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Polar codes, introduced by Arıkan in 2009, gave the first solution to the problem of

designing explicit coding schemes that attain Shannon capacity of several basic models

of communication channels. This discovery made it possible to attain theoretical limits

of communication in a number of other problems of data compression and multi-user

communication as well as provided new perspectives on extremal configurations of some

discrete-time random walks.

This thesis is devoted to the design of communication protocols for several basic

information-theoretic problems as well to the problem of efficient construction of polar

codes.

In the first part we consider the problem of optimizing the amount of data transmit-

ted between two terminals performing interactive computation of a function. Information-

theoretic limits for one model of interactive computation were found in recent literature.

We consider the distributed source coding problem that arises in the analysis of this model,



designing a polar coding scheme that serves the basis for the distributed computation. As

a result, it becomes possible to attain the smallest possible rate of data exchange between

the terminals using an explicit protocol of encoding and data exchange that supports reli-

able computation of the function by both parties. We also extend our considerations to a

multi-terminal variation of this problem.

Secondly, we turn to the problem of communication between two parties over a link

observed by an adversary, known as the “wiretap channel.” Explicit capacity-achieving

schemes for various models of the wiretap channel have received significant attention in

recent literature. In this work, we address the general model of the channel, removing the

constraints on the channels adopted in the earlier works. We show that secrecy capacity

of the wiretap channel under a “strong secrecy constraint” can be achieved using an ex-

plicit scheme based on polar codes. We also extend our construction to the case of the

broadcast channel with confidential messages due to Csiszár and Körner, achieving the

entire capacity region of this communication model.

In the last part of the thesis we consider the problem of efficient construction of

polar codes. While Arıkan’s scheme is explicit, his original proposal suffers from high

construction complexity which grows exponentially with the number of evolution steps.

An approximation procedure for binary-input channels was proposed and analyzed in

the literature. Here we propose and study a construction algorithm for polar codes with

arbitrarily-sized input alphabets. We establish a complexity estimate of the algorithm and

derive an estimate of the approximation error that ensues from its use. The approximation

error reduces the gap to the recently established lower bound for this type of algorithms.

The validity of the proposed algorithm is supported by experimental results.
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Chapter 1: Introduction

One of the basic problems of communication theory is reliable transmission of data

over noisy channels. The data stream is partitioned into blocks of K information bits

that are encoded into N -blocks sent over the medium such as a wireless or an optical

link. The goal of the encoding is to enable the receiving party to recover the contents of

the transmitted message with high probability. In his fundamental work [1], Shannon

proved that this goal can be achieved if N is large enough and the transmission rate K/N

is less than the capacity of the channel. While Shannon’s results imply that capacity-

approaching communication schemes are possible, he did not suggest efficient ways of

constructing them. Much of later research in information theory has been devoted to

designing efficient methods of encoding and transmitting the information in a variety

of communication settings with the purpose of approaching the theoretical limits of the

transmission established in [1] and later extensions of the point-to-point transmission

scenario to more complicated communication systems.

Despite important achievements in algebraic coding and iterative coding, finding

codes that

• operate at rates close to capacity,

• have low computational complexity,
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• have reliability that can be verified analytically

was an open problem until recently. The invention of polar codes [2] made it possible to

satisfy these three conditions simultaneously. Indeed, polar codes

• achieve capacity of finite-input memoryless channels [2–4]. In particular, they

achieve capacity of several channel classes of practical importance such as the

binary-input additive white Gaussian noise channel, the binary symmetric channel,

and the binary erasure channel.

• have low complexity. It is shown in [2] that the time and space complexity of both

the encoder and decoder is O(N logN), where N is the number of channel uses.

• have block error probability that declines as O(2−
√
N).

After their introduction by Arıkan in 2008, polar codes were subsequently applied

in a variety of problems related to communication and data compression [5–7]. The

capacity-achieving feature of polar coding also extends to such applications of polar codes

as lossy data compression [7], codes over nonbinary alphabets [8–12], and a number of

other problems of information theory [13–20]. Overall, polar codes provide a flexible and

versatile paradigm that enabled researchers for the first time to design explicit schemes

that attain theoretical limits of a class of problems in communication and signal process-

ing.
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1.1 Polarization

Polar codes rely on transformations of random sequences that lead to isolating a

small number of extremal configurations in a phenomenon called polarization. To explain

it, consider transmission over a binary-input memoryless communication channel W . Let

Y be the output alphabet of W, let X = {0, 1} be its input alphabet, and let WY |X be the

set of transition probabilities expressed as a conditional distribution of receiving y ∈ Y at

the output given that the transmitted symbol is x ∈ X. The channelW is called symmetric

if

• The PMF (WY |X(y|1), y ∈ Y) can be obtained from (WY |X(y|0), y ∈ Y) through a

permutation π.

• π is the inverse of itself.

Let C(W ) be the Shannon capacity of the channel W . If W is symmetric then

C(W ) is attained under the uniform distribution on the input alphabet, i.e., PX(0) =

PX(1) = 1/2. Otherwise, the capacity-achieving distribution PX is different from the

uniform one, so assuming the uniform PX entails some rate loss. The maximum attainable

rate under the uniform prior is called the symmetric capacity of W , denoted I(W ).

The idea which leads to polarization is to derive two new channels W 0 and W 1 out

of two independent copies of W . These two channels are desired to satisfy the following

conditions.

• The sum of the (symmetric) capacities of W 1 and W 0 should be equal to twice the

capacity of W so that no information is lost.
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• The channel W 1 should be “better” than W and the channel W 0 should be “worse”

than W in some sense.

These two conditions can be met by applying a simple transformation to the inputs of two

independent copies of W shown by Figure 1.1. Upon their application we define W 0 to

be the channel with input u0 and output (y0, y1), and W 1 the channel with input u1 and

output (y0, y1, u0). These channels are shown in Figure 1.2.

u0

u1

y0

y1

W

W

x0

x1

Figure 1.1: The basic channel transform consisting of a single XOR gate.

u0

u1 =noise

x0

x1

W

W

y0

y1

u0 =given

u1

x0

x1

W

W

y0

y1

Figure 1.2: The channels W 0 (left) and W 1 (right).

It is easy to see that I(W 0) + I(W 1) = 2I(W ). Moreover, if 0 < I(W ) < 1, then

it can be shown that I(W 0) < I(W ) < I(W 1). So, the transform

u0 = x0 + x1, (1.1)

u1 = x1 (1.2)

makes it possible to satisfy the two conditions given above. Hence we observe that the

symmetric capacity of the channels W 0 and W 1 shifts (is partially polarized) towards
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the two extremes, 0 and 1. The basic transform (1.1)-(1.2) can be applied recursively

to the channels W 1 and W 0 to create four channels (W 1)1, (W 1)0, (W 0)1, (W 0)0 that

are further polarized, and so on. In general, we begin with N = 2n copies of W and

create 2n new channels W 11...1, W 11...0, . . . , W 00...0. Ultimately there emerges a group

of channels whose capacity is close to one (almost noiseless channels) and the opposite

group of almost useless channels, i.e., those whose capacity is close to zero. Arıkan [2]

proved that the fraction of nearly noiseless channels tends to I(W ) and the fraction of

fully noisy channels tends to 1− I(W ) as n goes to infinity, i.e.,

lim
n→∞

|{(b1, . . . , bn) ∈ {0, 1}n : I(W b1...bn) ≥ 1− ε}
2n

= I(W ) (1.3)

lim
n→∞

|{(b1, . . . , bn) ∈ {0, 1}n : I(W b1...bn) ≤ ε}
2n

= 1− I(W ) (1.4)

for all ε > 0. This fact is called polarization.

The polarization phenomenon can be used to solve the channel coding problem

described above by sending information through the noiseless channels and not sending

any information at all through the useless channels. In the next section, we explain this in

a more detailed way.

1.2 Symmetric Channel Coding

We begin with introducing basic notation for polar codes and then continue with

the scheme of capacity-achieving communication over discrete binary-input symmetric

channels.

Given a binary random variable X and a discrete random variable Y supported on

5



Y, define the Bhattacharyya parameter Z(X|Y ) as follows:

Z(X|Y ) = 2
∑

y∈Y

PY (y)
√
PX|Y (0|y)PX|Y (1|y)

where PX|Y is the conditional distribution of X given Y . The value Z(X|Y ), 0 ≤

Z(X|Y ) ≤ 1 measures the amount of randomness in X given Y in the sense that if it

is close to zero, then X is almost constant given Y , while if it is close to one, then X is

almost uniform on {0, 1} given Y . The Bhattacharyya parameter Z(W ) of a binary-input

channel W is defined as

Z(W ) =
∑

y∈Y

√
WY |X(y|0)WY |X(y|1).

It can be seen that if PX(0) = PX(1) = 1/2, then Z(X|Y ) coincides with Z(W ) for the

communication channel W : X → Y.

For N = 2n and n ∈ N, the polarizing matrix (or the Arıkan transform matrix) is

defined as GN = BNF
⊗n, where F =

(
1 0
1 1

)
, ⊗ is the Kronecker product of matrices,

and BN is a “bit reversal” permutation matrix [2].

Given a binary-input symmetric channel W , define the channel WN with the input

alphabet {0, 1}N and the output alphabet YN by the conditional distribution

WN(yN |xN) =
N∏

i=1

WY |X(yi|xi).

Then, the “combined” channel W̃ is defined by the conditional

W̃ (yN |uN) = WN(yN |uNGN)

In terms of W̃ , the channel seen by the i-th bit Ui, i = 1, . . . , N , (also known as the
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bit-channel1 of the i-th bit) can be expressed as

Wi(y
N , ui−1|ui) =

1

2n−1

∑

ũ∈{0,1}n−i
W̃ (yN |(ui−1

1 , ui, ũ)) (1.5)

where ui−1 = (u1, u2, . . . , ui−1). From Figure 1.3 we see thatWi is in fact the conditional

distribution of (Y N , U i−1) given Ui, provided that the channel inputs Xi are uniformly

distributed for all i = 1, . . . , N . The bit-channels thus defined are partitioned into good

b

b

b

W

W

W

Y1

Y2

YN

X1

X2

XN

b

b

b

U1

U2

UN

GN

Figure 1.3: Block diagram of the symmetric channel coding

channels GN(W,β) and bad channels BN(W,β) based on the value of their Bhattacharyya

parameters. More precisely, define

GN(W,β) = {i ∈ [N ] : Z(Wi) ≤ ε}

BN(W,β) = {i ∈ [N ] : Z(Wi) > 1− ε}
(1.6)

where [N ] , {1, 2, . . . , N}. As shown in [2], for any symmetric binary-input channel W

and any constant β < 1/2,

lim
N→∞

|GN(W,β)|
N

= C(W )

lim
N→∞

|BN(W,β)|
N

= 1− C(W )

(1.7)

1Note that for n = 2 the channels W1,W2 defined below are precisely the channels W 0,W 1 discussed

in the previous section.
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(cf. (1.3),(1.4)). Based on this equality, information can be transmitted over the good

bit-channels while the remaining bits are fixed to some values known in advance to the

receiver (following [2] they are called the frozen bits).

The transmission scheme can be described as follows: A message of k = |GN(W,β)|

bits is written in the bits ui, i ∈ GN(W,β). The remaining N − k frozen bits are set

to the pre-defined values. This determines the sequence uN which is transformed to

xN = uNGN , and the vector xN is sent over the channel. Denote by yN the sequence

received at the output. The decoder finds an estimate of uN by computing the values

ûi, i = 1, . . . , N based on the successive cancellation (SC) decoding:

ûi =





argmaxu∈{0,1}Wi(y
N , ûi−1|u), if i ∈ GN(W,β),

0, if i ∈ BN(W,β).

(1.8)

The results of [2, 21] imply the following upper bound on the error probability Pe =

Pr(ûN 6= uN) :

Pe ≤
∑

i∈GN (W,β)

Z(Wi) ≤ N2−N
β ≤ 2−N

β′

(1.9)

where β is any number in the interval (0, 0.5) and β′ = β′(N) < β.

This describes the basic construction of polar codes [2] which attains symmetric

capacity I(W ) of the channel W with a low error rate. For symmetric channels, the

values of the frozen bits can be set be chosen arbitrarily; it particular, they can be set to

zero [2].

Remark 1.2.1. There is a subtle point about the limit relations in (1.7). Even though

asymptotically the bit channels are either good or bad, it is not true that GN(W,β)c =

BN(W,β) because there is a subset of indices GN(W,β)c\BN(W,β) of cardinality o(N)
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that is neither good nor bad. This distinction has no import for the simple situation of

transmitting over W , but leads to complications in the multi-user systems considered

below; see, e.g., (3.9) in Sect. 3.3.

1.3 Source Coding

Let X be a binary memoryless source, let XN denote N independent copies of X ,

and let UN = XNGN . Define subsets HX = HX,N and LX = LX,N of [N ] as follows:

HX = {i ∈ [N ] : Z(Ui|U i−1) ≥ 1− δN}

LX = {i ∈ [N ] : Z(Ui|U i−1) ≤ δN}
(1.10)

where δN , 2−N
β , β ∈ (0, 1/2). (The choice of this particular value of δN is related to the

convergence rate of the polarizing process [21].) Note that each bit Ui, i ∈ LX is nearly

deterministic given the values U i−1, while the bits in HX are nearly uniformly random.

As shown in [6], the proportion of indices i ∈ [N ] that are contained in HX approaches

H(X), and the proportion of bits that are not polarized (i.e., are in (HX ∩LX)c) behaves

as o(N). Therefore, as N → ∞, the source sequence xN can be recovered with high

probability from NH(X) bits in HX .

Suppose further that there is a random variable Y with a joint distribution PXY with

the source (Y is often called the side information about X). Similarly to (1.10) define

HX|Y = {i ∈ [N ] : Z(Ui|U i−1, Y N) ≥ 1− δN}

LX|Y = {i ∈ [N ] : Z(Ui|U i−1, Y N) ≤ δN}.
(1.11)
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Suppose again that the polarizing transformation is applied toXN . It can be shown that [6]

lim
N→∞

1

N
|HX|Y | = H(X|Y )

lim
N→∞

1

N
|LX|Y | = 1−H(X|Y ).

In other words, using polarization the source can be compressed to NH(X|Y ) bits. This

setting is useful, for instance, in distributed lossless compression where the correlation

between the observations of two terminals plays the role of side information. Note that

Z(Ui|U i−1, Y N) ≤ Z(Ui|U i−1) and therefore,

HX|Y ⊆ HX

LX ⊆ LX|Y .

(1.12)

1.4 General Channel Coding

For nonsymmetric channels, Arıkan’s scheme attains the rate I(W ) which is gen-

erally less than the Shannon capacity C(W ). To achieve the full channel capacity, [3]

proposed an extension of the above construction described below.

Let W be a binary-input discrete memoryless channel W : X → Y and let PX be

the capacity achieving distribution of W . For a given block length N define the sets

HX = {i ∈ [N ] : Z(Ui|U i−1) ≥ 1− δN}

LX = {i ∈ [N ] : Z(Ui|U i−1) ≤ δN}

HX|Y = {i ∈ [N ] : Z(Ui|U i−1, Y N) ≥ 1− δN}

LX|Y = {i ∈ [N ] : Z(Ui|U i−1, Y N) ≤ δN}

(1.13)

where δN and UN , XN , Y N have the same meaning as above. It can be shown [21, 22]
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that

lim
N→∞

1

N
|HX | = H(X)

lim
N→∞

1

N
|HX|Y | = H(X|Y ).

We note that the set LX|Y is the set of good bit-channels defined in (1.6). Unlike the case

of uniform PX , it is not possible to use all of these channels to transmit information over

W. This is because if i /∈ HX , then Ui cannot be used to carry information conditioned on

previous bits U i−1. Hence [3] argued that the set of information indices should be chosen

as I , HX ∩ LX|Y rather than LX|Y .

Since HX|Y ⊆ HX (1.12) and the number of indices that are neither in HX|Y nor

in LX|Y is o(N), we have

lim
N→∞

1

N
|I| = lim

N→∞

1

N
(|HX | − |HX|Y |) = C(W ),

i.e., transmitting the information using the bits Ui, i ∈ I attains the capacity of the channel

W.

The code construction in [3] makes use of the following partition of the coordinate

set [N ]:

Fr = HX ∩ Lc
X|Y

Fd = Hc
X

I = HX ∩ LX|Y





(1.14)

where the superscript c refers to the complement of the subset in [N ]. In terms of this

partition, the encoding is done as follows. The information bits are stored in {ui, i ∈ I}.

As for the bits in the subset {i ∈ Fr ∪ Fd}, [3] suggested to sample their values from the

distribution PUi|U i−1 . These values are shared with the receiver similarly to the “frozen
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bits” of the symmetric scheme of [2]. Once uN is determined, the transmitter finds xN =

uNGN and sends it over the channel.

The receiver uses the following successive decoding function: for i = 1, 2, . . . , N

let

ûi =





argmaxu∈{0,1}PUi|U i−1,Y N (u|ûi−1, yN), i ∈ I

ui, i ∈ Fr ∪ Fd.

(1.15)

Note that this rule represents a MAP-like decoder2 for the ith subchannel, which for the

symmetric case coincides with the maximum likelihood-like decoder rule (1.8).

The probability of decoding error can be bounded above similarly to (1.9):

Pe ≤
∑

i∈I

Z(Ui|U i−1, Y N) ≤ N2−N
β ≤ 2−N

β′

(1.16)

where the parameters have the same meaning as before.

Moreover, [3] argues that there exists a set of deterministic maps λi : {0, 1}i−1 →

{0, 1}, i ∈ Fr ∪ Fd such that (1.16) holds true, stating the decoding rule in the form

ûi =





argmaxu∈{0,1}PUi|U i−1,Y N (u|ûi−1, yN), i ∈ I

λi(û
i−1), i ∈ Fr ∪ Fd.

(1.17)

The mappings λi are shared between the transmitter and the receiver prior to communi-

cation.

Observe that the subset of bits HX can be used in a polarization procedure to com-

press a discrete memoryless source to its entropy rate [21] (recall than linear codes can

2We say MAP-like decoder because the rule in (1.15) treats future frozen bits as random variables rather

than as known values. As observed in [2], this decoder is simpler to implement, but entails some perfomance

loss compared to the true MAP rule.
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be used for this purpose [23, Probl. 1.7]). Therefore, because of the inclusion (1.12) we

can view the source code as being partitioned into cosets that form capacity-achieving

channel codes. This observation will be useful in our studies in later chapters.

1.5 Motivation and Outline

As noted above, the idea of polarization has been used to provide explicit solutions

in a variety of problems in information theory. To name a few, polar codes have been

used to provide optimal transmission schemes for lossy compression, multiple-access

and broadcast channels, and interference networks [5, 22, 24–26]. In our research we

contribute to these studies by addressing several outstanding problems for which explicit

constructions were missing from the literature.

1.5.1 Interactive function computation

In the first part of this thesis, covered in Chapter 2, we design explicit commu-

nication schemes for several problems of interactive function computation. Interactive

computation in networks has been recently attracting attention of researchers in informa-

tion theory and computer science alike. Aspects of interactive computation have been

analyzed from various perspectives including establishing the region of achievable rates,

complexity and security of computations, as well as a number of other problems [27–31].

A line of work starting with the paper [32] examined the question of computing

a function f(X, Y ) where X is a discrete memoryless source and Y represents side in-

formation provided to the decoder as a random variable correlated with X. The main
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question addressed in these works is whether communication for computing the func-

tion rather than communicating the source itself can reduce the volume of transmission.

While [32] confined itself to the modulo-two sum of X and Y , later works, e.g., [33]

extended the problem to arbitrary functions f , finding the region of achievable rates for

one or two rounds of communication for computing f .

We focus on the problems considered in [34,35] which generalize the setting of [33]

to multiple rounds of communication. The main problem considered in these papers con-

cerns the scenario in which two terminals observe multiple independent realizations of

correlated random variables. The objective of the terminals is to establish and conduct

communication that enables them to compute a function of their observations. An obvi-

ous solution is to transmit the entire sequence of observations from Terminal A to Termi-

nal B and the same in the reverse direction whereupon the computation can be trivially

completed. The problem considered in [34, 35] is to reduce the amount of transmitted in-

formation using ideas from distributed lossy compression, thereby reducing the problem

to a version of distributed source coding. An extension of this problem considered in [35]

concerns transmission in a multiterminal network where the computation is performed

by a single dedicated node. In both scenarios the cited papers characterized exactly the

region of achievable rates of communication for the function computation.

As our main contributions, we design constructive schemes based on polar codes

that achieve the optimal rates established earlier by information-theoretic considerations.

The communication scheme designed in this chapter supports distributed computation

under the rates of data exchange that approach the optimal values. The lossy source

coding results in [7, 22] establishes the base of our analysis, but there are numerous new
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challenges coming from interactive nature of the problem. In particular, an obvious idea

would be to apply several rounds of the lossy compression scheme in succession. In

our study we need to go beyond this because neither the coding of [22] nor its analysis

generalize immediately to multiple rounds.

A more detailed discussion of the ideas behind our solution as well as of the tech-

nical ideas behind the proofs is presented in the introduction to Ch. 2.

The results of this chapter are covered in publications [36, 37].

1.5.2 Coding for the discrete wiretap channel

The wiretap channel model W was introduced by Wyner in 1975 [38]. In this

model, there are two receivers Y, Z and a single transmitter X . The transmitter aims at

sending messages to Receiver 1 through a communication channel W1. The informa-

tion sent from X to Y is also received by Receiver 2 through another channel W2. The

transmission problem in the system W(W1,W2) calls for designing a coding system that

supports communication between X and Y in a way that is both reliable and secure. The

reliability requirement is the usual one for communication systems, namely, that the er-

ror probability of decoding the information by Y be made arbitrarily low by increasing

the block length of the encoding. At the same time, the transmission needs to be made

secure in the sense that the information extracted by Receiver 2 about the message of X

approaches zero as a function of the block length.

While most general constructive coding schemes for the wiretap channels in the

literature rely on polar codes, there were some constructive solutions even before the
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publication of [2]. At the same time, these schemes applied only to some special cases

of the channels W1,W2. For instance the case when W1 is noiseless and W2 is a binary

erasure channel was addressed in [39, 40] which show that in this case the capacity Cs

can be achieved using low-density parity-check codes. The results in [39] are based on

the weak security assumption while strong security is considered in [40]. Moreover, [39]

extends the construction to the cases when both W1 and W2 are erasure channels, and

whenW1 is noiseless andW2 is a binary symmetric channel. As usual with the application

of low-density codes, the constructions are based on code ensembles and strictly speaking

are not explicit.

After the discovery of the polar codes, they have been used in several special cases

of the general wiretap channel problem. In particular, a number of papers [17, 41–43]

considered transmission over the channel W under the assumption that the channel W2 is

degraded with respect to W1 (see the definition in (3.5)). Another limitation of these and

some other previous results was their reliance on a particular type of security assumption

whereby the information leakage to the eavesdropper is amortized per transmitted bit.

This is the so-called weak security constraint defined formally in (3.3). At the same time,

as shown already in [44, 45], this assumption is insufficient for secure transmission over

the channel. Instead it, most of the studies in information-theoretic security and cryptog-

raphy adopt the so-called strong security constraint. In particular, several works [46–49]

attempted to construct explicit communication schemes for the considered problem under

the stronger assumption widely. However, the schemes designed in these papers either do

not cover general wiretap channels, limiting themselves to the symmetric case, or suggest

high-complexity procedures that stop short of providing explicit schemes (a more detailed
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discussion appears below in Sect. 3.1).

In Chapter 3, we provide a solution to the communication problem over the wiretap

channel in full generality, removing the assumptions of degradedness and channel sym-

metry, and satisfying the strong security requirement3. We also show that it is possible to

build on this solution by adding a second layer of encoding which enables one to attain the

capacity region of the broadcast channel with confidential messages model of Csiszár and

Körner [50]. The application of the Markov chain conditions in the encoding procedures,

and the strong security analysis are the new ideas that were introduced in this work.

The results of this chapter are covered in publications [51, 52].

1.5.3 Constructing nonbinary polar codes

While the polar coding scheme of Arıkan [2] provided an explicit code design for

achieving capacity of binary-input channels, he did not give an efficient algorithm of con-

structing polar codes. Recalling the definitions of Sect. 1.1, we note that the construction

problem reduces to identifying the indices of the good bit-channels to be used for sending

the information to the receiver. In other words, one needs to compute all the bit-channels

Wi to determine the set of indices GN(W,β) over which the information bits are trans-

mitted; see (1.6). Rephrasing again, constructing a polar code amounts to identifying the

basis vectors of the linear subspace (the rows of the generator matrix) among the 2n rows

3A concurrent study [53], posted after the completion of [51], also contains a solution of the problems

considered in this work, including the general wiretap channel. The transmission scheme and the proof

methods in [53] are different from our work. Another recent paper, [54], also devoted to the general wiretap

channel, focuses on the weak security requirement.
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of the transform matrix GN . This problem remains a difficult unresolved challenge in the

whole area of polar coding.

Short of explicitly answering this question, a large number of papers gave numer-

ous approximations and semi-explicit procedures for the choice of the basis [55–59]. A

detailed overview of the relevant publications is included in Sect. 4.1. Here we note the

papers [56, 57] that suggested and analyzed an approximation algorithm of construct-

ing polar codes for binary-input channels. The main obstacle on the way of explicitly

constructing polar codes is the fact, seen from (1.5), that the output alphabet of the bit-

channels grows exponentially with the number of evolution steps n. The main idea of [56]

is collapsing the outputs of the subchannels to a smaller-sized alphabet while tracking the

loss of the approximation.

Extending this idea to nonbinary inputs was addressed in [58], but their solution

worked for alphabets of size only slightly greater than 2, rapidly becoming too complex

as the size of the channel input q increased. In Chapter 4 of this work we take up this

problem, suggesting an approximation algorithm that resolves the construction problem

of polar codes for moderately sized nonbinary alphabets. Nonbinary codes are widely

used in practice, for instance, in memory and storage systems. This provides added moti-

vation for studying nonbinary polar codes, which the results of this chapter bring closer to

applications. The scheme that we propose uses the same general idea of reducing the size

of the output alphabet of the subchannels and controlling the rate loss that entails from

the approximation. At the same time, we design a new approximation procedure based

on the estimate of the capacity loss due to the merging of two output symbols into one

symbol of the alphabet. This estimate suggests a constructive reduction scheme which we
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implement in a new construction algorithm of polar codes. The algorithm works for both

binary and non-binary channels with a complexity O(Nµ4), where N is the blocklength

and µ is the parameter that limits the output alphabet size.

The error estimate the we derive generalizes the estimate of [57] to the case of

nonbinary input alphabets (but the proof method is completely new). It is also interesting

to note that the error is close to a lower bound for this type of construction algorithms,

derived very recently in [60].

In our experiments we were able to construct codes for q as large as 16; see the

examples in Sect. 4.3. At the same time, it can be argued that there is no need to design

approximations for very large alphabets because their applicability in practice is rather

questionable.

The results of this chapter are as yet unpublished. They will be included in the

preprint [61] which is currently under preparation.
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Chapter 2: Interactive Function Computation via Polar Coding

2.1 Introduction

Starting with the results of [34, 35], in this chapter we design explicit communica-

tion protocols that achieve the rate regions of the two communication models considered

in the cited works. In our schemes, communication is performed by exchanging several

messages between the terminals formed by using specially designed polar coding con-

structions. As remarked earlier, it is possible to design a polar-coding scheme for lossy

source coding, including Wyner-Ziv’s distributed version of this problem [7, 22]. These

results serve a starting point of our research which also proceeds in the context of dis-

tributed lossy compression. The new challenges in our constructions arise from the fact

that for function computation we need to implement an interactive scheme. To address

them, we define a partition of coordinates of the encoded block that ensures the valid-

ity of our interactive communication scheme. Inspired by the ideas of [3], we define a

partition of coordinates of the encoded block that ensures the validity of our interactive

communication scheme (this partition can be viewed as a refinement of (1.14)). This

setup, however, comes at a price of more involved analysis, which we proceed to discuss.

Recall that the main challenge in proving that polar codes attain the rate-distortion

function consisted in showing that the joint statistic of the source sequence and the polar-
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compressed sequence is close to the “ideal” statistic arising from the rate-distortion the-

orem [22]. Estimates of this kind present the main technical challenges of our research,

and form the core of the proofs. Our situation however is more difficult than the setting of

distributed compression because we need to show that the mentioned statistic is close to

the ideal distribution both for the transmitting and receiving parties. It may seem that the

transmitter already has all the information, and there is no reason that it cannot recover

the data with high probability or even probability one. This is not the case because the in-

teractive nature of the communication protocol calls for a different encoding procedure of

polar codes. To define it, we introduce a partition of the data block into message bits, ran-

dom bits, and near-deterministic bits. This supports the required functionality, but at the

same time biases the joint statistic. For this reason, to prove proximity of the distributions

even in the first round, we have to rely on rather involved induction arguments, analyzing

separately the observations of the transmitter and the receiver. At a high level, we need

to show that both terminals generate the same sequence of random variables with high

probability, leading to the reliable computation of their functions. Proofs of the described

claims take up a large part of the chapter. These ideas are developed in Sect. 2.3.1, 2.3.2;

see in particular Lemmas 2.4 and 2.5.

Once the needed properties of the distributions are established for the first round,

we proceed to extend the argument to multiple rounds of communication. Namely, in

Sect. 2.3.3, 2.3.4 we show that after several rounds of communication at rates that ap-

proach the optimal rate for this problem, the terminals recover the random sequences

generated by each other with high probability. This is proved via another induction argu-

ment which has to take account of multiple Markov chain conditions that arise naturally
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in the course of the exchange.

Our overall goal is to show that the terminals are able to compute the functions

of their observations with high probability. We show this in Sect. 2.3.5 by proving that

the desired values are computed by the terminals with probability approaching one. To

complete the discussion, in Sect. 2.3.6 we give an example of distributed computation

where our scheme provides a gain in the amount of transmitted data over sending the

realizations of the random variables observed by the terminals.

Finally, in Sect. 2.4 we show that the designed scheme can be extended to a version

of distributed computation performed in a network of terminals [35]. It turns out that our

scheme for two terminals can be modified to attain optimal rates of communication for

this scenario. The main elements of the analysis are similar to the case of two terminals.

In summary, we suggest a version of polar codes that support the primitive of in-

teractive lossy source coding and apply it to some function computation problems. This

takes interactive source coding one step closer towards practicality by showing that polar

codes, which are known to have near linear coding complexity, can indeed recover the

rate regions. We also introduce some new technical tools that could be useful in other

interactive communication schemes based on polar codes.

2.2 Problem Statement

2.2.1 Two-terminal network

The two-terminal interactive distributed source coding problem that we consider in

this chapter is illustrated in Figure 2.1. Let X and Y be discrete random variables taking
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values in finite sets (alphabets) X and Y and let pXY be their joint distribution. Suppose

that we are given N independent realizations

(X, Y )N = ((X(1), Y (1)), (X(2), Y (2)), . . . , (X(N), Y (N)))

of the pair (X, Y ). We assume that Terminal A observes the sequence XN ∈ XN and

Terminal B observes the sequence Y N ∈ YN .

The aim of Terminal A is to calculate the function fA : X × Y → ZA for indices

i = 1, . . . , N . Similarly, the aim of Terminal B is to calculate the function fB : X ×Y →

ZB, where ZA,ZB are some finite alphabets. In other words, Terminals A and B attempt

to compute ZN
A , (ZA(1), ZA(2), . . . , ZA(N)) and ZN

B , (ZB(1), ZB(2), . . . , ZB(N))

respectively, where ZA(i) = fA(X(i), Y (i)) and ZB(i) = fB(X(i), Y (i)), for i =

1, . . . , N .

Figure 2.1: Interactive distributed source coding with t alternating messages.

Definition 1. A two-terminal t-round interactive source code with the parameters

(t, N, |M1|, . . . , |Mt|) is formed by t encoding functions e1, . . . , et and two block decod-
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ing functions gA, gB of blocklength N such that

(Enc j, j = 1, . . . , t) ej :





XN ×⊗j−1
i=1Mi →Mj if j is odd

YN ×⊗j−1
i=1Mi →Mj if j is even

(Dec A) gA : XN ×
t⊗

j=1

Mj → ZNA

(Dec B) gB : YN ×
t⊗

j=1

Mj → ZNB .

Without loss of generality we are assuming that communication is initiated by Ter-

minal A. The value of the encoder mapping ej is called the jth message (of A or B, as

appropriate) and denoted by Mj, j = 1, . . . , t, where t is the total number of messages in

the protocol. The outputs of the decoders A and B are denoted by ẐN
A and ẐN

B , respec-

tively.

Definition 2. A rate tuple R = (R1, . . . , Rt) is achievable for t-round interactive function

computation if for every ε > 0 there exists N(ε, t) such that for all N > N(ε, t), there

exists a two-terminal interactive source code with the parameters (t, N, |M1|, . . . , |Mt|)

such that

1

N
log2 |Mj| ≤ Rj + ε, j = 1, . . . , t

Pr(ZN
A 6= ẐN

A ) ≤ ε, Pr(ZN
B 6= ẐN

B ) ≤ ε.

The set of all achievable rate tuples is denoted byRA
t .

Theorem 2.1. [34] A t-tuple of rate values R is contained in the region of achievable

rates RA
t if and only if there exist random variables U t = (U1, . . . , Ut) such that for all
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i = 1, . . . , t

Ri ≥





I(X;Ui|Y, U i−1), Ui → (X,U i−1)→ Y, i odd

I(Y ;Ui|X,U i−1), Ui → (Y, U i−1)→ X, i even

(2.1)

H(fA(X, Y )|X,U t) = 0, H(fB(X, Y )|Y, U t) = 0

where the auxiliary random variables U t are supported on finite sets Ui such that

|Uj| ≤





|X |(∏j−1
i=1 |Ui|) + t− j + 3, j odd

|Y|(∏j−1
i=1 |Ui|) + t− j + 3, j even.

(2.2)

The conditions of entropy being equal to zero in this theorem simply reflect the fact

that fA (or fB) is a deterministic function of X,U t (or Y, U t), and no additional random-

ness is involved in its evaluation. Finding the auxiliary random variables U1, U2, . . . , Ut

that satisfy the conditions of this theorem for a given pair of functions fA, fB is a separate

question which is addressed on a case-by-case basis.

Of course, the main question associated with this result, before we even try to

construct an explicit scheme that aims at attaining this rate region is whether the com-

munication protocol implied by this theorem results in overall saving in communication

compared to a straightforward transmission of X to B and Y to A. The answer is pos-

itive at least in some examples [34]. We discuss one of them below in this chapter; see

Sect. 2.3.6.
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2.2.2 Multiterminal collocated networks

Ma, Ishwar and Gupta [35] also considered a multiterminal extension of the prob-

lem described in the previous section. To describe the problem, consider a network with

m source terminals and a single sink terminal. Each source terminal j observes a random

sequence (Xj)
N = (Xj(1), . . . , Xj(N)) ∈ XN , j = 1, . . . ,m. Unlike the two-terminal

case, the sources are assumed to be independent, i.e., for any i ∈ [N ], the random vari-

ables (X1(i), X2(i), . . . , Xm(i)) satisfy

PXm(xm) =
m∏

j=1

PXj(xj).

Let f : X1 × . . .Xm → Z be the function that the sink terminal aims to com-

pute. In other words, the purpose of the sink terminal is to compute the sequence ZN =

(Z(1), . . . , Z(N)), where Z(i) , f(X1(i), X2(i), . . . , Xm(i)) is the ith coordinate of the

function.

We assume that communication is initiated by Terminal 1. The terminals take turns

to broadcast messages in t steps. Every broadcasted message is recovered correctly by

every terminal. Based on all the t messages transmitted, the sink node computes ZN . If

t > m, the communication is called interactive.

Definition 3. A t-message distributed source code in a collocated network with parame-

ters (t, N, |M1|, . . . , |Mt|) is a collection of t encoding functions e1, . . . , et and a decod-

ing function g, where for every i ∈ [t], j = (i− 1) modm+ 1

ei : (X j)N ×
i−1⊗

l=1

Ml →Mi, g :
t⊗

l=1

Ml → ZN .
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The output of the encoder ei is called the ith message. The output of the decoder is

denoted by ẐN .

Definition 4. A rate tuple R = (R1, . . . , Rt) is achievable for t-round function com-

putation in a collocated network if for all ε > 0 there exists N(ε, t) such that for ev-

ery N > N(ε, t), there exists a t-message distributed source code with the parameters

(t, N, |M1|, . . . , |Mt|) such that

1

N
log2 |Mi| ≤ Ri + ε, i = 1, . . . , t,

P (ZN 6= ẐN) ≤ ε.

The set of all achievable rate tuples is denoted byRt.

Theorem 2.2. [35] For i = 1, . . . , t let

Di = {Ri : Ri ≥ I(Xj;Ui|U i−1) for all j = (i− 1) modm+ 1}. (2.3)

For all t ∈ N, we have

Rt =
⋃

PUt|Xm

{R = (R1, . . . , Rt)|Ri ∈ Di, i ∈ [t]} (2.4)

where the union is over the distributions PUt|Xm that satisfy the following conditions:

(i) H(f(Xm)|U t) = 0,

(ii) For every i ∈ [t], j = 1 + (i− 1 modm),

Ui → (U i−1, Xj)→ (Xj−1, Xj+1, Xj+2, . . . , Xm)

is a Markov chain;

(iii) The cardinalities of the alphabets of the auxiliary random variables U t are

bounded above as in (2.2).

A polar-coded scheme that attains this rate region is presented in Sect. 2.4.
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2.3 The Analysis of Polar Codes for Interactive Function Computation

Problem

In this section we show that the rate region (2.1) of the two-terminal function com-

putation is achievable via polar coding. The overall idea is to transmit the value of the

auxiliary random variables Ui in their respective rounds of communication; see Theorem

2.1. This is done interactively by alternating the roles of the transmitter and the receiver

between the terminals. Upon completion of the communication, both terminals have the

realizations of the Uis, and their respective values coincide with high probability. The

random variables associated with these realizations are denoted by UA
i and UB

i below.

Once the desired properties of these random variables are established, the actual function

computation is accomplished relying on the conditional entropy constraints in (2.1).

In the first part of our presentation (Sections 2.3.1 and 2.3.2), we describe and ana-

lyze the first round of communication between the terminals. As already mentioned, we

will need to show that the joint distributions of UA
1 and the observations of the terminals

given by the random variables X, Y are close to the ideal distribution P(U1)1:N ,X1:N ,Y 1:N .

The reason that this needs to be proved for the transmitter terminal (Terminal A in Round

1) is discussed in the Introduction in general terms. In greater detail, it stems from the

fact that, apart from the data bits, we also have a subblock of low-entropy (nearly deter-

ministic) bits encoded into the vector UA
1 . This entails the need for a careful analysis of

the empirical probability distribution, which is performed in Lemma 2.4.

Once this is accomplished, we move to the analysis of the data received by Ter-
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minal B. We need to show that its version of the realization of U1 equals UA
1 with high

probability. To prove this, we would like to make use of the proximity of the joint statis-

tics to the ideal distribution, but this fact itself requires a proof. Thus, we are faced with

proving two concurrent and mutually interdependent estimates. This question is resolved

by an induction argument that gets rather technical and relies on delicate estimates of the

distance between various distributions and on Markov chain conditions. This argument

forms the contents of Lemma 2.5 below.

The next step is to generalize the claim for Round 1 to multiple rounds. This part

is relatively easier, but still new to the analysis of polar codes because of accounting for

multiple Markov chain conditions. It is contained in Sect. 2.3.4. To conclude the proof,

we show in Sect. 2.3.5 that each terminal correctly computes its function value with a

probability converging to 1.

Let U1, . . . , Ut be random variables that satisfy the Markov chain conditions and

conditional entropy conditions of Theorem 2.1. Throughout the section, PXY U1 and

PXY Ut refer to the joint distribution of the random variablesX, Y, U1 andX, Y, U1, . . . , Ut,

respectively. We will also assume that all the random variables U1, . . . , Ut are binary.

Generalizations to the case of a nonbinary alphabet can be easily accomplished using a

multitude of methods available in the literature.

2.3.1 First round of communication

We begin with a detailed discussion of the first round of communication, i.e., the

round in which A transmits to B a message from its set of 2NR1 messages.
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Consider the joint distribution

P(V1)NXNY N (U1)N ((v1)N , xN , yN , (u1)N)

= 1((u1)NGN = (v1)N)
N∏

i=1

PXY U1(xi, yi, (u1)i)

Various marginal and conditional distributions used below, denoted by P , are assumed

to be implied by this expression. The purpose of the first round of communication is to

make it possible for both terminals to generate the random vector (U1)N so that the joint

distribution of (U1)N , XN , Y N is close to P(U1)NXNY N .

Consider the following partition:

Fr = LcU1
∩HU1|X

Fd = LU1

I = LcU1
∩Hc

U1|X .





(2.5)

Remark: For readers familiar with [3] we note that this partition, while inspired by this

paper, is different from the one used in it. Our choice is better suited for the analysis

of joint statistics of the observations and the auxiliary random variables that arise in the

present study.

Round 1: The transmission scheme in the first round of communication pursues the

goal of sharing the sequence (u1)N between the two terminals. This goal is accomplished

using the following procedure. Given xN , Terminal A computes the sequence (vA1 )N in a
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successive fashion by sampling from the conditional distribution

Q(V A1 )i|(V A1 )i−1XN ((vA1 )i|(vA1 )i−1, xN)

=





1/2, i ∈ Fr

P(V1)i|(V1)i−1((vA1 )i|(vA1 )i−1), i ∈ Fd

P(V1)i|(V1)i−1X1:N ((vA1 )i|(vA1 )i−1, xN), i ∈ I.

(2.6)

Once (vA1 )N is found, Terminal A transmits (vA1 )i to Terminal B. Note that the bits in

the subset LcU1
∩ LU1|Y can be recovered by B with high probability based on its own

observations. For this reason, A transmits only the subvector of (vA1 )N whose coordinate

indices satisfy

i ∈ I ′ , I\(LcU1
∩ LU1|Y ). (2.7)

After observing yN and receiving (vA1 )i, i ∈ I ′ from Terminal A, Terminal B calculates

(vB1 )i, i ∈ (I ′)c in a probabilistic way by sampling from the distribution

Q(V B1 )i|(V B1 )i−1Y N ((vB1 )i|(vB1 )i−1, yN)

=





1/2, i ∈ Fr

P(V1)i|(V1)i−1((vB1 )i|(vB1 )i−1), i ∈ Fd

P(V1)i|(V1)i−1Y N ((vB1 )i|(vB1 )i−1, yN), i ∈ I\I ′.

(2.8)

Since (vB1 )i = (vA1 )i for all i ∈ I ′, Terminal B can form the sequence (vB1 )N . It then

computes (uB1 )N by performing the multiplication (uB1 )N = (vB1 )NGN . Terminal A also

computes its version of the sequence (uA1 )N by finding (uA1 )N = (vA1 )NGN .
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2.3.2 Analysis of the first round of communication

First let us show that the rate of the first round of communication approaches the

limiting value given in Theorem 2.1.

Lemma 2.3. The rate of the first round of communication tends to I(X;U1|Y ) as N goes

to infinity.

Proof. Since LU1 ⊆ LU1|Y (1.12), it follows that

lim
N→∞

|LcU1
∩ LU1|Y |
N

= lim
N→∞

( |LU1|Y |
N

− |LU1 |
N

)

= (1−H(U1|Y ))− (1−H(U1))

= I(U1;Y ).

Moreover, the Markov chain condition U1 → X → Y imposed by Theorem 2.1 implies

the inclusion LU1|Y ⊆ LU1|X . (See Lemma 4.7 of [7] for the proof.) Therefore, as the

blocklength N goes to infinity, the rate of the first round of communication converges to

lim
N→∞

|I|
N
− I(U1;Y ) = I(U1;X)− I(U1;Y )

= (H(U1)−H(U1|X))− (H(U1)−H(U1|Y ))

= H(U1|Y )−H(U1|X)

= H(U1|Y )−H(U1|X, Y ) (2.9)

= I(X;U1|Y )

as desired, where (2.9) again follows from the Markov condition.

As already discussed, the main technical obstacle is to show that the joint statistics

of the observations and the auxiliary random variables are close to the ideal statistic.
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More specifically, we need to prove that the joint distributions of both (UA
1 )N , XN , Y N

and (UB
1 )N , XN , Y N are close to P(U1)NXNY N , and in fact (UA

1 )N = (UB
1 )N holds true

with probability converging to 1.

Let Q(UA1 )NXNY N ((uA1 )N , xN , yN) denote the probability that Terminal A observes

the source sequence xN , Terminal B observes the source sequence yN , and the procedure

described by (2.6) outputs (uA1 )N .

Lemma 2.4. For any β1 < β ∈ (0, 1/2), starting with some N we have

‖Q(UA1 )NXNY N − P(U1)NXNY N‖1 = O(2−N
β1 ).

The proof is given in Section 2.5.

Now we turn to the information processing by Terminal B described above (see

(2.8)). Let

Q(UB1 )NXNY N ((uB1 )N , xN , yN)

denote the probability that Terminals A and B observe the source sequences xN and yN

respectively, and the described procedure outputs (uB1 )N . Then Terminal B’s counterpart

of Lemma 2.4 can be stated as follows.

Lemma 2.5. For any β2 < β ∈ (0, 1/2), starting with some N we have

‖Q(UB1 )NXNY N − P(U1)NXNY N‖1 = O(2−N
β2 ) (2.10)

Pr{(UA
1 )N = (UB

1 )N} = 1−O(2−N
β2 ). (2.11)

Remark: The statement that we need below is given by (2.11). However, both

claims (2.10) and (2.11) are used in the proof (recall the discussion in the introduction to

this section).
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The proof is given in Section 2.6.

2.3.3 The remaining rounds of communication

The purpose of this round to make it possible for both terminals to generate the

random vector (Ui+1)N so that the joint distribution of U i+1, XN , Y N is close to the ideal

distribution PU i+1,XN ,Y N , where U i+1 , ((u1)N , . . . , (ui+1)N).

The communication protocol of the first round easily generalizes to the remaining

rounds of communication. Consider for instance round i+ 1, where i is even. This means

that information is communicated from A to B, and that sequences ui , ((u1)N , . . . ,

(ui)
N) are already known to both sides.

Below we use notation P for the joint distribution

PU tV tXNY N (ut,vt, xN , yN)

=
N∏

j=1

PXY Ut(xj, yj, (u1)j, . . . , (ut)j)
t−1∏

i=0

1((ui+1)NGN = (vi+1)N) (2.12)

and distributions derived from it, where V t , ((V1)N , . . . , (Vt)
N) and

U t , ((U1)N , . . . , (Ut)
N). We assume that no errors occurred in earlier rounds, so both

terminals observe identical copies of U i.

Round i+ 1 (i even): Terminal A partitions [N ] as follows:

F i+1
r = LcUi+1

∩HUi+1|(X,U i)

F i+1
d = LUi+1

I i+1 = LcUi+1
∩Hc

Ui+1|(X,U i).





(2.13)

It then generates a sequence (vAi+1)N randomly and successively by sampling from the
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distribution

Q(V Ai+1)j |(V Ai+1)j−1,(XN ,U i)((v
A
i+1)j|(vAi+1)j−1, (xN ,ui))

=





1/2, j ∈ F i+1
r

P(Vi+1)j |(Vi+1)j−1((vAi+1)j|(vAi+1)j−1), j ∈ F i+1
d

P(Vi+1)j |(Vi+1)j−1,(XN ,U i)((v
A
i+1)j|(vAi+1)j−1, (xN ,ui)), j ∈ I i+1.

(2.14)

Having found (vAi+1)N , Terminal A computes the sequence (uAi+1)N = (vAi+1)NGN .

To communicate information, A sends to B the sequence (vAi+1)j, j ∈ I ′i+1, where

(2.13)

I ′i+1
= I i+1\(LcUi+1

∩ LUi+1|(Y,U i)).

Upon receiving the transmission, Terminal B generates (vBi+1)j, j /∈ I ′i+1 by sampling

from the distribution

Q(V Bi+1)j |(V Bi+1)j−1,(Y N ,U i)((v
B
i+1)j|(vBi+1)j−1, (yN ,ui))

=





1/2, j ∈ Fr,

P(Vi+1)j |(V i+1)j−1((vBi+1)j|(vBi+1)j−1), j ∈ Fd,

P(Vi+1)j |(V i+1)j−1,(Y N ,U i)((v
B
i+1)j|(vBi+1)j−1, (yN ,ui)), j ∈ I i+1\I ′i+1.

(2.15)

The values (vBi+1)j, j ∈ I ′i+1 are known perfectly from the communication. Once the

sequence (vBi+1)N has been formed, Terminal B finds (uBi+1)N = (vBi+1)NGN .

If i is odd, the transmission proceeds from Terminal B to A. Both the description

of the information processing and the analysis below apply after obvious changes of no-

35



tation.

Let us show that the rate of (i + 1)th round of communication matches the lower

bound of Ri+1 given in (2.1).

Lemma 2.6. If i+ 1 is odd, the rate of the (i+ 1)th round converges to I(X;Ui|Y, U i−1)

as N as goes to infinity. If i+ 1 is even, the rate converges to I(Y ;Ui|X,U i−1).

Proof. Since LUi+1
⊆ LUi+1|(Y,U i), we have

lim
N→∞

|LcUi+1
∩ LUi+1|(Y,U i)|
N

= lim
N→∞

( |LUi+1|(Y,U i)|
N

− |LUi+1
|

N

)

= (1−H(Ui+1|Y, U i))− (1−H(Ui+1))

= I(Ui+1;Y, U i).

At the same time, Theorem 2.1 implies that Ui+1 → (X,U i) → Y, and so also Ui+1 →

(X,U i) → (Y, U i). Hence, we have LUi+1|(Y,U i) ⊆ LUi+1|(X,U i). So, as the blocklength

goes to infinity, the rate of communication converges to

lim
N→∞

|I|
N
− I(Ui+1;Y, U i) = I(Ui+1;X,U i)− I(Ui+1;Y, U i)

= (H(Ui+1)−H(Ui+1|X,U i))

− (H(Ui+1)−H(Ui+1|Y, U i))

= H(Ui+1|Y, U i)−H(Ui+1|X,U i)

= H(Ui+1|Y, U i)−H(Ui+1|X,U i, Y ) (2.16)

= I(X;Ui+1|Y, U i)

which is consistent with (2.1). Eq. (2.16) is justified by the fact thatUi+1 → (X,U i)→ Y

is a Markov chain.
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The claim for the case when i+ 1 is even follows similarly.

2.3.4 Generalization of Lemmas 2.4 and 2.5 to multiple rounds

In this section we show that the joint distributions of both U t
A, X

N , Y N and

U t
B, X

N , Y N are close to PU tXNY N , and that U t
A = U t

B holds true with probability close

to 1. This is accomplished by extending Lemmas 2.4 and 2.5 to the case of t > 1. We

again face the same technical difficulties as discussed in the beginning of Sect. 2.3, but

fortunately it is possible to leverage the proofs of these lemmas to complete the argument.

Let Q(U t)AXNY N and Q(U t)BXNY N be the empirical distributions induced by the

sequence generation and communication protocols explained in Section 2.3.3. More for-

mally, let

Q(U t)A(V t)AXNY N ((ut)A, (vt)A, xN , yN)

=
N∏

j=1

PX,Y (xj, yj)
t−1∏

i=0

1((uAi+1)NGN = (vAi+1)N)

×
t−1∏

i=0

N∏

j=1

Q(V Ai+1)j |(V Ai+1)j−1,(XN ,U i)((v
A
i+1)j|(vAi+1)j−1, (xN , (ui)A))

and let Q(U t)B(V t)BXNY N ((ut)B, (vt)B, xN , yN) be defined similarly. Here,

(V t)A , ((V A
1 )N , . . . , (V A

t )N), (U t)A , ((UA
1 )N , . . . , (UA

t )N) and the notation (V t)B

and (U t)B has a similar meaning.

Lemma 2.7. For any β3 < β ∈ (0, 1/2), starting with some N we have

Pr
{

(V t)A = (V t)B
}

= 1−O(2−N
β3 ) (2.17)

‖Q(U t)AXNY N − PU tXNY N‖1 = O(2−N
β3 ) (2.18)

‖Q(U t)BXNY N − PU tXNY N‖1 = O(2−N
β3 ). (2.19)
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Proof. The proof proceeds by induction on the number of rounds. From the Lemmas 2.4

and 2.5 we know that (2.17)-(2.19) hold true for t = 1. Let us assume that they hold for

t = i and prove them for t = i+ 1. If i+ 1 is odd, then the transmitting party is Terminal

A. Then, from the induction hypothesis

‖Q(U i)AXNY N − PU iXNY N‖1 = O(2−N
β3 ) (2.20)

one can prove (2.20) for i + 1 in the same way as done in the proof of Lemma 2.4 in

Section 2.3.1 with the only difference that the Markov chain Ui+1 → (X,U i) → Y is

used instead of U1 → X → Y . Further, we use the induction hypothesis

‖Q(U i)BXNY N − PU iXNY N‖1 = O(2−N
β3 ) (2.21)

(V i)A = (V i)B = 1−O(2−N
β3 ) (2.22)

and the triangle inequality

‖Q(U i+1)BXNY N − PU i+1XNY N‖1 ≤ ‖Q(V i)BXNY N − PV iXNY N‖1

+ ‖Q̂(V i+1)BXNY N − PV i+1XNY N‖1 (2.23)

where

Q̂(V i+1)BXNY N (vi+1, xN , yN) = QV B
i+1|(V i)BXNY N (vi+1|vi, xN , yN)

× PV iXNY N (vi, xN , yN)

similarly to (2.81), to observe that one can prove (2.21), (2.22) for i + 1 in the same

way as in the proof of Lemma 2.5. This is because together with (2.21), (2.22), the

inequality given by (2.23) makes it possible to reduce the analysis of Round i + 1 to that

of Round 1. Here again we rely on the Markov condition Ui+1 → (X,U i) → Y instead
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of U1 → X → Y . The case of i + 1 even is handled similarly. In that case, we have the

Markov chain condition Ui+1 → (Y, U i) → X instead of Ui+1 → (X,U i) → Y . This

completes the induction argument.

2.3.5 Computing the functions

Let us show that the functions fA(xN , yN), fB(xN , yN) can be computed based

on the communication between the terminals described in the previous sections. Using

Lemma 2.7, we prove that Terminals A and B compute their respective values of fA and

fB respectively with probability close to one.

Proposition 2.8. For Terminal A, there exists a Z̃N
A depending on xN and ut such that for

all 0 < β7 < β < 1/2, we have

Pr{Z̃N
A = fA(XN , Y N)} = 1−O(2−N

β7 ) (2.24)

starting from some N . Similarly, for Terminal B, there exists a Z̃N
B depending on yN and

ut such that

Pr{Z̃N
B = fB(XN , Y N)} = 1−O(2−N

β7 ) (2.25)

starting from some N . Moreover, the computation of Z̃N
A and Z̃N

B is linear in blocklength.

Proof. The proof relies on the conditional entropy constraints H(fA(X, Y )|X,U t) = 0

and H(fB(X, Y )|Y, U t) = 0 in (2.1). First observe that these constraints easily extend to

the case of N independent repetitions, i.e., that we have

H(fA(XN , Y N)|XN ,U t) = 0 (2.26)

H(fB(XN , Y N)|Y N ,U t) = 0. (2.27)
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Then, define Z̃N
A and Z̃N

B as the values which satisfy

PfA(XN ,Y N )|XN ,U t(Z̃N
A |XN , (U t)A) = 1

PfB(XN ,Y N )|Y N ,U t(Z̃N
B |Y N , (U t)B) = 1

Note that the computation of both Z̃N
A and Z̃N

B is linear in blocklength. From (2.18)-(2.19)

and the conditional entropy constraints (2.26)-(2.27), it follows that Z̃N
A and Z̃N

B exist with

probability 1−O(2−N
β3 ). The rest of proof is devoted to show (2.24) and (2.25). For that

purpose, we first rewrite (2.26) and (2.27) as

H(fA(XN , Y N), XN ,U t)−H(XN ,U t) = 0 (2.28)

H(fB(XN , Y N), Y N ,U t)−H(Y N ,U t) = 0. (2.29)

Let HQ(fA(XN , Y N), XN , (U t)A) refer to the entropy defined by the distribution

Q(U t)AXNY N . For a sufficiently large N and for all 0 < β4 < β3 < 1/2 we have

|HQ(fA(XN , Y N), XN , (U t)A)−H(fA(XN , Y N), XN ,U t)|

≤ −‖QfA(XN ,Y N )XN (U t)A − PfA(XN ,Y N )XNU t‖1

× log2

‖QfA(XN ,Y N )XN (U t)A − PfA(XN ,Y N )XNU t‖1

|ZA|N |X |N 2Nt
(2.30)

≤ −‖Q(U t)AXNY N − PU tXNY N‖1

× log2

‖Q(U t)AXNY N − PU tXNY N‖1

|ZA|N |X |N 2Nt
(2.31)

≤ N(t+ log2 |X |+ log2 |ZA|) ‖Q(U t)AXNY N − PU tXNY N‖1

− ‖Q(U t)AXNY N − PU tXNY N‖1 log2(‖Q(U t)AXNY N − PU tXNY N‖1)

= O(N2−N
β3 ) +O(Nβ32−N

β3 ) (2.32)

= O(2−N
β4 ) (2.33)
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where (2.30) uses a standard estimate (e.g., [62, Theorem 17.3.3]), (2.31) is implied by

the inequality

‖Q(U t)AXNY N − PU tXNY N‖1 ≥ ‖QfA(XN ,Y N )XN (U t)A − PfA(XN ,Y N )XNU t‖1

and (2.32) is a consequence of (2.18). In the calculations above, |ZA| denotes the cardi-

nality of the range of fA. Similarly to (2.33), we observe that

|HQ(XN , (U t)A)−H(XN ,U t)| = O(2−N
β4 ). (2.34)

Now estimates (2.33), (2.34) and the equality (2.28) imply that

HQ(fA(XN , Y N)|XN , (U t)A) = O(2−N
β4 ) (2.35)

for all 0 < β4 < β < 1/2 and N large enough.

On account of (2.19) and (2.29) this derivation can be repeated for fB as well, and

we obtain

HQ(fB(XN , Y N)|XN , (U t)B) = O(2−N
β4 ). (2.36)

Expanding (2.35), we get

∑

xN ,(ut)A

QXN ,(U t)A(xN , (ut)A)
∑

zNA ∈Z
N
A

QfA(XN ,Y N )|XN ,(U t)A(zNA |xN , (ut)A)

× log2

1

QfA(XN ,Y N )|XN ,(U t)A(zNA |xN , (ut)A)
= O(2−N

β4 ) ≤ 2−N
β5 (2.37)

where β5 < β4 can be chosen arbitrarily close to β4 provided that N is sufficiently large.

Now let us define the set

S =

{
(xN , (ut)A) :

∑

zNA ∈Z
N
A

QfA(XN ,Y N )|XN ,(U t)A(zNA |xN , (ut)A)

× log2

1

QfA(XN ,Y N )|XN ,(U t)A(zNA |xN , (ut)A)
>
√

2−N
β5

}
.
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Using (2.37) we obtain

∑

(xN ,(ut)A)∈S

QXN ,(U t)A(xN , (ut)A) ≤
√

2−N
β5

and therefore with probability at least 1 − 2−
Nβ5
2 Terminal A can find a value ẐN

A such

that

1−QfA(XN ,Y N )|XN ,(U t)A(ẐN
A |xN , (ut)A)

(e− 1) ln 2
≤ 2−

Nβ5
2 (2.38)

where we have used the inequality (1 − x)/(e − 1) ≤ −x lnx, e−1 ≤ x ≤ 1 which can

be proved by differentiation. From (2.38) we obtain

QfA(XN ,Y N )|XN ,(U t)A(ẐN
A |xN , (ut)A) ≥ 1− ln 2 (e− 1) 2−

Nβ5
2 . (2.39)

Hence, from (2.39), we conclude that Terminal A can calculate the function fA(XN , Y N)

correctly with probability at least

(1− 2−
Nβ5
2 )
[
1− ln 2 (e− 1) 2−

Nβ5
2

]
= 1−O(2−N

β6 ).

Repeating the derivation above starting from (2.36), we prove that Terminal B can find

a value ẐN
B and thus calculate the function fB(XN , Y N) correctly with probability 1 −

O(2−N
β6 ). Lastly, using (2.18)-(2.19) again, we observe that

Pr{Z̃N
A = ẐN

A } = 1−O(2−N
β3 )

Pr{Z̃N
B = ẐN

B } = 1−O(2−N
β3 )

Hence, we conclude

Pr{fA(XN , Y N) = Z̃N
A } = 1−O(2−N

β6 )−O(2−N
β3 ) = 1−O(2−N

β7 )

Pr{fB(XN , Y N) = Z̃N
B } = 1−O(2−N

β6 )−O(2−N
β3 ) = 1−O(2−N

β7 )

as desired.
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The proof that the rate region (2.1) can be achieved using polar coding is now

complete.

In conclusion we note that all the proofs presented in Sections 2.3.1, 2.3.3, and

2.3.4 can be extended to the case when the auxiliary random variables U1, U2, . . . , Ut are

not binary using for instance the methods in [9], [10]. Another alternative is viewing Ui

as the composition of bits Ui,1, . . . , Ui,r and dividing each round of communication into r

steps each of which are responsible from the conditional distribution

Q(ui,k|ui−1, ui,1, . . . , ui,k−1, x
N), k = 1, 2, . . . , r.

We confine ourselves to this brief remark, leaving the details to the reader.

2.3.6 An example of interactive function computation

As observed earlier, to complete the description of the communication scheme we

need to specify the random variables U1, U2, . . . , Ut that satisfy the Markov chain condi-

tions and conditional entropy equalities in (2.1). The description of these random vari-

ables depends on the function being computed and is studied on a case-by-case basis.

Following [34] consider the example in which Terminals A and B observe binary

random sequences with X ∼ Ber(p), Y ∼ Ber(q), where X and Y are independent. Sup-

pose that both terminals need to compute the AND function, i.e., fA(x, y) = fB(x, y) =

x ∧ y. We can assume that there exist random variables (Vx, Vy) ∼ Uniform([0, 1]2) such

that X , 1[1−p,1](Vx) and Y , 1[1−q,1](Vy). Further, let Γ , {(α(s), β(s)), 0 ≤ s ≤ 1}

be a curve defined parametrically with boundary conditions α(0) = β(0) = 0, α(1) =

1 − p and β(1) = 1 − q and let 0 = s0 < s1 < · · · < st/2−1 < st/2 = 1 be a partition of
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the segment [0, 1]. Consider the following t random variables

U2i−1 , 1[α(si),1]×[β(si−1),1](Vx, Vy)

U2i , 1[α(si),1]×[β(si),1](Vx, Vy)

(2.40)

where i = 1, . . . , t/2. In [34] it is shown that for all partitions and curves Γ of the form

defined above, random variables (2.40) satisfy both the Markov chain and the conditional

entropy constraints in (2.1).

Hence, for the AND function, we can construct a polar-coded communication scheme

based on (2.40). In each transmission round, we can construct codes following the par-

tition of the index set [N ] as in (2.5) and (2.13). For example, according to (2.13) we

have to determine the noiseless and noisy bits of the transmission for the channel with

binary input Ui+1 and output (X,U i). After n = log2N iterations the size of the output

alphabets of the virtual channels obtained will be 2N(i+1) = 22n(i+1). To simplify the

computations involved in the code construction one can rely on the alphabet reduction

methods proposed in [56].

Moreover, the choice of random variables according to (2.40) minimizes the sum-

rate
∑t

j=1Rj for t→∞. (See [63] for the proof.) In [34], it is also shown that

Rsum,∞ = h2(p)+ph2(q)+p log2(q)+p(1−q) log2 e < h2(p)+ph2(q) = RA
sum,2 (2.41)

where h2 is the binary entropy function, Rsum,∞ is the minimum sum-rate as t→∞, and

RA
sum,2 is the minimum sum-rate for the case t = 2 and it is Terminal A that transmits first.

This example shows that for the problem of computing the AND function one can gain

by performing several rounds on interactive communication.
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2.4 Polar Codes for Collocated Networks

In this section we consider the multi-terminal function computation problem intro-

duced in Sect. 2.2.2. We will show that the polar-coded communication scheme intro-

duced above can be modified to achieve the rate region given in Theorem 2.2.

Let U1, . . . , Ut be random variables that satisfy the Markov chain conditions and

conditional entropy conditions of Theorem 2.2.

2.4.1 Communication protocol

Before starting to explain the protocol, we define P as

PV t,U t,Xm(vt,ut,xm)

=
t∏

i=1

1((ui)
NGN = (vi)

N)
N∏

k=1

PXm,Ut((x1)k, . . . , (xm)k, (u1)k, . . . , (ut)k) (2.42)

where xm , ((x1)N , . . . , (xm)N), vt , ((v1)N , . . . , (vt)
N), and

ut , ((u1)N , . . . , (ut)
N). Similarly to Section 2.3, the aim of the communication is to

let the terminals generate U t such that the joint distribution of Xm and U t is close to

PU t,Xm .

Suppose that the transmission starts with Terminal 1. We again rely on the partition

of [N ] of the form

Fr = LcU1
∩HU1|X1

Fd = LU1

I = LcU1
∩Hc

U1|X1





(2.43)
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similarly to (2.5). Having observed a realization (x1)N , the first terminal finds a sequence

(v1)N by sampling from the distribution

Q(V1)i|(V1)i−1,(X1)N ((v1)i|(v1)i−1, (x1)N)

=





1/2, i ∈ Fr

P(V1)i|(V1)i−1((v1)i|(v1)i−1), i ∈ Fd

P(V1)i|(V1)i−1,(X1)N ((v1)i|(v1)i−1, (x1)N), i ∈ I.

(2.44)

Based on (v1)N Terminal 1 finds the sequence (u1)N = (v1)NGN . and broadcasts the bits

(v1)i, i ∈ I. The remaining terminals including the sink terminal calculate their versions

of (v1)i, i /∈ I from the conditional distribution

Q(V1)i|(V1)i−1((v1)i|(v1)i−1) =





1/2, i ∈ Fr,

P(V1)i|(V1)i−1((v1)i|(v1)i−1), i ∈ Fd.

Then they find the sequence (u1)N = (v1)NGN and record the result1.

Note that for largeN the rate of communication converges toR1 = limN→∞ |I|/N =

I(U1;X1), consistent with (2.3).

In general, the ith message, i ∈ [t] is generated and sent by Terminal j, j = 1 +

(i − 1 modm). At the start of the ith round of communication we assume that all the

terminals have the same i− 1 sequences ui−1, each of which was computed as a result of

1With small probability the sequences (u1)
N computed at different terminals will be different; see also

Sect. 2.4.2 below. Abusing notation, we do not differentiate them below in this section.
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the previous messages. Terminal j first relies on the partition of [N ] given by

F ir = LcUi ∩HUi|Xj ,U i−1

F id = LUi

I i = LcUi ∩Hc
Ui|Xj ,U i−1 .





(2.45)

and finds computes (vi)
N by sampling from the distribution

Q(Vi)k|(Vi)k−1,(Xj)N ,U
i−1((vi)k|(vi)k−1, (xj)

N ,ui−1)

=





1/2, k ∈ F ir

P(Vi)k|(Vi)k−1((vi)k|(vi)k−1), k ∈ F id

P(Vi)k|(Vi)k−1,(Xj)N ,U
i−1((vi)k|(vi)k−1, (xj)

N ,ui−1), k ∈ I i.

(2.46)

Then, as usual, Terminal j computes (ui)
N = (vi)

NGN and broadcasts the sequence

(vi)k, k ∈ I ′i, where I ′i = I i\LcUi ∩ LUi|U i−1 . Since LUi|U i−1 ⊆ LUi|Xj ,U i−1 implies the

inclusion LcUi ∩ LUi|U i−1 ⊆ I i, the rate of this broadcast converges to

lim
N→∞

|I ′i|
N

= I(Ui;U
i−1, Xj)− I(Ui;U

i−1)

= H(Ui|U i−1)−H(Ui|U i−1, Xj)

= I(Xj;Ui|U i−1)

in accordance with (2.3). Based on the sequence (vi)k, k ∈ I ′i, the remaining terminals

determine (vi)k, k /∈ I ′i by sampling from the distribution
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Q(Vi)k|(Vi)k−1,U i−1((vi)k|(vi)k−1,ui−1)

=





1/2, k ∈ F ir

P(Vi)k|(Vi)k−1((vi)k|(vi)k−1), k ∈ F id

P(Vi)k|(Vi)k−1,U i−1((vi)k|(vi)k−1,ui−1) k ∈ I i\I ′i.

(2.47)

As a result, the remaining terminals acquire their versions of the sequence (ui)
N .

2.4.2 The analysis of the protocol

To show that the proposed protocol attains the overall goal of function computation

we need to show two facts. First, we should prove in each round the sequences (ui)
N

found by the receiving terminals with high probability are the same as the sequence com-

puted by the broadcasting terminal. Second, we need to prove that the sequences ut we

obtain have a joint distribution with the source sequence which is very close to the distri-

bution P given by (2.42), making it possible to satisfy the condition H(f(Xm)|U t) = 0.

This entails the same problem as the one we faced in Section 2.3.1: namely, to prove

one of these facts directly, we need the other one. As in Lemma 2.5 in Section 2.3.1, we

will prove both statements simultaneously by induction. Similarly to Section 2.3.1, we

assume that the terminals are provided with random bits whose indices fall in the subsets

F1
r , . . . ,F tr .

Let us introduce some notation. Denote by (Ul)
N
j the random sequence generated

by Terminal j = 1 + (l − 1 modm) in Round l and by (Ul)
N
r the sequence computed

by Terminal r 6= j after the transmission by Terminal j. Denote by QU t,Xm the joint
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distribution of the source sequences xm = ((x1)N , (x2)N , . . . , (xm)N) and the sequences

ut = ((u1)N , (u2)N , . . . , (ut)
N) generated in the course of the communication. More

formally, we define QU t,Xm as the marginal distribution of

QU tV tXm(ut,vt,xm) =
N∏

k=1

PXm((x1)k, . . . , (xm)k)
t∏

i=1

1((ui)
NGN = (vi)

N)

×
t∏

i=1

N∏

k=1

Q(Vi)k|(Vi)k−1,((Xj)N ,U
i−1)((vi)k|(vi)k−1, ((xj)

N ,ui−1))

where Q(Vi)k|(Vi)k−1,((Xj)N ,U
i−1)((vi)k|(vi)k−1, (xj)

N ,ui−1) is given in (2.46).

Lemma 2.9. For any β7 < β ∈ (0, 1/2) and for all l ∈ [t], and for all r 6= j, starting

from some N , we have

Pr{(Ul)Nj = (Ul)
N
r } = 1−O(2−N

β7 ) (2.48)

‖QU tXm − PU tXm‖1 = O(2−N
β7 ) (2.49)

Proof. We begin with the case t = 1 in which case (2.49) takes the form

‖Q(U1)NXm − P(U1)NXm‖1 = O(2−N
β7 ). (2.50)

Recall that from Lemma 2.4 we have the estimate

‖Q(U1)N (X1)N − P(U1)N (X1)N‖1 = O(2−N
β1 ). (2.51)

On account of the Markov condition U1 → X1 → X2, . . . , Xm in the statement of Theo-

rem 2.2, we have

LcU1
∩HU1|X1 = LcU1

∩HU1|Xm

LcU1
∩Hc

U1|X1
= LcU1

∩Hc
U1|Xm (2.52)
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Hence for all i ∈ I = LcU1
∩Hc

U1|X1
we have

P (V1)i|(V1)i−1,(X1)N ((v1)i|(v1)i−1, (x1)N) = P(V1)i|(V1)i−1,Xm((v1)i|(v1)i−1,xm) (2.53)

From (2.52) and (2.53), we see that (2.44) is fully equivalent to the computation which

uses xm rather than just (x1)N in the conditional probability for the case i ∈ I. Therefore,

(2.50) follows from Lemma 2.4, completing the proof of (2.49) for t = 1. In regards

to (2.48) we note that for t = 1 it reduces to a special case of (2.11) in which Y N is

unavailable.

Our next step is to generalize (2.50) to t broadcasts, i.e., to show (2.49). For that

purpose, similarly to the triangle inequality method used in Sections 2.3.1 and 2.3.4, we

write

‖QU iXm − PU iXm‖1 ≤ ‖QU i−1Xm − PU i−1Xm‖1

+ ‖Q̂U iXm − PU iXm‖1 (2.54)

where

Q̂U iXm(ui,xm) = 1((vi)
1:NGN = (ui)

1:N)PU i−1,Xm(ui−1,xm)

×
N∏

k=1

Q(Vi)k|(Vi)k−1,(Xj)N ,U
i−1((vi)k|(vi)k−1, (xj)

N ,ui−1). (2.55)

Now we are ready to use induction. From (2.50) we see that (2.49) is true for t = 1.

Assume that it is also true for t = i− 1. Eq. (2.54) implies that to prove (2.49) holds for

t = i, it is sufficient to show

‖Q̂U iXm − PU iXm‖1 = O(2−N
β7 ). (2.56)
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Since the marginal of Q̂ for ui−1,xm equals P , to show (2.56) we need to focus on the

error introduced by the ith round of sequence generation. Owing to the Markov chain

condition Ui → (U i−1, Xj) → (Xj−1, Xj+1, Xj+2, . . . , Xm), for all k ∈ I i = LcUi ∩

Hc
Ui|Xj ,U i−1 = LcUi ∩Hc

Ui|Xm,U i−1 we have

P (Vi)k|(Vi)k−1,(Xj)N ,U
i−1((vi)k|(vi)k−1, (xj)

N ,ui−1)

= P(Vi)k|(Vi)k−1,Xm,U i−1((vi)k|(vi)k−1,xm,ui−1)

Therefore (2.56) follows from Lemma 2.4. This completes the induction argument for

(2.49).

Finally let us justify the the induction step for (2.48) for t = i. For this assume that

(2.48) and (2.49) hold for t = i− 1 and note that the proof follows the steps in the proof

of Lemma 2.5 with no changes.

In regards to the function computation, we note that the analysis carried out in

Section 2.3.5 implies that the sink node computes the function f(Xm) correctly with

probability converging to 1 asN goes to infinity. This completes the proof of achievability

for the region (2.4) using the described polar coding scheme.

The analysis presented in this section can be easily modified to account for the

case of nonbinary auxiliary random variables U1, . . . , Ut. The remarks made in the end of

Section 2.3.5 apply to the present case as well.
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2.5 Appendix 2.A: Proof of Lemma 2.4

To simplify the notation, in the proof we write Q((u1)N , xN , yN), Q((v1)N , xN)

instead of

Q(UA1 )NXNY N ((uA1 )N , xN , yN), Q(V A1 )NXN ((vA1 )N , xN)

etc. and extend this convention to the distributions derived from P as well as the corre-

sponding conditional and marginal distributions.

First let us rewrite P ((u1)N , xN , yN) as

P ((u1)N , xN , yN) =
N∏

i=1

PXY U1(xi, yi, (u1)i)

=
N∏

i=1

PXY (xi, yi)PU1|X((u1)i|xi) (2.57)

= P (xN , yN)P ((u1)N |xN) (2.58)

where (2.57) is due to U1 → X → Y . Now note that according to (2.6) Terminal A has

to generate the sequence (u1)N based only on xN because it does not have access to yN .

So, for all (u1)N , xN , yN it follows that

Q((u1)N , xN , yN) = Q(xN , yN)Q((u1)N |xN)

= P (xN , yN)Q((u1)N |xN). (2.59)

Using (2.58) and (2.59) we compute
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∑

(u1)N ,xN ,yN

|Q((u1)N , xN , yN)− P ((u1)N , xN , yN)|

=
∑

(u1)N ,xN ,yN

P (xN , yN)
∣∣Q((u1)N |xN)− P ((u1)N |xN)

∣∣

=
∑

(u1)N ,xN

P (xN)
∣∣Q((u1)N |xN)− P ((u1)N |xN)

∣∣

=
∑

(u1)N ,xN

|Q((u1)N , xN)− P ((u1)N , xN)|. (2.60)

Denote the right-hand side of (2.60) by ∆(P,Q). Since Arıkan’s transform is a one-to-

one map between (u1)N and (v1)N , we have

∑

(v1)N ,xN

|Q((v1)N , xN)− P ((v1)N , xN)| = ∆(P,Q). (2.61)

Then from (2.60) and (2.61) we conclude that

∑

(v1)N ,xN

|Q((v1)N , xN)− P ((v1)N , xN)| = ‖Q(UA1 )NXNY N − P(U1)NXNY N‖1

Thus, to prove the lemma it suffices to show that

∆(P,Q) =
∑

(v1)N ,xN

|Q((v1)N , xN)− P ((v1)N , xN)| = O(2−N
β1 ).

Let us write ∆(P,Q) as

∆(P,Q) =
∑

(v1)N ,xN

P (xN)

∣∣∣∣∣
N∏

i=1

Q((v1)i|(v1)i−1, xN)−
N∏

i=1

P ((v1)i|(v1)i−1, xN)

∣∣∣∣∣ .

(2.62)

Applying the telescoping expansion argument used in Lemma 3.5 of [7], one can bound
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above the right-hand side of (2.62) to obtain

∆(P,Q) ≤
∑

xN

P (xN)
∑

(v1)N

N∑

i=1

|Q((v1)i|(v1)i−1, xN)− P ((v1)i|(v1)i−1, xN)|

×
i−1∏

j=1

P ((v1)j|(v1)j−1, xN)
N∏

j=i+1

Q((v1)j|(v1)j−1, xN). (2.63)

Substituting (2.6) into (2.63), we obtain

∆(P,Q)

≤
∑

i∈Fr∪Fd

∑

(v1)i−1,xN

1∑

(v1)i=0

|Q((v1)i|(v1)i−1, xN)− P ((v1)i|(v1)i−1, xN)|

× P ((v1)i−1, xN)

= 2
∑

i∈Fr

EP

∣∣∣∣
1

2
− P ((V1)i = 0|(V1)i−1, XN)

∣∣∣∣

+ 2
∑

i∈Fd

EP |P ((V1)i = 0|(V1)i−1)− P ((V1)i = 0|(V1)i−1, XN)| (2.64)

where EP is a shorthand for the expected value EP
(V1)

i−1,XN
.

Proposition 2.10. If i ∈ Fr, then

EP

∣∣∣∣
1

2
− P ((V1)i = 0|(V1)i−1, XN)

∣∣∣∣ ≤ 2−
Nβ

2
− 1

2 . (2.65)

Proof. The proof of Lemma 3.8 of [7] is directly applicable here. We first observe

Z((V1)i|(V1)i−1, XN)

= 2
∑

(v1)i−1,xN

P ((v1)i−1, xN)
√
P ((V1)i = 0|(v1)i−1, xN)

×
√
P ((V1)i = 1|(v1)i−1, xN)

= 2EP

[√
P ((V1)i = 0|(V1)i−1, XN)P ((V1)i = 1|(V1)i−1, XN)

]
. (2.66)
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Making use of the fact that for i ∈ Fr, Def. (2.5) implies that Z((V1)i|(V1)i−1, XN) ≥

1− 2−N
β , we observe that

EP

[
1

2
−
√
P ((V1)i = 0|(V1)i−1, XN)P ((V1)i = 1|(V1)i−1, XN)

]
≤ 2−N

β

/2.

Hence also

EP

[
1

4
− P ((V1)i = 0|(V1)i−1, XN)P ((V1)i = 1|(V1)i−1, XN)

]
≤ 2−N

β

/2.

Note that the two probabilities inside the brackets sum to one, so we obtain

EP

[
1

2
− P ((V1)i = 0|(V1)i−1, XN)

]2

≤ 2−N
β

/2.

Finally, using convexity, we obtain (2.65), as desired.

Proposition 2.11. If i ∈ Fd, then there exists an absolute constant c ∈ R such that

EP |P ((V1)i = 0|(V1)i−1)− P ((V1)i = 0|(V1)i−1, XN)| ≤ c 2−
Nβ

2 .

Proof. First note that i ∈ Fd ⊆ LU1 implies Z((V1)i|(V1)i−1) ≤ 2−N
β which in turn

implies

Z((V1)i|(V1)i−1, XN) ≤ 2−N
β

.

Hence for any a ∈ (0, 1)

2
√
a(1− a) Pr{a < P ((V1)i = 0|(V1)i−1) < 1− a}

≤ 2EP
√
P ((V1)i = 0|(V1)i−1)P ((V1)i = 1|(V1)i−1)

≤ 2−N
β
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and

2
√
a(1− a) Pr{a < P ((V1)i = 0|(V1)i−1, XN) < 1− a}

≤ 2EP
√
P ((V1)i = 0|(V1)i−1, XN)P ((V1)i = 1|(V1)i−1, XN)

≤ 2−N
β

follows. In particular, for a = 2−N
β , we obtain

P
(

2−N
β

< P ((V1)i = 0|(V1)i−1) < 1− 2−N
β
)
≤ 1

2

√
2−Nβ

1− 2−Nβ (2.67)

P
(

2−N
β

< P ((V1)i = 0|(V1)i−1, XN) < 1− 2−N
β
)
≤ 1

2

√
2−Nβ

1− 2−Nβ . (2.68)

Now, letting D = [0, 2−N
β
] ∪ [1− 2−N

β
, 1] we obtain

Pr
{
P ((V1)i = 0|(V1)i−1) ∈ D ∧ P ((V1)i = 0|(V1)i−1, XN) ∈ D

}

≥ 1−
√

2−Nβ

1− 2−Nβ . (2.69)

Our next step will be to show that both the probabilities

Pr
{
P ((V1)i = 0|(V1)i−1) ∈ [1− 2−N

β

, 1]

∧ P ((V1)i = 0|(V1)i−1, XN) ∈ [0, 2−N
β

]
}

(2.70)

Pr
{
P ((V1)i = 0|(V1)i−1) ∈ [0, 2−N

β

]

∧ P ((V1)i = 0|(V1)i−1, XN) ∈ [1− 2−N
β

, 1]
}

(2.71)

are small. Let S(i, N) be the set of pairs ((v1)i−1, xN) accounting for the event in (2.70).
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Write

Pr{(V1)i = 0|(V1)i−1 = (v1)i−1}Pr{(V1)i = 1, (V1)i−1 = (v1)i−1}

= Pr{(V1)i = 1|(V1)i−1 = (v1)i−1}

× Pr{(V1)i = 0|(V1)i−1 = (v1)i−1}Pr{(V1)i−1 = (v1)i−1}

and observe that if the pair ((v1)i−1, xN) ∈ S(i, N) then the first term on the left is ≈ 1

and the first term on the right is ≈ 0. This implies that

(1− 2−N
β

) Pr{(V1)i = 1, (V1)i−1 = (v1)i−1}

≤ 2−N
β

Pr{(V1)i = 0, (V1)i−1 = (v1)i−1}. (2.72)

In the same way from (2.70) we obtain

2−N
β

Pr{(V1)i = 1,(V1)i−1 = (v1)i−1, XN = xN}

≥ (1− 2−N
β

) Pr{(V1)i = 0, (V1)i−1 = (v1)i−1, XN = xN}.

(2.73)

From (2.72), (2.73) we see that (2.70) can be bounded above as follows:

∑

((v1)i−1,xN )∈S(i,N)

Pr{(V1)i−1 = (v1)i−1, XN = xN}

=
∑

((v1)i−1,xN )∈S(i,N)

1∑

(v1)i=0

Pr{(V1)i = (v1)i, (V1)i−1 = (v1)i−1, XN = xN}

≤
(

1 +
2−N

β

1− 2−Nβ

) ∑

((v1)i−1,xN )∈S(i,N)

Pr{(V1)i = 1, (V1)i−1 = (v1)i−1, XN = xN}

≤ 1

1− 2−Nβ

∑

(v1)i−1∈S(i,N)

Pr{(V1)i = 1, (V1)i−1 = (v1)i−1}

≤ 2−N
β

(1− 2−Nβ)2

∑

(v1)i−1∈S(i,N)

Pr{(V1)i = 0, (V1)i−1 = (v1)i−1}

≤ 2−N
β

(1− 2−Nβ)2
Pr{(V1)i = 0}. (2.74)
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Similarly, it can be shown that the probability (2.71) is small. Indeed, let T (i, N) be the

set of pairs ((v1)i−1, xN) accounting for the event in (2.71). As in (2.72), (2.73), for each

((v1)i−1, xN) ∈ T (i, N) we have

2−N
β

Pr{(V1)i = 1, (V1)i−1 = (v1)i−1}

≥ (1− 2−N
β

) Pr{(V1)i = 0, (V1)i−1 = (v1)i−1}

(1− 2−N
β

) Pr{(V1)i = 1, (V1)i−1 = (v1)i−1, XN = xN}

≤ 2−N
β

Pr{(V1)i = 0, (V1)i−1 = (v1)i−1, XN = xN}.

From these two relations we conclude that (2.71) can be bounded above as

∑

((v1)i−1,xN )∈T (i,N)

Pr{(V1)i−1 = (v1)i−1, XN = xN}

=
∑

((v1)i−1,xN )∈T (i,N)

1∑

(v1)i=0

Pr{(V1)i = (v1)i, (V1)i−1 = (v1)i−1, XN = xN}

≤
(

1 +
2−N

β

1− 2−Nβ

) ∑

((v1)i−1,xN )∈T (i,N)

Pr{(V1)i = 0, (V1)i−1 = (v1)i−1, XN = xN}

≤ 1

1− 2−Nβ

∑

(v1)i−1∈T (i,N)

Pr{(V1)i = 0, (V1)i−1 = (v1)i−1}

≤ 2−N
β

(1− 2−Nβ)2

∑

(v1)i−1∈T (i,N)

Pr{(V1)i = 1, (V1)i−1 = (v1)i−1}

≤ 2−N
β

(1− 2−Nβ)2
Pr{(V1)i = 1}. (2.75)

Substituting (2.74) and (2.75) in (2.69), we observe that

Pr
{ ∣∣P ((V1)i = 0|(V1)i−1)− P ((V1)i = 0|(V1)i−1, XN)

∣∣ ≤ 2−N
β
}

≥ 1−
√

2−Nβ

1− 2−Nβ −
2−N

β

(1− 2−Nβ)2
.
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Let ξ be the random variable in the brackets, and note that Pr{ξ ∈ [0, 1]} = 1. Then use

the fact that

Eξ ≤ 2−N
β

Pr(ξ ≤ 2−N
β

) + Pr(ξ > 2−N
β

) ≤ 2−N
β

+ Pr(ξ > 2−N
β

).

This translates into

EP |P ((V1)i = 0|(V1)i−1)− P ((V1)i = 0|(V1)i−1, XN)|

≤
√

2−Nβ

1− 2−Nβ +
2−N

β

(1− 2−Nβ)2
+ 2−N

β

. (2.76)

which completes the proof of Proposition 2.11.

Combining Propositions 2.10 and 2.11 with (2.64), we obtain

‖Q(UA1 )NXNY N − P(U1)NXNY N‖1 = ∆(P,Q) = O(N2−
Nβ

2 )

which proves Lemma 2.4.

2.6 Appendix 2.B: Proof of Lemma 2.5

We prove (2.10) and (2.11) by induction on i, using the following forms of these

relations for a given value of i:

‖Q(UB1 )iXNY N − P(U1)iXNY N‖1 = O(2−N
β2 ) (2.77)

Pr
{

(V A
1 )i = (V B

1 )i
}

= 1−O(2−N
β2 ). (2.78)

To prove the induction base, note that there are four different possibilities for i = 1 which

may be contained in any of the sets Fr, Fd, I\I ′, and I ′; see (2.5), (2.7).
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1. If 1 ∈ Fr, then Terminals A and B will make the same decision with probability 1,

i.e., Pr
{

(V A
1 )1 = (V B

1 )1

}
= 1. This is because we assume that the terminals share

a common randomness to decide (vA1 )i and (vB1 )i, i ∈ Fr. To prove (2.77), note

that the Markov condition U1 → X → Y implies that (U1)N → XN → Y N , which

implies that (V1)N → XN → Y N and finally (V1)1 → XN → Y N . We use this in

the following calculation:

‖Q(V B1 )1XNY N − P(V1)1XNY N‖1

=
∑

xN ,yN

1∑

v1=0

|Q(V B1 )1|XNY N (v1|xN , yN)− P(V1)1|XNY N (v1|xN , yN)|PXNY N (xN , yN)

=
∑

xN

1∑

v1=0

|1/2− P(V1)1|XN (v1|xN)|PXN (xN)

= 2EP |1/2− P ((V1)1 = 0|XN)|.

Here the last step follows because (vB1 )i’s are uniformly random for i ∈ Fr, as

given by (2.8). Now using Proposition 2.10, we obtain (2.77) for i = 1.

2. Let 1 ∈ Fd = LU1 . To prove (2.77) we use the same argument as above in item (1),

using the Markov condition (V1)1 → XN → Y N together with Proposition 2.11.

To prove (2.78) note that for i ∈ Fd we have Z((V1)i|(V1)i−1) ≤ 2−N
β
; see (2.5),

(1.13)2. Therefore, the random variable (V A
1 )i is almost deterministic, and the same

is true for the random variable (V B
1 )i. This observation is stated formally in (2.67).

From (2.67), we see that with probability 1− 1
2

√
2−Nβ

1−2−Nβ
, Terminals A and B decide

(V A
1 )1 and (V B

1 )1 respectively based on independent copies of a Bernoulli random

2If i = 1 then (V )i−1 is empty, but below we will use this argument for all i.
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variable that takes the value 0 with probability p such that either p ≤ 2−N
β or

p ≥ 1− 2−N
β . Therefore, it follows that for sufficiently large N

Pr{(V A
1 )1 = (V B

1 )1} ≥


1− 1

2

√
2−Nβ

1− 2−Nβ


 (1− 2p(1− p)) = 1−O(2−

Nβ

2 )

= 1−O(2−N
β2 ).

3. Let 1 ∈ I\I ′ ⊆ LU1|Y ⊆ LU1|X . Estimate (2.77) will follow from the following

proposition.

Proposition 2.12. If i ∈ I\I ′, then for sufficiently large N

EP |P ((V1)i = 0|(V1)i−1, Y N)− P ((V1)i = 0|(V1)i−1, XN , Y N)|

= O(2−
Nβ

2 ).

Proof. On account of (1.11) for i ∈ I\I ′ ⊆ LU1|Y we obtain

Z((V1)i|(V1)i−1, Y N) ≤ 2−N
β

,

which implies that

Z((V1)i|(V1)i−1, XN , Y N) ≤ 2−N
β

.

The remaining part of the proof follows the steps in the proof of Proposition 2.11.

Namely, inequalities (2.74), (2.75) and (2.69) are valid in this case as well, and we

again obtain the estimate

EP
∣∣P ((V1)i = 0|(V1)i−1, Y N)− P ((V1)i = 0|(V1)i−1, XN , Y N)

∣∣

≤
√

2−Nβ

1− 2−Nβ +
2−N

β

(1− 2−Nβ)2
+ 2−N

β

.

This completes the proof of Proposition 2.12.
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Now notice that

‖Q(V B1 )1XNY N − P(V1)1XNY N‖1

=
∑

xN ,yN

1∑

a=0

|Q(V B1 )1XNY N (a, xN , yN)− P(V1)1XNY N (a, xN , yN)|

=
∑

xN ,yN

1∑

a=0

PXNY N (xN , yN)

× |Q(V B1 )1|XNY N (a|xN , yN)− P(V1)1|XNY N (a|xN , yN)|

(2.8)
=

∑

xN ,yN

1∑

a=0

PXNY N (xN , yN)

× |P(V1)1|Y N (a|yN)− P(V1)1|XNY N (a|xN , yN)|

=
1∑

a=0

EP
XNYN

∣∣P(V1)1|Y N (a|Y N)− P(V1)1|XNY N (a|XN , Y N)
∣∣

= 2EP
XNYN

∣∣P(V1)1|Y N (0|Y N)− P(V1)1|XNY N (0|XN , Y N)
∣∣

= O(2−
Nβ

2 )

where the last estimate follows from Proposition 2.12. This proves (2.77).

Regarding (2.78) note that for i ∈ I\I ′ we have Z((V1)i|(V1)i−1, Y N) ≤ 2−N
β
; see

(2.5), (1.11). This also implies that

Z((V1)i|(V1)i−1, XN) = Z((V1)i|(V1)i−1, XN , Y N) ≤ 2−N
β

.

Hence, similarly to (2.67) and (2.68), we have

P
(

2−N
β

< P ((V1)i = 0|(V1)i−1, XN) < 1− 2−N
β
)
≤ 1

2

√
2−Nβ

1− 2−Nβ

P
(

2−N
β

< P ((V1)i = 0|(V1)i−1, Y N) < 1− 2−N
β
)
≤ 1

2

√
2−Nβ

1− 2−Nβ .
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Repeating the arguments that led us to conclude that the probabilities in (2.70) and

(2.71) are small, we obtain

Pr
{
P ((V1)i = 0|(V1)i−1, XN) ∈ [1− 2−N

β

, 1]

∧ P ((V1)i = 0|(V1)i−1, Y N) ∈ [0, 2−N
β

]
}

+ Pr
{
P ((V1)i = 0|(V1)i−1, XN) ∈ [0, 2−N

β

]

∧ P ((V1)i = 0|(V1)i−1, Y N) ∈ [1− 2−N
β

, 1]
}
≤ 2−N

β

(1− 2−Nβ)2

Now let us perform a calculation similar to the one in item (2):

Pr{(V A
1 )1 = (V B

1 )1} ≥


1−

√
2−Nβ

1− 2−Nβ −
2−N

β

(1− 2−Nβ)2


 (1− 2−N

β+1)

= 1−O(2−
Nβ

2 )

= 1−O(2−N
β2 )

This completes the proof of (2.78).

4. If 1 ∈ I ′, then using the Markov condition U1 → X → Y, we observe that (2.77)

holds trivially. Since the bit (V A
1 )1 is known perfectly at terminal B, the same is

true for (2.78).

This establishes the induction base.

Now assume that (2.77) and (2.78) hold for some i ≥ 1. To prove that (2.77) is also

valid for i+ 1 write
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‖Q(V B1 )i+1XNY N − P(V1)i+1XNY N‖1

=
∑

(v1)i+1,xN ,yN

|QB((v1)i+1, xN , yN)− P ((v1)i+1, xN , yN)|

≤
∑

(v1)i+1,xN ,yN

QB((v1)i+1|(v1)i, xN , yN)

× |QB((v1)i, xN , yN)− P ((v1)i, xN , yN)|

+
∑

(v1)i+1,xN ,yN

P ((v1)i, xN , yN)

× |QB((v1)i+1|(v1)i, xN , yN)− P ((v1)i+1|(v1)i, xN , yN)| (2.79)

=
∑

(v1)i,xN ,yN

|QB((v1)i, xN , yN)− P ((v1)i, xN , yN)|

+
∑

(v1)i+1,xN ,yN

|Q̂B((v1)i+1, xN , yN)− P ((v1)i+1, xN , yN)|

= ‖Q(V B1 )iXNY N − P(V1)iXNY N‖1 + ‖Q̂(V B1 )i+1XNY N − P(V1)i+1XNY N‖1 (2.80)

where for simplicity we write QB((v1)i+1, xN , yN) instead of

Q(V B1 )i+1XNY N ((vB1 )i+1, xN , yN),

and where

Q̂(V B1 )i+1XNY N ((v1)i+1, xN , yN)

= Q(V B1 )i+1|(V B1 )iXNY N ((v1)i+1|(v1)i, xN , yN)P(V1)iXNY N ((v1)i, xN , yN) (2.81)

is the distribution whose marginal for (v1)i, xN , yN equals P ((v1)i, xN , yN). From the

induction hypothesis given by (2.77), the first term in (2.80) is small, and so it is enough

to prove that

‖Q̂(V B1 )i+1XNY N − P(V1)i+1XNY N‖1 = O(2−N
β2 ).
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This estimate follows from the arguments made for the case i = 1 with no changes.

Regarding (2.78) we note that the induction hypothesis implies that the distribution

Q(V B1 )iXNY N is close to the “true” distribution P by the L1 distance. Therefore, the ar-

guments given above for each of the cases (1)-(4) for i = 1 are applicable to the case of

general i+ 1 given i.

This completes the induction argument and finishes the proof of Lemma 2.5.
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Chapter 3: Achieving Secrecy Capacity of the Wiretap Channel and Broad-

cast Channel with a Confidential Component

3.1 Introduction

We begin with introducing the communication problem for the wiretap channel.

Denote the input alphabet of the transmitter by X, and the output alphabets of the channels

W1 and W2 by Y and Z, respectively. The messages that the transmitter can convey to

Receiver 1 form a finite set denoted below by M. For transmission over the channel the

message is encoded using a mapping f : M→ XN , where XN is an N -fold repetition of

the input alphabet. We say that f is a length-N block encoder of the transmitter. Capacity-

attaining schemes for the wiretap channel rely on randomized encoding, i.e., a mapping

that sends M to a probability distribution on XN . In other words, the message m ∈ M is

encoded as a sequence xN ∈ XN with probability f(xN |m), and the encoder is defined as

a matrix of conditional probabilities (f(xN |m))x
N∈XN
m∈M .

The decoder of Receiver 1 is a mapping φ : YN → M. We also denote by

PY |X and PZ|X the conditional distributions induced by the channels W1 and W2, re-

spectively, and define the induced distributions PY N |XN , PZN |XN , where, for instance,

PY N |XN (yN |xN) =
∏N

i=1 PY |X(yi|xi), where yi and xi refer to the i-th symbol of the
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vectors yN and xN , respectively.

Definition 3.1.1. We say that the encoder-decoder pair (f, φ) gives rise to (N, ε)-transmission

over the wiretap channel W if

∑

xN∈XN
f(xN |m)PY N |XN (φ(yN) = m|xN) ≥ 1− ε ∀m ∈M (3.1)

I(M ;ZN) ≤ ε, (3.2)

where M is the message random variable (RV) and ZN is the RV that corresponds to the

observations of Receiver 2.

In Definition 3.1.1, Eq. (3.1) represents the reliability of communication condition

while (3.2) answers the security of transmission requirement. We note that in many works

on transmission with a secrecy constraint the security condition was formulated in a more

relaxed way, namely as the inequality

(1/N)I(M ;ZN) < ε. (3.3)

This is particularly true about pre-1990s works in information theory, but also applies to

some very recent works on the wiretap channel, e.g., [39, 41, 42]. However, as shown by

Maurer in [44,45], this constraint does not fulfill the intuitive security requirements in the

system. More specifically, it is possible to construct examples in which inequality (3.3) is

satisfied and at the same time Receiver 2 is capable of learning N1−ε out of N bits of the

encoding xN . In view of this, Maurer suggested (3.2) as a better alternative to condition

(3.3). As a result, currently (3.3) is called the “weak security constraint” as opposed to the

stronger constraint (3.2). In this chapter we design coding schemes that provide strong
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secrecy, so below we work only with condition (3.2).

The secrecy capacity of the wiretap channel is defined as follows.

Definition 3.1.2. The value R > 0 is called an achievable rate for the wiretap channel W

if there exists a sequence of message sets MN and encoder-decoder pairs (fN , φN) giving

rise to (N, εN) transmission with εN → 0 and 1
N

log |MN | → R as N →∞. The secrecy

capacity Cs is the supremum of achievable rates for the wiretap channel.

The following theorem provides an expression for Cs.

Theorem 3.1. ( [50]; see also [23, p.411]) The secrecy capacity of the wiretap channel

W equals

Cs = max[I(V ;Y )− I(V ;Z)], (3.4)

where the maximum is computed over all RVs V,X, Y, Z such that the Markov condition

V → X → Y, Z holds true, and such that PY |X = W1, PZ|X = W2.

Another special case of the wiretap channel relates to the combinatorial version of

the erasure channel (the so-called wiretap channel of type II [64]) in which Receiver 2 can

choose to observe any t symbols out of N transmitted symbols. Constructive capacity-

achieving solutions for this case are based on MDS codes [65] or extractors [66].

In [67], it is shown that Cs is achievable with strong security using invertible ex-

tractors, if both W1 and W2 are binary symmetric channels. Both encoding and decoding

algorithms in [67] have polynomial complexity. Moreover, [67] also claims that its proof

method can be easily extended to other wiretap channels as long as both W1 and W2 are

symmetric.
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After the introduction of polar codes by Arıkan, achieving Cs via polar coding has

been considered by different works, mostly under the degradedness assumption. Recall

that a channel W2 : X → Z is called degraded with respect to a channel W1 : X → Y if

there exists a stochastic |Y| × |Z| matrix PZ|Y (z|y) such that for all x ∈ X, z ∈ Z

PZ|X(z|x) =
∑

y∈Y

PY |X(y|x)PZ|Y (z|y). (3.5)

The wiretap channel W is called degraded if the channel to the eavesdropper is degraded

with respect to the main channel. In this case Theorem 3.1 affords a simpler formulation

because there is no need in the auxiliary RV V . Namely, in the degraded case the secrecy

capacity equals [23, Probl. 17.8]

Cs = C(W1)− C(W2) (3.6)

(this specialization is true under slightly more general assumptions, but we will not need

them below).

Communication over degraded wiretap channels using polar codes was considered

in a number of papers, notably, [17, 41–43]. The main result of these works is that se-

crecy capacity (3.6) can be attained under the weak security constraint. We note that the

degraded case is easier to handle with polar codes because of the specific nature of the

polar codes construction (more on this below in Sect. 3.2). Another step was made by [46]

which suggested a polar coding scheme that attains the rate Cs of a symmetric degraded

wiretap channel W under the strong security requirement (3.2). More details about the

results of [46] are given in Sect. 3.2 below.

The problem of attaining secrecy capacity of the general wiretap channel (3.4) under

the strong secrecy condition and without the degradedness assumption was further studied
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in [47]. A polar coding scheme suggested in this work attains a transmission rate of

maxpX(x)[H(X|Z) − H(X|Y )]. Clearly H(X|Z) − H(X|Y ) ≤ Cs for all X since one

can take V = X in the Markov chain V → X → Y, Z, which appears in Theorem

3.1. It is not immediately clear for which channels the result of [47] actually attains the

secrecy capacity of W. At the same time, the coding scheme employed in [47] relies on

two nested layers of the polarizing transform. The decoder for the second (outer) layer

works with the probability distribution generated by the first decoder, which is not easily

computable. Thus, the low complexity decoding claim of the construction made in [47]

is not supported by the known decoding procedures for polar codes. For these reasons

the construction in [47] does not resolve the question of constructing an explicit capacity-

achieving scheme for the nondegraded case of wiretap channels.

In related works [48, 49] the problem of constructing capacity achieving schemes

for wiretap channels was addressed for the case of quantum channels. The constructions

suggested in these works attain symmetric secrecy capacity of quantum wiretap channels.

These constructions require a shared secret key between the transmitter and Receiver 1.

This requirement seems to be intrinsic to polar code constructions for this problem in-

cluding our work. However the constructions in [48, 49] require a positive-rate shared

key, which results in a communication scheme that transmits at rates separated from ca-

pacity.

In this chapter we aim to solve the general problem of communicating over the

wiretap channel, removing the degradedness assumption (3.5). We also do not assume

that either of the channels W1,W2 is symmetric. The main idea of our work is to ex-

ploit the Markov chain conditions intrinsic to secure communication problems using polar
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codes. In Section 3.3 we propose a polar coding scheme that attains the secrecy capacity

(3.4) under the strong security assumption. Both the encoding and decoding complexity

estimates of our construction are O(N logN), where N is the length of the encoding. In

Section 3.4.2 we generalize our construction to cover the case when a part of transmitter’s

message is public, i.e., is designed to be conveyed both to Receivers 1 and 2. This model,

called a broadcast channel with confidential messages, is in fact the principal model in

the founding work of Csiszár and Körner [50] on this topic.

Apart from the basic polar coding results [2], our solution of the described problems

relies on the previous work on the wiretap channel [46], the polar coding scheme for the

broadcast channel of [24], and the construction of polar codes for general memoryless

channels in [3]. A new idea introduced in our solution is related to a stochastic encoding

scheme that emulates the random coding proof of the capacity theorem in [50], whereby

polarization is used for the values of the auxiliary random variable V in Theorem 3.1,

followed by a stochastic encoding into a channel codeword. Another insight, which is

particularly useful for the broadcast channel result in Sect. 3.4, is related to a partition of

the coordinates of the transmitted block that enables simultaneous decoding of different

parts of the transmitted message by both receivers, whereby the decoder of polar codes is

used by the receivers according to their high- and low-entropy bits. It becomes possible to

show that the receivers recover the bits designed to communicate with each of them with

high probability, and that the secret part of the message is not accessible to the unintended

recipient.
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3.2 A Closer Look at Prior Works on Polar Coding for the Wiretap

Channel

To explain our proposal we will first discuss some of the schemes available in the

literature. We begin with the transmission scheme of [17] (see also [41–43]). As already

remarked, these works are concerned with the special case when the channel W2 is de-

graded with respect to W1 and aim to attain the rate value (3.6) with weak secrecy. Let

XN be a random uniform vector over {0, 1}N . Similarly to HX|Y and LX|Y given by

(1.13), define the following subsets of indices:

HX|Z = {i ∈ [N ] : Z(Ui|U i−1, ZN) ≥ 1− δN}

LX|Z = {i ∈ [N ] : Z(Ui|U i−1, ZN) ≤ δN}

where UN = XNGN , and ZN is the output that Receiver 2 observes when the transmitter

sends XN . Partition the set [N ] as follows:

R = LX|Z

I = LX|Y \LX|Z

B = Lc
X|Y .

(3.7)

Note that the degradedness assumption (3.5) implies the inclusion LX|Z ⊆ LX|Y . The

coding scheme for the wiretap channel relies on the partition (3.7) and is summarized in

Figure 3.1. The information is stored in the bits ui, i ∈ I. The bits in the coordinates in

R are chosen randomly while the bits in B form a subset of the frozen bits.

Attainability of the rate (3.6) using this coding scheme is proved in the cited papers.

An essential remark here is that the bits ui, i ∈ R are randomly selected because fixing
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their values contradicts even the weak security constraint, let alone the stronger one.

bit channels good for both
Receiver 1 and Receiver 2

bit channels good for Receiver 1
but bad for Receiver 2

bit channels bad for both
Receiver 1 and Receiver 2

b

b

b

b

X1

X2

XN

random bits

information bits

frozen bits

I = LX|Y \LX|Z

R = LX|Z

B = Lc
X|Y

Arıkan Transform GN

Figure 3.1: Block diagram of the coding scheme in [17]. Good bit channels and bad bit
channels are as defined by (1.6).

We note that generally Hc
X|Z 6⊂ LX|Y , and even though the number of coordinates

in Lc
X|Y ∩Hc

X|Z behaves as o(N), this constitutes an obstacle to achieving strong security.

To bypass it, [46] uses a different partition of the coordinates, namely

Ĩ = LX|Y ∩HX|Z

B̃ = Lc
X|Y ∩HX|Z

R̃1 = LX|Y ∩Hc
X|Z

R̃2 = Lc
X|Y ∩Hc

X|Z .

(3.8)

Apart from transmitting the information, the coding scheme aims to convey the bits in

R̃2 to Receiver 1 using the good indices of Receiver 1, at the same time preserving the

security requirement. This is accomplished using the “chaining” construction proposed

in [46]1 and shown in Fig. 3.2. As the figure suggests, the bits in R̃2(j) contained in

block j are transmitted over the channel as a part of the message of block j − 1, for

1The term “chaining” was introduced later in [24].
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all j = 2, . . . ,m. This enables Receiver 1 to recover these bits reliably as a part of the

successive decoding procedure for block j, which is performed similarly to (1.17). At the

same time, because of the inclusion Ĩ ⊂ HX|Z , Receiver 2 does not have the resources

for their reliable decoding, which provides the desired security.

Ĩ\Ẽ

Ẽ

R̃1

R̃2

B̃

b b b

Block 1 Block 2 Block k

b b b

information

bits
random

bits

frozen
bits

random
bits

Ĩ\Ẽ

Ẽ

R̃1

R̃2

B̃

Ĩ\Ẽ

Ẽ

R̃1

R̃2

B̃

seed

Figure 3.2: Block diagram of the coding scheme in [46].

The analysis of the transmission is performed based on m blocks of N bits as op-

posed to a single block. The seed for the transmission is provided by choosing |R̃2| =

o(N) random bits which are shared with Receiver 1 (more on this below). In each of the

blocks 1 to m, the bits indexed by the set Ĩ\Ẽ are used to send the message. Here Ẽ is an

arbitrary subset of the set Ĩ of size R̃2 whose role is explained below.

The bits in R̃1 are selected randomly, and the bits ui, i ∈ B̃ are frozen, i.e., assigned

arbitrarily and shared in advance with Receiver 1 (they may be also known to Receiver 2

without compromising secrecy).

The assignment of bits in the set R̃2 in block j depends on the block index. In block

1 these bits are set equal to the message bits of the seed block. In block j = 2, . . . ,m

the bits indexed by the set R̃2 are set to be equal to the bits in the set Ẽ in block j − 1,

representing the chaining procedure.
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Having formed the sequence uN(j) in block j = 1, . . . ,m, the encoder passes

it through the polarizing transform and transmits the sequence xN = uNGN over the

channel. The only remaining problem is to convey to Receiver 1 the bits of R̃2 of the first

block. This is done by performing the seed transmission of a block which encodes the

|R̃2| bits using some error correcting code of length N . As claimed in [46], it is possible

to choose such a code to fulfill the reliability and security requirements because its rate

can be made arbitrarily close to zero. The fact that the seed code needs to encode only a

small number o(N) of message bits follows from the degradedness assumption, which is

therefore essential in this construction.

As shown in [46], this scheme satisfies both constraints (3.1) and (3.2) under the

assumption that the channel to the eavesdropper is degraded with respect to the channel

W1. The rate of communication between the transmitter and Receiver 1 can be made

arbitrarily close to the value I(W1) − I(W2) since the assumption that W2 is degraded

with respect to W1 ensures that |R̃2| = o(N), i.e., there is no asymptotic loss in rate by

removing the bits {ui, i ∈ Ẽ} from the message in order to support the strong security

condition.

3.3 Polar Coding for the Wiretap Channel

In this section, we show that secrecy capacity for the wiretap channel given by

Theorem 3.1 is achievable using polar codes. For this purpose, we consider the RVs

V,X, Y, Z as described by Theorem 3.1, i.e., we assume some fixed distributions PV , PX|V

and the conditional distributions PY |X = W1, PZ|X = W2 that satisfy the Markov condi-
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tion V → X → Y, Z and maximize the expression in (3.4). Define the RV TN = V NGN ,

where V N denotes N independent realizations of V . The transformation V N → TN in-

duces conditional distributions PTi|T i−1 derived from the corresponding distributions of

the RVs Vi. Define the sets HV , LV , HV |Y , LV |Y as follows:

HV = {i ∈ [N ] : Z(Ti|T i−1) ≥ 1− δN}

LV = {i ∈ [N ] : Z(Ti|T i−1) ≤ δN}

HV |Y = {i ∈ [N ] : Z(Ti|T i−1, Y N) ≥ 1− δN}

LV |Y = {i ∈ [N ] : Z(Ti|T i−1, Y N) ≤ δN}

and define the sets HV |Z , LV |Z analogously. The cardinalities of these sets satisfy [6, 21,

22] 1
N
|HV | → H(V ), 1

N
|LV |Y | → 1−H(V |Y ), 1

N
|HV |Z | → H(V |Z) as N →∞.

Define a partition of [N ] into the following sets which will be used to describe the

coding scheme2

I = HV ∩ LV |Y ∩HV |Z

B = HV ∩ Lc
V |Y ∩HV |Z

R1 = HV ∩ LV |Y ∩Hc
V |Z

R2 = HV ∩ Lc
V |Y ∩Hc

V |Z

D = Hc
V .

(3.9)

The partition of [N ] that thus arises is illustrated in Figure 3. It will be seen that the subsets

I, R1, R2, B in our coding scheme play the role similar to that of the analogously denoted

subsets in (3.8). Importantly, the cardinality of R2 is not o(N) any more, which requires

2We use the notation I,B in this section in the sense different from Sect. 3.2. Since both uses are

localized to their respective sections, this should not cause confusion.
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adjustments in the transmission scheme. Moreover, there is an extra randomness needed

to determine the sequence to be transmitted, as will be seen in the encoding algorithm

below.

V

V → Z

V → Y

N

HV

HV |Z

LV |Y

E

R1IBR2 D

Figure 3.3: Partition ofN coordinates of the block for transmission over the wiretap chan-
nel W; see (3.9). The highlighted part of the top block represents high-entropy coordi-
nates for the distribution PV . Similarly, in the middle block we highlight the high-entropy
coordinates of the distribution PV |Z and in the bottom block the low-entropy coordinates
for the distribution PV |Y .

Encoding: We build on the chaining idea of [46], connecting multiple blocks in

a cluster whose performance in transmission will attain the desired goals. The cluster

consists of a seed block and a number, m, of other blocks. The seed block consists

of |R2| random bits. Even though the cardinality of the set R2 constitutes a nonvanishing

proportion of [N ], the rate of the seed |R2|/mN can be made arbitrarily small by choosing

m sufficiently large. (For example, one can set m = Nα for some α > 0, and let

N →∞.)
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B
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I\E

E

R1

R2

B

D

Block m

random bits

random bits

seed

Figure 3.4: Block diagram of the wiretap coding scheme: Forming the blocks tN(j), j =
1, . . . ,m.

Let us describe the encoding and decoding procedures. The transmission is accom-

plished usingm blocks of lengthN each and the seed block. Every block tN = tN(j), j =

1, . . . ,m contains a group of almost deterministic bits, denoted by D in Figure 3.4. The

values of these bits are assigned according to a family of deterministic rules {λi, i ∈ D}

described in (1.15). The bits ti, i ∈ B in each of the m blocks are determined similarly,

based on {λi, i ∈ B}. These bits are assigned the same values for each block, and are

shared with Receiver 1. Note that the rate (|B|+ |D|)/mN can be made arbitrarily small

similarly to |R2|/mN .

The remaining subsets of coordinates are filled as follows. For block 1, the bits

in the set R2 are assigned the value of the bits of the seed block, while for blocks j =

2, . . . ,m these bits are set to be equal to the bits in E(j − 1) of block j − 1. Here, E is a

subset of I having the same size as R2. The messages are stored in the bits indexed by I\E.

The randomly chosen bits in E are written in the coordinates that are good for Receiver

1 and contained in the bad (high-entropy) set of Receiver 2. These bits are transmitted to
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Receiver 1 in block j and used for the decoding of the message contained in block j + 1,

for all j = 1, 2, . . . ,m − 1. Finally, the bits in R1 are assigned randomly and uniformly

for each of the m blocks. The diagram of the chaining construction for encoding is given

in Figure 3.4.

Once the blocks tN(j), j = 1, 2, . . . ,m are formed, we find m sequences vN(j) =

tN(j)GN by using the polarizing transform. Finally, given vN , the codeword to be

sent over the wiretap channel will be chosen as xN with probability PXN |V N (xN |vN) =

∏N
i=1 PX|V (xi|vi), where PX|V is the conditional distribution induced by the joint distri-

bution of the RVs V and X . This logic is suggested by the proof of the capacity theorem,

Theorem 3.1, which first considers “transmitting” the RV V N to the receivers, and then

choosing XN so as to satisfy the Markov chain condition in the statement.

Decoding: Denote by E(0) the message sequence encoded in the seed block, and

by E(j), j = 1, . . . ,m the corresponding sequences in the other blocks (see Fig. 3.4). Let

yN(1), . . . , yN(m) be the sequences that Receiver 1 observes on the output of the channel

W1. The decoding rule is as follows:

t̂i =





λi(t̂
i−1), if i ∈ B ∪D

argmaxt∈{0,1}PTi|T i−1Y N (t|t̂i−1, yN), if i ∈ I ∪ R1

Ei(j − 1), if i ∈ R2

(3.10)

where PTi|T i−1 and PTi|T i−1,Y N are the conditional distributions induced by the joint dis-

tribution of the RVs V N and Y N (this rule is applied to each of the blocks j = 1, . . . ,m,

and j is mostly omitted from the notation).

Let us show that the described scheme attains the secrecy capacity of W. Namely,
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the following is true.

Theorem 3.2. For any γ > 0, ε > 0 and N → ∞ it is possible to choose m so that

the transmission scheme described above attains the transmission rate R that is within γ

of the secrecy capacity of W (3.4) and the information leaked to Receiver 2 satisfies the

strong secrecy condition (3.2).

Proof. Throughout the proof we assume that the RVs V,X, Y, Z are as given in Theo-

rem 3.1 and denote by PV XY Z their joint distribution. The distribution PV NXNY NZN =

∏N
i=1 PV XY Z(vi, xi, yi, zi) refers to N independent repetitions of the RVs.

The rate of the proposed coding scheme is

m(|I| − |E|)
mN

=
(|HV ∩ LV |Y | − |HV ∩Hc

V |Z |)
N

,

which approaches I(V ;Y )− I(V ;Z) as N →∞. According to Theorem 3.1, this is the

target rate that we want to achieve for given V and X satisfying V → X → Y, Z and

PY |X = W1, PZ|X = W2.

Now let us prove the reliability and security conditions. Let us introduce the fol-

lowing RVs: Let Mm = (M1,M2, . . . ,Mm) correspond to the sequence of message bits

{ti, i ∈ I\E} transmitted in blocks 1, . . . ,m, and let Zm = (ZN(1), . . . , ZN(m)) be a

sequence of observations of Receiver 2 as a result of the transmission of the m blocks.

Further, let Ej correspond to the bits contained in the subset E(j), j = 1, . . . ,m.

Reliability: The claim of low error probability for Receiver 1 follows from the

results of [3]. Since our communication scheme is more complicated compared to [3], we

give some additional details.
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Since we know the distribution PV N , we can compute the distributions PTi|T i−1 , i =

1, . . . , N. Now assume that the assignments of the bits indexed by B and D are done

randomly by sampling from the distribution PTi|T i−1 , for each of the blocks 1, . . . ,m. Let

QV NXNY NZN be the joint distribution of the corresponding sequences arising from this

assignment. Denote by ‖ · ‖ the l1 distance between the distributions. From the proof of

Lemma 1 in [3] it follows that

‖PV NXNY NZN −QV NXNY NZN‖ ≤ N2−N
β

(3.11)

holds for all the m blocks of transmission. Moreover, since the message bits are entirely

contained in the set of good bits for channel W1, the probability of error is bounded by

‖PV NXNY N −QV NXNY N‖+
∑

i∈I

Z(Ti|T i−1, Y N) ≤ 2N2−N
β

for each individual block (see [3], Eqns (59)-60)). Therefore, there exists a family of

deterministic rules {λi, i ∈ B ∪ D} such that the overall error probability for the suc-

cessive decoding procedure (3.10) is at most 2mN2−N
β
, β ∈ (0, 1/2). We conclude that

the probability that Receiver 1 decodes the information bits correctly approaches 1 as N

tends to infinity.

Security: We will show that condition (3.2) is fulfilled for the sequence of m blocks

of transmission. For that purpose, we will first prove the following lemma.

Lemma 3.3. Let A ⊂ I be a subset of coordinates, and let let T [A] = {ti, i ∈ A} and

T [I\A] = {ti, i ∈ I\A}. Then

I(T [I\A];T [A], ZN) = O(N32−N
β

). (3.12)
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Proof. By definition in (3.9) we have the inclusion I ⊆ HV |Z . Let us label the indices

in I as a1, a2, . . . , a|I|, and assume that a1 < a2 < · · · < a|I|. Using the inequality

Z(X|Y )2 ≤ H(X|Y ) [6], we obtain the estimate

HP (Tai |T ai−1, ZN) , HP (Tai |T1, . . . , Tai−1, Z
N) ≥ 1− 2δN = 1− 2−N

β+1 (3.13)

for all i = 1, 2, . . . , |I|, where HP refers to the entropy under the distribution PV NXNZN .

Our aim is to find an estimate on the mutual information in (3.12) under the distribution

Q. To find an upper bound for the entropy H(Tai |T ai−1 ZN) (computed under Q), we use

a standard estimate (e.g., [62, Theorem 17.3.3]), and write

|H(Tai |T ai−1, ZN)−HP (Tai |T ai−1, ZN)| ≤ −‖PV NXNZN −QV NXNZN‖

× log
‖PV NXNZN −QV NXNZN‖

|Z|N2N

where |Z| refers to the alphabet size for a single observation of the eavesdropper. Then,

we get from (3.11) that

H(Tai |T ai−1, ZN) ≥ 1−O(N22−N
β

)−O(N (β+1)2−N
β

) = 1−O(N22−N
β

). (3.14)

Observe that (3.14) implies

H(Tai |Ta1 , Ta2 , . . . , Tai−1
, ZN) ≥ H(Tai |T ai−1, ZN) ≥ 1−O(N22−N

β

) (3.15)

for all i ∈ I.

Then we obtain
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H(T [I\A] |T [A], ZN) = H(T [I] |ZN)−H(T [A] |ZN)

≥ H(T [I]|ZN)− |A|

=

|I|∑

i=1

H(Tai |Ta1 , Ta2 , . . . , Tai−1
, ZN)− |A|

≥ |I|(1−O(N22−N
β

))− |A| (3.16)

≥ |I\A| −O(N32−N
β

)

where (3.16) is due to (3.15). This completes the proof of (3.12).

Lemma 3.4. Let M j , (M1,M2, . . . ,Mj) and Zj , (Z1, Z2, . . . , Zj). For all j =

1, . . . ,m, we have

I(Ej;M
j, Zj) = O(jN32−N

β

).

Proof. The proof is by induction on j. The base case j = 1 follows from Lemma 3.3.

Now assume that the claim of the lemma is true for j = k − 1 and write

I(Ek;M
k, Zk) = I(Ek;Mk, Zk) + I(Ek;M

k−1, Zk−1|Mk, Zk).

Using the chaining structure shown in Figure 3.4 we argue that the only part of the trans-

mission that connects block k − 1 to block k is given by Ek−1. This implies that, condi-

tional on (Mk, Zk), we have a Markov chain Mk−1Zk−1 → Ek−1 → Ek, so

I(Ek;M
k−1, Zk−1|Mk, Zk) ≤ I(Ek−1;Mk−1, Zk−1|Mk, Zk) ≤ I(Ek−1;Mk−1, Zk−1),
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Therefore,

I(Ek;M
k, Zk) ≤ I(Ek;Mk, Zk) + I(Ek−1;Mk−1, Zk−1)

= O(N32−N
β

) +O((k − 1)N32−N
β

) (3.17)

= O(kN32−N
β

).

Here (3.17) is due to Lemma 3.3 and the induction hypothesis. This completes the proof.

Now we are ready to complete the proof of the strong security condition. For this

purpose, consider the following sequence of inequalities:

I(Mm;Zm) ≤ I(Mm;Zm, Em)

= I(Mm−1;Zm, Em) + I(Mm;Zm, Em|Mm−1)

≤ I(Mm−1;Zm−1, Em−1) + I(Mm;Zm, Em|Mm−1) (3.18)

≤ I(Mm−1;Zm−1, Em−1) + I(Mm;ZmEm,M
m−1)

= I(Mm−1;Zm−1, Em−1) + I(Mm;Em, Zm)

+ I(Mm;Mm−1, Zm−1|Em, Zm)

I(Mm;Zm) ≤ I(Mm−1;Zm−1, Em−1) + I(Mm;Em, Zm)

+ I(Em−1;Mm−1, Zm−1) (3.19)

= I(Mm−1;Zm−1, Em−1) +O(N32−N
β

) +O((m− 1)N32−N
β

) (3.20)

= I(Mm−1;Zm−1Em−1) +O(mN32−N
β

), (3.21)

where (3.18) and (3.19) are implied by the chaining structure in Figure 3.4, and (3.20) is
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due to Lemmas 3.3 and 3.4. From (3.21), we have

I(Mm;Zm, Em) ≤ I(Mm−1;Zm−1, Em−1) +O(mN32−N
β

)

which implies

I(Mm;Zm) ≤ I(Mm;ZmEm) = O(m2N32−N
β

).

Thus, we observe that limN→∞ I(Mm; Zm) = 0 as required.

We conclude that a secrecy rate of I(V ;Y )− I(V ;Z) is achievable for any V such

that V → X → Y, Z holds. Therefore, the secrecy capacity Cs given by (3.4) is also

achievable.

3.4 Polar Coding for Broadcast Channel with Confidential Messages

In this section we observe that ideas of the previous section together with some

earlier works enable us to extend our code construction to a more general communication

model introduced in [50].

3.4.1 The Model

Consider a pair of discrete memoryless channels with one transmitter X and two

receivers Y, Z. As before, let W1 : X → Y and W2 : X → Z denote the channels and let

X and Y,Z denote the input alphabet and the output alphabets. We assume that the system

transmits three types of messages:

(i), a message s1 ∈ S1 from X to Y for which there are no secrecy requirements;

(ii), a message s2 ∈ S2 from X to Y which is secret from Z;
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(iii), a message t ∈ T from X to Y and Z, called the “common message”.

Following [50], we call this communication scheme a broadcast channel with confidential

messages (BCC).

As before, a block encoder for the BCC is a mapping f : S1 × S2 × T → XN .

A stochastic version of the encoder is a probability matrix f(xN |s1, s2, t) with columns

indexed by xN ∈ XN and rows indexed by the triples (s1, s2, t). Given such a triple,

the stochastic encoder samples from the conditional probability distribution on XN . In

accordance with the problem statement, there are two decoders: The decoder of Receiver

1 is defined by a mapping φ : YN → S1 × S2 × T and the decoder of Receiver 2 is a

mapping ψ : ZN → T.

Denote the rate of the common message t by R0, and denote the rates of the se-

cret and non-secret messages to Y by Rs and R1, respectively. The analogs of Defini-

tions 3.1.1, 3.1.2 in this case look as follows.

Definition 3.4.1. The encoder-decoder mappings (f, φ, ψ) give rise to (N, ε)- transmis-

sion over the BCC if for every s1 ∈ S1, s2 ∈ S2, t ∈ T, decoder φ outputs the transmitted

triple (s1, s2, t) and decoder ψ outputs the message t with probability greater than 1− ε,

i.e.,

∑

xN∈XN
f(xN |s1, s2, t)PY N |XN (φ(yN) = (s1, s2, t)|xN) ≥ 1− ε

∑

xN∈XN
f(xN |s1, s2, t)PZN |XN (ψ(zN) = t|xN) ≥ 1− ε.

Definition 3.4.2. (R1, Rs, R0) is an achievable rate triple for the BCC if there exists a

sequence of message sets S1,N , S2,N , TN and encoder-decoder triples (fN , φN , ψN) giving
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rise to (N, εN) transmission with εN → 0, such that

lim
N→∞

1

N
log |S1,N | = R1

lim
N→∞

1

N
log |S2,N | = Rs

lim
N→∞

1

N
log |TN | = R0

lim
N→∞

I(S2,N ;ZN) = 0.

(3.22)

where S2,N is the random variable that corresponds to the secret message.

Note that our definition takes into account the formulation in [23] and is slightly

different from the one in [50] (where we write (R1, Rs, R0), [50] has (R1 +Rs, Rs, R0) ).

The following theorem gives the achievable rate region for the triple (R1, Rs, R0).

Theorem 3.5. [50], [23, p. 414] The capacity region of the BCC consists of those triples

of nonnegative numbers (R1, Rs, R0) that satisfy, for some RVs U → V → X → Y, Z

with PY |X = W1 and PZ|X = W2, the inequalities

R0 ≤ min[I(U ;Y ), I(U ;Z)] (3.23)

Rs ≤ I(V ;Y |U)− I(V ;Z|U) (3.24)

R0 +R1 +Rs ≤ I(V ;Y |U) + min[I(U ;Y ), I(U ;Z)]. (3.25)

Moreover, it may be assumed that V = (U, V ′) and the range sizes of U and V ′ are at

most |X|+ 3 and |X|+ 1.

One can define the secrecy capacity Cs in terms of the capacity region of the BCC,

and then recover Theorem 3.1 as a particular case of Theorem 3.5.
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3.4.2 Polar Coding for the Csiszár-Körner Region

In this section, we aim to show that the capacity region of the BCC can be achieved

using polar codes. In the first two steps we design a scheme that achieves the rate pairs

(R0, Rs) in (3.23)-(3.24), and in the last step we show that for any such pair (R0, Rs) any

rate value

R1 ≤ I(V ;Y |U) + min[I(U ;Y ), I(U ;Z)]−R0 −Rs (3.26)

is also achievable. Finally, the security condition in (3.22) will be shown in Proposition

3.6 below.

The overall encoding scheme is stochastic and assumes some fixed joint distribution

of the RVs U, V,X, Y, Z such that the constraints of Theorem 3.5 are satisfied. Since the

results below are valid for any such distribution, this will enable us to claim achievability

of the rate region in this theorem. The encoder is formed of two stages performed in

succession. At the outcome of the first stage, which deals with the common message s2,

the encoder computes a sequence of m blocks of N bits denoted below by qN(j), j =

1, . . . ,m. These blocks are used in the second stage to construct the data encoding that

is going to be sent to both receivers. Namely, it will be seen that the transformed blocks

uN = qNGN can at the same time encode the common message to both receivers and also

encode side information for Receiver 1 to ensure reliable transmission of the confidential

message. The actual sequences to be transmitted are computed in the second stage based

on the sequences uN(j). This is done by first constructing sequences tN(j) using the

ideas developed in Sect. 3.3 and by using a stochastic mapping of these sequences on

the codewords xN(j). Upon transmitting, these codewords are received by Receiver 1 as
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yN(j) and by Receiver 2 as zN(j). We will argue that the receivers can independently

perform decoding procedures that recover the three desired types of messages reliably

(and when appropriate, also securely).

3.4.2.1 The common-message encoding

The proof of the fact that any R0 satisfying (3.23) is achievable follows from the

polar coding scheme for the superposition region given in [24]. Given the RVs U →

V → X → Y, Z with PY |X = W1 and PZ|X = W2, let UN , V N , XN , Y N , ZN be N

independent repetitions of the RVs U, V,X, Y, Z. Set

QN = UNGN , (3.27)

where GN is Arıkan’s transform. As before, lowercase letters denote realizations of these

RVs.

Define the sets HU , LU |Y , LU |Z as follows:

HU = {i ∈ [N ] : Z(Qi|Qi−1) ≥ 1− δN}

LU |Y = {i ∈ [N ] : Z(Qi|Qi−1, Y N) ≤ δN}

LU |Z = {i ∈ [N ] : Z(Qi|Qi−1, ZN) ≤ δN}.

The cardinalities of these sets, normalized by N , approach respectively H(U),

1−H(U |Y ), 1−H(U |Z) as N →∞.

Now observe that for Receiver 1 to recover qN correctly, the indices of the infor-

mation bits should be a subset of I(1)
u = HU ∩ LU |Y . Similarly, for Receiver 2 to recover

the sequence qN correctly, the information bits should be placed only in those positions
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of qN that are indexed by the set I(2)
u = HU ∩ LU |Z . Therefore, choosing the indices

of information bits as Iu = I
(1)
u ∩ I

(2)
u ensures that the message embedded into qN will

be decoded correctly by both receivers. In this case, the rate of the common message is

R0 = |I(1)
u ∩ I

(2)
u |/N . Given that

lim
N→∞

1

N
|I(1)
u | = I(U ;Y )

lim
N→∞

1

N
|I(2)
u | = I(U ;Z)

we conclude the common message rateR0 attains the value min[I(U ;Y ); I(U ;Z)] only if

either I(2)
u ⊆ I

(1)
u or I(1)

u ⊆ I
(2)
u holds starting from some N . However, generally this does

not have to be the case. To overcome this problem, [24] proposed the following coding

scheme. Define the sets

D(1) = I(1)
u \I(2)

u

D(2) = I(2)
u \I(1)

u .

Without loss of generality, assume that I(U ;Y ) ≤ I(U ;Z), which implies that

|D(2)| ≥ |D(1)| starting with some N . To describe the encoding procedure, consider m

blocks of N coordinates each. In block 1, we use the positions indexed by D(1) to store

message bits and assign the bits indexed by D(2) to some fixed values that are available

to Receiver 1. In Block j, j = 2, . . . ,m − 1, we again use the positions indexed by D(1)

to store message bits and copy the part of Block j − 1 indexed by the coordinates in

D(1) into the positions indexed by a subset of coordinates E(2) ⊂ D(2) in block j (thus

|E(2)| = |D(1)|). Fill the remaining |D(2)\E(2)| bits in each block j ∈ {2, . . . ,m−1} with

random and independent bits and communicate them to Receiver 1. These bits can be the
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same for each block as long as they are independent and uniform within the same block,

so this part of the scheme has negligible impact on the overall rate. In the final block m,

we assign the bits indexed by D(1) to some fixed values that are available to Receiver 2

and copy the bits in D(1)(m − 1) to the positions in E(2)(m). The remaining |D(2)\E(2)|

coordinates in block m are filled with random bit values. The bits in HU ∩ (I
(1)
u ∪ I

(2)
u )c

and Hc
U are chosen based on deterministic rules λi similarly to Sect. 3.3. These bits are

the same for each block and are shared with both receivers. The block diagram of the

described coding scheme is shown by Figure 3.5.

Iu

D(2)

D(1)

HU ∩ (I
(1)
u ∪ I

(2)
u )c

Hc
U Hc

U

Iu

Hc
U

Block 1 Block 2 b b b

b b b

Block m

frozen

frozen

information
bits

frozen
bits

deterministic
bits

random bits
revealed to
Receiver 1

D(2)\E(2)

Iu

D(1)

HU ∩ (I
(1)
u ∪ I

(2)
u )c HU ∩ (I

(1)
u ∪ I

(2)
u )c

D(1)

E(2)

D(2)\E(2)

E(2)

Figure 3.5: Encoding for the common-message case: The structure of the blocks
qN(j), j = 1, . . . ,m

The encoding stage described passes the sequences uN(j), j = 1, . . . ,m to the

second stage which is responsible for actual communication. Upon observing the channel

outputs, both receivers perform decoding, which will be described below in Sect. 3.4.2.3.

3.4.2.2 The secret-message encoding

In this section we describe the construction of sequences xN that are sent by trans-

mitter X. The construction relies on the sequences uN(j) constructed by X in the first
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stage. These sequences can be thought of as side information that enables Receiver 1 to

reconstruct the secret message.

The transmission scheme we propose to achieve the rate Rs that satisfies (3.24), is

very similar to the scheme described for the wiretap channel problem in Section 3.3. Our

solution consists of choosing the indices of information bits and random bits appropriately

and using a chaining scheme quite similar to the one shown in Figure 3.4.

Let UN , V N , XN , Y N , ZN be as defined in Section 3.4.2.1, and let TN = V NGN .

Viewing U as side information about V , we define the sets

HV |U = {i ∈ [N ] : Z(Ti|T i−1, UN) ≥ 1− δN}

LV |U,Y = {i ∈ [N ] : Z(Ti|T i−1, UN , Y N) ≤ δN}

HV |U,Z = {i ∈ [N ] : Z(Ti|T i−1, UN , ZN) ≥ 1− δN}

whose cardinalities, normalized by N, approach respectively the values H(V |U), 1 −

H(V |U, Y ), H(V |U,Z) as N →∞.

The intuition behind the construction presented below can be described as follows.

First, note that the coordinates of TN indexed by

J(1) = HV |U ∩ LV |U,Y (3.28)

can be decoded by Receiver 1, and so they can be used to send more data in addition to the

common message. Of these bits, the part indexed by (HV |U ∩ LV |U,Y )\(HV |U ∩Hc
V |U,Z)

can be used to transmit the confidential message. Then, given that 1
N
|HV |U ∩ LV |U,Y | →

I(V ;Y |U) and 1
N
|HV |U ∩Hc

V |U,Z | → I(V ;Z|U), we obtain

lim
N→∞

1

N
|(HV |U ∩ LV |U,Y )\(HV |U ∩Hc

V |U,Z)| ≥ I(V ;Y |U)− I(V ;Z|U).
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This implies that the proposed scheme transmits the secret message at rates arbitrarily

close to the rate given by (3.24) (provided that it also satisfies the strong security condi-

tion).

Building on this observation, we proceed to describe the coding scheme, adding

some details that make the secrecy part work. Define the sets3

I = HV |U ∩ LV |U,Y ∩HV |U,Z

B = HV |U ∩ Lc
V |U,Y ∩HV |U,Z

R1 = HV |U ∩ LV |U,Y ∩Hc
V |U,Z

R2 = HV |U ∩ Lc
V |U,Y ∩Hc

V |U,Z

D = Hc
V |U .

(3.29)

Note that the sets I,R1,R2,B,D partition [N ]. This partition is basically the same as in

(3.9) (see also Figures 3 and 3.3) except for the fact that the high- and low-entropy subsets

rely on entropy quantities that are additionally conditioned on U .

The transmission scheme that we propose is formed of multiple blocks joined in

clusters of m blocks. Similarly to the wiretap coding scheme, there is a seed block shared

between the transmitter and Receiver 1. The seed block consists of |R2| random bits. Even

if the set R2 constitutes a nonvanishing proportion of [N ], the rate of the seed |R2|/mN

can be made arbitrarily small by choosing m sufficiently large. (For example, one can set

3We again use the same notation as in (3.9); since the earlier notation is used only in Section 3.3, this

should not cause confusion.
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m = Nα for some α > 0, and let N tend to infinity.)

The encoding procedure is as follows. Our aim is to constructm blocks tN(j) which

will be used to form the transmitted sequences xN(j), j = 1, . . . ,m. Apart from the seed

block, all the other blocks tN contain a group of almost deterministic bits, denoted by

D in (3.29). For block j, j = 1, . . . ,m, the values of these bits are assigned according

to a deterministic rule λi (similarly to the earlier appearance of this mapping, see, e.g.,

Sect. 3.3), namely

ti = λi(t
i−1, uN(j))

for all i ∈ D. The set of frozen bits B in each of the m blocks is chosen similarly based

on a family of deterministic rules {λi, i ∈ B}. These bits are going to be the same for the

each block and shared with Receiver 1. Note that the rate (|B| + |D|)/mN can be made

arbitrarily small similarly to |R2|/mN .

The remaining subsets of coordinates in are filled as follows. For block 1, the bits

in the set R2 are assigned the values of the bits of the seed block, while for block j,

j = 2, . . . ,m these bits are set to be equal to the bits in E of block j − 1. Here, E is

a subset of I having the same size as R2. The messages are stored in the bits indexed

by I\E which are good for Receiver 1 and contained in the bad (high-entropy) set of

Receiver 2. The indices in the subset E are still good for Receiver 1 but bad for Receiver

2. Nevertheless, they are filled with random bits that are used for decoding by Receiver

1 in the same way as was done in Sect. 3.3. Finally, the bits in R1 are assigned randomly

and uniformly for each of the m blocks. We once again refer to Fig. 3.3 which illustrates

the described processing. Once the blocks tN(j), j = 1, . . . ,m are formed, we compute
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m sequences vN(j) = tN(j)GN by using the polarizing transform.

Finally, the codewords to be sent by the transmitter are computed as follows. The

codeword xN(j), j = 1, . . . ,m is sampled from XN according to the distribution

PXN |V N (xN |vN) =
∏N

i=1 PX|V (xi|vi), where PX|V is the conditional distribution induced

by the joint distribution of the RVs V and X .

3.4.2.3 Decoding of the common message and the secret message

Assume that the transmitted sequence xN is received as yN by Receiver 1 and as zN

by Receiver 2. Importantly, by our construction these sequences follow the conditional

distributions PY |X and PZ|X given by the channels W1 and W2. We describe the decoding

procedures by Receivers 1 and 2. Initially they perform similar operations aimed at recov-

ering the common message. Once this is accomplished, Receiver 1 performs additional

decoding to recover the secret message.

We begin with the common-message part. In accordance with (3.27), Receivers 1

and 2 decode the blocks qN(j), j = 1, . . . ,m relying on a iterative procedure. As the

construction suggests, Receiver 1 decodes in the forward direction, starting with block 1

and ending with block m, and Receiver 2 decodes backwards, starting with block m and

ending with block 1. Let

D(j) = {qi, i ∈ D(1)(j)}, j = 1, . . . ,m− 1

C(j) = {qi, i ∈ E(2)(j)}, j = 2, . . . ,m

denote the subblocks D,E of the corresponding blocks (see Fig. 3.5).
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The processing by Receiver 1 is as follows. For block 1, it computes

q̂i =





qi, if i ∈ D(2)

argmaxq∈{0,1}PQi|Qi−1Y N (q|q̂i−1, yN), if i ∈ Iu ∪D(1)

λi(q̂
i−1), otherwise.

(3.30)

For the remaining blocks j = 2, . . . ,m Receiver 1 computes the vector (q̂i(j), i =

1, . . . , N) as follows:

q̂i(j) =





Di(j − 1), if i ∈ E(2)

qi(j), if i ∈ D(2)\E(2)

argmaxq∈{0,1}PQi|Qi−1Y N (q|q̂i−1(j), yN(j)), if i ∈ Iu ∪D(1)

λi(q̂
i−1(j)), otherwise.

(3.31)

The processing by Receiver 2 is quite similar except that it starts with block m and ad-

vances “backwards” for j = m− 1,m− 2, . . . , 1. For block m the rule is as follows:

q̂i =





qi, if i ∈ D(1)

argmaxq∈{0,1}PQi|Qi−1ZN (q|q̂i−1, zN), if i ∈ Iu ∪D(2)

λi(q̂
i−1), otherwise.

(3.32)

For blocks j = m−1,m−2, . . . , 1, Receiver 2 computes its estimates of the vector qN(j)

as follows:

q̂i(j) =





Ci(j + 1), if i ∈ D(1)

argmaxq∈{0,1}PQi|Qi−1ZN (q|q̂i−1(j), zN(j)), if i ∈ Iu ∪D(2)

λi(q̂
i−1(j)), otherwise.

(3.33)
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(in (3.30)-(3.33) the notation is somewhat abbreviated to keep the formulas compact, e.g.,

no reference is made to the index of the receiver, and the block index j is sometimes

omitted).

The processing described above in (3.30)-(3.31) yields the sequences ûN(j) =

qN(j)GN , j = 1, . . . ,mwhich are used by Receiver 1 to recover the secret messages. De-

note by E(0) the message sequence encoded in the seed block, and let E(j), j = 1, . . . ,m

be the subblock of block j indexed by the set E. For j = 1, . . . ,m, the decoding rule is as

follows:

t̂i(j) =





λi(t̂
i−1(j), ûN(j)), if i ∈ D ∪B

argmaxt∈{0,1}PTi|T i−1UNY N (t|t̂i−1(j), ûN(j), yN(j)), if i ∈ I ∪ R1

Ei(j − 1), if i ∈ R2,

(3.34)

where PTi|T i−1UNY N is the conditional distribution induced by the joint distribution of the

RVs UN , V N and Y N (the notation is again abbreviated similarly to (3.10)).

3.4.2.4 Achievability of the rate region (3.23)-(3.25)

The rate of the common message achieved by the construction in Sect. 3.4.2.1 is

equal to

R0 =
1

mN

[
m|Iu|+ (m− 1)|D(1)|

]
.

As N increases, we obtain

m− 1

m
I(U ;Y ) ≤ R0 ≤ I(U ;Y ).
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For sufficiently large m this quantity is arbitrarily close to the common-message rate

value given in (3.23). Note that we have assumed that I(U ;Z) ≥ I(U ;Y ); to handle

the opposite case is suffices to interchange the roles of the pieces D(1) and D(2) in the

common-message encoding and decoding procedures.

As shown in [24], both receivers can decode the common message correctly with

probability of error at most mN2−N
β
, β ∈ (0, 1/2). This follows because in this stage,

Receivers 1 and 2 aim only at decoding the bits corresponding to the index sets D(1)∪Iu =

HU ∩ LU |Y and D(2) ∪ Iu = HU ∩ LU |Z , respectively. That these bits can be recovered

in a sucessive decoding procedure follows from the basic results on polar codes [2, 21]

and [3].

For the secret-message part of the communication the properties of the scheme are

characterized by the following proposition.

Proposition 3.6. For any γ > 0, ε > 0 and N → ∞ it is possible to choose m so

that the transmission scheme described above attains a secrecy rate Rs such that Rs ≥

I(V ;Y |U)− I(V ;Z|U)− γ and the information leaked to Receiver 2 satisfies the strong

secrecy condition in Definition 3.4.2.

Proof. Assume that X, V, Y, Z are as given by Theorem 3.5. The rate of proposed coding

scheme is

m(|I| − |E|)
mN

=
(|HV |U ∩ LV |U,Y | − |HV |U ∩Hc

V |U,Z |)
N

which converges to I(V ;Y |U) − I(V ;Z|U) as N goes to infinity. Recalling Theorem

3.5, we note that this is the target value of the rate Rs for given U, V and X satisfying

U → V → X → Y, Z and PY |X = W1, PZ|X = W2.
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Introduce the following RVs: Let Mm = (M1,M2, . . . ,Mm) be a sequence of

message bits {ti, i ∈ I\E} sent in blocks 1, . . . ,m, and let Zm = (ZN(1), . . . , ZN(m))

be the RVs that represent the random observations of Receiver 2 upon transmitting m

blocks XN(j). Further, let Ej correspond to the bits contained in the subset E(j) for all

j = 1, . . . ,m.

Reliability: The proof of reliable decoding by Receiver 1 follows from the results

of [3] and is very similar to Section 3.3. Let PUNV NXNY NZN (uN , vN , xN , yN , zN) ,

∏N
i=1 PU,V,X,Y,Z(ui, vi, xi, yi, zi), where PUV XY Z is the joint distribution of the RVs

U, V,X, Y, Z appearing in Theorem 3.5. Let P̃UN ,V N ,XN ,Y N ,ZN be the empirical distribu-

tion induced by the transmission scheme if the deterministic rules λi in both stages of the

encoding are replaced by random assignments such that, for a = 0, 1,

Pr(qi = a) = PQi|Qi−1(a|qi−1)

Pr(ti = a) = PTi|T i−1(a|ti−1)

holds for the first and second stages, respectively. Here QN is the RV defined in (3.27).

Then, from the proof of Lemma 1 in [3], it follows that

‖PUN − P̃UN‖ ≤ N2−N
β

‖PV N |UN (.|uN)− P̃V N |UN (.|uN)‖ ≤ N2−N
β

,

the second estimate for every uN . Hence, we conclude that

‖PUNV N − P̃UNV N‖ ≤ 2N2−N
β

‖PUNV NXNY NZN − P̃UNV NXNY NZN‖ ≤ 2N2−N
β
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holds for all the m blocks of transmission. Moreover, since the message bits are entirely

contained in the set of LV |U,Y , the successive decoding procedure (3.34) has the probabil-

ity of error bounded by

|PUNV NXNY N − P̃UNV NXNY N‖+
∑

i∈I

Z(Ti|T i−1, UN , Y N) ≤ 3N2−N
β

for each individual block. Thus, we observe that there exists a family of deterministic

rules λi for each stage such that the overall error probability is at most 3mN2−N
β
, β ∈

(0, 1/2). We conclude that the probability that Receiver 1 decodes the information bits

correctly approaches 1 as N goes to infinity.

Security: We will show that condition (3.2) is fulfilled for the sequence of m blocks

of transmission. Note that Receiver 2 observes not only a realization of Zm, but also

estimates the RVs Um = (UN(1), . . . , UN(m)) through procedure (3.32)-(3.33). For this

reason the strong security condition to be proved takes the form

lim
N→∞

I(Mm; Um, Zm) = 0. (3.35)

The proof of (3.35) is very similar to the proof of strong secrecy in Section 3.3. The

counterparts of Lemmas 3.3 and 3.4 for the BCC are provided below. The proofs are the

same as the ones in Section 3.3 and will be omitted.

Lemma 3.7. Let T [A] = {ti, i ∈ A} and T [I\A] = {ti, i ∈ I\A}, where A is any subset

of I. Then

I(T [I\A];T [A], UN , ZN) = O(N32−N
β

) (3.36)
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Lemma 3.8. Let M j , (M1,M2, . . . ,Mj), Zj , (Z1, Z2, . . . , Zj), and

U j , (U1, U2, . . . , Uj). Then, for all j = 1, . . . ,m, we have

I(Ej;M
j, U j, Zj) = O(jN32−N

β

) (3.37)

The rest of the proof also follows similarly to the proof in Section 3.3. Repeating

the inequalities which led to (3.21), we get

I(Mm; Um, Zm) ≤ I(Mm; Um, Zm, Em)

≤ I(Mm−1;Um−1, Zm−1, Em−1) +O(mN32−N
β

)

which implies

I(Mm; Um, Zm) ≤ I(Mm; Um, Zm, Em) = O(m2N32−N
β

).

This completes the proof of (3.35).

Finally, let us show that the “additional-message” rate R1 as given by (3.25) is also

achievable. We have seen that any rate pair (R0, Rs) satisfying (3.23)-(3.24) is achievable

in the system. Moreover, observe that Receiver 1 decodes correctly messages at the rate

of min[I(U ;Y ), I(U ;Z)] according to (3.30)-(3.31), and additionally decodes messages

at the rate of I(V ;Y |U) owing to the part of the encoding {ti, i ∈ J(1)} given by (3.28).

Since these two groups of information bits can be decoded simultaneously by Receiver

1, we conclude that it is possible to communicate to Receiver 1 an additional message at

rate R1.
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Chapter 4: Construction of Polar Codes for Arbitrary Discrete Channels

4.1 Introduction

As already mentioned in Ch. 1, the construction complexity of polar codes is high

because of the exponentially growing cardinality of the output alphabet of the bit-channels.

This drawback of Arıkan’s original proposal [2] has ushered in a large number of papers

that aim to propose an efficient method of constructing the polar codes. Early on, an im-

portant observation was made in [55] which remarked that the construction procedure of

polar codes for binary-input channels relies on essentially the same density evolution pro-

cedure that plays a key role in the analysis of low-density parity-check codes. It was soon

realized that the proposal of [55] requires increasing precision of the computations, but

this paper paved way for later research on the construction problem. An important step

was taken in [56] which suggested to approximate each bit-channel after each evolution

step by its degraded or upgraded version whose output alphabet size is constrained by a

specified threshold µ that serves as a parameter of the procedure. As a result, [56] put

forward an approximation procedure that results in a code not too far removed from the

ideal choice of the bit-channels of [2]. This code construction scheme has a complexity

of O(Nµ2 log µ), where N = 2n is the code length. For the channel degradation method

described in [56], an error analysis and approximation guarantees are provided in [57].
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Another approximation scheme for the construction of binary codes was considered

in [69]. It is based on degrading each bit-channel after each evolution step, performed by

merging several output symbols into one symbol based on quantizing the curve pX|Y (0|y)

vs h(pX|Y (0|y)), where pX|Y is the conditional distribution of the “reverse channel” that

corresponds to the bit-channel in question. Symbols of the output alphabet that share

the same range of quantization are merged into a single symbol of the approximating

channel. Another algorithm based on bit-channel upgrading was described in [70], in

which the authors argue that it is possible to obtain a channel which is arbitrarily close

to the bit-channel of interest in terms of the capacity. However, no error or complexity

analysis is provided in this work.

Moving to more general input alphabets, let us mention a code construction algo-

rithm based on degrading the subchannels in each evolution step designed in [58]. This

algorithm involves a merging procedure of output symbols similarly to [69]. However, as

noted by the authors, their construction scheme is practical only for small values of input

alphabet size q, its efficiency constrained by the complexity of order O(µq). Paper [59]

proposed to perform the upgrading instead of degrading of the subchannels, but did not

manage to reduce the implementation complexity. In [71], the authors consider another

channel upgrading method for nonbinary-input channels, but stop short of providing an

explicit construction scheme or error analysis.

Papers [72–74] addressed the construction problem of polar codes for AWGN chan-

nels. These works are based on Gaussian approximation of the intermediate likelihood

ratios and do not analyze the error guarantees or rate loss of the obtained codes. A com-

parative study of various polar code constructions for AWGN channel is presented in [75].
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Some other heuristic constructions for binary-input channels similar to the cited results

for the Gaussian channel appear in [76–78]. Construction methods for some special ex-

amples of channels are given in [79, 80].

In this chapter we present a construction method of polar codes for arbitrary input

alphabets. Our algorithm can be viewed as a generalization of the channel degradation

method in [56] to nonbinary input channels. Our results differ from the previous works

in the sense that we address channels with input alphabet of arbitrary cardinality and

provide explicit error and complexity analysis. In particular, the complexity estimate

of our procedure grows as O(Nµ4) as opposed to O(Nµq) in earlier works. Although

approach and the proof methods here are rather different from the approach in [57], the

estimate of the approximation error that we derive generalizes the error bound given by

[57] for the binary case. Another interesting connection with the literature concerns a

very recent result of [60] which derives a lower bound on the alphabet size µ that is

necessary to restrict the capacity loss by at most a given value ε. This bound is valid for

any approximation procedure that is based only on the degrading of the subchannels in

each evolution step. The construction scheme presented here relies on the value µ that is

not too far from this theoretical limit (see Proposition 4.3 for more details).

Concluding the introductory part of this chapter, let us mention that the code con-

struction technique presented below can be applied to any polarizing transform based on

combining pairs of subchannels. There has been a great deal of research on properties of

polarizing operations in general. In particular, it was shown in [81] that (1.9) holds true

whenever the input alphabet size q of the channel W is a prime number, meaning that
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Arıkan’s transform F =
(
1 0
1 1

)
is polarizing for prime alphabets. For the case when q is a

power of a prime, it was proved in [11] that there exist binary linear transforms different

from F that support the estimate in (1.9) for some exponent β that depends on F . For

example, [11] shows that the transform

Gγ =

(
1 0
γ 1

)
(4.1)

is polarizing whenever γ is a primitive element of the field Fq. Paper [9] considered the

use of Arıkan’s transform for the channels with input alphabet of size q = 2r, showing

that the symmetric capacities of the subchannels converge to one of r + 1 integer values

in the set {0, 1, . . . , r}.

Even more generally, necessary and sufficient conditions for a binary operation

f : X 2 → X 2 given by

u1 = f(x1, x2), (4.2)

u2 = x2.

to be a polarizing mapping were identified in [82, 83]. A simple set of sufficient condi-

tions for the same was given in [84], which also gave a concrete example of a polarizing

mapping for an alphabet of arbitrary size q. According to [84], in (4.2) one can take f in

the form f(x1, x2) = x1 + π(x2), where π : X → X is the following permutation:

π(x) =





bq/2c, if x = 0,

x− 1, if 1 ≤ x ≤ bq/2c,

x, otherwise.

(4.3)
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We include experimental results for code construction using the transforms (4.1) and (4.3)

in Sect. 4.3.

Finally recall that it is possible to attain polarization based on transforms that com-

bine l > 2 subchannels. In particular, polarization results for transformation kernels of

size l× l with l > 2 for binary-input channels were studied in [20]. Apart from that, [11]

derived estimates of the error probability of polar codes for nonbinary channels based on

transforms defined by generator matrices of Reed-Solomon codes. However, below we

will restrict our attention to binary combining operations of the form discussed above.

The rest of the chapter is organized as follows. In Section 4.2 we present our con-

struction algorithm and its theoretical analysis. Our proposal is supported by extensive

experimentation reported in Section 4.3.

4.2 The Code Construction Scheme

4.2.1 The approach

In the algorithm that we define, the subchannels are constructed recursively, and

after each evolution step the resultant channel is replaced by its degraded version which

has an output alphabet size less than a given threshold µ. The procedure is described in

more detail in the figure that follows.

As discussed above, the operation Qbj appearing in Algorithm 1 does not have to

be Arıkan’s transform defined in Chapter 1. In Sect. 4.3 we give examples based on other

transforms [11], [84] as discussed above.

Note that although the high-level description of our algorithm is the same as Al-
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Algorithm 1 Degrading of subchannels
input: DMC W , Bound on the output size µ, Code length N = 2n, Channel index i with
binary representation i = 〈b1, b2, . . . bn〉2.
output: A DMC obtained from the subchannel Wi.

1: Q← degrading merge(W,µ)
2: for j = 1, 2, . . . , n do
3: Q← Qbj

4: Q← degrading merge(Q, µ)
5: end for
6: return Q

gorithm A in [56], the details are very different. The next step is to define the function

degrading merge in such a way that it can be applied for general discrete channels.

Ideally, the degrading-merge operation on line 1 of the algorithm should optimize the

degraded channel by attaining the smallest rate loss over all Q′ :

inf
Q′:Q′≺W
|out(Q′)|≤µ

I(W )− I(Q′) (4.4)

Equation (4.4) defines a convex maximization problem, which is difficult to solve with

reasonable complexity. To reduce the computational load, [56] proposed the following

approximation to (4.4): replace y, y′ ∈ Y by a single symbol if the pair y, y′ gives the

minimum loss of capacity among all pairs of output symbols, and repeat this as many

times as needed until the number of the remaining output symbols is equal to or less than

µ (see Algorithm C in [56]). In [57, 69] this procedure was called greedy mass merging.

In the binary case this procedure can be implemented with complexity O(Nµ2 log µ)

because one can check only those pairs of symbols (y1, y2) which are closest to each

other in terms of likelihood ratios (see Theorem 8 in [56]). This simplification does not

generalize to the channels with nonbinary inputs, meaning that we need to sort all pairs

of symbols. Since the total number of pairs is O(µ4) after each evolution step, the overall
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complexity of the greedy mass merging algorithm for nonbinary input alphabets becomes

O(Nµ4 log µ).

The degrading merge function we consider follows the paradigm of mapping

a pair of output symbols to a single symbol at each step as well, but it is different from

greedy mass merging function described above. The algorithm based on it (implemented

in our experiments below) has a total running time of order O(Nµ4).

For a given channel W, let PY and PX|Y be the distributions induced by the joint

distribution

PX,Y (x, y) =
1

|X |W (y|x).

Recall that I(W ) is the symmetric capacity of the channel. The following lemma suggests

a way of locating a pair of symbols to be merged.

Lemma 4.1. Let W : X → Y be a discrete memoryless channel and let y1, y2 ∈ Y be two

output symbols. Let W̃ : X → Y\{y1, y2} ∪ {ymerge} be the channel obtained from by W

by merging y1 and y2 which has the transition probabilities

W̃ (y|x) =





W (y|x), if y ∈ Y\{y1, y2}

W (y1|x) +W (y2|x), if y = ymerge

.

Then

0 ≤ I(W )− I(W̃ ) ≤ PY (y1) + PY (y2)

ln 2
||PX|Y (.|y1)− PX|Y (.|y2)||1. (4.5)

Proof. Since W̃ is degraded with respect to W , we clearly have that I(W ) ≥ I(W̃ ). To

prove the upper bound for I(W )− I(W̃ ) in (4.5) let X be the random variable uniformly

108



distributed on X , and let Y be the random output of W . Then, we have

I(W )− I(W̃ ) =
(
H(X)−

∑

y∈Y

H(X|Y = y)PY (y)
)

−
(
H(X)−H(X|Y ∈ {y1, y2})(PY (y1) + PY (y2))−

∑

y∈Y\{y1,y2}

H(X|Y = y)PY (y)
)

= H(X|Y ∈ {y1, y2})(PY (y1) + PY (y2))

−H(X|Y = y1)PY (y1)−H(X|Y = y2)PY (y2). (4.6)

Next we have

Pr(X = x|Y ∈ {y1, y2}) =

1
|X |(W (y1|x) +W (y2|x))

PY (y1) + PY (y2)

=

1
|X |W (y1|x)

PY (y1) + PY (y2)
+

1
|X |W (y2|x)

PY (y1) + PY (y2)

=
PY (y1)

PY (y1) + PY (y2)
PX|Y (x|y1) +

PY (y2)

PY (y1) + PY (y2)
PX|Y (x|y2)

= α12PX|Y (x|y1) + (1− α12)PX|Y (x|y2)

where α12 ,
PY (y1)

PY (y1)+PY (y2)
. Hence, it follows from (4.6) that

I(W )− I(W̃ )

= (PY (y1) + PY (y2))
∑

x∈X

[
α12PX|Y (x|y1) + (1− α12)PX|Y (x|y2)

]

× log2

1

α12PX|Y (x|y1) + (1− α12)PX|Y (x|y2)

− PY (y1)
∑

x∈X

PX|Y (x|y1) log2

1

PX|Y (x|y1)
− PY (y2)

∑

x∈X

PX|Y (x|y2) log2

1

PX|Y (x|y2)
.
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Rearranging the terms, we obtain

I(W )− I(W̃ ) = PY (y1)
∑

x∈X

PX|Y (x|y1) log2

PX|Y (x|y1)

α12PX|Y (x|y1) + (1− α12)PX|Y (x|y2)

+ PY (y2)
∑

x∈X

PX|Y (x|y2) log2

PX|Y (x|y2)

α12PX|Y (x|y1) + (1− α12)PX|Y (x|y2)
.

Next use the inequality lnx ≤ x− 1 to write

I(W )− I(W̃ )

≤ PY (y1)
∑

x∈X

PX|Y (x|y1)

ln 2

(
PX|Y (x|y1)

α12PX|Y (x|y1) + (1− α12)PX|Y (x|y2)
− 1

)

+ PY (y2)
∑

x∈X

PX|Y (x|y2)

ln 2

(
PX|Y (x|y2)

α12PX|Y (x|y1) + (1− α12)PX|Y (x|y2)
− 1

)

which simplifies to

I(W )− I(W̃ )

≤ PY (y1)

ln 2

∑

x∈X

PX|Y (x|y1)
(1− α12)(PX|Y (x|y1)− PX|Y (x|y2))

α12PX|Y (x|y1) + (1− α12)PX|Y (x|y2)

+
PY (y2)

ln 2

∑

x∈X

PX|Y (x|y2)
α12(PX|Y (x|y2)− PX|Y (x|y1))

α12PX|Y (x|y1) + (1− α12)PX|Y (x|y2)
. (4.7)

Bound the first term in (4.7) using the inequality

∣∣∣∣
(1− α12)(PX|Y (x|y1)− PX|Y (x|y2))

α12PX|Y (x|y1) + (1− α12)PX|Y (x|y2)

∣∣∣∣ ≤
(1− α12)|PX|Y (x|y1)− PX|Y (x|y2)|

α12PX|Y (x|y1)

and do the same for the second term. We obtain the estimate

I(W )− I(W̃ ) ≤ PY (y1)

ln 2

1− α12

α12

∑

x∈X

|PX|Y (x|y1)− PX|Y (x|y2)|

+
PY (y2)

ln 2

α12

1− α12

∑

x∈X

|PX|Y (x|y1)− PX|Y (x|y2)|

=
PY (y1) + PY (y2)

ln 2
||PX|Y (.|y1)− PX|Y (.|y2)||1.

This completes the proof of (4.5).
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The bound in (4.5) brings in metric properties of the probability vectors. Leveraging

them, we can use simple volume arguments to bound the rate loss due to approximation.

Lemma 4.2. Let the input and output alphabet sizes ofW be q andM , respectively. Then,

there exists a pair of output symbols (y1, y2) such that

PY (y1) = O

(
1

M

)
, PY (y2) = O

(
1

M

)
,

||PX|Y (.|y1)− PX|Y (.|y2)||1 = O

((
1

M

) 1
q−1

)

which implies the estimate

0 ≤ I(W )− I(W̃ ) = O
(( 1

M

)1+ 1
q−1
)

(4.8)

Proof. Consider the subset of output symbols AM(Y) = {y : PY (y) ≤ 2/M}. Noticing

that |(AM(Y))c| ≤M/2, we conclude that

|(AM(Y))| ≥ M

2
. (4.9)

Keeping in mind the bound (4.5), let us estimate the maximum value of the quantity

min
y1,y2∈AM (Y))

‖PX|Y (·|y1)− PX|Y (·|y2)‖1. (4.10)

For each y ∈ Y , the vector PX|Y (.|y) is an element of the probability simplex

Sq =

{
(s1, . . . , sq) ∈ Rq

∣∣∣∣si ≥ 0,

q∑

i=1

si = 1

}
.

Let R > 0 be a number less than the quantity in (4.10). Clearly, for any y1, y2 ∈ AM(Y))

the q-dimensional `1-balls of radius R/2 centered at PX|Y (·|yi), i = 1, 2 are disjoint, and
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therefore, so are their intersections with Sq. Let vol(Sq) be the (q−1)-dimensional volume

of Sq. It is easily seen that vol(Sq) =
√
q/(q − 1)!, but in this proof we will stay with

crude bounds (a more precise calculation is performed in the remark below). Clearly for

any y ∈ Y

vol
{
BR/2(PX|Y (·|yi)) ∩ Sq

}
= O

(R
2

)q−1

On account of (4.9) we obtain that

M

2
O
((R

2

)q−1)
≤ vol(Sq) (4.11)

whence

R = O
(( 1

M

)1/(q−1))

for all R less than (4.10). Hence, we see that there exist two output symbols y1, y2 ∈

AM(Y) such that the conditions

‖PX|Y (·|y1)− PX|Y (·|y2)‖1 = O
(( 1

M

) 1
q−1
)

(4.12)

hold simultaneously. So if these symbols are merged in the algorithm discussed, the rate

loss is bounded above as

I(W )− I(W̃ ) = O

(( 1

M

)1+ 1
q−1

)

This lemma leads to an important conclusion for the code construction: to degrade

the subchannels we should merge the symbols y1, y2 with small PY (yi) and such that the

reverse channel conditional PMFs PX|Y (·|yi), i = 1, 2 are `1-close. Performing this step

several times in succession, we obtain the operation called degrading merge in the
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description of Algorithm 1. The properties of this operation are stated in in the following

proposition.

Proposition 4.3. Let W be a DMC with input of size q.

(a) There exists a function degrading merge(W,µ) such that its output channel Q

satisfies

0 ≤ I(W )− I(Q) ≤ O

(( 1

µ

) 1
q−1

)
. (4.13)

(b) For a given block length, let W (i)
N be the i-th subchannel after n evolution steps of the

polarization recursion. Let Q(i)
N denote the its approximation returned by Algorithm 1.

Then

0 ≤ 1

N

∑

0≤i≤N

(I(W
(i)
N )− I(Q

(i)
N )) ≤ nO

(( 1

µ

) 1
q−1

)
. (4.14)

Proof. Let M be the cardinality of the output alphabet of W . Performing M −µ merging

steps of the output symbols in succession, we obtain a channel with an output alphabet of

size µ. If the pairs of symbols to be merged are chosen based on Lemma 4.2, then (4.12)

implies that

0 ≤ I(W )− I(Q) ≤ C(q)
M∑

i=µ+1

(
1

i

)1+ 1
q−1

≤ C(q)

∫ M

µ

(x− 1)−(1+ 1
q−1

)dx = O
(( 1

µ

) 1
q−1
)

whereC(q) is a constant which depends on the input alphabet size q but not on the number

n of recursion steps. This proves (4.13), and (4.14) follows immediately.

Remark 4.2.1. This result provides a generalization to the nonbinary case of a result

in [57] which analyzed the a merging (degrading) algorithm of [56]. For the case of
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binary-input channels, Lemma 1 of [57] gave an estimate O(1/µ) of the approximation

error. Substituting q = 2 in (4.13), we observe that this result is a generalization of [57]

to channels with arbitrary finite-size input.

Remark 4.2.2. Upper bounds similar to (4.13) are derived in [58, Lemma 6] and [59,

Lemma 8]. The output symbol merging policy in [58] makes it possible to have I(W ) −

I(W̃ ) = O
(
(1/µ)1/q

)
. On the other hand, the channel upgrading technique introduced

in [59] gives the same bound as (4.13). Recall that the code construction schemes consid-

ered in those two works have complexity O(µq). It is interesting to observe that merging

a pair of output symbols to a single symbol successively as we do here is as good as the

algorithms based on binning of output symbols which requires a higher complexity.

Remark 4.2.3. A very recent result of [60] states that any construction procedure of polar

codes construction based on degrading after each polarization step, that guarantees the

rate loss bounded as I(W ) − I(Q) ≤ ε, necessarily has the output alphabet of size

µ = Ω((1/ε)
q−1
2 ). Proposition 4.3 implies that the alphabet size of the algorithm that

we propose scales as the square of this bound, meaning that the proposed procedure

procedure is not too far from being optimal, namely for any channel, our degradation

scheme satisfies µ ≤ (1/ε)q−1, and there exists a channel for which µ ≥ (1/
√
ε)q−1 holds

true even for the optimal degradation scheme.

A MORE EXPLICIT CALCULATION RELATED TO (4.11): Some of the implicit constants

in the calculation that leads to (4.12) in the proof of Lemma 4.2 can be removed using the
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following (heuristic) geometric argument. Let

Sq =

{
x ∈ Rq,

q∑

i=1

si ≤ 1, si ≥ 0, i = 1, . . . , q

}

be the regular q-dimensional simplex whose “outer” face is Sq. Consider the intersection

of the q-dimensional balls with Sq rather than Sq. The volume of this intersection is the

smallest when the center of the ball is located at a vertex of Sq. Let V p
q (R) be the volume

of the `p-ball of radius R in q dimensions. Computing a crude estimate for the number

of simplices that share a common vertex, note that they all fit in the `2 sphere of radius

√
2, so their number is at most V 2

q (
√

2)/ vol(Sq). Assuming that the volume of the `1-ball

around the vertex is shared equally between these simplices, we estimate the volume of

the intersection to be1

V 1
q (R/2)

vol(Sq)

V 2
q (
√

2)
=

(Γ(2)R)q

Γ(q + 1)

Γ
(
q
2

+ 1
)

(
2
√

2 Γ(3/2)
)q vol(Sq).

Using a packing argument similar to (4.11), we obtain

Rq

q!

Γ
(
q
2

+ 1
)

(
2
√

2 Γ(3/2)
)q ≤

2

M

which gives

R ≤ C
( 1

M

)1/q

where C = 2
√

2 Γ
(

3
2

)(
2q!

Γ( q
2

+1)

)1/q

≤
√

2πq. This calculation results in a bound slightly

weaker than the one in (4.13), but contains no implicit constants.

1The expressions for the volume of the ball in different norms are taken from the Wikipedia article

“Volume of an n ball”.
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4.2.2 The degrading step

In the previous section we established the principles of the code construction. The

idea was to approximate each subchannel by another channel having output alphabet size

µ after each evolution step. We have also proposed a method to carry out such an approx-

imation in Lemma 4.2 and Proposition 4.3. In this section we present a specific procedure

that can be used to construct a polar code of a given length adopted to a channelW. This is

the procedure we implemented in our experiments in Sect. 4.3. We note that the procedure

described below is not the only way to utilize our results: we could in principle imple-

ment the greedy mass merging (i.e., merging pairs of symbols based on their symmetric

capacities) rather than on the distance between the probability distributions.

Let us define more explicitly the degrading merge function described in Propo-

sition 4.3. We attempt to find a pair of output symbols y1 and y2 such that

PY (y1) ≤ C1

M
, PY (y2) ≤ C1

M

||PX|Y (.|y1)− PX|Y (.|y2)||1 ≤ C2

(
1

M

)1/(q−1)

,

where C1, C2 are some constants. Once such a pair of symbols is found, we merge them

into one symbol of the output of the new degraded channel, and update the PY and PX|Y

matrices accordingly. This step is iterated as many times as needed until the cardinality

of the output alphabet falls below µ. The described procedure is summarized in Al-

gorithm 2 below. The notation in the algorithm is mostly self-explanatory; let us just

note that Calc PY(Q) refers to computing the marginal PMF of the channel output and

Calc X|Y(Q) is the same for the conditional PMF of the reverse channel.
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Algorithm 2 The degrading merge function
input: DMC W : X→ Y, |X| = q, |Y| = M ; constants C1 and C2; desired output size µ
output: Degraded channel Q : X → Y ′, where |Y ′| ≤ µ.
Q← W
py ← Calc PY(Q)
x given y ← Calc X|Y(Q)
`←M
for k = 1, 2, . . . ,M do

if py[k] ≤ C1/µ then
for j = k + 1, k + 2, . . . ,M do

if py[j] ≤ C1/` and ||x given y[j]− x given y[k]||1 ≤ C2( 1
µ
)1/(q−1) then

Q← merge two symbols(Q, j, k)
py ← update py(py, j, k)
x given y ← update x given y(x given y, j, k)
`← `− 1
break

end if
end for

end if
if ` ≤ µ then

break
end if

end for
return Q

Proposition 4.4. (COMPLEXITY ESTIMATE) The running time of the proposed imple-

mentation of the code construction algorithm is at most O(Nµ6).

Proof. Lemma 4.2 guarantees that there exists a constant C2 for which running M −

µ rounds of the degrading-merge function produces a degraded channel with an output

alphabet of size µ. Since each iteration has complexity O(M2), the whole degrading

operation can be performed in O(M3) steps. Moreover, Algorithm 1 implies that the

maximum value that M can take during the polar code construction procedure is qµ2.

Hence, we see that degrading merge takes O(µ6) time in Algorithm 1, meaning that

the total running time for the computation of a single subchannel Wi is O(nµ6). Getting
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to the block length N = 2n involves computing 21 + 22 + · · ·+ 2n = 2N − 2 subchannels

in the nodes of the splitting-combining tree, and so the overall running time of our polar

code construction is O(Nµ6), as claimed.

In our experiments we run degrading merge a constant number of times which

is independent of µ. Hence, what we have in practice is that degrading merge takes

O(µ4) time, resulting in an overall complexity of O(Nµ4) as opposed to O(Nµ6).

4.3 Experimental Results

We have tested the code construction algorithm of the previous section for a num-

ber of communication channels. As an outcome of the algorithm, we always obtain the

indices of the subchannels that provide the indices of the bits that should be used for trans-

mitting the data (in the case of linear codes, they also give the indices of the basis vectors

of the code). In our examples we plot the sorted capacities of the subchannels from 1 to

N , providing an immediate view of the polarization attained. Since we are approximating

the outcome, we should expect some rate loss compared to the channel capacity. We com-

pute the gap to capacity (denoted by ∆(I(W ))) and provide it for each of the examples.

In the limit of n → ∞ we should observe a rectangular-shaped transition from channels

with capacity 0 to positive capacity. This ideal distribution is plotted in the figures with

the dashed line.

In the examples we use some of many available polarization transforms mentioned

above in Sect. 4.1. This confirms that the algorithm does not discriminate between the

transforms (in fact, it does not even know which transform is used). We also tried con-
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structing codes for some of the channels introduced in [9] for which Arıkan’s transform

is known to yield more than two levels of polarization. The resulting codes clearly show

the expected multilevel-polarized constructions.

In our examples, we do not provide results associated with the probability of error

(except for Example 12.) This is because codes of rather large length (such as N =

220) are needed to present meaningful results for error probability, which would require

significant running time in most of our examples.

Example 1. Let W be the q-ary symmetric channel (qSC) with q = 5 and ε = 0.05.

More precisely, W (y|x) is defined as

W (y|x) =





0.8, if y = x

0.05, if y 6= x.

In this example we have chosen C1 = 10 and C2 = 2 in Algorithm 2. The resultant

capacities of the virtual channels for n = 8 and µ = 200 are shown by Figure 4.1(a). We

have I(W ) = 1.2, ∆(I(W )) = 0.075.

Example 2. Let W : {0, 1, 2, 3, 4} → {0, 1, 2, 3, 4} be defined by the transition matrix

W (y|x) =




0.5 0.5 0 0 0
0 0.5 0.5 0 0
0 0 0.5 0.5 0
0 0 0 0.5 0.5

0.5 0 0 0 0.5



.

In other words, W is a channel such that whenever a symbol is transmitted, with

probability 1/2 the same symbol is observed at the output, and with probability 1/2 the

next symbol is observed at the output. For this channel, the result is plotted in Figure

4.1(b). We have I(W ) = 1.322, ∆(I(W )) = 0.047.
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Both Example 1 and Example 2 correspond to the case when the virtual channels

polarize to two levels. This is consistent with the polarization theorem proved in [81]

which states that this is always the case for input alphabets of prime size.

Example 3. Let W be the qSC with q = 8 and ε = 0.03, viz.,

W (y|x) =





0.79, if y = x

0.03, if y 6= x

The results obtained for this channel are given by Figure 4.1(c). We have I(W ) =

1.669 and ∆(I(W )) = 0.224. Interestingly, even though the general result [9] suggests

that the channels may polarize to 4 levels, the actual polar codes have only two types of

the subchannels, of capacity zero and of the full 3-bit capacity.

(a) Example 1 (b) Example 2 (c) Example 3

Figure 4.1: The capacity distribution of the virtual channels.

(a) qSC with q = 5, ε = 0.05. The parameters of the algorithm are taken to be n = 8, µ =
200, C1 = 10, C2 = 2.

(b) Noisy typewriter channel with q = 5 and crossover probability 1/2. The parameters
are the same as in Part (a).

(c) qSC with q = 8, ε = 0.03. The parameters are n = 10, µ = 200, C1 = 10, C2 = 2.

Example 4. Let W be the qSC with q = 16 and ε = 0.01. In other words, we have

W (y|x) =





0.85, if y = x

0.01 if y 6= x
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In this example, we use the polarizing mapping (4.3) rather than the regular Arıkan’s

transform. The result we get is shown in Figure 4.2(a). We have I(W ) = 2.804 and

∆(I(W )) = 0.352.

Example 5. In this example we take the same channel as in Example 4, but use the

polarizing transform Gγ of [11], performed over the field F16. The polarized channels

computed after n = 8 steps are shown in Figure 4.2(b). We have I(W ) = 2.804 and

∆(I(W )) = 0.417.

As seen from Figures 4.2(a) and 4.2(b), the virtual channels polarize to two levels,

which is consistent with the polarization theorems of [84] and [11], respectively.

Example 6. LetW : X → Y be an “ordered erasure channel” (OEC, [9]) with 4 inputs, 7

outputs and transition probabilities ε0 = 0.5, ε1 = 0.4, ε2 = 0.1. More precisely, assume

that X = {00, 01, 10, 11} and Y = {00, 01, 10, 11, ?0, ?1, ??}, and define the transition

probabilities as follows:

W (x1x2|x1x2) = 0.5

W (?x2|x1x2) = 0.4

W (??|x1x2) = 0.1

for all x1, x2 ∈ {0, 1}.

The resultant capacities for n = 14 and µ = 16 are shown by Figure 4.2(c). We

have I(W ) = 1.4 and no loss in the average capacity was observed in this example.

For channels of this type, the capacity distribution of the virtual channels for n→

∞ approaches the PMF F (i) = εr−i, i = 1, 2, 3, where r = log2 q = 3 [9]. As seen from

Figure 4.2(c), the obtained results are consistent with this property.
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(a) Example 4 (b) Example 5 (c) Example 6

Figure 4.2: The capacity distribution of the virtual channels.

(a) Polarization of the qSC with q = 16, ε = 0.01 under the transform (4.3). The parame-
ters of the algorithm are n = 8, µ = 300, C1 = 1.5, C2 = 1.5.

(b) The channel and the parameters of the algorithm are the same as previous case. The
polarizing transform we use is given in (4.1).

(c) OEC with ε0 = 0.5, ε1 = 0.4, ε2 = 0.1. The parameters are n = 14, µ = 16, C1 =
1.5, C2 = 2.

Example 7. Let W : X → Y be an OEC with 8 inputs, 15 outputs and transition

probabilities ε0 = 0.3, ε1 = 0.2, ε2 = 0.3, ε3 = 0.2, i.e.,

W (x1x2x3|x1x2x3) = 0.3

W (?x2x3|x1x2x3) = 0.2

W (??x3|x1x2x3) = 0.3

W (???|x1x2x3) = 0.2

In this example we choose C1 = 1.5, C2 = 2, n = 12, and µ = 200 in Algorithm 2. The

obtained results are plotted in Figure 4.3(a). We have I(W ) = 1.6 and observe that the

obtained code shows no capacity loss due to approximation.

To compare our algorithm with the existing results, we tried to implement the polar

code construction scheme proposed in [58]. Because of the binning algorithm that this

scheme involves, the output alphabet size limit µ has to be of the form µ = kq for some
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even integer k. In this example, we have q = 8, and thus the smallest two values that µ

can take are 256 and 65536. For µ = 256, the average capacity loss of 20% is observed

even for n = 2 (since in each step we perform approximations, the loss can only increase

with n). Choosing µ = 65536, we run into implementation problems such as the memory

allocation error after a few steps of the recursion.

Example 8. LetW be the same channel as in Example 7 used together with the polarizing

mapping of [84] rather than the Arıkan’s transform. The obtained results are shown in

Fig. 4.3(b). We have I(W ) = 1.6 and ∆(I(W )) = 0.185. As predicted by [84], the

transform used in this example polarizes the channels to the two extremes, removing the

intermediate levels present in Fig. 4.3(a).

Example 9. Let W be the same channel as in Example 7 once again, but this time used

together with the finite field transform Gγ over F8 suggested in [11]. The output we

have obtained is shown in Figure 4.3(c), from which we clearly see how Gγ polarizes the

virtual channels to two levels. We have I(W ) = 1.6 and ∆(I(W )) = 0.206.

Example 10. Let W : X → Y be the q-ary erasure channel (qEC) with q = 8 and

ε = 0.5. In this case, we have X = {0, 1, . . . , 7}, Y = X∪{?}, and W (y|x) has the form

W (y|x) =





0.5, if y = x

0.5, if y =?

This channel has the capacity curve given in Figure 4.4(a). This channel is a

specialization of an OEC with the transition probabilities ε0 = 0.5, ε1 = 0, ε2 = 0, ε3 =

0.5. As expected, the virtual channels polarize to two levels under Arıkan’s transform.
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(a) Example 7 (b) Example 8 (c) Example 9

Figure 4.3: The capacity distribution of the virtual channels for the OEC with ε0 = 0.3,
ε1 = 0.2, ε2 = 0.3, ε3 = 0.2. The parameters of the algorithm are µ = 200, C1 =
1.5, C2 = 2.

(a) Arıkan’s transform, n = 12.

(b) Şaşoğlu’s transform (4.3), n = 10,

(c) Mori-Tanaka’s transform (4.1), n = 10.

We have I(W ) = 1.5 and we do not observe any loss in the average capacity for this

example.

(a) Example 10 (b) Example 11

Figure 4.4: The capacity distribution of the virtual channels.

(a) qEC with q = 8, ε = 0.5. The parameters of the algorithm are taken to be n = 10, µ =
200, C1 = 1.5, C2 = 2.

(b) OSC with ε0 = 0.8, ε1 = 0.1, ε2 = 0.1, ε3 = 0. The parameters are n = 10, µ =
200, C1 = 1.5, C2 = 0.8.

Example 11. Let W be an “ordered symmetric channel” (OSC) of [9] with the input

alphabet of size 8, and the parameters ε0 = 0.8, ε1 = 0.1, ε2 = 0.1, and ε3 = 0. More
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precisely, W is defined as

W (x1x2x3|y1y2y3) =





0.8, if x1 = y1, x2 = y2, x3 = y3

0.1, if x1 6= y1, x2 = y2, x3 = y3

0.05, if x2 6= y2, x3 = y3

0, if x3 6= y3.

For this channel, the capacity distribution curve that we obtain is given by Figure

4.4(b). We have I(W ) = 1.978 and ∆(I(W )) = 0.093. We see that the virtual channels

polarize to two levels, one level being one bit of capacity, and the other level being three

bits of capacity. We do not have zero bit of capacity as one of the levels in this example.

Example 12. The last example that we consider is the binary symmetric channel BSC(p)

with crossover probability p = 0.11. The capacity of this channel is I(W ) ≈ 0.5. For

this channel, we compare our algorithm with the bin-and-merge algorithm in [69] and

the channel degradation algorithm in [56] (called the “greedy mass merging algorithm”

in [57, 69], as explained above.) For C1 = 10 and C2 = 3, the results are provided in

Table 4.1 and Table 4.2.

It is to be expected there is a gain in merging output symbol pairs optimally at each

step compared to the degrading merge function we have defined. Note that this gain

decreases as the number of iterations n or the number of quantization levels µ increases.

We also observe from Tables 4.1 and 4.2 that our algorithm is slightly inferior to the

bin-and-merge algorithm for binary-input channels.
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n 5 8 11 14 17 20

Greedy mass merging, degrade [56] 0.1250 0.2109 0.2969 0.3620 0.4085 0.4403
Bin and merge, degrade [69] 0.1250 0.1836 0.2422 0.3063 0.3626 0.4051
Our algorithm 0.0625 0.1446 0.2188 0.2853 0.3385 0.3830

Table 4.1: The highest rate R for which the sum error probability of the NR,N = 2n

most reliable subchannels (out of the 2n channels) is at most 10−3.

µ 4 8 16 32 64

Greedy mass merging, degrade [56] 0.3667 0.3774 0.3795 0.3799 0.3800
Bin and merge, degrade [69] 0.3019 0.3134 0.3264 0.3343 0.3422
Our algorithm 0.2573 0.2775 0.3046 0.3191 0.3369

Table 4.2: The highest rateR for which the sum error probability of theNR,N = 2n most
reliable subchannels is at most 10−3 with µ quantization levels and n = 15 recursions.
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Chapter 5: Concluding Remarks

This thesis is devoted to the design and analysis of constructive schemes for some

problems in information theory relying on polar codes and polarization.

In the first two chapters we analyze several problems related to multi-user or in-

teractive communication for which capacity regions have been found in the literature,

but no explicit schemes that attain these regions were available prior to our research. In

Chapter 2 we study some problems of interactive computation by two or several com-

municating terminals. The aim of the communication is to reduce the amount of data

transmitted between the terminals based on ideas from distributed data compression. The

design of explicit schemes calls for careful analysis of the joint statistics of the messages

exchanged between the terminals to ensure the proximity of the realizations of random

variables to their desired distributions. We hope that the technical arguments developed

in the course of this analysis can find uses in other interactive communication problems.

One promising direction of development is related to the multitude of scenarios for inter-

active computation and communication in networks that are actively studied in the current

literature; see, e.g., [27, 28, 31].

A somewhat similar technical setting (albeit in the context of communication over

noisy channels rather than distributed compression) underlies the analysis of the scheme
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for transmission over the wiretap channel designed in Chapter 3. Similarly to Ch. 2 we

also have to incorporate auxiliary random variables that characterize the capacity region

in the encoding scheme and the analysis of the encoding scheme and its validity. While

communication designs for a number of particular cases of the wiretap channel were

known in the literature prior to our work, we have covered the general case that does

not assume any symmetry conditions or the degradedness of the wiretapper’s channel

compared to the main channel in the system. The approach chosen in this chapter enables

us to extent our coding scheme to the more general case when the transmitter aims to

communicate with both receiving parties in the system, at the same time keeping one part

of the message secret from one of the receivers. Interestingly, polar codes can be also

used to address this (more general) problem.

In the final Chapter 4 we take up the problem of constructing polar codes for non-

binary alphabets. Constructing polar codes has been a difficult open question since the

introduction of the binary polar codes in [2]. Ideally, one would like to obtain an explicit

description of the polar codes for a given block length, but this seems to be beyond reach

at this point. As an alternative, one could attempt to construct the code by approximat-

ing each step of the recursion process. For binary codes, this has been done in [56], but

extending this to the nonbinary case was an open problem despite several attempts in the

literature. We take this question one step closer to the solution be designing an algorithm

that approximates the construction for moderately-sized input alphabets such as q = 8

or q = 16. Apart from presenting a theoretical advance, this algorithm provides a useful

tool in the analysis of properties of various polarizing transforms applied to nonbinary

codes over alphabets of different structure. The proposed construction algorithm brings
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nonbinary codes closer to practical applications, which is another promising direction to

be explored in the future.

Further theoretical problems related to this construction include constructing codes

for asymmetric channels as well as for the problems involving interactive communication,

distributed data compression and secure communication. Another interesting problem is

to construct nonbinary LDPC codes by using an appropriate degradation algorithm in

each step of density evolution.
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[81] E. Şaşoğlu, E. Telatar, E. Arıkan, Polarization for arbitrary discrete memoryless
channels, Proc. IEEE Inform. Theory Workshop, Taormina, Italy, 2009, pp. 144–
148.

[82] R. Nasser, Ergodic theory meets polarization. I: An ergodic theory for binary oper-
ations, arXiv:1406.2943, 2014.

[83] R. Nasser, Ergodic theory meets polarization. II: A foundation of polarization the-
ory, arXiv: 1406.2949, 2014.
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