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Chapter 1

Introduction

Following Felix Klein’s 1872 Erlanger program, geometry is the study of properties

of a spaceX invariant under a groupG of transformations ofX [Gol88]. Classical ge-

ometries include Euclidean geometry (En, E(n)), spherical geometry (Sn, O(n+ 1))

and hyperbolic geometry (Hn, PO(n, 1)) [Rat94]. The transformation groups of

these geometries preserve metrics with constant curvature 0, 1 and −1 respectively,

so in particular the techniques in Riemannian geometry can be applied. Projec-

tive geometry (RPn, PGL(n+ 1)) unifies all three geometries into a more general

category. Though no longer a metrical form of geometry, it greatly benefits from

the classical geometries, and especially it is largely motivated by hyperbolic geome-

try. The affine geometry (An,Aff(n)), as the intermediate layer between Euclidean

geometry and projective geometry, on the contrary, is not easy to study.

affine suspension

Euclidean (En, E(n))

Spherical (Sn+1, O(n+ 2)) Hyperbolic (Hn+1, PO(n+ 1, 1))

Spherical (Sn, O(n+ 1)) Hyperbolic (Hn, PO(n, 1))

Projective (RPn+1, PGL(n+ 2))

Affine (An+1, Aff(n+ 1))

Projective (RPn, PGL(n+ 1))

Affine (An, Aff(n))

Euclidean (En+1, E(n+ 1))

Figure 1.1: Relations between the geometries.

This paper studies certain embedded spheres of closed affine manifolds with
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intent to understand the topological structures of affine manifolds. More specifically,

we are interested in the following basic topological question:

“Can a non-trivial connected sum of closed manifolds admit an affine structure?”

Figure 1.2: A connected sum.

This question is somewhat related to the famous and infamous

Conjecture 1.1 (Chern conjecture) The Euler class of a closed affine manifold

vanishes.

Kostant and Sullivan proved it in the complete case [KS75]. Several special cases

were also worked out by others; however it is notoriously hard in general.

Smillie constructed some interesting examples of flat manifolds with non-

zero Euler characteristic from connected sum [Smi77], which might potentially be

counter-examples to the Chern conjecture.

Instead of attacking the original question, our first attempt is to answer a

simpler one:

“Can the standard sphere bound a compact affine manifold inside other than the

solid ball?”
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Can the sphere bound an affine manifold other than the solid ball?

If YES, replace the solid ball with the new piece

to get an affine structure on a connected sum.

An affine manifold

A small solid ball

?

Figure 1.3: Motivation for the simpler question.

We adopt similar geometric techniques as in [Fri80, Car89, Cho99]. By looking

at some geometric objects together with the recurrence of an incomplete geodesic,

we can give a negative answer to the above question. More specifically we prove

Theorem 1.1 For n ≥ 3, let (M, ∂) be a compact affine n-manifold with boundary

∂ ≃ Sn−1 and dev : M̂ → An be a developing map. If

• dev restricted to some lift ∂̂ of ∂ is an embedding,

• dev maps a neighborhood of ∂̂ to the closure of the bounded part of An\dev(∂̂),

then (M, ∂) is homeomorphic to (Dn, Sn−1).

Then the following corollaries concerning embedded spheres of closed affine

manifolds follow directly.

Corollary 1.1 For n ≥ 3, letM be a closed affine n-manifold and S be an embedded

separating (n-1)-sphere. If a developing map dev restricted to some lift Ŝ of S is an

embedding, then S bounds a n-ball in M .

Corollary 1.2 For n ≥ 3, a developing map restricted to a lift of a non-trivial

separating sphere of a closed affine manifold is not injective.
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Though the theme of this paper is affine structures, we can extend Theorem

1.1 to the projective case.

Theorem 1.2 For n ≥ 3, let (M, ∂) be a compact projective n-manifold with bound-

ary ∂ homeomorphic to Sn−1. If

• dev restricted to some lift ∂̂ of ∂ is an embedding,

• dev(∂̂) is contained in an affine patch An,

• dev maps a neighborhood of ∂̂ to the closure of the bounded part of An\dev(∂̂),

then (M, ∂) is homeomorphic to (Dn, Sn−1).

This paper is organized as follow:

Chapter 2 gives a quick review of the general theory of (X,G)-manifolds. We

introduce the pair of developing map and holonomy, which plays as an important tool

to study (X,G)-manifolds in general. Then we list how examples of (X,G)-manifolds

arise. After that we briefly review the three classical geometries: Euclidean geom-

etry, spherical geometry and hyperbolic geometry, and provide examples of these

geometries in dimensions ≤ 3.

Chapter 3 focuses on affine structures and provides closed orientable exam-

ples in dimension 2 and 3. We summarize the results of the classification of affine

structures on the 2-torus, the classification of complete affine 3-manifolds and the

classification of radiant affine 3-manifolds. We also discuss projective structures and

the construction of affine suspension from projective manifolds in the course. At the
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end we discuss Goldman’s two non-complete and non-radiant examples. Basically,

we provide all the known examples in dimension 3.

Chapter 4 uses the generalized Schoenflies theorem to reduce Theorem 1.1 to

Theorem 4.1. Then we develop the theory of dome bodies to prove Theorem 4.1.

We adopt similar techniques used in [Fri80, Car89, Cho99] to reduce the proof to

the main technical point: the compactness of dome bodies. Lastly, we extend the

proof to the projective case.

5



Chapter 2

(X,G)-manifolds

In this paper we work only in the C∞ category. Without further specification

manifolds and maps are assumed to be smooth.

2.1 Group actions

We recall few definitions from the theory of group actions in this section for the

reader’s convenience.

Definition 2.1 (G acts on X) Let X be a manifold. A Lie group G acts on X

via Φ, if Φ : G×X → X is a smooth map such that

Φ(1, x) = x and Φ(g,Φ(h, x)) = Φ(g.h, x).

for all g, h ∈ G and x ∈ X. In other words, G acts on X via Φ if Φ induces an

homomorphism from G to Diff(X).

Remark. We usually omit Φ if G acts on X in some natural way. We also use

g.x for Φ(g, x) and G.x for the orbit of x ( i.e. G.x = { g.x | g ∈ G } ).

Definition 2.2 (Free action) G acts on X freely, if g.x 6= x for all g ∈ G− {1}

and x ∈ X.
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Definition 2.3 (Transitive action) G acts on X transitively, if there exists some

( and hence for all ) x ∈ X, such that G.x = X.

Definition 2.4 (Proper action) G acts on X properly, if the map

Φ× I : G×X → X ×X (g, x) 7→ (g.x, x)

is proper, i.e. for any compact set K of X ×X, the inverse image (Φ× I)−1(K) is

compact.

Definition 2.5 (Properly discontinuous action) A discrete group Γ acts on X

properly discontinuously, if for any compact set K ⊂ X, the set

{ γ ∈ Γ | γ.K ∩K 6= ∅ }

is finite.

Remark. That G acts properly discontinuously on X is the same as that G

with the discrete topology acts properly on X .

2.2 (X,G)-manifolds

Let X be a connected manifold, and G acts transitively on X . Given any manifold

M of the same dimension as X , we want to give M an (X,G)-structure as follows:

Definition 2.6 ((X,G)-structure) An (X,G)-structure onM is given by an open

cover {Uα} ofM together with the charts {φα : Uα → X} which are homeomorphisms

7



onto their images, and there exists {gαβ ∈ G} such that

gαβ ◦ φβ = φα on Uα ∩ Uβ

gαβ.gβγ = gαγ and gαα = 1.

M is said to be an (X,G)-manifold, if it is given an (X,G)-structure.

Uβ

M X

Uα

φα

φβ

gαβUα ∩ Uβ

Figure 2.1: Charts for an (X,G)-structure.

Remark. The geometry of interest is G-invariant and different charts in an

(X,G)-structure are related by a g action. Then an (X,G)-structure on M pulls

the local geometry of X to M via the charts.

Note that if we pull back the charts by a covering map, we can get an (X,G)-

structure on the covering space. Hence we have

Proposition 2.1 ((X,G)-structure can be lifted) Let M ′ → M be a covering

map. If M is given an (X,G)-structure, then there is a compatible (X,G)-structure

on M ′.

8



2.2.1 Developing map and holonomy

An important and powerful tool is the pair consisting of a developing map and the

corresponding holonomy representation. Before defining them, we need the following

property for the G action.

Definition 2.7 (Strongly effective action) G acts on X strongly effectively, if

whenever g fixes U pointwise for some open set U ⊂ X, then g = 1.

Remark. All the (X,G)-geometries in this paper have this property. It is also

worth noting that Diff(X) acting on X does not have this property.

Given an (X,G)-structure on M , the universal cover M̂ admits an (X,G)-

structure by Proposition 2.1. We then take a base point in M̂ and an (X,G)-chart

containing the base point and mimic the construction of analytic continuation in

complex analysis. The strong effectiveness guarantees that dev is well defined, i.e.

independent of the path chosen to do the continuation.

dev(x̂)

X

φ1

φ2

φ4

φ3

devM̂

x̂

hol(γ)γ

Figure 2.2: Developing map and holonomy.
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Definition 2.8 (Developing map and holonomy) Given an (X,G)-structure on

M , there exists a pair (dev, hol),

dev : M̂ → X, hol : π1(M) → G

dev(γ.x̂) = hol(γ).dev(x̂)

for all γ ∈ π1(M) and x̂ ∈ M̂ . dev is a local homeomorphism and hol is a homo-

morphism. The pair is unique up to the conjugation of an element g ∈ G.

Remark. A developing pair (dev, hol) actually determines the (X,G)-structure.

The usefulness of development is readily seen in the following simple proposi-

tion.

Proposition 2.2 Let M be a manifold with compact universal cover. If X is not

compact, then M admits no (X,G)-structure.

Proof: Suppose M admits an (X,G)-structure. Then dev(M̂) is both open

and compact, and hence equals X . This contradicts to that X is not compact. 2

2.2.2 Examples of (X,G)-manifolds

We list few typical examples of (X,G)-manifolds in the following:

• The fundamental example: M = X .

X itself together with the identity map as a chart is a natural (X,G)-structure.

• The space forms: M = X/Γ.

10



Here Γ ⊂ G is a discrete subgroup that acts freely and properly discontinuously

on X . The set of local inverses of the covering charts X → X/Γ gives a natural

(X,G)-structure.

Remark. The reason we are interested in a discrete subgroup Γ acting freely

and properly discontinuously on X is that the quotient space X/Γ then has a

manifold structure automatically. If Γ further acts cocompactly, the quotient

space is a closed manifold.

In this case, dev : M̂ → X is a covering map. If X is simply connected, then

M̂ is homeomorphic to X and hol : π1(M) → Γ is an isomorphism. We define

this as

Definition 2.9 (Complete structure) An (X,G)-structure on M is called

complete, if dev : M̂ → X is a covering map.

Remark. In the case that X has a G-invariant Riemannian metric, the com-

pleteness defined above of the (X,G)-structure on M is equivalent to the

completeness of M as a metric space induced from the Riemannian metric on

X . Therefore all three classical geometric structures ( Euclidean, projective

and hyperbolic ) on a closed manifold belong to this type by the Hopf-Rinow

theorem.

• M = Û/Γ, where U is a connected proper domain in X and Û is the universal

cover of U .

Similar to the previous case, Γ ⊂ G is a discrete subgroup that acts freely and

11



properly discontinuously on Û . The set of the inverses of the covering charts

Û → Û/Γ gives a natural (X,G)-structure. In this case dev : M̂ → X is a

covering onto U .

This type of example arises in affine and projective geometries. An example

arises by considering a closed hyperbolic surface as a projective surface. They

provide building blocks for projective structures on surfaces.

• dev : M̂ → X is not a covering onto its image.

This type of example also arises in affine and projective geometries. An ex-

ample of this type will be seen in §3.3.2.2.

2.3 Euclidean manifolds

Definition 2.10 (Euclidean structure) (X,G)-structures are called Euclidean,

when

X = E
n =

{
(x0, . . . , xn−1)

T
∣∣ xi ∈ R

}

G = E(n) = R
n
⋊ O(n),

where G acts on X by

g.x = A · x+ b

for g = (b, A) ∈ G and x ∈ X.

12



Remark. E(n) preserves a Riemannian metric on En

ds2 = dx20 + dx21 + . . .+ dx2n−1

with curvature 0. Hence Euclidean manifolds has Euler characteristics 0 by Gauss-

Bonnet-Chern theorem.

What makes Euclidean manifolds easy to classify is that the linear part of

E(n) is the compact group O(n) and discrete subgroups of E(n) have some nice

properties:

Lemma 2.1 (§5.4 Lemma 4 and 5 in [Rat94]) Let Γ be a discrete subgroup of

E(n) and let φ = a+A and ψ = b+B be in Γ with ‖A− I‖ < 1 and ‖B − I‖ < 1.

Then φ and ψ commute.

Lemma 2.2 (Theorem 5.4.6 in [Rat94]) Let Γ be a discrete subgroup of E(n).

Then Γ has a free abelian subgroup H of rank m and finite index.

Applying the above lemma, we see

Theorem 2.1 Every closed Euclidean manifold is finitely covered by a torus.

Furthermore we have

Theorem 2.2 (Bieberbach’s theorem, Theorem 7.5.3 in [Rat94]) There are

only finitely many n-dimensional Euclidean manifolds up to affine equivalence for

each n.

13



Glueing the opposite sides in an appropiate way.

π/2

π/3 2π/3

π

Figure 2.3: The 6 affine equivalence classes of closed orientable Euclidean manifolds.

2.3.1 Closed orientable examples in low dimensions

• Dim = 1

– T 1 = E1/Γ, where Γ is cyclic subgroup generated by a translation.

• Dim = 2

– T 2 = E2/Γ, where Γ is an abelian subgroup of rank 2 generated by two

independent translations.

• Dim = 3

– T 3/Γ, where Γ is a finite subgroup of automorphisms of T 3. Using the

classification of Seifert fiber spaces [Hat80, Sco83], one finds the 6 Torus

or Klein bottle bundles over the circle up to affine equivalence.

14



2.4 Spherical manifolds

Definition 2.11 (Spherical structure) (X,G)-structures are called spherical, when

X = Sn =

{
(x0, x1, . . . , xn)

T

∣∣∣∣∣
n∑

i=0

x2i = 1, xi ∈ R

}

G = O(n+ 1),

where G acts on X by

g.x = A · x

for g = A ∈ G and x ∈ X.

Remark. O(n) preserves a Riemannian metric with sectional curvature 1 on

Sn pulled back from the metric

ds2 = dx20 + dx21 + . . .+ dx2n−1 + dx2n

on the ambient space Rn+1.

What makes spherical manifolds easy to classify is that O(n) is compact and

hence any discrete subgroup of O(n) is finite.

2.4.1 Closed orientable examples in low dimensions

• Dim = 1:

– S1, the fundamental example.

15



– S1 = Ŝ1/Γ, where Γ is a cyclic subgroup generated by a rotation.

• Dim = 2:

– S2, the fundamental example.

• Dim = 3: Using the classification of discrete subgroups of O(3), they are as

follows.

– S3, the fundamental example.

– S3/2I, the Poincaré homology sphere ( also known as Poincaré dodeca-

hedral space ), where 2I is the binary icosahedral group.

– L(p; q) = S3/Γ, the lens spaces, where Γ is isomorphic to Z/p and its

action on S3 is generated by (z1, z2) 7→ (e2πi/p · z1, e
2πiq/p · z2) and

S3 =
{
(z1, z2) ∈ C

2
∣∣ |z1|2 + |z2|

2 = 1
}
.

2.5 Hyperbolic manifolds

Definition 2.12 (Hyperbolic structure) (X,G)-structures are called hyperbolic,

when

X = H
n =

{
(x0, x1, . . . , xn)

T

∣∣∣∣∣
n−1∑

i=0

x2i − x2n = −1, xi ∈ R, xn > 0

}

G = PO(n, 1),

16



where G acts on X by

g.x =





A · x , if (A · x)n > 0

−A · x , if (A · x)n < 0

for g represented by A ∈ O(n, 1) and x ∈ X.

Remark. PO(n, 1) preserves a Riemannian metric with sectional curvature −1

on Hn pulled back from the metric

ds2 = dx20 + dx21 + . . .+ dx2n−1 − dx2n

on the ambient space Rn+1.

There are infinitely many hyperbolic surfaces in dimension 2, which demon-

strates the richness of this geometry. According to Thurston’s geometrization, there

are enormous numbers of examples in dimension 3, yet their classification is not com-

pletely understood. Research on hyperbolic 3-manifolds remains the main stream

area in 3 topology.

2.5.1 Closed orientable examples in low dimensions

• Dim = 1:

– H1/Γ, where Γ is a cyclic subgroup generated by a hyperbolic translation.

• Dim = 2:

– Σg, surfaces of genus g > 0. A typical hyperbolic structure on Σg can be

17



obtained by side pairing of a regular 4g-gon with interior angels equal to

π/2g.

Figure 2.4: A hyperbolic structure on genus 2 surface in the Poincaré disk model.

• Dim = 3:

We list the following examples without further defining and discussing them

here. Interested readers are encouraged to follow [Thu80, Thu97] for details.

– Dehn surgeries on links.

– Most of Haken manifolds.

– Seifert-Weber Space.

18



Chapter 3

Affine mainfolds

3.1 Affine structures

Definition 3.1 (Affine structure) (X,G)-structures are called affine, when

X = A
n =

{
(x0, . . . , xn−1)

T
∣∣ xi ∈ R

}

G = Aff(n) = R
n
⋊GL(n),

where G acts on X by

g.x = A · x+ b

for g = (b, A) ∈ G and x ∈ X.

Remark. Sometimes we use the notation (A|b) to denote an element (b, A)

in Aff(n). Since En = An and E(n) is a subgroup of Aff(n), (En, E(n)) is a sub-

geometry of (An,Aff(n)). Hence all Euclidean manifolds are affine.

As mentioned before in §2.2.2, affine structures need not be complete. There

are 2 major types and also other examples:

• Complete Case - The space forms: M = An/Γ.

Here Γ ⊂ Aff(n) is a discrete subgroup that acts freely and properly discon-

tinuously on X .
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Two famous conjectures about complete affine structures are:

Conjecture 3.1 (Markus conjecture) An affine structure on a closed man-

ifold is complete if and only if the holonomy group preserves a constant volume

form, i.e. it is contained in Rn ⋊ SL(n).

Conjecture 3.2 (Auslander conjecture) The fundamental group of a closed

manifold which admits a complete affine structure is virtually polycyclic.

• Radiant Case: (An, GL(n))-structures.

Definition 3.2 (Radiant structures) An affine structure is called radiant,

if the holonomy group fixes a point in An, i.e. it is conjugate to an (An, GL(n))-

structure.

An important geometric invariant of radiant structures is the radiant vector

field.

Definition 3.3 (Radiant vector field) The vector field
n−1∑
i=0

xi ∂
∂xi on A

n is

invariant under GL(n), and hence it descends to a vector field on any radiant

manifolds.

A basic example of radiant manifold is a Hopf manifold:

M = A
n − {0}/〈x ∼ 2x〉 ≃ Sn−1 × S1.

• Other Cases: There exist other affine structures that are neither complete nor

radiant.
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3.2 Closed orientable affine manifold in dimension 2

Benzécri showed the following result [Ben60]. It also follows from Milnor’s more

algebraic approach on flat bundles [Mil58].

Theorem 3.1 Let M be a closed 2-dimensional affine manifold. Then χ(M) = 0.

Nagano and Yagi classified the affine structures on the real two-torus [NY74]

( See also[BG05, Ben00] ).

The holonomy of an affine structure on T 2 is a representation

π1(M) = Z
2 → Aff(2),

which can be extended to

R
2 → Aff(2)

by the property of nilpotent groups [Rag72]. One can show that any homomorphism

from R2 to Aff(2) with a 2-dimensional image is conjugate in Aff(2) to one of the six

in the following. Then we can recover an affine structure on the torus by choosing

a lattice in R2.

Remark. The figures displayed below are just one of the examples by choosing

a particular lattice L
.
= Z2. There are many interesting pictures of tessellation from

different choices of lattices ( See [BG05, Ben00] ).

Recall that we use the notation (A|b) to represent an affine transformation

with its linear part equal to A and translational part equal to b.
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• φ1 : (s, t) 7→




1 0

0 1

∣∣∣∣∣∣∣∣

s

t


 where (s, t) ∈ R2. A lattice of R2 can act on A2

freely and properly discontinuously via φ1. This structure is complete. It is

the one conjugate to a Euclidean structure.

Figure 3.1: An affine structure from a lattice for φ1.

• φ2 : (s, t) 7→




1 t

0 1

∣∣∣∣∣∣∣∣

s+ t2

2

t


 where (s, t) ∈ R2. A lattice of R2 can act on

A2 freely and properly discontinuously via φ2. This structure is complete.

x = y2

2
+ 2x = y2

2

Figure 3.2: An affine structure from a lattice for φ2.

Remark. In the figure above, we can identify R2 with A2 by letting φ2(s, t)

act on (0, 0)T , which is given by (s, t) 7→ (x, y) = (s+ t2/2, t).
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• φ3 : (s, t) 7→




exp(s) exp(s)t

0 exp(s)

∣∣∣∣∣∣∣∣

0

0


 where (s, t) ∈ R2. A lattice of R2 can

act on the open upper half plane freely and properly discontinuously via φ3.

This structure is radiant.

Figure 3.3: An affine structure from a lattice for φ3.

• φ4 : (s, t) 7→




exp(s) 0

0 exp(t)

∣∣∣∣∣∣∣∣

0

0


 where (s, t) ∈ R

2. A lattice of R2 can

act on the open first quadrant freely and properly discontinuously via φ4. This

structure is radiant.

Figure 3.4: An affine structure from a lattice for φ4.
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• φ5 : (s, t) 7→




exp(s) cos(t) exp(s) sin(t)

− exp(s) sin(t) exp(s) cos(t)

∣∣∣∣∣∣∣∣

0

0


 where (s, t) ∈ R2. A

lattice of R2 can act on the universal cover of An − {0} freely and properly

discontinuously via φ5. This structure is radiant.

Figure 3.5: An affine structure from a lattice for φ5.

• φ6 : (s, t) 7→




1 0

0 exp(t)

∣∣∣∣∣∣∣∣

s

0


 where (s, t) ∈ R2. A lattice of R2 can act

on the open upper half plane freely and properly discontinuously via φ6. This

structure is neither complete nor radiant.

Figure 3.6: An affine structure from a lattice for φ6.
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3.3 Closed orientable affine manifolds in dimension 3

Unlike the case of dimension 2, we do not have a list of all closed orientable affine

3-manifolds. Contrary to the Bieberbach Theorem ( Theorem 2.2 ) of Euclidean

manifolds, Auslander found that there exists a family of countably many distinct

affine 3-manifolds. Nevertheless the affine manifolds with complete structures have

been classified [FG83], so have those with radiant structures [Cho01]. We also have

affine structures on a 3-manifold, which is neither complete nor radiant.

Definition 3.4 (Prime 3-manifolds) A 3-manifold is prime if it cannot be ex-

pressed as a non-trivial connected sum of two 3-manifolds.

We note that all known affine 3-manifolds below are prime. This fact motivates

us to ask the following question, which is the special case in dimension 3 of the basic

topological question from the introduction.

“Are all closed orientable affine 3-manifolds prime?”

Since we have sphere theorem and other techniques ready from basic 3-manifold

topology, this problem might be attackable. We do not have the answer yet, however

let us state it as a conjecture.

Conjecture 3.3 All closed orientable affine 3-manifolds are prime.

Let us take a look at what affine 3-manifolds we have known in the following.
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3.3.1 Complete structures

Fried and Goldman classified complete closed affine manifolds as follow [FG83].

Theorem 3.2 Let M be a closed 3-manifold. Then the following are equivalent:

• M admits a complete affine structure.

• π1(M) is solvable and M is aspherical.

• M is finitely covered by a 2-torus bundle over the circle.

The first step of their proof is to show that the holonomy group is virtually

solvable, i.e. it contains a solvable subgroup of finite index.

First of all, an important observation of a complete structure is that the lin-

ear part of any element in the holonomy group must have 1 as an eigenvalue, for

otherwise it has a fixed point and can not act freely.

Therefore we have

Lemma 3.1 (Lemma 2.3 in [FG83]) The holonomy group of a complete affine

structure is contained in the algebraic subgroup of Aff(n) consisting of those elements

with the linear part containing 1 as an eigenvalue.

Second, we note

Lemma 3.2 (Lemma 2.6 in [FG83]) The only semisimple connected subgroups

of SL(3,R) are

I, SO(3), SO(2, 1)0, SL(2,R)× {1} and SL(3,R).
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Using the above lemmas and the fact that the holonomy group acts cocom-

pactly, one can rule out all the non-trivial subgroups listed in the above lemma as

the Levi factor of the subgroup of the holonomy group, which consists of those ele-

ments in SL(3,R). ( A Levi factor is the semisimple part of the decomposition of a

group into a semidirect product of a semisimple subgroup and the maximal solvable

subgroup. )

Hence we have

Theorem 3.3 (Theorem 2.1 in [FG83]) The holonomy group of a complete affine

structure on a closed 3-manifold is virtually solvable.

Lastly let us define crystallographic hull as follow

Definition 3.5 (Theorem on pg.5 in [FG83]) Let Γ ⊂ Aff(n) be virtually solv-

able and suppose Γ acts properly discontinuously on An. A subgroup H ⊂ Aff(n)

containing Γ is called the crystallographic hull for Γ if H satisfies the following:

• H has finitely many components and each component of H meets Γ;

• H/Γ is compact;

• H and Γ have the same algebraic hull in Aff(n);

• Every isotropy group of H on An is finite.

By further study on the crystallographic hull for the holonomy group, they

show that the holonomy group is actually solvable. Hence the fundamental group of

a closed complete affine manifold is solvable. The classification of crystallographic

hull also gives
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Theorem 3.4 (Theorem on pg.21 in [FG83]) A closed complete affine 3-manifold

is finitely covered by a Solvmanifold with a left invariant affine structure.

On one hand, any complete affine 3-manifold is covered by A3 by definition,

and hence is aspherical. Then it is finitely covered by a 2-torus bundle over the

circle by a theorem of Evans-Moser [EM72].

On the other hand, suppose M is finitely covered by N which is a 2-torus

bundle over the circle. If we identify T 2 with R2/Z2, a homeomorphism of T 2 is

homotopic to one induced from an SL(2,Z) action on R2, and hence N admits

an affine structure. Any deck transformation of the covering N → M can also be

homotopic to one induced from an affine action on R2. Therefore M is homotopy

equivalent to a complete affine manifold. Then one can show that a homotopy-

equivalence is homotopic to a homeomorphism in this case ( See [FG83] for more

details ).

3.3.2 Radiant structures

Barbot and Choi classified radiant closed affine manifolds as follow [Cho01].

Theorem 3.5 A closed 3-manifold admits a radiant affine structure if and only if

it is one of the following:

• Benzécri suspension over Σg with g > 1.

• Generalized affine suspension of Σg with g ≤ 1.

• Finitely covered by a 2-torus bundle over the circle.

28



We postpone our discussion of affine suspension later. The “if” direction is

straightforward, while the “only if” direction follows from the fact that any compact

radiant affine 3-manifold admits a total cross-section to the radiant flow generated

by the radiant vector field, which itself follows from a more interesting geometric

decomposition as follow.

Theorem 3.6 Let M be a compact radiant affine 3-manifold with empty or totally

geodesic boundary. Then M decomposes along the union of finitely many disjoint

totally geodesic tori or Klein bottles, tangent to the radial flow, into a disjoint union

of

• Concave affine 3-manifolds.

• Crescent cone affine 3-manifolds.

• Convex affine 3-manifolds.

We need the following definitions before proceeding to talk about the decom-

position.

Definition 3.6 (m-convex) M is said to be m-convex, if it satisfies the following

property: for any subset S of M̂ , if S is homeomorphic via dev to a m-simplex

without the interior of only one face, then there exists a subset S ′ of M̂ containing

S such that S ′ is actually homeomorphic via dev to the m-simplex.

Remark. 1-convexity is equivalent to the usual convexity. Note also that

m-convexity implies (m+1)-convexity.
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Figure 3.7: The closed upper half space of A3 with a point removed is not 2-convex.

Definition 3.7 (Crescent) A crescent is a closed subset C of M̂ such that dev is

a homeomorphism from C onto dev(C), such that the interior of dev(C) is an open

half space of A3.

Definition 3.8 (Equivalence of crescent) Two crescents C and C ′ are said to

be equivalent, if there exists a chain of crescents C1 = C,C2, . . . , Ck = C ′ such that

Ci ∩ Ci+1 6= ∅ for i = 1, . . . , k − 1.

Definition 3.9 (Concave affine 3-manifolds) M is said to be a concave affine

3-manifold, if M̂ is a union of crescents.

Figure 3.8: Examples of concave affine manifolds as unions of crescents.
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Remark, we show two examples of concave affine manifolds in Figure 3.8. The

shaded region of the left one is a union of two crescents ( the left half space and

the bottom half space ), while the shaded region of the right one is a union of three

crescents ( the left half space, the bottom haft space and the right half space ).

Definition 3.10 (Crescent cone 3-manifolds) M is said to be a crescent cone

3-manifolds, if dev is a homeomorphism from M̂ onto dev(M̂) such that the interior

of dev(M̂) is the intersection of two open half spaces of A3.

A Crescent Cone bounded by two half planes

Figure 3.9: An example of a crescent cone, which is 2-convex but not convex.

The decomposition in Theorem 3.6 is done in the following way:

• If M is not 2-convex, Choi showed that there exist crescents ( See Figure 3.7

). Since the union of the crescents in an equivalence class of crescents is a

concave affine submanifold, we attain the first decomposition of M into:

– Concave affine 3-manifolds.

– 2-convex affine 3-manifolds.

• Then if a 2-convex affine 3-manifold is not convex, Choi showed that there
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exist crescent cones ( See Figure 3.9 ). Hence we can decompose all 2-convex

affine 3-manifolds into:

– Crescent cone affine 3-manifolds.

– Convex affine 3-manifolds.

Now the decomposition has been completed.

3.3.2.1 Projective structures

Affine suspension is a construction of a radiant affine manifold from a projective

manifold of one dimension lower. We first need to discuss projective structures.

Definition 3.11 (Projective structure) (X,G)-structures are called projective,

when

X = RP
n = R

n − {0}/〈x ∼ λx, λ 6= 0〉

G = PGL(n+ 1),

where G acts on X by

g.[x] = [A · x]

for g represented by A ∈ GL(n+ 1) and x ∈ R
n − {0}.

Remark. As mention before, Euclidean, affine, spherical and hyperbolic ge-

ometry are all sub-geometries of projective geometry. Their relations can be seen in

Figure 1.1.
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The study of projective geometry is largely motivated by hyperbolic geometry.

Since the developing image of a hyperbolic surface is inside the light cone, which is a

convex disk when viewing projectively. This motivates us to consider a sub-category

of projective structures, which is called convex projective structures [Gol90].

Definition 3.12 A projective structure on M is called convex, if dev is a homeo-

morphism from M̂ onto a convex domain of RPn.

We also like to mention the definitions of marked structures and deformation

space here.

Definition 3.13 (Marked structures) A marked RP
n-structure on M is given

by a pair (φ,N) such that N is a RP
n-manifold and φ is a diffeomorphism from M

to N .

Definition 3.14 (Deformation space) The deformation space of marked RP
n-

structures on M is the quotient space of all the marked RP
n-structures onM modulo

the equivalence relation defined by the following:

(φ,N) ∼ (φ′, N ′)

if φ′ ◦ φ−1 : N → N ′ is isotopic to a projective map from N to N ′.

The main result in [Gol90] is

Theorem 3.7 The deformation space of marked convex projective structures on a

surface Σg for g > 1 is diffeomorphic to an open cell of dimension 16(g − 1).

33



Combining Choi’s result on the decomposition of a projective manifold along

some totally geodesic boundary, Choi and Goldman classified all the real projective

structures on closed surfaces [CG97].

Theorem 3.8 The deformation space of marked projective structures on a surface

Σg for g > 1 is diffeomorphic to a countable union of open cells of dimension

16(g − 1).

What we need from the theorem is that any projective structure on Σg for g > 1

can be constructed from a convex projective structure by grafting projective annuli.

Then by affine suspension, we can construct some exotic radiant affine structures

on Σg × S1.

3.3.2.2 Example of grafting a projective surface

The following example illustrate this process.

• Let us take a closed hyperbolic surface Σg. Then its developing image is the

disk inside the light cone projectively. See Figure 3.10, the darker shaded

region is the developing image.

• Take any close geodesic γ on Σg, and cut Σg open along γ into Σg\γ. Then γ

can represent a deck transformation of Σg. We use the same notation for the

corresponding element in the fundamental group.

• Then hol(γ) is a hyperbolic element in SO(2, 1) ∼= PO(2, 1), hence it has three

axes v+, v− and v0 corresponding to eigenvectors of eigenvalues λ, λ−1 and 1
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respectively, where λ > 1. See Figure 3.10 and 3.11.

v+

v0
γ

v−

Figure 3.10: Three axes of hol(γ) and a plane.

v− v0

Σ̂g

v+

γ

Figure 3.11: Three axes of hol(γ) seen on a plane.

• One can find a projective structure ( many ) on the annulus A
.
= γ × [0, 1]

with the holonomy group generated exactly by hol(γ).

See Figure 3.12 for two examples of projective structures on the annulus A.

The shaded regions are the developing images: the developing image of the top

one is RP2 minus the point v− and the line through v+ and v0; the developing

image of the bottom one is RP2 minus the three points v−, v+ and v0.
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v0

v+

γ

v−

γ

v+

v0v−

Figure 3.12: Two projective annuli with holonomy generated by hol(γ).

• Now the projective structures on Σg\γ and A are exactly the same along the

ends ( the developing maps restricted to a small neighborhood of their boundary

are the same ), hence we can concatenate the ends ( so called grafting, see

Figure 3.13 ) and get a new projective surface, which is homeomorphic to Σg.

Remark. The projective structure constructed above from grafting has the property

that the developing map is surjective onto RP
2 but it is not a covering map.
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Σ̂g

v+

v0v−

v+

v0v−

conjugations of γ

γ

γ

Figure 3.13: A new projective structure from grafting.

3.3.2.3 Affine suspension

Now given a projective surface Σ, we can choose a developing pair dev and hol.

Note that S2 is the universal cover of RP2, dev actually factors through S2. Let us

still use dev to denote this map

dev : Σ̂ → S2.

We can now pull back the canonical trivial line bundle over S2, which is just R3−{0},

to Σ̂. Hence we have a map from the trivial bundle to R3 − {0}:

d̃ev : Σ̂× R → R
3 − {0}
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(m̂, t) 7→ exp(t)dev(m̂),

and

hol : π1(Σ) → PGL(3) ∼= SL±(3) ⊂ GL(3).

Let us use h̃ol to denote this homomorphism

h̃ol : π1(Σ) → SL±(3),

which makes π1(Σ) act on R3 − {0}.

Therefore there is a natural π1(Σ) action on the pull back bundle Σ̂×R, which

still acts freely and properly discontinuously and makes (d̃ev, h̃ol) a developing pair

for a (R3 − {0}, SL±(3))-structure, a radiant affine structure.

In order to obtain a compact manifold, note that π1(Σ) acts properly discon-

tinuously of Σ̂, hence if we choose λ > 0 large enough and let Z be the cyclic group

generated by this homothety λ · I. Then π1(Σ) × Z acts on Σ̂ × R freely, properly

discontinuously and cocompactly.

Definition 3.15 (Benzécri suspension) The process described above to construct

a radiant affine manifold from a projective manifold of one dimension lower together

with a homothety action on the radial direction is called a Benzécri suspension.

More generally, instead of using a homothety, if we have a projective automor-

phism φ of Σ, i.e. there exists ψ ∈ PGL(3) and a homomorphism

Φ : π1(Σ) → π1(Σ),
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such that

dev(φ.x̂) = ψ.dev(x̂)

φ.γ.x̂ = Φ(γ).φ.x̂

for all x̂ ∈ Σ̂ and γ ∈ π1(Σ). We can lift ψ to GL(3) with the absolute value of the

determinant large enough, and then the semidirect product

π1(Σ)⋊Φ 〈φ〉

acts on Σ̂× R freely, properly discontinuously and cocompactly.

Definition 3.16 (Affine suspension) The process described above to construct a

radiant affine manifold from a projective manifold of one dimension lower together

with a projective automorphism of the underlying projective manifold is called an

affine suspension.

3.3.3 Other affine structures

The developing images of the non-complete examples of affine structures ( non-

complete affine structures on T 2, radiant structures on affine 3-manifolds ) we have

seen so far are cones. Goldman gave two examples to show that this is not the case

in general[Gol81], and in particular they are not radiant either.

Let

0+ =
{
(x, y, z) ∈ R

3
∣∣ y2 − 2x > 0

}
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0− =
{
(x, y, z) ∈ R

3
∣∣ y2 − 2x < 0

}
,

and let G be the group of the form




e2s est 0

0 es 0

0 0 e−s

∣∣∣∣∣∣∣∣∣∣∣∣

t2

2

t

u



,

where s, t, u ∈ R.

Then G acts simply transitively on both 0+ and 0−. Hence if we choose

a discrete cocompact subgroup Γ of G, then 0+/Γ and 0−/Γ are closed affine 3-

manifolds. Obviously neither 0+ nor 0− is a cone, and 0+ is not even convex.
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Chapter 4

Embedded spheres of affine manifolds

From all the examples we have seen so far in §3, they are either covered by S2×R (

affine suspension of S2 ), or covered by an open 3-cell ( complete affine manifolds,

torus/Klein bottle bundle over a circle, affine suspension of a surface Σg for g ≥ 0,

Goldman’s examples ). Therefore all known closed orientable affine 3-manifolds are

prime. We are really interested in the following question:

“ Are all closed orientable affine 3-manifolds prime? ”

As mentioned before in §3.3 we do not have the answer to the question yet.

Instead, what we are going to prove in this Chapter is

Theorem 1.1 For n ≥ 3, let (M, ∂) be a compact affine n-manifold with boundary

∂ ≃ Sn−1 and dev : M̂ → An be a developing map. If

• dev restricted to some lift ∂̂ of ∂ is an embedding,

• dev maps a neighborhood of ∂̂ to the closure of the bounded part of An\dev(∂̂),

then (M, ∂) is homeomorphic to (Dn, Sn−1).

Recall the following theorem from Mazur, Morse and Brown [Maz59, Mor60,

Bro60].

Lemma 4.1 (Generalized Schoenflies theorem) If an imbedding ψ : Sn−1 →

Sn has the property that there is a φ : Sn−1 × [−1, 1] → Sn such that φ is a home-
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omorphism onto its image and φ(Sn−1 × {0}) = ψ(Sn−1), then the closure of each

components of Sn −ψ(Sn−1) is topologically an n-cell, i.e. the pair (ψ(Sn−1), Sn) is

homeomorphic to (Sn−1, Sn).

new boundary after attaching a tubular neighborhood

original boundary dev(∂̂)

Figure 4.1: Deform the boundary to a standard sphere.

Therefore by attaching a collar neighborhood of the boundary, we can reduce

Theorem 1.1 to the following special case, in which the strictly convexity of the

sphere enables us to use our geometric approach on dome bodies defined in the next

section.

Theorem 4.1 For n ≥ 3, let (M, ∂) be a compact affine n-manifold with boundary

∂ ≃ Sn−1 and dev : M̂ → An be a developing map. If

• dev restricted to some lift ∂̂ of ∂ is an embedding onto a standard sphere which

bounds a strictly convex closed solid ball in An,

• dev maps a neighborhood of ∂̂ to the closure of the bounded part of An\dev(∂̂),

then (M, ∂) is homeomorphic to (Dn, Sn−1).
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Remark. In this case, the image under dev of every component of ∂M̂ is

affinely equivalent to a standard sphere.

4.1 Dome body

From now on, we are working on a compact affine n-manifoldM with boundary ∂ ≃

Sn−1 such that dev(∂̂) is affinely equivalent to a standard sphere for any component

∂̂ of ∂M̂ .

We now fix an arbitrary translational invariant metric on An. So whenever we

talk about length and volume, we refer to this metric.

We will also talk about convergence of a sequence of subspaces ( e.g. lines,

hyperplanes ) in the following. All the subspaces in such a sequence, of which we

are going to take the limit, will always meet some common compact region. Then

we just consider the Hausdorff distance between them restricted to the common

compact region.

M̂ A
n

∂̂ dev
dev(∂̂)

the bottom of a dome body

a dome body

the top of a dome body

a hyperplane H

Figure 4.2: A dome body.

Definition 4.1 (Dome body) A subset D of M̂ is called a dome body, if
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• D is the closure of its interior in M̂ ,

• D ∩ ∂̂ 6= ∅ for some component ∂̂ of ∂M̂ ,

• dev restricted to the interior of D is an embedding onto the open solid semi ball,

which is the intersection of an open half space of An bounded by a hyperplane

H and the open ball bounded by dev(∂̂).

Let us define the following terms for our convenience.

Definition 4.2 (Top of a dome body) The subset D ∩ ∂̂ is called the top of the

dome body D.

Definition 4.3 (Bottom of a dome body) When the hyperplaneH in definition

4.1 intersects the open ball bounded by dev(∂̂), the subset D∩dev−1(H) is called the

bottom of the dome body D.

Definition 4.4 (Bottom hyperplane) The hyperplane H in A
n containing the

developing image of the bottom of the dome body D is called the bottom hyperplane

of D, and it is denoted by H(D).

Definition 4.5 (Bottom half space) The closed ( resp. open ) half space bounded

by the bottom hyperplane of D which also contains the interior of dev(D) is called

the closed ( resp. open ) bottom half space of D, and it is denoted by U(D) ( resp.

◦

U (D) ).

Definition 4.6 (Locally strictly convex) A subset S of M̂ is called locally strictly

convex if for any p ∈ S, there exists a neighborhood U of p in S such that dev(U) is

strictly convex in An.
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Remark. Our normalization of the boundary to a standard sphere in Theorem

4.1 is to make sure that a neighborhood of the boundary is locally strictly convex.

The first key observation of dome bodies is the following.

Proposition 4.1 A dome body D of M̂ meets only one component of ∂M̂ , namely

∂̂, which intersects D on the top of D.

Proof: If D meets another component ∂̂′ of ∂M̂ other than ∂̂, we have the

following contradiction:

• ∂̂′ cannot meet the top of D, since ∂̂′ is different from ∂̂;

• ∂̂′ cannot meet the interior of D, since those are interior points of M̂ ;

• ∂̂′ cannot meet the bottom of D, since any neighborhood of an intersection

point would contain a small open half ball which makes ∂̂′ fail to be locally

strictly convex.

Therefore D can only meet one component of ∂M̂ . 2

Remark. Proposition 4.1 also says that all the points in the bottom of a dome

body except those also in the top are interior points of M̂ . Therefore the developing

map restricted to a dome body is a homeomorphism onto a closed solid semi ball

minus some closed subset in the bottom hyperplane.

The second key observation is the following.

Proposition 4.2 Dome bodies are compact.

Remark. Proposition 4.2 says that the developing map restricted to a dome

body is a homeomorphism onto a closed solid semi ball.

45



We postpone the proof to the next section. Assuming this, we have the fol-

lowing lemmas.

Lemma 4.2 Let Dome be the set of dome bodies together with the partial order

defined by inclusion. Then there exists a maximal element in Dome.

Proof: Let C be a chain of dome bodies in Dome. Then all the dome bodies

in C share a common component ∂̂ of ∂M̂ , and hence their developing images are all

contained in the solid ball bounded by dev(∂̂). Therefore the set of their volumes

{ vol(dev(D)) |D ∈ C } is bounded above and let us call the supremum Vsup.

If Vsup can be obtained by some D in C, then D is obviously an upper bound

for C.

If Vsup is not obtainable by any D in C, we can extract a sequence (Di) in C

such that vol(Di) converges to Vsup. By passing to a subsequence, we can assume

that the sequence of open half spaces (
◦

U (Di)) converges to some open half space

U∞ in An. Let D∞ be the closure of the union of {
◦

Di}. Then the interior of D∞ is

homeomorphic to the open solid semi ball which is the intersection of U∞ and the

open solid ball bounded by dev(∂̂). Therefore D∞ is a dome body. Given any D in

C, since vol(D) < Vsup, there exists some Di in the sequence we chose before such

that vol(D) < vol(Di), therefore D is contained in Di and hence is also contained

in D∞. Then we have found an upper bound D∞ for C in this case as well.

Therefore, by Zorn’s lemma there exists a maximal element in Dome. 2

Lemma 4.3 A maximal dome body Dmax is homeomorphic via dev to the closed

solid ball bounded by dev(∂̂), where ∂̂ is the component of ∂M̂ that meets Dmax.
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Proof: Suppose dev(Dmax) is not the whole closed solid ball B bounded by

dev(∂̂). By Proposition 4.2, dev(Dmax) is a closed solid semi ball. Let V be a small

open neighborhood of D. Since dev is a local homeomorphism and that only the top

of Dmax are boundary points of M̂ , dev(V )∩B is an open subset in B that contains

the closed solid semi ball dev(Dmax). Therefore there exists a larger open solid semi

ball containing dev(Dmax) which is contained in dev(V ). Then the closure of the

lift of it in V defines a dome body that properly contains Dmax. This contradicts

to that Dmax is maximal. Therefore a maximal dome body Dmax is homeomorphic

to the solid ball B. 2

Lemma 4.4 M̂ is equal to a maximal dome body.

Proof: Since a maximal dome body Dmax is homeomorphic to the closed

solid ball bounded by dev(∂̂), where ∂̂ is the component of ∂M̂ that meets Dmax,

it is straightforward to see that Dmax is both open and closed in M̂ , and hence a

connected component of M̂ . Therefore Dmax is equal to M̂ . 2

Now we can finish the proof of Theorem 4.1.

Proof: [Proof of Theorem 4.1] By Lemma 4.4 M̂ is equal to a maximal dome

body and hence ∂M̂ has only one component by Propersition 4.1. Therefore M̂ is

only a simple cover of M , i.e. M is homeomorphic to M̂ which is just a maximal

dome body, which itself is homeomorphic to a closed solid ball under the developing

map by Lemma 4.3. 2
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4.2 Dome bodies are compact

Here we are going to prove :

Proposition 4.2 Dome bodies are compact.

Proof: For any x, y ∈ An, we will use the notation [x, y] to denote the straight

line segment in An from x to y and use [x, y) to denote the half open segment from

x to y.

We will prove Proposition 4.2 by contradiction in four steps.

• Step 1, finding an incomplete geodesic.

Suppose we have a dome body D which is not compact. Let C be the intersec-

tion of the top and the bottom of D, which is just a n− 2 sphere. Then there exists

two distinct points a and b in C such that not the whole segment [dev(a), dev(b)]

can be lifted to a segment in M̂ starting at a. For otherwise if any segment with

endpoints in dev(C) can be lifted to M̂ , the closure of dev(D) can be lifted, and

hence dev(D) is closed and D is homeomorphic to a closed solid semi ball, which

contradicts to that D is not compact.

∞

M̂

a dome body D

an incomplete geodesic ray l

a b

∂̂

an incomplete geodesic ray l

dev(C)

A
n

∞

dev(b)
dev(D)

dev(l)

dev(a)

Figure 4.3: An incomplete geodesic ray in the bottom of a noncompact dome body.

Then there exists a maximal half open subsegment [dev(a),∞) in [dev(a), dev(b)]
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such that it can be lifted, and we use l to denote its lift starting at a. Note that ∞

cannot be dev(b), so ∞ lives in the interior of [dev(a), dev(b)]. Then l necessarily

leaves any compact set of M̂ . We call l an incomplete geodesic ray, since dev(l) is

a bounded straight ray in An and l leaves any compact set of M̂ ( See Figure 4.3 ).

• Step 2, finding a sequence of dome bodies.

Since M is compact, the projection l̄ of l to M is a recurrent geodesic, i.e. it

will not stay in any small compact set eventually. Let p̄ be an accumulation point

of l̄ in M . Since the boundary is locally strictly convex, p̄ is necessarily an interior

point of M . For otherwise if p̄ is on ∂M , we can take a small compact semi solid

ball neighborhood of p̄, but then after l̄ enters this compact neighborhood l̄ will stay

in it eventually, which is a contradiction.

K2K1

∂̂

M̂

D

K3, . . .

l
a b

Figure 4.4: The sequence of lifts of K.

Then we can choose a small compact convex neighborhood K̄ of p̄ ( By convex,

we mean the developing image of a lift of K̄ in An is convex ), which is also contained

in the interior ofM , such that l̄ enters and leaves K̄ infinitely many times. Therefore

l meets a sequence of lifts (Ki) of K̄ in the universal cover M̂ ( See Figure 4.4 ).

Note that K̄ does not contain any boundary point of M̂ , so Ki ∩D does not

meet the top of D. The bottom hyperplane H(D) separates the interior of dev(Ki)
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into two open semi balls. By the convexity of dev(Ki) and the interior of dev(D),

the inverse image of one of these open semi balls in Ki is completely contained in

D while the inverse image of the other one in Ki is disjoint from D.

Since K̄ was chosen to be a small compact convex neighborhood and {Ki} are

different lifts of K̄, they are disjoint. Since l̄ enters and leaves K̄ infinitely many

times, l enters and leaves the sequence (Ki) successively. Since dev(l) is bounded in

An, the length of dev(Ki ∩ l) must go to 0. Therefore we have

Lemma 4.5 The length of dev(l ∩Ki) goes to 0 as i goes to infinity.

M̂

K p

gj(D)

gi(D)

gi(l)

gj(l)

Figure 4.5: The sequence of {gi(D)} meeting K.

Now we fix a lift K of K̄ in M̂ . By using the deck transformation gi which

takes Ki to K, we have a sequence of dome bodies (gi(D)), all of which meet K (

See Figure 4.5 ). Then gi(D) ∩K does not meet the top of gi(D). Once again the

bottom hyperplane H(gi(D)) separates the interior of dev(K) into two open semi

balls. By the convexity of dev(K) and the interior of dev(gi(D)), the inverse image

of one of these open semi balls in K is completely contained in gi(D) while the
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inverse image of the other one in K is disjoint from gi(D). Note that we also have

a lift p of p̄ in K which is an accumulation point of (gi(l)).

• Step 3, stacking a “small” dome body and a “large” dome body.

We will use Li to denote the line in An containing dev(gi(l)) in the following.

Let us look at the developing images {dev(gi(D))} in An, the closure of which

are just closed solid semi balls. Since dev(K) is compact and dev(gi(D)) intersects

dev(K), by passing to a subsequence we can assume that the sequence of lines (Li)

converges to a line l∞ passing through dev(p), and by passing to another subsequence

we can also assume that the sequence of closed bottom half spaces (U(gi(D))) con-

verges to some closed half space U∞ of An, the boundary hyperplane H∞ of which

necessarily contains dev(p) and l∞.

U∞

dev(K)

dev(p)

A
n

dev(U)

H∞

dev(gi(D))

dev(gj(D))

Figure 4.6: A subsequence of {dev(gi(D))} containing dev(U).

If we fix a hyperplane which is parallel and close to H∞ and is contained in

the interior of U∞, then it still intersects the interior of dev(K) and it separates the

interior of dev(K) into two open solid semi balls, one of which is contained in U∞

and its lift in K is denoted by U . We call U the upper part of K.
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Since the sequence of closed bottom half spaces (U(gi(D))) converges to U∞,

when i is large enough every dev(gi(D)) must contain dev(U) and hence gi(D)

contains U ( See Figure 4.6, dev(gi(D)) contains the upper part dev(U) of dev(K)

bounded by the dash plane parallel to H∞ in the figure ).

So by passing to a subsequence again, we can assume

Lemma 4.6 Any dome body in the sequence (gi(D)) contains the upper part U of

K.

Note that affine transformations preserve the ratio of the length of two parallel

segments. If we use |.| to denote the length, then

| dev(l ∩Ki) |

| [dev(a), dev(b)] |
=

| dev (gi(l ∩Ki)) |

| [dev(gi(a)), dev(gi(b))] |

=
| dev (gi(l) ∩K) |

| [dev(gi(a)), dev(gi(b))] |
.

On one hand, by Lemma 4.5 the lhs goes to 0 as i goes to infinity; on the

other hand, when i is large enough, gi(l) will be close to l∞ which passes through

the point p in the interior of K, hence the numerator on the rhs

| dev(gi(l) ∩K) | → | dev(l∞ ∩K) | > 0,

and hence the denominator

| [dev(gi(a)), dev(gi(b))] | → ∞
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as i goes to infinity.

Similarly, let ci and di be the endpoints of l∩Ki and replace the pair of points

a and b above by the pair of a and di ( resp. ci and b ). Since dev(ci) ( resp. dev(di)

) is close to the point ∞ in the interior of [dev(a), dev(b)], we actually have

Lemma 4.7 dev(gi(a)) ( resp. dev(gi(b)) ) goes to infinity in An as i goes to

infinity.

From now on we will fix i and take j arbitrarily large. By “small”, we mean

dev(gi(D)) is bounded; by “large”, we mean both dev(gj(a)) and dev(gj(b)) can be

arbitrarily far away from dev(gi(D)); by “stacking”, we mean they both contain a

common part U of K.

• Step 4, finding a contradiction.

dev(U)

dev(K)

dev(q)

dev(p)

A
n

dev(λj)
dev(gj(D))

dev(gi(D))

Figure 4.7: A long segment λj in gj(D).

Now let us fix a point q in the interior of U . Starting from dev(q) there are

two geodesic segments parallel to the line Lj, each of which has the other endpoint

on the developing image of the top of gj(D). Note that they point in opposite

directions, so there is at least one not pointing towards the bottom hyperplane of
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gi(D), and let us use λj to denote its lift in gj(D) ( See Figure 4.7 ).

We are going to prove that |dev(λj)| can be arbitrarily large if j is large enough.

For this, without loss of generality, let us assume that dev(λj) points in the direction

from dev(gj(a)) to dev(gj(b)). Let us take the line through dev(q) perpendicular to

the line Lj containing dev(gj(l)) with the intersection point νj ( Note that νj may

not be lifted to M̂ ). By the convexity of both dev(K) and the interior of dev(gj(D)),

the inverse image of this line intersects K at a point mj such that dev(q) is in the

interior of the segment [dev(mj), νj ] and hence mj is contained in gj(D) ( See Figure

4.8 ).

νj

dev(q)

dev(p)

A
n

dev(λj)

dev(K)

dev(mj)

dev(gj(b))

( or dev(gj(a)) )

dev(gj(D))

Figure 4.8: Why is λj long?

By the convexity of the interior of dev(gj(D)) again, the segment

[dev(mj), dev(gj(b))] is contained in dev(gj(D)). Using similar triangles, we have

| dev(λj) | ≥
| [dev(mj), dev(q)] |

| [dev(mj), νj] |
· | [dev(gj(b)), νj ] | .

54



Since (Lj) converges to l∞ and

| [dev(mj), dev(q)] |

| [dev(mj), νj] |

depends continuously on them, it converges to some limit bounded away from 0.

Since νj is within bounded distance from dev(K), by Lemma 4.7

| [dev(gj(b)), νj] | → ∞.

Therefore we have

Lemma 4.8 | dev(λj) | → ∞ as j goes to infinity.

Now s
.
= λj ∩ gi(D) is a nonempty segment in gi(D), since both λj and gi(D)

are convex. Let r be the other endpoint of s opposite to q.

On one hand, since [dev(q), dev(r)] is contained in dev(gi(D)) and hence is

bounded. If we choose j large enough in the first place, we have

| dev(λj) | > | [dev(q), dev(r)] | .

Then r must live in the interior of λj and hence r is an interior point of M̂ if you

look at it in gj(D); on the other hand, by the choice of λj , r is on the top of gi(D),

and hence r is a boundary point of M̂ if you look at it in gi(D). Therefore we have

a contradiction. 2
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4.3 Extension to projective case

In this section, we are going to extend our result to the projective case and prove

Theorem 1.2 For n ≥ 3, let (M, ∂) be a compact projective n-manifold with

boundary ∂ homeomorphic to Sn−1. If

• dev restricted to some lift ∂̂ of ∂ is an embedding,

• dev(∂̂) is contained in an affine patch An,

• dev maps a neighborhood of ∂̂ to the closure of the bounded part of An\dev(∂̂),

then (M, ∂) is homeomorphic to (Dn, Sn−1).

Proof: All the arguments in §4.1 work through in this case as long as we can

establish the projective version of Proposition 4.2: Dome bodies are compact.

Once again we will prove it by contradiction. If there is a noncompact dome

body D, we can find an incomplete geodesic ray l in the bottom of D, which goes

through a sequence of (Ki), where K1, K2, . . . are lifts of some compact convex

neighborhood of an accumulation point ( See Figure 4.9 ).

M̂

Ki

∂̂D

l
a b

ci di

Figure 4.9: The sequence of lifts of K in the projective case.
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Let ci and di be the endpoints of l∩Ki. For the four points a, ci, di, b in a line,

we can consider the cross-ratio

(a, ci; di, b)
.
=

| [dev(a), dev(di)] | · | [dev(ci), dev(b)] |

| [dev(a), dev(b)] | · | [dev(ci), dev(di)] |

which is a projective invariant.

Since | [dev(a), dev(di)] |, | [dev(ci), dev(b)] | and | [dev(a), dev(b)] | are bounded

above and below away from 0 uniformly for all i and | [dev(ci), dev(di)] | → 0 as i

goes to infinity ( See Figure 4.9 ), we have

Lemma 4.9 (a, ci; di, b) → ∞ as i goes to infinity.

If we fix a K and use the deck transformations (gi) where gi takes Ki to K,

then K intersects the sequence of dome bodies (gi(D)) again. From Lemma 4.9, we

have

Lemma 4.10 (gi(a), gi(ci); gi(di), gi(b)) → ∞ as i goes to infinity.

The difference between the projective case and the affine case is that we might

not be able to see the whole dev(gi(D)) in an affine patch containing dev(K). This

is not a big issue. We can still start with an affine patch containing dev(K). By

passing to a subsequence we can still assume that the sequence (Li), where Li is the

line containing dev(gi(l)), converges to some line l∞, (U(gi(D))) converges to some

closed half space U∞ and (H(gi(D))) converges to some hyperplane H∞. Hence by

passing to a subsequence we can still have the projective version of Lemma 4.6: Any

dome body in the sequence (gi(D)) contains an upper part U of K.
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Once again, from now on we will fix i and a point q in the interior of U .

Starting from dev(q) there are two geodesic segments parallel to the line through

dev(gj(l)) with the other endpoint on the developing image of the top of gj(D) ( We

can switch to an affine patch containing the closure of dev(gj(D)) to do this ). Note

that they point in opposite directions, so there is at least one not pointing towards

the bottom hyperplane of gi(D), and let us use λj to denote its lift in gj(D).

Once again we consider the subsegment s
.
= λj ∩ gi(D). If s is properly

contained in λj , we will have the same contradiction as before: the other endpoint

r of s opposite to q is both an interior point and a boundary point of M̂ . Therefore

s must equal to λj, which means that gi(D) and gj(D) share a common component

of ∂M̂ .

If we switch to an affine patch containing the closed solid ball bounded by the

developing image of the component of ∂M̂ that meets gi(D). Then { dev(gj(D)) }

are all contained in the same solid ball. Since the lengths | [dev(gj(a)), dev(dj)] | and

| [dev(gj(cj)), dev(gj(b))] | are uniformly bounded above while | [dev(gj(a)), dev(gj(b))] |

and | [dev(gj(cj)), dev(gj(dj))] | are uniformly bounded away from 0 for all j, and

hence

(gj(a), gj(ci); gj(di), gj(b)) =
| [dev(gj(a)), dev(gj(dj))] | · | [dev(gj(cj)), dev(gj(b))] |

| [dev(gj(a)), dev(gj(b))] | · | [dev(gj(cj)), dev(gj(dj))] |

is uniformly bounded above. This contradicts to Lemma 4.10. 2
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tives, Bulletin de la Société Mathématique de France 88 (1960), 229–332.

[Ben00] Yves Benoist, Tores affine, Contemporary Mathematics 262 (2000), 1–37.

[BG05] Oliver Baues and William Goldman, Is the deformation space of complete

affine structures on the 2-torus smooth?, Contemporary Mathematics 389

(2005), 69–89.

[Bro60] Morton Brown, A proof of the generalized schoenflies theorem, Bulletin of

the American Mathematical Society 66 (1960), 74–76.

[Car89] Yves Carrière, Autour de la conjecture de l. markus sur les variétés affines,

Inventiones Mathematicae 95 (1989), no. 3, 615–628.

[CG97] Suhyoung Choi and William Goldman, The classification of real projective

structures on compact surfaces, American Mathematical Society. Bulletin.

New Series 34 (1997), 161–171.

[Cho99] Suhyoung Choi, The convex and concave decomposition of manifolds with
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