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Chapter 1: Introduction

Let M be a closed Riemann surface with genus ≥ 2. Introduced by Hitchin

in the seminal paper [33], a Higgs bundle (E,Φ) is a pair of a holomorphic vector

bundle E → M and a holomorphic section Φ ∈ H0(EndE ⊗ KM), where KM is

the canonical bundle of M . Their moduli space has rich geometric structures and

therefore is interesting in its own right, let alone its roles in many other different

areas including gauge theory, Kähler and hyperKähler geometry, non-abelian Hodge

theory and integrable systems (see [66] for more discussions).

To obtain a “nice” moduli space, some stability conditions have to be intro-

duced, since the space of Higgs bundles up to isomorphism is not even Hausdorff.

We recall that a Higgs bundle (E,Φ) is semistable if µ(F) ≤ µ(E) for every Φ-

invariant holomorphic subbundle 0 ( F ( E, where µ(F) = deg(F)/ rank(F) is the

slope of F. If the equality µ(F) = µ(E) cannot occur, then (E,Φ) is stable. Finally,

(E,Φ) is polystable if it is a direct sum of stable Higgs bundles with the same slope.

We observe that the various stability conditions are “ordered” in the following way:

“stable” =⇒ “polystable” =⇒ “semistable”, and these implications can be reversed

only when the rank and the degree of E is coprime.

In [33], Hitchin used the Kuranishi slice method to construct the moduli space
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of stable Higgs bundles first as a smooth manifold and then as a hyperKähler man-

ifold. Such a method was first introduced by Kuranishi in [42] and has been used

in several papers to construct moduli spaces in different contexts (for example,

see [4, 5, 40, 43] and [39, Chapter 7]). On the other hand, the moduli space of

semistable Higgs bundles was constructed by Nitsure in [48] where M is a smooth

projective curve and by Simpson in [57] where M is a smooth projective variety.

They both used Geometric Invariant Theory (GIT for short), and the method is

entirely algebro-geometric. The resulting moduli space is a quasi-projective variety.

Note that it is no longer smooth and contains the moduli space of stable Higgs

bundles as an smooth open dense subset.

Given a successful algebraic construction of the moduli space, we may wonder

if an analytic construction is possible. More specifically, it is natural to ask if the

Kuranishi slice method can be used to construct the moduli space of semistable

Higgs bundles as a complex space. In fact, this seems to be a folklore theorem (for

example, see [6,66]). In this thesis, we will give a positive answer and provide a proof

in detail. Other motivation for an analytic construction comes from the definition of

the moduli space in the analytic settings. Roughly speaking, the moduli space will be

defined as the quotient of an infinite-dimensional space by an infinite-dimensional Lie

group. By the Hitchin-Kobayashi correspondence, it is homeomorphic to a singular

hyperKähler quotient. As a consequence, the open smooth subspace consisting of

stable Higgs bundles acquires a hyperKähler metric. This makes it possible to

study the hyperKähler geometry on the moduli space. From the perspective of the

algebraic construction, it is hard to see how the hyperKähler geometry comes into the
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picture. Moreover, since the moduli space is defined as a quotient by a Lie group, we

may consider its orbit type decomposition. By generalizing Mayrand’s results in [44]

to infinite-dimensional settings, we will show that the decomposition is a Whitney

stratification, and each stratum is a hyperKähler manifold. With respect to the

complex structure of the moduli space, the hyperKähler structure on each stratum

can be decomposed into a Kähler structure and a complex symplectic structure.

The complex Poisson brackets induced by the complex symplectic structures on

the strata glue to a Poisson bracket on the structure sheaf of the moduli space.

Moreover, the Kähler structures on the strata glue to a weak Kähler (singular)

metric on the moduli space. Following Mayrand, the moduli space is a stratified

complex symplectic space (also see Sjamaar-Lerman [59] for the real case). Moreover,

following Moishezon [45], the moduli space is a Kähler space. All of these structures

are hard to obtain from the algebraic construction.

By our analytic construction, the moduli space is so far just a normal complex

space. It is also natural to ask if analytic methods can be used to show that this

complex space is a quasi-projective variety, the end result from the algebraic con-

struction. The first step toward this goal is to compactify the moduli space. In [25],

Hausel used the symplectic cut to compactify the moduli space when it is smooth

and the underlying smooth bundle of (E,Φ) is of rank 2. He further showed that the

compactification is projective and thus the quasi-projectivity of the moduli space fol-

lows. In this thesis, we will follow the same method to compactify the moduli space

and prove the projectivity of the compactification. However, we will not impose the

smoothness conditions as Hausel did. Therefore, this thesis is a generalization of
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Hausel’s results. It should be noted that Simpson compactified the moduli space

using algebro-geometric methods in [53]. However, the projectivity of the compact-

ification was not proved. In a recent paper [10], de Cataldo followed Simpson’s

method and constructed a projective compactification of the moduli space. It can

be shown that our compactification is isomorphic to de Cataldo’s compactification.

1.1 Main results

In this section, we will make the above discussion precise and rigorous and state

the main results in this thesis. The entire thesis is based on author’s papers [16–18].

Before stating the main results, we first set up the notations and introduce the

general settings.

Fix a smooth Hermitian vector bundle E → M and let gE → M be the bun-

dle of skew-Hermitian endomorphisms of E. For convenience, we assume that the

degree of E is zero. This condition is not essential. By the Newlander-Nirenberg

theorem, a holomorphic structure on E (described by holomorphic transition func-

tions) is equivalent to an integrable Dolbeault operator ∂E : Ω0(E)→ Ω0,1(E). Since

dimCM = 1, the integrability condition, ∂
2

E = 0, is vacuous. Therefore, via the

Chern correspondence, the space of holomorphic structures on E can be identified

with the space A of unitary connections on E, which is an infinite-dimensional affine

space modeled on Ω1(gE). Let C = A× Ω1,0(gCE). Then, the configuration space of

4



Higgs bundles (with a fixed underlying smooth bundle E) is defined as

B = {(A,Φ) ∈ C : ∂AΦ = 0} (1.1)

(see [66] for more details). The complex gauge group GC = Aut(E) acts on B by

(∂A,Φ) · g = (g−1 ◦ ∂A ◦ g, g−1Φg), g ∈ GC, (A,Φ) ∈ B. (1.2)

Then, two Higgs bundles are isomorphic if and only if they are in the same GC-orbit.

Let Bss, Bs and Bps be the subspaces of B consisting of semistable, stable and

polystable Higgs bundles, respectively. They are GC-invariant. The moduli space of

semistable Higgs bundles is defined as the quotient M = Bps/GC equipped with the

C∞-topology.

The moduli space M can be realized as an infinite-dimensional singular Kähler

quotient of the singular space B as follows. Recall that C is an infinite-dimensional

affine hyperKähler manifold that is modeled on Ω1(gE)⊕ Ω1,0(gCE) (see [33, §6]). If

we identify Ω1(gE) with Ω0,1(gCE) using the map α 7→ α′′, where α′′ ∈ Ω0,1(gCE) is the

(0, 1)-component of α, then an L2-metric on C is given by

g(α′′, η;α′′, η) =
2
√
−1

4π2

∫
M

tr
(

(α′′)∗α′′ + ηη∗
)
, (α′′, η) ∈ Ω0,1(gCE)⊕ Ω1,0(gCE).

(1.3)

(Here, the constant is needed for only §5 and will be omitted in §3 and §4. The

same applies to (1.4)). Let I be the complex structure given by the multiplication
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by
√
−1, ΩI its associated Kähler form, and G the subgroup of GC consisting of

unitary gauge transformations. The G-action on C is Hamiltonian with respect to

the Kähler form ΩI , and the moment map is given by

µ(A,Φ) =
1

4π2
(FA + [Φ,Φ∗]) : C→ Ω2(gE). (1.4)

Then, the Hitchin-Kobayashi correspondence, a gauge-theoretic interpretation of

the polystability condition, states that a Higgs bundle (A,Φ) ∈ B is polystable

if and only if (A,Φ) · g satisfies Hitchin’s equation µ = 0 for some g ∈ GC. A

stronger version of this result states that the inclusion µ−1(0) ∩B ↪→ Bps induces a

homeomorphism

i : (µ−1(0) ∩B)/G
∼−→ Bps/GC = M, (1.5)

where the inverse is induced by the retraction r : Bss → µ−1(0) ∩ B defined by the

Yang-Mills-Higgs flow (for more details, see [66] and [67]).

Another point of view is that the moduli space can be realized as an infinite-

dimensional singular hyperKähler quotient of C as follows. The holomorphicity

condition µC(A,Φ) = ∂AΦ can be regarded as a complex moment map for the

GC-action with respect to the complex symplectic form induced by the other two

complex structures J and K. As a consequence, the map m = (µ, µC) can be

regarded as a hyperKähler moment map on C. Therefore, µ−1(0) ∩ B = m−1(0),

and the homeomorphism i can be rephrased as

i : m−1(0)/G
∼−→ Bps/GC = M, (1.6)
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where m−1(0)/G is an infinite-dimensional singular hyperKähler quotient.

The main result in §3 is the following.

Theorem A. The moduli space M is a normal complex space.

More can be said about the local structure of M. We recall that the deforma-

tion complex for a Higgs bundle (A,Φ) satisfying Hitchin’s equation µ(A,Φ) = 0 is

given by

CµC : Ω0(gCE)
D′′−−→ Ω0,1(gCE)⊕ Ω1,0(gCE)

D′′−−→ Ω1,1(gCE), (1.7)

where D′′ = ∂A + Φ. It is an elliptic complex. Let H be the G-stabilizer at (A,Φ).

Since the G-action is proper, H is a compact Lie group. Moreover, its complexifi-

cation HC is precisely the GC-stabilizer at (A,Φ) (see §3.2) and acts on H1 linearly.

Then, the local structure of M is described as follows.

Theorem B. Let [A,Φ] ∈ M be a point such that µ(A,Φ) = 0 and H1 its de-

formation space, the harmonic space H1(CµC) defined in CµC. Then, the following

hold:

1. H1 is a complex symplectic vector space.

2. The HC-action on H1 is complex Hamiltonian with a complex moment map

given by

ν0,C(x) =
1

2
P [x, x], (1.8)

where P is the harmonic projection in CµC.

3. Around [A,Φ], the moduli space M is locally biholomorphic to an open neigh-

borhood of [0] in the complex symplectic quotient ν−1
0,C(0) � HC, which is an
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affine GIT quotient.

This result is not surprising for two reasons. The first reason is that Simpson

proved in [57, §10] that the differential graded Lie algebra CµC is formal. As a

consequence, the moduli space is locally biholomorphic to a GIT quotient of a

quadratic cone in H1(CµC) by a complex reductive group. The second reason is

that Theorem B is an infinite-dimensional generalization of [44, Theorem 1.4 (iv)]

to Higgs bundles.

After the construction of the moduli space M, it is natural to compare the

analytic and the algebraic moduli spaces. More precisely, let us also use Man to

mean the quotient Bps/GC and Malg the moduli space of semistable Higgs bundles

of rank r and degree 0 in the category of schemes, where r is the rank of E. By

construction, Malg parametrizes S-equivalence classes of Higgs bundles. Let us recall

the definition of the S-equivalence relation. Every semistable Higgs bundle (E,Φ)

admits a filtration,

0 = (E0,Φ0) ⊂ (E1,Φ1) ⊂ · · · ⊂ (E`,Φ`) = (E,Φ), (1.9)

called the Seshadri filtration, whose successive quotients are stable, all with slope

µ(E). Let Gr(E,Φ) =
⊕`

i=1(Ei/Ei−1,Φi) be the graded object associated with the

Seshadri filtration of (E,Φ). It is uniquely determined by the isomorphism class of

(E,Φ). Then, two Higgs bundles (E1,Φ1) and (E2,Φ2) are S-equivalent if Gr(E1,Φ1)

and Gr(E2,Φ2) are isomorphic as Higgs bundles. As a consequence, there is a natural

comparison map i : Man → Malg of the underlying sets that sends each GC-orbit of
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a point (A,Φ) in Bps to the S-equivalence class of the Higgs bundle (EA,Φ) defined

by (A,Φ).

Theorem C. The comparison map i : Man →Malg is a biholomorphism.

To state the main results in §4, we now define the orbit type decompositions

of m−1(0)/G and M. Let H be a G-stabilizer at some Higgs bundle in m−1(0) and

(H) the conjugacy class of H in G. Consider the subspace

m−1(0)(H) = {(A,Φ) ∈m−1(0) : G(A,Φ) ∈ (H)}. (1.10)

It is G-invariant, and the orbit type decomposition of the singular hyperKähler

quotient m−1(0)/G is defined as

m−1(0)/G =
∐
(H)

components of m−1(0)(H)/G. (1.11)

By abusing the notation, we generally use π to denote the quotient map Bps →

M or m−1(0) → m−1(0)/G. The following is a slight generalization of Hitchin’s

construction of the moduli space of stable Higgs bundles in [33, §5, §6] (cf. [61,

Proposition 2.21]).

Theorem D. Every stratum Q in the orbit type decomposition of the hyperKähler

quotient m−1(0)/G is a locally closed smooth manifold, and π−1(Q) is a smooth

submanifold of C such that the restriction π : π−1(Q)→ Q is a smooth submersion.

Moreover, the restriction of the hyperKähler structure from C to π−1(Q) descends

to Q.
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Similarly, if L is a GC-stabilizer at some Higgs bundle in Bps, and (L) denotes

the conjugacy class of L in GC, then we consider the subspace

B
ps
(L) = {(A,Φ) ∈ Bps : (GC)(A,Φ) ∈ (L)}. (1.12)

It is GC-invariant, and the orbit type decomposition of the moduli space M is defined

as

M =
∐
(L)

components of Bps
(L)/G

C. (1.13)

Then, we will prove the following that is similar to Theorem D.

Theorem E. Every stratum Q in the orbit type decomposition of the moduli space M

is a locally closed complex submanifold of M, and π−1(Q) is a complex submanifold of

C with respect to the complex structure I such that the restriction π : π−1(Q)→ Q is

a holomorphic submersion. This decomposition is a complex Whitney stratification.

Here, by complex Whitney stratification, we mean that the orbit type decom-

position of M is a disjoint union of locally closed complex submanifolds such that if

Q1 ∩Q2 6= ∅ then Q1 ⊂ Q2 for any strata Q1 and Q2 in the decomposition. This is

called the frontier condition. Moreover, the strata are required to satisfy Whitney

conditions A and B. Although Whitney conditions A and B are conditions for sub-

manifolds in an Euclidean space, they make sense for complex spaces, since they are

local conditions and invariant under diffeomorphisms (see [44, Definition 2.2, 2.5,

2.7] for more details).

Moreover, the Hitchin-Kobayashi correspondence i preserves the orbit type

10



decompositions in the following way.

Theorem F. If Q is a stratum in the orbit type decomposition of m−1(0)/G, then

i(Q) is a stratum in the orbit type decomposition of M, and the restriction i : Q →

i(Q) is a biholomorphism with respect to the complex structure IQ on Q coming from

C and the natural complex structure on i(Q).

Therefore, each stratum Q in the orbit type decomposition of M acquires

a complex symplectic structure from the corresponding stratum in the orbit type

decomposition of m−1(0)/G. As a consequence, each Q admits a complex Poisson

bracket. We will show that these Poisson brackets glue to a complex Poisson bracket

on the structure sheaf of M. By Theorem B, around [A,Φ], the moduli space M is

locally biholomorphic to an open neighborhood of [0] in the complex symplectic quo-

tient ν−1
0,C(0) �HC, which is an affine GIT quotient. Note that ν−1

0,C(0) �HC also has

an orbit type decomposition, since every point in ν−1
0,C(0) �HC has a unique closed

orbit, and this orbit has an orbit type. By Mayrand [44], the orbit type decompo-

sition of ν−1
0,C(0) � HC is a Whitney stratification, and each stratum is a complex

symplectic submanifold and hence admits a complex Poisson bracket. Moreover,

these Poisson brackets glue to a Poisson bracket on the structure sheaf such that

the inclusion from each stratum to ν−1
0,C(0) � HC is a Poisson map. Then, we will

prove the following.

Theorem G. There is a unique complex Poisson bracket on the structure sheaf of

M such that the inclusion Q ↪→ M is a Poisson map for each stratum Q in M.

Moreover, we have the following.
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1. The local biholomorphism between M and ν−1
0,C(0)�HC preserves the orbit type

stratifications and is a Poisson map.

2. Its restriction to each stratum Q in M is a complex symplectomorphism, and

hence serves as complex Darboux coordinates on Q.

Following Mayrand [44] and Sjamaar-Lerman [59], a complex space is called a

stratified complex symplectic space if it admits a complex Whitney stratification, a

complex symplectic structure on each stratum, and a complex Poisson bracket on

the structure sheaf such that the inclusion from each stratum to the complex space

is a holomorphic Poisson map. As a consequence of the main theorems proved in

this thesis, we conclude the following.

Corollary. The moduli space M of Higgs bundles is a stratified complex symplectic

space with the orbit type decomposition as the complex Whitney stratification.

One of the main results in §5 is that the moduli space M admits a compacti-

fication.

Theorem H. There is a normal compact complex space M in which the moduli

space M embeds as an open dense subset. Moreover, the complement Z = M \M is

a closed complex subspace of pure codimension 1.

As a consequence, the quasi-projectivity of M follows if we can show that

the compactification M is projective. Therefore, we need to construct an ample

line bundle on M. To construct such a line bundle, we need a descent lemma for

vector bundles. In [13], Drezet and Narasimhan proved a descent lemma for good
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quotients of algebraic varieties. A natural analogue of good quotients in our settings

is the quotient map π : Bss → Bss � GC, where Bss � GC is the quotient space

of Bss by the S-equivalence relation of Higgs bundles. Heuristically, we think of

π : Bss → Bss�GC as an infinite-dimensional GIT quotient and naturally expect that

its properties are similar to those of good quotients of algebraic varieties. To justify

this heuristic thinking, we will first prove in §5.1.1 that the inclusion Bps ↪→ Bss

induces a homeomorphism M→ Bss �GC, and hence will routinely identify M with

Bss � GC. Then, we will show the following.

Theorem I. The quotient map π : Bss →M satisfies the following properties:

1. π identifies GC-orbits whose closures in Bss intersect.

2. Every fiber of π contains a unique GC-orbit that is closed in Bss. Moreover, a

GC-orbit is closed in Bss if and only if it contains a polystable Higgs bundle.

3. OM = π∗O
GC

Bss. In other words, if U is an open subset of M, the map OM(U)→

OBss(π−1(U))G
C

given by f 7→ π∗f is a bijection.

4. π is a categorical quotient in the sense that every GC-invariant holomorphic

map from Bss into a complex space factors through the quotient map π : Bss →

Bss � GC.

To make sense of (3) in Theorem I, we equip the space B with a naive structure

sheaf by restricting the sheaf of I-holomorphic functions on C to B. Moreover, OM

denotes the structure sheaf of the moduli space M.
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Generalizing the descent lemma for vector bundles in [13], we will prove the

following (cf. [58, Lemma 2.13]).

Theorem J. Let E→ Bss be a holomorphic GC-bundle. Suppose that the stabilizer

GC
(A,Φ) acts trivially on the fiber E(A,Φ) for every (A,Φ) ∈ µ−1(0). Then, there is

a holomorphic vector bundle E over M such that π∗E = E. Moreover, O(E) =

π∗O(E)G
C
, where O(E) and O(E) are sheaves of holomorphic sections of E and E,

respectively.

Now we are able to construct an ample line bundle on M as follows. Recall

that A is an infinite-dimensional Kähler manifold that is modeled on Ω1(gE) (see [3,

p.587]). In [12], Donaldson constructed a holomorphic line bundle on A together

with a Hermitian metric whose curvature is a multiple of Kähler form on A (also

see [50]). Moreover, the GC-action on A lifts to this line bundle. By pulling back

this line bundle to C by the projection map C→ A, we obtain an I-holomorphic line

bundle L→ C, and the GC-action on C lifts to L. By slightly modifying the pullback

Hermitian metric, we are able to show that the curvature of the resulting Hermitian

metric h on L is −2π
√
−1ΩI . Then, the projectivity of the compactification M is

shown in the following result.

Theorem K.

1. The restriction of the line bundle L → C to Bss descends to M and defines a

line bundle L→M.

2. L extends to a line bundle L on M.
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3. L is ample.

Therefore, M is projective, and hence M is quasi-projective.

In the proof of (1) in Theorem K, a byproduct is that the moduli space M has a

weak Kähler metric. More precisely, by Theorem D, E and F, M admits an orbit type

stratification such that each stratum Q is a complex submanifold of M together with

a Kähler form ωQ. A weak Kähler metric on M is a family of continuous stratum-wise

strictly plurisubharmonic functions ρi : Ui → R such that {Ui} is an open covering

of M and that ρi − ρj = <(fij) for some holomorphic function fij ∈ OM(Ui ∩ Uj).

Here, a continuous stratum-wise strictly plurisubharmonic function is a continuous

function that is smooth and strictly plurisubharmonic along every stratum Q in the

orbit type stratification of M. Note that stratum-wise strictly plurisubharmonic

functions are not necessarily strictly plurisubharmonic. If each ρi can be chosen to

be strictly plurisubharmonic, then {ρi : Ui → R} defines a (strong) Kähler metric

on M. (see [29] for more details on strictly plurisubharmonic functions). Finally,

since
√
−1∂∂(ρi|Q) patches together, the Kähler metric on M restricts to Q. Then,

our last result is the following.

Theorem L. The moduli space M admits a weak Kähler metric whose restriction

to each stratum Q in the orbit type stratification of M is the Kähler form ωQ.

We are unable to prove that the weak Kähler metric on M is strong, although

it is highly likely. Moreover, it should be noted that we only work with reduced

complex spaces in this thesis.
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1.2 Guidance for readers

In this section, we give the outline of this thesis and the ideas of proofs.

In §2, we will review the notions of analytic Hilbert quotients, stratified complex

symplectic spaces and the Yang-Mills-Higgs flow, and their useful properties.

In §3, we will prove Theorem A, B and C. The major step in the proof of The-

orem A and B is to construct a Kuranishi local model for M at every Higgs bundle

(A,Φ) that satisfies Hitchin’s equation. This is done in §3.2. Here, a Kuranishi local

model is the analytic Hilbert quotient (developed by Heinzner and Loose in [30]) of

a Kuranishi space in H1 by the GC-stabilizer at (A,Φ), and is homeomorphic to an

open neighborhood of (A,Φ) in M. After that, we will show that the transition func-

tions associated with Kuranishi local models are holomorphic so that M is a complex

space. This is done in §3.3. To prove Theorem B, we adapt Huebschmann’s argu-

ment in [34, Corollary 2.20] which is further based on Arms-Marsden-Moncrief [2].

This is done in §3.4.

The techniques in the construction of Kuranishi local models mainly come

from [62], [11] and [37]. Let H be the G-stabilizer at (A,Φ) with µ(A,Φ) = 0 so

that HC is the GC-stabilizer. We will construct a H-equivariant perturbed Kuranishi

map Θ (following Székelyhidi’s argument in [62, Proposition 7]) that is defined on

a Kuranishi space in H1 and takes values in Bss such that the pullback moment

map Θ∗µ is a moment map for the H-action on H1 with respect to the pullback

symplectic form Θ∗ΩI . Then, roughly speaking, an HC-orbit is closed in H1 if and

only if it contains a zero of the pullback moment map Θ∗µ. The precise statement is
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given in Theorem 3.2.6 (cf. [11, Theorem 2.9], [37, Proposition 3.8], [7, Proposition

2.4] and [65, Proposition 3.3.2]). Since the perturbed Kuranishi map Θ is no longer

holomorphic, Θ∗ΩI is not a Kähler form on H1, which causes some trouble. To

remedy this problem, in the proof of Theorem 3.2.6, the Yang-Mills-Higgs flow

will be used to detect polystable orbits in Bss. Since Kuranishi spaces are locally

complete, every Yang-Mills-Higgs flow near (A,Φ) induces a “reduced flow” in H1

that stays in a single HC-orbit and converges to a zero of Θ. Therefore, if a HC-

orbit is closed, it contains a zero of Θ. Hence, Θ maps polystable HC-orbits in H1

to polystable orbits in Bss so that Θ induces a map from a Kuranishi local model

to M. The rest of the proof is to show that this map is an open embedding.

The idea to prove Theorem C is the following. It is easy to see that i is a

bijection. To show that it is continuous, recall that Nitsure constructed a scheme

F ss in [48] that parameterizes semistable Higgs bundles on M , and Malg is a good

quotient of F ss. We show that the comparison map i can be locally lifted to a map σ,

called a classifying map, that is defined locally on Bss and takes values in F ss. Here,

the terminology comes from Sibley and Wentworth’s paper [52], and we adapt the

proof of Theorem 6.1 in this paper to show that σ is continuous with respect to the

C∞-topology on Bss and the analytic topology on F ss. Therefore, i is continuous.

By the properness of the Hitchin fibration defined on Man, we see that i is proper

and hence a homeomorphism. Then, by constructing Kuranishi families of stable

Higgs bundles, we show that the restriction i : Ms
an → Ms

alg is a biholomorphism,

where Ms
an and Ms

alg are the open subsets of Man and Malg consisting of stable Higgs

bundles, respectively. By the normality of Malg, the holomorphicity of i−1|Ms
alg

can
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be extended to i−1. Then, we use Theorem B to prove that Man is normal. The

rest of the proof follows from the fact that a holomorphic bijection between normal,

reduced and irreducible complex spaces of the same dimension is a biholomorphism.

In §4, we will prove Theorem D, E, F, and G. To prove Theorem D and the first

part of Theorem E, the basic tools are local slice theorems for the G-action and the

GC-action. Since the G-action is proper, its local slice theorem is available. To obtain

a local slice theorem for the GC-action around Higgs bundles satisfying Hitchin’s

equation, we adapt Buchdahl and Schumacher’s argument in [8, Proposition 4.5].

To prove the second part of Theorem E, we simply follow Mayrand’s arguments

in [44, §4.6, §4.7]. The idea is that the Whitney conditions and the frontier condition

are local conditions and therefore can be checked on an open neighborhood of [0]

in ν−1
0,C(0) � HC, provided that the biholomorphism between M and a local model

ν−1
0,C(0) �HC preserves the orbit type decompositions. We will prove that this is the

case. These results are contained in §4.2 and §4.3.

To prove Theorem F, the major obstacle is to show that the Hitchin-Kobayashi

correspondence preserves orbit types. We will follow Sjamaar’s argument in [58,

Theorem 2.10]. However, this argument crucially relies on Mostow’s decomposition

for complex reductive Lie groups. Since GC is infinite-dimensional, we need to extend

Mostow’s decomposition to GC in the following way.

Theorem M (Mostow’s decomposition). Let H be a compact subgroup of G and h

its Lie algebra. The map

h⊥ ×H G→ GC/HC, [s, u] 7→ HC exp(is)u, (1.14)
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is a G-equivariant bijection, where G acts on both sides by right multiplication, and

h⊥ is the L2-orthogonal complement of h in the Lie algebra Ω0(gE) of G.

It is likely that the map mentioned in Theorem M is not only a bijection

but also a diffeomorphism. That said, for the purpose of this thesis, a bijection

is all we need. Once Mostow’s decomposition for GC is established, the rest of

the proof follows easily. To prove Theorem M, we will instead prove that the map

HC×H (h⊥×G)→ GC is a bijection (see Theorem 4.1.1 for a more precise statement).

To this end, following the Heinzner and Schwarz’s idea in [32, §9], we will realize

h⊥ × G as a zero set of some moment map on GC. Therefore, we need to show that

GC is a weak Kähler manifold and that the left H-action on GC is Hamiltonian.

In [35], Huebschmann and Leicht provided a framework to deal with this problem.

Although their results are in finite-dimensional settings, they can be carried out for

GC without any problems. For the sake of completeness, we provide the details in

§4.6, and the proofs are taken or adapted from [35]. Then, it will be shown that

every HC-orbit in GC intersects h⊥ × G, and the intersection is a single H-orbit.

Here, we will use the framework laid out in Mundet I Riera’s paper [47]. All these

results will be proved in §4.1.

To prove Theorem G, we need to define a complex Poisson bracket on the struc-

ture sheaf of M. Since every stratum in the orbit type decomposition has a complex

Poisson bracket, and M is a disjoint union of these strata, we may pointwise define

the complex Poisson bracket of any two holomorphic functions on M. Therefore, the

real question is to answer whether the resulting function is still holomorphic. We
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will show that the local biholomorphism between M and a local model ν−1
0,C(0) �HC

is a Poisson map. Then, Theorem G follows from this. Now the key observation

to see that the local biholomorphism is a Poisson map is that the Kuranishi map θ

induces the local biholomorphism and preserves the complex symplectic structures

on H1 and C. Moreover, all the complex symplectic structures on the strata in the

orbit type decompositions of M and ν−1
0,C(0) �HC come from those on C and H1.

In §5, we will prove Theorem I, J, K and L. The key tools in the proof of

Theorem I are a local slice theorem for the GC-action and the retraction r : Bss →

µ−1(0) ∩ B defined by the Yang-Mills-Higgs flow. We will prove Theorem I in

§5.1. To prove Theorem J, we will first prove a descent lemma for analytic Hilbert

quotients of complex spaces. The proof of Theorem J is an adaptation of Drezet

and Narasimhan’s argument in [13]. Then, this result will be applied to Kuranishi

local models that are used to construct the moduli space M, since Kuranishi local

models are analytic Hilbert quotients of Kuranishi spaces. In this way, we can show

that every point in Bss admits an open neighborhood that is saturated with respect

to the quotient map π : Bss → M and in which the vector bundle E in question is

trivial. This shows that E descends to M. These results will be proved in §5.2.

After Theorem I and J are proved, we are ready to prove Theorem L and (1) in

Theorem K. By verifying the hypothesis in Theorem J for the line bundle L|Bss , we

can easily show that it defines a line bundle L→M. To show Theorem L, we may

choose an open covering {Ui} of M such that L is trivial over each π−1(Ui). Then,

we choose a holomorphic section si of L over each π−1(Ui) that is GC-equivariant
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and nowhere vanishing. Then, we consider the functions

ui = − 1

2π
log |si|2h, (1.15)

where h is the Hermitian metric on L. Since it is G-invariant, its restriction to

π−1(Ui) ∩ µ−1(0) defines a continuous map ui,0 : Ui → R. It will be shown that the

restriction of each ui,0 to each stratum Q is smooth and a Kähler potential for the

Kähler form ωQ on Q. In this way, we obtain a family of continuous stratum-wise

strictly plurisubharmonic functions ui,0 : Ui → R such that {Ui} covers M. Then,

the normality of M and the fact that codimx(M \ Ms) ≥ 2 for all x ∈ M \ Ms

show that {ui,0 : Ui → R} defines a weak Kähler metric on M. These results will be

proved in §5.3.

Then, we will prove Theorem H and the rest of the statements in Theorem K in

§5.4. Following Hausel’s strategy in [25], we will use the symplectic cut to compactify

M. Recall that M admits a holomorphic C∗-action. Moreover, the induced U(1)-

action is stratum-wise Hamiltonian. More precisely, the restriction of the G-invariant

map

f(A,Φ) = − 1

4π2

1

2
‖Φ‖2

L2 : C→ R (1.16)

to µ−1(0) defines a continuous map f : M → R. When restricted to a stratum Q,

f |Q is smooth and a moment map for the induced U(1)-action with respect to the

Kähler form ωQ on Q. In this sense, f is a stratum-wise moment map on M. Then,

we consider the direct product M × C. If we let C∗ act on C by multiplication,
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M× C admits a diagonal C∗-action. The induced U(1)-action is also stratum-wise

Hamiltonian. Here, the stratification of M×C is given by the disjoint union of Q×C,

where Q ranges in the orbit type stratification of M. Moreover, the stratum-wise

moment map on M× C is given by

f̃ = f − 1

2
‖ · ‖2. (1.17)

By [33, Theorem 8.1] or [66, Theorem 2.15], the Hitchin fibration h is proper, and

hence the nilpotent cone h−1(0) is compact. Therefore, we are able to choose a

level c < 0 such that h−1(0) ⊂ f−1[0, c). Then the symplectic cut of M at the

level c is defined as the singular symplectic quotient f̃−1(c)/U(1), and it should

be a compactification of M. Here, the rough idea is that the subspace f−1[0, c] is

compact by the properness of f (see [33, Proposition 7.1]). Moreover, if a Higgs

bundle is away from f−1[0, c], following its C∗-orbit, it “flows” into f−1[0, c], since

the 0-limit of the C∗-action on a Higgs bundle always exists, and hence the limiting

point is a C∗-fixed point and is contained in the nilpotent cone. Therefore, the

moduli space M should be “contained in” f̃−1(c)/U(1), which is compact because

of the properness of f .

To carry out this idea rigorously, we first need to equip f̃−1(c)/U(1) with the

structure of a complex space. Let (M × C)ss be the subspace of semistable points

in M × C determined by the stratum-wise moment map f̃ − c. More precisely, it

consists of points in M× C whose C∗-orbit closures intersect f̃−1(c). To show that

the analytic Hilbert quotient of (M × C)ss by C∗ exists, we run into a technical
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difficulty. Since we are unable to prove that the Kähler metric on M is a strong

one, we cannot directly apply the analytic GIT developed by Heinzner and Loose

in [30] and must take a detour. To motivate the following detour, let us recall that

a complex reductive Lie group acts properly at a point if and only if its stabilizer

at that point is finite, provided that a local slice theorem is available around that

point. Since the C∗-stabilizers are finite away from the nilpotent cone h−1(0), it is

reasonable to expect that the C∗-action acts properly away from the nilpotent cone.

Hence, we consider the C∗-invariant open subset W = (M × C) \ (h−1(0) × {0}).

By the properness of the Hitchin fibration h, we can show that the C∗-action on

W is proper, and hence the analytic Hilbert quotient of W by C∗ exists. Moreover,

W/C∗ is a geometric quotient. Then, we use the properness of h and f to show that

W = (M×C)ss = C∗f̃−1(c). It then follows that the inclusion f̃−1(c) ↪→ W induces

a homeomorphism f̃−1(c)/U(1) → W/C∗. Now, note that W can be written as a

disjoint union

W = (M \ h−1(0)× {0}) ∪ (M× C∗). (1.18)

We will show that the quotient (M× C∗)/C∗ is biholomorphic to the moduli space

M, and therefore M = W/C∗ is a compactification of M.

To show the rest of the statements in Theorem K, we pullback the line bundle

L → M to M × C by the projection map M × C → M to obtain a line bundle

LC → M × C. By slightly modifying the Hermitian metric h on LC, we can easily

show that the resulting Hermitian metric, again denoted by h, is smooth along each

stratum Q × C, and the curvature is −2π
√
−1ωQ×C, where ωQ×C is the product

23



Kähler metric on Q× C. By the descent lemma for the analytic Hilbert quotients,

the restriction of LC to W induces a line bundle L → M such that the restriction

of L to (M × C∗)/C∗ is isomorphic to L → M. In this sense, the line bundle

L → M extends to the line bundle L → M. Moreover, the Hermitian metric

h on LC also induces a Hermitian metric h on L. Then, we will use Popovici’s

bigness criterion (see [49, Theorem 1.3]) to show that the restriction of L to any

irreducible closed complex subspace (not reduced to a point) of M is big. Then,

the ampleness of L follows from a theorem of Grauert (see [21]): a line bundle

over a compact complex space is ample if its restriction to any irreducible closed

complex subspace (not reduced to a point) admits a nontrivial holomorphic section

that vanishes somewhere on that subspace. These results will be proved in §5.4.
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Chapter 2: Preliminaries

2.1 Stratified complex symplectic spaces

In this section, we review the notion of stratifications in complex spaces (see

[24] and [44] for more details).

Let X be a topological space. A stratification of X is a countable and locally

finite covering of X by disjoint locally closed subspaces {Qi} such that the following

hold:

1. Each stratum Qi is a topological manifold.

2. For every strata Qi and Qj with Qi ∩Qj 6= ∅, Qi ⊂ Qj.

The Whitney conditions A and B specify how the strata fit together. Let Q1

and Q2 be two disjoint smooth submanifolds of Rn. Q1 is said to be regular over Q2

if the following conditions hold for all y ∈ Q1 ∩Q2:

1. (Whitney condition A) If xi ∈ Q1 is a sequence converging to y and the

sequence of subspaces TxiS ⊂ Rn converges (in the Grassmannian) to some

V ⊂ Rn, then TyQ2 ⊂ V .

2. (Whitney condition B) If xi ∈ Q1 and yi ∈ Q2 are two sequences converging
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to y in such a way that the sequence of lines R(xi − yi) ⊂ Rn converges to

some l ∈ RPn−1 and the subspaces TxiS to some V ⊂ Rn, then l ⊂ V .

A Whitney stratification of a subspace X of Rn is a stratification in which Q1 is

regular over Q2 for every strata Q1 and Q2. Although this definition is defined for

subspaces in Rn, it is invariant under diffeomorphisms and hence makes sense for

complex spaces. Therefore, we may define a complex Whitney stratified space as a

complex space X with a Whitney stratification such that each stratum is a complex

submanifold of X.

Finally, we define a stratified complex symplectic space as a complex space

X together with a complex Whitney stratification, a complex symplectic structure

on each stratum, and a sheaf of Poisson brackets on OX such that the embedding

Q ↪→ X is a holomorphic Poisson map for every stratum Q. It is the complex

analogue of stratified symplectic spaces introduced in [59].

2.2 Analytic Hilbert quotients

Since the ultimate goal in this thesis is to construct the moduli space of Higgs

bundles using analytic methods, quotients of complex spaces by complex reductive

Lie groups will play a major role. In this section, we review the notion of analytic

Hilbert quotients and their useful results. Roughly speaking, analytic Hilbert quo-

tients are an analogue of good quotients in the category of algebraic varieties. More

details can be found in [28] and [31].

Let G be a complex reductive Lie group acting holomorphically on a complex
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space X. An analytic Hilbert quotient of X is a complex space X �G together with

a surjective G-invariant holomorphic map π : X → X � G such that the following

hold:

1. π is Stein in the sense that inverse images of Stein subspaces are Stein.

2. OX�G = π∗O
G
X . In other words, for every open subset U of X � G, the map

π∗ : OX�G(U)→ OX(π−1U)G is an isomorphism.

Sometimes, they are also called semistable quotients or analytic GIT quotients. Note

that analytic Hilbert quotients are categorical quotients in the category of (reduced)

complex spaces. Therefore, X �G is unique up to isomorphism. The complex space

X �G is said to be the geometric quotient of X if fibers of π are exactly G-orbits.

The following useful properties are proved in [31, §1, (ii) and §3, Corollary 3]

Proposition 2.2.1. Let π : X → X �G be an analytic Hilbert quotient.

1. If U is an π-saturated open subset of X, then π : U → π(U) is an analytic

Hilbert quotient.

2. If Y ⊂ X is a G-invariant closed complex subspace, then π(Y ) is a closed

complex subspace of X �G, and π : Y → Y �G is an analytic Hilbert quotient.

3. Every fiber of π contains a unique G-orbit that is closed in X.

One sufficient condition that ensures the existence of the analytic Hilbert quo-

tient of X is the properness of the G-action. The following is proved in [31, §4,

Corollary 1, 2].
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Proposition 2.2.2. If G acts properly on X, then the set-theoretic quotient X/G is

an analytic Hilbert quotient of X. Moreover, for every x ∈ X, there exists a locally

closed Gx-invariant subspace S of X such that G · S is open in X and

G×Gx S → G · S, [g, s] 7→ g · s, (2.1)

is biholomorphic.

Note that the second statement is the local slice theorem for the G-action on

X.

2.3 Kähler spaces and Kähler quotients

In this section, we review another sufficient condition that ensures the existence

of the analytic Hilbert quotient of X. This is where Hamiltonian actions come in.

Let us briefly review the smooth case and then the general (singular) case (see [58]

and [28,30] for more details on smooth case and singular case, respectively).

Let (X,ω) be a Kähler manifold and KC a complex reductive Lie group acting

holomorphically on X. Here, K is a maximal compact subgroup of KC. The K-

action on X is said to be Hamiltonian if the following hold:

1. The K-action preserves the Kähler form ω.

2. There exists a moment map µ for the K-action with respect to the Kähler
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form ω. More precisely, µ is a K-equivariant map µ : X → g∗ such that

d〈µ, ξ〉 = iξ#ω (2.2)

for every x ∈ g, where ξ# is the infinitesimal action of ξ on X, and iv is the

contraction operator. Here, K acts on the dual space of the Lie algebra g of

K by the coadjoint action.

Then, we are able to define the µ-semistable points in X as follows:

Xss = {x ∈ X : KC · x ∩ µ−1(0) 6= ∅}. (2.3)

The following is shown in [58, Proposition 2.4, Theorem 2.5].

Proposition 2.3.1.

1. Xss is open in X.

2. The analytic Hilbert quotient Xss�KC exists such that the inclusion µ−1(0) ↪→

Xss induces a homeomorphism

µ−1(0)/K
∼−→ Xss �KC. (2.4)

3. A KC-orbit is closed in Xss if and only if it intersects µ−1(0).

Here, the analytic Hilbert quotient Xss �KC is called the Kähler quotient of

X, and µ−1(0)/K is called the symplectic quotient of X. As a consequence of (3) in
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Proposition 2.3.1, we may define the subset Xps of polystable points in X as follows:

Xps = {x ∈ X : KC · x ∩ µ−1(0) 6= ∅}. (2.5)

Then, the inclusion Xps ↪→ Xss induces a homeomorphism

Xps/KC ∼−→ Xss �KC. (2.6)

To generalize the above result to the singular case, we need to make sense of

Kähler metrics on complex spaces and then Hamiltonian actions on complex spaces.

We start with the definition of plurisubharmonic functions. A holomorphic disc in

a complex space X is a holomorphic map ϕ : D → X, where D = {z ∈ C : |z| < 1}

is the open unit disc in C. If U is an open subset of X, a continuous map ρ : U → R

is plurisubharmonic if the pullback ϕ∗ρ is subharmonic in D for every holomorphic

disc ϕ in U . Moreover, ρ is strictly plurisubharmonic if for every x ∈ U and a

smooth function f defined in an open neighborhood of x there exists ε > 0 such

that ρ+ εf is plurisubharmonic in an open neighborhood V ⊂ U of x.

Now, a Kähler metric on a complex space X is a family {ρi : Ui → R} of

continuous strictly plurisubharmonic functions such that the following hold:

1. The open subsets Ui cover X.

2. If Ui ∩ Uj 6= ∅, then ρi − ρj = <(fij) for some fij ∈ OX(Ui ∩ Uj).

Note that if X is a smooth manifold, then a family {ρi : Ui → R} of continuous

strictly plurisubharmonic functions satisfying the above conditions naturally defines
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a Kähler form ω on X, since we may simply define ω on each Ui by
√
−1
2
∂∂ρi. As a

consequence, the above notion does generalize the classical notion of Kähler metrics

on complex manifolds. Hence, we define a Kähler space as a complex space together

with a Kähler metric in the above sense. Those ρi are called the Kähler potentials

for the Kähler metric. Moreover, the restriction of the Kähler metric to the smooth

locus Xreg of X defines a Kähler form on Xreg. Therefore, the smooth locus of a

Kähler space is a Kähler manifold.

Sometimes, the notion above is too strong to work with. More specifically,

we would like to replace the strict plurisubharmonicity by a weaker condition. As-

sume that X admits a complex stratification such that each stratum is a complex

submanifold of X. A continuous plurisubharmonic function ρ is said to be stratum-

wise strictly plurisubharmonic if the restriction ρ|Q to each stratum Q is smooth and

strictly plurisubharmonic (in the usual sense) onQ. In general, “strictly plurisubhar-

monic” =⇒ “stratum-wise strictly plurisubharmonic” =⇒ “plurisubharmonic”,

and none of these implications can be reversed.

Then, by replacing “strictly plurisubharmonic functions” by “stratum-wise

strictly plurisubharmonic functions” in the definition of Kähler metrics, we obtain

the notion of weak Kähler metrics on a complex space X. Finally, note that every

complex space admits a stratification as follows. The singular locus Xsing of X is a

closed complex subspace of smaller dimension, and so is the singular locus of Xsing.

By repeating this procedure, we obtain a natural stratification of X. Moreover, the

strata are necessarily KC-invariant. Therefore, every Kähler metric is also a weak

Kähler metric.
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Now we are able to generalize the notion of Hamiltonian actions to Kähler

spaces. A slightly more general definition can be found in [30]. The definition

presented here is enough for our purposes. Let X be a complex space and KC a

complex reductive Lie group acting holomorphically on X, where K is a maximal

compact subgroup of KC. Suppose that X admits a stratification such that each

stratum is a complex submanifold and also KC-invariant. Let {ρi : Ui → R} be a

Kähler metric on X. Note that each stratum Q thus acquires a Kähler form from

the restriction of {ρi : Ui → R} to Q. The K-action is said to preserve the Kähler

metric if every k ∈ K defines a pullback Kähler metric {k∗ρi : k−1Ui → R} that is

equivalent to the original Kähler metric. This means that k∗ρi−ρj = <(f) for some

f ∈ OX(k−1(Ui)∩Uj) whenever k−1(Ui)∩Uj 6= ∅. The K-action on X is said to be

Hamiltonian if the following hold:

1. The K-action preserves the Kähler metric on X.

2. There exists a stratum-wise moment map µ for the K-action on X, a K-

equivariant continuous map µ : X → g∗ such that the restriction µ|Q to each

stratum Q is smooth and defines a moment map for the K-action on Q with

respect to the Kähler form ωQ.

Then, we have the following, which is proved in [30, (1.3), Theorem, (2.7), Theorem,

(3.4)]

Proposition 2.3.2.

1. Proposition 2.3.1 holds for X.
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2. The local slice theorem for KC-action holds for every x ∈ µ−1(0).

3. The analytic Hilbert quotient Xss�KC carries a natural Kähler metric. More

precisely, every K-invariant Kähler potential ρ in an open neighborhood of a

point in µ−1(0) descends to a Kähler potential ρ0 via the map

π : µ−1(0)→ µ−1(0)/K
∼−→ Xss �KC. (2.7)

2.4 Higgs Bundles

In this section, we review basics of Higgs bundles and explain some notions

that appear in §1 frequently and are used without explanations. More details can

be found in [66] and [39].

2.4.1 Configuration space

We start with some general definitions and then specialize them to the situ-

ations we are interested in. Let M be a complex manifold. A holomorphic vector

bundle E→M is a smooth vector bundle over M such that the transition functions

are holomorphic. A Higgs bundle (E,Φ) over M consists of a holomorphic vector

bundle E→M and a holomorphic 1-form Φ, called the Higgs field, taking values in

the endomorphism bundle EndE of E such that Φ ∧ Φ = 0.

The first step to construct the moduli space of Higgs bundles is to parameterize

the holomorphic vector bundles and then Higgs bundles. To this end, we regard a

holomorphic vector bundle as a smooth vector bundle together with an integrable
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Dolbeault operator ∂E, where E denotes the underlying smooth vector bundle of E.

By definition, a Dolbeault operator is a C-linear map,

∂E : Ω0(E)→ Ω0,1(E), (2.8)

satisfying the Leibniz rule, i.e.,

∂E(fs) = ∂f ⊗ s+ f∂Es (2.9)

for all sections s of E and smooth functions f on M . Note that the operator ∂E

can be naturally extended to a unique map

∂E : Ωp,q(E)→ Ωp,q+1(E) (2.10)

by the formula

∂E(α⊗ s) = ∂α⊗ s+ (−1)p+qα ∧ ∂Es. (2.11)

An integrable Dolbeault operator is a Dolbeault operator ∂E such that ∂
2

E = 0. The

requirement ∂
2

E = 0 makes sense by the above extension.

Every holomorphic vector bundle E defines an integrable Dolbeault operator

∂E as follows. Let {si} be a holomorphic local frame for E. Let σ be a smooth

section of E. Then locally we may write σ = σisi for some smooth functions σi on
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M . (Here, we are using the Einstein summation convention.) Then, we define

∂Eσ = ∂σi ⊗ si. (2.12)

Since the transition functions of E are holomorphic, this definition is independent of

the choices of the holomorphic local frames for E and defines an integrable Dolbeault

operator. Note that σ is holomorphic if and only if ∂Eσ = 0. Conversely, we have

the following result (see [3, §5]).

Proposition 2.4.1. Let E be a smooth vector bundle and ∂E an integrable Dolbeault

operator on E. Then, there is a unique holomorphic structure on E such that a local

section s is holomorphic if and only if ∂Es = 0.

Therefore, parameterizing the holomorphic structures on E is equivalent to

parameterizing integrable Dolbeault operators on E.

Another closely related notion is the notion of connections on E. A connection

A on E is a C-linear map

dA : Ω0(E)→ Ω1(E) (2.13)

satisfying the Leibniz rule. Since Ω1(E) = Ω1,0(E)⊕Ω0,1(E), the connection dA can

be decomposed as

dA = ∂A + ∂A, (2.14)

where ∂A and ∂A are the (1, 0)-component and (0, 1)-component of dA, respectively.

It is easy to see that the (0, 1)-component ∂A of A is a Dolbeault operator on E.

Conversely, we have the following (see [39, Proposition 1.4.9]).
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Proposition 2.4.2. Let h be a Hermitian metric on E. For every integrable Dol-

beault operator ∂E, there is a unique unitary connection A, i.e.,

dAh(s, t) = h(dAs, t) + h(s, dAt) (2.15)

for every sections s and t of E, such that ∂A = ∂E. Such a connection is called the

Chern connection associated with ∂E and h.

As a consequence, if a Hermitian metric on E if fixed, then parameterizing the

holomorphic structures on E is equivalent to parameterizing unitary connections on

E.

Now let us specialize the above discussion to the situation we are interested

in. Let M be a Riemann surface and E a Hermitian vector bundle on M . Since

dimCM = 1, the integrability condition for Dolbeault operators on E is vacuous.

Therefore, from the discussion above, the space of holomorphic structures on E

can be identified with the space of Dolbeault operators on E, which can be fur-

ther identified with the space A of unitary connections on E. Note that A is an

infinite-dimensional affine space modeled on Ω1(gE), where gE is the bundle of skew-

Hermitian endomorphisms. This is because dA + α with α ∈ Ω1(gCE) is a unitary

connection if and only if α ∈ Ω1(gE). Define C = A × Ω1,0(gCE). Then, the con-

figuration space of Higgs bundles (with underlying smooth bundle E) is defined as

B = {(A,Φ): ∂AΦ = 0}. (2.16)
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Note that the holomorphicity condition ∂AΦ = 0 means precisely that Φ is a gCE-

valued (1, 0)-form that is holomorphic with respect to the holomorphic structure

determined by the Dolbeault operator ∂A. Moreover, we also note that the condition

Φ ∧ Φ = 0 is vacuous, since dimCM = 1.

Finally, in the category of Higgs bundles, there is a natural notion of homo-

morphisms. A homomorphism f from a Higgs bundle (E,Φ) to another (F,Ψ) is

simply a holomorphic bundle map f : E → F that commutes with the Higgs fields,

i.e., f ◦Φ = Ψ◦f . In the language of Dolbeault operators, a homomorphism f from

a Higgs bundle (E, ∂E,Φ) to another (F, ∂F ,Ψ) is a smooth bundle map f : E → F

such that f ◦ ∂E = ∂F ◦ f and f ◦ Φ = Ψ ◦ f .

As a consequence, if g is a group element from the automorphism bundle

GC = Aut(E) of E, it acts on a Higgs bundle (∂E,Φ) by the formula

(∂E,Φ) · g = (g−1 ◦ ∂E ◦ g, g−1Φg). (2.17)

The group GC is called the complex gauge group of E. Let A be the Chern connection

associated with ∂E. Since g−1◦∂E◦g is also a Dolbeault operator on E, it has a Chern

connection A ·g. The map A 7→ A ·g defines the action of g on the connection A. In

this way, the complex gauge group GC acts on the configuration space B. Clearly,

two Higgs bundles (A1,Φ1) and (A2,Φ2) are isomorphic as Higgs bundles if and only

if they are on the same GC-orbit.
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2.4.2 Stability conditions

Naively, one may define the moduli space of Higgs bundles as the quotient

B/GC equipped with the C∞-topology. The problem is that this quotient is not

even Hausdorff. Therefore, stability conditions must be introduced to rule out some

“ill-behaved” Higgs bundles.

Let us first review the definition of the degrees of holomorphic vector bundles.

Let E be a smooth vector bundle and ∂E a Dolbeault operator on E. Let us fix a

Hermitian metric h on E. Then, the Chern connection A = (∂E, h) associated with

∂E and h exists. Note that the map dA : Ω0(E)→ Ω1(E) can be uniquely extended

to a map

dA : Ωm(E)→ Ωm+1(E) (2.18)

by the formula

dA(α⊗ s) = dα⊗ s+ (−1)mα ∧ dAs. (2.19)

As a consequence, FA = d2
A is well-defined. Since FA(fs) = fFA(s) for every section

s of E and smooth function f on M , FA defines a 2-form taking values in gE. This

2-form FA ∈ Ω2(gE) is called the curvature of the connection A. By the Chern-Weil

theory, the integer

deg(E) =

√
−1

2π

∫
M

trFA ∈ Z (2.20)

is independent of the choice of the Hermitian metric h. Moreover, it actually does not

depend on the holomorphic structure ∂E and hence a purely topological invariant
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of E. This integer is called the degree of E. Then, the slope of E is defined as

µ(E) = deg(E)/ rank(E).

Now we are able to define the notions of stability, semistability and polysta-

bility of Higgs bundles. A Higgs bundle (E,Φ) is semistable if µ(F) ≤ µ(E) for every

Φ-invariant holomorphic subbundle 0 ( F ( E. If the equality µ(F) = µ(E) cannot

occur, then (E,Φ) is stable. Finally, (E,Φ) is polystable if it is a direct sum of stable

Higgs bundles with the same slope. Here, a Φ-invariant holomorphic subbundle F

is a holomorphic subbundle F of E such that Φ(F) ⊂ F ⊗ KM , where KM is the

canonical bundle of M . This makes sense since the Higgs field Φ can be regarded as

a map Φ: E → E⊗KM . In general, these stability conditions are “ordered” in the

following way:

stable =⇒ polystable =⇒ semistable (2.21)

When the degree deg(E) and the rank rank(E) are coprime, every semistable Higgs

bundle is also stable.

A simple consequence of the stability conditions is the following (see [66,

Lemma 2.8]).

Proposition 2.4.3. Let f : (E,Φ)→ (F,Ψ) be a homomorphism of Higgs bundles.

1. If (E,Φ) and (F,Ψ) are semistable with µ(E) > µ(F), then f ≡ 0.

2. If µ(E) = µ(F) and one of (E,Φ) and (F,Ψ) is stable, then either f ≡ 0 or f

is an isomorphism.

As a consequence, if f is an automorphism of a stable Higgs bundle (E,Φ),
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there exists some c 6= 0 such that f = cIE, where IE is the identity map of E. In other

words, the GC-stabilizer at each stable Higgs bundle must be C∗. This is certainly

not true for strictly semistable Higgs bundles.

Finally, every semistable Higgs bundle (E,Φ) admits a filtration,

0 = (E0,Φ0) ⊂ (E1,Φ1) ⊂ · · · ⊂ (E`,Φ`) = (E,Φ), (2.22)

called the Seshadri filtration, whose successive quotients (Ei/Ei−1,Φi) are stable, all

with slope µ(E). Let Gr(E,Φ) =
⊕`

i=1(Ei/Ei−1,Φi) be the graded object associated

with the Seshadri filtration of (E,Φ). It is uniquely determined by the isomorphism

class of (E,Φ). Moreover, it is necessarily a polystable Higgs bundle. As a conse-

quence, a Higgs bundle (E,Φ) is polystable if and only if it is isomorphic to Gr(E,Φ)

as Higgs bundles.

2.4.3 Hitchin’s equation

In this section, we review Hitchin’s equation and the Hitchin-Kobayashi cor-

respondence, a gauge-theoretic interpretation of the polystability of Higgs bundles.

We fix a Hermitian vector bundle E of slope µ. Hitchin’s equation for a pair

(A,Φ) ∈ B is defined as

FA + [Φ,Φ∗] = −
√
−1µωM ⊗ IE, (2.23)

where IE is the identity map of E and ωM is a fixed Kḧaler form on M such that
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vol(M) = 2π. Here, Φ∗ is the conjugate transpose of Φ with respect to the fixed

Hermitian metric on E.

The Hitchin-Kobayashi correspondence provides a gauge-theoretic interpreta-

tion of the polystability of Higgs bundles (see [33, 54]).

Proposition 2.4.4. A Higgs bundle (A,Φ) ∈ B is polystable if and only if there is

a complex gauge transformation g ∈ GC, unique up to real gauge transformations,

such that (A,Φ) · g satisfies Hitchin’s equation.

Hitchin’s equation is more than just an equation. It is involved in a Hamilto-

nian action and can be interpreted as a moment map. (see (2.2) for the definition

of moment maps.) Define the real gauge group G as

G = {g ∈ GC : gg∗ = IE}. (2.24)

In other words, G is the group of unitary gauge transformations. The infinite-

dimensional space C = A × Ω1,0(gCE) turns out to be a hyperKähler manifold as

follows. (see [33, §6].) At any point of C, the tangent space of C is Ω1(gE)⊕Ω1,0(gCE).

Moreover, the space Ω1(gE) can be canonically identified with Ω0,1(gCE) by the map

α 7→ α′′, where α′′ is the (0, 1)-component of α. Therefore, the L2-metric on C is

defined as

g(α′′, η;α′′, η) = 2
√
−1

∫
M

tr
(

(α′′)∗α′′ + ηη∗
)
, (α′′, η) ∈ Ω0,1(gCE)⊕ Ω1,0(gCE).

(2.25)

41



To give three complex structures, we recall the following natural isomorphisms

Ω0,1(gE)
∼−→ Ω1(gE), α′′ 7→ α′′ − (α′′)∗,

Ω1,0(gCE)
∼−→ Ω1(

√
−1gE), η 7→ η + η∗.

(2.26)

Hence,

Ω0,1(gCE)⊕ Ω1,0(gCE) = Ω1(gE)⊕ Ω1(
√
−1gE). (2.27)

On the left hand side, a natural complex structure I is the multiplication by
√
−1.

On the right hand side, there is another natural complex structure given by the

direct sum. More precisely,

J(a,
√
−1b) = (−b,

√
−1a), (a, b) ∈ Ω1(gE)⊕ Ω1(

√
−1gE). (2.28)

Since (2.27) is only R-linear, we may transfer the complex structure on the right to

the space on the left. Still letting J denote the resulting complex structure, we have

J(α′′, η) =
(√
−1η∗,−

√
−1(α′′)∗

)
(2.29)

Then, the third complex structure on Ω0,1(gCE) ⊕ Ω1,0(gCE) is defined as K = IJ .

Therefore, we have obtained the following.

Proposition 2.4.5. There are three complex structures on C = A×Ω1,0(gCE) defined
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as follows:

I(α′′, η) = (
√
−1α′′,

√
−1η),

J(α′′, η) =
(√
−1η∗,−

√
−1(α′′)∗

)
,

K(α′′, η) =
(
−η∗, (α′′)∗

) (2.30)

Therefore, there are three associated Kähler forms

ΩI = g(I·, ·), ΩJ = g(J ·, ·), ΩK = g(K·, ·). (2.31)

Moreover, the complex symplectic form ΩC = ΩJ +
√
−1ΩK is given by

ΩC(α′′1, η1;α′′2, η2) =

∫
M

tr(η2α
′′
1 − η1α

′′
2) (2.32)

Then, we have the following.

Proposition 2.4.6.

1. The group G preserves ΩI , ΩJ and ΩK, and the group GC preserves ΩC.

2. Via the natural inclusion Ω1,1(gCE) ↪→ Ω0(gCE)∗, the map

µC(A,Φ) = ∂AΦ: C→ Ω1,1(gCE) (2.33)

is a complex moment map for the GC-action on C with respect to the complex

symplectic form ΩC.
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3. Via the natural inclusion Ω2(gE) ↪→ Ω0(gE)∗, the map

µ(A,Φ) = FA + [Φ,Φ∗] : C→ Ω2(gE) (2.34)

is a moment map for the G-action on C with respect to the Kähler form ΩI .

2.4.4 Yang-Mills-Higgs flow

The Yang-Mills-Higgs flow will play a major role in the construction of the

Kuranishi local models in this thesis. In this section, we gather some of its useful

properties. We still fix a Hermitian vector bundle E.

The Yang-Mills-Higgs functional on B is defined as

YMH(A,Φ) = ‖µ(A,Φ)‖2
L2 = ‖FA + [Φ,Φ∗]‖2

L2 . (2.35)

where ‖ · ‖L2 is the L2-norm on Ω2(gE). The (negative) gradient flow of YMH

(regarded as a function on C) is the Yang-Mills-Higgs flow. The following results,

contained in [67, Theorem 1.1], will be used later.

Proposition 2.4.7.

1. The gradient flow of YMH exists for all time and preserves the GC-orbits.

2. The (negative) gradient flow of YMH converges in the C∞-topology to the

critical points of YMH.

3. For every semistable Higgs bundle (A,Φ), define r(A,Φ) = (A∞,Φ∞) as the
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limiting point of the gradient flow (At,Φt) starting at (A,Φ). Then, the map

r : Bss → µ−1(γ) ∩B (2.36)

is a continuous retraction, where γ = 2πµ2 rank(E).

4. For a semistable Higgs bundle (A,Φ), the Higgs bundle r(A,Φ) is isomorphic

to the graded object Gr(A,Φ) associated with the Seshadri filtration of (A,Φ).

5. In particular, a semistable Higgs bundle (A,Φ) is polystable if and only if

r(A,Φ) and (A,Φ) are in the same GC-orbit.

An essential ingredient in the proof of the convergence property of the Yang-

Mills-Higgs flow is the  Lojasiewicz inequality, [67, Proposition 3.5]. Another conse-

quence of this inequality is the following, which is extracted from [67, Proposition

3.7] and will be used in the proof of Theorem 3.2.6.

Proposition 2.4.8. Let (A,Φ) be a Higgs bundle with YMH(A,Φ) = 0. Let k > 0.

Then, there exists open neighborhoods V ⊂ U of (A,Φ) in the L2
k-topology such that

every Yang-Mills-Higgs flow starting in V stays and converges in U .

45



Chapter 3: The moduli space as a normal complex space

This chapter is based on the author’s paper [17].

3.1 Deformation complexes

In this section, after reviewing the deformation complex for Higgs bundles, we

introduce another useful Fredholm complex that will be used later. Let (A,Φ) ∈ B

such that µ(A,Φ) = 0. Then, consider the deformation complex

CµC : Ω0(gCE)
D′′−−→ Ω0,1(gCE)⊕ Ω1,0(gCE)

D′′−−→ Ω1,1(gCE), (3.1)

where D′′ = ∂A+Φ. Recall that CµC is obtained by linearizing the equation ∂AΦ = 0

and the GC-action.

Proposition 3.1.1 ( [55, §1] and [57, §10]). CµC is an elliptic complex and a dif-

ferential graded Lie algebra. Moreover, the Kähler identities,

(D′′)∗ = −i[∗, D′], (D′)∗ = +i[∗, D′′], (3.2)

hold, where D′ = ∂A + Φ∗ and ∗ is the Hodge star.
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There is another useful sequence

Cµ : Ω0(gE)
d1−→ kerD′′

d2−→ Ω2(gE), (3.3)

where d2 is the derivative of µ from (1.4) at (A,Φ), and d1(u) = (dAu, [Φ, u]). The

operator d2, viewed as a map Ω1(gE)⊕Ω1,0(gCE)→ Ω2(gE), has a surjective symbol.

Hence, d2d
∗
2 : Ω2(gE)→ Ω2(gE) is a self-adjoint elliptic operator. As a consequence,

the Hodge decomposition

Ω2(gCE) = im d2d
∗
2 ⊕ ker d2d

∗
2, (3.4)

holds. Moreover, since d2(D′′)∗ = 0 and

Ω0,1(gCE)⊕ Ω1,0(gCE) = kerD′′ ⊕ im(D′′)∗, (3.5)

we have

d2(kerD′′) = d2(Ω1(gE)⊕ Ω1,0(gCE)) (3.6)

(In this thesis, we routinely identify Ω1(gE) with Ω0,1(gCE) using the map α 7→

α′′, where α′′ is the (0, 1)-component of α). As a consequence, the natural map

ker d∗2 → H2(Cµ) is an isomorphism. We denote ker d∗2 by H2(Cµ). Finally, we note

that H1(Cµ) is equal to the first cohomology of the following elliptic complex that
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is used by Hitchin in [33, p. 85]

CHit : Ω0(gE)
d1−→ Ω1(gE)⊕ Ω1,0(gCE)

d2⊕D′′−−−−→ Ω2(gE)⊕ Ω1,1(gCE). (3.7)

In fact, by direct computation, the identification Ω1(gE)
∼−→ Ω0,1(gCE) induces an

isomorphism H1(CHit)
∼−→ H1(CµC). Therefore, in the rest of the paper, if no con-

fusion can appear, we will simply use H1 to mean the harmonic space H1(CµC). In

summary, we have obtained

Proposition 3.1.2. The sequence Cµ is a Fredholm complex with Hodge decompo-

sition

Ω2(gE) = H2(Cµ)⊕ im d2. (3.8)

Lastly, note that the natural non-degenerate pairing Ω0(gE) × Ω2(gE) → R

restricts to a non-degenerate pairing H0(Cµ)×H2(Cµ)→ R so that H2(Cµ) can be

identified with the dual space H0(Cµ)∗ of H0(Cµ).

3.2 Kuranishi local models

3.2.1 Kuranishi maps

A crucial ingredient in the Kuranishi slice method is the Kuranishi maps. They

relate polystable orbits in H1 and polystable orbits in B. Moreover, they eventually

induce local charts for the moduli space. To construct Kuranishi maps, we need to

use the implicit function theorem, and it is a standard practice to work with the

Sobolev completions of relevant spaces.
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More precisely, for any smooth Hermitian bundle F →M , we equip the space

Ω0(F ) of smooth sections of F with the Sobolev L2
k-norm as follows. Fix a unitary

connection ∇F on F and let ∇M be the Levi-Civita connection on M . For k ≥ 0,

and any smooth section s of F , we define

‖s‖2
L2
k

=
k∑
i=0

∫
B

|∇is|2dvol, (3.9)

where ∇i : Ω0(F )→ Ω0(⊗iT ∗M ⊗ F ) is the composition

Ω0(F )
∇F

−−→ Ω0(T ∗M ⊗ F )
∇M⊗∇F

−−−−−→ Ω0(⊗2T ∗M ⊗ F )

(∇M )⊗2⊗∇F

−−−−−−−→ · · · → Ω0(⊗iT ∗M ⊗ F ),

(3.10)

and | · | is the pointwise norm on Ω0(⊗iT ∗M ⊗F ) induced by the Hermitian metric

on F and the Riemannian metric on M . Let Ω0(F )k be the completion of Ω0(F )

with respect to the L2
k-norm. As a result, Ω0(F )k is a Banach space. In fact, it

is a Hilbert space. In this thesis, if Y is a space on which the Sobolev L2
k-norm

is well-defined, we will use Yk to denote the completion of Y with respect to the

L2
k-norm. Otherwise, Y is equipped with C∞-topology. From now on, we fix k > 1.

Now, we describe the Kuranishi maps. Let (A,Φ) ∈ B with µ(A,Φ) = 0.

Recall that GC
k+1 and Gk+1 are Hilbert Lie groups and act smoothly on the Hilbert

affine manifold Ck. Moreover, the Gk+1-action on Ck is proper (see [20, Section 4.4]).

Therefore, if H is the Gk+1-stabilizer at (A,Φ), then H is a compact Lie group

with Lie algebra H0(Cµ). The following result relates the GC
k+1-stabilizer to the

Gk+1-stabilizer at (A,Φ).
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Proposition 3.2.1. The GC
k+1-stabilizer at (A,Φ) is the complexification of H and

acts on H1.

Proof. This follows from [58, Proposition 1.6]. The rest follows from direct compu-

tation.

If H2(CµC) = 0, then the implicit function theorem implies that Bk is locally a

complex manifold around (A,Φ). In general, following Lyapunov-Schmidt reduction,

we consider

B̃k = [(1− P )µC]−1(0) ⊂ Ck, (3.11)

where P is the harmonic projection defined in the elliptic complex CµC . By con-

struction, the derivative of (1− P )µC at (A,Φ) is surjective. Hence, B̃k is locally a

complex manifold around (A,Φ). To parameterize B̃k, consider the map

F : Ω0,1(gCE)k ⊕ Ω1,0(gCE)k → Ω0,1(gCE)k ⊕ Ω1,0(gCE)k,

F (α, η) = (α, η) + (D′′)∗G[α′′, η],

(3.12)

where α′′ is the (0, 1)-part of α, and G is the Green operator defined in the defor-

mation complex CµC . It has the following properties.

Lemma 3.2.2.

1. F is HC-equivariant.

2. F is a local biholomorphism around 0.

3. D′′F (α, η) = (1− P )µC(A+ α,Φ + η).
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4. (D′′)∗F (α, η) = (D′′)∗(α, η).

Proof. (1) follows from the fact that the HC-action commutes with (D′′)∗ and G.

Since the derivative of F at 0 is the identity map, the inverse function theorem

implies (2). Since (D′′)∗(D′′)∗ = 0, (4) follows. To prove (3), we compute

(1− P )µC(A+ α,Φ + η)

= D′′(D′′)∗G(D′′(α, η) + [α′′, η])

= D′′((α, η)−H(α, η)−D′′(D′′)∗G(α, η) + (D′′)∗G[α′′, η])

= D′′((α, η) + (D′′)∗G[α, η])

= D′′F (α, η).

(3.13)

As a consequence, F induces a well-defined map,

F : B̃k ∩ [(A,Φ) + ker(D′′)∗]→ kerD′′ ∩ ker(D′′)∗ = H1. (3.14)

Since B̃k and (A,Φ) + ker(D′′)∗ intersect transversely at (A,Φ), their intersection is

locally a complex manifold around (A,Φ). Hence, there are an open ball U ⊂ H1

in the L2-norm around 0 and an open neighborhood Ũ of (A,Φ) in B̃k ∩ [(A,Φ) +

ker(D′′)∗] such that F : Ũ → U is a biholomorphism. The Kuranishi map θ is defined

as its inverse viewed as a map θ : U ↪→ Ck, and the Kuranishi space is defined as
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Z := θ−1(B ∩ Ũ). More concretely, by the construction of B̃k,

Z := {x ∈ U : P [θ(x), θ(x)] = 0}. (3.15)

Here, (A,Φ) serves as the origin in the affine manifold Ck. Clearly, Z is a closed

complex subspace of U . Moreover, since Bss
k is open in Bk (see [67, Theorem 4.1]),

by shrinking U and hence Z if necessary, we may assume that θ(Z) ⊂ Bss
k .

The next result shows that the Kuranishi space Z is locally complete.

Proposition 3.2.3. The map

T : H0(Cµ)⊥k+1 ×H2(Cµ)⊥k+1 × [((A,Φ) + ker(D′′)∗) ∩Bss
k ]→ Bss

k ,

T (u, β,B,Ψ) = (B,Ψ) · exp(−i ∗ β) exp(u),

(3.16)

is a local homeomorphism around (0, 0, A,Φ). As a consequence, there exists an

open neighborhood W of (A,Φ) in Bss
k such that the GC

k+1-orbit of every (B,Ψ) ∈ W

intersects the image θ(Z).

Proof. Consider the map

T : H0(Cµ)⊥k+1 ×H2(Cµ)⊥k+1 × ((A,Φ) + ker(D′′)∗)→ Ck,

T (u, β,B,Ψ) = (B,Ψ) · exp(−i ∗ β) exp(u),

(3.17)

where H0(Cµ)⊥ and H2(Cµ)⊥ are the L2-orthogonal complements of H0(Cµ) and
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H2(Cµ) in Ω0(gE) and Ω2(gE), respectively. Its derivative at (0, 0, A,Φ) is given by

d(0,0,A,Φ)T (u, β, x) =
d

dt

∣∣∣∣
t=0

T (tu, tβ, (A,Φ) + tx)

=
d

dt

∣∣∣∣
t=0

(A,Φ) + tx) · exp(−i ∗ tβ) · exp(tu)

= x+
d

dt

∣∣∣∣
t=0

(A,Φ) · exp(−i ∗ tβ) +
d

dt

∣∣∣∣
t=0

(A,Φ) · exp(tu)

= x+D′′(−i ∗ β) +D′′u

= D′′(u− i ∗ β) + x.

(3.18)

Note that

H0(Cµ)⊥ ⊕ i ∗H2(Cµ)⊥ = H0(Cµ)⊥ ⊕ iH0(Cµ)⊥ = H0(CµC)⊥. (3.19)

Since

Ω0,1(gCE)k ⊕ Ω1,0(gCE)k = ker(D′′)∗ ⊕ imD′′, (3.20)

we conclude that d(0,A,Φ)T is an isomorphism. Hence, the inverse function theorem

implies that there are open neighborhoods N1×N2×V of (0, 0, A,Φ) and W of (A,Φ)

such that T : N1 × N2 × V → W is a diffeomorphism. Since Bss
k is GC

k+1-invariant,

we conclude that

T : N1 ×N2 × (V ∩Bss
k )→ W ∩Bss

k (3.21)

is a homeomorphism. Finally, if U ⊂ H1 is sufficiently small, then θ is a homeomor-

phism from Z to V ∩Bss
k .
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Moreover, θ maps HC-orbits to GC-orbits in the following way.

Proposition 3.2.4 (cf. [9, Lemma 6.1]). If U is sufficiently small, then the following

hold:

1. If x1, x2 ∈ U are such that x1 = x2g for some g ∈ HC, then θ(x1) = θ(x2)g.

Hence, if x1 ∈ Z, then x2 ∈ Z.

2. Conversely, if dxθ(v) = u#
θ(x) for some u ∈ Ω0(gCE)k+1, then u ∈ H0(CµC), and

v = u#
x , where u# is the infinitesimal action of u.

Proof. Since U is an open ball around 0, it is orbit-convex by [58, Lemma 1.14].

Hence, the holomorphicity of θ and [58, Proposition 1.4] imply that θ(x1) = θ(x2)g.

Since Bss
k is GC

k+1-invariant, if θ(x1) ∈ Bss
k , then θ(x2) ∈ Bss

k so that x2 ∈ Z. To

prove (2), we claim that u ∈ H0(CµC). Then, the claim implies that

v = dθ(x)F (dxθ(v)) = dθ(x)F (u#
θ(x)) =

d

dt

∣∣∣∣
t=0

F (θ(x)etu) =
d

dt

∣∣∣∣
t=0

xetu = u#
x . (3.22)

To prove the claim, write u = u′ + u′′ for some u′ ∈ H0(CµC) and u′′ ∈ H0(CµC)⊥k+1.

Since θ takes values in (A,Φ) + ker(D′′)∗, (u′′)#
θ(x) ∈ ker(D′′)∗. In the proof of

Proposition 3.2.3, we see that the map

T : H0(Cµ)⊥k+1 ×H2(Cµ)⊥k+1 × ((A,Φ) + ker(D′′)∗)→ Ck (3.23)

is a local diffeomorphism around (0, 0, A,Φ). Hence, there are open neighborhoods

N1 × N2 × V of (0, 0, A,Φ) and W of (A,Φ) such that T : N1 × N2 × V → W is
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a diffeomorphism. If U is sufficiently small, θ : Z → V ∩ Bss
k is a homeomorphism.

Therefore, the derivative d(0,0,θ(x))T of T is injective. Note that

H0(Cµ)⊥ ⊕ i ∗H2(Cµ)⊥ = H0(CµC)⊥. (3.24)

Then, we see that

d(0,0,θ(x))T (u′′, 0) = D′′θ(x)u
′′ = d(0,0,θ(x))T (0, (u′′)#

θ(x)) (3.25)

so that u′′ = 0.

3.2.2 Perturbed Kuranishi maps

The Hitchin-Kobayashi correspondence characterizes polystable orbits in Bss

via the moment map µ. Since θ should eventually induce a local chart for the moduli

space, we should be able to relate the polystable orbits in H1 with respect to the

complex reductive group HC to the polystable orbits in B. Therefore, we would

like to pullback the moment map µ to U ⊂ H1 by θ and then use the pullback

moment map θ∗µ to characterize polystable orbits in U . However, θ∗µ takes values

in Ω2(gE)k−1 instead of H2(Cµ) ∼= H0(Cµ)∗. To fix this issue, we will perturb the

Kuranishi map along GC-orbits in the following way.

Lemma 3.2.5. If U ⊂ H1 is sufficiently small, then there is a unique smooth

function β defined on U and taking values in an open neighborhood of 0 in H2(Cµ)⊥k+1

such that the perturbed Kuranishi map Θ := θe−i∗β is smooth and H-equivariant,
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and ν := Θ∗µ takes values in H2(Cµ) and hence is a moment map for the H-action

on U with respect to the symplectic form Θ∗ΩI . Moreover, the derivative of Θ at 0

is the inclusion map.

Before giving the proof, we remark that the perturbed Kuranshi map Θ is no

longer holomorphic and hence the form Θ∗ΩI is no longer Kähler.

Proof. We follow the proof of [62, Proposition 7]. Consider the map

L : U ×H2(Cµ)⊥k+1 → H2(Cµ)⊥k−1,

L(x, β) = (1− P )µ(θ(x)e−i∗β),

(3.26)

where P is the harmonic projection defined in Cµ. Then, the derivative of L at (0, 0)

along the direction (0, β) is given by

d(0,0)L(0, β) = (1− P )d2(−Id1 ∗ β) = d2d
∗
2β, (3.27)

where the second equality follows from the formula d∗2 = −Id1∗. Since

d2d
∗
2 : H2(Cµ)⊥k+1 → H2(Cµ)⊥k−1 (3.28)

is an isomorphism, the implicit function theorem guarantees the existence of the

desired function β. Since L is H-equivariant, the uniqueness of β implies that Θ is

also H-equivariant. A direct computation shows that d0Θ is the inclusion map.

The following result relates the polystability of Higgs bundles to that of points
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in H1 with respect to the HC-action.

Theorem 3.2.6. If U is sufficiently small, then the induced map

U ×H Gk+1 → Ck, [x, g] 7→ Θ(x)g, (3.29)

is injective. Moreover, there is an open ball B ⊂ U around 0 in the L2-norm such

that the following are equivalent for every x ∈ B ∩ Z:

1. xHC is closed in H1.

2. xHC ∩ ν−1(0) 6= ∅.

Proof. The derivative of the induced map at [0, 1] is given by

H1 ⊕H0(Cµ)⊥k+1 → Ω0,1(gCE)k ⊕ Ω1,0(gCE)k, (x, u) 7→ x+D′′u. (3.30)

Since it is injective, we see that the induced map is locally injective around [0, 1].

Then, we assume to the contrary that such U does not exist. Therefore, there are

sequences [xn, gn] and [x′n, g
′
n] such that

1. xn, x
′
n converge to 0 in H1.

2. Θ(xn)gn = Θ(x′n)g′n.

3. [xn, gn] 6= [x′n, g
′
n] for all n.

Since the Gk+1-action is proper, by passing to a subsequence, we may assume that

g′ng
−1
n converges to some g ∈ Gk+1. Letting n→∞, we see that Θ(0) = Θ(0)g so that
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g ∈ K. Now, on the one hand, [x′n, g
′
ng
−1
n ] 6= [xn, 1] for any n. On the other hand,

both [x′n, g
′
ng
−1
n ] and [xn, 1] converge to [0, 1] so that they are equal when n � 0,

since the induced map is locally injective around [0, 1]. This is a contradiction.

Now, we prove the second part of the proposition. By Proposition 3.2.3,

there are open neighborhoods N1×N2×V of (0, 0, A,Φ) and W of (A,Φ) such that

T : N1×N2×V → W is a homeomorphism. Here, V and W are open subsets in Bss
k .

If U is sufficiently small, θ : Z → V is a homeomorphism so that Proposition 3.2.4

holds. Let O be an open neighborhood of 0 in H2(Cµ)⊥k+1 such that the smooth

function β : U → O and hence Θ := θe−i∗β are defined. By shrinking N2 if necessary,

we may assume that N2 ⊂ O. Then, by [67, Proposition 3.7], there is an open

neighborhood W ′ ⊂ W of (A,Φ) in Bss
k such that the Yang-Mills-Higgs flow starting

at any Higgs bundle inside W ′ stays and converges in W . Moreover, we may assume

that T (N ′1×N ′2×V ′) = W ′ for some open neighborhood N ′1×N ′2×V ′ ⊂ N1×N2×V

of (0, 0, A,Φ) such that θ : Z ∩B → V ′ for some open ball B ⊂ U around 0.

Now, suppose x ∈ B ∩ Z is such that xHC is closed in H1. Let (Bt,Ψt) be

the gradient flow starting at θ(x). By the previous setup, θ(x) ∈ V ′ ⊂ W ′ so that

(Bt,Ψt) stays in W . Therefore, we may write (Bt,Ψt) = θ(xt)e
−i∗βteut for some

xt ∈ Z and (ut, βt) ∈ N1 ×N2. We claim that xt stays in the HC-orbit of x. Since

the gradient of ‖µ‖2 is tangent to GC
k+1-orbits, we may write dxθ(ẋt) = (ut)

#
θ(xt)

for

some ut ∈ Ω0(gCE)k+1 that depends on t smoothly. Here, u#
t is the infinitesimal

action of ut. Then, Proposition 3.2.4 implies that ut ∈ H0(CµC) and ẋt = (ut)
#
xt . On
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the other hand, the ordinary differential equation in HC,

g−1
t ġt = ut, g0 = 1, (3.31)

has a unique solution gt ∈ HC. By the uniqueness, we see that xt = xgt. Therefore,

the claim follows. Then, the fact that T is a homeomorphism implies that both xt,

βt and ut converge. Therefore, letting t→∞, we have θ(x∞)e−i∗β∞eu∞ = (B∞,Ψ∞)

and µ(B∞,Ψ∞) = 0. Since eu∞ ∈ Gk+1, θ(x∞)e−i∗β∞ ∈ µ−1(0). Since N2 ⊂ O, the

uniqueness of β in Lemma 3.2.5 implies that β(x∞) = β∞. Hence,

Θ(x∞) = θ(x∞)e−i∗β∞ ∈ µ−1(0). (3.32)

Finally, since xHC is closed in H1, we see that x∞ ∈ xHC. Again, by the previous

setup, x∞ ∈ Z ⊂ U .

Conversely, suppose xHC is not closed in H1. Note that the complex structure

I (the one given by multiplication by
√
−1) on C restricts to H1. Since the H-action

on H1 is linear, I-holomorphic and preserves the L2-metric, it admits a standard

moment map ν0 such that ν0(0) = 0. Since (grad ‖ · ‖2
L2 , grad ‖ν0‖2)L2 = 8‖ν0‖2

(see [58, Example 2.3]), the gradient flow of ‖ν0‖2 starting at x stays in B and

converges to some y ∈ B ∩ Z such that ν0(y) = 0. By the Kempf-Ness theorem,

yHC is closed in H1. Of course, y ∈ xHC \xHC. Hence, by the previous paragraph,
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we can find y∞ ∈ yHC ∩ U such that µ(Θ(y∞)) = 0. Hence, we have

Θ(y∞) ∼GC
k+1

Θ(y) ∈ Θ(x)GC
k+1, (3.33)

where ∼GC
k+1

is the equivalence relation generated by the GC
k+1-action. Now, since

xHC contains a zero of ν in U , we may assume that µ(Θ(x)) = 0. Then, the

following Lemma 3.2.7 implies that Θ(y∞) ∼GC
k+1

Θ(x) so that Θ(y∞) ∼Gk+1
Θ(x)

by the Hitchin-Kobayashi correspondence. Then, the injectivity of [x, g] 7→ Θ(x)g

implies that y∞ ∼H x. This is a contradiction.

The following result is nothing but the fact that the closure of the GC
k+1-orbit

of a semistable Higgs bundle contains a unique polystable orbit. Since we cannot

find a proof in the literature, we provide one here:

Lemma 3.2.7. Let (B,Ψ) be a semistable Higgs bundle. If (Bi,Ψi) ∈ (B,Ψ)GC
k+1

(i = 1, 2) are polystable Higgs bundles, then (B1,Ψ1) ∼GC
k+1

(B2,Ψ2).

Proof. We may assume that µ(Bi,Ψi) = 0 for i = 1, 2. Let r : Bss
k → µ−1(0) be

the retraction (see [67, Theorem 1.1]) given by the Yang-Mills-Higgs flow. Suppose

there are sequences (Bj
i ,Ψ

j
i ) ∈ (B,Ψ)GC

k+1 such that (Bj
i ,Ψ

j
i )

j→∞−−−→ (Bi,Ψi). By the

openness of Bss
k , each (Bj

i ,Ψ
j
i ) is semistable if j � 0. By the continuity of r, we

have

r(Bj
i ,Ψ

j
i )

j→∞−−−→ r(Bi,Ψi) = (Bi,Ψi). (3.34)

By [67, Theorem 1.4], we see that each r(Bj
i ,Ψ

j
i ) is the graded object of the Se-

shadri filtration of (Bj
i ,Ψ

j
i ). Since graded objects are determined by GC

k+1-orbits, we
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conclude that

r(Bj
1,Ψ

j
1) ∼GC

k+1
Gr(B,Ψ) ∼GC

k+1
r(Bl

2,Ψ
l
2) (3.35)

for each j, l so that r(Bj
1,Ψ

j
1) ∼Gk+1

r(Bl
2,Ψ

l
2). Since the Gk+1-action is proper,

Gk+1-orbits are closed. Letting j →∞, we see that (B1,Ψ1) ∈ r(Bl
2,Ψ

l
2)Gk+1. Now,

letting l→∞, we see that (B1,Ψ1) ∼Gk+1
(B2,Ψ2).

3.2.3 Open embeddings into the moduli space

Let Z := Z ∩ B which is a closed complex subspace of B. Note that Z is H-

invariant but not HC-invariant. To fix this issue, recall that every open ball around

0 (in the L2-norm) in H1 is H-invariant and orbit-convex (see [58, Definition 1.2

and Lemma 1.14]). By [26, §3.3, Proposition], ZHC is a closed complex subspace of

BHC, and Z is open in ZHC. Recall the standard moment map ν0 : H1 → H2(Cµ)

used in the proof of Theorem 3.2.6. This is the moment map for the H-action on

H1 with respect to the L2-metric and the restricted complex structure I. Then,

by the analytic GIT developed in [30] or [27, §0], there is a categorical quotient

π : ZHC → ZHC � HC in the category of reduced complex spaces such that every

fiber of π contains a unique closed HC-orbit, and the inclusion ν−1
0 (0)∩ZHC ↪→ ZHC

induces a homeomorphism

(ν−1
0 (0) ∩ ZHC)/K

∼−→ ZHC �HC. (3.36)
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Moreover, as a topological space, ZHC � HC is the quotient space defined by the

equivalence relation that x ∼ y if and only if xHC ∩ yHC 6= ∅.

A corollary of Theorem 3.2.6 is that ZHC �HC can be realized as a singular

symplectic quotient with respect to the pullback moment map ν = Θ∗µ instead of

ν0.

Corollary 3.2.8. The inclusion j : ν−1(0)∩ZHC ↪→ ZHC induces a homeomorphism

j : (ν−1(0) ∩ ZHC)/K
∼−→ ZHC �HC. (3.37)

As a consequence, the perturbed Kuranishi map Θ induces well-defined continuous

maps Θ and ϕ in the following commutative diagram

ZHC �HC ϕ // B
ps
k /G

C
k+1

(ν−1(0) ∩ ZHC)/K Θ //

∼

OO

(µ−1(0) ∩Bk)/Gk+1

∼
OO

(3.38)

More explicitly, ϕ is given by the formula

ϕ[x] = [rθ(x)], x ∈ Z, (3.39)

where r : Bss
k → µ−1(0) is the retraction defined by the Yang-Mills-Higgs flow.

Proof. Clearly, Θ is a well-defined continuous map. To define ϕ, it suffices to show

that j is a homeomorphism. Therefore, we show that it has a continuous inverse and

follow the notations and the setup in the proof of Theorem 3.2.6. Let π : ZHC →
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ZHC � HC be the quotient map. If xg ∈ ZHC with x ∈ Z, by using the gradient

flow of ‖ν0‖2, we see that there is a closed HC-orbit x̃HC ⊂ xHC with x̃ ∈ Z. Then,

Theorem 3.2.6 implies that there exists

x∞ ∈ ν−1(0) ∩ x̃HC ⊂ ν−1(0) ∩ xHC. (3.40)

Therefore, if π(xg) = π(yh), then π(x∞) = π(y∞) so that

Θ(x∞)GC
k+1 ∩Θ(y∞)GC

k+1 6= ∅. (3.41)

If we can show that x∞ ∼H y∞, then the map

j
−1

: ZHC �HC → (ν−1(0) ∩ ZHC)/K, [xg] 7→ [x∞], (3.42)

is well-defined. Now, x∞ ∼H y∞ follows from the following Lemma.

Lemma 3.2.9. If (Ai,Φi) (i = 1, 2) are Higgs bundles such that µ(Ai,Φi) = 0 and

(A1,Φ1)GC
k+1 ∩ (A2,Φ2)GC

k+1 6= ∅, then (A1,Φ1) ∼Gk+1
(A2,Φ2).

Proof. Let (B,Ψ) be a Higgs bundle in the intersection of the closures. Hence,

there is a sequence (Aji ,Φ
j
i ) ∈ (Ai,Φi)G

C
k+1 converging to (B,Ψ). The continuity of

r implies that r(Aji ,Φ
j
i )

j→∞−−−→ r(B,Ψ). By [67, Theorem 1.4],

r(Aji ,Φ
j
i ) ∼GC

k+1
Gr(Ai,Φi) = (Ai,Φi) (3.43)
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so that r(Aji ,Φ
j
i ) ∼Gk+1

(Ai,Φi). Hence, there is a sequence of gji ∈ G such that

(Ai,Φi)g
j
i

j→∞−−−→ r(B,Ψ). Since the Gk+1-action is proper, by passing to a subse-

quence, we may assume that gji
j→∞−−−→ gi for some gi ∈ Gk+1. Hence, (Ai,Φi)gi =

r(B,Ψ).

Continuing with the proof of Corollary 3.2.8, we show that j
−1

is continuous.

Recall that x∞ is determined by the equation θ(x∞)e−i∗β∞eu∞ = r(θ(x̃)). By the

continuity of r, T−1 and θ−1, we see that the map Z 3 x̃ 7→ x∞ is continuous.

Moreover, Z 3 x 7→ x̃ is also continuous, which is a general property of the gradient

flow of ‖ν0‖2. Since Z is open in ZHC, we conclude that j
−1

is continuous.

It remains to show that j
−1

is indeed the inverse of j. If xg ∈ ν−1(0) ∩ ZHC

with x ∈ Z, then xHC is closed in H1 (Theorem 3.2.6). Since j
−1

is well-defined,

we see that

(xg)∞ ∼H x∞ ∼HC x̃ ∼HC x ∼HC xg. (3.44)

Then, ν((xg)∞) = ν(xg) = 0 implies that (xg)∞ ∼H xg. Conversely, if xg ∈ ZHC

with x ∈ Z, then x∞ ∈ xHC so that π(xg) = π(x∞).

Finally, to obtain a formula for ϕ, note that

Θ(x∞) ∈ Θ(x)GC
k+1 = θ(x)GC

k+1. (3.45)

Moreover, r(θ(x)) ∈ θ(x)GC
k+1. Hence, by Lemma 3.2.7, Θ(x∞) ∼GC

k+1
r(θ(x)).

The next result shows that ZHC �HC is a local model for the quotient Mk =

B
ps
k /G

C
k+1. Strictly speaking, Mk is not the moduli space M. That said, there is
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a natural map M → Mk. Note that [3, Lemma 14.8] and the elliptic regularity

for ∂A with A ∈ A imply that every point in Mk has a C∞ representative. As a

consequence, the natural map M→Mk is surjective. Its injectivity follows from [3,

Lemma 14.9]. Later, as a consequence of Theorem 3.2.10, we will show that M→Mk

is a homeomorphism, which justifies our use of Sobolev completions.

Theorem 3.2.10. If B is sufficiently small, ϕ : ZHC � HC → Mk is an open em-

bedding.

Proof. We will follow the notations and the setup in the proof of Theorem 3.2.6.

Since Θ is injective, ϕ is injective. Let Π: Bps
k → Mk be the quotient map, and

consider the open set O = Π(W ′ ∩ B
ps
k ). If (B,Ψ) ∈ W ′ ∩ B

ps
k , then (B,Ψ) =

θ(x)e−i∗βeu for some x ∈ Z. We claim that ϕ[x] = [B,Ψ]. By the construction

of ϕ in the proof of Corollary 3.2.8, we see that ϕ[x] = [Θ(x∞)] for some x∞ ∈

ν−1(0) ∩ ZHC ∩ xHC so that

Θ(x∞) ∈ θ(x)GC
k+1 = (B,Ψ)GC

k+1. (3.46)

By Lemma 3.2.7, we have Θ(x∞) ∼GC
k+1

(B,Ψ). As a consequence, the open set

O is contained in the image of ϕ. Hence, we obtain a bijective continuous map

ϕ : Õ → O, where Õ = ϕ−1(O).

To show that ϕ|Õ is a homeomorphism, we will show that its inverse is contin-

uous. From the previous paragraph, we see that its inverse should be [B,Ψ] 7→ [x].

The continuity follows from the continuity of θ−1 and T−1. Therefore, it remains to

prove that it is well-defined. If (B′,Ψ′) ∈ W ′ ∩B
ps
k lies in the GC

k+1-orbit of (B,Ψ),
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then

Θ(x∞) ∼GC
k+1

(B,Ψ) ∼GC
k+1

(B′,Ψ′) ∼GC
k+1

Θ(x′∞) (3.47)

so that

xHC 3 x∞ ∼H x′∞ ∈ x′HC. (3.48)

Hence, xHC ∩ x′HC 6= ∅.

Finally, we show that if B is sufficiently small, then ϕ is an open embedding.

Write π−1(Õ) = ZHC∩Q for some open set Q in H1, where π : ZHC → ZHC�HC is

the quotient map. Since 0 ∈ Q, choose some open ball B′ ⊂ Q∩B around 0. By [58,

Lemma 1.14], we know that B and B′ are ν0-convex (see [30, (2.6), Definition]).

Hence, by definition of Z, Z is also ν0-convex. Hence, by [30, (3.1), Lemma], we see

that ZHC ∩ B′HC = (Z ∩ B′)HC. Then, we claim that (Z ∩ B′)HC ⊂ π−1(Õ). In

fact, if xg ∈ (Z ∩ B′)HC with x ∈ Z ∩ B′, then x ∈ ZHC ∩ Q. Since ZHC ∩ Q is

HC-invariant, xg ∈ ZHC∩Q. Finally, we claim that (Z∩B′)HC is also π-saturated

so that (Z∩B′)HC �HC is an open neighborhood of [0] in ZHC �HC. Therefore, if

B is shrunk to B′, and Z is shrunk to Z ∩B′, we see that ϕ is an open embedding.

Suppose π(xg) = π(yh) for some x ∈ Z and y ∈ Z ∩ B′. We want to show

that xg ∈ (Z ∩ B′)HC. By using the gradient flow of ‖ν0‖2, we can find a closed

orbit y′HC ⊂ yHC with y′ ∈ Z ∩B′. Since every fiber of π contains a unique closed

orbit, y′HC ⊂ xHC. Since B′ is open, xHC ∩ B′ 6= ∅. Hence, x ∈ B′HC ∩ ZHC =

(Z ∩B′)HC.

To show that M→Mk is a homeomorphism, we need the following lemma.
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Lemma 3.2.11. Elements in Bk ∩ [(A,Φ) + ker(D′′)∗] are of class C∞.

Proof. Suppose (D′′)∗(α′′, η) = 0 and (∂A + α′′)(Φ + η) = 0, where α′′ is the (0, 1)-

part of α. The second equation is also equivalent to D′′(α′′, η) + [α′′, η] = 0. Hence,

∆(α, η) = −(D′′)∗[α′′, η] where ∆ = D′′(D′′)∗+ (D′′)∗D′′ is the Laplacian defined in

CµC . Since k > 1, the Sobolev multiplication theorem (see [20, Theorem 4.4.1]) im-

plies that [α′′, η] is in L2
k and hence (D′′)∗[α′′, η] is in L2

k−1. By the elliptic regularity,

(α′′, η) is hence in L2
k+1. By induction, (α′′, η) is in C∞.

Lemma 3.2.12. The map ϕ in Corollary 3.2.8 factors through the natural map

M→Mk.

Proof. Recall that the formula for ϕ is given by ϕ[x] = [rθ(x)] where x ∈ Z. By

Lemma 3.2.11, θ restricts to a continuous map Z → Bss ∩ ((A,Φ) + ker(D′′)∗).

Since r : Bss → µ−1(0) is continuous, Z 3 x 7→ [rθ(x)] ∈ M is continuous. Finally,

[3, Lemma 14.9] and the fact that ϕ is well-defined imply that ϕ factors through

M→Mk.

Corollary 3.2.13. The natural map M→Mk is a homeomorphism. Therefore, the

map ϕ : ZHC �HC →M is an open embedding.

Proof. By Lemma 3.2.12 and Theorem 3.2.10, M→Mk is locally an open map and

hence open.

3.3 Gluing local models

For the rest of the paper, we will drop the subscripts that indicate Sobolev com-

pletions for notational convenience. By Lemma 3.2.11, 3.2.12 and Corollary 3.2.13,
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this should not cause any confusion. The main result in this section is the following,

which is part of Theorem A. The normality of M will be proved in Lemma 3.5.7.

Theorem 3.3.1. The moduli space M is a complex space locally biholomorphic to

a Kuranishi local model ZHC �HC.

Let (Ai,Φi) (i = 1, 2) be Higgs bundles such that µ(Ai,Φi) = 0. We will

use subscript i to denote relevant objects associated with (Ai,Φi). Let Zi be their

Kuranishi spaces and ZiH
C
i �HC

i Kuranishi local models, where Hi is the G-stabilizer

of (Ai,Φi). Let

ϕi : ZiH
C
i �HC

i
∼−→ Oi ⊂M (3.49)

be the map constructed in Theorem 3.2.10 such that O1 ∩ O2 6= ∅. Hence, the

transition function is given by

ϕ−1
2 ϕ1 : ϕ−1

1 (O1 ∩O2)→ ϕ−1
2 (O1 ∩O2). (3.50)

Our goal is to show that ϕ−1
2 ϕ1 is holomorphic so that M is a complex space. Since

holomorphicity is a local condition, the idea is that the transition function ϕ−1
2 ϕ1

should be locally induced by a holomorphic HC
1 -invariant map from an open set in

Z1H
C
1 to Z2H

C
2 � HC

2 . Then, the rest of the argument follows from the universal

property of the quotient map πi : ZiH
C
i → ZiH

C
i �HC

i . Here, the technical difficulty

is to find an appropriate open set in Z1H
C
1 that is also π1-saturated. This will be

overcome in the following Lemma 3.3.2.

To proceed, we follow the notations and the setup in the proof of Theo-
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rem 3.2.6. Let [x] ∈ ϕ−1
1 (O1∩O2). Using the gradient flow of ‖ν0‖2, we may assume

that x ∈ Z1 has a closed HC
1 -orbit. Hence, θ1(x) is polystable (Theorem 3.2.6), and

ϕ1[x] = [rθ1(x)] = [θ1(x)]. Similarly, there is some x′ ∈ Z2 with closed HC
2 -orbit

such that ϕ2[x′] = ϕ1[x] so that θ1(x) ∼GC θ2(x′). Since θi : Zi → V ′i ⊂ W ′
i is a

homeomorphism, θ1(x) ∈ W ′
1 ∩W ′

2h
−1 for some h ∈ GC.

Lemma 3.3.2. There is an open neighborhood C of x in Z1 such that

1. CHC
1 is π1-saturated,

2. θ1(C) ⊂ W ′
1 ∩W ′

2h
−1, and

3. [x] ∈ π1(C) ⊂ ϕ−1
1 (O1 ∩O2).

Proof. Since T1 : N ′1 × V ′1 → W ′
1 and θ1 : Z1 → V ′1 are homeomorphisms, there is an

open ball Q around x such that

θ1(Z1 ∩Q) ⊂ W ′
1 ∩W ′

2h
−1. (3.51)

Since Z1 is open in Z1H
C
1 , (Z1 ∩Q)HC

1 is open in Z1H
C
1 . Then, set

C = π−1
1 π1(ν−1

1 (0) ∩ (Z1 ∩Q)HC
1 ) ∩ (Z1 ∩Q). (3.52)

By Corollary 3.2.8, C is open in Z1. Clearly, (2) follows and x ∈ C.

To show that CHC
1 is π1-saturated, let y ∈ Z1H

C
1 be such that π1(y) = π1(y′)

for some y′ ∈ C. By definition of C, π1(y′) = π1(y′′) for some y′′ ∈ ν−1
1 (0) ∩ (Z1 ∩

Q)HC
1 . Since y′′HC

1 is closed, y′′HC
1 ⊂ yHC

1 . Since y′′HC
1 ∩ C 6= ∅, and C is open,
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we conclude that yHC
1 ∩ C 6= ∅. This shows (1). If y ∈ C, then π1(y) = π1(y′g) for

some y′g ∈ ν−1
1 (0) ∩ (Z1 ∩ Q)HC

1 with y′ ∈ Z1 ∩ Q. Therefore, ϕ1[y] = [θ1(y′)]. By

the construction of ϕi in Corollary 3.2.8 and Theorem 3.2.10, we see that

Oi = Πrθi(Zi) = Πr(V ′i ) = Πr(W ′
i ), (3.53)

where Π: Bps → M is the quotient map. Since θ1(y′) ∈ W ′
1 ∩W ′

2h
−1 is polystable,

it is easy to see that [θ1(y′)] ∈ O1 ∩O2. This proves (3).

Now, for y ∈ C, θ1(y)h ∈ W ′
2. Since T2 is a homeomorphism, there is g(y) ∈

GC, as a function of y ∈ C, such that θ1(y)hg(y) ∈ V ′2 . Hence, we have obtained a

map

ψ21 : C → Z2H
C
2 �HC

2 , ψ21(y) = π2θ
−1
2 (θ1(y)hg(y)). (3.54)

Lemma 3.3.3.

1. ψ21 is holomorphic.

2. If y, y′ ∈ C are in the same HC
1 -orbit, then ψ21(y) = ψ21(y′).

Proof. Explicitly, we have

g(y) = exp(−p1T
−1
2 (θ1(y)h)), (3.55)

where p1 is the projection onto the first factor. Since

T2 : H0(C2
µC

)⊥ × ((A2,Φ2) + kerD′′∗2 )→ C (3.56)
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is holomorphic, its inverse, when restricted to appropriate open neighborhoods, is

also holomorphic. Moreover, since the Kuranishi map is holomorphic, θ1 is also

holomorphic when the codomain is appropriately extended. Therefore, we conclude

that g : C → GC is holomorphic. Finally, since the GC-action is holomorphic, we

conclude that ψ21 is holomorphic.

To show (2), suppose there are z, z′ ∈ Z2 such that

θ2(z) = θ1(y)hg(y),

θ2(z′) = θ1(y′)hg(y′).

(3.57)

We want to show that π2(z) = π2(z′). Since y and y′ are in the same HC
1 -orbit,

θ2(z) ∼GC θ1(y) ∼GC θ1(y′) ∼GC θ2(z′) (3.58)

so that rθ2(z) ∼G rθ2(z′). This means that ϕ2[z] = ϕ2[z′]. Since ϕ2 is injective,

[z] = [z′].

Lemma 3.3.4. The transition function ϕ−1
2 ϕ1 is holomorphic.

Proof. By Lemma 3.3.3, ψ21 extends to a HC
1 -invariant holomorphic map

ψ21 : CHC
1 → Z2H

C
2 �HC

2 . (3.59)

Since CHC
1 is a π1-saturated open set (Lemma 3.3.2),

π2 : CHC
1 → π1(CHC

1 ) =: CHC
1 �HC

1 (3.60)
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is also a categorical quotient. As a consequence, ψ21 descends to a holomorphic map

ψ21 : CHC
1 �HC

1 → Z2H
C
2 �HC

2 . (3.61)

Let [c] ∈ CHC
1 � HC

1 with c ∈ C and z = θ−1
2 (θ1(c)hg(c)). Hence, θ2(z) ∼GC θ1(c).

Therefore,

ϕ2ψ21[c] = ϕ2ψ21(c) = ϕ2π2(z) = Π(rθ2(z)) = Π(rθ1(z)) = ϕ1[c]. (3.62)

This shows that the transition function ϕ−1
2 ϕ1 coincides with a holomorphic map

ψ21 on an open neighborhood CHC
1 �HC

1 of [x] in ϕ−1
1 (O1∩O2). This completes the

proof.

Proof of Theorem 3.3.1. By the properness of the G-action, (µ−1(0)∩B)/G is Haus-

dorff. The Hitchin-Kobayashi correspondence implies that M is Hausdorff. The

Kuranishi local models are constructed in Corollary 3.2.8 and Theorem 3.2.10. By

Lemma 3.3.4, the transition functions are holomorphic.

3.4 Singularities in Kuranishi spaces

In this section, we will show that Kuranishi spaces have only cone singularities.

We will use the same notations as in Section 3.2. The main result in this section is

the following (cf. [34, Theorem 2.24] and [2, Theorem 3]).
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Theorem 3.4.1. The following diagram commutes:

B̃ ∩ ((A,Φ) + ker(D′′)∗) F //

µC

��

H1

1
2
P [·,·]vv

H2(CµC)

(3.63)

Proof. By construction of B̃, the restriction of µC to B̃ is given by

µC(A+ α,Φ + η) = PµC(A+ α,Φ + η) =
1

2
P [α′′, η;α′′, η] = P [α′′, η], (3.64)

where (A + α′′,Φ + η) ∈ B̃. By definition of the Kuranishi space Z, it suffices to

prove

1. P [(α′′, η), (D′′)∗G[α′′, η;α′′, η]] = 0, and

2. P [(D′′)∗G[α′′, η;α′′, η], (D′′)∗G[α′′, η;α′′, η]] = 0

for any (α′′, η) ∈ ker(D′′)∗. By Kähler identities,

P [(α′′, η), (D′′)∗G[α′′, η;α′′, η]] = ±iP [(α′′, η), D′ ∗G[α′′, η;α′′, η]] (3.65)

and (α′′, η) ∈ kerD′. Since D′ is a derivation with respect to [·, ·], we see that

P [(α′′, η), D′ ∗G[α′′, η;α′′, η]] = ±PD′[(α′′, η), ∗G[α′′, η;α′′, η]] = 0. (3.66)

This proves (1). The same argument shows (2). This completes the proof.

As a corollary, we obtain a description of singularities in the Kuranishi spaces.
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Corollary 3.4.2. The Kuranishi space Z is an open neighborhood of 0 in the

quadratic cone

Q =
{
x ∈ H1 :

1

2
P [x, x] = 0

}
. (3.67)

Proof. This is clear by definition of Kuranishi spaces and Theorem 3.4.1.

It is easy to see that the complex structures on C restrict to H1 so that H1

has a linear hyperKähler structure. In particular, the complex symplectic form ΩC

on C restricts to H1. Hence, there is a standard complex moment map ν0,C : H1 →

H2(CµC) for the HC-action with respect to the linear complex symplectic structure.

More precisely, ν0,C is defined by

〈ν0,C(x), ξ〉 =
1

2
ΩC(x · ξ, x), ξ ∈ H0(CµC). (3.68)

Since i : H1 ↪→ C is HC-equivariant, and µC is a complex moment map, Hi∗µC is a

complex moment map for the HC-action on H1, where H is the harmonic projection

onto H2(CµC). Since Pi∗µC(0) = 0, we see that Pi∗µC = ν0,C. On the other hand,

Pi∗µC = 1
2
P [·, ·]. Hence, Q is the zero set of the standard complex moment map

ν0,C.

Obviously, ν−1
0,C(0) is a closed complex subspace of H1. In fact, it is an affine

variety. Therefore, the affine GIT quotient ν−1
0,C(0)�HC exists such that the inclusion

ν−1
0 (0) ∩ ν−1

0,C(0) ↪→ ν−1
0,C(0) induces a homeomorphism (see [30, (1.4)])

(ν−1
0 (0) ∩ ν−1

0,C(0))/H
∼−→ ν−1

0,C(0) �HC. (3.69)
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Note that (ν−1
0 (0) ∩ ν−1

0,C(0))/H is precisely the hyperKähler quotient with

respect to the standard hyperKähler moment maps on H1.

Theorem 3.4.3 (=Theorem B). Let [A,Φ] ∈ M be a point such that µ(A,Φ) = 0

and H1 its deformation space, a harmonic space defined in CµC. Then, the following

hold:

1. H1 is a complex-symplectic vector space.

2. The GC-stabilizer HC at (A,Φ) is a complex reductive group, acts on H1 lin-

early and preserves the complex-symplectic structure on H1. Moreover, the

HC-action on H1 admits a canonical complex moment map ν0,C such that

ν0,C(0) = 0.

3. Around [A,Φ], the moduli space M is locally biholomorphic to an open neigh-

borhood of [0] in the complex symplectic quotient ν−1
0,C(0)�HC which is an affine

GIT quotient.

Proof. It remains to show (3). Since Z is open in Z which is also open in Q,

we have ZHC is open in Q. Since ZHC is saturated with respect to the quotient

Q→ Q�HC, ZHC �HC is an open neighborhood of [0] in Q�HC. The rest follows

from Theorem 3.2.10 and 3.3.1.
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3.5 The Isomorphism between the analytic and the algebraic con-

structions

Let Man be the moduli space Bps/GC and Malg the coarse moduli space of

the semistable Higgs bundles of rank r and degree 0, where r is the rank of E.

By [57, Theorem 4.7, Theorem 11.1], Malg is a normal irreducible quasi-projective

variety. By abusing the notation, we also use Malg to mean its analytification. Then,

there is a natural comparison map

i : Man →Malg, [A,Φ] 7→ [EA,Φ]S. (3.70)

Here, (EA,Φ) is the Higgs bundle determined by (A,Φ), and [EA,Φ]S means the

S-equivalence class of (EA,Φ). We will prove Theorem C in this section. By [67,

Proposition 5.1], we see that i is a bijection of sets.

3.5.1 Continuity

The first step towards our goal is to show that i is a homeomorphism. To

this end, we need some preparations. First, we may assume that the degree of E is

sufficiently large. This can be arranged as follows. Fix a holomorphic line bundle

L = (L, ∂L) of degree d > 0. Here, L is the underlying smooth line bundle of L,

and ∂L is the ∂-operator defined by the holomorphic structure on L. We may also

fix a Hermitian metric on L so that the Chern connection of ∂L is dL. Then, there
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is a map

B(E)→ B(E ⊗ L), (A,Φ) 7→ (A⊗ 1 + 1⊗ dL,Φ⊗ 1). (3.71)

Here, B(E) and B(E ⊗ L) are the configuration spaces of Higgs bundles with un-

derlying smooth bundles E and E ⊗ L, respectively. Since (E,Φ) is (semi)stable if

and only if (E⊗ L,Φ) is (semi)stable, this map restricts to a map

B(E)ps → B(E ⊗ L)ps (3.72)

and eventually descends to a homeomorphism (in the C∞-topology)

Man
⊗L−−→Man(rd), (3.73)

where Man(rd) = Bps(E⊗L)ps/Aut(E⊗L), and rd is the degree of E⊗L. On the

other hand, there is a homeomorphism (in the analytic topology) Malg →Malg(rd)

given by tensoring by L. Here, Malg(rd) is the moduli space of the semistable Higgs

bundles of rank r and degree rd in the category of schemes. Finally, these maps fit

into the following commutative diagram

Man
i //

⊗L
��

Malg

⊗L
��

Man(rd) i //Malg(rd)

(3.74)
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Therefore, the bottom map is a homeomorphism if and only if the top one is a

homeomorphism.

Now, let us recall Nitsure’s construction of Malg in [48]. By the previous

paragraph, we may assume that the degree d of E is sufficiently large so that if

(EA,Φ) is a semistable Higgs bundle defined by (A,Φ) ∈ B then EA is generated

by global sections and H1(M,EA) = 0. Let p = d + r(1 − g) and Q be the Quot

scheme parameterizing isomorphism classes of quotients O
p
M → E → 0, where E is

a coherent sheaf on M with rank r and degree d, and OM is the structure sheaf of

M . Let O
p
M×Q → U → 0 be the universal quotient sheaf on M ×Q, and R ⊂ Q be

the subset of all q ∈ Q such that

1. the sheaf Uq is locally free, and

2. the map H0(M,Op
M)→ H0(M,Uq) is an isomorphism.

It is shown that R is open in Q. Moreover, Nitsure constructed a linear scheme

F over R such that closed points in Fq correspond to Higgs fields on Uq for any

q ∈ Q. Let F ss denote the subset of F consisting of semistable Higgs bundles

(Op
M → E → 0,Φ). It is open in F . Moreover, the group PGL(p) acts on Q, and

the action lifts to F . Finally, Nitsure showed that the good quotient of F ss by the

group PGL(p) exists and is the moduli space Malg.

Following [52], if U is an open subset of Bss (in the C∞-topology), a map

σ : U → F ss is called a classifying map if σ(A,Φ) is a Higgs bundle isomorphic to

(EA,Φ).
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Lemma 3.5.1. Fix (A0,Φ0) ∈ Bss. There exists an open neighborhood U of (A0,Φ0)

in Bss in the C∞-topology such that a classifying map σ : U → F ss exists and is

continuous with respect to the analytic topology on F ss.

Before giving the proof, we first show how it implies the continuity of i.

Corollary 3.5.2. The comparison map i : Man →Malg is a homeomorphism.

Proof. Fix [A0,Φ0] ∈Man such that (A0,Φ0) ∈ Bps. By Lemma 3.5.1, there exists an

open neighborhood U of (A0,Φ0) such that a continuous classifying map σ : U → F ss

exists. Composed with the categorical quotient F ss →Malg, which is continuous in

the analytic topology, we obtain a continuous map U → Malg. By construction, it

descends to the restriction of i to the open set π(U), where π : Bps → Man is the

quotient map.

To see that i is a homeomorphism, we show that it is proper. Since Malg

is locally compact in the analytic topology, if i is proper, then it is a closed map

and hence a homeomorphism. Let us recall the definitions of Hitchin fibrations in

the analytic and algebraic settings. Given a Higgs bundle (E,Φ), the coefficient of

λn−i in the characteristic polynomial det(λ + Φ) is a holomorphic section of Ki
M ,

where n is the rank of E, i = 1, · · · , n, and KM is the canonical bundle on the

Riemann surface M . Since these sections are clearly GC-invariant, we have obtained

a well-defined map

han : Man →
n⊕
i=1

H0(M,Ki
M). (3.75)

It is known that han is a proper map (see [33, Theorem 8.1] or [66, Theorem 2.15]).

On the other hand, let (V ,Φ) be the local universal family of semistable Higgs
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bundles parameterized by the scheme F ss. Therefore, (V ,Φ) is a pair of a vector

bundle V → M × F ss and a section Φ ∈ H0(M × F ss, p∗MKM ⊗ End V ), where

pM : M ×F ss →M is the projection onto the first factor. Moreover, if q = (E,Φ) ∈

F ss is a semistable Higgs bundle then the restriction (Vq,Φq) of (V ,Φ) to M×{q} is

isomorphic to (E,Φ). Hence, there is a map h̃alg : F ss → ⊕ni=1H
0(M,Ki

M) sending a

closed point q ∈ F ss to the coefficients of the characteristic polynomial det(λ+ Φq).

Since the Higgs fields of two S-equivalent Higgs bundles have the same characteristic

polynomial, h̃alg induces a well-defined map halg : Malg → ⊕ni=1H
0(M,Ki

M) (see [48,

§6] for more details). The maps han and halg are called Hitchin fibrations. Therefore,

if [A,Φ] ∈ Man and q = (EA,Φ) ∈ F ss is the Higgs bundle determined by (A,Φ),

then

halg ◦ i[A,Φ] = halg([EA,Φ]S) = h̃alg(q). (3.76)

By definition, h̃alg(q) ∈ ⊕ni=1H
0(M,Ki

M) is the coefficients of the characteristic

polynomial det(λ+Φq). Since (Vq,Φq) is isomorphic to (EA,Φ), h̃alg(q) = han(A,Φ),

and we have proved that halg ◦ i = han.

As a consequence, if K is a compact subset in Malg in the analytic topology,

then i−1(K) ⊂ h−1
anhalg(K). Since halg is continuous, halg(K) is compact and hence

h−1
anhalg(K) is compact by the properness of han. Since Malg is a separated scheme,

Malg is Hausdorff in the analytic topology. Hence, K is closed and i−1(K) is also

closed and contained in a compact set. Therefore, i−1(K) is compact.

Proof of Lemma 3.5.1. The proof is essentially taken from that of [52, Theorem

6.1]. We first show that a classifying map σ exists and then prove its continuity.
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Let V0 = ker ∂A0 ⊂ Ω0(E). By definition of ∂-operators, V0 = H0(M,EA). Since

H1(EA) = 0, the Riemann-Roch theorem implies that dimV0 = p. Hence, by

choosing a basis for V0, we may identify V0 with Cp. Moreover, since EA0 is generated

by global sections, the evaluation map

M × V0 → EA, (x, s) 7→ s(x), (3.77)

realizes EA0 as a quotient of V0 ⊗ OM
∼= O

p
M . Let (A,Φ) be another point in Bss,

and consider the map defined by the composition

πA : VA = ∂A ↪→ Ω0(E)→ V0, (3.78)

where Ω0(E) → V0 is given by the harmonic projection defined in the following

elliptic complex

C(A0) : Ω0(E)
∂A0−−→ Ω0,1(E). (3.79)

We claim that there exists an open neighborhood U of (A0,Φ0) such that πA is an

isomorphism for every (A,Φ) ∈ U . Write πA(s) = s + us for some us ∈ V ⊥0 and

∂A = ∂A0 + a for some a ∈ Ω0,1(gCE). Let G0 be the Green operator in the elliptic

complex C(A0). Since us ∈ V ⊥0 ,

us = ∂
∗
A0
∂A0G0us = ∂

∗
A0
G0∂A0us = ∂

∗
A0
G0(−∂A0s) = ∂

∗
A0
G0(as). (3.80)
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Hence, πA has a natural extension

π̃A : Ω0(E)→ Ω0(E), s 7→ s+ ∂
∗
A0
G0(as), (3.81)

satisfying the following estimate

‖∂∗A0
G0(as)‖L2

k
≤ C‖as‖L2

k−1
≤ C‖as‖L2

k
≤ C‖a‖L2

k
‖s‖L2

k
≤ C‖a‖C∞‖s‖L2

k
, (3.82)

where we have used the Sobolev multiplication theorem (see [20, Theorem 4.4.1]).

Therefore, if A1, A2 ∈ Bss and ∂Ai
= ∂A0 + ai for some ai ∈ Ω0,1(E), we have

‖(π̃A2 − π̃A1)s‖L2
k

= ‖∂∗A0
G0(a2 − a1)s‖L2

k
≤ C‖a2 − a1‖C∞‖s‖L2

k
. (3.83)

Now if U is sufficiently small, we may assume that

‖∂∗A0
G0(as)‖L2

k
≤ (1/2)‖s‖L2

k
(3.84)

so that

‖π̃As‖L2
k
≥ (1/2)‖s‖L2

k
. (3.85)

This shows that π̃A is injective. Since H1(EA) = 0, dimVA = dimV0 = p, πA is an

isomorphism. Therefore, the map

M × V0

1×π−1
A−−−−→M × VA

(x,s)7→s(x)−−−−−−→ EA (3.86)
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realizes EA as a quotient of V0⊗OM
∼= O

p
M , since EA is generated by global sections.

As a consequence, the classifying map

σ : U → F ss, (A,Φ) 7→ (Op
M → EA → 0,Φ), (3.87)

is well-defined.

Now, we show that σ is continuous. Let G(p, r) be the Grassmannian param-

eterizing isomorphism classes of quotients Cp → V → 0, where V is a vector space

of dimension r. Over G(p, r), there is a universal quotient bundle H → G(p, r).

Fix x ∈ M and choose a basis for the fiber (KM)x of the canonical bundle KM

over x. Therefore, any Higgs field Φ ∈ H0(EndE⊗KM) induces an endomorphism

Φx : Ex → Ex⊗(KM)x ∼= Ex. Then, Nitsure showed in [48] that there is a morphism

τx : F → EndH, (Op
M → EA → 0,Φ) 7→ (Cp → Ex,Φx : Ex → Ex), (3.88)

where Cp → Ex is obtained by evaluating the map O
p
M → EA at x. Moreover, [48,

Proposition 5.7] states that there are N points x1, · · · , xN ∈ M such that {τxi}

induces an injective and proper morphism (in the category of schemes) τ : F ss → W

for some open subset W of (EndH)N . Therefore, the underlying continuous map of

τ is a closed embedding with respect to the analytic topology. Hence, σ is continuous

if the composition

σx : U
σ−→ F ss τx−→ EndH (3.89)
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is continuous for any x ∈M . More explicitly, σx is given by

(A,Φ) 7→ (V0 → Ex → 0,Φx : Ex → Ex), (3.90)

where V0 → Ex is defined by

V0

π−1
A−−→ VA

s 7→s(x)−−−−→ Ex. (3.91)

Clearly, the map Φ 7→ Φx is continuous. It suffices to show that

A 7→ (V0 → Ex → 0) (3.92)

is continuous. Fix s ∈ V0 and A1, A2 ∈ U . Write ∂Ai
= ∂A0+ai for some ai ∈ Ω0,1(E)

(i = 1, 2). Then, the following estimate follows from (3.83), (3.85), and Sobolev

embedding L2
k ↪→ C0,

|(π−1
A1
− π−1

A2
)s(x)| ≤ ‖(π−1

A1
− π−1

A2
)s‖C0

≤ C‖(π−1
A1
− π−1

A2
)s‖L2

k

≤ C‖π̃−1
A1

(s− π̃A1 π̃
−1
A2
s)‖L2

k

≤ C‖s− π̃A1 π̃
−1
A2
s‖L2

k

= C‖(π̃A2 − π̃A1)π
−1
A2
s‖L2

k

≤ C‖a2 − a1‖C∞‖π̃−1
A2
s‖L2

k

≤ C‖a2 − a1‖C∞‖s‖L2
k
.

(3.93)
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Hence, A 7→ (V0 → Ex → 0) is continuous.

3.5.2 Holomorphicity

We continue to show that the comparison map i is a biholomorphism. Let

Ms
an and Ms

alg be the subsets of Man and Malg consisting of stable Higgs bundles,

respectively. We first show that the restriction i : Ms
an →Ms

alg is a biholomorphism.

By [56, Theorem 4.7], Ms
alg is open in Malg. By [56, Corollary 11.7] and [48, Propo-

sition 7.1], we see that Ms
alg is smooth. On the other hand, a polystable Higgs

bundle (A,Φ) is stable if and only if its GC-stabilizer is equal to C∗ or equivalently

dim H0(CµC(A,Φ)) = 1. Since C∗ is contained in every GC-stabilizer, by the upper

semicontinuity of dimensions of cohomology (see [39, Chapter VII, (2.37)]), Bs is

open in Bps. Therefore, we conclude that Ms
an is open in Man.

Proposition 3.5.3. Ms
an is a smooth submanifold of Man.

Proof. Fix (A,Φ) ∈ Bs that satisfies Hitchin’s equation. Let H be its G-stabilizer so

that HC is its GC-stabilizer. To show that Ms
an is smooth, we will use Theorem B.

It is enough to show that ν−1
0,C(0) � HC = H1. In fact, since HC = C∗, HC acts

on H1 trivially. Moreover, ν0,C(x) = 1
2
P [x, x] is trace-free for every x ∈ H1. Since

H2(CµC) = C∗ωM , we conclude that P [x, x] = 0 for every x ∈ H1, where ωM is a

fixed Kähler form on M .

Fix [A,Φ] ∈ Ms
an such that (A,Φ) ∈ Bs satisfies Hitchin’s equation. By

Corollary 3.2.13 and Proposition 3.5.3, we see that ϕ : Z→Ms
an is a biholomorphism

onto an open neighborhood of [A,Φ] in Ms
an, where Z is an open neighborhood of 0
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in H1 and ϕ the map induced by the Kuranishi map θ : Z → Bs (see Section 3.2).

Therefore, to show that i|Ms
an

is holomorphic, it is enough to show that iϕ : Z→Ms
alg

is holomorphic. By the remark after the proof of [56, Corollary 5.6], we see that the

analytification of Malg is the coarse moduli space of semistable Higgs bundles in the

category of complex spaces. Therefore, to show that iϕ is holomorphic, we need to

construct a family (V ,Φ), called the Kuranishi family associated with θ, of stable

Higgs bundles over Z such that (Vt,Φt) is isomorphic to (EAt ,Φt) for every t ∈ Z,

where (At,Φt) = θ(t). In general, a family (V ,Φ) of Higgs bundles over a complex

space T is a holomorphic vector bundle V → M × T together with a holomorphic

section Φ ∈ H0(M ×T, p∗MKM ⊗End V ), where pM : M ×T →M is the projection

onto the first factor.

Proposition 3.5.4. For any (A,Φ) ∈ Bs, let θ : Z → Bs be the Kuranishi map

defined by (A,Φ). Then, there exists a Kuranishi family (V ,Φ) of stable Higgs

bundles over Z such that (Vt,Φt) is isomorphic to (EAt ,Φt) for every t ∈ Z, where

(At,Φt) = θ(t).

Proof. We adapt the proof of [19, Proposition 2.6]. Let V = p∗ME be the smooth

vector bundle over M×Z, and Φ(x, t) := Φt(x) can be regarded as a smooth section

of p∗MΛ1,0M ⊗End(U) ⊂ Ω1,0(M ×Z,EndU). Then, we need to put a holomorphic

structure on V so that Φ is a holomorphic section.

Let {si} be a smooth local frame for E. Then {p∗Msi} is a smooth local frame

for V . Then, we define a ∂-operator ∂V : Ω0(V )→ Ω0,1(V ) by the requirement that
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∂V (p∗Msi) = ∂Atsi. (3.94)

Here, ∂Atsi is regarded as a local section of Λ0,1(M × Z) ⊗ V . It is easy to show

that ∂V is independent of the choices of smooth local frames {si}. Therefore, ∂V is

a well-defined ∂-operator on V .

Then, we show that ∂V is integrable so that V = (V, ∂V ) is a holomorphic

vector bundle over M × Z. Write ∂Atsi = f ji sj for some smooth local function f ji

on M ×Z. Since θ is holomorphic, each f ji is holomorphic in the direction of Z. As

a consequence,

∂
2

V (p∗Msi) = ∂M×Zf
j
i ∧ sj + f ji ∂Atsj = ∂Mf

j
i ∧ sj + f ji ∂Atsj, (3.95)

where ∂M×Z and ∂M are usual ∂-operators on the complex manifolds M × Z and

M , respectively. On the other hand,

0 = ∂
2

At
si = ∂Mf

j
i ∧ sj + f ji ∂Atsj. (3.96)

Then, we show that ∂V Φ = 0. Write Φs = φisi for some smooth local function

φi on M × Z. Since θ is holomorphic, φi is holomorphic in the direction of Z. As a

consequence,

∂V Φ = ∂M×Zφ
i ∧ si + φi∂Atsi = ∂Mφ

i ∧ si + φi∂Atsi = ∂AtΦt = 0. (3.97)
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Finally, we need to show that if (Vt,Φt) is isomorphic to (EAt ,Φt) for any

t ∈ Z. If it(x) = (x, t) is the holomorphic map M → M × Z, then the holomorphic

structure on i∗tV is given by the pullback ∂-operator i∗t∂V . Since

[i∗t (∂V )](i∗tp
∗
Ms) = i∗t (∂V s) = ∂Ats (3.98)

for any smooth local section s of E, we see that i∗tV is isomorphic to EAt . Moreover,

i∗tΦ = Φt = Φ.

Corollary 3.5.5. The comparison map i : Ms
an →Ms

alg is a biholomorphism.

Proof. Since the analytification of Malg is the coarse moduli space of semistable

Higgs bundles in the category of complex spaces, the family (V ,Φ) constructed in

Proposition 3.5.4 induces a holomorphic map

Z→Ms
alg, t 7→ [Vt,Φt]. (3.99)

On the other hand, the map iϕ : Z→Ms
alg is given by

iϕ(t) = i[At,Φt] = [EAt ,Φt] = [Vt,Φt]. (3.100)

Hence, iϕ is holomorphic. Since both Ms
an and Ms

alg are smooth complex manifolds,

and i is a holomorphic bijection, i is a biholomorphism.

Then, we extend the holomorphicity of i−1 on Ms
alg to the full moduli space

Malg.
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Corollary 3.5.6. The map i−1 : Malg →Man is holomorphic.

Proof. Recall that Man is assumed to be reduced, and Malg is reduced. Take a holo-

morphic f : U → C where U is an open subset of Man. Then, the pullback (i−1)∗f

is continuous on the open set i(U) and holomorphic on i(U) ∩Ms
alg. By [41], the

normality of Malg implies the normality of its analytification. Since Ms
alg is open in

the Zariski topology, Malg \Ms
alg is a closed analytic subset of Malg in the analytic

topology. Since (i−1)∗f is already continuous on i(U), the Riemann extension theo-

rem for normal complex spaces implies that the restriction (i−1)∗f : Ms
alg∩i(U)→ C

can be extended to a holomorphic function g on i(U). Since Malg is irreducible, the

open set Ms
alg is dense in the Zariski topology and hence in the analytic topology

( [46, §10, Theorem 1]). Since both (i−1)∗f and g are continuous and agree on

an open dense subset Ms
alg ∩ i(U) of i(U), (i−1)∗f = g. This shows that i−1 is

holomorphic.

The final ingredient is the normality of Man.

Lemma 3.5.7. Man is a normal complex space.

Proof. Let us temporarily use Q to mean ν−1
0,C(0) viewed as an affine variety in H1

and Qan to mean the analytification of Q. By Theorem 3.4.3, it suffices to prove that

Qan �HC is normal at the origin [0]. Here, Qan �HC is the analytic GIT quotient

of Qan by HC. By [30], the analytification of the affine GIT quotient Q � HC is

Qan �HC.

Now, we fix a Higgs bundle (A,Φ) such that µ(A,Φ) = 0. By choosing a

point x ∈M , the holomorphic bundle (EA,Φ, x) defines a point in the moduli space
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RDol(M,x, n) of the semistable Higgs bundles of rank n and degree 0 and with

a frame at x. In [57, Corollary 11.7], it is shown that RDol(M,x, n) is normal.

Moreover, in the proof of [57, Proposition 10.5], it is shown that the formal com-

pletion of Q (regarded as an affine variety in H1) at 0 is isomorphic to the formal

completion of a subscheme Y at (EA,Φ, x). Here, Y is a local slice, provided by

Luna’s slice theorem (see [36, Theorem 4.2.12]) at (EA,Φ, x) for the GLn(C) action

on RDol(M,x, n). Moreover, since RDol(M,x, n) is normal at (EA,Φ, x), Y can be

taken to be normal at (EA,Φ, x). As a consequence, the formal completion of Q is

normal at 0. By [63, Tag 0FIZ], Q is normal at 0. Since taking invariants commutes

with localizations and preserves the normality, we conclude that Q �HC is normal

at [0]. Since normality is preserved by the analytification (see [41]), we see that

Qan �HC is normal at [0].

The proof of Theorem C rests on the following theorem.

Theorem 3.5.8 ( [23, Theorem, p.166]). Let f : X → Y be an injective holomorphic

map between reduced and pure dimensional complex spaces. Assume that Y is normal

and that dimX = dimY . Then f is open, and f maps X biholomorphically onto

f(X). In particular, the space X is normal.

Proof of Theorem C. Now the map

i−1 : Malg →Man (3.101)

is a holomorphic homeomorphism. To use Theorem 3.5.8, we verify that Man is pure
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dimensional, normal and dimMan = dimMalg. By Lemma 3.5.7, Man is normal.

Since Malg is connected in the analytic topology, Man is connected. Then, the

normality and connectedness of Man implies that Man is irreducible and hence pure

dimensional (see [23, Theorem, p.168]). Finally, by Corollary 3.5.5, dimMan =

dimMalg.
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Chapter 4: The moduli space as a stratified complex symplectic space

This chapter is based on the author’s paper [18].

4.1 Mostow’s decomposition

In this section, we will prove Mostow’s decomposition for GC, Theorem M.

In fact, we will prove the following Theorem 4.1.1, and Theorem M follows as a

corollary.

Let H be a compact subgroup of G and h its Lie algebra. The compactness

of H implies that h is a finite-dimensional subspace of Ω0(gE) and hence closed.

Therefore, h has a L2-orthogonal complement h⊥ in Ω0(gE) so that Ω0(gE) = h⊕h⊥.

Moreover, let HC be the complexification of H.

Theorem 4.1.1 (cf. [32, Corollary 9.5]). The map

HC ×H (h⊥ × G)→ GC, [h, s, u] 7→ h exp(is)u, (4.1)

is a bijection, where H acts on HC × (h⊥ × G) by

h0 · (h, s, u) = (hh−1
0 , h0sh

−1
0 , h0u). (4.2)
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To prove Theorem 4.1.1, we adapt the proof of [32, Corollary 9.5]. Recall that

the polar decomposition u(n)× U(n)→ GLn(C) induces a polar decomposition

Ω0(gE)× G→ GC, (s, u) 7→ exp(is)u. (4.3)

Via the polar decomposition, the left multiplication of HC on GC induces a left

HC-action on Ω0(gE) × G. In particular, H acts on Ω0(gE) × G by h0 · (s, u) =

(h0sh
−1
0 , h0u). In §4.6, we will show that both Ω0(gE)× G and GC are weak Kähler

manifolds such that the polar decomposition is an isomorphism of Kähler manifolds.

Moreover, the left H-action is Hamiltonian with a moment map given by

κ : Ω0(gE)× G→ h, (s, u) 7→ Ps, (4.4)

where P : Ω0(gE)→ h is the projection. Now, we routinely identify Ω0(gE)×G with

GC using the polar decomposition. Then, Theorem 4.1.1 follows from the following.

Lemma 4.1.2.

1. Every HC-orbit in GC intersect κ−1(0).

2. κ−1(0) ∩HCg = Hg for every g ∈ GC.

Proof. Since H is a compact Lie group (hence finite-dimensional), [47, Lemma 5.2

and Theorem 5.4] apply. Therefore, it suffices to show that

lim
t→∞

(κ(exp(its)g), s)L2 > 0 (4.5)
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for any s ∈ h and g ∈ GC. Using the polar decomposition, we may write

exp(its)g = exp(itη(t))u(t) (4.6)

for some η(t) ∈ Ω0(gE) and u(t) ∈ G. Hence,

(κ(exp(its)g), s)L2 = (Pη(t), s)L2 = (η(t), s)L2 . (4.7)

Since HC acts on GC freely, by [47, Lemma 2.2], (η(t), s)L2 is a strictly increasing

function of t. Therefore, it suffices to prove that if t � 0, (η(t), s)L2 ≥ 0. Hence,

we may assume that η(t) 6= 0 for any t. By the proof of [64, Theorem 5.12], we see

that

lim
t→∞

η(t)

‖η(t)‖L2

=
s

‖s‖L2

(4.8)

in L2-norm so that

lim
t→∞

(
η(t)

‖η(t)‖L2

,
s

‖s‖L2

)
L2

= 1. (4.9)

Therefore, if t� 0, (η(t), s)L2 > 0.

Proof of Theorem 4.1.1. Consider the map

HC ×H κ−1(0)→ GC, [h, s, u] 7→ h exp(is)u. (4.10)

The surjectivity and the injectivity follow from (1) and (2) in Lemma 4.1.2, respec-

tively. Moreover, κ−1(0) = h⊥ × G.
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As a corollary of Mostow’s decomposition, Theorem M, we obtain the following

that will be used often in this paper.

Corollary 4.1.3. Let H and K be compact subgroups of G. Then, HC and KC are

conjugate in GC if and only if H and K are conjugate in G.

Proof. This follows from Mostow’s decomposition (Theorem M) and the first para-

graph in the proof of [58, Theorem 2.10]. Note that all we need is the fact that the

map in Theorem M is a G-equivariant bijection.

4.2 The orbit type decompositions

4.2.1 Orbit types in the hyperKähler quotient

In this section, we will prove Theorem D.

Proof of Theorem D. Fix [A,Φ] ∈ Q such that (A,Φ) is of class C∞. Hence, gauge

transformations in its G-stabilizerH are of class C∞. By definition, Q is a component

of m−1(0)(H)/G. Since the G-action is proper, a standard argument (e.g. [20, Propo-

sition 4.4.5]) shows that there is an H-invariant open neighborhood S of (A,Φ) in

(A,Φ) + ker d∗1 such that the natural map f : S ×H G→ C is a G-equivariant diffeo-

morphism onto an open neighborhood of (A,Φ), where d1 is defined in the complex

CHit (see §3.1). Therefore, the restriction

f : ((m−1(0) ∩ S)×H G)(H) →m−1(0)(H) (4.11)

is a G-equivariant homeomorphism onto an open neighborhood of (A,Φ) in m−1(0)(H).
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Since Q is open in m−1(0)(H)/G, π−1(Q) is open in m−1(0)(H) and contains (A,Φ).

By shrinking S, we may further assume that f takes values in π−1(Q). We claim

that

((m−1(0) ∩ S)×H G)(H) = (m−1(0) ∩ SH)×H G = (m−1(0) ∩ SH)× (G/H), (4.12)

where SH consists of elements in S that are fixed by H. The second equality is

obvious. To show the first one, let [B,Ψ, g] be a point in (m−1(0) ∩ S) ×H G with

G-stabilizer conjugate to H in G. As a consequence,

G[B,Ψ,1] = gG[B,Ψ,g]g
−1 ∈ (H). (4.13)

Since S is a local slice for the G-action on C, G[B,Ψ,1] ⊂ H. Since G[B,Ψ,1] and H have

the same dimension and the same number of components, we see that G[B,Ψ,1] = H.

Hence, H fixes (B,Ψ), and the claim follows. Therefore, the map π−1(Q)→ Q can

be locally identified with the projection

(m−1(0) ∩ SH)× (G/H)→m−1(0) ∩ SH . (4.14)

Moreover, since H is compact, the quotient map m−1(0) ∩ S → (m−1(0) ∩ S)/H

is closed. Since SH is closed in S, we conclude that (m−1(0) ∩ SH)/H is closed in

(m−1(0) ∩ S)/H. Since m−1(0) ∩ SH = (m−1(0) ∩ SH)/H is homeomorphic to an

open neighborhood of [A,Φ] in Q, Q is a locally closed subset of m−1(0)/G. Then,

we prove that m−1(0) ∩ SH is a submanifold of SH . As a consequence, π−1(Q)
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is a submanifold of C, Q is a smooth manifold, and π : π−1(Q) → Q is a smooth

submersion.

To show that m−1(0)∩ SH is a submanifold of SH , we adapt the proof of [61,

Theorem 2.24]. Let µi be a component of the hyperKähler moment map m. We

first show that the restriction µi|SH has a constant finite corank so that SH ∩µ−1
i (0)

is a submanifold of SH . After that, we show that SH ∩m−1(0) = ∩3
i=1S

H ∩µ−1
i (0) is

a submanifold of SH . Fix (B,Ψ) ∈ SH . Note that T(B,Ψ)S
H = (ker d∗1)H . Consider

the sequence

Ω0(gE)
d1−→ T(B,Ψ)C

dµi−−→ Ω2(gE), (4.15)

where dµi is the derivative of µi at (B,Ψ). Note that H acts on each term by

conjugation, and both d1 and dµi are H-equivariant. Since the complex CHit is

elliptic, the symbol of dµi is surjective so that the Hodge decomposition

Ω2(gE) = ker(dµi)
∗ ⊕ im dµi (4.16)

holds, where (dµi)
∗ is the L2-formal adjoint of dµi. We claim that

dµi

(
(T(B,Ψ)C)H

)
= (im dµi)

H . (4.17)

Since dµi is H-equivariant, the inclusion “⊂” is obvious. Conversely, suppose y =

dµi(x) is fixed by H for some x ∈ T(B,Ψ)C. Since H is compact,
∫
H

(x · h)dh is
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well-defined and fixed by H. Therefore, the inclusion “⊃” follows from

y =

∫
H

(y · h)dh =

∫
H

dµi(x · h)dh = dµi

(∫
H

(x · h)dh

)
. (4.18)

Then, the H-equivariance of dµi implies that

Ω2(gE)H = (ker(dµi)
∗)H ⊕ (im dµi)

H = (ker(dµi)
∗)H ⊕ dµi

(
(T(B,Ψ)C)H

)
. (4.19)

Moreover, the formula (dµi)
∗ = −Iid1∗ implies that

dim ker(dµi)
∗ = dim ker d1 = dimG(B,Ψ). (4.20)

Since S is a local slice for the G-action on C, G(B,Ψ) = H. Finally, since

(T(B,Ψ)C)H = (im d1)H ⊕ (ker d∗1)H = (im d1)H ⊕ (T(B,Ψ)S
H) (4.21)

and dµid1 = 0, we conclude that µi|SH : SH → Ω2(gE)H has a constant finite corank

so that µ−1
i (0) ∩ SH is a smooth submanifold of SH .

Now, we show that ∩3
i=1S

H ∩ µ−1
i (0) is a submanifold of SH . Let ∆: SH →

(SH)3 be the diagonal map. If we can show that ∆ is transversal to

W = (µ−1
1 (0) ∩ SH)× (µ−1

2 (0) ∩ SH)× (µ−1
3 (0) ∩ SH) ⊂ (SH)3, (4.22)

then ∆−1(W ) = ∩3
i=1S

H∩µ−1(0) is a smooth submanifold of SH . So, we fix (B,Ψ) ∈

98



∆−1(W ). Then, we have

T∆(B,Ψ)W =
3⊕
i=1

(
ker dµi ∩ (ker d∗1)H

)
(4.23)

and

∆∗T(B,Ψ)S
H = {(v, v, v) : v ∈ (ker d∗1)H}. (4.24)

Note that ker dµi = (Ii im d1)⊥. Therefore, if ui ∈ (ker d∗1)H (i = 1, 2, 3), then we

may write ui = u′i + u′′i for u′i ∈ Ii im d1 and u′′i ∈ (Ii im d1)⊥. Since µi(B,Ψ) = 0, it

is not hard to check that u′′i ∈ (ker d∗1)H . Moreover, since Ii im d1 are orthogonal to

each other, we may further write

ui = (u′i −
∑
j 6=i

u′′j ) + u′′1 + u′′2 + u′′3. (4.25)

Therefore, T∆(B,Ψ)W and ∆∗T(B,Ψ)S
H generate (T(B,Ψ)S

H)3, and we are done.

By construction, we see that m−1(0) ∩ SH is a smooth manifold with tangent

space

ker dm ∩ (ker d∗1)H = (ker d2 ∩ ker d∗1)H = H1(CHit)
H = (H1)H (4.26)

at [A,Φ]. Since the L2-metric on C is preserved by the G-action, it descends to a

metric on Q. By the proof of [33, Theorem 6.7], we see that I, J and K restrict

to H1. Since they are preserved by the H-action on H1, they further restrict to

(H1)H . Moreover, since they are preserved by the G-action, they, together with the
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L2-metric on (H1)H , define an almost hyperKähler structure on Q.

Let ΩI , ΩJ and ΩK be the Kähler forms on C associated with complex struc-

tures I, J and K, respectively. By the proof of [33, Theorem 6.7], we see that if

v ∈ im d1 ⊕ H1 then Ωi(v, ξ) = 0 for any i ∈ {I, J,K} and any vector ξ tangent

to the G-orbit. This also holds for v ∈ im d1 ⊕ (H1)H = T(A,Φ)π
−1(Q). Therefore,

there are unique Kähler forms ωi, i ∈ {I, J,K}, on Q such that π∗ωi = Ωi|π−1(Q)

for i ∈ {I, J,K}. Therefore, each ωi is closed. Then, the integrability of complex

structures on Q follows from [33, Lemma 6.8].

Finally, by the elliptic regularity, it is easy to see that elements in ker d∗1 ∩

m−1(0) are of class C∞. Since SH ∩m−1(0) ⊂ ker d∗1 ∩m−1(0), our heuristic use of

infinite-dimensional manifolds can be justified by working with Sobolev completions.

4.2.2 A local slice theorem

Now we study the strata in the orbit type decomposition of M. Therefore, we

need a local slice theorem for the GC-action on C.

Theorem 4.2.1. Let (A,Φ) be a Higgs bundle in m−1(0) with G-stabilizer H. Then,

there exists an open neighborhood O of (A,Φ) in (A,Φ) + ker(D′′)∗ such that the

natural map OHC ×HC GC → C is a biholomorphism onto an open neighborhood of

(A,Φ).

Proof. Note that the GC-stabilizer of (A,Φ) is HC and acts on (D′′)∗. Consider the
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natural map

f : ((A,Φ) + ker(D′′)∗)×HC GC → C. (4.27)

Its derivative at [A,Φ, 1] is given by

ker(D′′)∗ ⊕H0(CµC)⊥ → Ω0,1(gCE)⊕ Ω1,0(gCE), (x, u) 7→ x+D′′u, (4.28)

and hence an isomorphism, since T(A,Φ)C = ker(D′′)∗ ⊕ imD′′. Therefore, there are

open neighborhoods O×N of (A,Φ, 1) and W of (A,Φ) such that f : π(O×N)→ W

is a biholomorphism, where π is the quotient map. Then, we consider the restriction

f : OHC ×HC GC → C. (4.29)

Since OHCGC = WGC, its image is WGC which is an open neighborhood of (A,Φ)

in C. Since GC = ∪g∈GCNg and f is GC-equivariant, f is a local biholomorphism.

Therefore, it remains to show that f is injective provided that O is small enough.

We will follow the proof of [8, Proposition 4.5]. Suppose that

((A,Φ) + (α1, η1))g = (A,Φ) + (α2, η2) (4.30)

for some g ∈ GC and (D′′)∗(αi, ηi) = 0. Equivalently,

D′′g + (α′′1g − gα′′2, η1g − gη2) = 0, (4.31)

where α′′i is the (0, 1)-component of αi. We show that if each ‖(αi, ηi)‖L2
k

is small
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enough, then g ∈ HC. Write g = g0 + g1 for some g0 ∈ H0(CµC) and g1 ∈ H0(CµC)⊥.

The idea is to show that D′′g1 = 0 so that g = g0 ∈ HC. Applying (D′′)∗, we obtain

(D′′)∗D′′g + (D′′)∗(α′′1g − gα′′2, η1g − gη2) = 0. (4.32)

We first claim that D′g0 = 0, where D′ = ∂A+Φ∗. In fact, using the Kähler identity,

D′∗ = +i[∗, D′′], we have

‖D′g0‖2
L2 = (D′∗D′g0, g0)L2 = i(D′′D′g0, g0)L2 = −i(D′D′′g0, g0)L2 = 0. (4.33)

Here, we have used the fact that D′′D′+D′D′′ = 0, since µ(A,Φ) = FA+[Φ,Φ∗] = 0.

Then, using the Kähler’s identity, (D′′)∗ = −i[∗, D′], we see that D′(αi, ηi) = 0 for

each i, and

(D′′)∗(α′′1g − gα′′2, η1g − gη2) = (D′′)∗(α′′1g1 − g1α
′′
2, η1g1 − g1η2). (4.34)

As a consequence,

‖D′′g1‖2
L2 = −((α′′1g1 − g1α

′′
2, η1g1 − g1η2), D′′g1)L2

≤ ‖(α′′1g1 − g1α
′′
2, η1g1 − g1η2)‖L2‖D′′g1‖L2

≤ (‖α′′1‖C0 + ‖α′′2‖C0 + ‖η1‖C0 + ‖η2‖C0)‖g1‖L2‖D′′g1‖L2

≤ C(‖α′′1‖L2
k

+ ‖α′′2‖L2
k

+ ‖η1‖L2
k

+ ‖η2‖L2
k
)‖g1‖L2‖D′′g1‖L2 ,

(4.35)

where we have used the Sobolev embedding L2
k ↪→ C0. Moreover, since g1 ∈
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H0(CµC)⊥,

‖g1‖L2 ≤ ‖g1‖L2
1

= ‖(D′′)∗GD′′g1‖L2
1
≤ C‖D′′g1‖L2 . (4.36)

Therefore,

‖D′′g1‖2
L2 ≤ C(‖α′′1‖L2

k
+ ‖α′′2‖L2

k
+ ‖η1‖L2

k
+ ‖η2‖L2

k
)‖D′′g1‖2

L2 . (4.37)

Since the isomorphism Ω1(gE) → Ω1,0(gCE) given by α 7→ α′′ is a homeomorphism

in the L2
k-topology, we conclude that that if ‖(αi, ηi)‖L2

k
is small enough for every i,

then D′′g1 = 0.

As a corollary of Proposition 4.2.1, every Kuranishi map θ : B → C (see § 3.2.1)

preserves stabilizers in the following sense.

Proposition 4.2.2. If B is sufficiently small, then (HC)x = (GC)θ(x) for every

x ∈ Z.

Proof. By [17, Proposition 3.4], if x1 = x2g for some x1, x2 ∈ B and g ∈ HC

then θ(x1) = θ(x2)g. This proves the inclusion “⊂”. To prove the inclusion “⊃”,

we shrink B so that θ(Z) ⊂ O where O is obtained in Proposition 4.2.1. As a

consequence, if θ(x)g = θ(x) for some g ∈ GC then g ∈ HC. Since F is HC-

equivariant and F (θ(x)) = x for every x ∈ B, we conclude that xg = x.

4.2.3 Orbit types in the moduli space

Now we are able to prove Theorem E. Before giving the proof, we first show

that there is a one-to-one correspondence between the conjugacy classes appearing

103



in the orbit type decompositions of M and m−1(0)/G.

Proposition 4.2.3. Every conjugacy class (L) appearing in the orbit type decom-

position of M is equal to a conjugacy class (HC) for some G-stabilizer H at some

Higgs bundle in m−1(0).

Proof. Let (A,Φ) be a polystable Higgs bundle whose GC-stabilizer is conjugate to L

in GC. By the Hitchin-Kobayashi correspondence, µ((A,Φ)g) = 0 for some g ∈ GC.

Therefore,

(G(A,Φ)g)
C = (GC)(A,Φ)g = g−1(GC)(A,Φ)g. (4.38)

Let H = G(A,Φ)g and the GC-stabilizer of (A,Φ) is conjugate to HC in GC.

Proof of Theorem E. Fix [A,Φ] ∈ Q such that (A,Φ) ∈ m−1(0) is of class C∞.

Therefore, gauge transformations in the G-stabilizer H at (A,Φ) are of class C∞.

Since HC is the GC-stabilizer at (A,Φ), Q is a component of Bps
(HC)

/GC. By Theo-

rem 4.2.1, there is an open neighborhood O of (A,Φ) in (A,Φ) + ker(D′′)∗ such that

the natural map OHC×HC GC → C is a diffeomorphism onto an open neighborhood

of (A,Φ). The GC-equivariance implies that

(OHC ×HC GC)(HC) → C(HC). (4.39)

Since HC has finitely many components and is finite-dimensional, following the proof

of Theorem D, we see that

(OHC ×HC GC)(HC) = OHC × (GC/HC). (4.40)
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As a consequence, the natural map

(OHC ∩Bss)× (GC/HC)→ Bss
(HC) (4.41)

is a diffeomorphism onto an open image. On the other hand, the Kuranishi map

θ : Z → O ∩ Bss is a homeomorphism if B is sufficiently small. Since θ preserves

stabilizers (Proposition 4.2.2), we see that θ : ZH
C → OHC∩Bss is a homeomorphism.

Since the HC-action on H1 is holomorphic with respect to I, (H1)H
C

is a complex

symplectic subspace of H1 so that H1 = F ⊕ (H1)H
C

where F is the ωC-complement

of (H1)H
C
. As a consequence,

ν−1
0,C(0) = (ν0,C|F )−1(0)× (H1)H

C
(4.42)

so that ZH
C

is an open subset of ν−1
0,C(0)H

C
= (H1)H

C
. Since every point in (H1)H

C

has closed HC-orbits, θ(ZH
C
) ⊂ OHC ∩Bps. Moreover, since Q is open in B

ps
(HC)

/GC,

π−1(Q) is open in B
ps
(HC)

. Therefore, if O and B are sufficiently small, we obtain a

well-defined map

f : ZH
C × (GC/HC)→ π−1(Q), (x, [g]) 7→ θ(x)g, (4.43)

which is a homeomorphism onto its open image. This already shows that π−1(Q)

is a complex submanifold of C. Moreover, f induces a well-defined map ZH
C → Q

given by [x] 7→ [θ(x)]. It is exactly the restriction of the local chart (see §3.2.3)
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ϕ : ZHC �HC →M, since

ν−1
0,C(0) �HC = (ν0,C|F )−1(0) �HC × (H1)H

C
, (4.44)

and θ(x) is polystable for every x ∈ ZH
C
. Therefore, we see that Q is a complex

submanifold of M. Moreover, the quotient map π : π−1(Q) → Q can be locally

identified with the projection

ZH
C × (GC/HC)→ ZH

C
, (4.45)

which is clearly a holomorphic submersion. Finally, by elliptic regularity, elements

in H1 are of class C∞. Since ZH
C ⊂ H1, our heuristic use of infinite-dimensional

manifolds can be justified by working with Sobolev completions.

4.3 Complex Whitney stratification

To show that the orbit type decomposition of M is a complex Whitney strat-

ification, we follow Mayrand’s arguments in [44, §4.6 and §4.7]. The idea is that

the problem can be reduced to a local model ν−1
0,C(0) � HC near [0], once we show

that the Kuranishi map ϕ : Ũ → U preserves the orbit type decompositions, where

Ũ = ZHC � HC and U = ϕ(Ũ) (see §3.2.3). To clarify different possible parti-

tions on ν−1
0,C(0) � HC, we adopt the following notation. By [30], the natural map
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ν−1
0,C(0)ps ↪→ ν−1

0,C(0) induces a bijection

ν−1
0,C(0)ps/HC ∼−→ ν−1

0,C(0) �HC, (4.46)

where ν−1
0,C(0)ps is the subspace of ν−1

0,C(0) consisting of polystable points, or equiv-

alently points whose HC-stabilizers are closed in H1. Let L be a HC-stabilizer at

some point in ν−1
0,C(0) and (L)HC the conjugacy class of L in HC. Then, we may

define

ν−1
0,C(0)ps(L)

HC
= {x ∈ ν−1

0,C(0)ps : (HC)x ∈ (L)HC}. (4.47)

As a consequence, ν−1
0,C(0) �HC has a partition

P̃HC =
{
ν−1

0,C(0)ps(L)
HC
/HC : L = (HC)x for some x ∈ ν−1

0,C(0)
}
. (4.48)

Here, we have identified ν−1
0,C(0)ps(L)

HC
with its image in ν−1

0,C(0) �HC. The orbit type

decomposition of ν−1
0,C(0)�HC is defined as the refinement P̃◦HC of P̃HC into connected

components. If (L)GC is the conjugacy class of L ⊂ HC in GC, then we may similarly

define the partition

P̃GC =
{
ν−1

0,C(0)ps(L)
GC
/HC : L = (HC)x for some x ∈ ν−1

0,C(0)
}
. (4.49)

Finally, note that ν−1
0,C(0) �HC can be realized as a hyperKähler quotient as follows.

SinceH acts linearly on H1 and preserves the Kähler form ωI , there is a moment map

ν0 associated with the Kähler form ωI such that ν0(0) = 0. Then, n0 = (ν0, ν0,C) is a
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hyperKähler moment map for the H-action. By [30], the inclusion n−1
0 (0) ↪→ ν−1

0,C(0)

induces a homeomorphism

n−1
0 (0)/H

∼−→ ν−1
0,C(0) �HC. (4.50)

Then, the same proof of Proposition 4.2.3 shows that every conjugacy class (L)

appearing in P̃HC or P̃GC is equal to a conjugacy class (HC
1 ) for some H-stabilizer H1

at some point in n−1
0 (0). Then, the relation between P̃HC and P̃GC is stated below.

Lemma 4.3.1 ( [44, Lemma 4.2]). P̃◦HC = P̃◦
GC.

Proof. This follows from the same proof of [44, Lemma 4.2]. The only difference is

that Mostow’s decomposition in that proof must be replaced by Theorem M.

Now, let P be the partition of M defined as

P = {Bps
(L)

GC
/GC : L = (GC)(A,Φ) for some (A,Φ) ∈ Bps}. (4.51)

Note that the orbit type decomposition of M is simply P◦. Then, we have the

following.

Proposition 4.3.2. The Kuranishi map ϕ :
(
Ũ , (P̃◦HC|Ũ)◦

)
→
(
U, (P◦|U)◦

)
is an

isomorphism of partitioned spaces.

Proof. We first record a simple fact without a proof.

Lemma 4.3.3. Let X be a space and P a partition of X. If U is an open subset of

X, then (P◦|U)◦ = (P|U)◦.
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Then, by Lemma 4.3.1 and 4.3.3,

(P̃◦HC|Ũ)◦ = (P̃◦GC|Ũ)◦ = (P̃GC|Ũ)◦ (4.52)

and (P◦|U)◦ = (P|U)◦. Then, it suffices to show that

ϕ : (Ũ , P̃GC |Ũ)→ (U,P|U) (4.53)

is an isomorphism of partitioned spaces. If [x] ∈ Ũ is such that the HC-orbit of

x is closed in H1, then ϕ[x] = [θ(x)]. The rest follows from (GC)θ(x) = (HC)x

(Proposition 4.2.2).

Theorem 4.3.4. The orbit type decomposition of M is a complex Whitney stratifi-

cation.

Proof. We first show that P◦ satisfies the frontier condition. In other words, we

need to show that if Q1, Q2 ∈ P◦ and Q1 ∩ Q2 6= ∅, then Q1 ⊂ Q2. Fix [A,Φ] ∈ M

such that µ(A,Φ) = 0 and G(A,Φ) = H. Let ϕ : Ũ → U be the Kuranishi map. Let

Q be the component of Bps
(HC)

/GC containing [A,Φ]. If [x] ∈ ϕ−1(Q ∩ U) such that

its HC-orbit is closed in H1, then ϕ[x] = [θ(x)] ∈ Q ∩ U . By Proposition 4.2.2,

(GC)θ(x) = (HC)x. Since [θ(x)] ∈ Q, we conclude that (HC)x = HC. From the proof

of Theorem E in Section 4.2.3, we see that

ϕ−1(Q ∩ U) = ZH
C

= B ∩ (H1)H
C
. (4.54)
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This shows that Q ∩ U is connected so that Q ∩ U ∈ (P◦|U)◦. By [44, Lemma

4.7], it suffices to show that (P◦|U)◦ is conical at Q ∩ U (see [44, p.18] for the

definition). Since B ∩ (H1)H
C ∈ (P̃◦(HC))

◦, Proposition 4.3.2 implies that it suffices

to show that (P̃◦(HC)|Ũ)◦ is conical at B ∩ (H1)H
C
. Moreover, by Lemma 4.3.3, it

suffices to show that (P̃(HC)|Ũ)◦ is conical at B∩(H1)H
C
. This follows from the proof

of [44, Proposition 4.8].

Now we show that P◦ satisfies the Whitney conditions at every point of M.

Fix [A,Φ] ∈ M and let ϕ : Ũ → U be a Kuranishi map such that [A,Φ] ∈ U .

Then, it suffices to check that (P◦|U)◦ satisfies the Whitney conditions at [A,Φ]. By

Proposition 4.3.2, it suffices to check that (P̃◦HC|Ũ)◦ = (P̃HC |Ũ)◦ satisfies the Whitney

conditions at [0]. This follows from [44, Proposition 4.12].

4.4 The Hitchin-Kobayashi correspondence

Finally, we show that the Hitchin-Kobayashi correspondence preserves the

orbit type decompositions, Theorem F (cf. [44, Proposition 4.6]).

Proof of Theorem F. SupposeQ is a component of m−1(0)(H)/G for some G-stabilizer

at a Higgs bundle in m−1(0). We first show that the restriction

i : m−1(0)(H)/G→ B
ps
(HC)

/GC (4.55)

is a bijection and hence a homeomorphism. As a consequence, i(Q) is a stratum

in the orbit type decomposition of M. The injectivity is obvious. To show the
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surjectivity, let [A,Φ] ∈ B
ps
(HC)

/GC. We may further assume that (GC)(A,Φ) = HC.

The Hitchin-Kobayashi correspondence provides some g ∈ GC such that (A,Φ)g ∈

m−1(0). Hence,

(G(A,Φ)g)
C = (GC)(A,Φ)g = g−1(GC)(A,Φ)g = g−1HCg. (4.56)

Then, Corollary 4.1.3 implies that G(A,Φ)g is conjugate to H in G.

Then, we show that the restriction i : Q→ i(Q) is holomorphic. Consequently,

since Q and i(Q) are smooth, i|Q is a biholomorphism. By the proofs of Theorem D

and E, we see that i|Q can be locally identified with a map m−1(0)∩SH → (H1)H
C
.

More precisely, this map is given by (B,Ψ) 7→ x where x is determined by the

equation (B,Ψ) = θ(x)g for a unique g ∈ GC. It is holomorphic, since x and g

depend on (B,Ψ) holomorphically, which can be seen by Proposition 4.2.1 and the

holomorphicity of θ : B → C.

4.5 Poisson structure

Let Q be a stratum in the orbit type stratification of M. As a consequence,

i−1(Q) is a stratum in the orbit type stratification of m−1(0)/G, where i is the

Hitchin-Kobayashi correspondence. We have shown in Theorem D that i−1(Q) is a

hyperKähler manifold and hence has a complex symplectic form ωC = ωJ +
√
−1ωK .

Using the Hitchin-Kobayashi correspondence i, we may transport ωC to Q so that Q

is also a complex symplectic manifold. We will still use ωC to denote the resulting

complex symplectic form on Q. Alternatively, ωC can be defined as follows. Let
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π : Bps → M be the quotient map. It is shown in Theorem E that π−1(Q) is

a complex submanifold of C, and π : π−1(Q) → Q is a holomorphic submersion.

Then, it follows that π∗ωC = ΩC|π−1(Q), where ΩC = ΩJ +
√
−1ΩK is the complex

symplectic form on C. This can be seen by Theorem D and the definition of i.

Then, a complex Poisson bracket can be defined on the structure sheaf of M as

follows. Let U be an open subset of M and f, g : U → C holomorphic functions.

Let Q be a stratum in the orbit type stratification of M. Therefore, the restrictions

f |U∩Q and g|U∩Q are holomorphic so that the Poisson bracket {f |U∩Q, g|U∩Q}Q is

well-defined using the complex symplectic form ωC on Q. Consequently, there is a

unique function {f, g} : U → C such that

{f, g}|U∩Q = {f |U∩Q, g|U∩Q}Q (4.57)

for every stratum Q. Then, it remains to show that {f, g} : U → C is holomorphic.

Since the complex space M is constructed by gluing Kuranishi local models, {f, g}

is holomorphic if and only if its pullback along any Kuranishi map is holomorphic.

On the other hand, from Section 4.3, we see that ν−1
0,C(0) � HC can be realized as

a singular hyperKähler quotient. Hence, the structure sheaf of ν−1
0,C(0) � HC has a

Poisson structure by [44, Theorem 1.4]. Then, the holomorphicity of the Poisson

bracket on M follows from the following result (cf. [44, Proposition 4.18]).

Theorem 4.5.1 (=Theorem G). Every Kuranishi map ϕ : Ũ → U is a Poisson

map. In other words, if f, g : U → C are holomorphic functions, then ϕ∗{f, g} =

{ϕ∗f, ϕ∗g}.
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Before giving the proof, we need the following lemmas.

Lemma 4.5.2. The Kuranishi map θ : B → C preserves the complex symplectic

forms.

Proof. By construction of θ (see Section 4.2.2), it suffices to show that the map

F : B̃ ∩ ((A,Φ) + ker(D′′)∗)→ H1,

F (α′′, η) = (α′′, η) +
1

2
(D′′)∗G[α′′, η;α′′, η],

(4.58)

preserves the restrictions of Kähler forms ΩJ and ΩK . For notational convenience,

let X = B̃ ∩ ((A,Φ) + ker(D′′)∗). If (B,Ψ) = (A,Φ) + (α′′0, η0) ∈ X, then

d(B,Ψ)F (α, η) = (α, η) + (D′′)∗G[α′′0, η0;α, η], (α, η) ∈ T(B,Ψ)X. (4.59)

Then, we need to show that

Ωi(d(B,Ψ)F (α′′1, η1), d(B,Ψ)F (α′′2, η2)) = Ωi(α
′′
1, η1;α′′2, η2) (4.60)

for any i ∈ {J,K}, (B,Ψ) ∈ X, and (α′′j , ηj) ∈ T(B,Ψ)X. This amounts to show that

1. Ωi(α
′′
1, η1; (D′′)∗G[α′′0, η0;α′′2, η2]) = 0, and

2. Ωi((D
′′)∗G[α0, η0, α

′′
1, η1]; (D′′)∗G[α′′0, η0;α′′2, η2) = 0

for any i ∈ {J,K} and (α′′j , ηj) ∈ ker(D′′)∗ (j = 0, 1, 2). To show (1), we compute

ΩJ(α′′1, η1; (D′′)∗G[α′′0, η0;α′′2, η2]) = g(D′′J(α′′1, η1);G[α′′0, η0;α′′2, η2]), (4.61)
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where g is the L2-metric. Moreover,

D′′J(α′′1, η1) = D′′(iη∗,−iα′′∗) = −i∂Aα′′∗ + i[Φ, η∗] = (iD′(α′′1, η1))∗ = 0, (4.62)

where the last equality follows from the Kähler’s identity, (D′′)∗ = −i[∗, D′] and the

assumption that (D′′)∗(α′′1, η1) = 0. Similarly,

ΩK(α′′1, η1; (D′′)∗G[α′′0, η0;α′′2, η2]) = g(D′′K(α′′1, η1);G[α′′0, η0;α′′2, η2]) (4.63)

and

D′′K(α′′1, η1) = D′′(−η∗, α′′∗) = ∂Aα
′′∗ − [Φ, η∗] = D′(α′′1, η1)∗ = 0. (4.64)

Finally, the same argument shows (2).

Now, let C̃ be a connected component of Q̃ ∩ Ũ , where Q̃ is a stratum in the

orbit type stratification of ν−1
0,C(0) �HC. In other words, C̃ ∈ (P◦HC |Ũ)◦. By Propo-

sition 4.3.2, there is some connected component C of Q ∩ U for some stratum Q in

the orbit type stratification of M such that the restriction ϕ : C̃ → C is a biholo-

morphism. Let π denote the projections Bps →M and ν−1
0,C(0)ps → ν−1

0,C(0)�HC. By

Theorem E and [44, Lemma 4.14], π−1(C) and π−1(C̃) are complex submanifolds of
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C and H1, respectively. Moreover, the following diagram commutes

π−1(C̃) ∩B
π
��

θ // π−1(C)

π

��
C̃

ϕ // C

(4.65)

Now, by Lemma 4.5.2, θ preserves the restrictions of the complex symplectic forms

ΩC on C and ωC on H1. By Theorem E and [44, Lemma 4.14] again, we see that these

restrictions of complex symplectic forms descend to C̃ and C. As a consequence, we

obtain the following.

Lemma 4.5.3. The Kuranishi map ϕ : C̃ → C is a complex symplectomorphism.

In particular, it preserves the complex Poisson brackets.

Proof of Theorem 4.5.1. Let f, g : U → C be holomorphic functions. Then, we com-

pute

(ϕ∗{f, g})|C̃ = (ϕ|C̃)∗({f, g}|C)

= (ϕ|C̃)∗({f |C , g|C}Q)

= {(ϕ|C̃)∗(f |C), (ϕ|C̃)∗(g|C)}Q̃

= {(ϕ∗f)|C̃ , (ϕ
∗g)|C̃}Q̃

= {ϕ∗f, ϕ∗g}|C̃ .

(4.66)

for any connected component C̃ of Q̃ ∩ Ũ for some stratum Q̃ in the orbit type

stratification of ν−1
0,C(0) �HC. This completes the proof.
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4.6 Appendix: Kähler structure on the complex gauge group

In this section, we will prove that GC is a weak Kähler manifold such that the

left G-action on GC is Hamiltonian with a moment map κ : GC → Ω0(gE) given by

κ(exp(is)u) = s. Most of the proofs are taken or adapted from [35].

We first describe a weak symplectic form on Ω0(GE)× G. Define the 1-form τ

on Ω0(gE)× G by

τ(s,u)(z, w) = (s, wu−1)L2 , (z, w) ∈ Ω0(gE)⊕ TuG, (4.67)

where (·, ·)L2 is the L2-metric on Ω0(gE). Note that if G were finite-dimensional, then

τ would be exactly the tautological 1-form on the cotangent bundle T ∗G = Lie(G)×G.

There are left and right actions of G on Ω0(gE)× G given by

u0 · (s, u) = (u0su
−1
0 , u0u) and (s, u) · u0 = (s, uu0). (4.68)

By direct computation, we see that both the left and right G-actions preserve τ and

hence the 2-form ω := −dτ . In this section, a map is said to be left (resp. right)

G-equivariant if it is G-equivariant with respect to the left (resp. right) G-action, and

G-equivariant if it is G-equivariant with respect to both the left and right G-actions.

Proposition 4.6.1. If the 2-form ω is non-degenerate, then the projection κ : Ω0(gE)×

G→ Ω0(gE) onto the first factor is a moment map for the left G-action on
(
Ω0(gE)×

G, ω
)
.
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Proof. To verify that κ is a moment map for the left G-action on Ω0(gE) × G, fix

ξ ∈ Ω0(gE) and let ξ∗ denote the vector field generated by the left G-action on

Ω0(gE) × G. Since the left G-action preserves ω, the Lie derivative of ω along ξ∗

vanishes. Therefore, −iξ∗dτ = diξ∗τ . Moreover,

ξ∗(s,u) =
d

dt

∣∣∣∣
t=0

(Ad(etξ)s, etξu) = ([ξ, s], ξu), (4.69)

and hence τ(ξ∗)(s, u) = (s, ξ)L2 . Finally, it is easy to verify that κ is left G-

equivariant.

Now, we describe a complex structure J on Ω0(gE) × G and later verify that

ω is compatible with J and positive so that ω is a Kähler form on Ω0(gE) × G.

Let ψ : Ω0(gE) × G → GC be the polar decomposition given by ψ(s, u) = exp(is)u.

It is clear that ψ is G-equivariant. Then, there is a unique complex structure J

on Ω0(gE) × G such that ψ is a biholomorphism. To see the relation between the

symplectic form ω and the complex structure J , we also view P = Ω0(gE)× G as a

principal G-bundle over Ω0(gE), and show that P has a connection induced by the

complex structure J .

Proposition 4.6.2. Every tangent vector of P at a point (s, u) ∈ P can be uniquely

written as ξ#
(s,u) + Jη#

(s,u) for some ξ, η ∈ Ω0(gE), where ξ#
(s,u) is the tangent vector

of P at (s, u) generated by the right G-action.

Proof. Note that any tangent vector of GC at ψ(s, u) can be uniquely written as

Z#
ψ(s,u) for some Z ∈ Ω0(gCE), where Z#

ψ(s,u) is the tangent vector on GC generated by
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the right translations. Then, write Z = ξ + iη for some ξ, η ∈ Ω0(gE). Since the

right G-action and ψ are holomorphic, and ψ is G-equivariant, we obtain

Z#
ψ(s,u) = (ξ + iη)#

ψ(s,u)

= ξ#
ψ(s,u) + iη#

ψ(s,u)

= d(s,u)ψ(ξ#
(s,u) + Jη#

(s,u)),

(4.70)

where i in the second equality also denotes the complex structure on GC. The rest

follows from the fact that the derivative d(s,u)ψ is an isomorphism.

By Proposition 4.6.2, we are able to define a Ω0(gE)-valued 1-form γ by

γ(ξ#
(s,u) + Jη#

(s,u)) = ξ. (4.71)

Another Ω0(gE)-valued 1-form χ on P is given by

χ(ξ#
(s,u) + Jη#

(s,u)) = η. (4.72)

It is clear that χ = −γJ . Since ψ is G-equivariant, the right G-action on P is

holomorphic. Therefore, it is easy to verify that both γ and χ are G-equivariant in

the sense that R(u0)∗γu0 = Ad(u−1
0 )γ and R(u0)∗χ = Ad(u−1

0 )χ, where R(u0) is the

right G-action on P given by u0. The following are some useful formulas.

Proposition 4.6.3. For any (s, e) ∈ P and (z, w) ∈ T(s,e)P = Ω0(gE)⊕Ω0(gE), the
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formulas for χ and γ are given by

γ(s,e)(z, w) =
1− cos ad s

ad s
z + w,

χ(s,e)(z, w) =
sin ad s

ad s
z.

(4.73)

Proof. The derivative d(s,e)ψ is given by

d(s,e)ψ(z, w) =
d

dt

∣∣∣∣
t=0

exp(is+ itz) exp(tw)

=
d

dt

∣∣∣∣
t=0

exp(is+ itz) +
d

dt

∣∣∣∣
t=0

exp(is) exp(tw).

(4.74)

Moreover, by the formula for the derivative of the exponential map (e.g. [14, Theo-

rem 1.5.3]),

exp(is)−1 d

dt

∣∣∣∣
t=0

exp(is+ itz) =
1− exp(− ad(is))

ad(is)
(iz)

=
(1− cos ad s

ad s
+ i

sin ad s

ad s

)
z.

(4.75)

As a consequence,

ψ(s, e)−1d(s,e)ψ(z, w) =
1− cos ad s

ad s
z + w + i

sin ad s

ad s
z. (4.76)

The rest follows from the proof of Proposition 4.6.2.

Consider a right G-equivariant map κ given by κ(s, e) = κ(s, e). In other

words, κ(s, u) = u−1su.

Proposition 4.6.4.

119



1. τ = (κ, γ)L2.

2. If f : P → R is a function given by f(s, u) = 1
2
‖s‖L2, then (κ, χ)L2 = df .

3. There is a unique right G-equivariant Hom(Ω0(gE),Ω0(gE))-valued 1-form Ψ

on P such that dγκ(s,u) = Ψ(s,u)χ(s,u) for any (s, u) ∈ P , where dγκ is the

covariant derivative of κ. More explicitly,

dγκ(s,e)(z, w) = cos ad s(z),

Ψ(s,e) = cos ad s
ad s

sin ad s
,

(4.77)

for any (z, w) ∈ T(s,e)P .

Before giving the proof, we claim that sin ad s
ad s

is invertible so that ad s
sin ad s

simply

means its inverse. In fact, if ξ ∈ Ω0(gE), then, by definition, χ(s,e)(Jξ
#
(s,e)) = ξ.

Moreover, if Jξ#
(s,e) = (z, w) for some (z, w) ∈ T(s,e)P , then

ξ = χ(s,e)(Jξ
#
(s,e)) = χ(s,e)(z, w) = χ(s,e)(z, 0). (4.78)

Therefore, the map

Ω0(gE)→ Ω0(gE), z 7→ χ(s,e)(z, 0) =
sin ad s

ad s
z, (4.79)

is invertible.
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Proof of Proposition 4.6.4. If (z, w) ∈ T(s,e)P , then Proposition 4.6.3 implies that

(κ, γ)L2(z, w) =
(
s,

1− cos ad s

ad s
z + w

)
L2
. (4.80)

Since (s, [s, z])L2 = 0,

(
s,

1− cos ad s

ad s
z
)
L2

=
∞∑
j=1

(−1)j−1

(2j)!

(
s, (ad s)2j−1z

)
L2

= 0. (4.81)

Similarly,

(κ, χ)L2(z, w) =
(
s,

sin ad s

ad s
z
)
L2

=
∞∑
j=0

(−1)j

(2j + 1)!
(s, (ad s)2jz)L2

= (s, z)L2 .

(4.82)

Therefore, the identities (1) and (2) hold at (s, e). By the right G-equivariance, they

hold everywhere.

Then, we prove the formula for the covariant derivative dγκ(s,e). Note that

dγκ = dκ+ [γ, κ]. Therefore, if (z, w) ∈ T(s,e)P , we have

dγκ(s,e)(z, w) = dκ(s,e)(z, w) +
[1− cos ad s

ad s
z + w, s

]
= ad s(w) + z + ad s

(cos ad s− 1

ad s
z − w

)
= cos ad s(z).

(4.83)
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To define Ψ, it is enough to define Ψ(s,e) which needs to satisfy

cos ad s(z) = Ψ(s,e)
sin ad s

ad s
(z). (4.84)

As a consequence,

Ψ(s,e) = cos ad s
ad s

sin ad s
. (4.85)

The following results verify that ω is compatible with J . Then, we will verify

that ω is positive so that ω is a Kähler form on Ω0(gE)× G.

Proposition 4.6.5. The following hold for any ξ, η ∈ Ω0(gE):

1. ω(ξ#, Jη#) = (ξ,Ψ(η))L2.

2. ω(Jξ#, Jη#) = ω(ξ#, η#).

3. (ξ,Ψ(η))L2 = (η,Ψ(ξ))L2.

As a consequence, ω(J ·, J ·) = ω(·, ·).

Proof. We compute

ω(ξ#, Jη#) = −d(κ, λ)L2(ξ#, Jη#)

= −ξ#(κ, λ(Jη#))L2 + Jη#(κ, λ(ξ#)) + (κ, λ([ξ#, Jη#])L2

= (κ(Jη#), ξ)L2) + (κ, λ(J [ξ#, η#]))L2

= (dγκ(Jη#), ξ)L2

= (Ψ(η), ξ)L2 .

(4.86)
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Here, we have used the formula that [ξ#, Jη#] = J [ξ#, η#], since J commutes with

the right G-action. Moreover, dκ(Jη#) = dγκ(Jη#), since Jη# is horizontal. This

proves (1). To prove (2), we compute

ω(Jξ#, Jη#) = (κ, γ)L2([Jξ#, Jη#])L2

= (κ, γ)L2(−[ξ#, η#])L2

= (κ, γ)L2(−[ξ, η]#)L2

= −(κ, [ξ, η])L2 .

(4.87)

On the other hand,

ω(ξ#, η#) = −ξ#(κ, γ(η#))L2 + η#(κ, γ(ξ#))L2 + (κ, γ([ξ#, η#])

= −([κ, ξ], η)L2 + ([κ, η], ξ)L2 + (κ, [ξ, η])L2

= (κ, [η, ξ])L2 .

(4.88)

Finally, to prove (3), we first compute

d(κ, χ)L2(Jξ#, Jη#) = Jξ#(κ, χ(Jη#))L2 − Jη#(κ, χ(Jξ#))L2 − (κ, χ([Jξ#, Jη#])L2

= (dκ(Jξ#), η)L2 − (dκ(Jη#), ξ)L2

= (dγκ(Jξ#), η)L2 − (dγκ(Jη#), ξ)L2

= (Ψχ(Jξ#), η)L2 − (Ψχ(Jη#), ξ)L2

= (Ψ(ξ), η)L2 − (Ψ(η), ξ)L2 ,

(4.89)
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and then note that d(κ, χ)L2 = 0 by Proposition 4.6.4.

Proposition 4.6.6. The metric g = ω(·, J ·) is positive-definite. In particular, ω is

non-degenerate.

Proof. If ξ, η ∈ Ω0(gE), then

g(ξ# + Jη#, ξ# + Jη#) = ω(ξ# + Jη#, Jξ# − η#)

= ω(ξ#, Jξ#)− ω(ξ#, η#) + ω(Jη#, Jξ#)− ω(Jη#, η#)

= (ξ,Ψ(ξ))L2 + (η,Ψ(η))L2 − 2(κ, [ξ, η])L2 .

(4.90)

Since g is right G-invariant, it is enough to show the positive-definiteness at (s, e).

Hence, we need to show that

(ξ,Ψ(s,e)(ξ))L2 + (η,Ψ(s,e)(η))L2 − 2(s, [ξ, η])L2

=

∫
X

〈ξ,Ψ(s,e)(ξ)〉L2 + 〈η,Ψ(s,e)(η)〉L2 − 2〈s, [ξ, η]〉L2 > 0

(4.91)

for every s ∈ Ω0(gE) and nonzero ξ + iη ∈ Ω0(gCE). Note that the integrand is

positive pointwise. In fact, after fixing a base point x ∈ X, the polar decomposition

ψ becomes the usual polar decomposition ψx : u(n)× U(n)→ GLn(C). The unique

complex structure on u(n)× U(n) making ψx a biholomorphism is compatible with

the tautological 1-form on u × U(n) = T ∗U(n) so that the tautological 1-form is a

Kähler form (see [35, Theorem 5.1 and Remark 5.2]). The resulting Kähler metric on

u(n)×U(n) evaluated at (ξ# +Jη#)(x) is exactly the integrand and hence positive.

Here, (ξ# + Jη#)(x) is the value of the section ξ# + Jη# ∈ Ω0(gE) ⊕ Ω0(gE) at
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x.
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Chapter 5: The moduli space as a quasi-projective variety

This chapter is based on the author’s paper [16].

5.1 Infinite dimensional GIT quotient

5.1.1 S-equivalence classes and closures of orbits

In Section 5.1, we will prove Theorem I. We start with a simple lemma in

point-set topology.

Lemma 5.1.1. Let Y be a first countable topological space on which a topological

group G acts. Let xn be a sequence in Y such that [xn] converges to [x] for some

x ∈ Y in Y/G. Then, there exists a subsequence xnk
and a sequence gk ∈ G such

that xnk
gk converges to x in Y .

Proof. Let π : Y → Y/G be the quotient map. Since Y is first countable, we can

find nested open neighborhoods

· · · ⊂ Uk ⊂ Uk−1 ⊂ · · · ⊂ U1 (5.1)

of x that form a neighborhood basis. Now, for each Uk, π(Uk) is open and contains
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[x]. Hence, there exists some [xnk
] ∈ π(Uk). Therefore, there exists some gk ∈ G

such that xnk
gk ∈ Uk. Now we claim that xnk

gk converges to x. Let V be an open

neighborhood of x. Then, Uj ⊂ V for some j. If k > j, then xnk
gk ∈ Uk ⊂ Uj ⊂

V .

Then, among other properties, we first show that π identify GC-orbits whose

closures in Bss intersect.

Proposition 5.1.2. Two semistable Higgs bundles are S-equivalent if and only if

the closures of their GC-orbits in Bss intersect.

Proof. Let r : Bss → m−1(0) be the retraction defined by the Yang-Mills-Higgs

flow. Since the Yang-Mills-Higgs flow preserves GC-orbits, if (A,Φ) is a semistable

Higgs bundle, then r(A,Φ) is contained in (A,Φ)GC. Moreover, by [67, Theorem

1.4], r(A,Φ) is isomorphic to Gr(A,Φ). Therefore, if (A1,Φ1) and (A2,Φ2) are

two semistable Higgs bundles that are S-equivalent, then r(A1,Φ1) is isomorphic to

r(A2,Φ2). Therefore,

(A1,Φ1)GC 3 r(A1,Φ1) ∼GC r(A2,Φ2) ∈ (A2,Φ2)GC, (5.2)

where ∼GC means the equivalence relation induced by the GC-action.

Conversely, suppose that

(B,Ψ) ∈ (A1,Φ1)GC ∩ (A2,Φ2)GC ∩Bss. (5.3)

By replacing (B,Ψ) by r(B,Ψ), we may assume that (B,Ψ) is polystable. Now,
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r(A1,Φ1) is also polystable and contained in (A1,Φ1)GC. Since (A1,Φ1)GC contains

a unique polystable orbit (see [17, Lemma 3.7]), r(A1,Φ1) is isomorphic to (B,Ψ).

Similar argument shows that r(A2,Φ2) is isomorphic to (B,Ψ). Since r(Ai,Φi) is

further isomorphic to Gr(Ai,Φi) for i = 1, 2. We see that (A1,Φ1) and (A2,Φ2) are

S-equivalent.

Using the local slice theorem, Theorem 4.2.1, for the GC-action, we are able to

prove that polystable orbits in Bss are exactly closed orbits.

Proposition 5.1.3. A semistable Higgs bundle is polystable if and only if its GC-

orbit is closed in Bss.

Proof. The same proof of [58, Proposition 2.4(ii)] works. For the sake of com-

pleteness, we spell out the details. Let (A,Φ) be a semistable Higgs bundle and

r : Bss → m−1(0) be the retraction defined by the Yang-Mills-Higgs flow. Since

the Yang-Mills-Higgs flow preserves the GC-orbits, if (A,Φ)GC is closed in Bss, then

obviously r(A,Φ) ∈ (A,Φ)GC. This means that (A,Φ) is polystable. Conversely, as-

sume that (A,Φ) is polystable. By the Hitchin-Kobayashi correspondence, we may

assume that (A,Φ) lies in m−1(0). Let (A,Φ)gi be a sequence converging to some

(B,Ψ) ∈ Bss. Since (A,Φ) is polystable, r[(A,Φ)gi] is isomorphic to (A,Φ). By the

Hitchin-Kobayashi correspondence, r[(A,Φ)gi] ∈ (A,Φ)G. Moreover, by continuity,

r[(A,Φ)gi] converges to r(B,Ψ). Since the G-action is proper, (A,Φ)G is closed,

and hence r(B,Ψ) ∈ (A,Φ)G. On the other hand, r(B,Ψ) ∈ (B,Ψ)GC, and hence

(A,Φ) ∈ (B,Ψ)GC. By Theorem 4.2.1, there is an GC-invariant open neighborhood

U of (A,Φ) such that ZHC ×HC GC → U is a homeomorphism. As a consequence,
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(B,Ψ) ∈ U .

Then, it suffices to show that (A,Φ)GC is closed in U . By the homeomorphism

ZHC ×HC GC → U , it suffices to prove that if [0, gi] converges to [x, g], then x = 0.

By Lemma 5.1.1, there is a subsequence gik and a sequence hk ∈ HC such that

(0 · h−1
k , hkgik) converges to (x, g). This immediately shows that x = 0.

The following result allows us to identify M with Bss � GC. From now on,

we will use [·]S and [·] to denote S-equivalence classes and isomorphism classes,

respectively.

Proposition 5.1.4. The inclusion Bps ↪→ Bss induces a homeomorphism

Bps/GC ∼−→ Bss � GC. (5.4)

Proof. Let r : Bss →m−1(0) be the retraction defined by the Yang-Mills-Higgs flow.

We claim that r induces the inverse of the map

j : Bps/GC ∼−→ Bss � GC, (5.5)

where j : Bps ↪→ Bss is the inclusion. By definition of the S-equivalence, r induces

a well-defined continuous map

r : Bss � GC → Bps/GC, [A,Φ]S 7→ [r(A,Φ)]. (5.6)
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Then, if (A,Φ) is a polystable Higgs bundle,

rj[A,Φ] = r[A,Φ]S = [r(A,Φ)]. (5.7)

Since (A,Φ) is polystable, it is isomorphic to the graded object Gr(A,Φ) and hence

to r(A,Φ). Therefore, [r(A,Φ)] = [A,Φ]. Conversely, if (A,Φ) is semistable, then

jr[A,Φ]S = j[r(A,Φ)] = [r(A,Φ)]S. (5.8)

By definition of the S-equivalence, (A,Φ) is S-equivalent to r(A,Φ), since r(A,Φ)

is isomorphic to Gr(A,Φ). Hence, [r(A,Φ)]S = [A,Φ]S.

Corollary 5.1.5. Every fiber of π : Bss → Bss �GC contains a unique GC-orbit that

is closed in Bss.

Proof. This follows from Proposition 5.1.3 and 5.1.4.

5.1.2 π-saturated open neighborhoods

To further study the quotient map π : Bss → M, we will improve the local

slice theorem, Theorem 4.2.1, so that the open neighborhood in Bss provided by the

theorem is not only GC-invariant but also saturated with respect to π.

Lemma 5.1.6. Let U be a GC-invariant open subset of Bss. Then the following are

equivalent.

1. If (A,Φ) ∈ U , then the closure of its GC-orbit in Bss is contained in U .
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2. U is π-saturated.

Proof. By Proposition 5.1.2, (2) implies (1). To show that (1) implies (2), suppose

that (B,Φ) ∈ U and (B′,Φ′) ∈ Bss such that π(B,Ψ) = π(B′,Ψ′). We need to

show that (B′,Ψ′) ∈ U . By Corollary 5.1.5, there exists a polystable Higgs bundle

(B′′,Ψ′′) such that

(B′′,Ψ′′)GC ⊂ (B,Ψ)GC ∩ (B′,Ψ′)GC ∩Bss. (5.9)

By assumption (1), (B′′,Ψ′′) ∈ U . If (B′,Ψ′) /∈ U , then

(B′,Ψ′)GC ∩ U ∩Bss = ∅. (5.10)

This is a contradiction.

Proposition 5.1.7. Let (A,Φ) be a polystable Higgs bundle. Then, every GC-

invariant open neighborhood of (A,Φ) in Bss contains a π-saturated open neigh-

borhood.

Proof. Let U be an GC-invariant open neighborhood of (A,Φ) in Bss. Take a neigh-

borhood basis Vn of [A,Φ]S in Bss�GC such that Vn ⊂ Vn−1 for all n ≥ 1. We claim

that π−1(Vn) is contained in U for some n, where π : Bss → Bss � GCis the quotient

map. Assuming the contrary, we can choose a sequence (An,Φn) such that

1. (An,Φn) /∈ U , and

2. [An,Φn]S converges to [A,Φ]S in M.
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Since U is GC-invariant, the closure of (An,Φn)GC in Bss is contained in Bss \ U .

Then, since the closure of (An,Φn)GC in Bss contains a unique polystable orbit

(Proposition 5.1.5), we may assume that each (An,Φn) is polystable. As a conse-

quence, [An,Φn] converges to [A,Φ] in Bps/GC. By Lemma 5.1.1, there is a sub-

sequence (Ank
,Φnk

) and a sequence gk ∈ GC such that (Ank
,Φnk

) · gk converges to

(A,Φ). This is impossible, since (Ank
,Φnk

) · gk /∈ U .

Theorem 5.1.8. Let (A,Φ) ∈m−1(0). If B is sufficiently small, then the map

θ : ZHC ×HC GC → Bss, [x, g] 7→ θ(x)g (5.11)

is a homeomorphism onto an π-saturated open neighborhood of (A,Φ) in Bss.

Proof. By the local slice theorem, Theorem 4.2.1, there exists some open neighbor-

hood U of (A,Φ) in Bss such that the map

ZHC ×HC GC → U, [x, g] 7→ θ(x)g, (5.12)

is a homeomorphism, where θ is the Kuranishi map (see §3.2.1). By Proposi-

tion 5.1.7, let U ′ be an open neighborhood of (A,Φ) in Bss that is π-saturated

and contained in U . Then, there is a HC-invariant open neighborhood Q of 0 in H1

such that θ maps (ZHC ∩Q)×HC GC into U ′. Now, let B′ be an open ball around 0

in H1 such that B′ ⊂ B ∩Q. Then, we see that

(B′ ∩ Z)HC ⊂ (Z ∩Q)HC ⊂ ZHC ∩Q. (5.13)
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Let Z′ = B′ ∩ ν−1
0,C(0) = B′ ∩ Z, and we have Z′ ⊂ Z. Let U ′′ be the image of

Z′HC ×HC GC under θ. Then

θ : Z′HC ×HC GC → U ′′ (5.14)

is a homeomorphism, and U ′′ is contained in U ′.

We prove that U ′′ is π-saturated. Let θ(x)g ∈ U ′′ for some x ∈ Z′ and

g ∈ GC. By Lemma 5.1.6, we need to show that the closure of θ(x)gGC = θ(x)GC

in Bss is contained in U ′′. Let gn be a sequence in GC such that θ(x)gn converges

in Bss. Since U ′ is π-saturated, the limiting point is in U ′, and we may assume

that it is θ(y)h for some y ∈ Z and h ∈ GC. Since θ is a homeomorphism, we

see that [x, gn] converges to [y, h] in ZHC ×HC GC. By Lemma 5.1.1, there is a

subsequence gnj
∈ GC and a sequence kj ∈ HC such that (xk−1

j , kjgnj
) converges to

(y, h) in ZHC × GC. By [60, Corollary 4.9], Z′HC is saturated with respect to the

quotient map ZHC → ZHC �HC. Hence y ∈ Z′ so that [y, h] ∈ Z′HC ×HC GC and

θ(y)h ∈ U ′′.

Now we can obtain Kuranishi local models for Bss � GC in the following way.

Fix [A,Φ]S ∈ Bss � GC such that (A,Φ) ∈ m−1(0). By Theorem 5.1.8, the natural

map

θ : ZHC ×HC GC → U (5.15)

is a homeomorphism onto an π-saturated open neighborhood U of (A,Φ). By the
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results in §3.2.3, θ induces a well-defined map

ϕ : ZHC �HC → π(U) ⊂ Bss � GC, [x] 7→ [θ(x)]S, (5.16)

and π(U) is an open neighborhood of [A,Φ]S in Bss � GC. By Proposition 5.1.4, we

see that it is a biholomorphism.

Moreover, we can also describe the structure sheaf of M in the following way.

Proposition 5.1.9. The structure sheaf of M is equal to π∗O
GC

B . In other words,

for any open subset V in M, the natural map π∗ : O(V ) 7→ O(π−1V )G
C

is a bijection.

Proof. It suffices to prove the following. Let (A,Φ) ∈ m−1(0). By Theorem 5.1.8

and the remark after it, we see that the natural map

θ : ZHC ×HC GC → U (5.17)

is a homeomorphism onto an π-saturated open neighborhood of (A,Φ) in Bss. More-

over, it induces a biholomorphic map ϕ : ZHC � HC → π(U). By the definition of

the structure sheaf of B, we easily see that θ is actually a biholomorphism. As a

consequence, there is a chain of isomorphisms

O(π(U))
ϕ∗−→ O(ZHC �HC)

π∗−→ O(ZHC)H
C ∼−→ O(ZHC ×HC GC)G

C θ
−1

−−→ O(U)G
C
.

(5.18)

Moreover, the composition is exactly π∗ : O(π(U))→ O(U)G
C
.

As a corollary, the quotient map π : Bss → Bss � GC is a categorical quotient

134



in the following sense.

Corollary 5.1.10. Let Z be a complex space and g : Bss → Z a GC-invariant holo-

morphic map. Then, g induces a unique holomorphic map g : M→ Z.

Proof. Define g[A,Φ]S = g(A,Φ). By Proposition 5.1.2, it is well-defined. The

holomorphicity of f follows from Proposition 5.1.9.

Proof of Theorem I. This follows from Proposition 5.1.2, 5.1.3, 5.1.5, 5.1.9 and

Corollary 5.1.10.

5.2 Descent lemmas for vector bundles

In this section, we will first generalize the descent lemma for vector bundles

in [13, Theorem 2.3] to analytic Hilbert quotients, and then prove a similar descent

lemma for the quotient map π : Bss → Bss � GC.

Let G be a complex reductive Lie group acting holomorphically on a complex

space X. Suppose that X admits an analytic Hilbert quotient. In other words, there

is a surjective G-invariant holomorphic map π : X → X �G such that the following

hold.

1. π is Stein in the sense that inverse images of Stein subspaces are Stein.

2. OX�G = π∗O
G
X . In other words, for every open subset U of X � G, the map

π∗ : OX�G(U)→ OX(π−1U)G is an isomorphism.

Proposition 5.2.1. Let E → X be a holomorphic G-bundle over X. If Gx acts

trivially on the fiber Ex for every x ∈ X whose G-orbit is closed, then there is a
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vector bundle F → X �G such that π∗F = E. Moreover, O(F ) = π∗O(E)G, where

O(F ) and O(E) are the sheaves of holomorphic sections of F and E, respectively.

Proof. We closely follow the proof of [13, Theorem 2.3]. Fix x ∈ X such that Gx is

closed in X. Choose a basis σ1, · · · , σr for Ex. Then, we may consider the map

si : G/Gx → E, si(gGx) = gσi. (5.19)

Since Gx acts trivially on Ex, si is well-defined and holomorphic. Now, choose

an open Stein neighborhood U of π(x). Since π is an analytic Hilbert quotient,

π−1(U) is an open Stein neighborhood containing Gx. Since Gx is closed in π−1(U),

by [28, Proposition 3.1.1], Gx is a closed complex subspace of π−1(U). Since G acts

transitively on Gx, Gx is smooth. Therefore, the natural map G/Gx → Gx is a

biholomorphism. As a consequence, we obtain a G-equivariant map

si : Gx→ E, si(gx) = gσi, (5.20)

which is a holomorphic section of E over Gx. Since Gx is a closed complex subspace

of π−1(U), and π−1(U) is Stein, si can be extended to a holomorphic section of E

over π−1(U). By averaging over a maximal compact subgroup K of G, we may

assume that each si is K-equivariant. Since G is the complexification of K, the

argument in the proof of [51, Theorem 1.1] shows that each si is also G-equivariant.

Since Gx acts trivially on Ex, si(x) = σi, and hence {si} is linearly independent

over an open neighborhood V of x in π−1(U). Since each si is G-equivariant, V can
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be chosen to be G-invariant. By [44, Proposition 3.10], we may further assume that

V = π−1(U ′) for some smaller open neighborhood U ′ ⊂ U of π(x) in M.

Now, note that every fiber of π contains a unique closed orbit ( [31, §3, Corol-

lary 3]). Therefore, the argument in the above paragraph provides an open cover-

ing Ui of X � G such that E is trivial over π−1(Ui), and the transition functions

gij : π−1(Ui) ∩ π−1(Uj) → GLn(C) are G-invariant. As a consequence, by the def-

inition of the structure sheaf of X � G, they descend to holomorphic functions

g̃ij : π(π−1(Ui) ∩ π−1(Uj)) → GLn(C). Since every fiber of π contains a unique

closed orbit, π(π−1(Ui) ∩ π−1(Uj)) = Ui ∩ Uj. Then, the data {g̃ij, Ui} defines a

holomorphic vector bundle F over X � G. It is easy to see that π∗F = E and

O(F ) = π∗O(E)G.

Proof of Theorem J. Fix (A,Φ) ∈m−1(0). By Theorem 5.1.8, the map

θ : ZHC ×HC GC → Bss (5.21)

induced by the Kuranishi map θ : ZHC → Bss for (A,Φ) is a GC-equivariant homeo-

morphism onto a π-saturated open neighborhood of (A,Φ) in Bss. Then, we consider

the pullback bundle θ
∗L on ZHC ×HC GC. Clearly, θ∗L is the restriction of θ

∗L to

ZHC. By Corollary 3.2.8 and Proposition 4.2.2, if x ∈ Z has a closed HC-orbit,

then θ(x) is polystable, and (HC)x = (GC)θ(x). Therefore, (HC)x acts trivially on

the fiber (θ∗L)x = Lθ(x) for every x ∈ Z that has a closed HC-orbit. By Propo-

sition 5.2.1, the bundle θ∗L descends to ZHC � HC. By shrinking Z if necessary,

we may assume that the descended bundle is trivial over ZHC � HC. As a conse-
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quence, there is a holomorphic frame {σi} for θ∗L over ZHC such that each σi is

HC-equivariant. Hence, each section σi extends to a GC-equivariant holomorphic

section of θ
∗L over ZHC ×HC GC. Transported back to Bss by θ, we obtain a local

frame {σi} for L → Bss such that each σi is a GC-equivariant holomorphic section

over a π-saturated open neighborhood of (A,Φ) in Bss. The rest follows from the

second paragraph in the proof of Proposition 5.2.1.

5.3 The Kähler metric on the moduli space

In this section, we will prove Theorem L. Let us start with the construction

of a line bundle on the moduli space M. By [12], there is a holomorphic Hermitian

line bundle L over A such that the curvature of the Hermitian metric is precisely

−2π
√
−1Ω1, where

Ω1(α1, α2) =
1

4π2

∫
X

tr(α1 ∧ α2), α1, α2 ∈ Ω1(gE). (5.22)

Moreover, the GC-action on A lifts to L, and the G-action preserves the Hermitian

metric. The vertical part of the infinitesimal action of ξ ∈ Ω0(gE) on a smooth

section s of L is given by 2π
√
−1〈µ1, ξ〉s, where ξ# is the vector field on A generated

by ξ, and

µ1(A) =
1

4π2
FA. (5.23)
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On the other hand, we consider the trivial line bundle Ω1,0(gCE) × C over Ω1,0(gCE).

A Kähler potential on Ω1,0(gCE) is given by

ρ(Φ) =
1

8π2
‖Φ‖2

L2 . (5.24)

Letting Ω2 =
√
−1∂∂ρ, we see that Ω1 + Ω2 = ΩI on C. Let s(Φ) = (Φ, 1) be the

canonical section of the trivial line bundle Ω1,0(gCE)× C. Setting

|s|2 = exp(−2πρ), (5.25)

we obtain a Hermitian metric on the trivial line bundle Ω1,0(gCE) × C such that its

curvature is −2π
√
−1Ω2. Letting GC act on C trivially, we see that the GC-action on

Ω1,0(gCE) lifts to the trivial line bundle Ω1,0(gCE)×C. Moreover, the induced G-action

preserves the Hermitian metric, since ρ is G-invariant. Finally, the vertical part of

the infinitesimal action of ξ ∈ Ω0(gE) on s is given by 2π
√
−1〈µ2, ξ〉s, where

µ2(Φ) =
1

4π2
[Φ,Φ∗]. (5.26)

Now, we pullback the line bundle L on A and the trivial line bundle on Ω1,0(gCE)

to C = A×Ω1,0(gCE), and denote the resulting line bundle still by L. We equip L with

the product of the pullback Hermitian metrics. As a consequence, the GC-action on

C lifts to L, and the G-action still preserves the resulting Hermitian metric. The
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curvature of this Hermitian metric is precisely

−2π
√
−1(Ω1 + Ω2) = −2π

√
−1ΩI . (5.27)

Moreover, the vertical part of the infinitesimal action of ξ ∈ Ω0(gE) on a smooth

section s of L is given by 2π
√
−1〈µ1 + µ2, ξ〉s, and µ1 + µ2 = µ on C. The following

shows that the restriction of the line bundle L to Bss descends to the moduli space

M.

Proposition 5.3.1. There is a line bundle L → M such that π∗L = L|Bss, and

O(L) = π∗O(L|Bss)G
C
.

Proof. We follow the proof of [58, Proposition 2.14]. By Theorem J, it suffices to

prove that GC
(A,Φ) acts on L(A,Φ) trivially for every (A,Φ) ∈m−1(0). If ξ ∈ Lie(G(A,Φ))

and s ∈ L(A,Φ), then

ξ · s = 2π
√
−1〈µ, ξ〉s. (5.28)

Therefore, if µ(A,Φ) = 0, then ξ · s = 0. Since G-stabilizers are connected (Propo-

sition 5.5.1), we conclude that G(A,Φ) acts trivially on L(A,Φ). Since (GC)(A,Φ) is the

complexification of G(A,Φ), we conclude that GC
(A,Φ) acts trivially on L(A,Φ).

Now, we show that the moduli space M admits a weak Kähler metric. Let

Q be a stratum in the orbit type stratification of M. By Theorem F, i−1(Q) is a

stratum in the orbit type stratification of m−1(0)/G, where i : m−1(0)/G
∼−→ Bps/GC

is the Hitchin-Kobayashi correspondence. By Theorem D, i−1(Q) is a hyperKähler

manifold. Let ωi−1Q be the Kähler form on i−1(Q) induced by the Kähler form ΩI
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on C. Then, (i−1)∗ωi−1Q is a Kähler form on Q. Therefore, every stratum in M is a

Kähler manifold.

Let [A,Φ]S ∈M. By Proposition 5.3.1, we may choose a GC-equivariant holo-

morphic section s of L over an π-saturated open neighborhood π−1(U) of (A,Φ) in

Bss such that s vanishes nowhere in π−1(U), where U is an open neighborhood of

[A,Φ]S in M. Then, we define

u = − 1

2π
log |s|2h, (5.29)

where h is the Hermitian metric on L. Since h is preserved by the G-action, u is

G-invariant. As a consequence, the restriction of u to π−1(U) ∩m−1(0) induces a

well-defined continuous function u0 : U → R.

Proposition 5.3.2. The function u0 is continuous and smooth along each stratum

Q. Moreover, u0|Q is a Kähler potential for the Kähler form on each stratum Q in

M. In particular, u0 is a continuous plurisubharmonic function.

Proof. By Theorem D, π−1(Q)∩m−1(0)→ Q is a submersion. Hence, u0 is smooth

along Q. By construction of u and the Hermitian metric h on L,

√
−1∂∂(u|π−1(Q)∩m−1(0)) = ΩI |π−1(Q)∩m−1(0). (5.30)

Therefore, the second statement follows from the construction of the Kähler form

on Q. Now we have shown that the restriction of u0 to Ms is strictly plurisubhar-

monic. Since it is continuous, by the normality of M and the extension theorem of
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plurisubharmonic functions (see [22]), we conclude that u0 is plurisubharmonic.

Proof of Theorem L. By Proposition 5.3.2, there is an open covering Ui of M, and

a stratum-wise strictly plurisubharmonic function ρi : Ui → R on each Ui such that

ρi|Ms − ρj|Ms is pluriharmonic on Ms ∩ Ui ∩ Uj. Hence, we may write

ρi|Ms − ρj|Ms = <(fij) (5.31)

for some holomorphic function fij : Ui ∩ Uj ∩Ms → C. By Corollary 5.5.4 and the

normality of M, fij has a unique holomorphic extension to Ui ∩Uj. Then, we have

ρi − ρj = <(fij) on Ui ∩ Uj. (5.32)

Hence, {Ui, ρi} determines a weak Kähler metric on M.

5.4 Projective compactification

5.4.1 Symplectic cuts

In this section, we will use the symplectic cut to compactify the moduli space

and thus prove Theorem H. Recall that there is a holomorphic C∗-action on C given

by

t · (A,Φ) = (A, tΦ), t ∈ C∗, (A,Φ) ∈ C. (5.33)

Clearly, Bss is C∗-invariant. Then, it is easy to verify that the natural map C∗ ×

Bss → C∗ ×M satisfies (4) in Theorem I, where GC acts on C∗ trivially. Since the
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GC-action and the C∗-action on C commute, we see that the holomorphic action

C∗ × Bss → Bss descends to a holomorphic action C∗ ×M → M. Moreover, each

stratum in the orbit type stratification of M is C∗-invariant.

Furthermore, the induced U(1)-action on M is stratum-wise Hamiltonian. To

see this, we first note that U(1) preserves the Kähler form ΩI on C. Then, consider

the function f : C→ R given by

f(A,Φ) = − 1

4π2

1

2
‖Φ‖2

L2 . (5.34)

Proposition 5.4.1. The restriction of f to m−1(0) defines a continuous function,

denoted by the same letter f , on M that is smooth along each stratum Q of M.

Moreover, the restriction f |Q is a moment map for the U(1)-action on Q with respect

to the Kähler form on Q, the one induced by the Kähler form ΩI on C.

Proof. It is shown in [33, p.92] that f is a moment map for the U(1)-action on

C with respect to the Kähler form ΩI . Since f is G-invariant, its restriction to

m−1(0) descends to m−1(0)/G and hence defines a continuous function on M, which

we denote by the same letter f . Let Q be a stratum in the moduli space. By

Theorem D, the restriction of f to π−1(Q)∩m−1(0) descends to a smooth function

on Q which is precisely the restriction of f : M → R to Q. Since the quotient map

π−1(Q) ∩m−1(0)→ Q is U(1)-equivariant, we conclude that f |Q is a moment map

for the U(1)-action on Q.

To perform the symplectic cut of M, we consider the direct product M×C and
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let C∗ act on C by multiplication. Hence, C∗ acts diagonally on M× C. Moreover,

M × C admits a stratification such that each stratum Q × C is equipped with the

product Kähler form. The next result implies that the induced U(1) action on M×C

is also stratum-wise Hamiltonian.

Proposition 5.4.2. The continuous map

f̃([A,Φ]S, z) = f([A,Φ]S)− 1

2
‖z‖2 (5.35)

is smooth along each stratum Q×C, and its restriction to Q×C is a moment map

for the induced U(1)-action on Q × C with respect to the product Kähler form on

Q× C.

Proof. It is clear that f̃ is continuous on M × C. For each stratum Q, Proposi-

tion 5.4.1 implies that f |Q is a smooth moment map on Q. Since U(1) acts diago-

nally on Q × C, it is easy to see that f̃ |Q×C is a moment map for the U(1)-action

with respect to the product Kähler form on Q× C. Therefore, f̃ is a stratum-wise

moment map.

Now we recall the definition of the Hitchin fibration. Given a Higgs bundle

(A,Φ), the coefficient of λn−i in the characteristic polynomial det(λ+ Φ) is a holo-

morphic section of Ki
M , where n is the rank of E, i = 1, · · · , n, and KM is the

canonical bundle on the Riemann surface M . Since these sections are clearly GC-

invariant, by Theorem I, we have obtained a well-defined holomorphic map, called
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the Hitchin fibration,

h : M→
n⊕
i=1

H0(M,Ki
M). (5.36)

It is known that h is proper (see [66, Theorem 2.15] or [33, Theorem 8.1]). Therefore,

the nilpotent cone h−1(0) is compact so that f has a lower bound on h−1(0). We

choose a constant c < 0 such that h−1(0) ⊂ f−1(c, 0]. In other words, f−1(−∞, c]

does not contain the nilpotent cone. Then, we perform the symplectic cut of M at

the level c. By definition, it is the singular symplectic quotient

f̃−1(c)/U(1) =
{

([A,Φ]S, z) ∈M× C : f([A,Φ]S)− 1

2
‖z‖2 = c

}
/U(1). (5.37)

If M×C admits a (strong) Kähler metric, then we may directly apply the analytic

GIT developed in [30]. Since we are unable to prove this, we will have to take a

detour to prove that the symplectic cut of M at the level c is a compact complex

space.

Let W = (M × C) \ (h−1(0) × {0}). It is clear that W is C∗-invariant and

open. We first show that the analytic Hilbert quotient W/C∗ exists.

Lemma 5.4.3. The C∗-action on M \ h−1(0) is proper.

Proof. Clearly, h−1(0) is C∗-invariant. Suppose that

1. xi converges to x′ /∈ h−1(0), and

2. ti · xi converges to y /∈ h−1(0).

We first claim that |ti| cannot be unbounded. If not, we may assume that |ti| → ∞

and let t′i = ti/|ti|. By passing to a subsequence, we may assume that t′i converges
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to t′∞, and |t′∞| = 1. As a consequence, since x′ /∈ h−1(0),

lim
i→∞

t′i · xi = t′∞ · x′ /∈ h−1(0). (5.38)

On the other hand, since ti · xi converges,

lim
i→∞

h

(
1

|ti|
ti · xi

)
= 0. (5.39)

Since h is proper, by passing to a subsequence, we may assume that

1

|ti|
ti · xi = t′i · xi (5.40)

converges to an element in h−1(0). This is a contradiction.

Since ti is bounded, it has a subsequence that is convergent. We claim that

such a sequence cannot converge to 0. If not, suppose that ti → 0. Then,

lim
i→∞

h(ti · xi) = 0, (5.41)

and hence ti · xi has a subsequence converging to an element in h−1(0). Therefore,

y ∈ h−1(0). This is a contradiction.

Corollary 5.4.4. The C∗-action on W is proper.

Proof. Note that

W = (M \ h−1(0)× C) ∪ (M× C∗). (5.42)
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Suppose there are sequences

1. (xi, ai) ∈ W converging to (x′, a′) ∈ W , and

2. ti · (xi, ai) ∈ W converging to (y, b) ∈ W .

We need to show that ti has a subsequence that converges in C∗. We prove this by

considering the following cases:

1. Suppose (x′, a′) ∈ M × C∗. Then, (xi, ai) ∈ M × C∗ if i � 0. Hence, ti =

(tiai)a
−1
i converges to ba′−1. If b 6= 0, then ba′−1 ∈ C∗, and we are done with

this case. If b = 0, then y /∈ h−1(0). Moreover, limi→∞ h(tixi) = 0. Then, tixi

has a subsequence converging to an element in h−1(0). Since this element has

to be y, we have shown that b = 0 is impossible.

2. Suppose that (x′, a′) ∈ (M \h−1(0))×C. Then, both (xi, ai) and ti · (xi, ai) lie

in (M \ h−1(0))×C if i� 0. If y /∈ h−1(0), then Lemma 5.4.3 applies. Hence,

we may assume that y ∈ h−1(0) and hence b 6= 0. If a′ 6= 0, then ti = (tiai)a
−1
i

converges to ba′−1, and we are done. Hence, we may assume that a′ = 0, and

therefore

tiai → b 6= 0,

ai → a′ = 0.

(5.43)

We claim that ti is bounded, so that tiai converges to 0, which is a contradic-

tion. If not, we may assume that |ti| → ∞ and let t′i = ti/|ti|. By passing to

a subsequence, we may further assume that t′i converges to t′∞ with |t′∞| = 1.
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As a consequence, t′ixi converges to t′∞x
′ /∈ h−1(0). On the other hand,

lim
i→∞

h(t′ixi) = lim
i→∞

h

(
1

|ti|
tixi

)
= 0. (5.44)

Hence, the properness of h implies that t′ixi contains a subsequence converging

to an element in h−1(0), which is a contradiction.

Corollary 5.4.5. The analytic Hilbert quotient of W by C∗ exists. Moreover, W/C∗

is a geometric quotient.

Proof. This follows from Corollary 5.4.4 and [31, §4, Corollary 2].

Then, we study the relationship between the symplectic cut f̃−1(c)/U(1) and

the analytic Hilbert quotient W/C∗. Let (M × C)ss be the semistable points in

M × C determined by f̃ − c. In other words, ([A,Φ]S, z) lies in (M × C)ss if and

only if the closure of its C∗-orbit in M× C intersects f̃−1(c).

Lemma 5.4.6. W = (M× C)ss = C∗ · f̃−1(c).

Proof. We first show that f̃−1(c) ⊂ W . Suppose that this is not true, and we

choose some ([A,Φ]S, z) ∈ f̃−1(c) such that ([A,Φ]S, z) /∈ W . In other words,

[A,Φ]S ∈ h−1(0) and z = 0. Hence, f̃([A,Φ]S, z) = f([A,Φ]S) = c. This cannot

happen by the choice of the level c.

Then, we show that (M× C)ss ⊂ W . If the closure of the C∗-orbit of a point

([A,Φ]S, z) in M × C meets f̃−1(c), then it must meet W , since W is open. Since

W is also C∗-invariant, W contains ([A,Φ]S, z).
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Finally, we show that W ⊂ (M × C)ss. For every ([A,Φ]S, z) ∈ W , consider

the function

q(t) = f([A, tΦ])− 1

2
t2‖z‖2 − c, t > 0. (5.45)

We show that q(t0) = 0 for some t0 > 0 so that t · ([A,Φ]S, z) lies in f̃−1(c) for some

t > 0. Since h([A, tΦ])→ 0 as t→ 0, the properness of h implies that there exists a

sequence tn ⊂ C∗ such that tn → 0 and [A, tnΦ] converges to some [B,Ψ]S ∈ h−1(0).

Hence, letting n→∞, we see that

lim
n→∞

q(tn) = f([B,Ψ]S)− c > 0. (5.46)

On the other hand, since f ≤ 0, we have

q(t) ≤ −1

2
t2‖z‖2 − c. (5.47)

If z 6= 0, then t� 0 implies that q(t) < 0. Hence, q(t0) = 0 for some t0 > 0.

Now, we assume that z = 0 so that [A,Φ]S /∈ h−1(0). We claim that the

function t 7→ f([A, tΦ]S) is unbounded below as t → ∞. If this claim is true, then

q(t) < 0 if t � 0, and hence q(t0) = 0 for some t0 > 0. Now, we prove the claim.

Assuming the contrary, we may choose a sequence of {tn} ⊂ C∗ such that tn → ∞

and f([A, tnΦ]S) is bounded. By the properness of f , by passing to a subsequence,

we may assume that [A, tnΦ]S converges to some [B,Ψ]S. Hence, h([A, tnΦ]S) also

converges as tn →∞. This implies that h([A,Φ]S) = 0, which is a contradiction.

Finally, note that the proof has already shown that (M×C)ss = C∗·f̃−1(0).

149



Corollary 5.4.7. The inclusion f̃−1(c) ↪→ (M× C)ss induces a homeomorphism

f̃−1(c)/U(1)
∼−→ (M× C)ss/C∗ = W/C∗. (5.48)

Moreover, W/C∗ is compact.

Proof. Since f and the norm ‖ · ‖ on C are proper, f−1(c) is compact. Therefore,

f̃−1(c)/U(1) is also compact. Moreover, since (M × C)ss/C∗ is Hausdorff, to show

that the map is a homeomorphism, it suffices to show that it is a continuous bijection.

The continuity is obvious. By Lemma 5.4.6, the surjectivity is clear.

To show the injectivity, suppose that ([A1,Φ1], z1) and ([A2,Φ2], z2) lie in

f̃−1(c) and the same C∗-orbit. Since each orbit type stratum in M is C∗-invariant,

they lie in Q × C for some stratum Q in M. By Proposition 5.4.2, f̃ |Q×C is a mo-

ment map for the U(1)-action on Q × C with respect to the product Kähler form

on Q×C. Hence, ([A1,Φ1], z1) and ([A2,Φ2], z2) must lie in the same U(1)-orbit by

general properties of moment maps (see [38, Lemma 7.2]).

Proof of Theorem H. Write W = (M \ h−1(0)× {0}) ∪ (M× C∗). Note that it is a

disjoint union. Let W ∗ = M× C∗ and consider the map

W ∗ →M, ([A,Φ]S, z) 7→ z−1[A,Φ]S. (5.49)

Since it is C∗-invariant, it induces a well-defined map (M × C∗)/C∗ → M. The

injectivity is clear. Its inverse is given by [A,Φ]S 7→ ([A,Φ]S, 1).

Then, we show that it is a biholomorphism. Since M is normal, M×C is also
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normal. Therefore, both W and W ∗ are normal. As categorical quotients of normal

spaces, W ∗/C∗ and W/C∗ are also normal. Moreover, fibers of W ∗ → W ∗/C∗ have

pure dimension 1. Since Ms is pure dimensional, Proposition 5.5.3 implies that

M and hence W ∗ are pure dimensional. Therefore, by Remmert’s rank theorem

(see [1, Proposition 1.21]), we conclude that W ∗/C∗ is pure dimensional, and

dimW ∗/C∗ = dimW ∗ − dimC∗ = dimM. (5.50)

Then, by [23, p.166, Theorem], the map W ∗/C∗ →M is a biholomorphism.

Since W/C∗ is compact, we have shown that M admits a compactification

W/C∗ = M ∪ Z, (5.51)

where Z = (M \ h−1(0)× {0})/C∗ is of pure codimension 1.

Finally, we prove the following result that will be used later. Note that W

inherits a stratification from M × C. More precisely, W is a disjoint union of

QW = W ∩(Q×C) where Q ranges in the stratification of M. Moreover, if necessary,

we may also refine this stratification into connected components. The following

shows that how QW/C∗ fits together in M.

Proposition 5.4.8. Let π : W →M be the quotient map.

1. Each π(QW ) is a closed complex subspace of M, where the closure is taken in

W .
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2. Each π(QW ) is a locally closed complex subspace of M, and its closure is

precisely π(QW ).

3. If π(QW ) ∩ π(SW ) 6= ∅, then π(QW ) ⊂ π(SW ).

4. M is a disjoint union of π(QW ).

5. The restriction π : QW → π(QW ) is the analytic Hilbert quotient of QW by C∗.

Moreover, the inclusion (f̃ |QW
)−1(c) ↪→ QW induces a homeomorphism

(f̃ |QW
)−1(c)/U(1)

∼−→ QW/C∗. (5.52)

Proof. Fix a stratumQ in M. By Proposition 5.5.3, QW is a closed complex subspace

of W that is also C∗-invariant. Therefore, [31, §1(ii)] implies that π(QW ) is a closed

complex subspace of M . Moreover, the restriction π : QW → π(QW ) is also an

analytic Hilbert quotient. This proves (1).

Since QW is open in QW , and π : QW → π(QW ) is an open map, π(QW ) is

open in π(QW ). Moreover, the continuity of π shows that π(QW ) ⊂ π(QW ). Since

π(QW ) is closed in M , we have π(QW ) = π(QW ). This proves (2).

If π(QW ) ∩ π(SW ) 6= ∅ for some stratum S in M, then π(QW ) ∩ π(SW ) 6= ∅.

Since π : W → M is a geometric quotient, and both QW and SW are C∗-invariant,

we conclude that QW ∩SW 6= ∅. Therefore, QW ⊂ SW , and hence π(QW ) ⊂ π(SW ).

This shows (3).

Obviously, M is a union of π(QW ) as Q ranges in the stratification of M. Since

each QW is C∗-invariant, and π : W → M is a geometric quotient, it is a disjoint
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union. This proves (4).

Finally, (5) immediately follows from Corollary 5.4.7 and the fact that QW is

C∗-invariant.

5.4.2 Projectivity

In this section, we will prove (2) and (3) in Theorem K. Let us start with the

construction of a line bundle on M = W/C∗. Note that the C∗-action on M lifts to

the line bundle L→M. This can be seen as follows. The C∗-action on Ω1,0(gCE) lifts

to the trivial line bundle by letting C∗ act on the fiber trivially. By construction of

the line bundle L → C, the C∗-action on C lifts to L. Since the GC-action and the

C∗-action commutes, we see that the C∗-action on L descends to L which covers the

C∗-action on M. Then, consider the trivial line bundle over C. The C∗-action on C

lifts to the trivial line bundle by letting C∗ act on the fiber trivially. Moreover, we

equip the trivial line bundle with a Hermitian metric determined by

|s|2 = exp(−2πχ), (5.53)

where s(z) = (z, 1) is a section of the trivial line bundle, and χ(z) = 1
2
‖z‖2 is a

Kähler potential for the standard Kähler form on C.

Now, we pullback the trivial line bundle on C and the line bundle L→M to

M × C, and denote the resulting line bundle by LC. Moreover, we equip the line

bundle LC → M × C with the product of the pullback Hermitian metrics, and the

C∗-action on M×C lifts to LC. We will still use the letter h to denote the resulting
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Hermitian metric on LC.

Proposition 5.4.9. The Hermitian metric h on LC is smooth along Q×C for every

stratum Q in M. Moreover, its curvature on Q× C is precisely −2π
√
−1ωQ×C.

Proof. By Proposition 5.3.2, the curvature of the Hermitian metric on L along Q is

−2π
√
−1ωQ. By the construction of h on LC, we see that the curvature of h along

Q× C must be −2π
√
−1ωQ×C.

By construction, if p = ([A,Φ]S, z) ∈M×C, then (C∗)p acts trivially on (LC)p.

As a consequence, we obtain the following.

Proposition 5.4.10. The canonical line bundle LC → M × C descends to M. In

other words, there is a line bundle L → M such that π∗L = LC|W , where π : W →

W/C∗ = M is the quotient map.

Proof. This follows from Proposition 5.2.1.

Since the Hermitian metric h on LC is preserved by the U(1)-action, Corol-

lary 5.4.7 implies that h induces a continuous Hermitian metric h on L → M.

Although h is smooth along QW for each stratum Q in M, h may not be smooth

along π(QW ). That said, we note that QW is a Kähler manifold with a C∗-action

such that the induced U(1)-action is Hamiltonian with respect to the Kähler form

ωQW
on QW . Hence, by [58, Theorem 2.10] and Proposition 5.4.8, we may fur-

ther stratify π(QW ) by C∗-orbit types. Since the curvature of (LC, h) on QW is

−2π
√
−1ωQW

, by [58, Lemma 2.16], we conclude the following.
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Proposition 5.4.11. For each stratum Q in M, π(QW ) admits a C∗-orbit type

stratification such that each stratum S is a locally closed Kähler submanifold of

π(QW ) with Kähler form ωS. Moreover, the Hermitian metric h on L is smooth

along S, and the its curvature on S is precisely −2π
√
−1ωS.

Now we are ready to prove that the line bundle L → M is ample. The first

step is the following.

Lemma 5.4.12. The Chern current c1(L, h) of (L, h) is positive, where

c1(L, h) =

√
−1

2π
∂∂ log |s|2

h
, (5.54)

and s is any local holomorphic section of L that is nowhere vanishing.

Proof. By Proposition 5.4.10, for every open subset U of M, we may choose a C∗-

equivariant holomorphic section s of LC over π−1(U) that is nowhere vanishing,

where π : W →M is the quotient map. Then, we define

v = − 1

2π
log |s|2h. (5.55)

Since v is U(1)-invariant, by Corollary 5.4.7, the restriction of v to π−1(U)∩ f̃−1(c)

induces a well-defined continuous function v0 : U → R. If Q = Ms, then Propo-

sition 5.4.8 and 5.4.11 imply that π(QW ) is open in M and that π(QW ) admits a

C∗-orbit type stratification. Moreover, if S is the top-dimensional stratum, then S

is open and dense in π(QW ). By Proposition 5.4.11 again, the restriction of v0 to S

is a Kähler potential for the Kähler form on S so that v0|S is strictly plurisubhar-
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monic. Since v0 is already continuous, and M is normal, the extension theorem of

plurisubharmonic functions (see [22]) implies that v0 : U → R is plurisubharmonic.

Since c1(L, h) =
√
−1∂∂v0, we see that c1(L, h) is positive.

Then, the key result to show that L is ample is the following.

Lemma 5.4.13. For every closed irreducible complex subspace Y of M with dimY >

0, the restriction of the line bundle L→M to Y is big.

Proof. By (3) in Proposition 5.4.8, there is a natural partial order among π(QW ),

where Q ranges in the stratification of M. We define π(QW ) ≤ π(SW ) if π(QW ) ⊂

π(SW ). If Y is a closed irreducible complex subspace, Y must intersect some π(QW ).

We choose π(QW ) to be the largest one with respect to the partial order ≤ just men-

tioned. By (3) in Proposition 5.4.8 again, π(QW ) is open in M\∪π(SW )>π(QW )π(SW ).

Therefore, π(QW )∩Y is open in Y . By Proposition 5.4.11, π(QW ) admits a C∗-orbit

type stratification. Similarly, we may further choose a stratum S in π(QW ) such

that Y ∩π(QW )∩S = Y ∩S is open in Y ∩π(QW ). Therefore, Yreg ∩S is also open

in Y , where Yreg is the smooth locus of Y .

Now we consider the restriction of L to Y . We will use [49, Theorem 1.3] to

show that L|Y is big. By taking a desingularization of Y , we may assume that Y

is a compact complex manifold. Clearly, the Chern current c1(L, h) is still positive.

Therefore, by Lebesgue’s decomposition theorem, the absolutely continuous part

c1(L, h)ac of c1(L, h) is also positive. Hence,

∫
Y

c1(L, h)dimY
ac ≥

∫
Yreg∩S

c1(L, h)dimY
ac > 0 (5.56)
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To justify the last inequality, we note that Yreg∩S is a complex submanifold of S and

hence Kähler. By Proposition 5.4.11, c1(L, h) is the Kähler form on S. Therefore,

the restriction of c1(L, h)dimY
ac to Yreg ∩ S is precisely the volume form on Yreg ∩ S.

Hence, the last inequality in Equation (5.56) holds.

Proof of Theorem K. Note that (1) in Theorem K is already proved in Proposi-

tion 5.3.1. To prove (3), we use Grauert’s criterion of ampleness for a line bundle

over a compact complex space (see [21]). Therefore, we need to show that the re-

striction of L to any irreducible closed complex subspace Y with dimY > 0 admits

a nontrivial holomorphic section that vanishes somewhere on Y . Let Y be an irre-

ducible closed complex subspace of M with dimY > 0. By Lemma 5.4.13, L|Y is

big. Hence, it admits a nontrivial holomorphic section. Such a section must van-

ish somewhere on Y . Otherwise, L|Y is holomorphically trivial and cannot be big.

Therefore, L is ample, and M is projective.

To see that M is quasi-projective, let us recall that M = M ∪ Z, where Z is a

closed complex subspace of M. Moreover, let i : M→ PN be a projective embedding.

By Remmert’s proper mapping theorem, i(Z) is a closed complex subspace of PN .

By Chow’s theorem, both i(M) and i(Z) are Zariski closed in PN so that i(M) is

Zariski open in i(M). By definition, M is quasi-projective.

Finally, we show (2). It suffices to show that the line bundle L → W ∗/C∗ is

isomorphic to L→M via the biholomorphism W ∗/C∗ →M described in the proof

of Theorem H. By definition, the total space of the line bundle LC → M × C is

L × C. If we restrict LC to W ∗ = M × C∗, we obtain the following commutative
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diagram

L× C∗ //

��

L

��
M× C∗ //M

, (5.57)

where the top horizontal map is given by (v, z) 7→ z−1 · v. Therefore, the dia-

gram (5.57) defines a map (LC|W ∗)/C∗ → L covering the biholomorphism W ∗/C∗ →

M. Finally, by the proof of Proposition 5.2.1, it is easy to verify that the total space

L of the line bundle L → W ∗/C∗ is precisely (LC|W ∗)/C∗. Therefore, we have

obtained a bundle map L→ L that is an isomorphism on each fiber.

5.5 Appendix: codimension estimate of the stable locus

In this section, we provide an estimate the codimension of M\Ms that is used

in §5.

Proposition 5.5.1.

1. Every GC-stabilizer of a polystable Higgs bundle is connected.

2. There are finitely many strata in M.

Proof. Let (A,Φ) be a polystable Higgs bundle. By definition, we may write

(EA,Φ) = (E1,Φ1)⊕m1 ⊕ · · · ⊕ (Er,Φr)
⊕mr , mi ≥ 0, (5.58)

where (E1,Φ1), · · · , (Er,Φr) are pairwise non-isomorphic stable Higgs bundles that

have the same slope as (EA,Φ), and (EA,Φ) is the Higgs bundle determined by
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(A,Φ). As a consequence,

(GC)(A,Φ) =
r∏
i=1

GL(mi,C). (5.59)

This proves (1) and (2). Here, we have used the fact that if f is a morphism between

two stable Higgs bundles of the same slope, then either f ≡ 0 or f is an isomorphism.

Moreover, every endomorphism of a stable Higgs bundle must be a scalar.

Proposition 5.5.2. Let Q1 and Q2 be two strata in M. If Q1 ⊂ Q2, then dimQ2 >

dimQ1.

Proof. Since Kuranishi maps preserve the orbit type stratifications, this problem

can be transferred to ν−1
0,C(0) �HC. Write

H1 = F ⊕ (H1)H
C
, (5.60)

where F is the ω0,C-orthogonal complement of (H1)H
C
. By definition of ν0,C,

ν−1
0,C(0) = (ν0,C|F )−1(0)× (H1)H

C
(5.61)

so that

ν−1
0,C(0) �HC = (ν0,C|F )−1(0) �HC × (H1)H

C
. (5.62)

Therefore, it is clear that the unique stratum containing [0] is (H1)H
C
. If L is a
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proper subgroup of HC, then

(ν−1
0,C(0) �HC)(L) = ((ν0,C|F )−1(0) �HC)(L) × (H1)H

C
, (5.63)

where the subscript (L) denote the orbit type stratum determined by (L). As a

consequence,

dim(ν−1
0,C(0) �HC)(L) = dim((ν0,C|F )−1(0) �HC)(L) + dim(H1)H

C
. (5.64)

Now, we claim that if F 6= 0 and ((ν0,C|F )−1(0) �HC)(L) 6= ∅, then

dim((ν0,C|F )−1(0) �HC)(L) > 0. (5.65)

Suppose that this dimension is 0 and pick a connected component Q. Hence, Q is

a singleton, and its preimage in (ν0,C|F )−1(0)ps is a single HC-orbit xHC for some

x 6= 0. By Kempf-Ness theorem, the restriction of the L2-norm ‖ · ‖L2 to the orbit

xHC attains a minimum value r > 0. Therefore, we may assume that ‖x‖L2 = r.

Now, we show that if t1x and t2x are in the same HC-orbit for some t1, t2 > 0, then

t1 = t2. In fact, if t1x = gt2x for some g ∈ HC, then t1r = t2‖gx‖L2 ≥ t2r so

that t1 ≥ t2. Applying the same argument to g−1t1x = t2x, we obtain that t1 ≤ t2.

Since the HC-action is linear, tx is also polystable and has the same orbit type of

x for every t ∈ (0, 1]. Therefore, Q contains a subspace {[tx] : t ∈ (0, 1]}, which is a

contradiction.
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Using Proposition 5.5.2, we can show that closures of strata are closed complex

subspaces of M.

Proposition 5.5.3. If Q is a stratum in M, then Q is a closed complex subspace

of M, and dimxQ = dimQ for every x ∈ Q.

Proof. We prove by induction. Note that every stratum is pure dimensional. By

Proposition 5.5.1, let d1 < d2 < · · · < dk be possible values of dimensions among

all the strata. By Proposition 5.5.2, every stratum Q of dimension d1 is closed, and

hence dimxQ = dimQ for all x ∈ Q. Now, suppose that the statement is true for

all the strata of dimensions smaller than di. Let Q be a stratum of dimension di.

Therefore, Q is a closed complex subspace of M \ ∂Q. Write

∂Q = Ql1 ∪ · · · ∪Qlk = Ql1 ∪ · · · ∪Qlk , (5.66)

where each Qli is a stratum of dimension smaller than di. By induction, each

Qli is a closed complex subspace and dimxQli = dimQli for all x ∈ Qli . Hence,

dimQ > dim ∂Q. By the Remmert-Stein theorem, Q is a closed complex subspace.

Now we show that dimxQ = dimQ for every x ∈ Q to finish the proof. If x ∈ Q,

then the openness of Q in Q implies that dimxQ = dimxQ. Therefore, we may

assume that x ∈ ∂Q. Since Q is open and dense in Q, ∂Q is nowhere dense. Hence,

by [23, Lemma of Ritt], dimx ∂Q < dimxQ. Let S be an irreducible component of Q

containing x such that dimS = dimxQ. If S ⊂ ∂Q, then dimS ≤ dimx ∂Q, which
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is a contradiction. Hence, S ∩Q 6= ∅. As a consequence, since Q is open in Q,

dimxQ = dimS = dimx(Q ∩ S) ≤ dimQ. (5.67)

Now, by the upper semicontinuity of the function x 7→ dimxQ (see [23, p.94]), there

is an open neighborhood U of x in Q such that dimyQ ≤ dimxQ for all y ∈ U .

Since Q is open and dense in Q, we may choose y ∈ U ∩Q. Hence,

dimQ = dimy(U ∩Q) = dimyQ ≤ dimxQ. (5.68)

Hence, dimQ = dimxQ.

As a corollary, we obtain a codimension estimate of M \ Ms, where Ms is

the moduli space of stable Higgs bundles. Although this is a well-known result

(see [15, Theorem II.6] and [57, Lemma 11.2]), we couldn’t find an analytic proof in

the literature.

Corollary 5.5.4. Ms is open and dense in M, and codimx(M \Ms) ≥ 4g − 6 for

every x ∈M \Ms, where g is the genus of the Riemann surface M .

Proof. The first statement follows from [61, Corollary 3.24] and Theorem F. To show

the second statement, we write

M \Ms = Q1 ∪Q2 ∪ · · · ∪Qk = Q1 ∪ · · · ∪Qk, (5.69)
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where each Qi is a stratum. As a consequence,

dimx(M \Ms) = dimxQj = dimQj (5.70)

for some j (depending on x). Therefore, by Proposition 5.5.3, we obtain

codimx(M \Ms) = dimxM− dimx(M \Ms)

= dimMs − dimQj.

(5.71)

By [61, Corollary 3.24] again, dimMs − dimQj ≥ 4g − 6.
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