of these relationships and their effect on the 

systems overall performance will require a more complex representation of these sub systems 

within the model. 

Another aspect not explored in this research was the concept of component age and wear on 

the probabilities of each failure mode. The failure probabilities used to populate component 

CPTs reflect a good-as-new system absent of any wear. As with most complex systems, 

components within the FRC’s diesel engine wear at different rates and depend on the status of 

the engine within its maintenance cycle. A more accurate model would allow for user input of 

component or system age that will modify the CPTs within the model. There are various methods 

for integrating this functionality into the model, including introducing a Python wrapper as a user 

interface to modify the CPTs based on operator input. Additional research into the feasibility of 

each method is needed before this step can be added to the methodology. Like the addition of 

age, the effect and impact of the human element of the system was not analyzed but could be 

added to improve the coverage of the model. By including human factors into the model, it 

allows for inclusion of maintenance induced error or operator error that may have influenced 

select failure modes 

One of the key characteristics of this model is it assess the status of the system or a 

component at a specific point in time. This is because the methodology relies on a static BN 
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structure which is unable to analyze the effects of individual failures on the system throughout 

time. While this characteristic of the methodology limits its use in predictive failure analysis and 

severely impacts its ability to project failures, the resultant model successfully acts as a failure 

diagnostic tool. Translating this methodology and associated hierarchal and causal categorization 

into a simulation-based environment such as a DBN may provide a solution to this gap in model 

reach, but additional research should be conducted on a simpler system before scaling the model 

up to the complexity represented in this research. In addition to these benefits, DBN based 

models may offer the opportunity to shift node structure away from the binary and ternary 

discrete ranges used in this methodology to a wider range of values that provides a more granular 

approach to performance degradation.  

Further research is also needed to document and utilize effective language when describing 

failure mechanisms and failure effects at the component and system level. The variability in 

detail in which a failure mechanism or failure effect is currently documented can drastically 

increase the difficulty in modeling complex causal pathways. Current industry practices outline 

the need to document failure effects across various levels of system function hierarchy but have 

few requirements regarding documentation of causal factors influencing the probability of the 

failure mechanism. Improving this aspect of how risk is communicated, along with standardizing 

language used in documenting both failure effects and mechanisms, would improve the ability to 

model connections between one component’s failure effect and another’s failure mechanism. 

5.3 Anticipated Impact 
This research provides a basis for the Coast Guard to begin improving their existing 

reliability practices for the FRC and potentially other assets within their fleet by embracing 

concepts of SIPPRA. The methodology presented in Chapter 3 provides guidance on how to use 
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reliability engineering practices to develop the FRC diesel engine model. In Chapter 4, the 

methodology was implemented to create a full-scale diesel engine model, thereby demonstrating 

suitability for purpose. Furthermore, it also serves as a guide for creating similar models for their 

other platforms that utilize diesel engines. By embracing use of this methodology, the Coast 

Guard will be able to improve their utilization of the data provided by their engine monitoring 

systems to achieve a more accurate understanding of the engine’s reliability. This increase in 

knowledge will directly enable more informed decision support at both the strategic and deck 

plate levels, leading to improvement in both the engine and overall cutters availability. 

At a broader level, this research also demonstrates the validity of the SIPPRA methodology 

on a complex system in a previously untested application, maritime diesel engines. The 

methodology developed in Chapter 3 of this work was designed to support modeling of a 

maritime diesel engine, but the hierarchical rule set is easily transferable to any complex system 

as it relies on concepts of functional decomposition and creating connection based on causal 

flow. The diesel engine case study in Chapter 4 illustrates a method of updating knowledge of 

the systems reliability using PHM input from the system monitoring and control system for real 

engineering problems. Adapting this methodology for use on other complex systems creates the 

possibility of achieving equivalent results that provide more accurate, data-driven insights into 

system reliability. 
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Appendix A: List of Nodes 

 

Table 15:List of Level 1, 2, and 2a 

Node ID Level Node Nomenclature Parents Children States

System 1 Engine
LO, CS ,AS, 
FS, RW, DT

N/A 2

LO 2 Lube Oil System LO1, LO2 System 3

LO1 2a
 Lubricate Engine 

Components
M1, M2

LO, C16A, 
C16B, C16C, 
C16D, C23C, 
C23D, C23E, 
C23G, C23H, 
C26A, C26B, 
C28A, C28B, 
C30A, C30B, 
C30C, C42A, 
C42B, C42D

3

LO2 2a Cool Engine Components M2, M6

LO, C16A, 
C16B, C16C, 
C16D, C26A, 
C26B, C30C, 
C41A, C42A, 

C42C

3

CS 2 Coolant System CS1, CS2, CS3 System 3

CS1 2a Cool Lube Oil C3E, M7, M8 CS, M6 3

CS2 2a Cool Engine Components M7, M8
CS, C11C, 

C16E, C16F
3

CS3 2a Cool Charge Air C15, M7, M8 CS 3
AS 2 Air System AS1,AS2 System 3

AS1 2a Provide Charge Air M10 AS 3

AS2 2a
Exhaust Combustion 

Gases
M12, M11 AS 3

FS 2 Fuel System FS1 System 3

FS1 2a Provide Fuel to Injectors M16 FS 3
RW 2 Raw Water System RW1 System 3

RW1 2a Cool Coolant
C9E, CF2, 

M18
M7, RW 3

DT 2 Drive Train System DT1, DT2 System 3

DT1 2a
Translate Torque to 

Propulsion Line
C26,C27,C30, 

C31 IN1
DT 3

DT2 2a Provide Cumbsition Gases M13 DT 3
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Table 16: List of Level 3 Nodes 

Node ID Level Node Nomenclature Parents Children States

M1 3 Lube Oil Quality
C2A, 

C4FM2

C33B, C37A, 
C37B, C3E, C5, 

LO1
3

M2 3
Lube Oil Pressure out 

of Pump
C1A, C1B, 

C5, FE1
C37A, LO1, 

LO2, M6
3

M3 3
Lube Oil Filter 

Differential Pressure
C5 N/A 3

M4 3
Lube Oil Splash 

Temperature
C41A, M6 N/A 3

M5 3
Main Bearing 
Temperature

C26A, M6 N/A 3

M6 3
Lube Oil Temperature 

out of Cooler 
CS1, M2 LO2, M4, M5 3

M7 3
Coolant Temperature 

out of Cooler
M8, RW1

CS1, CS2, CS3, 
M9

3

M8 3
Coolant Pressure out 

of Pump
C8C, FE2

CS1, CS2, CS3, 
M7

3

M9 3
Charge Air 

Temperature
CF1, M15, 

M7
FE9 3

M10 3 Charge Air Pressure
C10A, C14, 
FE4, M11

AS1 3

M11 3 Turbo Speed
C11C, C12, 
C13, C16 

IN1
M10, M14, AS2 3

M12 3 Crankcase Pressure C41A, FE3 AS2 3

M13 3
Cylinder Exhaust 

Temperature
FE8, FE9 DTS 3

M14 3
Exhaust Comb 
Temperature

FE9, M11 N/A 3

M15 3
Air Temperature at 

Charge Air Sequence 
Valve

C12, C13 M9 2

M16 3
Fuel Pressure out of 

HP Pump

C23 IN1, 
FE5, M17, 
C21B, C24 

IN1

FS1 3

M17 3
Fuel Pressure out of 

LP Pump
C22B, FE6 FE8, M16 3

M18 3
Raw Water Pressure 

out of Pump
C25A, 

C25B, FE7
RW1 3

M19 3 Inj v. DBR
C30A, 
C33A

FE9 3
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Table 17: List of Component Level 4 and 4a Nodes 1 of 5 

 

Node ID Level Node Nomenclature Parents Children States
C1 4 Lube Oil Pump C1A, C1B N/A 2

C1A 4a Lube Oil Pump  Failure to Operate N/A C1, M2 2

C1B 4a Pressure Control Valve Stuck Open N/A C1, M2 2
C2 4 Lube Oil Centrifugal C2A, C2B N/A 2

C2A 4a Lube Oil Centrifugal Failure to Operate N/A C2, M1 2

C2B 4a Lube Oil Centrifugal External Lube Oil Leak N/A C2, FE1-A2 3
C3 4 Lube Oil Cooler C3A-E N/A 2

C3A 4a Lube Oil Cooler Internal Lube Oil Leak N/A C3, FE1-B 3
C3B 4a Lube Oil Cooler External Lube Oil Leak N/A C3, FE1-A2 3
C3C 4a Lube Oil Cooler External Coolant Leak N/A C3, FE2-A4 3
C3D 4a Lube Oil Cooler Internal Coolant Leak N/A C3, FE2-C1 3

C3E 4a Lube Oil Cooler Effectiveness M1 C3,CS1 3
C4 4 Lube Oil Filter Assembly C4A, C4B N/A 2

C4A 4a Lube Oil Filter Assembly External Leak N/A C4, FE1-A2 3

C4B 4a Lube Oil Filter Assembly Internal leaky N/A C4, M1 2

C5 4 Lube Oil Filter M1 M2, M3 3

C6 4 Lube Oil Pan N/A FE1-A2 3

C7 4 Crankcase Breather N/A FE-A1a 2
C8 4 Coolant Pump C8A-C N/A 2

C8A 4a Coolant Pump Oil Seal Failure N/A C8, FE1-A3 2
C8B 4a Coolant Pump External Coolant Leak N/A C8, FE2-A4 3

C8C 4a Coolant Pump Failure to Operate N/A C8, M8 3
C9 4 Coolant Cooler C9A-E N/A 2

C9A 4a Coolant Cooler Internal Coolant Leak N/A C9, FE2-B 3
C9B 4a Coolant Cooler Internal Raw Water Leak N/A C9, FE7-B 2
C9C 4a Coolant Cooler External Coolant Leak N/A C9, FE2-A4 3
C9D 4a Coolant Cooler External Raw Water Leak N/A C9, FE7-A 3

C9E 4a Coolant Cooler Effectiveness N/A C9, RW1 3
C10 4 Intake Air Filter C10A, C10B N/A 2

C10A 4a Intake Air Filter Clogged N/A C10, M10 2

C10B 4a Air Filter Material Degraded N/A
C10, C39A, 
C42B, FE10

3

C11 4 Exhaust Manifold C11A-C N/A 2
C11A 4a Exhaust Manifold External Coolant Leak N/A C11, FE2-A3 3
C11B 4a Exhaust manifold Internal Coolant Leak N/A C11, FE2-D 3

C11C 4a Exhaust Manifold Exhaust Gas Leak CS2 C11, FE3, M11 2

C12 4 Exhaust Control Flaps N/A M11, M15 2

C13 4 Exhaust Flap Actuating Cylinder N/A M11, M15 2

C14 4 Charge Air Manifold N/A M10 2
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Table 18: List of Component Level 4 and 4a Nodes 2 of 5 

Node ID Level Node Nomenclature Parents Children States
C15 4 Charge Air Cooler C15A-D N/A 2

C15A 4a Charge Air Cooler Internal Coolant Leak N/A C15, FE2-D 3
C15B 4a Charge Air Cooler External Coolant Leak N/A C15, FE2-A3 3
C15C 4a Charge Air Cooler Air Leak N/A C15, FE2-A3 2

C15D 4a Charge Air Cooler Effectivness FE10 C15, CS3 3

C16 4 Turbochargers
C16 IN1, C16 
IN2, C16 IN3, 

C16 IN4
N/A 2

C16A 4a Turbine  Wheel Severed LO1, LO2 C16 IN1 2
C16B 4a Turbine Wheel Seized LO1, LO2 C16 IN1 2
C16C 4a Turbine Wheel Blade Severed LO1, LO2 C16 IN1 2
C16D 4a Turbine Bearing Failure LO1, LO2 C16 IN1 2
C16E 4a  Turbo Housing Exhaust Leak CS2 C16 IN2, FE3 2
C16F 4a Turbo Housing Air Leak CS2 C16 IN2, FE4 2
C16G 4a Turbo External  Lube Oil Leak N/A C16 IN3, FE1-A3 2

C16H 4a
Turbo  Combustion Side Internal Lube Oil 

leak
N/A

C16 IN3, FE1-C, 
FE10

2

C16I 4a Turbo Exhaust Side Internal Lube Oil Leak N/A C16 IN3, FE1-C 2
C16J 4a Turbo External Coolant leak N/A C16 IN3, FE2-A3 3

C16K 4a
Turbo Combustion Side Lubing Piston Lube 

Oil Seal Fail
N/A

C16 IN4, FE1-C, 
FE10

2

C16L 4a
Turbo Exhaust Side Lubing Piston Lube Oil 

Seal Fail
N/A C16 IN4, FE1-C 2

C16 IN1 4a
Intermediate Node:Turbo Catastrophic 

Failure
C16A-D C16, M11 2

C16 IN2 4a
Intermediate Node: Turbo Exhaust/Air 

Failure
C16E-F C16 2

C16 IN3 4a
Intermediate Node: Turbo Oil/Coolant 

Failure
C16H-J C16 2

C16 IN4 4a Intermediate Node: Turbo Piston Failures C16K-L C16 2
C17 4 Pre Fuel Filter C17A N/A 2

C17A 4a Pre Filter Fuel Leak N/A FE6 3
C18 4 Primary Fuel Filter C18A N/A 2

C18A 4a Primary Filter Fuel Leak N/A FE6 3
C19 4 Secondary Fuel Filter C19A N/A 2

C19A 4a Secondary Pre Filter Fuel Leak N/A FE6 3
C20 4 High Pressure Fuel Accumulator Assembly C20A, C21 N/A 2

C20A 4a
High Pressure Accumulator External Fuel 

Leak
N/A C20, FE5-A 3

C21 4 HPA Limitator Valve C21A, C21B C20 2

C21A 4a HPA Pressure Limit Valve Stuck Open N/A C21 2

C21B 4a HPA  Pressure Limitor Valve Stuck Closed N/A C21, M16 2
C22 4 Fuel Delivery Pump C22A, C22B N/A 2

C22A 4a Fuel Delivery Pump External Fuel Leak N/A C22, FE6 3

C22B 4a Fuel Delivery Pump Fail to Operate N/A C22, M17 2
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Table 19: List of Component Level 4 and 4a Nodes 3 of 5 

Node ID Level Node Nomenclature Parents Children States

C23 4 High Pressure Fuel Pump
C23 IN1, C23A, 

C23B, C23F, 
C24

N/A 2

C23A 4a HP Fuel Pump External Fuel Leak N/A C23, FE5-A 3

C23B 4a HP Fuel Pump Internal Fuel Leak N/A C23, FE5-B 3
C23C 4a HP Fuel Pump Con Shaft Failure LO1 C23 IN1 2
C23D 4a HP Fuel Pump Camshaft Failure LO1 C23 IN1 2
C23E 4a HP Fuel Pump Bearing Failure LO1 C23 IN1 2
C23F 4a HP Fuel Pump Lube Oil External Leak N/A C23, FE1-A3 2
C23G 4a HP Fuel Pump Roller Tapper Failure LO1 C23 IN1 2

C23H 4a HP Fuel Pump Cylinder Failure LO1 C23 IN1 2

C23 IN1 4a HP Cat Failure
C23C, C23D, 
C23E, C23G, 

C23H
M16 2

C24 4 High Pressure Pump Suction Valve C24 IN1, C24D N/A 2

C24A 4a Suction Valve Jam/Failure N/A C24 IN1 2

C24B 4a Magnetic Coil Failure N/A C24 IN1 2

C24C 4a Suction Valve Not Tight N/A C24 IN1 2

C24D 4a Suction Valve Stuck Closed C24 IN1 C24 2

C24 IN1 4a Suction Valve Stuck Open C24A-C C24, M16 2
C25 4 Raw Water Pump C25A-D N/A 2

C25A 4a Raw Water Pump Bearing Failure N/A C25, FE7-A, M18 2

C25B 4a Raw Water Pump Efficenciey Loss N/A C25, M18 2
C25C 4a Raw Water Pump Lube Oil Leak N/A C25, FE1-A3 2

C25D 4a Raw Water Pump External Raw Water Leak N/A C25, FE7-A 3
C26 4 CrankShaft C26A,C26B DT1 2

C26A 4a CrankShaft  Journal Bearing Failure C26B, LO1, LO2 C26, M5 2

C26B 4a Crankshaft Severed LO1, LO2 C26, C26A, C37 2

C27 4 Drive Gear C28A, C30B C37, DT1 2
C28 4 Vibration Dampner C28A, C28B N/A 2

C28A 4a Vibration Dampner Fracture/Shatter C28B C27, C28 2

C28B 4a Vibration Dampner Sleeve Broken N/A C28A 2
C29 4 Crankcase C29A-F N/A 2

C29A 4a Crankcase Lube Oil Gasket/Sealing Failure N/A C29, FE-A1a 2

C29B 4a
Crankcase External Lube Oil Leak caused by 

Crack
N/A C29, FEA1a 2

C29C 4a
Crankcase  Internal Coolant Oil Leak casued 

by Crack
N/A C29, FE2-C2 3

C29D 4a
Crankcase  Internal Lube Oil Leak Casue by 

Crack
N/A C29, FE1-C1 2

C29E 4a Crankcase Coolant Gasket/Sealing Failure N/A C29, FE2-A2 2

C29F 4a
Crankcase External Coolant Leak caused by 

Crack
N/A C29, FE2-A2 3
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Table 20: List of Component Level 4 and 4a Nodes 4 of 5 

Node ID Level Node Nomenclature Parents Children States
C30 4 Camshaft C30A-C DT1 2

C30A 4a Camshaft Countor Chipped C36A, LO1 C30, M19 2
C30B 4a CamShaft Severed LO1 C27, C30 2

C30C 4a Camshaft Bearing Failure LO1, LO2 C30 2

C31 4 Power Pack Assembly
C32, C35, C37, 
C38, C39, C40, 

C41
N/A 2

C31 IN1 4a Power Pack Cat Failures
C33B, C34, C36, 

C37, C41
DT1

C32 4 Valve Drive Assmebly C32A, C33, C34 C31, FE8 2

C32A 4a Valve Drive Lube Oil Leak N/A C32, FE-A1b 2
C33 4 Valve Drive Swing Arm C33A, C33B C32 2

C33A 4a
Valve Driver Swing Bearing Roller Surface 

Chip
N/A C33, M19 2

C33B 4a Valve Drive Swing Follwer Bearing Failure M1 C33, C31 IN1 2
C34 4 Valve Rocker Arm C34A, C34B C31 IN1, C32 2

C34A 4a Valve Drive Rocker Arm Severed N/A C34 2

C34B 4a Valve Drive Rocker Arm Exessive Wear N/A C34 2
C35 4 Cylinder Head C35A-D, C36 C31 2

C35A 4a Head Internal Coolant Leak N/A
C35, C41A, FE2-

C3
3

C35B 4a Head External Coolant leak N/A C35, FE2-A1 3
C35C 4a Head External Lube Oil Leak N/A C35, FE-A1b 3

C35D 4a Head Exhaust Leak N/A C35, FE3 2

C36 4 Head Valve C36A-C
C31 IN1, C35, 

FE8
2

C36A 4a Head Valve Spring Fracture N/A C30A, C36 2
C36B 4a Head Valve Exessive Wear N/A C36, C41 2

C36C 4a Head Valve Severed N/A C36, C41 2

C37 4 Conrod
C26B, C27, 

C37A-C
C31, C31 IN1, FE8 2

C37A 4a Conrod Upper Bearing Failure M1, M2 C37, C41 2
C37B 4a Conrod Lower Bearing Failure M1 C26, C37 2

C37C 4a Conrod Severed N/A C29, C37 2
C38 4 Injector C38A-D C31 2

C38A 4a Injector Not Injecting N/A C38, C38B, FE8 2
C38B 4a Injector Continous Injection C38A C38, FE9 2
C38C 4a Injector External Fuel Leak N/A C38, FE5-A 3

C38D 4a Injector Out of Calibration N/A C38, FE8 2



  
 

74 
 

 

Table 21: List of Component Level 4 and 4a Nodes 5 of 5 

 

Table 22: List of Level 4a Intermediate Failure Effect Nodes 1 of 2 

Node ID Level Node Nomenclature Parents Children States
C39 4 Cylinder Liner C39A, C39B, C41 C31 2

C39A 4a Cylinder Liner Honing Damaged C10B C39, C42C 2

C39B 4a  Cylinder Liner Crack N/A C39, FE2-C3 2

C40 4 HP Fuel Line N/A C31, FE5-A 3

C41 4 Piston Assmembly
C36B, C36C, 
C37A, C41A

C31, C31 IN1, 
C39, FE8

2

C41A 4a Piston Overheat
C35A, C42, LO1, 

LO2
C41, M12, M4 2

C42 4 Piston Ring C42A-D C41A 2
C42A 4a Piston Ring Cracked LO1, LO2 C42 2
C42B 4a Piston Ring Jam LO1, C39B C42 2
C42C 4a Piston Ring Overheat LO2 C42 2

C42D 4a Piston Ring Wear LO1 C42 2

Node ID Level Node Nomenclature Parents Children States

FE1 4a Lube Oil Leaving System
FE1-A, FE1-

B, FE1-C
M2 3

FE1-A 4a Lube Oil to External
FE1-A1, FE1-
A2, FE1-A3

FE1 3

FE1-A1 4a Lube Oil from Drive Train to External
FE1-A1a, 
FE1-A1b

FE1-A 3

FE-A1a 4a Lube Oil From Crankcase to External
C29A, C29B, 

C7
FE1-A1 3

FE-A1b 4a Lube Oil From Power Pac to External C32A, C35C FE1-A1 3

FE1-A2 4a Lube Oil from Lube Oil System to External
C2B, C3B, 

C4A, C6
FE1-A 3

FE1-A3 4a
Lube Oil From Auxilliary Engine Systems to 

External
C16G, C23F, 
C25C, C8A

FE1-A 3

FE1-B 4a Lube Oil to Coolant C3A FE1 3

FE1-C 4a Lube Oil to Exhaust
C16H, C16I, 
C16K, C16L, 

FE1-C1
FE1 3

FE1-C1 4a Lube Oil from Crankcase to Exhaust C29D FE1-C 3
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Node ID Level Node Nomenclature Parents Children States

FE2 4a Coolant Leaving System
FE2-A,FE2-

B,FE2-C,FE2-
D

M8 3

FE2-A 4a Coolant to External
FE2-A1, FE2-
A2, FE2-A3, 

FE2-A4
FE2 3

FE2-A1 4a Coolant From Power Pac to External C35B FE2-A 3
FE2-A2 4a Coolant from Crankcase to External C29E, C29F FE2-A 3

FE2-A3 4a
Coolant from Auxilliary Engine Systems to 

External
C11A, C15B, 
C15C, C16J

FE2-A 3

FE2-A4 4a Coolant from Coolant System to External
C3C, C8B, 

C9C
FE2-A 3

FE2-B 4a Coolant to Raw Water C9A FE2 3

FE2-C 4a Coolant to Lube Oil
FE2-C1, FE2-
C2, FE2-C3

FE2, M1 3

FE2-C1 4a Coolant from Coolant System to Lube Oil C3D FE2-C 3
FE2-C2 4a Coolant from Crankcase to Lube Oil C29C FE2-C 3
FE2-C3 4a Coolant From Power Pac 1 to Lube Oil C35A, C39B FE2-C 3

FE2-D 4a Coolant to Exhaust C11B, C15A FE2 3

FE3 4a Exhaust to Engine Room
C11C, C16E, 

C35D
M12 3

FE4 4a Intake Air to Engine Room C16F M10 2

FE5 4a HP Fuel Leaving System
FE5-A, FE5-

B
M16 3

FE5-A 4a HP Fuel to External
C20A, C23A, 
C38C, C40

FE5 3

FE5-B 4a HP Fuel to Lube Oil C23B FE5, M1 3

FE6 4a LP Fuel Loss to External
C17A, C18A, 
C19A, C22A

M17 3

FE7 4a Raw Water Leaving System FE7-A,FE7-B M18 3

FE7-A 4a Raw Water to External
C25A, C25D, 

C9D
FE7 3

FE7-B 4a Raw Water to Coolant C9B FE7 2

FE8 4a Lowering Exhaust Temperature

C32 C36, 
C37, C38A, 
C38D, C41, 

M17

M13 2

FE9 4a Raising Exhaust Temperature
C38B, M19, 

M9
M13, 
M14

2

FE10 4a Contamination to Charge Air Cooler
C10B, C16H, 

C16K
C15D 3
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Table 23:List of Level 4a Intermediate Failure Effect Nodes 1 of 2 

 

Table 24: List of Level 5 Nodes 

  

Node ID Level Node Nomenclature Parents Children States
CF1 5 Intake Air temperature N/A M9 3

CF2 5 Raw Water Temperature N/A RW1 3
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Appendix B: FRC Engine Bayesian Network 

 



  
 

78 
 

Figure 27: Expanded FRC Engine Bayesian Network 

 

Figure 28: Component 1, 2, and 3 Sub Models 

 

Figure 29: Component 4, 8, and 9 Sub Models 
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Figure 30:Component 10, 11, and 15 Sub Models 

 
Figure 31:Component 16 Sub Model 
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Figure 32: Components 17-22 Sub Models 

 
Figure 33: Component 23 and 24 Sub Models 
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Figure 34: Components 25, 26, and 28 Sub Models 

 
Figure 35:Component 29 and 30 Sub Models 
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Figure 36: Component 31-42 Sub Models 
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