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Abstract. This article describes a set function that maps a set of Pareto
optimal points to a scalar. A proof is presented that shows that the max-
imization of this scalar value constitutes the necessary and sufficient con-
dition for the function’s arguments to be maximally diverse Pareto opti-
mal solutions of a discrete, multi-objective, optimization problem. This
scalar quantity, a hypervolume based on a Lebesgue measure, is there-
fore the best metric to assess the quality of multiobjective optimization
algorithms. Moreover, it can be used as the objective function in simu-
lated annealing (SA) to induce convergence in probability to the Pareto
optima. An efficient algorithm for calculating this scalar and analysis of
its complexity is presented.

1 Introduction

T
his article describes a measure theoretic approach for defining a set func-
tion that can be utilized for solving multi-objective optimization problems
(MOPs). Zitzler et al. introduced the foundation for this set function in

the following passage:

In the two dimensional case each Pareto optimal solution x covers an
area, a rectangle, defined by the points (0, 0) and (f1(x), f2(x)). The
union of all rectangles covered by the Pareto optimal solutions consti-
tutes the space totally covered, its size is used as measure. This concept
may be canonically extended to multiple dimensions [1].

This article embellishes this notion of a set-cover measure by 1) extending it
to an arbitrary number of dimensions, 2) rigorously proving that the maximiza-
tion of the associated set function’s scalar output is the necessary and sufficient
condition for its arguments to be Pareto optimal solutions to a multi-objective
� The author was supported in part by the Center for Satellite and Hybrid Com-

munications Networks in the Institute for Systems Research at the University of
Maryland, College Park, and through collaborative participation in the Collabora-
tive Technology Alliance for Communications & Networks sponsored by the U.S.
Army Research Laboratory under Cooperative Agreement DAAD19-01-2-0011 and
the National Aeronautics and Space Administration under award No. NCC8-235.
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optimization problem, and finally, 3) using insights from this proof to develop
an efficient algorithm for computing the value of this set function. Analysis of
the algorithm’s complexity is also provided.

As the reader will no doubt discover, the intuition for this scalar is quite
simple, yet its first appearance was surprisingly quite recent (much to the frus-
tration of the author) [1–3]. Although in the two dimensional case (two objective
functions) proving the validity of this measure seems almost trivial, for an arbi-
trary number of objective functions the proof seems less obvious. Presenting a
formal proof therefore serves four purposes:

1. it establishes, with mathematical rigor, that the maximum value of the set
function is a necessary and sufficient condition for the Pareto optimality of
the function’s arguments, hence, is the best 1 measure for evaluating heuristics
that seek to find Pareto optima;

2. it therefore provides a sound mathematical basis for comparisons to other
similar measures or approximations;

3. the proof points the way to a simple approach for calculating the measure;
4. it provides a mechanism for generalizing any optimization metaheuristic to

handle multiple objectives.

With regard to Point 4, this scalar can be used, e.g., as the objective function
in simulated annealing (SA). Because it is well-known that SA converges in
probability to the global optima ([6]), using this set function as the objective
function in SA induces SA to converge in probability to Pareto optima! 2

This article is organized as follows: Section 2 provides background on ap-
proaches for solving multi-objective optimization problems and recent results in
the literature. This includes a philosophical discussion of the issues surrounding
the relative merits of using genetic algorithms (GAs) versus SA. Although some
of these issues will be further explored in future work, this discussion provides
motivation for what is to follow. Formal definitions of Pareto optimality and
other mathematical elements are described in Section 3. Section 4 describes the
hypervolume in MOPs, its mathematical characteristics and presents the main
results. Section 5 presents an efficient algorithm for computing this scalar and an
analysis of its complexity. Finally, Section 6 discusses issues for future research
and provides concluding remarks.

2 Background

2.1 Considerations of GAs vs. SA

Quite a few multi-objective algorithms have been described in recent years often
motivated by design optimization problems. Most of these approaches have been
1 Regarding Points 1 and 2, practicalities may suggest other measures with more utility

depending upon the nature of the problem and the algorithm used to solve it (see
e.g., [4, 5]).

2 This is the only mathematically convergent approach to Pareto optima this author
is aware of.
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based on GAs (see e.g., [7, 8]) although some have been based on SA [9]. While
the level of research into multi-objective GAs seems to dominate similar research
using an SA approach, SA may provide some untapped potential and have several
advantages over GAs for solving MOPs.

One clear advantage of SA is its mathematical convergence properties de-
scribed earlier. As will become clear later on, using the set function as the ob-
jective function in SA forces convergence to points in objective function space
that are distinct.3 This means that SA will converge to solutions with as good
a ‘spread’ as possible. This diversity of solutions has been cited in a number
of articles as an indicator of good performance of multi-objective optimization
algorithms [2, 4, 8].

Notwithstanding the mathematical convergence of SA, GAs offer advantages
in problems where some structure exists in the underlying domain. Indeed, the
very elements of the GAs, in particular the crossover operator, lend themselves
toward propagating those features in a chromosome that tend to be associated
with high fitness values [10]. These particular advantages of GAs may however
be diminished when compared to an SA-based approach in the context of MOPs.

Quite often in MOPs features associated with the underlying structure are
masked and confounded by the interplay of several competing objective func-
tions. Pareto optima may correspond to solutions that are not local optima of
any of the objective functions—they may lie on the sides of hills rather than
at their tops or bottoms. In other words, the pre-image of Pareto optima may
be scattered throughout the domain space in an apparently haphazard or ran-
dom manner rendering any structure within it to be of little or no consequence.
As such, the thermodynamic approach inherent in SA may be more suitable for
solving MOPs than GAs.

Before an elegant SA approach for solving MOPs is a realistic possibility,
however, an efficient method for calculating this set function value is needed.
To date, this has not been done even in the context of GAs although some
GA approaches have indirectly utilized this notion of a scalar. Wu et al. [4]
quantify a hyperarea difference metric closely related to the hypervolume based
on the Lebesgue measure of the set of dominated points. Fonseca, et al. [5]
describe the concept of the “attainment surface” which attempts to quantify
how different chromosomes contribute to a performance metric linked to this
scalar. Other methods involve archiving or updating solutions that are non-
dominated [11], hence indirectly maximize this scalar. All of these methods, in
various ways, attempt to produce solutions that ultimately maximize the value
of this scalar, but avoid dealing with or computing it directly ostensibly for
various reasons: either it is not computationally feasible, it is too difficult given
some formulations, it can be well approximated, or other indirect methods are
simpler (in some sense).

To illustrate why, perhaps, this measure has not been used directly consider
the application of the inclusion-exclusion formula described in [12] (see also

3 This depends on how many decision variables relative to Pareto optima are used in
SA.
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[4]). For sets F1, F2, . . . , Fn (using William’s notation here) with µ the Lebesgue
measure:

µ
(⋃

i≤n Fi

)
=

∑
i≤n µ(Fi) −

∑∑
i<j≤n µ(Fi ∩ Fj) +∑∑ ∑

i<j<k≤n µ(Fi ∩ Fj ∩ Fk) (1)

− · · · + (−1)n−1µ(F1 ∩ F2 ∩ . . . ∩ Fn)
successive partial sums alternating between over- and under-estimates. [12, p.21].

This rather ugly and unwieldy expression (in terms of computation) is due
to the number of combinations of intersection sets the measures of which must
be added and subtracted from the sum of the unions. Indeed, Wu et al. [13, p.
47] show a closed form solution for their hyperarea difference measure, some-
thing directly related to the hypervolume described here, that accounts for just
three points that was quite “cumbersome” [4, see e.g., Eq.(16) on p. 21]. Ac-
counting for more points with more objective functions further complicates this
approach. See also [2–4] for related works on quality metrics. Figure 2 illustrates
the potential difficulties in computing this hypervolume that can arise from the
topological complications in higher dimensions. It also provides hints for the ef-
ficient computation of this scalar inspired by the proof in Section 4 and the area
of computational geometry.

2.2 Computational Geometry

Computation of the hypervolume has a similar flavor to problems in compu-
tational geometry, a relatively new area of computer science (see e.g., [14]). It
turns out that Pareto optimal points constitute a maximal set of points (they
have identical definitions). In the field of computer science, many algorithms per-
taining to maximal sets have been studied. For example, articles have focused
on dynamically maintaining a list of maximal points [15, 16]. Unfortunately, the
field of computational geometry has focussed on problems that can be visualized
or rendered on a computer screen [14, p.2].

Notwithstanding the research on maximal sets, there does not seem to be any
literature from the computer science community concerning the hypervolume of
space covered by maximal sets even in the basic texts cited earlier. This could
be due to that fact that the problem seems too easy or uninteresting, or there
is no motivation, or possibly that researchers assume others have already dealt
with these problems and issues. Despite looking for some time, no similar results
in the computer science literature similar to the ones presented here have been
found. This seems to be the state-of-affairs in the optimization community as
well except for those references cited herein that refer to Zitzler, et al. [1].

3 Mathematical Preliminaries and Definitions

Before describing the set function in detail, a mathematical framework is neces-
sary. The following describes the basic elements of this framework and the notion
of Pareto optimality.
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Let X ⊂ Rd be a finite set of s feasible points in Rd for some MOP with
objective functions fi, i = {1, . . . , n} where for each i

fi : Rd −→ R1.

Also, let XP ⊆ X be the set of Pareto optima (defined below) in set X with p ≤ s
the number of Pareto optima. Thus for MOPs with n objectives, each vector
x ∈ X produces n (real) objective function values f(x) = {f1(x), . . . , fn(x)}
corresponding to a single point px in objective function space. The image of
set X is therefore a finite set of points px ∈ Rn and denoted by S with s′ ≤ s
elements. Thus, the vector valued mapping f(X ) = S is onto and not necessarily
one-to-one.

Definition 1. 4 A point px = (f1(x), . . . , fn(x)) is Pareto optimal if for all
feasible points p = (f1, . . . , fn) ∈ S (this means the corresponding points x are
feasible), there exists an i such that fi(x) < fi

5 or for all i, fi(x) ≤ fi (this latter
case again refers to a single point that dominates all other feasible points).

Definition 2. A point px ∈ S corresponding to solution x is non-dominated
with respect to set S if and only if for all other points py ∈ S there exists
an i such that fi(x) < fi(y) (assume that if S has a single element it is non-
dominated with respect to set S). A set S is a non-dominated set if all points
p ∈ S are non-dominated with respect to set S.

4 The Hypervolume

The goal of this section is to define the set function that maps a subset (or the
entire set) of Pareto optima to a scalar. Let m be the number of arguments x ∈ X
of a set function F . These m points in X map to m points p ∈ S in objective
function space which must then map to a single scalar, the hypervolume µ.
Equation (2) makes this mapping clear:

x1 �→ {f1(x1), f2(x1), . . . , fn(x1)} = p1

...
...

...
...

xl �→ {f1(xl), f2(xl), . . . , fn(xl)} = pl

...
...

...
...

xm �→ {f1(xm), f2(xm), . . . , fn(xm)} = pm




�→ µ. (2)

4 This definition is often written in the negative. That is, a solution x is in the set P of
Pareto optimal solutions if there is no solution y such that fi(x) ≥ fi(y) and there
exists an i where fi(x) > fi(y). Equivalently, x �∈ P if ∃y ∈ Ω, where ∀i, fi(x) ≥
fi(y)

∧ ∃i, fi(x) > fi(y). Thus, the negation of this statement is used above to define
the Pareto optima in positive terms.

5 Without loss of generality and to make the definition less confusing, minimizing
objective functions are assumed here.
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Consequently, some function F : Rn×m −→ R1 must be defined. This is made
possible by generalizing the concept of optimality using a measure theoretic
approach and extending the associated measures of performance to the multi-
dimensional case. Zitzler [1] in effect6 uses the interval length M −f(x) between
some upper bound on the objective function values, M , and the objective func-
tion value as a measure of performance for a given objective function.7 This
interval captures the important feature of a performance measure, the ability to
rank solutions according to their desirability. For given M , the larger the interval
length, the smaller the objective function value, hence, the better the solution.

Generalizing Zitzler’s et al. [1] notion of interval as a set measure and estab-
lish the mappings in (2) requires the following formal definitions. For n objective
functions, a solution x defines the following dominance set and measure.

Definition 3. Lebesgue Measure of the Deleted Dominated Set: Let p =
(f1, f2, . . . , fn) represent a point in objective function space where, without loss of
generality, i = 1, . . . , j are indices of minimization functions and i = j+1, . . . , n
are the indices of maximization functions. Let fi(x) be a particular value of
fi produced by solution x where Mi and mi are the upper and lower bounds
for minimization and maximization objective functions, respectively. Then the
deleted dominated set Dx = {p : ∀ i, fi ∈ ([mi, fi(x)] ∪ [fi(x), Mi])

∧
p 
=

px}8 and constitutes a set of points p strictly inferior to px. The Lebesgue
measure of this set is µ(Dx) =

(∏j
i=1[Mi − fi(x)]

) (∏n
i=j+1[fi(x) − mi]

)
.

The following lemmas will be useful in proving the main result.

Lemma 1. Given a finite set of points S in objective function space, point px ∈
S is dominated if and only if there exists a py ∈ S such that px ∈ Dy.

Proof. This follows directly from application of Definition 3.

Corollary to Lemma 1: Point px ∈ S is non-dominated with respect to S if
and only if for all py ∈ S, px 
∈ Dy.

Proof. See Appendix A.1.

With several points x1 . . .xm, the union of the corresponding deleted domi-
nated sets constitutes the set of dominated points defined by a finite number of
6 The quote in Section 1 was obviously referring to a maximization problem. Here we

extend this notion by defining upper bounds on minimizing objective functions.
7 Stated this way is subtly different than stating that this measure is the size of the

set cover of dominated solutions (which it of course is—see [3]). It is this subtle
difference that indicates we can use this measure as the objective function in an
optimization algorithm provided an efficient algorithm exists to calculate its value.

8 For convenient notation, we assume that if mi < fi(x), i.e., where mi is a lower
bound for a maximization function fi, then the interval [fi(x), mi] = ∅ and similarly
for the case where Mi is an upper bound for a minimizing function fi. This notation
effectively deals with both minimization and maximization objectives.
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Pareto optima. The measure of this set therefore is a measure of performance
for MOPs. The following definition makes this clear.9

Definition 4. Let Sm = {p1, . . . ,pm} ⊆ S, a set of m feasible points in objec-
tive function space. Then the dominance set DSm is the union of the dominance
sets of each element of set Sm. That is, DSm =

⋃m
i=1 Dpi and the measure of

this set is µ(DSm) = µ (
⋃m

i=1 Dpi).

Lemma 2. Dominance Calculus: From the previous definitions the following
statements are true for any point sets A and B,

DA

⋃
DB ≡ DA∪B

If A ∩ B 
= ∅, then DA

⋂
DB ≡ DA∩B.

Proof. See A.2.

The following definitions and lemmas show important relationships among
points in a set S and bounds on objective function values and will be used to
prove the main result in Theorem 1. For notational simplicity and without loss
of generality, we shall assume all objective functions are to be minimized. The
following definitions are needed:

Definition 5.
Fi = {mi, fi(x1), fi(x2), . . . , fi(xm), Mi}, the set of the ith objective function val-
ues among elements in set S and their lower and upper bounds.

ui(px), the least upper bound of fi(x) in set Fi.
li(px), the greatest lower bound of fi(x) in set Fi.
D′

x = {(f1, f2, . . . , fm) : ∀i, fi(x) < fi < ui(px)}, the set of points in a mini-
mization problem exclusive to set Dx. See Lemma 3 below.

For example, given p1 = (1, 3, 2) p2 = (4, 1, 6) p3 = (4, 5, 1) with mi = 0 and
Mi = 7 for all i, then F2 = {0, 3, 1, 5, 7}, u2(p1) = 5, u2(p2) = 3 and

D′(p2) = {(f1, f2, f3) : 4 < f1 < 7, 1 < f2 < 3, 6 < f3 < 7}. (3)

Figure 1 illustrates set D′
px

for the two-dimensional case and the relationships
of the definitions above. These will help to clarify elements of the proof. Notice
that the shaded area indicated by hash marks associated with px shows a set of
points exclusive to Dpx that add to the measure of set Sm.

The following lemma is a key element in proving the main result and provides
the basic idea behind the algorithm described in Section 5.

9 Note that px ≡ (f1(x), f2(x), . . . , fm(x)) and will often be denoted using the simpler
notation (f1, f2, . . . , fm) and p where it is sufficiently clear that we mean (f1(x) . . .)
and px. Also, depending on the context, the dominance set associated with some
point px or pi will be denoted as Dpx ≡ Dx and Dpi ≡ Di, respectively.
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px

p´

ps

M2

M1

u1(px)

u2(px)

D′px

Fig. 1. Relationships of Points, D′
x and Upper bounds

Lemma 3. For every non-dominated point px ∈ S there exists a set of points
D′

x ⊂ Dx such that for all p′ ∈ D′
x, p′ is non-dominated with respect to set

S \ px and such that for all py ∈ S, D′
x

⋂
Dy = ∅.

Proof. See A.3.

Corollary to Lemma 3: For all sets D′
x ⊂ DS , µ(D′

x) > 0.

Proof. See A.3.

Lemma 4. Given points px,py ∈ S, px dominates py if and only if Dy ⊂ Dx.

Proof. See Appendix A.4.

Corollary to Lemma 4: If px dominates py then µ (Dx ∪ Dy) = µ (Dx) >
µ (Dy).

Proof. See Appendix A.4.

Theorem 1 shows that the measure of set Sm achieves its maximum value if
and only if points p ∈ Sm are Pareto optimal.

Theorem 1. Given set Sm of m points in objective function space in an MOP
with p Pareto optimal solutions, let Mi be the given bounds for fi (for the sake of
clarity and without loss of generality, we assume each objective function is to be
minimized and the Mi are therefore upper bounds on fi). Let F (x1,x2, . . . ,xm) ≡
µ(DSm) be a set function mapping a subset of points Sm ⊆ S to the Lebesgue
measure of the dominance set. Then the following are true:

Case 1 (m < p): If F is at its maximum value then all m points in Sm are
Pareto optimal and for all pk,pl ∈ Sm, k 
= l ⇒ pk 
= pl.

Case 2 (m ≥ p): F is at its maximum value if and only if there is a
subset S′ ⊆ Sm of size p such that all p ∈ S′ are Pareto optimal and for all
pk,pl ∈ S′, k 
= l ⇒ pk 
= pl.

Proof. See B.1.
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5 Calculating the Hypervolume

As noted earlier, calculating the hypervolume based on the inclusion-exclusion
formula can be quite messy. The basic idea behind the approach describe here
stems directly from Lemma 3, its corollaries, and Theorem 1: the algorithm suc-
cessively lops off hybercubes containing points in sets D′

px
and adds its volume

to a partial sum. This ‘lopping off’ procedure continues until there is nothing
left with positive measure.

The algorithm works by storing the original set of points S in a list L. The
lopped off hypercube is ‘removed’ from L by the computation of new points
created by its ‘removal’ using the SpawnData procedure. The ‘spawned’ points
that are nondominated with respect to the remaining points in L are added to
L. The size of L therefore grows and shrinks as this process continues inevitably
halting when the last vector’s volume is added to the partial sum.

This procedure avoids the necessity of dealing with intersection sets and
works for an arbitrary number of objective functions and points. In the following
pseudocode, two data structures, List and SpawnData, hold the original and
spawned vectors respectively, and Size equals the number of vectors in List.

The LebMeasure Algorithm

Initialize: LebMeasure = 0.0;
newSize = Size;

while(newSize > 1) do: {
lopOffVol := 1.0;
get first vector p1 in List
for(i = 0; i < n; i ++) do {

bi : = getBoundValue(fi(x1)) = {ui(p1), li(p1)}
spawnVector(p1, i, bi); //Add spawned vectors to SpawnData
lopOffVol ∗= |fi(x1) − bi|;

}
LebMeasure += lopOffVol;
delete p1 from List
newSize = ndFilter(List, SpawnData);

//Check if and List vectors dominate SpawnData vectors
clear SpawnData

} end of while loop.
lastVol = 1.0;
for(i = 0; i < numMops; i ++){

lastVol ×= |fi(x1) − {mi, Mi}|;
}
return(LebMeasure);

getBoundValue(fi(x1)): This routine compares fi(x1) to the corresponding
elements in vectors 2 through Size and returns either ui(p1) or li(p1) depending
on whether fi is to be minimized or maximized, respectively and assigns this
value to bi (note the notation in the pseudocode). Its time complexity is therefore
(L − 1)n where L is the number of original vectors in List. Thus, in the first
while loop, the time complexity is (m − 1)n.
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spawnVector(p1, i, bi): This routine creates the following n vectors (is exe-
cuted n times) based on the removal of p1 from List (based on maximizing
objectives):10

p11 = {l1(p1), f2, . . . , fn} = {b1, f2, . . . , fn}
p12 = {f1, l2(p1), . . . , fn} = {f1, b2, . . . , fn}

...
...

...
...

p1n = {f1, f2, . . . , ln(p1)} = {f1, f2, . . . , bn}
(4)

The notation p1j refers to the jth spawned vector from p1 in List. These n vectors
comprise the SpawnData data structure. Note that all vectors in SpawnData are
non-dominated with respect to SpawnData.
ndFilter: This routine compares the vectors in List to those in SpawnData and
deletes any vectors in SpawnData that are either dominated by a vector in List
or has an mi or Mi as one of its elements. The SpawnData is then inserted into
List and replaces p1.

The following example illustrates this algorithm’s operation on List which
produces the following SpawnData data structure after the first while loop is
completed:11

List =




2, 2, 2
1, 3, 1
1, 1, 3
3, 1, 1


 SpawnData =


1, 2, 2

2, 1, 2
2, 2, 1


 .

The routine initializes Size = 4. The first for loop selects the vector {2, 2, 2},
computes bounds for each vector element (1 in this case), creates SpawnData,
and calculates the incremental hypervolume based on the dimensions of the
lopped off hypercube, 1, 1, 1. These are multiplied together to create the partial
sum of lopOffVol = 1 which is added to LebMeasure. Vector {2, 2, 2} is then
deleted from List.

The routine ndFilter deletes any vectors in SpawnData dominated by the
remaining vectors in List or that have elements equal to mi or Mi (in that case,
the edge of a hypercube would be of zero length). The resulting SpawnData is
then added to List and newSize = 6. List and its SpawnData are now

List =




1, 2, 2
2, 1, 2
2, 2, 1
1, 3, 1
1, 1, 3
3, 1, 1




SpawnData =


0, 2, 2

1, 1, 2
1, 2, 1


 .

Now vector {1, 2, 2} will be deleted from List. Although List is larger, eventually
vectors in SpawnData will all contain mi and/or be dominated by vectors in List.

10 To simplify the expression, we will use fi for objective function values fi(x1).
11 Note in this example that all objective functions are to be maximized.
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For example, all of the SpawnData vectors above will be deleted since the first
vector has an element at the lower bound (0), and the second and third vectors
are dominated by the remaining vectors in List. List thus shrinks from 6 vectors
to 5 and eventually to 1 breaking the while loop and ending the computation
with the last vector’s hypervolume being added to LebMeasure.

The following figures depict the operation of this algorithm. Initially, List

(2,2,2)

f1

f2

f3

(3,1,1)

(1,3,1)

(1,1,3)

(3,1,1) (1,3,1)

(1,1,3)

f1

f2

f3

(2,1,2)

(2,2,1)

(1,2,2)

a. Initial List. b. List After First Iteration.

Fig. 2. Evolution of the Hypervolume.

corresponds to Figure 2a. After the first while loop, List contains 6 vectors cor-
responding to Figure 2b where a hypercube with dimensions 1× 1 × 1 has been
“lopped off”. Its volume of 1 is added to the partial sum of LebMeasure. Con-
tinuing with this procedure until it ends yields LebMeasure = 11. The reader
can verify the result by starting the procedure with any of the four points (i.e.,
the order of vectors in List makes no difference to the value of LebMeasure).

5.1 Complexity of Computing LebMeasure

Analyzing the long-run behavior of LebMeasure first requires an assessment of
the size of a problem instance. Assuming all vectors in List are non-dominated,
the size of the problem instance involves m×n values. Including the bounds for
each objective, the (m+1)n numbers are sufficient to compute the hypervolume,
hence constitutes the size of the problem instance.

The time complexity of the algorithm can be determined by first observing,
as in the example, that the size of List may grow and shrink at various stages
of the algorithm. Thus, the key to analyzing the complexity of LebMeasure is in
determining the manner and extent to which spawned vectors are added to and
deleted from List. Understanding the spawning procedure and how it works is
therefore critical towards understanding the complexity of LebMeasure. Again,
perusal of the pseudocode and study of Figures 2a,b should help.

Before proceeding further, an important distinction is made among the vec-
tors in List—those that are original members of List, and those that are spawned
from these original members of List. Those vectors having only one subscript,
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e.g., p1 are the original members of List while those with more than one sub-
script, e.g., p11 are spawned descendants from the original members.

One important property of the spawning procedure is that the total number
of spawned vectors in List can never exceed n, the number of objective functions.
This property can help in analyzing the worst-case scenario and is shown in the
following arguments. To gain insight into the developing patterns, the first few
iterations of the while loop are closely examined.

Without loss of generality, assume each objective is to be maximized. In the
first iteration of the while loop, and for the worst-case analysis, assume that
all the spawned vectors of p1 in SpawnData are non-dominated with respect
to the vectors in List. In this case, all of these vectors are added to List and
p1 is removed. These spawned vectors are indicated in (4). The length of List
therefore increases from m to at most m + n − 1 and evolves thusly:

p1,p2, . . . , pm

↓
p11, . . . , p1n, p2, . . . , pm

requiring the following computational effort:

Table 1. Complexity of first while loop.

Subroutine Complexity

BoundVal (m − 1)n
Spawn n
ndFiler (m − 1)n

Total 2(m − 1)n + n

Now the spawned vector p11 (see (4)) will itself spawn the following n vectors:

p111 = { l1(p11), f2, . . . , fn }
p112 = { l1(p1), l2(p1), . . . , fn }

...
...

p11n = { l1(p1), f2, . . . , ln(p1) }
. (5)

Note that the vector p111, contains l1(p11) the only new greatest lower bound
which, by definition, is less than l1(p1). The other vectors in (5) are the same as
those in (4) except that the f1 in (4) has been replaced by the value l1(p1). This
means that the vectors in (4) dominate those in (5)—i.e., for all i, p1i dominates
p11i. But because p11 has been removed from List, no point currently in List
necessarily dominates p111. Consequently, the only possible point in the p11i

generation (i.e., in (5)) that may be non-dominated is p111 which for purposes
of a worst-case analysis is added to List replacing p11. The size of List therefore
remains at m + n − 1. The List data structure evolves thusly:

p11,p12, . . . ,p1n,p2, . . . , pm

↓
p111,p12, . . . , p1n, p2, . . . , pm
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requiring the following computational effort:

Table 2. Complexity of while loop 2 to (m − 1).

Subroutine Complexity

BoundVal (m − 1)
Spawn n
ndFiler (m − 1)n

Total (m − 1) + (m − 1)n + n

Now, p111 is at the top of List and may spawn another set of vectors, but
again, the same property as described above holds and may yield a maximum of
only one non-dominated p1111 and so on. Thus, for all these iterations, the size
of List remains at m + n − 1.

Eventually, some descendant of p11, spawns vectors of the form p1···1i which
all become dominated by vectors in List or contain elements at the lower bound
of mi at which point no vectors in SpawnData get added to List for the next
iteration and the last of all the descendants of p11 along with p11 are removed
from List.

The question arises as to how many successive generations of p11 are possible
in the worst-case. Obviously, it cannot be greater than |List| − 1. Consequently,
an upper bound on the number of generations that the first spawned vector in
List may spawn is m− 1. Thus, the complexity of while loop 3 to (m− 1) is the
same as given in Table 2.

At this point in the algorithm, the next while loop starts with only m+n−2
vectors p12, . . . , p1n, p2, . . . , pm. Now the spawned vector p12 is at the top
of List and spawns its descendants:

p121 = { l1(p1), l2(p1), . . . , fn }
p122 = { f1, l2(p12), . . . , fn }

...
p12n = { f1, l2(p1), . . . , ln(p1) }

(6)

and p12 is itself removed leaving m + n − 3 vectors in List to which are added
the non-dominated vectors in SpawnData, some subset of (6). Again, the same
pattern is present. That is, for all k, p1k dominates vectors p12k. But now there
are only k − 2 vectors from the first spawned set, p13 . . .p1k left in List to
dominate the p12i generation. Consequently, it is possible that two vectors, p121

and p122, may be non-dominated with respect to vectors in List. The size of List
therefore increases from m + n − 2 back to at most m + n − 3 + 2 = m + n− 1.
List becomes:

p121,p122,p13, . . . , p1n︸ ︷︷ ︸
n vectors

, p2, . . . , pm︸ ︷︷ ︸
m−1 vectors

and its length is again m + n − 1. The following general observation is made:
Each time one of the first spawned vectors (e.g., vectors with 2 subscripts

such as p1i) is removed from List, the successive generations of the remaining



14

vectors of the form p1i, add vectors to List in sufficient numbers so that the
length of List remains the same.

The decrease by 1 observed earlier happens at various points, but for purposes
of a worst-case analysis can be ignored (it also simplifies the analysis). Thus, each
of the first n spawned vectors, have the following number of basic computations
where the length of List is m:

[2(m − 1)n + n︸ ︷︷ ︸
first iteration

+ (m − 1)((m − 1) + (m − 1)n + n)︸ ︷︷ ︸
iterations 2 to m−1

]n

which is of order m2n2. After these calculations, the process begins with the
original vector p2 at the top of List with the size decremented. Accounting for
this decrease in the length of List we have

T (m, n) ≈
m−1∑
i=0

(m − i)2n2 = n2
m−1∑
i=0

(m − i)2

= n2

(
m(m + 1)(2m + 1)

6

)

from the Sum of Squares Formula [17, p.199]. Consequently, the time complexity
of LebMeasure is T (m, n) ∈ O(m3n2).

6 Future Research and Conclusion

This article described a set function F (x1,x2, . . . ,xm) = µ(DSm), a hypervolume
on a point set Sm, that maps the arguments to a scalar and achieves its maximum
value only when these arguments are distinct Pareto optima. Mapping Pareto
optima to a scalar unifies the concepts of single and multi-objective optimization.
A polynomial algorithm for calculating this hypervolume was also described.

Because this scalar provides necessary and sufficient conditions for the argu-
ments to be Pareto optima, it is also the best measure for evaluating different
multi-objective evolutionary algorithms. The many different GAs for example
can all be evaluated according to the magnitude of this scalar quantity. By us-
ing a scalar quantity to evaluate performance, the average rate of convergence
can also be assessed, hence, the performance of evolutionary algorithms quanti-
fied using appropriate statistics to estimate the average hypervolume over many
independent trials.

Finally, this result shows how any multi-objective optimization problem can
be put into standard math programming form with a single scalar objective
function. As such, many global optimization metaheuristics can be recast to
solve multi-objective problems. Simulated annealing, for example, and its paral-
lel variants can be fashioned to converge in probability to Pareto optima. Future
research will therefore describe the relative merits of using parallel versions of
SA [18], with the hypervolume as the objective function, and various GA imple-
mentations.
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Disclaimer

The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either ex-
pressed or implied, of the Army Research Laboratory, the National Aeronautics
and Space Administration, or the U.S. Government.
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A Proofs of Lemmas

This appendix contains restatements of the lemmas used in the text followed by
their proofs.

A.1 Proof of Corollary to Lemma 1

Proof. From Definition 2, a point py corresponding to solution y is dominated
by solution x if and only if for all i, fi(x) ≤ fi(y) and there is an i such that
fi(x) < fi(y). The solution y therefore satisfies all the criteria for inclusion in
set Dx. Consequently, the statement from Lemma 1 that px ∈ S is dominated
if and only if there exists a py ∈ S such that px ∈ Dy is true and taking the
inverse of this statement yields the required result.

A.2 Proof of Lemma 2

Proof. From Definition 4, DA =
⋃

pi∈A Dpi ≡ {p : (∃pi)(pi ∈ A ∧ p ∈ Dpi)}
and similarly for DB. Therefore,

DA ∪ DB =


 ⋃

pi∈A

Dpi


 ∪


 ⋃

pi∈B

Dpi




=
⋃

pi∈A∨B

Dpi ≡
⋃

pi∈A∪B

Dpi = DA∪B

For non-empty A ∩ B, DA ∩ DB ≡ {p : pi ∈ A ∧ pi ∈ B ⇒ p ∈ Dpi} hence by
the distributive property we have

DA ∩ DB =


 ⋃

pi∈A

Dpi


 ∩


 ⋃

pi∈B

Dpi




=
⋃

pi∈A∧B

Dpi ≡
⋃

pi∈A∩B

Dpi

= DA∩B

The requirement that A ∩ B 
= ∅ stems from the fact that for all sets DA and
DB, DA ∩DB 
= ∅. Consequently, for the notational virtues, we require that the
point sets A and B have elements in common.
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A.3 Proof of Lemma 3

Proof. This proof relies on the fact non-dominated points px have the property
that there is an objective function fi(x) such that it is strictly less than the
same objective function evaluated for some other point in a set S. Notice that
the definition of D′

x in Definition 5 above relies on the least upper bound among
all the other points in set S. This inequality is therefore maintained for all points
in D′

x. This may help the reader see that each point p ∈ D′
x is non-dominated

with respect to the other points in set S. The formal proof of the statement is
most easily appreciated by using contradiction.

Assume set D′
x is defined as above by the non-dominated point px ∈ S

and that one of its elements p′ = (f ′
1, . . . , f

′
m) ∈ D′

x is dominated by a point
ps = (f1(xs), . . . , fm(xs)) ∈ S. From Definition 2 of non-dominance, for all i,

fi(xs) ≤ f ′
i and there exists an i such that

fi(xs) < f ′
i .

(7)

Now recall that px is a non-dominated point with respect to set S. From Defini-
tion 2 for all points py ∈ S there is an i such that fi(x) < fi(y). Let i∗ be such
an i for point ps. Therefore, fi∗(x) < fi∗(xs). Thus, fi∗(xs) is an upper bound
of fi∗(x). From the definition of set D′

x, the least upper bound of vector element
f ′

i in vectors in set D′
x is ui(px). Therefore, fi∗(x) ≤ f ′

i∗ < ui(px) ≤ fi∗(xs)
contradicting (7) which applies to all i. Consequently, there is no point in set
S \ px that dominates point p′ ∈ D′

x. Thus, for all p ∈ S \ px, p′ 
∈ Dp and
therefore for all p ∈ S \ px, D′

x ∩ Dp = ∅.

Proof of the Corollary to Lemma 3

Proof. From the definition of D′
x and the fact that we are concerned with discrete

optimization problems, each interval in the multi-interval that defines D′
x has a

length ui(px) − fi(x) > 0, hence, µ(D′
x) > 0.

A.4 Proof of Lemma 4

Lemma 4: Given points px,py ∈ S, px dominates py if and only if Dy ⊂ Dx.

Proof. Recall Definition 2 which describes conditions whereby a point px is non-
dominated if and only if for all py ∈ S there exists an i such that fi(x) < fi(y).
Its negation therefore implies that a point py is dominated if and only if there
exists some feasible point px such that for all i, fi(x) ≤ fi(y) and there exists
an i such that fi(x) < fi(y). From Definition 3, the elements of set Dx are such
that for all i the following inequalities hold for each fi : fi(x) ≤ fi ≤ Mi. But
elements of set Dy are such that fi(y) ≤ fi ≤ Mi. Since for all i, fi(x) ≤ fi(y),
each element of Dy also satisfies the criteria for inclusion in set Dx. Thus, p ∈
Dy ⇒ p ∈ Dx, hence Dy ⊂ Dx.

To prove that Dy ⊂ Dx ⇒ px dominates py, note that when all p ∈ Dy ⇒
p ∈ Dx from Definition 3 all such points are dominated by px. It remains to show



18

that py is also dominated by px (note from Definition 3 points px 
∈ Dx and
py 
∈ Dy). From the definitions of Dy and Dx each multi-interval associated with
Dy is [fi(y), Mi] and for Dx is [fi(x), Mi]. Since Dy ⊂ Dx it must be that each
multi-interval associated with y is a subset of the corresponding multi-interval
for x, hence for all i, fi(x) ≤ fi(y). Since this is a discrete problem domain and
that px 
= py there must be some δ > 0 where for some i, fi(x) + δ ≤ fi(y),
hence for some i, fi(x) < fi(y). Therefore, from Definition 2, px dominates py.

Proof of the Corollary to Lemma 4

Proof. It is a basic result of measure theory that for any two measurable sets A
and B, µ(A ∪ B) = µ(A) + µ(B) − µ(A ∩ B) (lattice property). Therefore it
follows that

µ (Dx ∪ Dy) = µ (Dx) + µ (Dy) − µ(Dx ∩ Dy). (8)

But if px dominates py then from Lemma 4, Dy ⊂ Dx and it follows that
Dx∩Dy = Dy. Consequently, µ (Dx ∩ Dy) = µ (Dy) and using this in (8) yields
the equality.

To show that µ (Dx) > µ (Dy) it is sufficient to show that at least one of
the factors in µ(Dx) is greater than the corresponding factor in µ(Dy). Since
px dominates py then for all i, fi(x) ≤ fi(y) and there is at least one i where
fi(x) < fi(y). Consequently, for all i, Mi − fi(x) ≥ Mi − fi(y) and at least for
one i, Mi − fi(x) > Mi − fi(y). Therefore,

k∏
i=1

(Mi − fi(x)) >
k∏

i=1

(Mi − fi(y)) ,

hence µ (Dx) > µ (Dy).

B Proofs of Theorems

B.1 Proof of Theorem 1

Proof. Note that Case 2 provides a stronger result as both the necessary and
sufficient conditions for Pareto optimality are proved. Therefore, for the sake
of simplicity, clarity, and brevity, we formally prove only Case 2 as Case 1 be-
comes sufficiently obvious from the details of proving Case 2. First we prove the
implication (somewhat more informally stated) that

Case 2 (m ≥ p): If F is at its maximum value then there exists a subset of
size p of its arguments that are Pareto optimal and different from one another.
Using contraposition, we prove the following equivalent statement:

If for all possible subsets S′ ⊆ S of size p where either not all points p ∈ S′ are
Pareto optimal or there exists pk,pl ∈ S′ where k 
= l and pk = pl, then F is
not maximized.
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Assume all subsets of S of size p have less than p distinct Pareto optimal
points. Then all subsets can have at most p − 1 distinct Pareto optimal points.
Since there are p Pareto optimal points in the problem instance, then there exists
at least one Pareto optimal point px that is not currently in set S. Further, there
are at least m− p + 1 ≥ 0 elements in S that are not Pareto optimal. Also, bear
in mind that some or even all of the points in set S may be non-dominated.
Thus, there are a number of different ways in which subsets do not have p
Pareto optimal points that must all be carefully considered. Finally, recall from
Definition 1 that the p Pareto optimal points dominate all other feasible points.
Consider the following cases:

Case 2a: First, suppose that S has p Pareto optimal points, but that at least
one of them has a multiplicity greater than one (i.e., at most p−1 distinct Pareto
optima). In this case, removing one such Pareto optimal point p′ does not change
the measure of set S. Consequently, DS\p′ = DS and therefore, adding point px

to S \ p′ yields the same number of arguments for function F and

DS\p′∪px
= DS∪px.

But from Lemma 2

DS∪px = DS ∪ Dpx = DS ∪ (Dpx \ DS)

which are mutually exclusive, hence

µ(DS∪px) = µ(DS) + µ(Dpx \ DS)

From the corollary of Lemma 3, µ(Dpx \DS) > 0 and therefore µ(DS)+µ(Dpx \
DS) > µ(DS) and F with its original arguments is not maximized.

Case 2b: Now consider the case where there are less than p Pareto optimal
points. In this case, there are m − p + 1 > 0 non-Pareto optimal points in S.
Choose one such non-Pareto optimal point py ∈ S. Since there exists p Pareto
optimal points that dominate all other feasible points, py is either dominated
by a Pareto optimal point already in S or it is dominated by the Pareto optimal
point px. In the former instance, we have the same situation as in Case 2a, i.e.,
removing py from S does not change its measure and adding px increases the
measure and again, F with its original arguments is not maximized.

In the latter case where py is dominated by px, define set Ŝ = S \ py

and set S∗ = Ŝ ∪ px (i.e., by substituting py with px in S). Thus, sets S
and S∗ have the same number of elements m, hence F has the same number of
arguments. It is therefore sufficient to prove that F is not maximized by showing
that µ(DS∗) > µ(DS) or, equivalently, that

µ(DŜ ∪ Dx) > µ(DŜ ∪ Dy) (9)

Partition set Dx \ DŜ into two mutually exclusive subsets:

(Dx \ DŜ) = ((Dx \ DŜ) \ Dy) ∪ ((Dx \ DŜ) ∩ Dy). (10)
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Since px dominates py, from Lemma 4, Dy ⊂ Dx, hence the set Dx exclusive
of points in DŜ but with points in Dy, is equivalent to the set of points in Dy

exclusive of points in DŜ , i.e.,

(Dx \ DŜ) ∩ Dy) = (Dy \ DŜ) (11)

Substituting (11) into (10) then

(Dx \ DŜ) = ((Dx \ DŜ) \ Dy) ∪ (Dy \ DŜ). (12)

Because this is a union of two mutually exclusive sets then,

µ(Dx \ DŜ) = µ((Dx \ DŜ) \ Dy) + µ(Dy \ DŜ). (13)

From the Corollary to Lemma 3, the measure of the set Dx exclusive of all
other points in DS′ is strictly greater than zero. Consequently, in (13) the term
µ((Dx \ DŜ) \ Dy) > 0 and (13) reduces to the inequality

µ(Dx \ DŜ) > µ(Dy \ DŜ). (14)

Note however that Dx and Dy can be partitioned into two mutually exclusive
sets. Thus,

Dx = (Dx \ DŜ) ∪ (Dx ∩ DŜ)
Dy = (Dy \ DŜ) ∪ (Dy ∩ DŜ)

hence their measures are such that

µ(Dx) = µ(Dx \ DŜ) + µ(Dx ∩ DŜ)
µ(Dy) = µ(Dy \ DŜ) + µ(Dy ∩ DŜ).

Consequently,

µ(Dx \ DŜ) = µ(Dx) − µ(Dx ∩ DŜ) (15)
µ(Dy \ DŜ) = µ(Dy) − µ(Dy ∩ DŜ) (16)

Substituting (15) and (16) into (14) we obtain

µ(Dx) − µ(Dx ∩ DŜ) > µ(Dy) − µ(Dy ∩ DŜ) (17)

and adding µ(DŜ) to both sides of (17) yields

µ(DŜ) + µ(Dx) − µ(Dx ∩ DŜ) > µ(DŜ) + µ(Dy) − µ(Dy ∩ DŜ).

From the lattice property of measurable sets we obtain (9), i.e., µ(DŜ ∪ Dx) >
µ(DŜ ∪ Dy). Therefore the function F with its original arguments is not at its
maximum value.

To prove the inverse statement associated with Case 2, i.e., that if all points
p ∈ S are Pareto optimal and k 
= l ⇒ pk 
= pl then F attains its maximum
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value can be proved by contradiction. Assume S has a subset S′ of size p that
are all distinct Pareto optimal points and F is not at its maximum value. In this
case, the measure µ(DS) = µ(DS′). To increase the value of F , the measure of
some subset Dpi ⊂ DS′ must be increased. Suppose we increase it by selecting
a feasible point p∗ which contains hence enlarges set Dpi . That is, Dp∗ ⊃ Dpi .
From Lemma 4 then Dp∗ dominates Dpi leading to the contradiction that pi is
Pareto optimal.


