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Spatio-spectral properties of the Wavelet Transform provide a useful theoret-
ical framework to investigate the structure of neural networks. A few researchers
(Pati & Krishnaprasad, Zhang & Benveniste) have investigated the connection
between neural networks and wavelet transforms. However, a number of issues
remain unresolved especially when the connection is considered in the multi-
dimensional case. In our work, we resolve these issues by extensions based on
some theorems of Daubechies related to wavelet frames and provide a frame-

work to analyze local learning in neural-networks.



We also provide a constructive procedure to build networks based on wavelet
theory. Moreover, cognizant of the problems usually encountered in practical
implementations of these ideas, we develop a heuristic methodology, inspired by
similar work in the area of Radial Basis Function (RBF) networks (Moody &
Darken, Platt), to build a network sequentially on-line as well as off-line.

We show some connections of our method to some existing methods such
as Projection Pursuit Regression (Friedman), Hyper Basis Functions (Poggio &
Girosi) and other methods that have been proposed in the literature on neural-
networks as well as statistics. In particular, some classes of wavelets can also be

derived from the regularization theoretical framework given by Poggio & Girosi.

Finally, we choose direct nonlinear adaptive control to demonstrate the util-
ity of the network in the context of local learning. Stability analysis is carried
out within a standard Lyapunov formulation. Simulation studies show the ef-
fectiveness of these methods. We compare and contrast these methods with
some recent results obtained by other researchers using Back Propagation (Feed-

Forward) Networks, and Gaussian Networks.
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Chapter 1

Introduction

‘Learning’ can be viewed as providing an approximation to a desired mapping
within a given tolerance. From an electrical engineering perspective, interest in
theories of learning arises owing to the presence of many systems that are un-
known or only partially known and are difficult to model. In such situations the
mapping needs to be implemented from observations during interactions with
the system. To solve this problem, researchers in several disciplines have de-
veloped tools that can be graphically interpreted as ‘networks’. Although these
tools initially derived some inspiration from biological observations, approxima-
tion theory and statistical/information-theoretic methods have been recognized
as essential tools to tackle the enormous complexity inherent in the method.
Reflecting this diversity of disciplines, and depending on the application do-
main, such networks are often known variously as ‘neural networks’, ‘statistical
networks’, ‘connectionist networks’ and ‘biological networks’.

In spite of the explosive growth of research in this area in recent years, the
methodology has largely remained heuristic; precise mathematical methods are

often difficult to derive or when derived, remain largely without any practical



merit. As a result, tools that can provide more insight into their structure and
‘de-mystify’ them are important. One finds such a tool in wavelets and in this
thesis we focus our attention on how well this tool can help in this task.

First we have to address the issue of learning from the viewpoint of approx-
imation theory. For this purpose, we use the theory of wavelets with wavelet
as an alternative to implementing local learning with Gaussian Radial Basis
Functions(GRBF). In a related spirit, Poggio and Girosi [27] showed that Ra-
dial Basis Function Networks can be derived from Regularization Theory and
Pati and Krishnaprasad [25, 23] have shown that feed-forward neural networks
can be considered within the framework provided by discrete wavelet transform
theory. Zhang and Benveniste [34] give a somewhat different treatment of this
connection between neural networks and wavelet transforms. However, adequate
treatment of theoretical issues (e.g., the construction of wavelet frames, method
of dilating, bounds on error in approximation using a finite subset of dilations
and translations) in high dimensional problems, or practically feasible ways to
tackle the ubiquitous problem of ‘curse of dimensionality’ are not available in
any related literature. This posed one of the two major motivations for this
thesis; the other motivation will become clear in the course of this chapter.

The theory of multi-dimensional approximation using wavelets is developed in
chapter 2. In particular, we extend the sufficient conditions given by Daubechies
for 1-D wavelet frames to the multi-dimensional case in two different ways (i.e.,
using single and multiple dilation parameters) and show that frames can be
constructed from a single mother wavelet. In the first case we can construct
radial wavelet frames, and in the second case, the tensor product construction

leads to valid frames.



The fact that wavelets are local functions suggests that learning in wavelet
networks will face many of the dilemmas faced with local learning networks
such as the RBFNs, local polynomial fitting, etc. A major problem in all these
cases is of course the ‘curse of dimensionality’, which is well known across disci-
plinary boundaries: if one were to adhere strictly to the mathematical theory, the
number of network ‘units’ needed becomes so excessive as to render the theory
meaningless in practice. This realization has led even mathematicians schooled
in rigorous theory to search for useful approximate or heuristic methods to solve
complex real-world problems (see, for instance, Friedman [13] and the discussion
that followed it).

In chapter 3, we use the theoretical results in chapter 2 to develop wavelet-
based networks, and then examine suitable heuristic procedures to make the
proposed methods practically more relevant.

Chapter 4 addresses the connection of the methods proposed in previous
chapters to existing methods in diverse literature. Given the diversity and gen-
erality of neural network methods, it is not surprising that several statistical
methods that have existed independently in statistics have been brought into
‘neural’ framework in recent years. In that spirit, we discuss the connection of
the wavelet methodology to existing neural network methods and other methods
such as Projection Pursuit Regression [11, 12], and Regularization Theory[27].
In particular, by simple modifications, we show that symmetric wavelets can be

derived as special classes of the regularization network functionals.

Neural networks are in general applicable in a broad range of areas that in-

clude computer vision/image processing, adaptive signal processing (filtering,



prediction) and control. Many of the theoretical ideas that originated from con-
trol theorists have found their way into adaptive signal processing. A detailed
view of the two areas can be obtained from Widrow and Stearns [33], and Astrom
and Wittenmark [1]. Neural networks in control problems pose more challenges
because of the need to prove stability, error convergence, etc. in a rigorous fash-
ion. Moreover, neural networks can strengthen the existing connection between
adaptive control and adaptive signal processing and bring them closer. This pro-
vided a parallel motivation for this thesis. The utility of the proposed methods

are therefore investigated in adaptive control problems.

The literature on adaptive control and signal processing abound with tech-
niques derived from linear systems or local linearization. What makes neural-
networks attractive is their ability to solve non-linear problems in signal process-
ing and control. As a result, in recent years, adaptive control strategies using
neural-networks have been investigated by a number of researchers: Narendra
and Parthasarathy {19, 20], Chen and Khalil [3], Sanner and Slotine [30], to
name a few. These researchers have looked at either Multi-layer feed-forward
networks or GRBFNs. Sanner and Slotine [30] also recognize the possibility of
using wavelets instead of GRBFs, but to our knowledge a rigorous theory for us-
ing wavelets in a multi-dimensional network has not been developed in any work
that pre-dates this work. In chapter 5, we formulate adaptive control problems

and show how the wavelet network can be used in such situations.

Chapter 6 deals with results from simulation studies, the conclusions drawn,

and future directions.



Chapter 2

Multidimensional Wavelets and

Function Approximation

2.1 Wavelet Transform

Suppose 1 € L?(R) satisfies the following admissibility condition:
7 2
/ __|1,[J(w)| dw < 00.
R |w|

Then dilations and translations of the function 7 can be used to capture
the ‘local character in space and frequency’ of an arbitrary function f € L%(R).
This property is captured in the following relations of the continuous wavelet

transform (for a detailed analysis of this theory the reader is referred to [8]) .

1o [L [ R s

where 1®°(z) = |a| 2y (22), and Cy is given by

01/,:27(/00 M

—o  |w|



When one goes from the continuous case to the discrete case, the notion of

frames becomes necessary. A formal definition of frames is given below.

Definition

Given a Hilbert Space H, and a sequence of vectors {h,}nez, C H, {hy} is said
to constitute a frame for H if 3 two constants A > 0 and B < oo, such that

Vf € H, the following inequalities hold:

AIFIP S D00 < by f > [ < BIFI

When the frame condition is satisfied, one can define a frame operator S as

Sf:Z<fahn>hn

and decompose the function f as

f= anhn

where w, =< f,S7'h, >. The Hilbert space we consider is Ly(R"), the space
of square-integrable functions over R". In the following we will consider wavelet
frames. Daubechies has given sufficient conditions for 1-D wavelet frames. Here
we extend these conditions to the multi-dimensional case in the case of joint
dilations in all dimensions as well as separate dilations and translations in each

dimension.

2.2 Single-scaling wavelet frame

In this section we show that it is possible to build single-scaling multi-dimensional

wavelet frames by using a single mother wavelet. For this purpose we generalize



Daubechies’ theorem on sufficient conditions of wavelet frame [7] to the single-

scaling multi-dimensional case.

Theorem 1 Let ¢ € Ly(R"). Consider a family of dilated and translated func-

tions of the form
U(a,b) = {Pie(z) = a "Y(a"'c — bk) : 1 € Z,k € Z"} (2.1)

where z € R", a,b € R and a > 1. If the following three conditions (2.2), (2.3)
and (2.4) are satisfied

m(1h,a) 2 ess inf 3 |f(a'w)]* > 0 (2.2)

lwllelt.a) £
M(p,a) 2 €58 5up 3™ (alw)? < oo (23

lollelt.a) &2
sup [(1 + nTn)”(”fWﬂ(n)] = C, < 0o for some e >0 (2.4)

neR”
where
Bm) & sup Y |P(dw)| - [P(aw +n)l (2.5)
llwli€ll,a] 1cz,

then there exists by > 0 such that Vb € (0,bp), the family ¥(a,b) in (2.1) con-
stitutes a frame of L2(R™), in other words, there exist two constants A > 0 and

B < +00, such that Vf € L*(R™), the following inequalities hold

AIFIP < D2 K, £ < BIIFII?
Lk

where the sum ranges are l € Z and k € Z", (-,-) denotes the inner product in

L,(R"). 0O

Note that for the family ¥(a,b) defined by (2.1), the dilation index [ is a
scalar, and the scalar dilation parameter a! is shared by all the dimensions of a

wavelet. The proof of this theorem is given in Appendix A.1.



2.3 Multi-scaling wavelet frame

We introduce the dilation and translation matrices D; and T' as
D; = diag (ajl, . ,aj">

where
j = (jh' * "jn)T € Zn

and
T = diag (by, -+, by) .

With D; and T thus defined, separate dilation and translation parameters can
be used in wavelet functions. The following theorem is an analog of Theorem 1

in the multi-scaling case.

Theorem 2 Let ¥ € Lo(R™). Fora € R, a > 1, b = (by,---,b,) € R", and

b; >0, i =1, ---,n, consider the family of translated and dilated functions of

the form
1
¥(a,b) = {¢jr(z) = det D}(D;z — Tk) : 5,k € Z"}.
If
m(p,a) £ essinf 3 [H(D_jw)* >0,
|w.|€[1,a],i=1,"-;n jezr
M4, a) 2 ess sup Z W, _jw)]| 2 « 0
|wi|€[1,a],z=1,---,n]ezn
and

Seulg[(l + T )"F928(n)] = C. < co for some € > 0
n



where

me  sup Y [$(D_jw)[B(D_jw +n),

lele[l’a]’z 1y4m jez™

then there exists' by > 0 such that Vb € (0,b,), the family defined above consti-
tutes a frame for Ly(R™); i.e. , 3 two constants A > 0 and B < oo, such that

Vf € Lo(R™), the following inequalities hold

ANFIP < 32 Kb, £)I? < BIIFIP

Ik

The proof of this theorem is given in Appendix A.2.

2.4 Construction of wavelet frames

We are interested in a methodology that allows us to construct the multi-
dimensional wavelet function leading to frames; i.e., the problem is to find a
wavelet function that satisfies, together with its dilation and translation param-
eters, the sufficiency conditions outlined in the above theorems. In this section
we first consider the tensor product construction of multi-scaling wavelet frames;

then we discuss possible non product constructions.

2.4.1 Tensor product frames

Let 1(z) be a tensor product of 1-dimensional wavelet functions, i.e.,

$(z) = P1(21) -+ Ya(2a) -

! abusing notation, we consider element-wise bounds when we refer to vector bounds in this

thesis.



Then,
’QZ(’LU) = "2;1 (wl) T {[)\n(wn) .

Yi(z;),5 =1, -+, n, must satisfy the admissibility condition:

/ |1/)z w; | dw,
|wz

Under mild conditions of decay, this is satisfied if we choose ;(z;) such that

/¢i(xi)dxi = 0.

If these 1-dimensional functions can constitute frames, they must satisfy the
first two conditions outlined in theorem 2, as applied to the 1-dimensional case,

which are necessary conditions as well [8].

Moreover, Daubechies [8] shows that in 1-D, a single sufficient condition on

the decay of 1; as given by
i (wi)| < Cilwi|*(1 + |wi]?)"% witha >0and 7> a+1
is equivalent to the second and third conditions of the theorem.
Since in practice this decay condition is rather mild, for the purpose of con-

struction, we assume that it is satisfied and hence all conditions of the theorem

are satisfied.
Hence in the multidimensional case, by using the inequalities in 1-D above,

and the fact that the infimum and supremum can now be taken over the sum in

each dimension, we have

10



m(T/J, CL) - |wi}6?ls,gl,%g§,...,n{jzl |’(Z1(a—jluh)l2 - %: !'{D\n(a—j"wn)lz}

> 0,

and

M) = | emop (S @) Tl un)l)

< 0.

For the third condition, we have the following inequality,

_ (o)

I < S0+ @rbt))~%
k1

> [B@rT k) B(~27T k)
(k|0
_Q0+e

31+ (2mb k) %)

kn
< 3o f2rbite 0O N 2mb g, | ),
ki kn
Since each sum over k; converges, ¢ = 1,...,n, we have that the sum involving
(G converges. Moreover, as b; — 0, 1 = 1, ,n, this sum tends to 0. Hence all

conditions of the theorem are satisfied.

Therefore the tensor product construction leads to valid frames of wavelets.

2.4.2 Necessary conditions

To make the results complete, we are interested in obtaining necessary conditions
as in the 1-D case. In particular, it would be appropriate to check whether the

admissibility condition for discrete wavelet frames has the same structure as

11



continuous wavelets in the multidimensional case. In the tensor product set up,

this follows trivially since the 1-D admissibility conditions lead to

- Y(z)dz = 0.

From recent extensions on the bounds for 1-D case [5, 7], the following holds
for any frame 7/’ij,,k, (i =1,---,n is the dimension index, j;, k; are dilation and
translation indexes respectively):

A; < TZW%‘(G w)|* < B;.
(2 jz
Considering multiplication of the above inequalities over i = 1,---,n, we

have
A=Ay A, < (2m)"det TS |9(D_jw)|? < By---B, = B
J

In [5], this bound is obtained for the case of Riesz bases. However, the proof
relies only on the frame condition, and therefore the above inequality is general
in that it holds for arbitrary frames (not necessarily of the tensor product type).

Another problem is to construct such arbitrary frames.

2.4.3 Non-separable frames

The observation that all conditions of the theorems on sufficient conditions hinge
on the boundedness and decay of terms involving | ()| suggests the possibility
of multiplying the tensor product wavelet in the frequency domain by a function

of the form

p(w) = Z C e"“T“’, g €R
lezn

12



which can be the Fourier series of a periodic function.

Let the new wavelet be
Up(w) = p(w)(w)
where (-) corresponds to the wavelet constructed as a tensor product. If
0< > la| < oo,
]
then the fact that
0 < [ihp(w)| < (Xl: le)IP(w)]

implies that all conditions of Theorem 2 are satisfied.

Therefore, one can construct non-tensor product wavelet frames from the

tensor product frames. In the case of Riesz bases, similar results are obtained in

[5].

The 1-D wavelet function could be the Mexican hat, a combination of a few
sigmoids (e.g.[23]) etc. The choice of the wavelet used in networks for learning is
dictated by considerations of smoothness, implementability in analog hardware,

separability, etc. Some of these issues will be considered in chapter 3.

Radial Wavelet Frames

When we impose radial symmetry on the mother wavelet, ¢(w) = ¢(||w||) the

following isotropic admissibility condition results,
oo dh =~

— |p(hw)|? < co.

| Sl < o

——:l:2
For instance, the radial Mexican hat function ¢(z) = (n — ||z]|*)e™> is used

by many researchers when continuous wavelet transforms are considered, and in

13



particular the difference of Gaussians as approximation to the Laplacian of the
Gaussian is popular in computer vision applications. In the discrete case, such
a radial construction is implied in the conditions of Theorem 1. It is easy to
see that the first two conditions follow directly. Moreover, if the 1-dimensional
mother wavelet is chosen according to the mild decay conditions (Daubechies [8]),

ie.,
i (w;)] < Cilws|*(1 + |wi]?)~% witha >0 and v > a + 1

then the third condition of Theorem 1 is also satisfied. Therefore, the con-

struction involves the following:

1. Select a symmetric 1-D mother wavelet ¢(z) and calculate the Fourier

Transform ¢(w).

2. Let the multi-dimensional wavelet satisfy

b(w) = d(lwl)-

~

The Inverse Fourier Transform of ¢(w) gives the radial mother wavelet

candidate for higher dimensions.

In the sequel, we shall be concerned with tensor-product wavelets. Once a

frame is selected, for any f € L?(R") we can write,

f = Z CrnWmn

where

Ymn (z) = detDY?y(Dx — Tb),

14



D = diag(a[1]™,- - -, a[N]™)

and T = diag(n[1],---,n[N]). The coefficients ¢, represent local information
at the space-frequency location of m,n. Therefore it is desirable to define the
centers of time-frequency in a rigorous fashion.

The following definitions for the n-dimensional case are appropriate.

lf) = T o1+l @)lda

1 R
el 1) = 75 g wnl (o)

For the tensor product wavelet, the center co-ordinates are the centers in
each dimension.
In practice, functions are essentially concentrated in a spatio-spectral region

in the following sense.

/zl%mu |f(z)Pdz > (1 - ) |l £]” (2.6)

[ e )P0 > (1= O 1P 2.7

Hence the set of (m,n) is truncated to a finite index set Z and we need to

be precise about the truncation error in truncating with finite (m,n). We work
with the tensor product construction. We note again the abuse of notation in
using inequalities and bounds in the vector case, i.e., since z € R¥,w € RV, the
vector inequalties involving x and w are taken elementwise. First we note that
mn =< f, S Yhmn >, where S is the operator in connection with frames defined

carlier. S~1¢,, is called the dual frame t,y,,. Hence

1f = 3 < fibnn>tmall = swp [<fih>— 3 < fy o >< Pran, b > |

m,n€L | II=1 mnel

15



= sup | > < f,%mn >< Ymn, b > |

liall=1 mn¢l

< sup Y, Y ()

IRl=1 m<my,m>my nezn

+sup Y. > )

lirll=1 my<m<my a—mzu+wt<nb<a""w1—z;
Here z;,z; are used to consider a small region just beyond the boundaries
in spatial region defined by the set Z.

Define a cover B, to Z as

(m,n) € Z%; my < m < my,and
Be(wh Wy, T, -'L'u) -
a™z; — Ty (€, My, my) < mb < aTMxy + 3 (6, ™y, My).

The notion here is that there exist lower bounds on z;,z; , m, and upper
bound on m; to meet the essential spatio-spectral concentration of the function
to the region [z, z,] X [w;, w,]. Using the Cauchy-Schwarz inequality, we can
derive the following, paralleling the one-dimensional case studied in [8]. Coarse
estimates for my;, my;, o7, 7;; that depend on the decay factor of the mother
wavelet and the spetral limits are used in this derivation to show the desired

results.

(Foton g ol F()I2)
1= X <Fian > Yl SVBIA| (g 00 41 f () )

M NEBe (W) W ;1,8 )
+el £l

If we use the definitions in 2.6, 2.7, with the same ¢, we have that

N

“f_ Z cmn";bmn” :O(e)a

m,n€ Be
which is the desired result consistent with the intuition of essential spatio-
spectral concentration, i.e., it suffices to use the nodes that fall close to the

spatio-spectral region.

16



The number of nodes required is given by

N mi=my, m@ m -
T +.’L' Q"' Ty — Ty,
T | S LT
1= lmz—mzl
) amui_mli — 1
= Hb (Tiy — Tyy) a™ (?)

neglectmg effects of z};, =, .

This detailed theory provides the means for uniformly approximating any
function f € L*(RY) to a desired degree of accuracy, and translates into a

network formulation. Such a formulation is studied in the following chapter.

17



Chapter 3

Wavelet-based Networks and Learning

The methodology for learning involves training a network either on-line or off-
line based on a set of observations, so that the resulting error in approximation is
within acceptable limits. Such networks should be able to ‘generalize’, meaning
that when presented with input not used in training, the network should be
able to approximate the mapping well. This ability is the key to learning, but
achieving this is the most difficult part of the learning process since the training
set used cannot in general adequately represent the whole input space. We will

formalize these notions and consider the issues arising out of this dilemma.

3.1 Generalization Error, Network Structure and the

Size of the Training Set

The generalization error is defined as

”f - fnet” = €gen

where f is the desired mapping R™ — R, and f,. is the mapping provided

by the network. Now, we note that the learning process gives rise to two distinct
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types of errors, viz.

1. The approzimation error, f — fopprog, Which results from the fact that a
finite amount of resources (nodes or neurons) are used to approximate the
function. This tells us that approximation theory can be used as a means

of determining the size of the network to be used.

2. The estimation error, fupprox — fnet, Which results from the fact that the
co-efficients or weights are estimated from a finite amount of data. Thus
the nature and size of the training set used has to come from statistical

considerations.

Thus one can write,

6gen S ”f - fapproa:” + ”fapprow - fnet” (31)

= €Eapproz + €est (32)

However, in this thesis we will not obtain statistical bounds on these errors.
Recent papers by Barron [2], Niyogi and Girosi [22] provide good analyses in
similar contexts in neural networks, and it should be possible to perform simi-
lar analyses in our case. It suffices to note that motivations for these analyses
come from fundamental problems in “learning”, viz., how to trade off the above
two errors, i.e., €gppror aNd €c5t SO that the resulting error g, is within accept-
able limits. These questions are related to determining the network complexity
(i.e., network size) and the size of the training set (sample complexity) that are
optimal. Results reported in the literature agree with the empirical evidence
that several combinations of these two parameters optimally result in the same

generalization error. As a result, the choices are in practice determined by the
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availability of resources— for network units and for data collection. In other
words, if a large amount of data can be obtained, it is possible to use this high
“information content” or “feature content” to obtain more compact networks.
Conversely, when only a small amount of data is available, it is possible to arrive
at the same generalization error by using a larger network. Again, this assertion

is supported by theoretical results as well as empirical observations (simulations).

This discussion suggests one among several important reasons to develop
on-line sequential learning strategies that build near-optimal networks provided
sufficiently large amount of data. Because the data are presented only once !,

there is no need to store a large amount of data. Other reasons will become

apparent in later sections of this chapter.

3.2 Local versus Global Learning

Learning schemes based on ‘global’ and ‘local’ learning schemes have distinct
properties, most of which are well known in the literature. In global learning,
no association can be made between a subset of the input space and the ad-
justable elements (weights). At every instant of weight adjustment, all weights
get adjusted. This has the advantage of resulting in a compact network and bet-
ter generalization, but one has to contend with poor accuracy and sensitivity.
The multi-layer sigmoidal networks in widespread use are global learning net-
works. In contrast, local learning is characterized by weights corresponding to

a small region of the input space, a higher degree of accuracy, a smaller number

lrepeated presentation may be necessary when the same strategies are used off-line, but a

small amount of data is sufficient in this case
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of weight adjustments, etc on the positive side and a larger number of units,
poor generalization capability because of too close fitting, etc, on the negative
side. However, there are certain applications, where a local mapping is highly
desirable. When training data are obtained from on-line interactions with the
system to be modelled, the training samples may tend to fixate to a certain
region of the input space. This can harm the generalization capability in global
learning since all weights are repeatedly adjusted (see, for instance, [10] for a dis-
cussion of some related issues in learning control applications). In certain cases,
accuracy is the predominant concern and the requirement for larger memory is
acceptable. In other cases where local learning is essential, but large memory
cannot be accommodated, techniques for reducing the ‘curse of dimensionality’
need to be developed. The Gaussain Radial Basis Function networks, and the

Wavelet Networks (WNs) used in this work are local learning networks.

3.2.1 Training Local Learning Networks

A claim is often made that the linear-in-the parameter structure of local learning
networks (such as the GRBFNs and WNs) simplifies training compared to the
extremely slow back-propagation procedure used in sigmoidal neural-networks.
Such simplicity is deceptive unless techniques that address the issue of how to
select the ‘basis’ or ’receptive field’ functions are developed. In many problems,
this can again necessitate gradient based nonlinear optimization procedures. In
the wavelet frame work, this problem comes down to selecting the appropriate
sets of dilations and translations (also referred to as the dictionary) in an efficient

manner. Once this is done, training is of course easier than back-propagation,
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and several methods can be used for determining the coeflicients depending on
whether the training is on-line or off-line and the amount of computations. In

the next few sections of this chapter we give a details of our methodology.

3.2.2 Theoretical Difficulties of Network Construction

Existing methodologies to construct sigmoidal networks are lacking in several
respects: to rephrase the discussion at the start of the chapter, for a speci-
fied tolerance, questions such as how many nodes are necessary in a hidden
layer?, how many layers are necessary?, and how many training samples are
needed?, have only partial answers at the present time. Several researchers have
recently shown that feed-forward neural networks are universal approximators
(see, e.g.,[16]), and that a single hidden layer is sufficient to approximate any
arbitrary nonlinear function to a desired accuracy provided a sufficient number
of neurons are used; however sufficiency does no lead to any rigorous procedures

for network construction.

Why use wavelets ?

Pati and Krishnaprasad [23] circumvented these questions to some extent by
using discrete wavelet transforms in place of sigmoids; however, their work is
primarily applicable to 1-D problems; adequate treatment of multi-dimensional
wavelet theory, and problems faced due to the ‘curse of dimensionality’ are not

available.

One advantage with wavelets is that the problems of input pre-processing,

scaling etc, are avoided (inherently structured in this way ). Similarity of
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wavelets to Radial Gaussians also makes wavelets attractive in applications where
Gaussians have been successfully employed. Indeed, wavelet theory provides a
natural basis for multi-resolution hierarchical schemes, unlike the artificially im-
posed multi-resolution hierarchies in the case of Gaussians as used in vision
applications. Such a multi-resolution scheme is intuitively appealing since they
possess the ability to zoom-in on areas of high-frequency concentration, anal-
ogous to the way the human brain processes information. Moreover, because
of the above structure, wavelets offer the possibility of obtaining more compact

networks though this is not a universally applicable claim.

3.2.3 Problems Faced in High Dimensions

Many wavelet/neural learning problems often attacked in the literature concern
one-dimensional applications, with no straightforward extension to high dimen-
sional cases. Such studies have very little utility in practical problems since
neural networks find their usefulness predominantly in high-dimensional appli-
cations. High-dimensional problems .pose more challenges and much remains to
be done in the direction of achieving good generalization at significantly reduced
complexity. If on-line sequential adaptation is attempted in & high dimensional
setting, the problems become still more complicated. In particular, traditional
methods would require storage of large amounts of past data, which is difficult,
and moreover the function to be learnt can be highly non-stationary. Information
theoretic considerations such as Cross-Validation/Generalized Cross Validation,
Minimum Description Length Principle or Akaike’s Information Criteria are not

applicable sequentially on-line because of the repetitive nature of these nonlinear
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optimization procedures.

3.2.4 Training Local Learning Networks

A claim is often made that the linear-in-the parameter structure of local learn-
ing networks (such as the GRBFNs and Wavelet Networks) simplifies training
compared to the extremely slow back-propagation procedure used in sigmoidal
neural networks. Such simplicity is deceptive unless techniques that address the
issue of how to select the ‘basis’ or ‘receptive field’ functions are developed. In
many problems, this can again necessitate gradient based non-linear optimiza-
tion procedures. In the wavelet frame work this problem comes down to selecting
the appropriate sets of dilations and translations (also referred to as the dictio-
nary) in an efficient manner. Once this is done, several methods can be used
for determining the coefficients depending on whether the training is on-line or
off-line and the amount of computations. In the next few sections of this chapter
we give details of our methodology.

We have shown in chapter 2, how to construct multi-dimensional wavelet
frames, and how these frames can be used to approximate functions in high-

dimensional spaces. This theory maps directly into a network configuration.

3.2.5 Determining the Spatio-Spectral Centers and the

Coefficients

The first issue in the wavelet network construction is to determine the frequency

content of the system function, which is assumed to be essentially band-limited
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Figure 3.1: Spatio-Spectral Distribution

in space and frequency in [wj, wy) X [x1, Tm|. If somehow this information is
known a priori the space-frequenecy region on which the approximation is to
be attempted becomes clear. Theoretically, one would then try to select all the
spatio-spectral centers that fall within the region of interest. The computation of
coefficients would be straightforward theoretically. However, the number of such
centers increases enormously with each additional dimension, and this would
make the methodology devoid of any practical merits. Several approaches can

be followed to give realistic solutions depending on the nature of the problem in

hand:
1. The dimension of the input space

2. The amount of data and whether on-line or off-line
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Receptive Fields for Tensor Product wavelet Receptive Fileds for Radial Wavelets

Figure 3.2: Typical Receptive Fields in Two Dimensions
3. The degree of approximation desirable

4. A priori knowledge of smoothness information if any.

In practice attempts at calculating the spectral content based on the training
data are bound to be fruitless unless one considers low dimensions and a small
set of training data. The methodology we propose in the next section obviates
the need to perform such calculations of spectral content. We assume that there

is no significant constraint on the amount of data that can be gathered on-line.

3.3 A Heuristic Methodology for Dynamic Selection

Consider each dimension separately; the same procedure will be performed in
each dimension. Let L(l), M(l),l =1,---,n be the low and high frequency limits.
Choose L(l) corresponding to the case in which entire spatial region [z;(1), z,, ()]

is covered by two nodes (translations), i.e.,

L) = - log(wm(l)—lzsl]j(%)—log(blﬂl_

There is no need to know M (l) except that knowledge of M (l) can provide a
rough upper bound on the number of dilation levels to be used. But this is not

essential to the method.
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It is now possible to build on successive levels of dilations on-line. We observe
that in figure 3.1, the width between adjacent nodes for a dilation level m is
given by a™™b. This information can be used with information on the nearest
neighbour nodes, to develop the following strategy. Theoretical justification will

be given in the next section.

e Initialize:

m(l) = L(l)
a——m(l)

ap = 2220
:cgl!al‘(’)

Set first node (translation value) to sy rounded to the nearest integer.

e begin on-line; determine nearest(l) (The distance to the nearest existing

translation node ).

If nearest(l) > d(1)? and |ynet — y| > € add a new translation node at

z(1)at®
0

n(l) = rounded.

ynet—y

(@) where

e Select the current weight for the new node as coyprent =

p(x) = v - - - ¢, calculated at spatio-spectral locations m(l), n(l).

If a new node is not selected for the present data, adapt the coefficients using
the LMS3 [32] algorithm.

When the network has learned sufficiently at this level (this is determined by

2Considerations on this choice are detailed in the next section
30ther algorithms such as RLS-Kalman or variants thereof can also be used at the expense

of increased complexity of implementation
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the fact that no new node is added for a sufficient number of continuous data
points, as shown by a flag) set m(l) = m(l) + 1;
Continue this on-line. After a sufficient number of nodes are learnt, the algorithm
automatically stops adding new units.

If training is desired off-line, optimization of this initial model can be per-
formed based on orthogonal least squares (OLS) [4] or the orthogonal matching
pursuit (OMP) [24], which is similar to OLS.

3.4 Justification

The methodology proposed above can be justified based on geometric model

growth. A work in similar spirit for Platt’s RAN can be found in [17].

n lenlsin(om)

Figure 3.3: The Geometric Picture

The geometric picture is illustrated in figure 3.3. Notice that f, = > ¢;9;

implies that

fn = fa_1 + €, with e, =¥,

The best approximation fp.,;,_, to f that one can get from a set of frames
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len| |sin(an)| |en|| sin{om)] Decision Interpretation

<€ < € < €169 Use LMS The Projn. is sufficient.

<€ > €9 < € Use LMS The Projn. is sufficient

> ¢ < €9 ? Use LMS, flag need more data 4

> € > € > €169 Add a new node The Projn. is inadequate

Table 3.1: Possible Combinations and Actions

{t;,i = 1,---,n — 1} is the projection of f onto the space spanned by the set
{ti,i = 1,---,n — 1}. Our first problem is to decide whether a new ‘basis
unit’ needs to be added at this stage. Such a decision obviously can be based on
whether the projection onto the span is inadequate, i.e., whether || f,— fproj._. || =
len | sin (o) exceeds an allowable threshold e. Here |e,| = || fn — fa—1l|-

Table 3.1 shows the four possibilities. Only the fourth case warrants addition
of a new ‘unit’, while the third case suggests via a flag that new dilation levels
may be needed at the particular locality, or at least more data are needed.
Therefore we can separate the condition in terms of |e,| and |sin (e,) |. Now it

is difficult to calculate «,. However, notice that e, cos (o) lies in the span of

{1, -+, ¥n-1}. Therefore the condition on sin () can be recast as
< P, P >
SUP;=1 ..o ;o 1—6dwhered <1.
Pt =

3.4.1 Interpreting the Condition on < 9,,vy; >

For this calculation we make a choice for the wavelet with the understanding

4In addition to finding the projection, the flag indicates that at this local region additional

nodes may be required
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that the same method can be used for other wavelet functions. We consider the

22

2. The tensor-product of this wavelet in two dimensions

Mexican hat (1 — z?) e

is shown in figure 3.4.

Mexican Hat Wavelet by Tensor Muttiplication
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Figure 3.4: The Tensor Product of Mexican Hat

Also we note that our tensor product results in

< Yy ¥Ys S=< Y1, Vi1 > -+ < Unn, Yin > .
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Therefore by calculations shown in Appendix A.3 we arrive at the following
reduction. Vj € {1,---,n — 1},
a?m g2

< 1ﬁij,¢nj >=e 1 (1.0 —a? d? + ﬁa4 d?)

where

dj = IL'ji — CI?jn.

It is interesting to note that graphically < ,,1; > takes the form of the
mother wavelet and that cos(cs,;) can take negative values (i.e., the angle o,
can be greater than 7/2 ). In the case of Gaussians (GRBFNs), we can easily
verify that the form of this product is again Gaussian, and that 0 < a, < 90°.
This shows clearly the differences between the Gaussian and the Wavelet cases.
An important property emerges here: if we maintain the distance d at zero-
crossing points, we get a,, = 90°: orthogonality between nodes. However notice
that this orthogonality doesn’t hold across all multiples of the distance since the
function has only four (symmetric) zero-crossings in each dimension that are not
integer multiples and hence cannot generate a regular lattice. Also notice that
between the first and second zero-crossings, the absolute value of cos(ay,) can
be high. Since near-orthogonality is desirable, the fore-mentioned observations
suggest that one can choose the distance either to co-incide with any of the
zero-crossings or to be around them. In the case where a condition of the form
|d| > do(m) where do(m) is a fixed distance for a given m, is desired it is possible

to attempt do(m) > the distance to the second zero-crossing.

In the case of Gaussians, such orthogonality between any nodes obviously

cannot exist. Choice of distance for near orthogonality is possible. It has been
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brought to our notice that in a different context, Holcomb and Morari [15] sug-
gested some ad hoc procedures in related spirit to this work for forcing orthog-
onality by using particular penalty terms that help spread out the basis centers

in RBFN learning.

The value of cos(.) as a function of d, for dilations 0 and -1
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Figure 3.5: The Variation of cos(a,) with d, in 2D

Figure 3.5 shows the value of cos(ay,), which results from the multiplication

of the values using separate dilations in each dimension for the 2-Dimensional

case.

3.5 Implementation Issues

An important consideration in implementation is separability. Separability of
the wavelet makes the network more amenable to parallel hardware implemen-
tation. Since sigmoids are more easily implemented than Gaussians or Mexican

Hat, wavelet frames can be constructed by superposition of sigmoids. Pati and
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m
f
Figure 3.6: The Wavelet Network

Krishnaprasad [23] give more details on numerical procedures for constructing
frames from sigmoids. Separability can also be used to advantage in constructing
efficient algorithms such as the LMS Tree (see for instance [29]) under certain
restrictive conditions. Since we are interested in more general cases, we choose
to implement the sequential learning strategy we develop. We may note that
the Gaussian RBF networks are separable and they allow the addition of succes-
sive dimensions consistent with biological observations[27]. However, as we have

shown in chapter 2, Radial Wavelets are not in general known to be separable
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frames.

Choice of the wavelet should be based on the expected structure of the func-
tion. Smoothness and symmetry should be considered. For logical functions
that involve switching between logic states, the Haar Basis, which happens to
be orthonormal as well, though not symmetric, is a sensible choice. Many other
orthonormal wavelet frames have complicated expressions, and large supports.
They do not lend themselves readily to hardware implementation, and large re-

ceptive fields could be detrimental to attempting local learning.

Because we assume piece-wise smooth nonlinear functions with high spatial
variability, we choose to experiment with the Mexican Hat in a tensor product
form. Although using single-scaling wavelets in radial form can simplify the
learning and reduce the number of network nodes, we would like to test the
effectiveness of our methods under more general conditions.

For the Mexican Hat wavelet, from numerical calculations given in Daubechies
[8], for the dilation a = 2, values of b > 0 which satisfy the frame theorems given
in chapter 3 are selected to be b € (0.25,1.875). Since we require that the redun-
dancy in frames be kept to a minimum, it is important to keep the ratio of frame
bounds B/A as close to one as possible. This factor, along with the number of

dilation-translation nodes that can be allocated will influence the choice of b.
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Chapter 4

Connection to Existing Methods

4.1 Regularization Theory

In this section we discuss regularization theory, and show how symmetric wavelets
can be derived from the regularization framework of Poggio and Girosi [27].
Given a set of data S = {(z;,4;) € R®*X R|i=1,---,J}, regularization

theory gives the function f that minimizes a functional of the form

H(f) =Y (5 — f(z:)* + M Pl

Where ) is a positive real parameter called the regularization parameter, and
P is an operator that captures whatever prior information on the smoothness
of the function f is available. Using the Euler-Lagrange equations associated to

the above problem, one obtains

J
fz) = ; ;G (w; ;) + p()

where the term p(z) is a linear combination of functions spanning the null space
of P, and arises because terms in the null space of P are invisible under the

minimization of H(f), and G(z) is a Green’s function of the operator PP, with

35



PT as the adjoint of P, and c; is given by

(% — f(2:))
5 .

¢ =
Without looking for complicated operators one can think of the operation as
a linear filtering operation which suppresses components in unwanted frequency
bands. This fact is recognized in related literature (see, e.g.,[14]). For example,
in order to arrive at Gaussian Radial Basis Functions(GRBF), one can consider
the operation as passing f through a High-Pass Filter given by e“tﬁ. As we will
see later, the filtering function corresponds to é
Since we are interested in obtaining wavelets as function approximators, it is
relevant to consider whether wavelets can be derived within the regularization
frame work. There are two motivations for this. One is that wavelet theory
provides functions that range from orthonormal bases to frames and provides
flexibility of choice with possible algorithmic improvements. The other is that
although wavelet theory is now well-developed from the point of view of func-
tional analysis and approximation theory, in many applications one confronts
the problem of fitting a wavelet-based approximator on-line or off-line to an
unknown system described only by the set of input-output data obtained from
observations. In such problems, the relation between the number of data avail-
able and the number of parameters to be chosen in the wavelet approximator,
the choice of the parameters either on-line or off-line etc., are not trivial issues.
This is particularly appealing when the regular lattice structure used in wavelet

theory causes an excessive number of wavelet units. Thus embedding wavelet

theory in a regularization-statistical frame work is desirable.

First we will consider whether a mother wavelet can be derived from this
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theory. The strong admissibility condition of a mother wavelet ¢ € R is

/R $(z)dz = 0.

We have also shown in chapter 2 how to construct mother wavelets in R™ from a
mother wavelet in R. This suggests that we have to impose additional assump-
tions on P in the form of minimizing not only the high frequency energy, but also
the energy in a small region (B, = {w| — € < ||w|| < +€} ) near zero-frequency.
One can include a weight for the constant term and a polynomial p(z) with-
out causing problems in practice. In fact, p(x) = 37, w;z; is sometimes used

to capture any linear dependencies that may exist.

For derivation, however, we look for a Band-Pass filtering function B(w) that
vanishes at w = 0 and approaches zero as w — o0, such that = — B( ) provides the
necessary filtering operation.

Then we can write the functional as

H(f) = g:l (yz - /Rn dwf(w)eizi.w)z + )\/R"\Be dw|J;(((,2)|2

Minimizing the above functional with respect to f by setting the functional

derivative to 0 under the limiting operation ¢ — 0 results in

flw) = B(-w) 3, W) e,

=1
The above result shows that for using the above theory in a general way, to
approximate a function f, we have to assume a symmetric B(-) to have B (w) is

real. Under this assumption, the Inverse Fourier Transform gives

f(fI? Zcz CE—.’I?z +p( )
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Here p(z) and ¢; are taken as defined earlier. As in the case of Gaussian
Radial Basis functions, p(z) is unnecessary since the null-space of the filtering
operation is empty.

The restriction on symmetry rules out many orthonormal wavelet bases that
are known in the literature. The Meyer wavelet and the Battle-Lemarié wavelet
family appear to be the only known symmetric orthonormal wavelet bases; but
it is also known that these wavelets have a large support; several compactly
supported orthonormal wavelets bases are known, but all are non-symmetric [8].

Any symmetric wavelets (either frames or orthonormal bases) can be used.

w2

For example, taking B(w) = ||w||2e_u_2“‘ results in the Radial Mexican Hat:
—(lzl2
(n— llaf?) ™5+,

Tensor product of any symmetric wavelet can also be derived simply by consid-
ering B(w) = By(wy) - - - Ba(wy), where B(w;) are the 1-D Band-Pass Filters for
1=1--,n.

So far, we have considered the derivation of mother wavelets only. This results
in an approximation scheme that uses translations only with a continuous wavelet
transform. The essence of wavelet theory lies in the fact that it provides an
elegant tool for spatio-spectral localization using dilations and translations. We
will see that for the case considered above (i.e., symmetric mother wavelets), a
translation-dilation structure with a continuous wavelet transform can be derived
within the regularization framework. For this purpose, we combine two separate

extensions for Hyper Basis Functions(HBF) [26].

e Assuming that the function is to have several levels of resolution, i.e.,

f(z) = =M _| f(z). Then, one can consider each level f,, at a dilation
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level @™ in the forementioned procedure to arrive at

f@) =3

m=114

cmiB(a™(z — ;).

J
=1

e Weighted Norm. One considers the weighted function B(||lz — z;|jw).

Choose W = diag (aml, . -,amN) . This norming idea arises primarily as
a means of taking into account the increased degrees of freedom that can

result in dimensionality reduction.

Thus the basic approximation scheme can be advanced without the rigorous
conditions of chapter 2, making it a suitable alternative when not using a regular
lattice. It is important to note that while the original form of regularization
theory fits a ‘basis’ corresponding to each data point, practical considerations
require that approximate techniques be used to select a fewer number of basis
elements [27]. Notice however that Regularization does not and cannot address

the issue of sequential learning.

4.2 Radial Basis Functions

Radial Basis Functions provide another tool for function approximation. Al-
though there exist several types of radial basis functions that can be used
in approximations, the Gaussian Radial Basis Function (GRBF) of the form
G(z;z;) = %e_u%ﬁﬁ has been the subject of much attention because of its
many desirable properties such as locality, separability, etc. A fixed value of 3
and a fixed sampling lattice for z; = kA can be used to study the approximation

properties given by

f= Xk:ckG(m;k).
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One can use a multi-resolution scheme in which different levels of § are used.
These functions however use a single parameter 5 to control all dimensions of z
and are analogous to radial wavelets. In contrast, our focus is on tensor product
wavelets. Therefore the idea of using weighted norm is relevant here. The
weighting matrix is simply a diagonal matrix with the elements corresponding
to different dimensions, i.e., the weighting matrix is diag(f1, - - -, 8,). When such
schemes are used, the result is essentially similar to our wavelet methodology.
The only difference is that such structure is artificially imposed unlike the natural
structure provided by wavelet theory, and hence strategies used in the choice of

parameters may not have similar mathematical validity.

4.3 Projection Pursuit Regression(PPR)

Projection Pursuit [12] is an statistical technique that interprets high-dimensional
data through well-chosen low-dimensional projections. In PPR, this technique is
used in a successive refinement approach for non-parametric regression. Consider

the single output case.

with

Here the f,, are single-valued ridge functions of a single variable. The param-
eters ol as well as the functions f,, are chosen to simultaneously minimize the
expected error. A forward stepwise procedure is used to select the model order

M. Tt is clear such a strategy has many similarities to the wavelet methodology
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when one considers the analogy between the m above and the dilation m. In-
deed it is this observation that led to the matching pursuit (MP) algorithm [18]
and later the orthogonal matching pursuit (OMP) [24], which orthogonalizes the
‘basis’ functions at each stage, just as the Orthogonal Least Squares (OLS) [3]

orthogonalizes the Least Squares (LS) procedure.

When one considers off-line fitting of a model based on the complete set of
observations and assumed levels of frequency content (and hence the dilations),
one can construct a set of translation-dilation indices (the dictionary) from the
data so that these data points lie in the ‘receptive field’ of the elements of the
dictionary. Then it becomes possible to apply the OMP, and it is indeed the
optimal strategy, but it will require more computations than the MP. But a
central concern to us is that such a construction of dictionary requires so much
a priori information, and is not practicable in many problems. Furthermore we
place emphasis on on-line learning, and therefore faster methods. Our heuristic
strategy is an essential tool that can be used directly to fit the model under
this situation. In off-line, if optimality is a major concern, the dictionary au-
tomatically selected in this procedure can be further optimized by using OMP
(normally simple strategies such as removing the dictionary elements with in-

significant weights, also called ‘wavelet shrinkage’ can be used).
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Chapter 5

Adaptive Control of Nonlinear

Systems

We consider direct adaptive control of a SISO plant.

5.1 Problem Formulation

Here we limit our analysis to the class of non-linear systems that has a well
established analytical framework in nonlinear control theory, namely, systems

that have a canonical structure of the form:

27 () = f(@1(t), 81(8), -+, 27O (B) + gult).

In general, g = g(xl, d“l, e xgn—l))'

Assumptions:

We assume that f(z) and g(x) are sufficiently smooth, that g=!(z) exists (or
lg(z)| > by > 0) and is smooth in the region of our interest; the assumption
on g~ !(z) implies that g(x) is of the same sign everywhere in the region, and

without loss of generality we can take it as positive. It is also assumed that |f(z)|
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and |g(z)| are upper bounded in the region of interest by known functions M;(z)
and M,(z). Measurability of the state vector z, and Persistency of Excitation
are assumed (this latter point will be discussed later). It is emphasized that
unless otherwise stated, no other information about the functions is assumed.

More general classes of systems can only be solved under certain more re-
strictive assumptions or on an ad hoc basis.

It is well known that many practical control problems such as robotic ma-
nipulator control can be reduced to the above canonical form (see, e.g., [31]);
neural adaptive control schemes for plant models of this form or minor variants
thereof have been studied by Chen and Khalil [3] using Backpropagation (Hy-
perbolic tangent activation functions) neural networks, and by others [30, 28]
using Gaussian Radial Basis Functions.

Let z = (21,21, -+, 21N, 24 = (xld,x'ld, . -,x&Z‘”)T be the state and
desired vectors respectively. If f(z) and g(z) are completely known, we can
consider

u(t) = g7 (254(t) + upa(t) — f(2)), (5.1)
where u,q(t) = —kTe(t), with e(t) = z — zg.

The problem is that f(z) and g(z) are unknown (except for the assumptions
made earlier).

Hence we have to make suitable approximations to the unknown functions
through interactions with the plant. It is in this context that neural networks
find their usefulness in control. Wavelet-based approximation networks are yet
another way of providing the required approximation capability. Let f and g be

the approximation provided by such a network. The u(t) in 5.1 is redefined as,

u(t) = §(2) 7 (#74(0) + upa(t) — (). (5.2)

43



Upon substituting the control law in 5.2, the error equation becomes,

é = Ae+b(—f + f(2)) + b(g(z) — 4(z))u,

where
0 1 0 0
0 0 1 0
A=
0 0 0 1
—k1 —ky —kj ~k,
and
0
0
b=
1

This shows that if f(z) and §(z) continuously track the unknown functions
f(z), and g(z) respectively, while maintaining boundedness of the error e (and
hence boundedness of the state vector), the control problem is solved by taking

the gain of the PD controller k = (k1,- -, k,) to make a Hurwitz matrix.

In practice we can only attempt to guarantee an approximation in the form

1f(2) = f@)] < eas

and
19(z) — 9(z)| < €y,

where €,f, €5y are the uniform upper bounds on the error in approximating
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f(z) and g(z) by
and

g(.’lt) = dg + Z dAmn"pmn

m,n

respectively. Here 1,,, are the wavelet frames, and we include oy and o4 so that
they can capture the mean values of f and g, if non-zero. Such terms are not
necessary in approximations based on RBEFN or sigmoidal feed-forward networks.

Moreover, in practice an error results from mis-tuning of the parameters
&g, Og,y Comn,s d.... Let the actual values of the parameters be Oy Olgy Cy A TE-
spectively, and let the functions they constitute be }';, 5 Then in order to consider

this error we define the following:

€cmn — —Cmn + ém,n

Cdpnn — _dmn + sz,n
€oy = —O + @f
€a, = —Qg + Qy

We have to consider the resulting effect on the linearized equation and show
that the presence of these mis-match error terms does not lead to instability

during adaptation and learning.

5.2 Stability

We have
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+bu(t (eag Zedmn Ytomn (t) >+dist(t)b, (56.3)

where dist(t) = f(2) — &5 — X Cmntmn + (g(w) — Qg — Y Jmnwmn) U
First we consider the case where g(x) is a known constant; without loss of

generality we can take g(z) = 1.

Case: g(x)=1|Then 5.2 becomes

w = a3y (t) + upalt) — f(2). (5.4)

For the moment, assuming that the network has sufficient units (this point will
be elaborated later in this chapter) to approximate f with the uniform error

bound e, for all practical values of the state vector, we have that
dist(®)] < ear.

There exist different adaptive control approaches and corresponding approaches
to ensure stability. We follow Lypunov design methods, whereby the adaptation
law derived is consistent with Lyapunov stability.

Since A is strictly Hurwitz, by the Kalman-Yakubovich-Popov lemma, there

exist symmetric and positive definite matrices P and @) such that
PA+ATP=-Q

Therefore we can consider the Lyapunov function

1
V(e €cmn»€a;) = 3 e’ Pe + — 2% <Z e; +eaf)

where k; is a suitable positive gain value in adaptation.

. 1 > 1
Ve, €cpn»€a;) = _EeTQe + T Pb (f — f) + % (Z €cmmComn + eaféaf> (5.5)
m,n
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The first term is non-positive. Define s 2 el Pb, the augmented error. The
second term can be made zero by considering a suitable adaptation law for c,,,
and ay. Looking at 5.5, we want to cancel out the second and third terms. Let

us consider the adaptive laws,

écmn = _kfsd)mn
and
e'af = —kfs

By definition of the parameter error terms, we have equivalently,

Crmn = kf swmn )
and

df = kaS.

From 5.5 we arrive at

. 1
V(e €emny€a;) = —§eTQe + sey,

where ey is the instantaneous error inherent in approximating f by f, ie.,
f- f , and is upper bounded by €,;. The presence of this term necessitates
some modifications to the control law and adaptive laws. Let us consider a
modification to the control law by adding a new term to u in 5.4 in the form
ua = —sgn(s)A; where Ay is a positive value chosen such that Ay > €,5. From

5.4, the new control input is given by

w = a3y (t) + upa(t) — f(2) + ua.
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Then

V(e) = 3¢ Qe + s(es — sgn(s)Ay).

We see that the second term is forced to be non-positive by means of the fact
lef| < €ay < Ay. Hence, initial boundedness of the state vector and the param-
eters implies that they remain bounded for all time. By a simple application of
Barbalat’s lemma (see A.4), asymptotic convergence of the tracking error vector
is established.

Since we allow for the possibility of large errors in approximation, it is de-
sirable to have a reasonably large Ay. We use a dead-zone d, i.e., we adapt ¢,

and oy only if el Pe > d? and ¢y, & 7 are 0 otherwise.

Xq
n
Xy
l»| Differentiator |
+
+ X
[ The PD Conlrol Plant —
PaN
f
|| Wavelet Based
Adaptive Network
L, Adaptive Law
1

Figure 5.1: The Control Architecture

Case: g(x) is unknown

The .., are normalized to unit maximum amplitude rather than to unit

norm.
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Therefore,
|f] < Jeg| + Z |cmal,
m,n
and

19 < lagl + > dumnl-
m,n

Thus f and ¢ are upper bounded; also § is ensured to be invertible by enforcing
a lower bound to the network output during adaptation.

Hence the control law is,

~

u(t) = §(2) 7 (2 Fa(t) + upa(t) — f(2)) (5.6)

To ensure that the adaptation laws are consistent with Lyapunov stability,

consider the Lypunov function

1 1 1

where k¢ and k, are suitable positive adaptation gains.

1 % ~
Ve, €emns Cdnn) = —EeTQe + e Pb (f - f+u (g — g))

1 . .
+ E (Z ecmnecmn + eafeaf>

m,n

1 ) )
+ — <Z €d,. €d,, + eageag> (5.7)

ky m,n
This suggests that we can attempt the following adaptation laws (with s as

as the augmented error defined earlier):

émn = kfs'(pmna
df = kfs,

Qmn = kguswmn)
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and
Qg = kgus.
The presence of u in the last two laws should be noted.

Upon substituting these laws in 5.7 we get
. 15
Vie) = —5¢ Qe + ses + suey,

where e; and e, are the disturbances caused by the inherent error in approxi-
mating f by f, ie,ep=f— f and g by §, i.e., g — g respectively. The presence
of these terms again lead to modifications similar to the case of g(z) = 1.

Consider the additional control term

Ay
by ()

From 5.6, the new input u is given by

ua = —sgn(s) — sgn(s)u

by(z)’

U = Ug + UA,

where

A

u = §(2) 7 (254(t) + upa(t) — f(2)).

Then the u appearing in the adaptive laws d,,, and o, will be changed to wuy,

i.e.,
dpn = kguoswmm
and

Gy = kglUos.

Then

V(e = 5@ 5 (e — sonlsdo(@) 52 ) +su (60 — sana@)52).

bQ g
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By making |es| < €r < Ay and |eg| < €49 < A, we see that V(e) is ensured
to be non-positive. This ensures boundedness of the state vector and the pa-
rameters. Again, Barbalat’s lemma can be used to show (see appendix A.4) that

asymptotic tracking is established.

5.3 Effects Due to Dynamic Model Selection

If we are to attempt on-line learning of the structure in addition to on-line
adaptation of the weights, it is imperative that we take into account the effects
of incomplete set of indices (m,n) leading to violation of the upper bounds on
approximation given by €5 and €,4. This problem can be solved by taking Af
and A, initially large and then gradually reducing them as a function of the error
vector e. This has the merit of ensuring that energy is not wasted unnecessarily.
Such as an adjustment is made possible by the fact that although the error vector
in itself does not provide any information on the dilation-translation indices to
be learnt, this vector can be used in combination with the state vector to give
useful information on the proximity to existing translations, and dilations.

A crucial limitation of any fixed or adaptive control schemes without a ‘learn-
ing’ component is that unmodelled dynamics cannot be accounted for. For in-
stance, in the case of robotic manipulator control, the friction terms are difficult
to model accurately, whereas the inertia terms are well modelled. Thus both
adaptive and fixed control strategies that are based on an assumed plant model
(with either known or unknown functions) are difficult to control. This has
led some researchers to propose learning control schemes when the action to be
performed is repetitive. In [6], Craig proposed a linear filter based learning in

combination with a fixed controller on the assumption that the fixed controller
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can provide sufficient control so that the resulting error without the learning
component is small. Such schemes have limited capability and cannot be used
in more general plants. Neural networks can be used in place of the linear fil-
ter. Such an scheme can in principle combine adaptation and learning. In using
non-local networks, all weights get adjusted at each novel situation (in the worst
case at each iteration) and learning is essentially forgotten. What is required is
a scheme that captures the underlying function and adapts to novel situations
as well; i.e., a scheme that effectively adapts to novel situations without erasing
the learnt portion. To some extent, local learning has the capability of achieving
this since at every iteration only those weights corresponding to a local region
of the input space get adjusted. However, after a small period of operation,
effective learning may be lost since adaptation could have occurred virtually in
the whole range of operation and erased any learning. This leads us to consider
schemes that combine adaptation and learning in the sense described above. Our
proposed scheme is indicated for further work in figure 5.2. Some aspetcs of this

can be seen in the work of Farrel, et al. [10].
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Figure 5.2: Proposed Control Architecture
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Chapter 6

Simulation Results and Conclusions

In this chapter we present some simulation results. These simulations should
not be interpreted as final; rather we present these as an indication of the merits
of the procedures we had explained in earlier chapters, and will be improved in

future work.

6.1 Simulation for learning algorithms

6.1.1 One-dimensional problems
The following function [34] was used.

—2.186x — 12.864 -10<zr < -2
f(z) =1 4.246z ~2<2<0
107095205 6in [(0.03z + 0.7)] 0<z <10
These results in figures 6.2, 6.3 clearly show the success of our methodology in
the one dimensional case. The performance with 22 units in this case shows how

our learning algorithm automatically adds nodes where more nodes are necessary

(high-frequency variations), and its significance lies in the fact that we use an
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on-line sequential method (i.e., data are presented only once sequentially, and
no non-linear optimization procedures used). As is expected in any sequential
method, we needed roughly eight to ten times more data than off-line methods.
This should not be a problem since each incoming data point can be discarded
after presentation to the network. Figure 6.4 shows the network obtained for
a reduced absolute error. The required generalization performance was very
adequate in this case. This resulted in 39 nodes and a MSE of 0.005.

In another simulation, the Hermite Function f(z) = 1.1(1—z+2z?) exp{—@-;}

is used as in [17].

6.2 Simulations for Adaptive Control

For simulating the plant models considered in chapter 5, we consider the follow-

ing two-dimensional plant function f(z) as in [30]

TX Tx

f(a) = 4 (sin(47rx1)) (sin(m:'l)>2,

and g(z) = 1.

The plant output is taken as y = ;.

The fixed network structure was attempted. A total of 35 x 35 nodes were
required for f and g. The simulations were run using C.

The following values are selected: k; = 1, k; = 20. Then we obtain

0 1
A:

Thus
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satisfies the conditions inherent in Kalman-Yakubovich-Popov lemma. Hence

Pb= ,

and s = eT Pb = e; + 2¢;.

Figures 6.8, 6.9, 6.10 show the tracking performance.

6.3 Conclusions

The use of multi-dimensional wavelet theory in network construction was estab-
lished, and the method of using tensor-product wavelets was theoretically and
experimentally studied. A methodology for building the network sequentially
on-line was developed and shown to give good results in one-dimension. In high
dimensional problems, for the same degree of success, we have to work with an
inordinate amount of data, but we emphasize that this should not cause concern
since the methodology is on-line.

Our results demonstrate the feasibility of using wavelets as network functions
in adaptive control situations. While having certain similarities with [30]in the
overall methodology used, our scheme differs from their methods in a number
of ways. We do not use the sliding scheme and we implement the network for
g rather than ¢g~!. Using wavelet network over the Gaussian network does re-
duce the number of nodes, but not sufficiently enough to make local learning
practicable for high dimensional problems. Feedforward neural networks used
by other researchers (see for e.g., [3]) result in local stability, with the condi-
tion that initial errors be small. Our method has no such restrictions (only

boundedness is required), but this generally holds for all networks that have
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a linear-in-the parameter structure. The non-local approximation property of

feed-forward networks enables fewer network units to be used.

6.4 Future Directions

Developing sequentially growing more compact networks needs to be studied
further from a statistical framework. Research in the direction of obtaining
sample complexity estimates and generalization bounds for such compact net-
works is indicated. Recent work by Niyogi and Girosi [22] contains good results
for RBFNs, etc, and the references contained therein are good sources on this
problem. The simple idea of applying a threshold to the wavelet coefficients
is given more theoretical analysis by Donoho and Johnstone [9] for orthogonal
wavelets in the context of estimation theory and it should prove worthwhile to
investigate the underlying connections between general (non-orthogonal) wavelet
networks and non-parametric estimation further. Also, it will be useful to ad-

vance non-uniform sampling techniques to irregular lattice-based wavelet theory.

For control, further experimentation is needed on the practicality of imple-
menting the adaptive/learning approach to complex systems. In a recent pa-
per Narendra, et al. [21] have suggested broadening the simulations to multi-
variable systems, and report that attempting simultaneous identification and
control leads to unstable results. Moreover, theoretical results on such problems
as “persistency of excitation” in the adaptive/learning case, and implementing
control schemes for more general plant models (for example, using recurrent net-
works) are also desirable. Considering that a plethora of existing methods (var-

ious neural schemes, CMAC, RBFN,WN;, fuzzy systems, other hybrid learning
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schemes) are scattered in the literature without any clear indication of compara-
tive merits, comparative theoretical and experimental studies to unambiguously
determine under what general conditions one method outperforms another are

also necessary.
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Appendix A

A.1 Proof of theorem 1

As our proof closely follows Daubechies’ scheme for 1-D (see [7] and the sec-
tion 3.3.2. of [8]), we expand on these results to show the validity of the condi-
tions given to many dimensions.
First, we need the following generalization of the Poisson formula:
- () e 5
kezn j=1k,€2
where 4 is the imaginary unity and C' is any real non zero constant. It can
be verified by simple computations.
By applying this generalized Poisson formula and the Parseval’s theorem,

straight forward computations give
2m\" - -
Slww AP = (5) T [ wib@w)P 17wk +a,
Lk 1

where

A= (2%)”2 > /dwz])\(alw)zz (alw - 2%]6) f(w) f(w - %k) ,

1 k#0

and k # 0 means at least one component of k is not zero.
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By applying the Cauchy-Schwarz inequality, we get

27\" o 2 \12, .o
< () B G-
k0
where ((:) is as defined in (2.5). This inequality together with the three

conditions of the theorem gives

el {m(w,a) -2 HEDE (—%”k)]} P < 321G 1P

< (&) {M(¢,a> + 3 [0 () o (-5%) } 1717,

The only thing left is to verify that condition (2.4) ensures the convergence
of the multi-indexed series

HCOHEDIN

k0
and implies that the sum tends to zero when b — 0, so that the coefficients of

|| £]]? in the above inequalities are strictly positive for small enough b.

By (2.4) we have,
_n!l;-e!
B(n) < Ce (1+n0™n)

This leads to

SbGe ) = a(2)

b 2 12
— 2 o . 2
((2%) + |k1| + + |kn| ) ] .

(C+ 1kl + - + k)" = (C + [Br2) (C+ [kaf?) -+ (C + [nl?)

Considering the inequality

where C' is any positive constant, we see that the series in k£ converges. Moreover,
as b — 0, this sum tends to zero. The proof of the theorem is thus established.

O
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A.2 Proof of Theorem 2

As in the proof of theorem 1, we use the Poisson formula in n dimensions, and
the Parseval’s Theorem in relation to Fourier Transforms. The steps involved
are similar to the proof of theorem 1 as shown below.

We arrive at
> wias HF = (2 det TS [ dwl(D_ge) PLF(w) P + A
Jk J

where

A= @raaT )Y Y [dwh(D_w)d(D_jw - 22T-k)
3 |k|#0

(W) f(w - 2nD_;T k)

The third condition of the theorem implies the decay of 3 as

_n(i+e
Bm) < (1+7Tp)~ 2" . C..

Hence

1 n(1+e)
S [perTR)s(-20T )]} < C. (detT> 5
1kI0 2m k0

((Cazyem)] ™

The multi-indexed series converges as in theorem 1. Moreover, it is easily

seen that when b;,2 =1,...,n — 0, the sum — 0; and the limit on b is given by

bc=inf{b|m(1/;, < Y [BrT'k)B(—27T" 119)]%}
|k[7£0

Again, the bounds and inequalities are considered element-wise.

This completes the proof of the theorem. O
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A.3 The relations required in section 3.4.1

Let j denote the index of one dimension, i.e., j € {1,-:-, N}. Consider the

translations z;; for i € {1,---,n—1} and z;, at the same dilation level m; = m.
We have
a2m z]—zﬂ)z
¢z’j = (1 — " (.’IIj — 117]',‘)2) e
Then
00 2m 2
a zj—2j4
<tij, Ynj > = / (1 - " (z; - a:j,-)2) e” 2
-0
2m 2
a zj—x;
(1 —a®™ (z; — xjn)2) e 2 dz;.

By writing out this expression, and using the fact that
2 3 -m
193511° = 7v/ma
we arrive at the following result.

a?m g2

Y 1
< d)ij)w'nj >S=—¢e Y (10 _ a2md? + 1—2—a4md;%)

where

dj = Tj; — Zjn-
Therefore, zero-crossings occur at
(a™d — 6.0)% = 24.0,

i.e., |d| = 1.0493%a"™, 0r3.3014xa~™. Working within the framework of a regular

lattice, we may choose to have

|d| =a™™b.

70
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Figure A.1: cos(e;) in One Dimension

Then b = 1.0493 is a sensible choice, consistent with the conditions on frames.
Figure A.1 shows the effect of the last term in the above expression for
< i, %nj >. The graphical form of < 4;;,%,; > is essentially similar to the
Mexican hat function (mother wavelet) for small values of d (until the first zero-
crossing point) and begins to differ from it for larger values of d.
More generally, when the dilation levels are also different, i.e., w; = a™ and

wy, = a™", a similar derivation results in

w

W,
where w; = 18-

W

wji m

A.4 Barbalat’s Lemma

If £(t) is a uniformly continuous function, such that lim, o f§ f(7)d7 exists and

is finite, then f(t) — 0 as t — oo.
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