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Chalcidoidea, one of the largest superfamilies of parasitic Hymenoptera, has 

major importance in the biological control of insect pests.  However, phylogenetic 

relationships both within and between chalcidoid families have been poorly understood, 

particularly within Pteromalidae, one of largest families.  This study approaches the 

problem of pteromalid phylogeny from two directions, coupling a detailed morphological 

revision of one of the most divergent and poorly-known subfamilies of  pteromalids 

(Diparinae) with a broad, exemplar-based molecular study that seeks to place this 

subfamily in the broader context of pteromalid and chalcidoid phylogeny.  First, a 

morphological phylogenetic analysis of the world genera of Diparinae is provided based 

on 76 characters.  Diparinae is supported as monophyletic based on the presence of a 

cercal brush in all analyses.  The cercal brush, in combination with the absence of a 

smooth, convex dorsellum, is diagnostic for Diparinae.  Liepara Boucek (Pteromalidae) 



  
 

 

and Bohpa Darling (Pteromalidae: Ceinae) both appear as sister-groups to Diparinae in 

different analyses.  The phylogenetic analysis is used to develop a new classification 

scheme, under which Diparinae consists of 116 species in 14 genera.  Three genera and 

14 species are described as new, and a key to all genera is provided.  Second, forty-two 

taxa broadly representing Chalcidoidea and more specifically Pteromalidae were 

sequenced for 4620 bp of four nuclear protein-coding genes, including 1719bp of CAD, 

708bp of DDC, 1142bp of enolase, and 1044bp of PEPCK.  The combined data set was 

analyzed using maximum likelihood methods, and the AU test was used to test support 

for non-monophyly of taxonomic groups which appeared para- or poly-phyletic in the 

tree.  Phylogenetic relationships that have been supported by previous morphological and 

molecular evidence were recovered (e.g., monophyly of Chalcidoidea), as was the 

monophyly of groups well supported by morphology but resolved as polyphyletic in 

previous molecular analyses (e.g., Chalcididae).  The monophyly of Pteromalidae and the 

pteromalid subfamily Colotrechninae are both strongly rejected (p<0.001).  New 

hypotheses are proposed for relationships within Chalcidoidea, including 

Eutrichosomatinae (Pteromalidae) as the basal lineage of the perilampid/eucharitid clade.  

This study demostrates that molecular and morphological data can provide reciprocal 

illumination for understanding relationships within Chalcidoidea. 
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Chapter 1: Phylogenetics and classification of the world genera of Diparinae  
 

(Hymenoptera: Pteromalidae) 
 
 
 

Abstract 
 

 

 A morphological phylogenetic analysis of the world genera of Diparinae 

(Hymenoptera: Pteromalidae) is provided, and the generic classification is revised.  A 

hypothesized phylogeny is given based on 76 characters, primarily from adult females.  

The diparines are supported as monophyletic in all analyses based on 4-6 

synapomorphies depending on their sister-group, including the presence of a cercal brush 

which is synapomorphic in all analyses.  The cercal brush, in combination with the 

absence of a smooth, convex dorsellum, is diagnostic for Diparinae.  Liepara Boucek 

(Pteromalidae: subfamily inquirenda) and Bohpa Darling (Pteromalidae: Ceinae) both 

appear as sister-group to Diparinae in different analyses.  In the proposed classification 

scheme, Diparinae consists of 116 species in 14 genera.  Nine genera are removed from 

Diparinae, two of which are placed in synonymy: Calolelaps Timberlake, 

Dinarmolaelaps Masi, Mesolelaps Ashmead, Neolelaps Ashmead, and Stictolelaps 

Timberlake are placed in Pteromalinae (Pteromalidae), while Seyrigina Risbec is placed 

in Eulophinae (Eulophidae);  Diparisca Hedqvist is synonymized under Spalangiopelta 

Masi (Pteromalidae: Ceinae); Bekiliella Risbec is synonymized under Notanisus Walker 

(Pteromalidae: Cleonyminae);  and Liepara Boucek and the tribe Lieparini Boucek are 

placed in Pteromalidae without a subfamily association.  Eleven new generic synonyms 

are proposed: Alloterra Kieffer, Diparomorpha Hedqvist, Grahamisia Delucchi, 
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Parurios Girault, Pondia Hedqvist, and Pseudipara Girault under Dipara Walker; 

Spalangiolelaps Girault under Lelaps Walker; Australolaelaps Girault under 

Neapterolelaps Girault; Dolichodipara Hedqvist under Myrmicolelaps Hedqvist; and 

Dipareta Boucek and Malinka Boucek under Pseudoceraphron Dodd, new synonymies.  

Three genera are described as new: Cerodipara, Dozodipara, and Noortia.  Fourteen new 

species are described: Cerodipara sabensis, Chimaerolelaps villosa, Conophorisca 

littoriticus, C. grisselli, Dozodipara insularis, Lelaps noorti, Myrmicolelaps iridius, M. 

aurantius, Neapterolelaps viridescens, N. mitteri, Nosodipara ferrana, Pseudoceraphron 

regieri, P. burwelli, and P. fijensis.  A key to the genera of Diparinae is provided.  The 

species of each genus are cataloged, and species-level keys are provided for most genera 

in which new species are described.  New biological information shows that diparine host 

range is not restricted to Curculionidae as previously thought; one species of 

Myrmicolelaps were reared from mantid oothecae and a second from a tsetse fly 

puparium (Glossinidae: Glossina). 
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Introduction 
 

Chalcidoidea, one of the largest superfamilies of parasitic Hymenoptera, includes 

about  22,000 described species (Noyes 2003).  The majority of chalcidoids, commonly 

called chalcids, are parasitoids and have major importance in the biological control of 

insect pests.  Despite the ecological and economic importance of Chalcidoidea, 

phylogenetic relationships both within and between chalcidoid families are still largely 

obscure.   A central difficulty is the status of the problematic family Pteromalidae, one of 

the three largest (3506 species (Noyes 2003)) and often considered the “garbage can” of 

the superfamily.  Pteromalidae is defined only by the absence of features defining other 

chalcidoid families and may be paraphyletic with respect to a number of these; the limits 

and placement of this family are simply unknown.  Thirty-one subfamilies are currently 

recognized within Pteromalidae (Noyes 2003), although inclusion and exclusion of many 

subfamilies is still highly uncertain.  Few comprehensive phylogenetic studies have been 

conducted at the subfamily or tribal level (see Heydon 1997, Gibson 2003 for examples), 

making the coding of characters and choice of exemplars difficult in higher-level 

analyses. 

 One of the most enigmatic of pteromalid subfamilies is the Diparinae.  Because 

the diparines are aberrant in habitat (leaf litter on the forest floor) and habitus (most 

females being wingless), they are rarely collected even by chalcidologists, and their 

taxonomy and life history are mostly unknown. The only known host record was 

recorded by Boucek (1988), in which Parurios sp. was reared from a curculionid 

(Coleoptera).  A world revision of the diparines has never been published, and 

identication of genera is difficult even with access to the primary literature and a 
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representative collection.  Recent morphological work has hypothesized sister-group 

relationships of other pteromalid subfamilies with diparines (Darling 1988, 1991a; Török 

and Abraham 2001), particularly Ceinae, thus making improved systematics of these 

obscure wasps important to testing these conclusions.  This study therefore includes a 

morphological phylogeny and revision of the genera of the world Diparinae.  The aim of 

the phylogenetic analysis is three-fold: 1) to establish monophyly (or non-monophyly) of 

Diparinae, 2) to construct a phylogeny of the genera, and 3) to test the proposed sister-

group relationship with Ceinae. 

 Diparinae historically consists of 117 species distributed throughout 31 genera 

(Noyes 2003), but examination of museum collections has revealed a tremendous number 

of undescribed species.  The tribal classification has been unstable and has often changed 

with each regional revision.  Many of the genera are monotypic and are described from 

small series or even single specimens (e.g., Hedqvist 1969). Of the 31 genera, 24  contain 

two or fewer species, while only five contain five or more species.  Even now many of 

the genera are known only from type specimens.  The group has never been revised on a 

world basis and few regional revisions exist.  The small faunas of the Nearctic 

(Yoshimoto 1977) and Western Europe (Graham 1969) have been revised and keyed 

recently, although they account for only a small portion of diparine diversity.  Hedqvist 

(1969) revised and keyed the African fauna, while Boucek (1988) revised and provided a 

key to the Australasian genera.  However, more extensive sampling in both the 

Afrotropical and Australasian regions has revealed many undescribed species that require 

the alteration of generic concepts. 
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 Diparines are often noted for their marked sexual dimorphism.  The majority of 

known males are macropterous, have filiform antennae, and show little to moderate 

variation between genera.  Females may be macropterous, brachypterous, or even 

apterous, often have clavate antennae, and display great morphological variation across 

genera.  Some females have such bizarre morphological forms that even taxonomists may 

have difficulty identifying them as chalcidoids (e.g., Pseudoceraphron Dodd was 

originally described in the Ceraphonidae (Ceraphronoidea; Dodd 1924).  As most species 

and many genera are described solely from either males or females, the lack of host 

records and successful rearings suggest that many currently distinguished genera and 

species might actually represent males versus females of single or congeneric species.  It 

is possible that caged live-caught diparine females could be used to attract mates and 

associate the sexes, a technique applied successfully to other female-wingless 

Hymenoptera (e.g.,  Mutillidae; Manley 1999).  However, the difficulty of capturing live 

females locally precluded attempting this methodology over the course of this study. 

Overall the Diparinae have a cosmopolitan distribution and are generally most 

common in lowland and montane rainforests.  Diparines appear to have a Gondwanan 

center of diversity, being most diverse at the generic level in South Africa and Australia.  

In Australia, most diparine diversity is restricted to Queensland and the surrounding 

islands.  To a lesser extent they are distributed throughout Western Australia, 

southeastern Australia, and Tasmania, particularly Netomocera Boucek and Liepara 

Boucek which are generally found in drier forests and arid regions.  In Africa, most 

genera are known only from South Africa, although this may be an artifact of intensive 

sampling (both from the R.E. Turner collection and recent collecting by S. van Noort, 
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Cape Town Museum).  Small collections from Namibia, Botswana, Zimbabwe, Tanzania, 

and Kenya suggest that this diversity extends farther north, particularly through the East 

Rift Valley.  Oddly, while the diversity of diparines in most regions seems to be highest 

in the rainforest,  this is exactly the opposite in southern and eastern Africa, where the 

distribution of the rainforest coincides with a dramatic drop in diparine generic diversity.  

The majority of southern and eastern African genera exist in drier areas, including the 

fynbos, savannah, and montane grasslands.   

It is unknown whether this Gondwanan pattern of diversity extends into southern 

South America where no endemic genera are known, although this may be an artifact of 

limited collecting in those areas.  In the New World, diparines are genera-poor, the only 

endemic genera being Lelaps and the newly described Chimaerolelaps (neither of which 

have a distribution which extends into southern South America).  However, Lelaps is 

possibly the most speciose genus in Diparinae, containing 40 described and a great 

number of undescribed species.  Southeast Asia and the Congo Basin region of Africa 

show a similar pattern of genera-poor, species-rich diversity, where Dipara species make 

up the majority of diparine diversity in these areas, and no endemic genera are known. 
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Methods 
 

Collecting Methodology 
 

Diparines are poorly represented in most museum chalcidoid collections, 

especially wingless females which generally inhabit litter environments.  Malaise traps 

and sweeping, typically used for collecting chalcidoids, generally yield only winged 

males.  The primary exception to this is Lelaps in the Neotropics, where the winged 

females characteristic of many species can be collected using these methods.   Yellow 

pan traps, and to a lesser extent flight-intercept traps, are effective methods of collecting 

both diparine sexes.  For a detailed discussion of these and other collecting methods, see 

Noyes (1982).  Another effective method of collecting diparines is a modified pyrethrum 

knockdown technique developed by Geoff Monteith of the Queensland Museum 

(Brisbane, Australia).  A smooth, plastic sheet is first placed below a rotten log, tree 

trunk, exposed tree roots, or other desired collecting area.  Then the log surface is 

sprayed with a fast-knockdown pyrethroid insecticide.  A short time is then allowed for 

insects to emerge, die, and fall onto the plastic sheet below.  The sheet can then be 

funneled into a vial of ethanol or other desired collecting media.  Although this technique 

has thus far only been used to collect diparines in Australia and surrounding islands, it 

has proven quite effective in those regions and shows promise for use in other areas. 
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Terminology 
 

 All taxonomic names stated in this paper refer to the classification scheme 

provided here unless referred to in the sense of an author.  Dipara in particular is referred 

to in two different ways: Dipara, which refers to Dipara as defined here and includes the 

new synonyms Alloterra Kieffer and Marshall, Diparomorpha Hedqvist, Grahamisia 

Delucchi, Parurios Girault, and Pseudipara Girault;  and Dipara sensu Boucek (1988).  

Taxonomic units in the phylogenetic analysis are listed as they are classified here, 

following by their tradition classification or OTU in parentheses [e.g., Dipara 

(Alloterra)].  In some instances, Diparinae is referred to as Diparinae excluding Liepara 

for the purpose of clarification; both terms as presented here have the same meaning. 

 Morphological terminology follows that of Gibson (1997) unless otherwise noted.  

A seta (e.g., Fig. 29) is short, thin, and usually light in coloration, while a bristle (e.g., 

Figs. 18-20) is long, thick, and usually black in coloration.  Setae are considered sparse 

(e.g., Fig. 29) if each seta is separated from other seta by at least its own length.  

Although the lower face is defined in Gibson (1997) to include the clypeus, when 

referred to here it does not.  The ventral margin of the face is therefore the edge between 

the clypeus and the gena.  The posterior notal wing process (apparent in Figs. 20, 50, 

51) is a sclerotized projection emerging from the lateral margin of the scutellum between 

the fore- and hindwing.  In the genus Myrmicolelaps, an axillary wing sclerite (Fig. 30) 

is expanded and visible posterior to the tegula. The cercal brush (Figs. 13, 17, 35) is a 

dense patch or line of short, white setae, facing posteriorly, just anterior to the cercus 

itself.  The setae themselves point posteriorly.  It can be difficult to see in some 

specimens and is most visible when viewed from an antero-lateral angle.  Surface 
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sculpture terminology follows that of Harris (1979) unless otherwise stated in the 

description. 

 

Museum Abbreviations 
 

The following is a list of museum abbreviations used in the taxonomic revision.  

For the most part these abbreviations are based on Arnett et al. (1993), which is updated 

and maintained at the Bishop Museum (Honolulu, Hawaii, USA) website 

(http://hbs.bishopmuseum.org/codens/codens-r-us.html).  Collection abbreviations 

marked with an asterisk were not listed on the website. 

 

AEIC  American Entomological Institute, Gainsville, Florida, USA 

ANIC  Australian National Insect Collection, Canberra, Australia 

BPBM  Bishop Museum, Honalulu, Hawaii, USA 

BMNH British Museum of Natural History, London 

CNC  Canadian National Collection, Ottawa, Canada 

DZCU  Calcutta University, Calcutta, India 

DPC*  Delucchi Private Collection 

FSCA  Florida State Collection of Arthropods, Gainesville, Florida, USA 

KHPC* Karl-Johan Hedqvist Private Collection 

MDLA  Laboratório de Biologia, Dundo, Lunda, Angola 

MHNG Museum d’Histoire Naturelle, Geneva, Switzerland 

MRAC  Musée Royal de l’Afrique Centrale, Tervuren, Belgium 

NHRS  Naturhistoriska Riksmuseet, Stockholm, Sweden 
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NMPC  National Museum (Natural History), Prague, Czech Republic 

PPRI  Plant Protection Research Institute, Pretoria, South Africa 

QM  Queensland Museum, Brisbane, Australia 

SAM  South Australian Museum, Adelaide, Australia 

SAMC  South African Museum, Cape Town, South Africa 

UCDC  University of California, Davis, California, USA 

USNM  United States National Museum, Washington, DC, USA 

ZMHB  Zool. Mus. der Humboldt - Universität zu Berlin 
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Phylogenetics of Diparinae 
 

Taxonomic Scope 
 

A preliminary examination of the genera of Diparinae was conducted in order to 

remove taxa which obviously belonged to other groups or which could not be coded for a 

sufficient number of characters.  A large number of diparine genera were described in the 

early 1900’s, when classification of Chalcidoidea was still in its early stages.  Since 

Diparinae has never been revised on a world level, many genera traditionally classified 

within the group have obvious affinities to other subfamilies but have never been 

removed from Diparinae.  These taxa were removed prior to the phylogenetic analysis 

because many of the characters used in the matrix had little relevance to these taxa.  Taxa 

which were removed from the analysis because of insufficient coding were generally 

known only from males (making it impossible to code them for the large number of 

female-only characters), or in one case the type material was not located. 

Specifically, Bekilliela Risbec and Dinarmolaelaps Masi were excluded from the 

analysis because neither are diparines (their taxonomic placement is discussed in their 

generic entries), and both genera are known only from males.  Seyrigina Risbec was 

excluded from the analysis because it belongs in Eulophidae and it known only from the 

holotype, of which both the head and gaster are missing.  Diparomorpha Hedqvist does 

belong in Diparinae, but was excluded from the analysis because it is known only from 

the holotype, which could not be located, and the description did not provide enough 

information to code the genus for a sufficient number of characters.  The placement of 

Diparomorpha is discussed further in the generic entry for Dipara.  The four Hawaiian 
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genera (Calolelaps Timberlake, Mesolelaps Ashmead, Neolelaps Ashmead, and 

Stictolelaps Timberlake) were coded in the matrix but excluded from the analysis, 

because after coding they were determined to belong in Miscogasterinae and also to 

reduce the taxon:character ratio in the phylogenetic analysis. 

For the most part, taxonomic units in the data matrix were genera.  Exceptions to 

this were clades of genera in which a large number of undescribed species did not fit into 

the historical generic concepts (Australolaelaps and Neapterolelaps; Dipareta, Malinka, 

Nosodipara, and Pseudoceraphron; and Conophorisca, Dolichodipara, and 

Myrmicolelaps).  New species were described to better understand phylogenetic 

relationships within those groups, and most described species were included in the 

analysis (Neapterolelaps was coded as a single generic unit).  Additionally, Dipara sensu 

Boucek (1988) was divided into multiple taxonomic units to better resolve its 

relationships with Alloterra, Grahamisia, Parurios, and Pseudipara.  These divisions 

were based on groups which could be coded relatively unequivocally in the data matrix, 

as the variation within Dipara sensu Boucek (1988) made the coding of too many 

characters ambiguous.  Additionally, separating Dipara sensu Boucek (1988) from 

Parurios on a world level proved impossible given the definitions of both genera.   

Additional species of Dipara were not described due to both time constraints and the 

sheer number of species which would need to be described to thoroughly examine this 

group.   

 

The subdivisions of Dipara sensu Boucek (1988) include:  
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• Dipara turneri Hedqvist, a species from Africa which appears to lie between 

Dipara and Parurios morphologically; 

• “Fijian Dipara/Parurios,” an unclassifiable species from Fiji which shares 

some features with Dipara turneri; 

• “Indonesian Pondia,” a group of undescribed, Dipara-like species known 

from Indonesia and Taiwan, which are often identified as Pondia in museum 

collections due to their convex scutellum;  

• “Australian Dipara,” Girault’s Australian genera (Epilelaps and 

Pseudiparella) which Boucek (1988) synonomized with Dipara;  

• “Micro Dipara,” generally minute, macropterous species of Dipara sensu 

Boucek (1988) with collar-like pronota; 

• Dipara sensu stricto, which are generally apterous, have a laterally bulging 

pronotum, and include the most well-known members of the genus (e.g., D. 

canadensis).  

 

 Outgroups selected included all three genera of Ceinae, and two representatives 

each from Eunotinae and Coelocybinae.  Ceinae was thoroughly represented because 

Darling (1991a) proposed a sister-group relationship between Ceinae and Diparinae 

based on two morphological features: the presence of admarginal setae and papilliform 

antennal sensillae.  Additionally, in a morphological study of Pteromalidae by Török and 

Abraham (2001), Ceinae grouped as sister to Diparinae in their reweighted parsimony 

tree with all taxa included.  Bohpa Darling (Ceinae) was coded for all characters and 

analyses were run both including and excluding this taxa for three reasons.  First, the 
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male of Bohpa is unknown.  With a wingless female and unknown male, it is impossible 

to code Bohpa for many of the characters important at the base of the phylogeny, 

including presence/absence of admarginal setae and the number of anelli in the male.  

Second, the addition of a third ceine genus does little to polarize characters within the 

clade, as among three taxa a gain and a loss are equally as parsimonious as two 

independent gains of a character state.  Third, the inclusion of Bohpa in the analysis 

dramatically impacted the successive weighting of characters important to the phylogeny 

the derived diparines, which is discussed below.  Eunotinae and Coelocybinae were 

chosen as additional outgroups based in discussions with other chalcidologists about 

which subfamilies might be closely related to Diparinae.  

 

Character Coding 
 

When possible, all characters, unless noted as “male”, were taken from female 

specimens.  If a female specimen was unavailable, or the character of interest was 

damaged on all female specimens but visible on a male, the character was coded from the 

male.  Exceptions to this are noted as (female), in which case sexual dimorphism causes 

females to have distinctive morphology from males for this character.  Taxa coded with 

“(#)” are polymorphic for that character, i.e. different species in the taxonomic unit have 

distinctly different states.  Taxa coded with “{#}” are ambiguous for that character, i.e. 

the state present in the taxon is intermediate between multiple coded states.  Coding for 

all taxa is listed in Appendix I. 

One of the features typically used to diagnose Diparinae is the presence of strong, 

dark bristles on the vertex and dorsal surface of the mesosoma.  During the course of 
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character coding for this analysis, it was noticed that although many diparines have a 

varying numbers of bristles, they always had bristles positionally identical to a subset of 

the full complement of bristles.  To utilize this positional homology information in the 

phylogenetic analysis, bristles were coded in the following way:  First, a single character 

for overall presence or absence of bristles was coded for all taxa (i.e., every taxon with at 

least 1 pair of bristles was coded as present, #21).  Second, an additional 

presence/absence character was coded for each positionally homologous pair of bristles 

(#22-24, 26-29), as was a final additional character on the position of the median scutal 

bristle pair (#25).  All bristle positional characters were coded as missing (?) if overall 

bristle presence/absence was coded as absent.  This was intended not to give a 

disproportionate amount of weight to the presence/absence of bristles, as it is plausible 

that all bristles could be lost in a single evolutionary step. 

Two issues arise from this coding scheme, however.  First, by coding positional 

bristle characters for all taxa without an overall presence/absence character, the large 

number of bristle characters themselves could drive much of the phylogenetic signal in 

the tree if they supported the same groupings.  Second, strange step requirements can 

occur when reconstructing character states.  For example, a taxon without bristles can be 

reconstructed as sister-group to a taxon with all bristle pairs with a single step (overall 

bristle presence/absence).  To then place a taxon with a single bristle pair within that 

clade as sister to the bristleless taxon would require at least 6 additional steps, while this 

transformation seemingly should only take 1 step.  A character could be constructed in 

which all possible bristle conformations are coded as different states (which was done 

with notaular shape), but the vast number of potential states would prove uninformative 
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in the analysis.  Therefore, analyses were run both including and excluding positional 

bristle characters. 

Additionally, the form of the notauli was originally coded as multiple characters 

(#32-35).  However, notauli appear to be highly divergent in closely related taxa, and 

having multiple characters would imply a heavy weighting.  In order to minimize the 

effect of notauli on tree topology, characters #32-34 were combined into a single 

character representing all possible arrangements of the notauli (#31), and characters #32-

34 were excluded from all analyses.  Character #35 (notaular pads) was left as is, 

because, although the black pads are located adjacent to the notauli but not innately part 

of notaular structure. 

 

1.  Apical Clypeal Margin: 0 = concave (Fig. 45); 1 = with median tooth or lobe (Fig. 

16); 2 = protruding, symmetrically bilobed (lobes may be very small and appear 

symmetrically sinuate); 3 = convex, or protruding and straight. 

 A convex clypeal margin is coded the same as a protruding clypeus with a straight 

margin, as the blurring between these two forms makes them difficult to code as separate.  

Additionally, both lack the lobes or teeth of states 1 or 2, and project from the ventral 

margin of the head, as opposed to state 0.  The clypeal margin has not been previously 

used in diparine taxonomy, with the exception of Lelaps and Spalangiolaelaps, which are 

often partially diagnosed by a median tooth (e.g., Yoshimoto 1977).  In his phylogenetic 

analysis of Toryminae, Grissell (1995) used a more finely detailed transformation series 

of the clypeal apex, which was highly consistent within the phylogeny (CI = 1.00). 
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2.  Posterior Margin of Gena: 0 = smooth; 1 = carinate. 

 Outside of Diparinae, a carinate genal margin is found sporadically in Chalcididae 

(Wijesekara 1997), Eucharitidae (Heraty 2002), and also in Eurytomidae and New World 

Lyscini (Pteromalidae: Cleonyminae) (Gibson 2003).  Gibson (2003) states that this 

feature is often associated “with a head that is closely appressed to the pronotum so the 

two form a more rigid association.”   

 

3.  Dorsal Margin of Scrobe: 0 = rounded; 1 = carinate. 

 This character is sporadically distributed throughout Diparinae.  The presence of a 

carinate dorsal margin is probably correlated with the overall “carinateness” of a 

chalcidoid, i.e. diparines which are heavily sculptured often have carinate margins of 

many features. 

 

4.  Scrobe Shape: 0 = scrobe present and scrobal channel parallel-sided (Figs. 7, 27), 1 = 

scrobe present and scrobal channel wide, triangular dorsal to toruli (Fig. 36), 2 = wide, 

shallow depression, scrobe basically absent (Fig. 44), 3 = scrobe distinct and short, but 

without scrobal channel (Fig. 52), 4 = scrobe triangular and wide, but without scrobal 

channel. 

 State 3 is autapomorphic for Pondia.  Gibson coded a similar character in his 

cleonymine (2003) and eupelmid (1989) phylogenetic analyses.  In both groups he found 

that most members possessed scrobes with distinct scrobal channels (equivalent to state 0 

in this analysis), although the scrobes had been reduced or lost in some members of both 

groups. 
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5.  Occiptal Margin: 0 = rounded; 1 = carinate. 

 The occipital margin refers to the boundary between the posterior margin of the 

vertex and the dorsal margin of the occiput. 

 

6.  Occipital Carina: 0 = absent; 1 = present. 

 The presence of an occipital carina was initially coded as two separate states, one 

in which the carina was visible only as line dorsal to the occipital foramen, and another 

where the carina was a semicircular line, laterally reaching ventral to the occipital 

foramen.  However, the ambiguity in coding this character for many taxa has led to the 

reduction the presence of the occipital carina to a single state.  Grissell (1995) 

hypothesized that the absence of an occipital carina is the ancestral state in Pteromalidae, 

as did Gibson (2003) regarding Cleonyminae. 

 

7.  Face Sculpture (female): 0 = Upper face without strong, transversely carinate 

sculpture (Figs. 7, 27, 36, 44); 1= Upper face with deep pits separated by strong 

transverse carinae. 

 This feature is unique to Dipara turneri and “Fijian Dipara/Parurios”, and was 

included to help discern the internal phylogeny of the Dipara clade.  As the males of both 

these species are unknown, it is uncertain whether or not this sculpture is present in both 

sexes, and the character is therefore only coded from females. 
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8.  Torular Shelf : 0 = toruli not on shelf, either with sharp angle of 45° or less between 

upper face and lower face, or junction between upper and lower face rounded (Fig. 20), 1 

= toruli on shelf, sharp angle of ~90° between upper and lower face (Fig. 8). 

 

9.  Malar Groove: 0 = present; 1 = absent. 

 The malar groove of Dolichodipara iridius is coded as ?, because although there 

is no distinct line, a depressed area delimited by a change in sculpture marks the location 

of the malar groove.  This character may not be independent from body size, as the malar 

groove tends to lost in the most diminutive taxa. 

 

10.  Posterior Eye Extension: 0 = normal, eye not extending posteriorly beyond 

occipital margin, pronotum visible in lateral view (Fig. 20); 1 = eye extended posteriorly 

beyond occipital margin, laterally obscuring pronotum. 

 This character is exists to a varying degree in the eunotines Eunotus and 

Moranila, and is coded as polymorphic for both taxa. 

 

11.  Inner Eye Margins: 0 = parallel-sided or uniformly convex; 1 = ventrally diverging. 

This character has historically been used to help define the outgroup 

Coelocybinae (e.g., Boucek 1988) as well as Eupelmidae (Gibson 1989).  Gibson (2003) 

found that diverging inner eye margins supported monophyly of Cleonyminae if the 

outgroup Hetreulophini (Colotrechninae) was excluded from the analysis and his 

interpretation of the character in Callimomoides was incorrect.  However, Gibson did not 

include representatives of Eupelmidae and Coelocybinae in his analysis, which casts 
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further doubt on the utility of this character for defining Cleonyminae.  Regardless, due 

to the uniformity of distribution of this feature in pteromalid subfamilies and Eupelmidae, 

it may become an important character in the higher phylogeny of Chalcidoidea.  Within 

the Diparinae, ventrally diverging eyes are unique to Cerodipara. 

 

12.  Eye Setae: 0 = eyes bare; 1 = eyes sparsely setose. 

 Eyes are only coded as setose if the setae are readily visible under microscopic 

examination.  If the setae are so small and sparse as to only be visible at certain angles of 

light and high magnification, they are considered bare.  Unforunately, a vast majority of 

diparines fall into this latter category, and the coding of this character may be heavily 

influenced by personal interpretation.  Eye setation appears fairly variable within 

Diparinae, and shows a similar pattern of variability in both Cleonyminae (Gibson 2003) 

and Eupelmidae (Gibson 1989, 1995). 

 

13.  Antennal Shape (Female): 0 = filiform; 1 = clavate; 2 = clubbed. 

 

14.  Antennal Symmetry (Female): 0 = symmetrical; 1 = asymmetrical. 

 An asymmetrical flagellum is one of the diagnostic characters of Coelocybinae 

(Boucek 1988).  Within Diparinae, an asymmetrical flagellum is unique to Netomocera.   

 

15.  Anellar Number (Female): 0 = 1 anellus; 1 = 2 anelli; 2 = 3 anelli; 3 = 5 anelli; 4 = 

7 anelli. 
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 In cases where the anellus is partially fused to the first funicular segment (e.g. 

Myrmicolelaps aurantius, see Fig. 26), these taxa are coded as having a single anellus. 

 

16.  Flagellar Number (Female): 0 = 11 flagellar segments (counting clava as 3); 1 = 8 

or fewer flagellar segments (counting clava as 3). 

 A reduced number of flagellar segments is often used as a diagnostic feature of 

Eunotinae (e.g., Boucek 1988). 

 

17.  Pedicel:F1 (Female): 0 = first funicular segment subequal in length to pedicel; 1 = 

first funicular segment at least 1.5X as long as pedicel; 2 = pedicel at least 1.5X as long 

as first funicular segment. 

 Taxa between states (e.g., pedicel 1.3X as long as F1) were coded as ambiguous.  

Gibson et. al (1997) used a version of this character “first funicular segment longer than 

pedicel” in their generic key for separating Lelaps and Spalangiolelaps from other 

Nearctic genera (and more easily than the F1:F2 character used by Yoshimoto (1977)).  

However, this character does not separate Lelaps and Spalangiolelaps from many other 

non-Nearctic diparines. 

 

18.  F1:F2 (Female): 0 = First funicular segment subequal in length to second funicular 

segment; 1 = First funicular segment at least 1.5X longer than second funicular segment. 

 All species of Pseudoceraphron are coded as N/A for this character, because they 

have 7 anelli and only a single funicular segment.  Yoshimoto (1977) used an elongate F1 

to define the tribe Lelapini (Lelaps and Spalangiolelaps) in his key.  Nosodipara ferrana 
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also has F1 at least 1.5X longer than F2, although this is due to a shortened F2 rather than 

an elongate F1. 

 

19.  Claval Fusion (Female): 0 = clava 3-segmented (Figs. 15, 43); 1 = clava 2-

segmented, distal 2 segments apparently fused; 2 = clava 1-segmented, all segments 

apparently fused (Figs. 5, 6, 25). 

 A two-segmented clava is autapomorphic for Conodipara.  Gibson (2003) used a 

similar coding in his phylogenetic analysis of Cleonyminae (2003).  This character 

appears to show a moderate degree of variability in both the Cleonyminae (Gibson 2003) 

and Eupelmidae (Gibson 1989). 

 

20.  Claval Micropilosity (Female): 0 = clava without thick tuft of micropilosity on 

apex of clava (Figs. 5, 6, 15, 25, 36); 1 = clava with thick tuft of micropilosity on apex of 

clava (Figs. 42, 43). 

 The micropilosity at the apex of the clava of Pseudoceraphron and Nosodipara 

appear to be sensillae rather than setae.  In Figure 43, it can be seen that the dorsal 

sensillae appear to have closed, rounded tops, while the ventral sensillae appear to have 

open, truncated tops.  It is possible that the tips of the ventral sensillae were sheered off 

during SEM preparation.  However, the uniformity of the open-topped sensillae suggests 

that is unlikely. 

 

21.  Bristles (Presence/Absence): 0 =without any strong, dark bristles on the thorax or 

vertex, excluding bristles emanating from the wing stump in apterous specimens; 1 = at 
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least 1 pair of strong, dark bristles present on the thorax or vertex, excluding bristles 

emanating from the wing stump in apterous specimens. 

 Strong, dark bristles are used by many keys to diagnose Diparinae (e.g. Boucek 

1988, Gibson et. al. 1997), although many diparine genera lack bristles completely. 

 

22.  Bristles (Vertex): 0 = absent; 1 = bristle pairs limited to occipital margin and dorsal 

inner eye margins (Fig. 18); 2 = bristles uniformly distributed across vertex; 3 = with 

only a single pair of bristles posterior to the lateral ocelli. 

 Not only do the bristle patterns differ fundamentally between states 1 and 2, but 

the bristles of Lelapsomorpha are significantly thinner than most taxa having state 1 

(although this difference was too difficult to code, and may not be entirely independent 

from the pattern itself).  State 3 is unique to Chimaerolelaps. 

  

23.  Bristles (Pronotal): 0 = without bristles on pronotum; 1 = with transverse row of 

bristles on pronotum; 2 = with a single pair of bristles on prontum. 

  

24.  Bristles (Medial Scutal): 0 = without pair of bristles on scutum medial to notauli; 1 

= with a single pair of bristles on scutum medial to notauli; 2 = with two pairs of bristles 

on scutum medial to notauli. 

 State 2 is unique to Moranila. 

  

25.  Position of Median Scutal Bristles: 0 = normal, distance from scuto-scutellar 

margin to median scutal bristles longer than distance to anterior scutellar bristles; 1 = 
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short, distance from scuto-scutellar margin to median scutellar bristles shorter than 

distance to anterior scutellar bristles. 

 Boucek (1988) used this character to separate female Dipara and Parurios in his 

key, although he stated that non-Australian Dipara would key to Parurios using this 

feature (therefore it will separate Australian Dipara from the remainder of the Dipara s. 

l. clade).  This character is only coded in taxa which have both A) median scutal bristles, 

and B) a single pair of anterior scutellar bristles.  All other taxa are coded as N/A. 

 

26.  Bristles (Lateral Scutal): 0 = without bristles on lateral lobes of scutum; 1 = with a 

single pair of bristles on the dorso-lateral margin of the lateral lobes of scutum (Fig. 19); 

2= with a single pair of bristles on the antero-medial portion of the lateral lobes of 

scutum (Fig. 22); 3 = with two pairs of bristles on lateral lobes of scutum. 

 States 2 and 3 are possessed only by outgroup taxa.  Moranila possesses a single 

pair of bristles which is not positionally homologous to those in the Diparinae, while 

Lelapsomorpha and some species of Spalangiopelta both possess two pairs of lateral 

scutal bristles. 

27.  Bristles (Anterior Scutellar): 0 = without pair of bristles on anterior half of 

scutellum; 1 = with a single pair of bristles on anterior half of scutellum; 2 = with two 

pairs of bristles on the anterior half of scutum. 

 Two pairs of anterior scutellar bristles is unique to both Lelapsomorpha and 

Chimaerolelaps. 
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28.  Bristles (Posterior Scutellum): 0 = without pair of bristles on posterior half of 

scutellum; 1 = with pair of bristles on posterior half of scutellum, either at posterior 

margin (if frenum is absent) or lateral margins of frenal line (if frenum is present); 2 = 

with pair of bristles on posterior half of scutellum, posterior to distinct frenal line. 

 State 2 is autapomorphic for some species of Spalangiopelta. 

  

29.  Bristles (Propodeal): 0 = without pair of bristles on propodeum; 1 = with pair of 

bristles on lateral margins of propodeum. 

 Propodeal bristles are unique to Pseudoceraphron (Malinka). 

 

30.  Pronotum Shape: 0 = short, collar-like, not dorsally or laterally bulging, and at least 

as wide as long (Fig. 19, 20,22, 46, 47, 48); 1 = large, laterally but not dorsally convex; 2 

= large, both laterally and dorsally convex (Fig. 9); 3 = large, cylindrical, longer than 

wide. 

 

31.  Notauli (combined): 0 = notauli absent; 1 = notauli present only in anterior half; 2 = 

notauli complete, Y-shaped; 3 = notauli strongly arched along entire length (appearing 

semi-circular) and meeting posterior scutal margin at scutoscutellar suture; 4 = notauli 

not arched and meeting posterior scutal margin exterior to or at the edge of scutoscutellar 

suture; 5 = notauli strongly arched anteriorly and running parallel posteriorly, meeting 

posterior scutal margin at scutoscutellar suture; 6 = notauli not arched and meeting 

posterior scutal margin at scutoscutellar suture; 7 = notauli inverted, U-shaped, meeting 

anterior to posterior scutal margin. 
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32.  Notauli: 0 = notauli distinct along their entire length; 1 = notauli faded posteriorly; 2 

= notauli absent. 

 Gibson (2003) hypothesizes that distinct notauli are pleisiomorphic for the 

Cleonyminae, although the character varies within the group and also in eupelmids 

(Gibson 1989, 1995).  Wijesekara (1997) coded all chalcidids as having distinct notauli, 

while they were completely absent in his leucospid outgroup.  Grissell (1995) also 

hypothesized that distinct notauli were pleisiomorphic for Toryminae, although he also 

stated that the character was so homoplastic as to provide little information.  Within the 

Diparinae only Pyramidophoriella lacks notauli completely. 

 

33.  Notaular Meeting: 0 = notauli posteriorly widely spaced, meeting posterior scutal 

margin exterior to or at the lateral edge of the scutoscutellar suture; 1 = notauli 

posteriorly narrowly spaced, meeting posterior scutal margin at scutoscutellar suture, or 

notauli meet at or just anterior to posterior scutal margin; 2 = notauli Y-shaped, meeting 

well anterior to posterior scutal margin. 

 Both Gibson (1989, 2003) and Grissell (1995) used similar characters.  While 

Gibson (2003) found this character difficult to code for cleonymines, most eupelmids 

have notauli which are “distinctly exterior to the scutoscutellar suture”  (= widely spaced 

in this analysis). Grissell (1995) coded all torymines as having widely spaced notauli 

except Palachia.  Diparines with U-shaped notauli are coded as ambiguous for this 

character, as they often have extremely short scuta, making this difficult to code.  

Pseudoceraphron are coded as 0 for this character, as its notauli are widely spaced.  The 

notauli do meet posterior scutal margin within the boundaries of the scutellum, but this is 
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because Pseudoceraphron has an extremely wide scutellum without axillae (and 

therefore no scutoscutellar suture). 

 

34.  Notaular Arch: 0 = notauli not arched, almost appearing as straight lines; 1 = 

notauli strongly arched along entire length, appearing semi-circular; 2 = notauli strongly 

arched anteriorly, but running parallel sided posteriorly; 3 = notauli U-shaped, arch 

inverted. 

 Diparines with Y-shaped notauli are coded as ambiguous for this character, as the 

short distance the notauli travel before meeting each other makes it difficult to code for 

this character. 

 

35.  Notaular Pads: 0 = lateral lobes of scutum without raised, black pads; 1 = lateral 

lobes of scutum with raised, black pads, lateral to the posterior central groove of Y-

shaped notauli. 

 The presence of these notaular pads has been used to separate Dipara 

(Grahamisia) from Dipara sensu Boucek (1988), and Pseudoceraphron (Malinka) from 

both Pseudoceraphron sensu Boucek (1988) and Pseudoceraphron (Dipareta). 

 

36.  Posterior Scutal Margin: 0 = posterior scutal margin lateral to scutellum either not 

grooved or without cluster of setae (Figs. 10, 19, 22, 38, 48, 55); 1 = posterior scutal 

margin lateral to scutellum grooved for the insertion of the anterior margin of the tegula, 

with small cluster of setae on the medial edge of groove (Fig. 30). 

 



 

 28 
 

 

37.  Scutellum Shape (Female): 0 = large, convex, gently sloping down posteriorly 

(Figs. 19, 22, 50, 51); 1 = wider than long, sloping up and slightly pointed posteriorly 

(Figs. 37, 38); 2 = conical and tooth-like, narrowed anteriorly, slightly laterally 

compressed, and flattened posteriorly (Figs. 9, 11, 54, 55); 3 = small, strongly convex, 

not sloping posteriorly (Fig. 53); 4 = flat, wider than long (Fig. 48); 5 = square, slightly 

raised and laterally compressed medio-posteriorly (Fig. 29); 6 = large, slightly convex, 

not sloping posteriorly; 7 = slightly convex, wider than long, lateral and posterior margin 

with upturned carina (see Darling 1991b: Figs. 6, 9). 

 There is a tremendous amount of morphological variation in the diparine 

scutellum.  State 1, 6, and 7 appear to autapomorphic for Neapterolelaps, Dozodipara, 

and Bohpa, respectively.  Dipara turneri is coded as state 0; although its scutellum is 

slightly flattened, it is still large and slightly convex. 

 

38.  Axillae (Female): 0 = normal, large and convex (Figs. 19, 22, 50, 51); 1 = reduced 

and convex (Fig. 38); 2 = reduced and concave or flat (Figs. 10, 29); 3 = entirely absent 

(Fig. 48); 4 = indistinct from scutellum, indicated only by faint sulcus between axilla and 

scutellum (see Darling 1991b: Figs. 1, 3). 

 State 4 is autapomorphic for Bohpa. 

 

39.  Posterior Notal Wing Process (Female): 0 = present, pointed (Figs. 19, 22, 50, 51); 

1 = absent (Figs. 29, 46, 47); 2 = present but squarely truncate (Fig. 38); 3 = present but 

truncate and rounded. 
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 Many apterous diparines have a reduced or absent posterior notal wing process.  

This character may be an accurate measure of “potential” wing size, as taxa with both 

apterous and macropterous members have complete posterior notal wing processes even 

in their apterous members.  State 2 is autapomorphic for Neapterolelaps. 

 

40.  Frenum: 0 = present; 1 = absent. 

 This character has been previously used to distinguish Lelaps (Spalangiolaelaps) 

(frenum absent) from Lelaps (frenum present).  Grissell (1995) used this character in his 

phylogenetic analysis of the Toryminae and found it to be extremely homoplastic.  This 

character may not be entirely independent from scutellum shape, as taxa with conical 

scutella never possess a frenum. 

 

41.  Metanotum: 0 = normal, sculptured, narrow band (Figs. 20, 22, 50, 51, 53); 1= 

absent, or present only as smooth narrow strip (Figs. 10, 38, 48); 2 = smooth, high, and 

vertical. 

 

42.  Dorsellum: 0 = present as raised, convex medial region of metanotum; 1 = 

completely absent (Figs. 10, 19, 29, 38, 48, 50, 51, 55); 2 = modified into cup-like 

structure (Fig. 22). 

 Moranila (and the entire tribe of Moranilini) uniquely possesses a modified, cup-

shaped dorsellum. 
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43.  Propodeal Shape: 0 = propodeum normal, descending posteriorly in lateral view, 

but at least 1.5X longer than high (Figs. 19, 37, 50, 51); 1 = propodeum steeply 

descending posteriorly in lateral view, as long as high or higher than long; 2 = 

propodeum rising posteriorly from anterior margin for a least a portion of its length (Figs. 

9, 10, 54, 55); propodeum dorsally flat in lateral view, wider than long in dorsal view 

(Figs. 46, 47); propodeum dorsally flat in lateral view, longer than wide in dorsal view 

(Fig. 28). 

 Propodeal height and length measurements are made from the median posterior 

margin of metanotum to the dorsal margin of propodeal foramen. 

 

44.  Propodeal Spine: 0 = without anterior or median spine (Figs. 9, 10, 19, 22, 28, 29, 

37, 38, 48, 50, 51, 55); 1 = with anterior spine, sometimes with a median carina 

emanating posteriorly; 2 = with median spine with 4-6 carinae emanating from it. 

 This character is included to help in resolving the relationships between and 

within Dipara (Parurios) and Dipara sensu Boucek (1988).  Lelapsomorpha is coded as ? 

for this character because it does have an anterior protrusion on its propodeum, however, 

the protrusion is wide and dorsally flat, and therefore difficult to code as a spine. 

 

45.  Plicae: 0 = absent, or present but propodeum not strongly depressed lateral to plicae; 

1 = propodeum with longitudinal plicae, and propodeum strongly depressed lateral to 

plicae. 
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46.  Postspiracular Area: 0 = normal, suture between postspiracular area and 

metapleuron diagonal (Figs. 28, 37, 54, 55); 1 = facing posteriorly, suture between 

postspiracular area and metapleuron vertical (Fig. 49). 

 

47.  Propodeal Foramen: 0 = normal, open in one plane (Fig. 49); 1 = hinge-like, open 

in two planes (posteriorly and ventrally) (Fig. 31). 

 The genera Conophorisca and Myrmicolelaps all possess a propodeal foramen 

which appears hinge-like (i.e. it appears as two parabolas abutting at right angles, 

opening both posteriorly and ventrally). 

 

48.  Prepectus Extension: 0 = reduced, not extending posteriorly to tegula (Figs. 46, 47, 

54); 1 = elongate, extended posteriorly along lateral margin of scutum to anterior margin 

of tegula (Figs. 20, 37). 

 Conodipara, Conophorisca, and Myrmicolelaps all have a prepectus which comes 

close to but does not touch the tegula.  All of these genera have extremely short scuta, 

and the reduced distance between the prepectus and the tegula is hypothesized to be the 

result of the scutal reduction rather than an extended prepectus.  These genera are 

therefore coded as state 0. 

 

49.  Tegula Shape: 0 = normal, flap-like (Figs. 20, 28, 30, 37); 1 = extended anteriorly 

along underneath lateral margin of scutum (Figs. 46, 47, 54, 55). 
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50.  Mesepisternal Depression: 0 = absent (Figs. 20, 28, 37, 54); 1 = present (Fig. 46). 

 In the genera Nosodipara and Pseudoceraphron, there is a black, cylindrical 

depression on the anterior margin of the mesepimeron, which is partially laterally 

concealed by the pronotum (although visible ventrally) in all species except Nosodipara 

monteithorum. 

 

51.  Acropleuron: 0 = normal (Figs. 20, 37, 46, 47); 1 = large, convex, broadly expanded 

along entire dorsal length of mesopleuron (Figs. 9, 10, 11, 28, 54, 55). 

 Pyramidophoriella has a large, convex acropleuron which is not expanded 

anteriorly and is coded as ambiguous. 

 

52.  Posterior Mesopleural Sculpture: 0 = mesepipleuron posterior to femoral 

depression smooth; 1 = mesepipleuron posterior to femoral depression sculptured. 

 Although variable and difficult to code in many taxa, this character is included 

because it was found to reliably separates typcial females of Dipara (Parurios) (smooth) 

from those of Dipara s.  s. (rough).  Mesolelaps and Pyramidophoriella have a strongly 

sculptured area surrounded by smooth areas, and are coded as ambiguous for this 

character. 

 

53.  Axillary Wing Sclerite: 0 = not visible; 1 = expanded, present  as tegula-sized 

sclerite latero-posterior to mesowing bud (Fig. 30). 

 Myrmicolelaps paradoxus is unique in that the axillary wing sclerite is expanded 

and completely covers the mesowing bud.  
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54.  Metatibial Spur Number: 0 = 2; 1 = 1. 

 It should be noted that the number of metatibial spurs in the Conophorisca + 

Myrmicolelaps clade is more variable than the taxa coded imply, as examination of 

undescribed species in the latter clade shows multiple reversals to 2 spurs.  The number 

of metatibial spurs appears to have been reduced within many groups, including 

Cleonyminae (Gibson 2003), Toryminae (Grissell 1995), and Chalcididae (Wijesekara 

1997).  

 

55.  Metatibial Spur Length: 0 = longest spur <1.5X as long as width of tibia at point of 

insertion (Figs. 32, 33); 1 = longest spur at least 2X as long as width of tibia at point of 

insertion (Fig. 98). 

 The longer metatibial spur in Pseudoceraphron (Dipareta) regieri is between 1.5-

2X the width of the tibia, and is coded as ambiguous. 

 

56.  Metacoxal Striations: 0 = absent (Figs. 23, 49); 1 =present (Figs. 21, 28, 32, 54). 

 There are some genera in which different species have varying degrees of overall 

sculpture.  In the case where many species in a single genus have strong, apparent 

striations and other have faint, less apparent strations, the taxon is coded 1 in this 

analysis. 

 

57.  Metacoxal Brush: 0 = absent (Figs. 21, 28, 32, 46, 54); 1 = present (Fig. 39). 

 A thick vertical brush of white setae is present on the posterior margin of the 

metacoxa in Australolaelaps, Neapterolelaps, and Archaeolelaps.  
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58.  Metacoxal Shape: 0 = normal, posteriorly convex (Figs. 21, 23, 28, 32, 39, 54); 1 = 

laterally compressed, large concave surface facing posteriorly (Fig. 49). 

 

59.  Admarginal Setae (in winged forms): 0 = absent; 1 = present. 

 All winged Diparinae appear to possess longer than normal setae on the ventral 

surface of the forewing just posterior to the marginal vein.  If the female is apterous, and 

the male is both known and winged, the taxon is coding according to the male.  Darling 

(1991a) noted the presence of admarginal setae are also present in many eulophid genera. 

 

60.  Ratio of Marginal Vein to Stigmal Vein: 0 = marginal vein is less than 1.5X length 

of stigmal vein; 1 = marginal vein is greater than 3X length of stigmal vein. 

 

61.  Petiole Length (Female) : 0 = broader than long to 1.2X as long as broad; 1 = at 

least 2X longer than broad. 

 

62.  Petiole Shape: 0 = cylindrical, 1 = strongly constricted antero-ventrally (Figs. 11, 

12, 34); 2= midway along petiole length, curves downward at a sharp angle. 

 State 2 is autapomorphic for Conodipara. 

 

63.  Petiolar Setal Pairs (Female): 0 = petiole without setae (Figs. 11, 12, 34); 1 = 

petiole with 1 to 4 pairs of lateral or dorso-lateral setae; 2 = petiole with single pair of 

strong, dark bristles (Fig. 53). 
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 State 2 is autapomorphic for Pondia.  This state is added here instead of as a 

bristle character for two reasons.  First, a unique bristle character for Pondia is 

autapomorphic and would be phylogenetically uninformative, and second, the bristle pair 

in Pondia is positionally homologous to the setal pairs in other taxa coded as state 1.   

 

64.  Petiolar Setal Tufts (Male): 0 = petiole without tufts of setae; 1 = petiole with 

lateral tufts of thick, white setae, at least in anterior half.  

 In Archaeolelaps, the tuft is present only along the anterior half of the petiole, 

while in Neapterolelaps it is present along the entire length of the petiole. 

 

65.  GT1 Constriction: 0 = GT1 rounded or straight lateral to petiolar insertion (Fig. 12); 

1 = GT1 dorso-ventrally constricted lateral to petiolar insertion. 

 

66.  GT1 Size: 0 = normal, covering less than a quarter of the distance from anterior 

margin of gaster to anterior margin of cercus; 1 = expanded, covering at least half of the 

distance from anterior margin of gaster to anterior margin of cercus (Figs. 12, 34). 

 Within Diparinae only Pyramidophoriella lacks an expanded GT1. 

 

67.  Setal Tufts on GT1: 0 = absent (Figs. 11, 12, 19, 34); 1 = present (Figs. 37, 50, 51). 

 When present, thicks tufts of long, white setae are present on the anterior surface 

of GT1 just lateral to the petiole.   

 

68.  Cercal Form: 0 = exerted, digitform, 1 = flat, plate-like. 
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  Gibson (20003) coded most cleonymines as having plate-like cerci, although the 

hypothetically primitive genera Bouckekius and Chalcidiscelis have digitform cerci.  

Digitiform cerci have also been recorded in Archaeopelma (Eupelmidae) (Gibson 1989), 

female Torymidae, Agaonidae s. l., and Chromeurytominae (Pteromalidae) (Grissell 

1995). 

69.  Cercal Setae: 0 = short; 1 = long (Fig. 13, 17, 24, 34, 35, 41). 

  

70.  Cercal Brush: 0 = absent (Fig. 24); 1 = present (Figs. 13, 17, 34, 35, 41). 

 The cercal brush is a dense patch of setae abutting the anterior rim of the cercus 

(see Methods section). 

 

71.  Sexual Dimorphism: 0 = absent; 1 = present. 

 Minor differences in metasomal and antennal shape are not coded as dimorphism.  

Conodipara, Conophorisca, and Myrmicolelaps were all coded as absent for this 

character.  However, rather than possessing generalized females and males as Liepara 

and the outgroup taxa do, these African genera have males which resemble the 

specialized wingless females typical of diparines.  However, as this involves speculation, 

the original coding was kept. 

 

72.  Flagellar Segments (Male): 0 = flagellar segments cylindrical and short, at most 

1.5X as long as wide; 1 = flagellar segments cylindrical and long, at least 1.5X as long as 

wide; 2 = flagellar segments pedunculate and long, at least 1.5X as long as wide. 
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 This character is coded only for sexually dimorphic genera with known males, so 

as not to add weight to the sexual dimorphism character itself. 

 

73.  Flagellar Setae (Male): 0 = male antennae with short setae; 1 = male antennae with 

long, erect setae; 2 = male antennae with long, apically appressed setae. 

 As with the previous character, this character is coded only for sexually 

dimorphic genera with known males. 

 

74.  Number of Anelli (Male): 0 = 1 anellus; 1 = 3 anelli. 

This character is included in addition to sexual dimorphism because 

Spalangiopelta is sexually dimorphic and the male has 3 anelli, whereas in sexually 

dimorphic diparines, the male has only a single anellus regardless of the female.  

Characters #74-76 may appear out of order in a morphological sense.  This is because 

they were added to the matrix after the initial matrix was completed to further elucidate 

the relationship between Ceinae and Diparinae. 

 

75.  Claval Peg-Like Sensillae: 0 = absent; 1 = present. 

 This character was identified by Darling (1991b) as a potential synapomorphy for 

Ceinae, although the genus Bohpa (Darling 1991b) does not possess them. 

  

76.  Torular Position: 0 = antennal toruli separated from oral fossa by a distance of less 

than 1 torulus diameter; 1 = antennal toruli separated from oral fossa by a distance of 

greater than 2 torulus diameters (Figs. 8, 16, 27, 36, 44). 
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Phylogenetic Methodology 
 

Parsimony analyses were performed using PAUP* version 4 (Swofford 1999).  

All characters were treated as unordered.  Heuristic searches were conducted using 100 

random addition sequences, and multiple states were treated as variable (ambiguous data 

were distinguished from polymorphic data).  Characters were then reweighted using the 

rescaled consistency index, and a new heuristic search was performed.  This process was 

repeated to determine if topology would continue to change with successive reweighting 

steps.  Although there was minor variation in the number of steps following each 

reweighting/search iteration, tree topology never varied from the topology determined by 

the initial reweighting/search step.   In all analyses the combined notauli character (#31) 

was used rather than the separate notaular characters (#32-34) to avoid overweighting of 

notauli.  Two permutations of the data set were tested.  First, Bohpa (Ceinae) was both 

included and excluded in analyses.  Second, a data set was tested in which all bristle 

positional characters were removed (#22-30).  The reasoning for these permutations is 

discussed in the previous section.  Character state evolution was traced using MacClade 

(Maddison and Maddison 1992), and all indices mentioned were calculated from the 

analysis excluding Bohpa but including bristles unless otherwise noted. 

 

Phylogenetic Results 
 

 The parsimony analysis excluding Bohpa but including bristle positional 

characters resulted in 472 trees (310 steps, not shown).  After the characters were 

reweighted, the heuristic search resulted in 15 trees (strict consensus shown in Figure 1).  
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The parsimony analysis excluding Bohpa and bristle positional characters resulted in 437 

trees (267 steps, not shown).  After the characters were reweighted, the heuristic search 

resulted in 2773 trees (strict consensus shown in Figure 2).  The parsimony analysis 

including Bohpa and bristle positional characters resulted in 118 trees (320 steps, not 

shown).  After the characters were reweighted, the heuristic search resulted in 135 trees 

(strict consensus shown in Figure 3).  The parsimony analysis including Bohpa but 

excluding bristles resulted in 1461 trees (276 steps, not shown).  After the characters 

were reweighted, the heuristic search resulted in 120 trees (strict consensus shown in 

Figure 4). 

 Diparinae excluding Liepara Boucek, Eunotinae, and Coelocybinae were 

recovered as monophyletic in all analyses.  In no analyses was Liepara recovered within 

Diparinae.  Liepara appeared as sister-group to Diparinae when Bohpa was excluded.  

Ceinae was recovered as monophyletic in analyses excluding Bohpa, but paraphyletic as 

((Spalangiopelta + Cea) + Bohpa) + Diparinae in analyses including the taxon. Bohpa 

was recovered as sister-group to Diparinae in analyses in which it was included.  In three 

of the analyses, Australolaelaps + (Neapterolelaps, Archaeolelaps) represented the basal 

divergence within Diparinae, and in the fourth analysis only Netomocera was basal to it.  

In the analysis excluding Bohpa and including bristle positional characters, Lelaps was 

recovered as monophyletic.  In the remainder of the analyses it was paraphyletic.  Dipara 

was recovered as a paraphyletic grade in the analysis excluding Bohpa and including 

bristle positional characters, and in the remainder of the analyses was recovered as 

paraphyletic only with respect to Pondia.  In all analyses Boeria, Cerodipara, and 

Dozodipara formed a paraphyletic grade at the base of the remaining diparines. 
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Data Set Permutations 
 

 Bristle characters did not appear to uniformly impact tree construction between 

analyses both including and excluding Bohpa.  Character state reconstructions for the 

bristle positional characters were examine using MacClade (Maddison and Maddison 

1992), and different characters supported different clades.  It is therefore unlikely that 

bristle positional characters are overwhelming other signal in the analyses, which 

suggests that bristles pairs in different positions are evolving independently.  Second, 

when bristle positional characters were included, the only area of the tree where there 

was a transformation requiring a large number of steps was in the paraphyletic grade of 

Boeria and Cerodipara.  In analyses where bristles were excluded, Cerodipara and 

Boeria were sister-taxa.  However, this possible impact appears minor in comparison to 

the additional information provided by the bristle positional characters.  Therefore, the 

analysis utilizing bristle positional characters was preferred.  

The inclusion or exclusion of Bohpa had a dramatic impact on tree construction.  

When Bohpa was included it was sister-taxon to Diparinae, and this potential relationship 

is discussed below in the Sister-Group Relationships section.  Additionally, the inclusion 

of Bohpa heavily impacted the internal phylogeny of Diparinae, most likely affecting the 

reweighting of characters important to the phylogeny of the derived diparines, because it 

had very little impact on which character states were ancestral for Diparinae.  As Bohpa 

is flightless and appears highly modified for that role, it shares many characters with the 

more derived wingless diparines (e.g., a reduced metanotum), likely due to convergent 

evolution (in no analysis was Bohpa sister-group to the more derived diparines).  This 

caused many characters which appear to be of high phylogenetic utility in the other 
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analyses to be strongly down-weighted in the reweighting step, as many characters 

became more homoplastic with Bohpa’s inclusion (e.g., the inclusion of Bohpa in the 

analysis drops the RCI of the metanotum character (#44) from 0.63 to 0.44).  For the 

aforementioned reasons the tree excluding Bohpawas preferred with regard to the internal 

phylogeny of Diparinae, although Bohpa may represent the sister-group to Diparinae.    

 

Evaluation of Traditional Characters 
  

 Although most diparines are easily recognized by chalcidologists, there has been 

no morphological evidence given to support their monophyly. They have traditionally 

been defined by various subsets of seven characters, although the phylogenetic value of 

these characters has not previously been examined.  Additionally, these characters have 

only been used diagnostically in regional revisions, so their utility on a world level has 

also been unknown.  The distribution of these characters throughout Diparinae and 

Pteromalidae is discussed below, and the phylogeny is used to evaluate their diagnostic 

utility. 

 

1) Strong, dark bristles on the vertex and dorsal surface of the mesosoma (character 

#21).  Although bristles are considered a trademark character for Diparinae, they are 

absent in many genera (e.g., Neapterolelaps, Myrmicolelaps) and their presence and 

thickness is variable in others (e.g., Dipara).  Additionally, similar mesosomal bristles 

are present in many other pteromalids, including some eunotines, coelocybines, and 

species of Spalangiopelta (Ceinae).  Only the configuration of the vertex bristles appears 

to be unique among the diparines.  In Diparinae, the vertex bristles are arranged along the 
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occipital margin, ocellar triangle, and along the dorso-frontal margins of the eyes (Fig. 

18).  In other pteromalids with vertex bristles, the bristles are often uniformly distributed 

across the entire vertex (e.g., Liepara, Lelapsomorpha (Coelocybinae), Spalangiopelta 

(Ceinae)).  Based on the phylogeny, bristle presence/absence appear to be extremely 

homoplastic (RCI = 0.12) within Diparinae and more broadly Pteromalidae, and provides 

little phylogenetic or diagnostic utility. 

 

2) Transverse striations on the posterior margin of the metacoxa (character #56).  

Striations are present on most diparines, although they are absent in Pseudoceraphron 

and Nosodipara, and their strength can vary dramatically within genera.  The presence of 

this character outside Diparinae is difficult to determine, as many pteromalids have some 

sculpture on the posterior surface of the metacoxa, which is often difficult to judge 

whether or not it is transversely striate.  This character has limited phylogenetic and 

diagnostic utility because of its sporadic loss within Diparinae (RCI = 0.19) and coding 

difficulties outside of the diparines.  However, this character does support a close 

relationship between Diparinae + Liepara, with the character either evolving at the base 

of (Diparinae + Liepara) + Eunotinae and being subsequently lost in Moranila, or being 

independently derived in both Diparinae + Liepara and Eunotus. 

 

3) High insertion of the metacoxa.  Many diparines have their metacoxal insertion 

significantly higher than their mesocoxal insertion.  However, this character shows 

continuous variation throughout Diparinae, and both coxae are inserted on the same level 

in some genera (e.g., Pseudipara), making metacoxal striations difficult to use as a 
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diagnostic feature.  This character was not coded for the phylogenetic analysis, because it 

could not be divided into discrete states. 

 

4) Expanded first gastral tergite (GT1) covering at least a third of the metasoma 

(character #66).  This character is present in all diparines except Pyramidophoriella, 

although it is also distributed throughout many pteromalid subfamilies (e.g., Eunotinae, 

some Miscogasterinae). As with the metacoxal striations, this distribution limits the 

character’s diagnostic value.  The ancestral condition within the Diparinae is an 

expanded GT1 (RCI = 0.38).  An expanded GT1 appears to be sympleisiomorphic for 

Diparinae if Liepara is the sister-group, as it appears in the phylogeny to be 

synapomorphic for (Diparinae + Liepara) + Eunotinae.  However, when Bohpa is sister-

group to Diparinae, an expanded GT1 is synapomorphic for Diparinae.  The expansion of 

GT1 may prove to have value in higher phylogenetic studies of Pteromalidae. 

   

5)  Antennae with one anellus, seven additional funicular segments, and three club 

segments (characters #15, 16, 74).  This feature is broken up into three characters in the 

phylogenetic analysis: number of anelli in the female (#15), number of anelli in the male 

(#74), and number of flagellar segments (#16).  These characters have little value for 

diagnosing diparines, as many diparine females have more than one anellus (e.g., 

Nosodipara, Pseudoceraphron), and many other pteromalid groups have similar antennal 

formulas (e.g., some Cleonyminae).  The number of anelli in diparines appears to 

correlate with body size, as the most diminutive genera (e.g., Pseudoceraphron) have the 

most anelli, and in Dipara an increase in anellar number appears to correlate with a 
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decrease in body size.  Although these characters have limited diagnostic value, they do 

provide useful phylogenetic information and all have high consistency indices (#15: 

RCI=0.75; #74: RCI=1.00; #16: RCI=1.00).  Presence of a single anellus is 

pleisiomorphic for the Diparinae when Liepara is sister-taxon and synapomorphic when 

Bohpa is sister-taxon.  An increase in anellar number is synapomorphic for the 

Nosodipara + Pseudoceraphron clade, and a second increase is synapomorphic for 

Pseudoceraphron.  The number of anelli in both males and females support a sister-group 

relationship of  Ceinae + Coelocybinae rather than Ceinae + Diparinae.  A reduced 

number of flagellar segments is synapomorphic for Eunotinae. 

 

6) Female often wingless.  This character is extremely plastic within Diparinae at the 

genus, species, and intraspecies level, and was therefore not coded in the analysis.  For 

example, many genera contain both macropterous and apterous species (e.g., Dipara, 

Lelaps, Parurios), and Boucek (1988) noted a single species of Australian Dipara which 

had females showing the full range of macroptery, brachyptery, and aptery.  Other 

characters included in the analysis provide a more accurate and less variable measure of 

‘potential’ wing size.  For example, the posterior notal wing process (#39) is always 

present and fully expanded in genera which have both macropterous and apterous 

species, while it is often reduced or absent in genera which have only wingless species.  

The diagnostic utility of aptery is limited; many wingless female pteromalids are 

diparines, but many female diparines are not wingless. 
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7) Presence of long cercal setae (character #69). This character is present throughout 

Diparinae and Liepara, and is the only synapomorphy for the combined group 

(RCI=0.38).  The reconstruction of long cercal setae is ambiguous when Bohpa is sister-

taxon to Diparinae.  

 

Monophyly of Diparinae 
 

 While monophyly of Diparinae is supported in all analyses, the synapomorphies 

which unite the clade differ whether Liepara or Bohpa is considered the sister-taxon.  

Only a single synapomorphy unites Diparinae in both analyses: the presence of a cercal 

brush.  When Liepara is considered sister-taxon to Diparinae, diparine monophyly is 

supported by five additional synapomorphies: lack of a smooth, convex dorsellum, 

presence of sexual dimorphism, presence of an occipital carina, presence of admarginal 

setae, and a long marginal vein.  When Bohpa is considered sister-taxon to Diparinae, 

diparine monophyly is supported by three additional synapomorphies: an expanded GT1, 

transverse striations of the posterior margin of the metacoxa, and a single anellus in the 

female.  Diparinae is diagnosable by a combination of two of these features: lack of a 

smooth, convex dorsellum and presence of a cercal brush.  Those characters which have 

not already been analyzed are discussed below.   

 

1) Presence of a cercal brush (character #70).  All diparines have a cercal brush (which 

is defined in the Methods section).  The size and density of the brush varies throughout 

the Diparinae, but it is always present (Figs. 13, 17, 34, 35, 41).  The cercal brush is 

synapomorphic for Diparinae in all analyses (RCI=1.00).  In a broad survey of 
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Pteromalidae, the cercal brush was only noted in two other taxa.  First, Spalangia 

(Spalangiinae) possesses a similar brush.  The spalangiines appear to be unrelated to the 

diparines, as they have little morphological similarity, and  molecular evidence also 

suggests a lack of close relations (Desjardins et al, in press).  The presence of this 

character in both taxa could represent convergent evolution, as both taxa inhabit similar 

environments.  The only other genus in Spalangiinae, Playaspalangia, was not examined 

for this character.  However, Playaspalangia is a rare genus known only from Mexico 

and Sri Lanka, which parasitizes Diptera under rotting algae (Yoshimoto 1976), and may 

be a highly derived species of Spalangia.  Additionally, a sparse cercal brush was found 

on the holotype of Spalangiopelta ferrierei, although it appeared absent on the two 

additional female specimens of the species.  To assess the state of this character 

throughout Spalangiopelta, multiple specimens of 3 additional Spalangiopelta species 

were examined (S. canadensis, S. ciliata, and S. felonia).  None of these species showed 

any evidence of a cercal brush, so the character is coded as absent in the genus, with the 

sparse brush in S. ferrierei being considered an aberrant condition. 

 

2) Absence of a broad, convex dorsellum (character #42).  All diparines lack a broad, 

convex, dorsellum (Figs. 10, 19, 29, 38, 48, 50, 51, 55) (RCI=1.00).  In some diparines 

the metanotum is absent entirely, so the theoretical presence of a dorsellum cannot be 

ruled out in those taxa.  However, the most primitive diparines do possess a metanotum 

which is not reduced, and lack a dorsellum, so it is unlikely that the dorsellum is 

“hypothetically regained” in taxa lacking a metanotum.  A reduced, smooth metanotum 

without a convex dorsellum has been noted in other pteromalids, particularly Bohpa and 
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an undescribed, apterous cleonymine from Madagascar.  Additionally, this state is 

present in the apterous encyrtid Tetracyclos boreios (redescribed in detail by Gibson and 

Yoshimoto 1981).  This reduction may be an adaptation for increased mesosomal 

mobility in apterous chalcidoids, and therefore may have been independently derived in 

Bohpa.  However, the ancestral state in Diparinae is macroptery, so aptery cannot fully 

explain the loss of the dorsellum within Diparinae.  This feature is synapomorphic for 

Diparinae when Liepara is its sister-taxon and Diparinae + Bohpa when Bohpa is its 

sister-taxon.  Moranilines (Eunotinae) also lack a broad, convex, dorsellum, and instead 

have a cup-shaped projection issuing from the medial portion of the metanotum.  

However, this configuration is different from the undifferentiated metanotum in diparines 

and is coded as a separate state. 

 

3) Sexually dimorphic (character #71).  Most diparines with known males are sexually 

dimorphic, although this trait was lost once within the group (CI=0.28). When Liepara is 

considered sister-taxon to Diparinae, sexual dimorphism evolves twice independently, 

once in Diparinae and once in Spalangiopelta.  Alternatively, in analyses including 

Bohpa, sexual dimorphism evolves at the base of the Ceinae and is subsequently lost in 

Cea or evolves twice independently in Diparinae + Bohpa and Spalangiopelta.  Despite 

the phylogenetic value of sexual dimorphism, it provides little diagnostic utility.  Most 

often only single specimens are available for identification purposes, and even when 

multiple specimens are present, it is difficult to identify them as con-generic or -specific. 
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4) Presence of an occipital carina (character #6).  The presence of an occipital carina 

appears to be synapomorphic for Diparinae when Liepara is its sister-group (RCI=0.13), 

although in analyses including Bohpa, it evolves at the base of the Ceinae and is 

subsequently lost in Cea or evolves twice independently in Diparinae + Bohpa and 

Spalangiopelta.  Its low consistency index and sporadic distribution throughout 

Pteromalidae make the occipital carina’s phylogenetic utility difficult to judge.  A 

selection of outgroups which have occipital carinae would likely have given different 

results.  The presence of an occipital carina has no diagnostic value for Diparinae, as the 

trait is transformed multiple times within the group. 

 

5) Admarginal setae (character #59) and 6) Long marginal vein (character #60).  

These character are discussed below in the Sister-Group Relationships: Bohpa Darling 

section.   

 

Sister-Group Relationships: Liepara Boucek 
 

 In his revision of the Australasian Chalcidoidea, Boucek (1988) synonomized the 

existing tribes of Diparinae and erected a new tribe within the subfamily, Lieparini, for 

the newly described genus Liepara.  Although Boucek made no specific statement that 

Liepara was sister-group to the remainder of the Diparinae, his tribal classification 

suggests this relationship.  Boucek united Liepara with the Diparinae based on five 

characters: 1) antennal formula 11173, with a clearly three-segmented symmetrical clava, 

2) GT1 distinctly enlarged, 3) hind coxa inserted fairly high, 4) hind coxa with distinct 

transverse striations, and 5) typical diparine-like pattern of bristles.  As discussed above, 
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many of these characters have limited phylogenetic value, due to their sporadic presence 

throughout Pteromalidae (1, 2, 5) or coding difficulties (3, 4), and none of these 

characters appear to be synapomorphic for Diparinae + Liepara or place Liepara within 

Diparinae (with the possible exception of 4, discussed below).  The pattern of vertex 

bristles is particularly interesting, because the interpretation of Liepara’s vertex bristles 

here differs from that of Boucek (1988).   As already noted, the vertex bristles of 

diparines are arranged along the occipital margin, ocellar triangle, and along the dorso-

frontal margins of the eyes.  The vertex bristles on Liepara appear to uniformly cover the 

vertex, and more closely resemble the bristles of Lelapsomorpha and Spalangiopelta than 

those of Diparinae.  While Lelapsomorpha and Spalangiopelta appear to have a much 

greater number of bristles than Liepara, they also have a much smaller scrobe and larger 

vertex, providing more positionally homologous space for the placement of bristles.  

 Liepara does not appear to belong to Diparinae and in particular lacks the highly 

consistent cercal brush and a medially undifferentiated metanotum.  Liepara appears as 

the sister-group to the remainder of Diparinae in phylogenetic analyses excluding Bohpa, 

although the only synapomorphy uniting this clade is long cercal setae (#69).  The 

presence of metacoxal striations (#56) also supports this relationship in one of two most 

parsimonious reconstructions (the other reconstruction is ambiguous).  Additionally, this 

sister-group relationship is supported by biogeography.  The most basal lineage of 

diparines, the Neapterolelapini, has an Australasian distribution, as does Liepara.  

Netomocera, another primitive diparine, is also present in this region.  Ceinae, on the 

other hand, which will be discussed below as another potential sister-group to Diparinae, 

is one of the few pteromalid subfamilies absent from the Australasian region.   
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Even if Liepara is sister-group to Diparinae as presented here, maintaining 

Liepara within Diparinae would greatly weaken the definition of the latter group.  Two 

qualitative diagnostic features would be eliminated and replaced with a single character 

which is much more difficult to diagnose, as the length of the cercal setae is more 

quantitative than qualitative.  Additionally, the support for Liepara as sister-group to 

Diparinae is not strong, as Bohpa is recovered as sister-group to Diparinae when included 

in the analysis.  The taxonomic effects of removing Liepara from Diparinae and 

Liepara’s placement within Pteromalidae are further discussed in the genus’ treatment in 

the generic revision. 

 

Sister-Group Relationships: Bohpa Darling 
 

 Ceinae is a cosmopolitan (although absent from the Australasian region) 

pteromalid subfamily including three genera: Bohpa, Cea, and Spalangiopelta.  In the 

phylogenetic analysis excluding Bohpa, Ceinae was resolved as monophyletic based on 

five synapomorphies, only the first of which is not homoplastic: presence of claval peg-

like sensillae,  first funicular segment subequal in length to pedicel, presence of 

admarginal setae, marginal vein long, and toruli within 1 torulus diameter from the oral 

fossa.  In these analyses, Ceinae was placed as sister-group to Coelocybinae based on 

three synapomorphies: female with three anelli, male with three anelli, and GT1 not 

expanded.  The number of anelli may not be independent between non-sexually 

dimorphic taxa, although Spalangiopelta shows both sexual dimorphism and three male 

anelli, while all diparines, whether sexually dimorphic or not, have only one anellus in 

the male.     
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When Bohpa is included, however, Ceinae appears paraphyletic as 

((Spalangiopelta + Cea) + Bohpa) + Diparinae.  The entire clade is supported by two 

synapomorphies: the presence of admarginal setae and a long marginal vein.  The 

reconstruction of sexual dimorphism is ambiguous in part because the male of Bohpa is 

unknown; in one reconstruction it is gained independently in Spalangiopelta and Bopha + 

Diparinae, in the second it is gained at the base of the entire clade and subsequently lost 

in Cea.  Regardless, both reconstructions support a close relationship between Diparinae 

and Ceinae.  The clade of Bohpa + Diparinae is supported by the loss of the dorsellum, 

and Spalangiopelta + Cea is supported by claval peg-like sensillae.  Darling (1991a) 

discusses six characters traditionally used to define Ceinae, and their relevance to a 

mono- and paraphyletic Ceinae are discussed here. 

 

1) Complete notauli.  This state appears pleisiomorphic for both a mono- and 

paraphyletic Ceinae, as all taxa included in the analysis except for the coelocybines and 

Pyramidophoriella have complete notauli.  

 

2) Propodeal spiracles positioned halfway along antero-posterior axis of 

propodeum.  Darling mentions the presence of this character in some Colotrechninae.  

Whether this character state is present in some diparines depends on whether or not the 

nucha is included in the propodeal measurement.  Some diparines with a long nucha, 

such as Myrmicolelaps, have a fairly posteriorly placed spiracle.  If the propodeum is 

measured without the nucha, the spiracle is positioned medially.  However, if the 

propodeum is measured with the nucha, the propodeal spiracle is positioned anteriorly.  
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Regardless, this state would be derived within the diparines, as all basal diparines have 

anteriorly positioned spiracles.  Although not coded in the analysis, this would support a 

monophyletic Ceinae.   

 

3) Toruli situated within 1 torulus diameter from oral fossa.  This state is only present 

in the derived diparine genera Boeria and Cerodipara.  Darling mentions the lower 

positioning of the toruli occurs in some neodiparines, eunotines, cleonymines (Graham 

1969), and colotrechnines (Boucek 1988).  Within this phylogenetic analysis, torular 

position supports a monophyletic Ceinae when Bohpa is excluded, and is gained at the 

base of ((Spalangiopelta + Cea) + Bohpa) + Diparinae and subsequently lost in Diparinae 

when Bohpa is included. 

 

4) Antennal formula 11353.  Darling (1991a) notes the presence of three anelli in some 

Pteromalinae, Miscogasterinae, and Pireninae.  The presence of three anelli in both sexes 

is also found in Coelocybinae and when Bohpa is excluded is synapomorphic for 

Coelocybinae + Ceinae.  However, when Bohpa is included, this feature is independently 

derived in Coelocybinae and ((Spalangiopelta + Cea) + Bohpa) + Diparinae, and 

subsequently lost in Diparinae.   

 

5) Marginal vein long.  Darling does not discuss the distribution of this character 

throughout Pteromalidae, but this feature is synapomorphic for ((Spalangiopelta + Cea) + 

Bohpa) + Diparinae when Bohpa is included.  When Bohpa is excluded, a long marginal 

vein is independently derived in Diparinae and Ceinae.   
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6) Mandibles bidentate.  As with the marginal vein, Darling does not discuss the 

distribution of this character.  This character was not treated in the phylogenetic analysis 

due to the difficulty of coding many diparine genera known from only a few specimens 

whose mandibles could not be observed. 

 

Prior to the description of Bohpa, Darling (1991a) hypothesized that ceines 

weremonophyletic based on two putative synapomorphies, the first of which is a reduced 

number of papilliform sensilla.  He hypothesized that Diparinae + Ceinae is defined by 

papilliform sensilla, and further that Ceinae is defined by a reduced number of those 

sensilla (alternatively, in an equally parsimonious explanation, Diparinae could be 

defined by an increased number of papilliform sensillae).  As defined by Darling (1991a), 

papilliform sensillae are socketed, lobate setae that appear in pairs on the apical margin 

of the funicular segments in ceines. These structures were previously unknown in the 

Chalcidoidea.  Some eulophids have more simple, unsocketed, randomly placed 

structures termed “multiporous pegs”, but Darling stated that the two are likely not 

homologous.  Darling sampled representatives from 15 pteromalid subfamilies, and 

papilliform sensillae were found only on Lelaps, a member of Diparinae.  Although such 

a complex character showed potential as a strong synapomorphy uniting ceines and 

diparines, Darling only investigated a single member of Diparinae.  Unfortunately, this 

character could not be utilized in the phylogenetic analysis, as specimens of many 

diparine genera were unavailable for slide mounting or scanning electron microscopy.  

However, a variety of diparines were examined for this feature. 
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The antennae of males of four available diparine genera (Lelaps, Netomocera, 

Parurios, and Australolelaps) were slide mounted in Hoyer’s (results not shown).  The 

slide of Lelaps was prepared as a positive control, in order the establish the position and 

visibility of the sensilla.  Papilliform sensillae were found in all four genera (including 

the primitive Australolaelaps), suggesting that the presence of sensilla is the ancestral 

state for Diparinae.  Antennal SEMs of the female of Pseudoceraphron (Diparinae) 

reveal a lack of the papilliform sensilla.  This may be an artifact of the placement of 

papilliform sensilla, which in females are most often located beneath the dorsally 

extended apex of the multiporous plate sensilla.  The female of Pseudoceraphron has a 

largely reduced funicle (7-8 segments are anelliform).  Anelliform segments by definition 

lack multiporous plate sensilla, and therefore the majority of funicular segments in 

Pseudoceraphron lack a positionally homologous location for the placement of 

papilliform sensilla.  As the male of Pseudoceraphron is not known for certain, it could 

not be examined for these sensilla.  Additionally, close investigation of antennal SEMs in 

Gibson’s revision of Eupelminae (1995) have revealed papilliform sensilla on a large 

number of eupelmids (e.g. Zaischnopsis, Fig. 354; Reikosiella, Figs. 367-368).  Although 

this character may still prove useful in the phylogenetics of pteromalid subfamilies, its 

distribution must be more carefully examined.     

Darling termed his second ceine synapomorphy “claval peg-like sensillae.”  

However, later that year he published the description of Bohpa (1991b), in which he 

stated that Bohpa has neither the papilliform nor claval peg-like sensillae.  Phylogenetic 

analyses in which Bohpa was included would suggest papilliform sensillae were lost in 

Bohpa, and claval peg-like sensillae are synapomorphic for Spalangiopelta + Cea.  The 
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exceptionally small size of Bohpa may have resulted in the reduction or loss of many 

features, including antennal ones.  It is difficult to speculate on character evolution within 

Ceinae, however, as in a 3 taxon clade a gain and a loss are equally as parsimonious as 

two independent gains of a character state.  Additionally, and outgroups in this analysis 

were chosen to reflect possible diparine relationships rather than ceine ones.  

In addition to the presence of papilliform sensillae, Darling (1991a) proposed the 

presence of admarginal setae on the inner leading margin of the forewing membrane in 

both ceines and diparines.  The presence of these setae does appear synapomorphic for 

((Spalangiopelta + Cea) + Bohpa) + Diparinae in this phylogenetic analysis. Darling 

suggested that these setae might hold the hindwing tight against the body during 

movement in confined spaces.  During the course of this study, many diparine specimens 

were observed in which the setae appear to hold the hind wing in place while they are 

folded against the body.  However, it should be noted that since both diparines and ceines 

search for hosts in leaf litter, this character could be a result of convergent evolution.  

Inclusion of additional characters could help elucidate the relationship between 

Ceinae and Diparinae.  The addition of a propodeal spiracle position would lend support 

to Ceine monophyly, while a papilliform sensillae character would lower support for a 

Bohpa + Diparinae relationship.  However, knowledge of the male of Bohpa could 

potentially provide the strong support for a Bohpa  + Diparinae relationship.  If Bohpa is 

sexually dimorphic, this would support a close relationship between Ceinae and 

Diparinae, as the genus is likely sexually dimorphic.  Also, if the male of Bohpa is 

winged and has admarginal setae and a long marginal vein, this could be the decisive 
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evidence indicating Bohpa as the sister-taxon to Diparinae rather than Liepara.  For now, 

however, the sister-group to Diparinae will have to remain in question. 
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Systematics of the world genera of Diparinae 
 

Diparinae Thomson 
 

Diagnosis:  Diparinae can be diagnosed by a combination of two features: presence of a 

cercal brush (Figs. 13, 17, 34, 35, 41) and absence of a smooth, convex dorsellum (Figs. 

10, 19, 29, 38, 48, 50, 51, 52).  Additionally, the vast majority of diparines have a GT1 

expanded to cover at least ½ the metasoma (Figs. 12, 34) and transverse striations on the 

posterior margin of the metacoxa (Figs. 21, 28, 32, 54).  Females are often apterous or 

brachypterous. 

 

Taxonomic History: Thomson (1876, 1878) first described the group as “subtribus 

Diparides” within Pteromalidae. Ashmead (1904) treated Diparinae as a subfamily of 

Pteromalidae and Lelapinae as a subfamily of Miscogasteridae based on the median 

clypeal tooth found in Lelaps.  Peck (1951) proposed the tribe Diparini and placed it 

within Sphegigasterinae.  Boucek (1954) synonomized the two subfamilies of Ashmead, 

without referencing Peck.  Delucchi (1962) kept Boucek’s subfamily status, but returned 

Diparini to tribal status and created a new tribe, Lelapini.  He separated these tribes based 

on differences of the clypeus, pronotum, antennae, and bristles, although he did not 

qualify these differences.  Hedqvist (1969) retained the two as separate tribes without 

referencing Delucchi’s identical tribal classification (as noted in Heydon and Boucek 

(1992)).  Hedqvist included Lelaps Walker and the Hawaiian genera (Calolelaps 

Timberlake, Mesolelaps Ashmead, Neolelaps Ashmead, and Stictolelaps Timberlake) in 

Lelapini, while he placed the remaining genera in Diparini.  Heydon and Boucek (1992) 
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also noted that it appeared that Hedqvist had replaced the clypeal tooth character of 

Ashmead with brachyptery versus macroptery, as Hedqvist considered Spalangiolaelaps 

Girault (which has wingless females and a median clypeal tooth)  to be part of Diparini.  

Hedqvist (1971) added a third tribe, Netomocerini, which contained only the genus 

Netomocera Boucek.  Although he defined the tribe, none of the characters he listed were 

unique to Netomocera within Diparinae.  Yoshimoto (1977) followed the classification of 

Hedqvist (1969, 1971), apparently also unaware of Delucchi’s (1962) proposal.  Boucek 

(1988) proposed that the three tribes were unnecessary, and Lelapini and Netomocerini 

should be synonomized within Diparini.  He erected a second tribe, Lieparini, for the 

aberrant genus Liepara Boucek.  Heydon and Boucek (1992) followed Boucek’s (1988) 

tribal classification based on the presence of intermediates between the three tribes 

Diparini, Lelapini, and Netomocerini. 

 

Discussion:  The monophyly of Diparinae has been previously discussed in the 

Monophyly of Diparinae section.  Therefore the tribe Lieparini is also removed from 

Diparinae and becomes unplaced within the Pteromalidae. 

 

Biology:  Although the first diparine was described over two hundred years ago, virtually 

nothing has been known about their biology.  The first host was reported by Boucek 

(1988), in which an undescribed Indian species of Parurios was reared from a 

curculionid (Coleoptera) feeding on the roots of Cyperus.  Since most female diparines 

are collected in forest leaf litter, and the only published host record is a curculionid, it has 

often been extrapolated that the entire subfamily parasitizes soil-inhabiting Coleoptera 
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(e.g., Boucek 1988).  In accordance with this hypothesis, Texas A&M entomologists 

reared Lelaps sp. from boll weevil relatives in southern Mexico (J. Woolley, pers. 

comm.).  Weevil parasitism certainly does not apply to all diparines, however, as an 

undescribed species of the African Myrmicolelaps was reared from mantid egg cases 

(Prinsloo pers. comm.), and an additional undescribed species was reared from a tsetse 

fly puparium (Glossinidae: Glossina).  These data suggest that “typical” diparines may 

primarily parasitize beetles (and more specifically weevils), as has been suggested in the 

literature for some time.  Second, that some morphologically bizarre diparines also 

possess deviant biologies, and that parasitism of beetles certainly does not extend 

throughout the subfamily. 

 

Key to the genera of Diparinae 
 

1. Female       2 

Male       15 

2. (1) Metacoxa with thick vertical brush of white setae on posterior margin (Fig. 39); 

anterior surface of GT1 lateral to petiole with thick tufts of white setae (Figs. 37, 

50, 51); longest metatibial spur at least 2X width of metatibia at point of insertion 

(Fig. 40)      Neapterolelaps Girault 

Without thick patches of setae on metacoxae (Figs. 21, 28, 46) or GT1 (Fig. ); 

longest metatibial spur at most 1.5X width of metatibia at point of insertion (Fig. 

32, 33) (questionably 1.5-2X in Pseudoceraphron regieri)    

       3
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3. (2) Mesepisternum with tranverse, cylindrical, black depression (Fig. 46); apical 

clypeal margin concave (Fig. 45); antenna with at least 4 anelli (Fig. 42); eye 

normal, with over 50 facets (Fig. 44); Australasian distribution   

       4 

Mesepisternum without transverse, cylindrical, black depression (Fig. 20, 28); 

apical clypeal margin not concave (may be convex, bilobed, (Fig. 27) or with 

median tooth (Fig. 16)); antenna with 2 or fewer anelli (or rarely, if appearing to 

have 3-4 anelli, then eye reduced with less than 30 facets); Cosmopolitan 

distribution      5 

4. (3) Antenna with 7-8 anelli; posterior margin of gena carinate; posterior surface of 

metacoxa concave (Fig. 49); scutellum flat (Figs. 47, 48)    

       Pseudoceraphron Dodd 

Antenna with 4-5 anelli; posterior margin of gena rounded; posterior surface of 

metacoxa convex (Fig. 21); scutellum convex (Fig. 10)    

       Nosodipara Boucek 

5. (3) Petiole at least 2X as long as wide, and either bent sharply ventrally at 90° angle 

or strongly constricted antero-ventrally (Figs. 12, 34); clava 1- or 2-segmented 

(either all or 2nd and 3rd claval segments fused (Fig. 6))    

       6 

Petiole usually less than 1.5X as long as wide, always straight, and never 

constricted antero-ventrally (or petiole not visible (Fig. 20)); clava distinctly 3-

segmented (Fig. 15)     8 
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6. (5) Nucha with 2 dorso-lateral horn-like projections; petiole bent sharply ventrally at 

90°; propodeal foramen circular, open only in 1 plane (Fig. 49); Afrotropical 

distribution      Conodipara Hedqvist 

Nucha without dorso-lateral horn-like projections; petiole straight and strongly 

constricted antero-ventrally (Figs. 12, 34); propodeal foramen hinge-like, open 

posteriorly and ventrally (Fig. 31); Cosmopolitan distribution   

       7 

7. (6) Toruli on shelf (upper and lower face separated by carinate angle of 90° (Fig. 8)); 

axillary wing sclerite not visible   Conophorisca Hedqvist 

Toruli not on shelf (upper and lower face separated by carinate or rounded angle 

of less than 50°); axillary wing sclerite expanded and visible (Fig. 30)  

       Myrmicolelaps Hedqvist 

8. (5) Prepectus small, not reaching tegula (lateral scutal margin either touches 

mesopleuron or is separated from it by an anteriorly extended tegula (Fig. 54)); 

Afrotropical distribution    9 

Prepectus large, reaching tegula (lateral scutal margin does not touch 

mesopleuron (Fig. 20)); Cosmopolitan distribution 12 

9. (8) Toruli on shelf (upper and lower face separated by carinate angle of 90° (Fig. 8)); 

1 metatibial spur; Madagascar   Dozodipara Desjardins, new  

genus 

Toruli not on shelf (upper and lower face separated by carinate or rounded angle 

of less than 50°); 2 metatibial spurs; Continental Africa    

       10 
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10. (9) Notauli completely absent; propodeum with 2 large dorso-lateral horns, with 

propodeal spiracles situated on the lateral surface of horns (Fig. 55)  

       Pyramidophoriella Hedqvist 

 Notauli present; propodeum without horns  11 

11. (10)With many pairs of strong, dark bristles on vertex and dorsal surface of 

mesosoma; propodeum gently sloping, longer than high    

       Boeria Hedqvist 

With only a single pair of strong, dark bristles on postero-lateral margin of 

frenum; propodeum steeply sloping, higher than long    

       Cerodipara Desjardins, new  

genus 

12. (8) Clava asymmetrical     Netomocera Boucek 

Clava symmetrical     16 

13. (12)Three pairs of scutellar bristles; anellus longer than broad; Neotropical  

distribution     Chimaerolelaps Desjardins,  

new genus 

At most 2 pairs of scutellar bristles; anellus broader than long; Cosmopolitan 

distribution      14 

14. (13)Clypeus without median tooth (Fig. 27, 44); F1 subequal in length to F2  

       Dipara Walker 

Clypeus with median tooth (Fig. 16); F1 at least 1.5X as long as F2   

        Lelaps Walker 
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15. (1) Metacoxa with thick vertical brush of white setae on hind margin; anterior surface 

of GT1 lateral to petiole with thick tufts of white setae; longest metatibial spur at 

least 2X width of metatibia at point of insertion Neapterolelaps Girault 

Metacoxa without thick patches of setae on either the metacoxa or GT1; longest 

metatibial spur at most 1.5X width of metatibia at point of insertion  

       16 

16. (15) Petiole either bent sharply ventrally at 90° angle or straight and strongly 

constricted antero-ventrally (Figs. 12, 34); nucha at least as long than wide; 

acropleuron broadly expanded (Fig. 28); apterous; Afrotropical distribution 

       17 

 Petiole neither L-shaped nor strongly constricted antero-ventrally, may not be 

visible in lateral view; nucha wider than long; acropleuron normal, not broadly 

expanded (Fig. 20); usually macropterous (but may be brachypterous or 

apterous); Cosmopolitan distribution   19 

17. (16)Nucha with 2 dorso-lateral projections; petiole L-shaped; propodeal foramen  

circular, open only in 1 plane    Conodipara Hedqvist 

Nucha without dorso-lateral projections; petiole straight and strongly constricted 

antero-ventrally (Figs. 12, 34); propodeal foramen hinge-like, open posteriorly 

and ventrally (Fig. 31)    18 
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18. (17)Toruli on shelf (upper and lower face separated by carinate angle of 90° (Fig. 8));  

axillary wing sclerite not visible   Conophorisca Hedqvist 

Toruli not on shelf (upper and lower face separated by carinate or rounded angle 

of less than 50 ); axillary wing sclerite visible and expanded (Fig. 30)  

       Myrmicolelaps Hedqvist 

19. (16)Petiole at most as broad as long   Netomocera Boucek 

 Petiole at least 2X longer than broad   20 

20. (19)Clypeus with median tooth (Fig. 16); funicular segments cylindrical and at least 

1.5X as long as wide     Lelaps Walker 

Clypeus without median tooth (Fig. 27, 44); funicular segments either 

pedunculate or less than 1.5X as long as wide Dipara Walker  

 

 

Boeria  Hedqvist 

 

Boeria  Hedqvist 1969: 185.  Type species: Boeria saetosa Hedqvist (orig. desig. and by 

monotypy). 

 

Diagnosis: Boeria is known only from females, and can be diagnosed by a combination 

of features.  First, the toruli are situated low on the face, approximately 2 torulus 

diameters from the oral fossa.  Boeria shares this character with Cerodipara, although the 

toruli are situated at least 4 torulus diameters from the oral fossa in the remainder of the 

diparines.  Three features exist to distinguish Boeria from Cerodipara.  First, Boeria has 
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many pairs of bristles present on the vertex and dorsal surface of the mesosoma, while 

Cerodipara has only a single pair of scutellar bristles on the lateral edges of the frenal 

line.  Also, Boeria has a gently sloping propodeum which is longer than high (Figs. 56, 

57), while Cerodipara has a steeply sloping propodeum which is higher than long (Fig. 

58).  Third, Boeria has parallel-sided inner eye margins, while Cerodipara is the only 

diparine to have ventrally diverging inner eye margins.  Boeria is also the only diparine 

with a full complement of bristles and a broadly expanded acropleuron. 

 

Discussion:  Although the male of Boeria is unknown, given the genus’ placement in the 

phylogeny it would be expected to be sexually dimorphic.  However, the male is also 

unknown for closely related genera, including Cerodipara and Pyramidophoriella.  Only 

5 specimens are known to exist, and it is possible that males are not sexually dimorphic, 

but have just not been collected.  It is difficult to speculate on what the males of Boeria 

would look like, but given the males of Pondia, and the proposed males of 

Pseudoceraphron, it would appear that Boeria males would have pedunculate flagellar 

segments with long, apically appressed setae. 

 Boeria is phylogenetically positioned in a basal grade with Pondia, Cerodipara, 

and Dozodipara, leading to the most derived diparines.   The clade of diparines inclusive 

of Boeria is defined by 2 synapomorphies: a broadly expanded acropleuron and strongly 

arched notauli which meet the posterior scutal margin at the scutoscutellar suture.  Boeria 

is also one of the few taxa whose phylogenetic positioning may be adversely affected by 

the inclusion of bristle characters.  In all analyses excluding the bristle positional 

characters, it is sister-taxon to Cerodipara.  These two genera have a number of features 
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in common, particularly the lower positioning of the toruli, which is unique to these taxa 

among Diparinae.  However, Boeria, which in analyses including bristle positional 

characters is positioned basal to Cerodipara, has a large complement of bristles, as does 

Pondia, which is positioned basal to Boeria.  None of the taxa more derived than 

Cerodipara have any bristles.  The inclusion of bristle positional characters causes a 

sister-group relationship between Boeria and Cerodipara to cost 4 additional steps, 

which may inaccurately outweigh otherwise strong synapomorphies. 

 

Number of Species: 1 described. 

Distribution: South Africa (Western Cape, Eastern Cape). 

Hosts: Unknown. 

Key to Species: None. 

 

Species of Boeria: 

 

saetosa   Hedqvist.  AFROTROPICAL: South Africa. 

Boeria saetosa  Hedqvist 1969: 185-186 (Fig. 8).  Holotype female: S. Africa, 

Pondoland, Port St. John, Jan. 1924. coll. R. E. Turner. (BMNH, examined).  4 

Paratype females: S. Africa, Pondoland, Port St. John, Dec. 1923 (1 female), 29.I-

15.II.1924 (1 female), 1-17.III.1924 (1 female), and Cape Prov., Somerset East, 1-

26.I.1921 (1 female). coll. R. E. Turner. (BMNH, examined). 
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Cerodipara Desjardins, New Genus 

(Fig. 58) 

 

Type Species: Cerodipara sabensis Desjardins, New Species 

 

Diagnosis: Cerodipara is unique among the diparines in having ventrally diverging inner 

eye margins, vertical carinate ridge running from interantennal area to anterior clypeal 

margin, and only a single pair of bristles positioned on the posterior margin of the 

scutellum.  In addition, the toruli of Cerodipara are positioned approximately 2 torulus 

diameters from the oral fossa.  Only Boeria has similarly positioned toruli.  Additional 

characters used to separate Cerodipara from Boeria are discussed in the Boeria 

diagnosis. 

 

Description: Female. Head: Occipital margin rounded; occipital carina absent; upper 

face without strong, transversely carinate sculpture; eyes not posteriorly extended beyond 

occipital margin; inner eye margins ventrally diverging; eyes bare; scrobe present and 

scrobal channel parallel-sided; dorsal margin of scrobe rounded; toruli not on shelf, 

junction between upper and lower face rounded; toruli within 2 torulus diameters of 

ventral margin of face; antennae symmetrically clavate; antennal formula 11173; pedicel, 

first funicular segment, second funicular segment subequal in length; claval apex without 

thick tuft of micropilosity; apical clypeal margin symmetrically bilobed; clypeus with 

medial longitudinal carina; malar groove present; strong, dark bristles on vertex absent. 

Mesosoma: dorsum of mesosoma with single pair of strong, dark bristles on posterior 
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half of scutellum; pronotum short, collar-like; notauli strongly arched along entire length 

(appearing semi-circular) and meeting posterior scutal margin at scutoscutellar suture; 

lateral lobes of scutum similar in color to remainder of scutum; posterior scutal margin 

without setose groove; scutellum large, slightly convex, not descending posteriorly; 

axillae reduced and concave; posterior notal wing process present but truncate, rounded; 

frenum absent; metanotum present as narrow, sculptured band; propodeum at least 1.5X 

higher than long; propodeum without medial spine; plicae absent; suture between 

postspiracular area and metapleuron diagonal; propodeal foramen circular, open in one 

plane; mesepisternal depression absent; prepectus reduced, not reaching tegula; tegula 

normal, flap-like; subalare not visible; acropleuron large, convex, broadly expanded 

along dorsal length of mesopleuron; mesopleuron smooth posteriorly; metacoxa 

posteriorly convex, with transverse striations; metacoxa posteriorly without thick vertical 

brush of seta; 2 metatibial spurs, longer spur <1.5X width of tibia at point of insertion. 

Metasoma: Petiole cylindrical, without setae, broader than long; GT1 expanded, covering 

at least half of metasoma length; GT1 rounded lateral to petiole insertion; cercal setae 

elongate; cercal brush present. Male: Unknown. 

 

Discussion:  In the phylogenetic analysis, Cerodipara is positioned in a basal grade with 

Pondia, Cerodipara, and Dozodipara, leading to the most derived diparines.  The clade 

inclusive of Cerodipara is defined by 3 synapomorphies: a symmetrically bilobed apical 

clypeal margin, loss of the anterior scutellar bristles, and loss of the frenum.  The 

relationship between Cerodipara and Boeria is discussed in the latter taxon’s generic 
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entry.  As Cerodipara is known only from the female holotype specimen, it is difficult to 

speculate on the morphology of the male. 

 

Etymology: cero-, meaning horn or crest, after both the genus’ superficial resemblance 

to Cerocephalinae and the carinate ridge running between the toruli. -dipara to ally the 

genus with Diparinae. 

Number of Species: 1 described (South Africa: Mpumalanga). 

Distribution: South Africa 

Hosts: Unknown. 

 

Cerodipara sabensis Desjardins, New Species 

(Fig. 58) 

 

Type information: Holotype female, SAM: “South Africa, Eastern Transvaal, Sabi Sand 

Game Reserve, 24°46’S 31°22’E, 11 September 1994, J. Swart, Pitfall Trap, SLE.” 

 

Description: Female. 2.1 mm. Color: Brownish orange, with the following exceptions: 

scape off-white; pedicel medially light brown; F6-7+clava brown; coxae off-white; legs 

pale brownish yellow; ventral 1/2 of GT1 brown; tip of ovipositor sheath light brown. 

Head: Ovate in frontal view, about as wide as high; vertex rugulose, becoming areolate 

on upper and lower face; ratio of ocellocular: postocellar: mid-to-lateral ocellus distance: 

lateral ocellus diameter about 2.2: 4.2: 2.4: 1; scrobe high, reaching to within half an 

ocellar diameter from midocellus; scrobal basin and walls transversely striate-reticulate; 
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interantennal carina strong, reaching about 0.5X height of scrobe; toruli separated by 1.1 

torulus diameters; antennae clavate; scape height subequal to eye height; anellus about 

4X broader than long; ratio of scape: pedicel: anellus: F1: F2: F3 about 52: 12: 1: 9: 9: 8; 

F4 and F5 slightly broader than long; clypeus well delimited. Mesosoma: Dorsally 

transversely striate-reticulate, becoming circularly striate-reticulate on scutellum; ratio of 

pronotum: scutum: scutellum: propodeum about 2.5: 1.9: 2.2: 1; mesosoma dorsally 

covered in fine, white setae; pronotum, scutum, and scutellum dimensions difficult to 

measure due to specimen orientation; marginal rim of scutellum smooth; metanotum 

narrow band with pits delimited by longitudinal striae; propodeum anteriorly with 

semicircular carina opening anteriorly and single longitudinal carina medially within 

semicircle; propodeal sculpture smooth within semicircle, rough with irregular 

longitudinal carinae anterior to semicircle, reticulate lateral to semicircle; nucha narrow 

and roughly sculptured; plicae absent; postspiracular sulcus smooth and bare; spiracle 

1.5X own diameter from metanotum; callus bare, projecting posteriorly beyond 

postspiracular sulcus into upturned point; prepectus triangular, not in same plane as 

pronotum, abutting at about 135º angle; mesepimeron transversely striate dorsally and 

smooth ventrally; femoral depression deep, transversely striate dorsally, areolate 

ventrally, well defined anteriorly and posteriorly; metapleuron medially smooth, with 

narrow, finely pitted anterior margin and wide, deeply pitted posterior margin; pro- and 

mesocoxa with sparse white setae on disto-anterior margins; meso- and metatibia 

spinose; longer metatibial spur about 2.5X length of shorter, about 0.5X width of 

metatibia at point of spur insertion; metabasitarsus about 3X as long as wide, about 0.3X 

length of remaining tarsi; hind coxae distinctly transversely striate; wings apterous, 
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forewing preset only as membranous lump with single long, dark bristle, hindwing 

entirely absent. Metasoma: About 1.1X length of mesosoma; ratio of GT1: GT2-

6:GT7:ovipostor sheaths about 4.6:1.3:1.3:1; GT1-4 and ovipositor sheath dorsally with 

sparse, white setae; GT4-7 and ovipositor sheath laterally with sparse white setae; 

ovipositor apico-dorsally obscured by sheath.  Male: Unknown.   

 

Etymology:  Named for the Sabi Sand Game Reserve in which the type specimen was 

found. 

Distribution: South Africa: Mpumalanga. 

Hosts: Unknown. 

 

Chimaerolelaps Desjardins, New Genus 

(Fig. 59) 

 

Type Species: Chimaerolelaps villosa Desjardins, New Species 

 

Diagnosis: Chimaerolelaps is unique among diparines in 2 ways.  First, it has 3 pairs of 

scutellar bristles, while all other diparines have at most 2 pairs.  Second, it has an 

elongate anellus which is at longer than broad (Fig. 59), while all other diparines have an 

anellus that is broader than long (Figs. 56, 57).  Chimaerolelaps may superficially 

resemble Lelaps or Netomocera.  Chimaerolelaps has a clypeal margin which is 

protruding and straight, while Lelaps has a median clypeal tooth.  Chimaerolelaps also 

has a symmetrical flagellum, while the flagellum in Netomocera is asymmetrical. 
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Description: Female. Head: Occipital margin rounded; occipital carina present; upper 

face without strong, transversely carinate sculpture; eyes not posteriorly extended beyond 

occipital margin; inner eye margins uniformly convex; eyes bare; scrobe present and 

scrobal channel parallel-sided dorsal to toruli; dorsal margin of scrobe rounded; toruli not 

on shelf, junction of upper and lower face rounded; antennae symmetrically clavate; 

antennal formula 11173; anellus longer than broad; pedicel, first funicular segment, 

second funicular segment subequal in length; claval apex without thick tuft of 

micropilosity; apical clypeal margin protruding and straight; malar groove present; single 

pair of strong, dark bristles on vertex present. Mesosoma: dorsum of mesosoma with 

strong, dark bristles (1 pair median scutal, 1 pair lateral scutal, 2 pairs anterior scutellar, 1 

pair posterior scutellar); pronotum short, collar-like; notauli not arched and meeting 

posterior scutal margin at lateral edge of scutoscutellar suture; lateral lobes of scutum 

similar in color to remainder of scutum; posterior scutal margin without setose groove; 

scutellum large, convex, and sharply sloped posteriorly; axillae convex and not reduced; 

posterior notal wing process present, pointed; frenum present; metanotum present as 

narrow, sculptured band; propodeum at least 1.5X longer than high; propodeum with 

dorso-ventrally flattened spine near anterior margin; plicae absent; suture between 

postspiracular area and metapleuron diagonal; propodeal foramen circular, open in one 

plane; mesepisternal depression absent; prepectus elongate, reaching tegula; tegula 

normal, flap-like; subalare not visible; acropleuron normal, not expanded; mesopleuron 

with smooth and sculptured regions posteriorly; metacoxa posteriorly convex, with 

transverse striations; metacoxa posteriorly without thick vertical brush of setae; 2 
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metatibial spurs, <1.5X width of tibia at point of insertion. Metasoma: Petiole 

cylindrical, with single pair of setae, at least 2X as long as broad; GT1 expanded, 

covering at least half of metasoma length; GT1 rounded lateral to petiole insertion; cercal 

setae elongate; cercal brush present. Male: Unknown. 

 

Discussion:  Chimaerolelaps is positioned phylogenetically as sister-group to the Dipara 

clade, although the only synapomorphy for this clade is the presence of petiolar setae in 

the female.   

 

Etymology: chimaero-, to represent the odd assemblage of ancestral and derived features 

present in this taxon, and -lelaps, to ally the genus with Diparinae. The genus is identified 

in some collections with a manuscript name.  As the manuscript name was somewhat 

misleading with regards to the phylogenetic position of the group, it is not used here. 

Number of Species: 1 described species. 

Distribution: Costa Rica. 

Hosts: Unknown. 

Key to Species: none. 
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Chimaerolelaps villosa Desjardins, New Species 

(Fig. 59) 

 

Type information: Holotype female (CNC): “Costa Rica, B. Carrillo N. P., 84°07’W; 

10°10’N, 10.IV.85; 500m., H. Goulet-L. Masner.” 4 paratype females (3 in CNC, 1 in 

USNM): same data. 

 

Description: Female. 3.8 mm. Color: Orangish brown, with the following exceptions: 

clava whitish yellow gradually darkening to brown funicle; clypeus orange; posterior 

margin of scutum between notauli black; pro- and metacoxa off-white; distal half of 

metatibia brown; forewing with 3 brown, irregular, longitudinal bands emanating from 

distal end of submarginal vein, medial portion of marginal vein, and postmarginal vein, 

brownish yellow shaded areas present between bands; posterior margin of GT1, dorso-

posterior margin of GT2-5, GT6 brown; GT7 off-white; ovipositor off-white proximally 

gradually darkening to brown distally. Head: Subrectangular in frontal view, about 1.1X 

wider than high; areolate, becoming transversely striate on lower face, striae angling 

toward clypeus; ratio of ocellocular: postocellar: mid-to-lateral ocellus distance: lateral 

ocellus diameter about 2.2: 4.2: 2.4: 1; scrobe high, reaching ventral margin of 

midocellus; scrobal basin transversely striate-areolate ventrally, becoming areolate 

dorsally, scrobal walls transversely areolate; interantennal carina strong, reaching about 

0.4X height of scrobe; toruli separated by 1.6 torulus diameters; antennae clavate; scape 

height about 0.9X eye height; anellus about 1.2X longer than broad; ratio of scape: 

pedicel: anellus: F1: F2: F3 about 7.7: 2: 1: 2.4: 2: 1.8; F4 and F5 about as broad as long; 
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clypeus well delimited. Mesosoma: Pronotum irregularly transversely striate-rugulose, 

scutum scabrous, scutellum antero-medially scabrous, laterally and posterior to frenum 

with strong longitudinal carinae; ratio of pronotum: scutum: scutellum: propodeum about 

1.2: 1.9: 2.1: 1; mesosoma dorsally covered in thick, off-white setae; pronotum 2.1X 

wider than long; scutum 1.9X wider than long; marginal rim of scutellum with wide, 

upturned carina; metanotum narrow band with pits delimited by longitudinal striae; 

propodeum anteriorly with strong, dorso-ventrally flattened spine, with irregularly 

longitudinal carinae emanating from spine posteriorly and a single median carina 

emanating anteriorly; propodeum becoming areolate lateral to posterior longitudinal 

carinae; nucha wide, raised, roughly sculptured band; plicae absent; postspiracular sulcus 

deep, with irregular pits divided by transverse carinae; spiracle 1.6X own diameter from 

metanotum; callus areolate, with fine, white setae, projecting posteriorly into as spine 

lateral to spiracle; prepectus triangular, not in same plane as pronotum, abutting at about 

135º angle; mesepimeron smooth with 2 longitudinal depressions with pits divided by 

transverse carinae; femoral depression deep, narrow, parallel-sided, with pits delimited 

by transverse carinae, well defined anteriorly and posteriorly; metapleuron areolate; pro- 

and mesocoxa with sparse white setae on anterior margins, metacoxa with sparse, white 

setae on disto-anterior margin; meso- and metatibia spinose; longer metatibial spur about 

1.2X length of shorter spur, about 0.7X width of metatibia at point of spur insertion; 

metabasitarsus about 4.4X as long as wide, about 0.4X length of remaining tarsi; hind 

coxa distinctly transversely striate; macropterous; ratio of submarginal vein: marginal 

vein: postmarginal vein: stigmal vein 5.8: 3.2: 1.8: 1; entire wing (including speculum 

and basal cell) densely setose.  Metasoma: About 1.4X length of mesosoma; petiole 2.1X 
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longer than broad, coriaceous; ratio of GT1: GT2-6:GT7:ovipostor sheaths about 

3.9:2.3:1.7:1; GT2-4 dorsally with single pair of long, fine, erect setae; GT3-4 dorso-

laterally and GT5 dorsally with row of sparse, white setae; GT6 bare; GT47 and 

ovipositor sheath with dense white setae; ovipositor apico-dorsally obscured by sheath.  

Male: Unknown.   

 

Etymology: villos-, meaning hairy, in reference to the thick, white seate convering the 

dorsal surface of the mesosoma in this species. 

Distribution: Costa Rica. 

Hosts: Unknown. 

 

Conodipara  Hedqvist 

 

Turneria  Hedqvist 1969: 177.  Type species: Turneria scutellata Hedqvist (orig. desig. 

and by monotypy). [Preoccupied ] 

Conodipara  Hedqvist 1972: 58.  [Replacement name for Turneria, preoccupied by 

Turneria Forel 1895]. 

 

Diagnosis: Both sexes of Conodipara can be easily identified based on two 

autapomorphic features.  First, Conodipara has a pair of projections on the dorso-lateral 

surface of the nucha.  Second, Conodipara has an L-shaped petiole, which is bent 

downward at 90°.  No other diparines possess either of these features. 
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Discussion:  In the phylogenetic analysis, Conodipara + (Conophorisca, Myrmicolelaps) 

was recovered as monophyletic based on 5 synapomorphies: the loss of sexual 

dimorphism, filiform antennae, a 2-segmented clava, posterior surface of mesopleuron 

heavily sculptured, and presence of a long petiole.    Conodipara is also basal in a two-

branch clade in which Pyramidophoriella occupies the basal position in the other branch.  

This clade was united by 3 synapomorphies, which include a conical scutellum, a reduced 

metanotum, and a posteriorly rising propodeum. 

 

Number of Species: 1 described. 

Distribution: South Africa (Eastern Cape). 

Hosts: Unknown. 

 

Species of Conodipara: 

 

scutellata  (Hedqvist).  AFROTROPICAL: South Africa. 

Turneria scutellata Hedqvist 1969: 176-178 (Fig. 2).  Holotype female: S. Africa, 

Pondoland, Port St. John, Jan. 1924. coll. R. E. Turner. (BMNH, examined).  29 

Paratype females and 21 Paratype males: S. Africa, Pondoland, Port St. John, Jan 

1924 (6 females, 6 males), 6-25 Feb. 1924 (15 females, 4 males), 1-17 Mar. 1924 

(2 females, 4 males), 29.I.-5.II.1924 (6 females, 6 males) and Nov. 1923 (1 male). 

coll. R. E. Turner. (BMNH, examined). 
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Conophorisca  Hedqvist 

(Figs. 5-15, 60, 61) 

 

Conophorisca  Hedqvist 1969: 199-201.  Type species: Conophorisca annulata (orig. 

desig. and by monotypy). 

 

Diagnosis: Conophorisca belongs to a clade with Myrmicolelaps, and this clade can be 

diagnosed with 2 characters.  First, the propodeal foramen is hinge-like, opening both 

dorsally and ventrally (Fig. 31).  All remaining diparines have a propodeal foramen 

which is circular and open only in 1 plane.  Second, the petiole is at least 2X as long as 

broad and constricted antero-ventrally (Fig. 12).  Few diparines have petioles more than 

1.5X as long as broad, and all other diparines have a cylindrical petiole (Fig. 57), or in 

the case of Conodipara, an L-shaped petiole.  Within this clade, Conophorisca can be 

identified by having its toruli located on a shelf, where the upper face is separated from 

the lower face by a sharp angle of ~90° (Fig. 8), and also by lacking an expanded axillary 

wing sclerite (Fig. 10, see Fig. 30 for presence of the sclerite). 

 

Discussion:  Conophorisca is not resolved as monophyletic in the phylogenetic analysis 

(the three species form an unresolved polytomy with Myrmicolelaps).  The combined 

clade is supported by a the presence of a hinge-like propodeal foramen  and an antero-

ventrally constricted petiole.  However, Conophorisca itself may actually represent a 

monophyletic lineage.  The three characters which would support Conophorisca 

paraphyly are eye setation, presence/absence of a malar groove, and degree of claval 
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fusion.  The difficulty of coding eye setation is discussed in that character’s entry (#12).  

Regarding the malar groove and claval fusion, it is possible that reduction of the groove 

and fusion of all claval segments may be associated with a reduction of body size.  

Conophorisca grisselli is extremely small, and has both of these features, while the larger 

C. annulata and C. littoriticus have a malar groove and only 2 fused claval segments.  On 

the other hand, the presence of a sharply angled torular shelf supports monophyly of the 

genus.  While the previously mentioned characters are highly homoplastic in the analysis 

(e.g. setose eyes are independently derived 6 times), the torular shelf in only derived 

independently in one other taxon, Dozodipara.  Conophorisca is maintained as a valid 

genus herein, because of its potential monophyly and its lack of the multiple 

synapomorphies uniting Myrmicolelaps (these characters are discussed under the generic 

entry for Myrmicolelaps). 

 

Number of Species: 3 described, at least 3 undescribed. 

Distribution: South Africa (Western Cape, Eastern Cape). 

Hosts: Unknown. 

Key to Species: Given below. 

 



 

 80 
 

 

Key to the species of Conophorisca Hedqvist 

 

1. Occipital margin carinate; antenna elongate (F1 about 1.5X length of pedicel); 

clava 1-segmented; without metallic highlights on vertex    

       annulata Hedqvist 

 Occipital margin rounded; antenna more compact (F1 subequal in length to 

pedicel); clava  1- or 2-segmented; with or without metallic highlights on vertex 

       2 

2. Malar groove present; clava 2-segmented; with metallic highlights on vertex 

       littoriticus Desjardins,  

new species 

Malar groove absent; clava 1-segmented; with or without metallic highlights on 

vertex       grisselli Desjardins, new  

species   

 

Species of Conodipara: 

 

annulata  Hedqvist.  AFROTROPICAL: South Africa. 

Conophorisca annulata Hedqvist 1969: 199-201 (Fig. 19).  Holotype female: E. 

Cape Prov., Katberg, 4,000 ft, 1-15.I.1933, leg. R. E. Turner (BMNH, examined).  

Unknown number of paratype females: Cape Prov., Mossel Bay, Aug. 1924, leg. 

R. E. Turner (KHPC, not examined).  
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Conophorisca littoriticus Desjardins, New Species 

(Fig. 61) 

 

Type Information: Holotype female (SAM) “South Africa, W. Cape, Walker Bay 

Nature Res., 34°27.41’S 19°21.39’E, 4 Oct-1 Nov 1997, S. van Noort and B. Fisher, 

WA97-Y63, Pitfall trap, Station 3, South Coast Strandveld, dominated by Indigofera 

brachystachya E. May.” Paratypes: 2 males (same data except 1 specimen: 26 Dec - 24 

Jan), 2 females (same data except 1 specimen: 17 May – 14 Jun, 1 specimen: 9 Aug – 6 

Sep). 

 

Description: Female. 2.6 mm. Color: Orangish brown to dark orangish brown with the 

following exceptions: Head brownish metallic green on upper face and vertex, gena 

brown, scape (except distal tip) brownish white, distal tip of scape, pedicel brown, 

anellus, F1 brownish white, F2 brownish white proximally to brown distally, remaining 

flagellar segments brown, distal 2/3 of procoxa and distal 1/2 of metacoxa white, femoral 

depression, mesepimeron, metapleuron, and dorso-posterior region of metacoxa with 

metallic green and blue highlights, gaster brown. Head: Subquadrate in frontal view, 

1.1X as wide as high; eye bare, 1.5X as high as wide; head finely coriaceous; ocellocular: 

postocellar: mid-to-lateral ocellus distance: lateral ocellus diameter about 3.1:6:2.9:1; 

scrobe high, triangular, and deep, reaching from torulus to midpoint on mid-ocellus (mid-

ocellus partially in scrobe); scrobal basin and walls coriaceous-transversely striate; 

interantennal carina strong, reaching about 1/3 height of scrobe; toruli separated by 

slightly less than 1 torulus diameter; scape about equal to eye height; anellus reduced and 
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partially fused to F1, 4.5X broader than long; ratio of scape: pedicel: anellus+F1: F2: F3 

about 5.5:1.5:1.6:1.2:1, F4-7 each about as wide as long; clava 2-segmented, with 

segments 2 and 3 fused; malar sulcus absent, although faint sculptured depression 

present; clypeus strongly delimited laterally, finely delimited dorsally; clypeal margin 

bilobed.  Mesosoma: Dorsally coriaceous; ratio of pronotum: scutum: scutellum: 

propodeum about 4.3:1:1.6:4.2; pronotum about 1.1X as wide as long; scutum 4x as wide 

as long; posterior scutellar margin smooth; metanotum smooth, polished band; 

propodeum coriaceous-striate; plicae absent;  postspiracular sulcus wide and shallow, 

crossed by 2-3 transverse carinae; spiracle about 5X its own diameter from metanotum; 

spiracle facing postero-laterally; prepectus subtriangular, in same plane as pronotum; 

acropleuron and mesepisternum coriaceous, mesepimeron transversely striate; femoral 

depression well defined, anterior 1/2 of depression alveolate, posterior 1/2 transversely 

striate; anterior 2/3 of metapleuron coriaceous, posterior 1/3 alveolate; metapleuron fused 

to propodeum anterior to propodeal spiracle; meso- and metatibia ventro-distally spinose; 

one metatibial spur, 1.3X width of metatibia at point of insertion; metabasitarsus about 

6.4X as long as wide, about 0.7X length of remaining tarsi; posterior margin of metacoxa 

distinctly transversely striate; metacoxa without setae; apterous, forewing reduced to 

small membranous area, hindwing apparently absent.  Metasoma: 1.2X length of 

mesosoma; petiole about 1.6X as long broad, posterior 3/4 transversely striate, anterior 

1/4 smooth; ratio of GT1: GT2-6: GT7: ovipositor sheaths about 19:1:2.3:3.3; GT1 

dorsally covered with sparse, white setae (separated by 1-3X setal length),GT2-5 latero-

ventrally with row of white setae, GT6-7, ovipositor sheaths covered in white setae; 

ovipositor smooth and pointed. Male: Same as female. 
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Etymology: littor-, meaning shore, for the coastal strandveld habitat in which the 

specimens were collected. 

Distribution: South Africa (Western Cape Province). 

Hosts: Unknown. 

 

Conophorisca grisselli Desjardins, New Species 

(Figs. 5-15, 60) 

 

Type information: Holotype female (SAM) “South Africa, W Cape, Koeberg Nature 

Reserve, 33°37.62’S 18°24.26’E, 28 Nov-27 Dec 1997, S. van Noort, K097-Y137, 

Yellow Pan trap (cup), Station 2, West Coast Strandveld dominated by Euphorbia and 

Rhus spp.” Paratypes: 5 males, 5 females (same data as holotype). 

 

Description: Female. 1.8 mm. Color: Brownish orange with the following exceptions: 

Vertex dark brown to metallic blue, upper face and gena brow, lower face orangish 

brown, pro- and metacoxa orangish white, legs orangish yellow, petiole light brown, 

remaining metasoma brown. Head: Subtriangular-ovate in frontal view, slightly wider 

than high (1.1:1); eyes bare, 1.4X as high as wide; vertex smooth, remaining head finely 

coriaceous; ocellocular: postocellar: mid-to-lateral ocellus distance: lateral ocellus 

diameter about 2.3:5.7:3.3:1; scrobe high, narrow, deep, reaching from torulus to ventral 

margin of mid-ocellus; scrobal basin transversely striate, scrobal walls coriaceous-striate; 

interantennal carina strong, reaching 0.4X height of scrobe; toruli separated by about 1 
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torulus diameter; scape length about equal to eye height; anellus reduced and partially 

fused to F1, 2-3X as broad as long; ratio of scape: pedicel: anellus+F1: F2: F3 about 

5.3:1.3:1:1:1, F4-7 each about 2X as long as wide; clava 1-segmented, all segments 

fused; malar sulcus absent; clypeus strongly delimited laterally, finely delimited dorsally; 

clypeal margin symmetrically sinuate. Mesosoma: Dorsally smooth to coriaceous; ratio 

of pronotum: scutum: scutellum: propodeum about 3.4:1:1:3.1; pronotum about as wide 

as long; scutum 2.7X as wide as long; posterior scutellar margin smooth; metanotum 

smooth, polished band; propodeum coriaceous anteriorly to smooth posteriorly; plica 

absent; postspiracular sulcus wide, shallow, and smooth; spiracle about 3.4X its own 

diameter from metanotum; spiracle facing postero-laterally; prepectus triangular, in same 

plane as pronotum; acropleuron mostly smooth, slightly coriaceous, mesepisternum 

coriaceous, mesepimeron smooth to rough-coriaceous; femoral depression distinct, 

coriaceous-alveolate; metapleuron coriaceous anteriorly to smooth posteriorly; 

metapleuron not fused to propodeum, although sulcus weaker anterior to spiracle; meso- 

and metatibia ventro-distally spinose; one metatibial spur, 0.9X width of metatibia at 

point of insertion; metabasitarsus about 4.8X as long as wide, about 0.6X length of 

remaining tarsi; posterior margin of metacoxa faintly transversely striate; metacoxa 

without setae; apterous, forewing reduced to small membranous area, hindwing 

apparently absent.  Metasoma: 1.2X length of mesosoma; petiole about 1.7X as long as 

broad, roughly sculptured; ratio of GT1: GT2-6: GT7: ovipositor sheaths about 

15:4.7:1:2.3; GT1 dorsally covered with sparse, white setae (separated by 2-3X setal 

length),GT2-6 latero-ventrally with rows of white setae, GT7, ovipositor sheaths covered 

in white setae; ovipositor tip smooth and pointed. Male: Same as female. 
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Etymology: Named for my co-advisor, E. Eric Grissell, whose guidance was invauable 

in the completion of the morphological component of my dissertation. 

Distribution: Costa Rica. 

Hosts: Unknown. 

 

Dipara  Walker 

 

Dipara  Walker 1833: 371, 373.  Type species: Dipara petiolata Walker (by monotypy). 

Tricoryphus  Forster 1856. [Synonomized by Domenichini 1953] 

Apterolelaps  Ashmead 1901. [Synonomized by Delucchi 1959; Heydon and Boucek 

1992] 

Alloterra Kieffer and Marshall 1904: 46-47.  Type species: Alloterra claviger Kieffer and 

Marshall (by monotypy). New synonymy. [Type specimen of genus not 

examined] 

Trimicrops Kieffer 1906. [Synonomized with Alloterra by Dessart 1996] 

Parurios Girault 1913: 318.  Type species: Parurios australiana Girault (by monotypy). 

[Boucek stated the original description as 1913[175], but it appeared earlier in 

1913[169]]. New synonymy. [Type specimen of genus not examined] 

Epilelaps Girault 1915: 344.  Type species Epilelaps hyalinipennis Girault (by orig. 

desig.). [Synonomized by Boucek 1988] 

Pseudipara  Girault 1915: 345.  Type species: Pseudipara albiclava Girault (orig. desig. 

and by monotypy). New synonymy. [Type specimen of genus examined] 
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Uriolelaps Girault 1915: 201.  Type species: Uriolelaps argenticoxae Girault (orig. 

desig.) [Synonomized with Parurios by Boucek 1988]. 

Hispanolelaps  Mercet 1927. [Synonomized by Domenichini 1953] 

Pseudiparella  Girault 1927: 334-335.  Type species Pseudiparella emersoni Girault (by 

monotypy). [Synonomized by Boucek 1988] 

Emersonia Girault 1933: [1].  Type species: Emersonia atriscutum Girault (by 

monotypy). [Synonomized with Parurios by Boucek 1988] 

Grahamisia  Delucchi 1962: 379-380.  Type species: Grahamisia saetosa Delucchi (orig. 

desig. and by monotypy). New synonymy. [Type specimen of genus not 

examined] 

Afrolelaps Hedqvist 1963: 47.  Type species: Afrolelaps maculata Hedqvist (orig. desig.). 

[Synonomized by with Grahamisia by Hedqvist 1969] 

Pondia  Hedqvist 1969: 197.  Type species: Pondia punctulata Hedqvist (orig. desig.). 

New synonymy. [Type specimen of genus examined] 

Diparomorpha  Hedqvist 1971: 57-58.  Type species: Diparomorpha machadoi Hedqvist 

(orig. desig. and by monotypy). New synonymy. [Type specimen of genus 

notexamined] 

 

Diagnosis:  Dipara females can be identified by a combination of features.  First, at least 

one pair of setae (or bristles; Fig. 53) are present on the lateral margins of the petiole.  

The only other females with these setae are Chimaerolelaps, Lelaps, and Neapterolelaps.  

Dipara is distinguished from Chimaerolelaps by an anellus that is broader than long and 

at most 2 pairs of scutellar bristles.  Chimaerolelaps has an anellus that is longer than 



 

 87 
 

 

broad and 3 pairs of scutellar bristles.  Dipara can be distinguished from Lelaps by the 

absence of a median clypeal tooth, which all species of Lelaps have.  Finally, Dipara can 

be easily distinguished from Neapterolelaps by the characteristics discussed in the 

diagnosis for Neapterolelaps.  Dipara males can be separated from Lelaps males by their 

lack of a median clypeal tooth.  They can be distinguished from Netomocera males by 

their elongate petiole (>2X longer than broad, whereas Netomocera males have a petiole 

that is broader than long. 

 

Discussion: Delucchi (1959) first proposed that Apterolelaps Ashmead was a synonym 

of Dipara Walker (as Tricoryphus Forster).  Later, both Hedqvist (1969) and Yoshimoto 

(1977) treated Apterolelaps as a valid genus based on the absence of an anellus.  

However, Heydon and Boucek (1992) resynonymized Apterolelaps, suggesting that the 

type specimen was aberrant in having a partially fused anellus.  Heydon and Boucek then 

stated that Yoshimoto’s (1997) description of Dipara pedunculata matched Apterolelaps, 

although the type specimen he selected differed from the description and appeared 

identical to Dipara canadensis Hedqvist.  Heydon and Boucek therefore synonomized 

Dipara pedunculata Yoshimoto with Dipara canadensis Hedqvist.  Additionally, 

although Tricoryphus Forster and Hispanolelaps Mercet were technically synonomized 

by Domenichini (1953), Boucek (1954) stated that this was discovered by S. Novitzky, 

and Domenichini published these results without crediting him. 

 Dipara sensu Boucek (1988) and groups of taxa which appeared intermediate to 

Dipara and Parurios were divided into multiple taxonomic units for the phylogenetic 

analysis, which are discussed in the Taxonomic Scope section.  In the following 
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discussion, these taxonomic units are referred to in quotation marks, so as not to mistake 

them for valid names.  Dipara was resolved as a paraphyletic grade in the phylogenetic 

analysis based, the entire clade of which is based on 3 synapomorphies: female petiole 

with setal pairs, male flagellar segments pedunculate, and male flagellar segments with 

appressed setae.  The following genera render Dipara sensu Boucek (1988) paraphyletic 

and are herein in synonymized with Dipara:  Alloterra Keiffer, Grahamisia Delucchi, 

Parurios Girault, and Pseudipara Girault.  Pondia also renders Dipara paraphyletic, and 

the retention of Pondia as a generic level taxon is explained in its generic entry.  Within 

this revision, the reasoning behind synonymy is generally given before the synonymy 

itself.  However, the situation with Dipara is so complex that it is important to provide an 

overview before examining the specific details. 

It should also be noted that synonymies in this revision are generally made on 

phylogenetic grounds, i.e. multiple genera are strongly supported as a monophyletic 

group, in addition to general morphological similarity.  However, the synonymy of 

genera within Dipara is done more on utilitarian grounds, although phylogeny still plays 

an important role.  It is impossible to separate these genera into monophyletic taxa for 

which both females and males are diagnosable.  Additionally, variation in the 

arrangement of the taxa across analyses makes it difficult to ascertain what these 

monophyletic divisions might be.  The obvious alternative to massive paraphyletic 

synonymy is to leave the classification of these genera the way it is.  However, this 

would involve ignoring a tremendous amount of information gathered during this study.  

This information includes the fact that approximately ¼ of all female specimens within 

this clade found in museum collections are unidentifiable given the current generic 
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definitions, the fact that Alloterra and Parurios males are indistinguishable where their 

ranges overlap, and the fact that an obviously conspecific collection of females and males 

from Tanzania has females easily classifiable as Dipara s. s. and males easily classifiable 

as Parurios.  Therefore, the taxonomic utility gained in these synonymies outweighs the 

erection of a genus which is most likely paraphyletic.  Additional reasons for the 

synonymy of each genus within Dipara are discussed below. 

 Grahamisia Delucchi is extremely similar to Dipara sensu stricto, and in many 

museum collections the former is listed as a synonym of the latter, although the two have 

never been formally synonomized.  Boucek (1988) maintained Grahamisia as a valid 

genus, although he stated that further examination of the African fauna may lead to its 

synonymy.  Grahamisia and Dipara sensu stricto group together in all analyses based on 

2 synapomorphies: a laterally bulging pronotum and a heavily sculptured mesepimeron.  

Grahamisia differs from Dipara sensu stricto only in notaular structure and the presence 

of black circular markings on the lateral lobes of the scutum.  Grahamisia also renders 

Dipara sensu Boucek (1988) paraphyletic in the phylogenetic analysis, and for these 

reasons it is synonomized with Dipara. 

Boucek (1988) maintained Pseudipara Girault as a genus, presumably for two 

reasons.  First, it has a more slender habitus than Dipara, and second, it has a much 

longer petiole.  In the phylogenetic analysis Pseudipara renders Dipara sensu Boucek 

(1988) paraphyletic, and groups with Alloterra and “Micro Dipara” based on having 

notauli which meet the posterior scutal margin close together but are not strongly arched.  

Due to the lack of qualifiable morphological differences between Pseudipara and Dipara 
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and the phylogenetic positioning of Pseudipara, Pseudipara is synonomized with 

Dipara. 

Additionally, both Parurios Girault and Alloterra Kieffer rendered Dipara sensu 

Boucek (1988) paraphyletic in the phylogenetic analysis.  Unlike the majority of diparine 

genera, Dipara sensu Boucek (1988) and Parurios have traditionally been separated by 

male morphology.  In the majority of keys (e.g., Boucek 1988), the males of both 

Alloterra and Parurios are identified by their short, cylindrical flagellar segments with 

short setae while Dipara s. s. has long, pedunculate segments with long setae.  Since 

Alloterra and Parurios have not been thought to overlap in distribution, and since the 

antennal structure has been thought to be a reliable separator of Dipara sensu Boucek 

(1988) and Parurios, this has seemed effective.  However, both Alloterra and Parurios 

are present in Central America, and this had lead to the misidentification of many 

neotropical Parurios males as Alloterra and Parurios females as Dipara.  Thus, the male 

of Alloterra is indistinguishable from the male of Parurios, and other than geographically 

the two genera have limited overlap.  Also, a diparine species from Tanzania was 

examined that appears to have typical Dipara sensu stricto-like females and typical 

Parurios-like males.  Although the specimens were not reared, and therefore no certain 

association can be made, the simultaneous collection of a large series of both sexes and 

strong similarities in mesosomal sculpture suggest they are conspecific.  Therefore, the 

cylindrical antennae may not be as reliable an indicator as previously thought.  

Alloterra and Parurios are not resolved as sister-taxa in any of the phylogenetic 

analyses.  Additionally, molecular evidence (Desjardins et. al., in prep) supports a sister-

group relationship between Alloterra and “Australian Dipara” rather than one between 
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Alloterra and Paurios.  In the molecular analysis, Alloterra and “Australian Dipara” are 

shown as sister-groups, with Parurios sister to that clade, and have much higher 

sequence similarity to each other than either does to Parurios.  While this information in 

itself could suggest that the pedunculate antennae of Dipara is derived relative to the 

cylindrical antennae of Alloterra and Parurios, character state reconstruction shows that 

Dipara-like antennae are the ancestral state for the entire clade. 

 Boucek (1988) separated the females of Dipara from Parurios based on the 

position of the median scutal bristles.  However, he noted that this character system only 

worked with the Australian fauna, as non-Australian Dipara would be identified as 

Parurios in his key.  No character was found that would reliably separate female 

Parurios from Dipara sensu Boucek (1988) at the world level, and if antennal 

morphology is as is plastic as the previous discussion suggests, there is no reliable way to 

separate these groups in either sex.  For these reasons, Parurios is synonomized with 

Dipara. 

The female of Alloterra Kieffer is a highly modified, minute, apterous diparine 

with reduced eyes and no ocelli.  However, as previously mentioned, the phylogenetic 

analysis supports its position within Dipara sensu Boucek (1988), and the male of 

Alloterra is indistinguishable from Parurios-like males. (It should be noted that 

Yoshimoto (1977) keyed the male of Alloterra based on the presence of a spur on the 

posterior surface of the metacoxa.  However, this spur is actually an extension of the 

lower-most metacoxal striation, and occurs to varying degrees throughout both Dipara 

sensu Boucek (1988) and Parurios-like males.)  For the aforementioned reasons, 

Alloterra is herein synonomized with Dipara. 
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Pondia Hedqvist either is nested within a monophyletic Dipara or lies at the base 

of the clade containing the most derived diparines, depending on the analysis.  When in 

the latter position, the clade of Pondia Hedqvist + the derived diparines is supported by 3 

synapomorphies: a reduced prepectus, reduced axillae, and the loss of the median scutal 

bristles. The reduction of the prepectus and axillae may play a functional role in the 

further specialization of diparines to litter habitats; none of the diparines within clade 

inclusive of Pondia have winged females (or even brachypterous females). Regardless, 

Pondia Hedqvist renders Dipara paraphyletic in all analyses and the former herein 

synonymized with the latter.   

Diparomorpha Hedqvist is the one described diparine genus not included in the 

phylogenetic analysis, as it is known only from the type specimen which could not be 

located.  Hedqvist denoted a variety of depositories for his types throughout his 

descriptions, including his own personal collection.  However, most of his holotypes are 

housed at the British Museum of Natural History, regardless of the listed type depository.  

Two holotypes were acquired through Christer Hanssen (Swedish Museum), Diparisca 

ferriei and Dipara canadensis, which were claimed to be the only types remaining in his 

personal collection.  The holotype of Diparomorpha (which is known only from the type) 

is located neither in the BMNH nor in Hedqvist’s personal collection.  Furthermore, 

contact could not be established with the Laboratório de Biologia, Dundo, Lunda, 

Angola, which is the listed depository for the specimen. 

 From the description and illustrations, it is apparent that Diparomorpha belongs 

in Dipara.  The former differs from the latter in only two respects.  Although Heqvist 

describes Diparomorpha as having 7 funicular segments and no anellus, his illustration 
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suggests that an anellus is present.  Diparomorpha also completely lacks notauli (which 

appeared to be Hedqvist’s justification for describing it as a new genus), which it shares 

only with Pyramidophoriella.  However, notaular form is extremely variable in Dipara 

and more broadly in Diparinae, and this likely represents an autapomorphic state within 

Dipara.  In addition, Diparomorpha possesses an extremely dorsally flattened thorax, 

and although an illustration in dorsal view is not provided, the description is similar to 

the thorax of Dipara turneri and the taxonomic unit Fijian Dipara/Parurios.  As both the 

latter taxa have very fine and weakly impressed notauli, it is possible that notauli were 

lost entirely by Diparomorpha within this clade.  Therefore Diparomorpha is also 

synonomized with Dipara, and likely occupies a phylogenetic position near the 

aforementioned taxa. 

 

Number of Species: 36 described species, possibly hundreds of undescribed species.  

Distribution: Cosmopolitan. 

Hosts: An undescribed Indian species (Parurios Girault) was reared from a curculionid 

(Coleoptera) feeding on the roots of Cyperus (Boucek 1988).   

Key to Species: None. 

 

Species of Dipara:  

 

agenticoxae  (Girault).  AUSTRALIAN: Australia (Quensland). 

Uriolelaps agenticoxae Girault 1915: 201-202.  Holotype female: Babinda, 

Queensland, Feb. 5, 1914, jungle, coll. A. P. Dodd. (QM, examined).  
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albiclava  (Girault).  AUSTRALIAN: Australia (Queensland). 

Pseudipara albiclava Girault 1915: 345.  Holotype female: Queensland: 

Gordonvale (Cairns),  Mt. Pyramid, alt. 2500-3000 ft, forest, sweeping, June 13, 

1913, coll. A. P. Dodd. (QM, examined). 

 

 

albomaculata  (Hedqvist).  AFROTROPICAL: Angola. 

Afrolelaps albomaculata Hedqvist 1963: 47-49 (Figs. 1, 2).  Holotype female and 

4 female paratypes: [Angola]: Détritus du sol de la R. Cambonde, affl. riv. dr. de 

la Uamba (8.5 S., 18.13 E.; alt. 750 m), Mabete, Caungula, 20.VII.1962, coll. A. 

de B. Machado. (Holotype and 2 paratypes at LBDA, 2 paratypes at SMNH, not 

examined). 

 

atriscutum  (Girault).  AUSTRALIAN: Australia (Victoria). 

Emersonia atriscutum Girault, 1933: [1].  Holotype female: Belgrave, Victoria, 

coll. A. P. Dodd. (type location uncertain). 

 

australiana  (Girault).  AUSTRALIAN: Australia (New South Wales). 

Parurios australiana Girault 1913: 318.  Holotype female: Ourimbah, New South 

Wales. (SAM, not examined). 
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belokobylskii  Dzanokmen.  EURASIAN: Russia. 

Dipara belokobylskii Dzanokmen 1993: 103-106.  Holotype female: Russia-

Khabarovsk Kray. (ZISP, not examined). 

 

canadensis  Hedqvist.  NEARCTIC: Canada and USA. 

Dipara canadensis Hedqvist 1969: 193 (Fig. 13).  Holotype female: Canada, Ont., 

Gatinau Park, 21.V.1967, coll. K.-J. Hedqvist.  (KHPC, examined). 

 

Dipara pedunculata Yoshimoto 1977: 1040-1042 (figs. 21, 27).  Holotype female 

and allotype male: 5 mi west of Hopkinsville, KY., 22.IX.67, Berlese sample of 

deciduous duff. coll. J. M. Campbell.  (CNC, not examined). 3 male paratypes: 

NC: Duke Forest, 16.IX.44, pine on clay litter. coll. A. S. Pearse (2 males), and 

data unknown, Lot No. 52-2056, 16.IX.51 (1 male). (USNM, examined). 

[Synonomized by Heydon and Boucek 1992] 

 

claviger  (Kieffer and Marshall).  EURASIAN: Italy. 

 Alloterra claviger Kieffer and Marshall 1904: 46-47. Holotype female: Italy. 

 

Trimicrops claviger Kieffer 1906: 142.  Holotype female: Italy. [Synonomized 

with Alloterra by Dessart 1996] 
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conoidea  (Xiao and Huang).  EURASIAN: China. 

Parurios conoidea Xiao and Huang 2000: 331-332. Holotype female: Peoples' 

Republic of China-Henan. (IZAS, not examined) 

 

dictyodroma  (Xiao and Huang).  EURASIAN: China. 

Grahamisia dictyodroma Xiao and Huang 1999: 334-335. Holotype female: 

Peoples' Republic of China-Hubei. (IZAS, not examined). 

 

emersoni  (Girault).  AUSTRALIAN: Tasmania. 

Pseudiparella emersoni Girault 1927: 335.  Holotype female: Tasmania: Wilmot. 

coll. A. M. Lea and H. J. Carter. (type location unknown). 

 

fusca  (Girault).  AUSTRALIAN: Australia (Quennsland). 

Lelaps fusca Girault 1915: 200.  Holotype male: Gordonvale (Cairns), 

Queensland. Jungle, May 18, 1913, A. P. Dodd. (QM, examined). [Transferred to 

Parurios by Boucke (1988)]. 

 

hyalinipennis  (Girault).  AUSTRALIAN: Australia (Queensland). 

Epilelaps hyalinipennis Girault 1915: 344.  Holotype female: Gordonvale 

(Cairns), Queensland.  Jungle, June 7, 1913. (QM, examined).  
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keatsi  (Girault).  AUSTRALIAN: Australia (Queensland). 

Uriolelaps keatsi Girault 1922: 41.  Holotype female: Fishery Creek, Queensland, 

Jungle, June. (QM, examined). 

 

keralensis Narendran & Sureshan.  ORIENTAL: India. 

Dipara keralensis Narendran & Sureshan, 2001: 452-453 (Figs. 1, 2).  Holotype 

female (orig. desig.): Parambikulam, Kerala, 2.ix.1995, coll. P. M. Sureshan. 

(ZSIC not examined).  Paratype female (orig. desig.): Calicut University Campus, 

Kerala, 4.ix.2000, coll. T. C. Narendran. (ZSIC not examined). 

 

machadoi  (Hedqvist).  AFROTROPICAL: Angola. 

Diparomorpha machadoi Hedqvist 1971: 57-58.  Holotype female: [Angola]: 

Enviorns de Dundo: détritus végétaux du sol de la forêt-galerie de la rivière 

Dicoco, affluent de la riv. Luachimo (7.25 S., 20.55 E.), 25.XI.1970, coll. A. de 

B. Machado and S. A. Peles.  (LBDA, not examined). 

 

maculata  (Hedqvist).  AFROTROPICAL: Angola. 

Afrolelaps maculata Hedqvist 1963: 48-50 (Figs. 1, 2).  Holotype female: 

[Angola]: Détritus du sol de la galerie forestière de la R. Tshihumbuè, affl. de la 

rive droite de la R. Lubalo (8.01 S., 19.20 E.; alt. 1000 m).  Poste de Camaxilo, 

6.VIII.1962. coll. A. de B. Machado. (LBDA, not examined).  
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malabarensis  (Narendran and Mini).  ORIENTAL: India. 

Grahamisia malabarensis Narendran & Mini 2000: 371-374 (Figs. 1-3). Holotype 

female: Calicut University Campus, Kerala, India, 2.ii.1997. coll. T. V. Mini. 

(DZCU, not examined).  1 paratype female: Tiruvannur, Calicut, Kerala, 

16.xi.1996. (DZCU, not examined).  

 

miniae Narendran & Sureshan.  ORIENTAL: India. 

Dipara miniae Narendran & Sureshan 2001: 453-455 (Figs. 3-6).  Holotype 

female (orig. desig. and by monotypy): Chindaki, Kerala, 13.xii.1987, coll. T. C. 

Narendran and party. (ZSIC, not examined).  

 

mohanae Narendran & Sureshan.  ORIENTAL: India. 

Dipara mohanae Narendran & Sureshan 2001: 455-456 (Figs. 7, 8).  Holotype 

female (orig. desig. and by monotypy): Thiruvannur, Kozhikode, Kerala, 

16.xi.1996, coll. K Raj Mohana. (ZSIC, not examined). 

 

nigriceps ( Ashmead).  NEARCTIC: USA (West Virginia). 

Apterolelaps nigriceps Ashmead 1901: 312.  Holotype female: USA, West 

Virginia. (USNM, examined) 

 

Apterolaelaps nigriscutum Girault 1916: 264.  [Gahan and Fagan (1923) stated 

that Girault’s species was isotypic with Ashmead’s.] 
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nigrita  Hedqvist.  AFROTROPICAL: Congo. 

Dipara nigrita Hedqvist, 1969: 195 (Fig. 16).  Holotype female: Congo, Mount 

Kabobo, Terr. Albertville, Hte. Kiymbi, 1700 m, X.1958, coll. N. Leleup. 

(MRAT, not examined). 

 

nigrofasciata  Hedqvist.  AFROTROPICAL: Madagascar. 

Dipara nigrofasciata Hedqvist 1969: 194-195 (Fig. 15).  Holotype female: 

Madagascar: Mandraka, I.1944, coll. A. Seyrig. (MRAT, not examined). 

 

palauensis  Yoshimoto & Ishii.  OCEANIAN: Micronesia. 

Dipara palauensis Yoshimoto & Ishii 1965: 165-166 (Fig. 29).  Holotype female: 

Ngerchelong, Babelthuap I., Palau, Dec. 18, 1947, coll. Dybas. (USNM, 

examined).  Paratype female: Mt. Unibot, Ton I., Truk, Feb. 4, 1953, coll. 

Gressitt. (BISH, not examined). 

 

pallida  (Hedqvist).  AFROTROPICAL: South Africa. 

Pondia pallida Hedqvist 1969: 198-199 (Figs. 17, 18).  Holotype female: S. 

Africa, Pondoland, Port St. John, Jan. 1924, coll. R. E. Turner. (BMNH, 

examined).  12 female paratypes: S. Africa, Pondoland, Port St. John, Jan. 1924, 

coll. R. E. Turner (7 females), and 29.I-5.II 1924, coll. R. E. Turner (5 females). 

(BMNH and KHPC, examined).   
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petiolata  Walker.  EURASIAN: United Kingdom. 

Dipara petiolata Walker 1833: 65.  [Lectotype female (United Kingdom: 

England, BMNH, examined) designated by Graham (1969).] 

 

Dipara cinetoides Walker 1834: 166. [Synonymized by Graham (1967).] 

 

Tricoryphus fasciatus Thomson 1876: 54.  Holotype female: Sweden. (LUZN, not 

examined) [Synonymized by Boucek (1954).] 

 

Hispanolelaps coxalis Mercet 1927: 62.  Holotype female: Spain. (IEEM, not 

examined) [Synonymized by Dominichi (1953).] 

 

ponderosa  (Girault).  AUSTRALIAN: Australia (Queensland). 

Epilelaps ponderosa Girault 1915: 344.  Holotype female: Gordonvale (Cairns), 

Queensland. Jungle, June 16, 1913. (QM, not examined). 

 

poei  (Girault).  AUSTRALIAN: Australia (New South Wales). 

Uriolelaps poei Girault 1915: 202.  Holotype female: Tween Heads, New South 

Wales, jungle, Tween River, May 2, 1914, coll. A. P. Dodd. (QM, examined). 

 

punctulata  (Hedqvist).  AFROTROPICAL: South Africa. 

Pondia punctulata Hedqvist 1969: 197-198 (Figs. 17, 18).  Holotype female: S. 

Africa, Pondoland, Port St. John, Jan. 1924, coll. R. E. Turner. (BMNH, 
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examined).  4 female paratypes: S. Africa, Pondoland, Port St. John, Jan. 1924, 

coll. R. E. Turner (3 females), S. Africa, Pondoland, Port St. John, 1-17 Mar. 

1924, coll. R. E. Turner (1 female). (BMNH and KHPC, examined). 

 

rufescens  Masi.  AFROTROPICAL: Seychelles Islands. 

Dipara rufescens Masi 1917: 186-188.  Holotype female: “Mahé: marshy coastal 

plain near Anse Royale.-Silhoutte: coast near Pointe Etienne, and forest above 

Mare aux Cochones.-Félicité Island.” (BMNH, examined) [member of Parurios 

clade rather than Dipara sensu Boucek (1988)]. 

 

saetosa  (Delucchi).  AFROTROPICAL. 

Grahamisia saetosa Delucchi 1962: 380-383 (Figs. 18, 19).  Holotype female and 

1 paratype female: Tanganyika Terr., Mt. Oldeani, versant Est. 2350-2500 m., 6-9 

juin 1957, forêt bambous. (MRAT, not examined).  2 female paratypes: Mt. 

Hanang, versant Sud, 2400-2600 m., 24 mai 1957, forêt de montagne avec 

Juniperus. (MRAT, not examined).  1 female paratype: Mts. Uluguru, sommet du 

kidunda, 1800-1950 m., 3 mai 1957, forêt de montagne. (DPC, not examined).  

 

straminea  (Hedqvist).  AFROTROPICAL. 

Grahamisia straminea Hedqvist 1969: 187-188 (Figs. 10, 11).  Holotype female: 

Kivu, Terr. Mwenga, S.-O. Tombwe. Lulko, 2100 m (for mont.), I, 1952, coll. N. 

Leleup. “Récolté dans l’humus”. (MRAT, not examined). 
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striata  (Hedqvist).  AFROTROPICAL: South Africa. 

Grahamisia striata Hedqvist 1969: 188 (Fig. 12).  Holotype female: S. Africa, 

Cape Prov. Sumerset, 1-26.i., 1931, coll. R. E. Turner. (BMNH, examined). 

 

trilineatus  (Yoshimoto).  

Trimicrops trilineatus Yoshimoto 1977: 1038 (Fig. 19).  Holotype female: 

Edmonson Co., Mammoth Cave Nat’l. Park, Kentucky, 24.III.73, W. Suter (CNC 

No. 15003, not examined). 

 

Trimicrops bilineatus Yoshimoto 1977: 1037-1038 (Figs. 1, 8, 25).  Holotype 

female: Williamsville, Missouri , 12.VII.55, E. C. Becker, Berlese sample, 

deciduous duff.  Allotype male: Williamsville, Mo., 25.VII-15.VIII.69 (CNC No. 

15002, not examined). [Synonymized by Boucek 1993] 

 

truncatipennis  (Dodd).  AUSTRALIAN: Norfolk Island. 

Lelaps truncatipennis Dodd 1924: 167-168.  Holotype female: Norfolk Island, A. 

M. Lea. (SAM, not examined). 

 

turneri  Hedqvist.  AFROTROPICAL: South Africa, Congo. 

Dipara turneri  Hedqvist 1969: 193 (Fig. 14).  Holotype female: S. Africa, Port 

St. John, Pondoland, 6-25 feb., 1924. coll. R. E. Turner. (BMNH, examined).  4 

female paratypes: Congo, N. Lae Kivu: Rwankwl, 15.II.1952, coll. J. V. Leroy. (1 

female, MRAT, not examined), Kivu: reg. haes Mokoto, Terr. Masisi, VI.1959, 
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coll. N. Leleup. (1 female, MRAT, not examined), S. Rhodesia: Chipinga, 1200 à 

1300 m, VII.1960, coll. N. Leleup. (1 female, KHPC, not examined), S. Africa, 

Pondoland, Port St. John, 1-17.III 1924, coll. R. E. Turner. (BMNH, examined).  

 

Dozodipara Desjardins, New Genus 

(Fig. 62) 

 

Type Species:  Dozodipara insularis Desjardins, New Species 

 

Diagnosis:  Dozodipara is most easily distinguished by a combination of two features.  

First, the toruli appear to lie on a shelf, and a sharp angle of 90° separates the upper and 

lower face  (Fig. 8).  The only other diparine genus with this feature is Conophorisca.  

Second, the propodeum is very steep, being at least as high as long (Fig. 62).  While 

Cerodipara shares this propodeal shape, it is otherwise unique within Diparinae, all other 

genera having propodea at least 1.5X as long as high.  Dozodipara also has a scutellar 

conformation unique within Diparinae: broad, slightly convex, and with the posterior 

margin in the same horizontal plane of the body as the anterior margin. 

 

Description: Female. Head: Occipital margin rounded; occipital carina present; upper 

face without strong, transversely carinate sculpture; eyes not posteriorly extended beyond 

occipital margin; inner eye margins uniformly convex; eyes bare; scrobe present and 

scrobal channel slightly triangular dorsal to toruli; dorsal margin of scrobe rounded; 

toruli on shelf, sharp angle of ~90° between upper and lower face; antennae 
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symmetrically clavate; antennal formula 11173; pedicel, first funicular segment, second 

funicular segment subequal in length; claval apex without thick tuft of micropilosity; 

apical clypeal margin symmetrically bilobed; malar groove present; strong, dark bristles 

on vertex absent. Mesosoma: dorsum of mesosoma without strong, dark bristles; 

pronotum short, collar-like; notauli strongly arched along entire length (appearing semi-

circular) and meeting posterior scutal margin at scutoscutellar suture; lateral lobes of 

scutum similar in color to remainder of scutum; posterior scutal margin without setose 

groove; scutellum large, slightly convex with apex near posterior margin, not descending 

posteriorly; axillae convex , reduced; posterior notal wing process present, pointed; 

frenum absent; metanotum present as narrow, sculptured band; propodeum at least 1.5X 

higher than long; propodeum with dorso-ventrally flattened projection near anterior 

margin; plicae absent; suture between postspiracular area and metapleuron diagonal; 

propodeal foramen circular, open in one plane; mesepisternal depression absent; 

prepectus reduced, not reaching tegula; tegula normal, flap-like; subalare not visible; 

acropleuron slightly convex, partially expanded along dorsal length of mesopleuron; 

mesopleuron with smooth and sculptured regions posteriorly; metacoxa posteriorly 

convex, with transverse striations; metacoxa posteriorly without thick vertical brush of 

setae; 1 metatibial spur, <1.5X width of tibia at point of insertion. Metasoma: Petiole 

cylindrical, without setae, broader than long; GT1 expanded, covering at least half of 

metasoma length; GT1 rounded lateral to petiole insertion; cercal setae elongate; cercal 

brush present. Male: Unknown. 
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Discussion: Dozodipara is resolved as basal to the clade inclusive of Conodipara and 

Pyramidophoriella.  This clade is supported by the reduction in the number of metatibial 

spurs from 2 to 1.  This character may be less informative than it seems, however, as 

some undescribed species of Conophorisca and Myrmicolelaps were observed to have 2 

spurs, suggesting that the character is more homoplastic that it appears to be. 

 

Etymology:  Dozo- from the bulldozer-like shape of the head (due to the torular shelf) 

and compact body.  -dipara to ally the genus with Diparinae. 

Number of Species: 1 described. 

Distribution: Madagascar. 

Hosts: Unknown. 

Key to Species: none. 

 

Dozodipara insularis Desjardins, New Species 

 

Type information: Holotype female, CAL: “Madagascar, Toliara, S. Isoky-Vohimena, 

Forest 730m, 22°41’S 44°50’E, 21.I.1996, Sylvain, B. L. Fisher #1312.” 

 

Description: Female. 1.4 mm. Color: Brownish orange, with the following exceptions: 

pedicel+anellus+F1-6, ventral half of GT1-2 brown; forewing with circular brown spot in 

speculum; posterior margin of GT1, GT2-7 light brown; eyes, scape, legs off-white; 

F7+clava white; head metallic green. Head: subcircular in frontal view, about as wide as 

high; vertex and face finely areolate; ratio of ocellocular: postocellar: mid-to-lateral 
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ocellus distance: lateral ocellus diameter about 1.7: 4.2: 1.5: 1; scrobe high, reaching top 

of midocellus (midocellus in scrobal depression); scrobal basin and walls transversely 

striate-reticulate; interantennal carina strong but short, reaching about 0.15X height of 

scrobe; toruli separated by 0.4 torulus diameters; scape height about 1.1X eye height; 

anellus about 2.5X broader than long; ratio of scape: pedicel: anellus: F1: F2: F3 about 

47: 12: 1: 10: 10: 10; F4 and F5 slightly longer than broad; clypeus well delimited.  

Mesosoma: Dorsally pronotum transversely striate-reticulate, remainder of mesosoma 

finely reticulate, reticulations on scutellum in circular pattern; ratio of pronotum: scutum: 

scutellum: propodeum about 2.3: 2: 2.3: 1; mesosoma dorsally covered in fine, white 

setae;  pronotum 1.7X wider than long; scutellum 2.8X wider than long; marginal rim of 

scutellum smooth; metanotum narrow band with pits delimited by longitudinal striae; 

propodeum antero-medially with small, dorso-ventrally flattened projection, with 

sigmoidal carina emanating from either side; propodeal sculpture dorsal to sigmoidal 

carina pitted between strong longitudinal carinae, ventral to sigmoidal carina rugose; 

nucha present as narrow, smooth, raised band; plicae apparently absent, or sigmoidal 

carinae represent modified plicae; postspiracular sulcus not visible; spiracle 2X own 

diameter from metanotum; callus covered in fine, white setae, sculpturally present only 

as posteriorly projecting spike at lateral end of sigmoidal propodeal carina;  prepectus 

triangular and laterally narrow, in similar plane as pronotum; mesepimeron smooth 

medially and transversely striate along outer margins; femoral depression shallow, 

transversely striate-rugose, well defined anteriorly and posteriorly; metapleuron smooth 

anteriorly, rugose posteriorly; coxae bare; meso- and metatibia spinose; metatibial spur 

about 0.7X width of metatibia at point of spur insertion; metabasitarsus about 3X as long 



 

 107 
 

 

as wide, 0.4X length of remaining tarsi; hind coxae distinctly transversely striate along 

posterior margin; wings brachypterous, forewing reduced, widened and squarely truncate 

distally, about 0.5X length of mesosoma, hindwing reduced and about 0.5 length of 

forewing.  Metasoma: About equal in length to mesosoma; ratio of GT1: GT2-6: GT7: 

ovipositor sheaths 9.7:1:2.5:1; GT1 bare; GT2-3 not visible, GT4 visible only laterally; 

GT5-6 dorsally with sparse, thin, white setae; GT7 and ovipositor sheath covered in 

thick, white, setae, except bare spot on GT7 medial to cerci; ovipositor apico-dorsally 

obscured by sheath. Male: Unknown. 

 

Etymology: insularis, meaning island, as this specimen was collected on the island of 

Madagascar. 

Distribution: Madagascar. 

Hosts: Unknown. 

 

Lelaps  Walker 

(Figs. 14-21, 65) 

 

Lelaps  Walker 1843: 47.  Type species: Lelaps pulchricornis Walker (orig. desig.). 

Lelaps  Haliday 1844: 299. [Synonomized by Crawford 1912]. 

Laelaps  Agassiz 1846.  [Misspelling, noted by Crawford 1912]. 

Dilaelaps  Schulz 1906: 144.  [Unnecessary emendation, synonomized by Crawford 

1912]. 
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Stenopistha  Strand 1910: 26.  [Unnecessary emendation, synonomized by Crawford 

1912]. 

Spalangiolaelaps  Girault 1916: 22-23.  Type species: Spalangiolaelaps argenticoxa 

Girault (orig. desig. and by monotypy).  New synonymy. 

 

Diagnosis:  Within the Diparinae, Lelaps is unique in having a median clypeal tooth (Fig. 

16).  Lelaps females also have an F1 which is at least 1.5X longer than F2 (Fig. 14).  

Most diparines have an F1 which is subequal in length to F2,  although the exception to 

this is Nosodipara ferrana.  However, Nosodipara ferrana can be easily distinguished 

from Lelaps based on the features given the generic entry for Nosodipara.  Additionally, 

Nosodipara’s F1:F2 ratio is the result of a reduced F2 rather than an elongate F1.   

 

Discussion:  Although the author of Lelaps is often cited as either “Walker (1843)” or 

“Haliday (1843)”, this problem was solved by Crawford (1912).  Crawford stated that 

although both articles were dated as being published in 1943, a footnote in the journal 

with Haliday’s description stated that it was actually issued in 1944.  Although Walker 

referred to a Haliday manuscript in his description of Lelaps, he provided a full 

description of both the genus and type species in his paper.  Crawford properly credited 

the generic name to Walker.  Additional confusion was generated when Lelaps was 

misspelled as Laelaps by Agassiz (1846), by Walker himself (1862), and by Dalle Torre 

(1898).  Both Schulz (1906) and Strand (1910) subsequently provided replacement names 

for the misspelling, as Laelaps was preoccupied.  However, since the valid name for the 

genus is Lelaps, Crawford (1912) synonomized the replacement names. 
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Lelaps was resolved at the base of the clade containing Spalangiolaelaps and 

Lelaps noortii based on the presence of a median clypeal tooth. Additionally, in 1 of 2 

most parsimonious reconstructions, an F1 at least 1.5X as long as F2 is also 

synapomorphic for the clade.  Although the clade was only recovered as monophyletic in 

the preferred analysis, it was always recovered as monophyletic in the preliminary 

analyses (not shown).  L. noortii’s relationship with the remainder of Lelaps is discussed 

in the former’s specific entry. 

 Heydon and Boucek (1992) discussed the potential synonymy of 

Spalangiolaelaps with Lelaps sensu stricto, although they maintained it as a valid genus, 

as the male was unknown at the time. However, the male of Spalangiolaelaps was 

identified during this study and resembles the male of Lelaps sensu stricto in all 

phylogenetic and diagnostic characters.  The female of Spalangiolaelaps has been 

historically separated from Lelaps based on the following characters: absence of wings, 

absence of frenum, mandible with 4 teeth, nucha long and tapering posteriorly, and 

notauli reaching scuto-scutellar margin without joining.  Examination of many described 

species of Lelaps sensu stricto have shown the last 3 of these characters to be variable 

within the genus.  In fact, the majority of Neotropical Lelaps sensu stricto have notauli 

that do not join before reaching the scuto-scutellar margin.  As many diparine genera 

have species with both macropterous and brachypterous forms (e.g. Dipara), and this is 

generally considered a very plastic character within the subfamily, the only remaining 

character separating the two entities is the presence/absence of the frenum.  Examination 

of four undescribed brachypterous species in the Lelaps/Spalangiolaelaps clade has 

shown variation in this feature.  One undescribed species from the United States (Arizona 
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and Florida, CNC) does have a frenum, but resembles Spalangiolaelaps in all other 

defining characters.  The other three species (two from Cuba and one from the 

Dominican Republic, CNC) lack the frenum, but differ from Spalangiolaelaps in other 

features.  These additional taxa were  not included in the phylogenetic analysis because 

of the already strong support for the inclusion of Spalangiolaelaps in Lelaps and the 

desire to keep the number of taxa in the morphological analysis limited (i.e., to maintain 

a character:taxon ration as high as possible).  However, in retrospect the inclusion of 

these taxa may have helped elucidate the relationships of Lelaps sensu stricto, 

Spalangiolaelaps, and Noortia in the broader context of diparine phylogeny.  Regardless, 

due to the similar morphology of the males and the presence of variability of all 

characters used to separate the two genera within Lelaps sensu stricto, the genus 

Spalangiolaelaps is herein synonomized with Lelaps.  

 

Number of Species: 42 described species, possibly hundreds of undescribed species.  

Distribution: New World. 

Hosts: One species was reared from a boll weevil relative (Curculionidae, J. Woolley, 

pers. com.). 

Key to Species: Yoshimoto (1977) provided a key to the Nearctic species.  Although a 

key to the world species is not given here, characters used to separate Lelaps noortii from 

the remainder of Lelaps are given in the L. noortii diagnosis. 
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Species of Lelaps: 

  

abdominalis  Ashmead.  NEOTROPICAL: Brazil. 

Lelaps abdominalis Ashmead 1904: 481-482 (Plate 36, Fig. 1).  Holotype female: 

Brazil: P. Branca, in April. (USNM, examined). 

 

aeneiceps  Ashmead.  NEOTROPICAL: Brazil. 

Lelaps aeneiceps Ashmead 1904: 481.  Type information uncertain: Brazil: 

Chapada and Santarem. (USNM, examined). 

 

affinis  Ashmead.  NEOTROPICAL: Brazil. 

Lelaps affinis Ashmead 1904: 480.  Holotype female: Brazil: Santarem. (USNM, 

examined). 

 

albipes  Cameron.  NEOTROPICAL: Panama. 

Lelaps albipes Cameron 1884: 132.  Holotype female: Panama. (BMNH, 

examined). 

 

albofasciatus  Hedqvist.  NEOTROPICAL: Puerto Rico?.  

Lelaps albofasciatus Hedqvist 1964: 57-58 (Fig. 6).  Holotype female: “Portorico, 

Moritz, L. nr. 15181.” (ZMHB, not examined). 
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annulicornua  (Strand).  NEOTROPICAL: Peru. 

Stenopistha annulicornua Strand 1911: 200.  Holotype female: Peru, Pachitea 

River. 

 

apicalis  Ashmead.   NEOTROPICAL: Brazil.  

Lelaps apicalis Ashmead 1904: 479-480.  Holotype female: Brazil: Chapada, in 

August. (USNM, not examined). 

 

argenticoxa  (Girault).  NEARCTIC: USA (Maryland).  

Spalangiolaelaps argenticoxa Girault 1916: 23.  Holotype female: MD: Prince 

George’s County, Hillmead (Glenndale), forest, sweeping, June 4, 1916. (USNM, 

not examined). New synonymy. 

 

avicula  Haliday. 

 Lelaps avicula Haliday, 1844: 300.  (Type gender and locality uncertain). 

 

beckeri  Yoshimoto.  NEARCTIC: Canada, USA (Missouri). 

Lelaps beckeri Yoshimoto 1977: 1052-1054 (Figs. 5, 13, 14, 24, 30).  Holotype 

female: MO: Williamsville, VII-IX.69, coll. J. T. Becker, malaise trap.  Allotype 

male: MO: Williamsville, 12-26.V.1969, coll. J. T. Becker, malaise trap.  1 

female and 7 male paratypes: Ontario: Stittsville, 19.VIII.68, coll J. R. Vockeroth 

(1 female), Ontario: Rondeau Prov. Park, 8-12.VIII.73, malaise trap (3 males), 

Ontario: Rondeau Prov. Park, 19.VI.62, 10.VII.62, coll. S. M. Clark (2 males), 
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Ontario: Crow Lake, Marmora area, 18.VIII.59, coll. L. K. Smith (1 male), 

Quebec: Meach Lake, 8.IV.62, coll. S. M. Clark (1 male). (CNC, not examined).   

 

bimaculata  Ashmead.  NEOTROPICAL: Brazil. 

Lelaps bimaculata Ashmead 1904: 482.  Type information uncertain: Brazil: 

Chapada, in April; Santarem; and P. Branea. (USNM, not examined). 

 

callisto  Marshall.  NEOTROPICAL: Venezuala. 

Laelaps callisto Marshall 1892: 73.  Holotype female: Venezuala. [De Santis 

1979: 121 is the earliest listing of this species as Lelaps callisto.  However, no 

mention is made of the misspelling.] 

 

caudatula  (Strand).  NEOTROPICAL: Peru. 

Stenopistha caudatula Strand 1911: 201-202.  Holotype female: Peru, Pachitea 

River. 

 

decorata  Walker.  NEOTROPICAL: Brazil. 

Laelaps decorata Walker 1862: 390. Holotype female: Ega. (BMNH, examined) 

[De Santis 1980: 226 is the earliest listing of this species as Lelaps decorata.  

However, no mention is made of the misspelling.] 

 

ferrierei   Hedqvist.  NEOTROPICAL: Brazil. 
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Lelaps ferrierei  Hedqvist 1964: 56-57 (Fig. 5).  Holotype female: Brazil, Nova 

Teutonia (27°11’ B 52°23’ L), June 1, 1945, coll. F. Plaumann. (KHPC, not 

examined). 

 

ferruginea  Cameron.  NEOTROPICAL: Panama. 

Lelaps ferruginea Cameron 1884: 133. Holotype female: Panama. (BMNH, 

examined). 

 

flagellata  (Strand).  NEOTROPICAL: Bolivia. 

Stenopistha flagellata Strand 1911: 208-209.  Holotype female: Eastern Bolivia 

(Steinbach). 

 

flavescens  Ashmead.  NEOTROPICAL: St. Vincent, Grenada. 

 Lelaps flavescens Ashmead 1894: 156-157.  2 females and 3 males (designation 

uncertain, although 1 of the females is likely the holotype): St. Vincent. (USNM, 

not examined). 

 

floridensis  Yoshimoto.  NEARCTIC: USA (Florida), NEOTROPICAL: Virgin Islands. 

Lelaps floridensis Yoshimoto 1977: 1048-1052 (Figs. 4, 11, 12, 23, 29).  

Holotype female and allotype male: Miamai, FL, 17.VI.49, coll. C. D. Link, in 

trap, S.P.B. Acc. No. 103433. (FSCA, not examined).   8 female and 1 male 

paratypes: FL: Miami, 4.III.49, coll. C. D. Link, in trap, S.P.B. Acc. No. 103614 

(1 female, FSCA, not examined), FL: Coral gables, 25.III.49, coll. C. D. Link, 
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S.P.B. Acc. No. 103990. (1 female, FSCA, not examined), FL: Matheson 

Hammock, Dade Co., 26.V.62, coll. R. E. Woodruff (2 females, FSCA, not 

examined), FL: Matheson Hammock, 13.II.57, coll. J. Porter, on Celtis laevegata 

(1 female and 1 male, FSCA, not examined), FL: Ross and Castellow Hammock, 

Dade Co., 12.IV.72, coll. H. V. Weems, Jr. (1 female, FSCA, not examined), FL: 

Paradise Key, 7.IV.51, coll. H. and M. Townes. (1 female, AEI, not examined), 

Virgin Islands: St. Croix, airport, 6.IV.68, coll. W. H. Pierce, sweeping. (1 

female, FSCA, not examined). 

 

halidayi  Ashmead.  NEOTROPICAL: Brazil. 

Lelaps halidayi Ashmead 1904: 481.  Holotype female: Brazil: Rio de Janeiro, in 

October. (USNM, examined). 

 

 Stenopistha halidayi sobrina Strand 1911: 199.  Holotype female: Brazil: Rio de 

Janeiro (v. Olfers). [Subspecies] 

 

insularis  Mercet.  NEOTROPICAL: Santa Isabel. 

 Lelaps insularis Mercet 1927: 57-60.  Holotype female: Isla de Fernando Poo: 

Santa Isabel. (type location uncertain). 

 

magnifica  (Strand).  NEOTROPICAL: Colombia. 

 Stenopistha magnifica Strand 1911: 204-205.  Holotype female: Bogota (Lindig). 

 



 

 116 
 

 

melinus  Yoshimoto.  NEARCTIC: USA (Lousiana, Maryland, South Carolina,  

Tennessee). 

Lelaps melinus Yoshimoto 1977: 1054-1055 (Figs. 15, 31).  Holotype male: LA: 

Bayou Chicot, Evangeline Parish, 11-14.VIII.71, coll D. Shanek. (CNC, not 

examined).  3 male paratypes: MD: Takoma Park, 12.VIII.73, coll. H. and M. 

Townes. (1 male, AEI, not examined), SC: Anerson, 21.VII.57, coll. J. G. 

Chillcott. (1 male, CNC, not examined), TN: Lexington, Natchez Trace State 

Park, 20-26.VI.72, coll. G. Heinrich, malaise trap. (1 male, CNC, not examined). 

 

ornata  (Strand).  NEOTROPICAL: Peru. 

Stenopistha ornata Strand 1911: 206.  2 females (designation uncertain): Caracas 

(Moritz). 

 

paraguayensis  Girault.  NEOTROPICAL: Paraguay. 

 Lelaps paraguayensis Girault 1912: 170-171.  Holotype female: Paraguay, San 

Bernadino, coll. K. Fiebrig. (Zool. Mus. Berlin, not examined) 

 

picta  Walker.  NEOTROPICAL: Brazil. 

Laelaps picta Walker 1862: 390.  Holotype female: Ega. [Boucek and Delvare 

1992 designated a Lectotype female (BMNH, examined)]. 

 

pulchella  (Strand).  NEOTROPICAL: Venezuala. 

 Stenopistha pulchella Strand 1911: 203.  Holotype female: Caracas (Mortiz).  
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pulchra  Girault.  NEOTROPICAL: Paraguay. 

 Lelaps pulchra Girault 1912: 171-172.  Holotype female: Paraguay, San 

Bernadino, coll. K. Fiebrig. (Zool. Mus. Berlin, not examined) 

 

pulchricornis  Walker.  NEOTROPICAL: St. Vincent. 

Lelaps pulchricornis Walker 1843: 47.  Holotype female: St. Vincent. (BMNH, 

not examined). 

 

pygata  (Strand).  NEOTROPICAL: Peru. 

 Stenopistha pygata Strand 1911: 202.  Holotype female: Peru, Pachitea River. 

 

 Stenopistha pygata conjuncta Strand 1911: 202-203.  Holotype female: Peru, 

Pachitea River. [Subspecies] 

 

rectivitta  (Strand).  Neotropical: Peru. 

Stenopistha rectivitta Strand 1911: 206-207.  2 females (designation uncertain): 

Peru, Pachitea River. 

 

rhomboidea  (Strand).  NEOTROPICAL: Colombia. 

Stenopistha rhomboidea Strand 1911: 205-206.  Holotype female: Bogota 

(Lindig). 
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sadales  (Walker).  NEOTROPICAL: Galapagos. 

Merostenus sadales Walker 1839: 93.  Holotype female: Charles’ Isle, Galapagos. 

(BMNH, not examined). 

 

setifrons  (Strand).  NEOTROPICAL: Peru. 

Stenopistha setifrons Strand 1911: 207-208.  Holotype female: Peru, Pachitea 

River. 

 

simplex  (Fabricius).  NEOTROPICAL: Guyana. 

Chalcis simplex Fabricius 1804: 164. [Boucek and Delvare (1992) designated a 

female lectotype (Guyana, ZMUC, not examined) and transferred the species to 

Lelaps.] 

 

striaticeps  (Strand).  NEOTROPICAL: Peru. 

 Stenopistha striaticeps Strand 1911: 208.  Holotype female: Peru, Pachitea River. 

 

striatus  Yoshimoto.  NEARCTIC: USA (Missouri, Georgia, Texas). 

Lelaps striatus Yoshimoto 1977: 1055 (Figs. 6, 7, 16-18, 32-34).  Holotype male: 

MO: Williamsville, 29.VI.-5.VII.69, coll. J. T. Becker, malaise trap.  28 male 

paratypes: MO: Williamsville, 29.VI-5.VII.69, 16-26.VI.69, 26.V-16.VI.69, 17-

29.V.70, coll. J. T. Becker, malaise trap (16 males), GA: 5.V-14.V.71, 5-

10.VI.71, 28.V-9.VI.70, 25.VIII.70, coll. F. T. Naumann, malaise trap (7 males), 

GA: Forsyth, 20-21.V.70, coll. G. Heinrich (2 males), GA: Holcomb Creek, 
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1.VIII.57, coll. W. R. Richards (1 male), TX: Welder Wildlife, Ref. nr. Sinton, 

23.III.65, coll. J. G. Chillcott (2 males). (CNC, not examined).  

 

stylata  Ashmead.  NEOTROPICAL: Brazil. 

Lelaps stylata Ashmead 1904: 482.  Type information uncertain: Brazil: Chapada, 

in April; Santarem. (USNM, not examined). 

 

tapajoana  (Schulz).  NEOTROPICAL: Brazil. 

 Dilaelaps tapajoana Schulz 1906.  [Replacement name for Lelaps ferruginea 

Ashmead 1904, preoccupied by Dilaelaps ferruginea Cameron 1884.] 

 

 Lelaps ferrunginea Ashmead  1904: 480.  Holotype female: Brazil: Santarem. 

 

terebrans  (Strand).  NEOTROPICAL: Peru. 

Stenopistha terebrans Strand 1911: 200-201.  Holotype female: Peru, Pachitea 

River. 

 

viridiceps  (Strand).  NEOTROPICAL: Peru. 

Stenopistha viridiceps Strand 1911: 199-200.  Holotype female: Peru, Pachitea 

River. 

 

vittipennis  (Strand).  NEOTROPICAL: Peru 



 

 120 
 

 

Stenopistha vittipennis Strand 1911: 203-204.  Holotype female: Peru, Pachitea 

River. 

  

Lelaps noortii Desjardins, New Species 

(Fig. 65) 

 

Type information: Holotype female (SAM): “South Africa, W. Cape, Koeberg Nature 

Reserve, 33°37.62’S 18°24.26’E, 27 Dec 1997-23 Jan 1998, S. van Noort, KO97-Y158, 

Yellow Pan Trap (cup), Station 5, West Coast Strandveld dominated by Euphorbia and 

Rhus spp.” 1 paratype female (SAM): same data as holotype except “31 Oct – 28 Nov 

1997, KO97-Y111, Yellow Pan Trap (bowl), Station 3.” 

 

Diagnosis:  Lelaps noortii can be distinguished from the remaining species of Lelaps by 

its posteriorly smooth metacoxa, absence of bristles, and filiform antennae.  The 

remainder of Lelaps have transverse striations on the posterior margin of the metacoxa, 

strong, dark bristles on the vertex and dorsal surface of the mesosoma, and clavate 

antennae. 

 

Description: Female. 1.9 mm. Color: Brownish black with metallic green and blue 

highlights, with the following exceptions: Scape, pedicel brownish orange, flagellum 

brown, eyes grey, scutellum metallic yellowish green, propodeum mostly metallic 

greenish blue, nucha metallic bluish green, all legs yellowish white to brownish orange, 

ovipositor yellowish orange. Head: Circular in frontal view, 0.9X as high as wide; eye 
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sparsely setose, 1.4X as high as wide; vertex smooth, remaining head longitudinally 

strigose (Eady); ocellocular: postocellar: mid-to-lateral ocellus distance: lateral ocellus 

diameter about 4.3:6.3:4:1; scrobe high, narrow, reaching to 0.8X distance to mid-

ocellus; scrobal basin and walls coriaceous-imbricate; interantennal carina absent; toruli 

separated by 0.6X torulus diameters; scape height about 0.9X eye height; anellus about 

3X broader than long; ratio of scape: pedicel: anellus: F1: F2: F3 about 35: 12: 1: 15: 9: 

9; F4 and F5 about 1.5X as long as broad; clypeal boundaries indistinct.  Mesosoma: 

Dorsally pronotum finely, transversely strigose (Eady), scutum medial to notauli and 

axillae finely alveolate, scutum lateral to notauli smooth, scutellum longitudinally 

strigose (Eady); ratio of pronotum: scutum: scutellum: propodeum about 1.2: 1.4: 1.4: 1; 

mesosoma bare except scutum dorsally with sparse, fine, white setae;  pronotum 2.3X 

wider than long; scutum 2.3X wider than long; marginal rim of scutellum with lightly 

grooved, pitted lamella; metanotum narrow band with pits delimited by longitudinal 

striae; propodeum along anterior margin with pits delimited by longitudinal carinae, 

remainder of propodeum areolate, becoming more irregular lateral to plica; nucha 

indistinct; plica present as longitudinal carina; postspiracular sulcus smooth with pits 

delimited by transverse carinae; spiracle small, 3.5X own diameter from metanotum; 

callus mostly bare except for a few fine, white setae, projecting posteriorly as point 

beyond postspiracular sulcus;  prepectus triangular, in similar plane as pronotum, 

abutting at about 160° angle; mesepimeron mostly smooth, with dorsal and ventro-

posterior margins pitted; femoral depression shallow, areolate, well defined anteriorly 

and posteriorly; metapleuron smooth; coxae anteriorly with few fine, white setae; meso- 

and metatibia spinose; longer metatibial spur about 1.7X length of shorter, 0.6X width of 
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metatibia at point of spur insertion; metabasitarsus about 3.8X as long as wide, 0.6X 

length of remaining tarsi; hind coxae faintly transversely striate along posterior margin; 

wings brachypterous, forewing reduced, pointed antero-distally, about 0.7X length of 

mesosoma, hindwing reduced, about 0.6 length of forewing, with fringe-like setae on 

distal margin.  Metasoma: About 1.9X length of mesosoma; ratio of GT1: GT2-6: GT7: 

ovipositor sheaths 5:1:1.5:1.5; GT1-4 bare; lateral surface of GT5, all of GT6-7 and 

ovipositor sheath covered in fine, white, setae; ovipositor apico-dorsally smooth. Male: 

Unknown. 

 

Discussion: In preliminary phylogenetic analyses (not shown), Lelaps noortii was always 

placed a sister-group to the Lelaps + Spalangiolelaps clade.  However, in the final 

phylogenetic analysis L. noortii is nested within the Lelaps clade as sister-taxon to 

Spalangiolaelaps.  This relationship is based on 2 synapomorphies (loss of the frenum 

and strongly arched, closely spaced notauli), both of which are highly homoplastic in the 

analysis.  The loss and gain of the frenum may be even more plastic than suggested by 

this analysis; this possibility is discussed in Lelaps’ generic entry.  However, it should 

also be noted that L. noortii has metallic coloration over most of it’s body.  While this 

trait was not coded in the phylogenetic analysis, it is generally rare throughout Diparinae 

although common in Lelaps.   

Within the Lelaps clade, L. noortii has 5 autapomorphic features: posteriorly 

smooth metacoxa, absence of bristles, filiform antennae, an elongate pedicel which is 

subequal in length to F1, and absence of a malar groove.  None of these traits are unique 

to L. noortii within Diparinae and all could become sympleiso- or synapomorphic given 
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an alternate placement of the taxon.  Also, L. noortii and the remainder of Lelaps have 

extremely disjunct distributions.  L. noortii is found only the Western Cape Province of 

South Africa, while Lelaps is endemic to the New World.  L. noortii may be a relict of a 

time when Lelaps had a broader range across a combined South America and Africa, or it 

may represent a recolonization of Africa from South America.  Although L. noortii may 

represent the sister-taxon to the remainder of Lelaps and therefore be recognizable as a 

genus, the results of the final phylogenetic analysis warrant the description of L. noortii 

as a species of Lelaps.  However, a species-level phylogenetic study of Lelaps itself may 

be needed to ascertain the true relationship between the two taxa. 

 

Etymology: Named for Simon van Noort of the Cape Town Museum (South Africa), 

who provided much new African material which was vital for this study, and who 

assisted in my collection of diparines during my visit to Cape Town. 

Distribution: South Africa, Western Cape. 

Hosts: Unknown. 

 

Myrmicolelaps  Hedqvist 

(Figs. 25-35, 63, 64) 

 

Myrmicolelaps  Hedqvist 1969: 182.  Type species: Myrmicolelaps paradoxus Hedqvist 

(orig. desig. and by monotypy). 
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Dolichodipara  Hedqvist 1969: 180-181.  Type species: Dolichodipara scutellata 

Hedqvist (orig. desig. and by  monotypy). New synonymy. [Type specimen of 

genus examined] 

 

Diagnosis: Myrmicolelaps belongs to a clade with Conophorisca.  This entire clade can 

be diagnosed with 2 characters: 1) propodeal foramen hinge-like, open both dorsally and 

ventrally (Fig. 31).  All remaining diparines have a propodeal foramen that is circular and 

open only in 1 plane.  2) Petiole constricted antero-ventrally (Fig. 34).  All other 

diparines have a cylindrical petiole, or in the case of Conodipara, an L-shaped petiole.  

Myrmicolelaps can be distinguished from Conophorisca by the following characters.  

First, in Myrmicolelaps the axillary wing sclerite is expanded and visible (Fig. 30), while 

it is neither expanded nor visible in Conophorisca.  Second, Conophorisca has its toruli 

located on a shelf, where the upper face is separated from the lower face by a sharp angle 

of ~90° (Fig. 8), while no sharp 90° angle is present in Myrmicolelaps. 

 

Discussion: Hedqvist (1969a) separated these Myrmicolelaps from Dolichopdiara based 

on scutellum shape.  Dolichodipara has a moderately tooth-like scutellum, while 

Myrmicolelaps has a flat scutellum.  However, Myrmicolelaps aurantius has a the 

posterior portion of its scutellum slightly raised, and this character shows a grade of 

variability throughout both described and undescribed species.  The Myrmicolelaps clade 

is supported as monophyletic in the phylogenetic analysis by 2 synapomorphies: the 

presence of an expanded axillary wing sclerite and presence of a grooved, setose 

posterior scutal margin.  Based on the strong synapomorphies uniting this clade, and the 
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variability that exists within characters traditionally used to divide it, Dolichodipara 

Hedqvist is herein synonomized with Myrmicolelaps Hedqvist.  As both genera are 

described in the same paper, the name Myrmicolelaps is chosen for 2 reasons.  First, the 

name itself provides more information about the taxon, hinting at the genus’ ant-like 

appearance.  Second, Myrmicolelaps is more commonly recognized by chalcidologists, 

and is present in many more collections than Dolichodipara. 

Very few host records exist for the diparines in general.  However, a single 

specimen of Myrmicolelaps from Zimbabwe (S. Rhodesia), representing an undescribed 

species (Dolichopdipara Heqvist clade), was found in the USNM collection pinned 

above a tsetse fly (Glossinidae: Glossina) puparium with an exit hole and host tissue 

inside.  The specimen label reads “S. Rhodesia, Kariba, 4/X/1965, R. J. Phelps”, and a 

smaller label beneath reads only “745.”  Previously, within Chalcidoidea only eupelmids 

(Eupelminus tarsatus, Anastus viridiceps, Anastatus sp.) and chalcidids (Dirhinus 

inflexus, Chalcis amenocles) were known to parasitize tsetse puparia (Leak 1999).  

Additionally, another undescribed species (Myrmicolelaps Hedqvist clade) from South 

Africa (Orange Free State) was reared from mantid egg cases (Prinsloo pers. comm.). 

 

Species/Distribution: 6-7 sp. (3 described) South Africa, Western Cape; 2-3 sp. (1 

described), Namibia; 1 undescribed sp. South Africa, Mpumalanga, 1 undescribed sp. 

Zimbabwe.  

Hosts: An undescribed species from Zimbabwe was reared from a tsetse fly 

(Glossinidae: Glossina) puparium, and another undescribed species was reared from a 

mantid egg case.   
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Key to Species: Given below. 

 

Key to species of Myrmicolelaps Hedqvist 

 

1. Metanotum present as large, vertical, smooth, shiny surface; propodeum rising 

posteriorly in lateral view; occipital carina distinct 2 

 Metanotum not visible; propodeum level or descending posteriorly in lateral 

view; occipital carina indistinct   3 

2. Clypeal margin sinuate; lateral surface of pronotum with deep, rounded, 

longitudinal depression delimited by carina both dorsally and ventrally  

       Myrmicolelaps scutellata  

Hedqvist 

 Clypeal margin with 2 strong teeth; lateral surface of pronotum without deep, 

rounded, longitudinal depression delimited by carina both dorsally and ventrally 

       Myrmicolelaps iridius  

Desjardins, new species 

3. Pronotum conical; occipital margin carinate; propodeum with distinct suture 

separating nucha from rest of propodeum  Myrmicolelaps paradoxus  

Hedqvist 

 Prontum slightly bulging laterally and dorsally; occipital margin rounded; 

propodeum without suture separating nucha from rest of propodeum  

       Mymricolelaps aurantius 

Desjardins, new species 
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Species of Myrmicolelaps: 

 

paradoxus  Hedqvist.  AFROTROPICAL: South Africa. 

Myrmiolelaps paradoxus Hedqvist 1969: 182-183.  Holotype female: S. Africa, 

Orange F. State, Harrismith, March 1-20, 1927, coll. R. E. Turner. (BMNH, 

examined).  Paratype male: S. Africa, Cape Prov., Aliwal North, Dec. 1922, coll. 

R. E. Turner. (BMNH, examined). 

 

scutellata  (Hedqvist).  AFROTROPICAL: South Africa. 

Dolichodipara scutellata Hedqvist 1969: 181-182.  Holotype female: S. W. 

Africa, Aus. 8-30.XI, 1929, coll. R. E. Turner. (BMNH, examined).  Paratype 

female: S. W. Africa, Aus. Dec. 1929, coll. R. E. Turner. (KHPC, not examined). 

 

Myrmicolelaps iridius, New Species 

(Fig. 63) 

 

Type Information: Holotype female (SAM). “Namibia, Waterberg area, Kleinwater 

Farm, on sand, C. Dickman.  Collected April 1992, ex. pitfall trap, voucher specimen for 

job no. 1992/006.  SAM-HYM P008338.” 1 paratype male (SAM), same data as female 

except “SAM-HYM P008339.” 
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Description: Female. 3.5 mm. Color: Dark brown with the following exceptions: Head 

mostly metallic green with metallic blue in scrobal basin and along posterior eye margin, 

clypeus gold dorsally to reddish gold ventrally, distal 3/4 of scape brownish yellow, 

latero-ventral margin of pronotum white, scutellum reddish gold, all coxae, 

mesepisternum, and mesepimeron brownish green with metallic blue highlights 

posteriorly, propodeum and petiole mostly metallic greenish-brown, nucha brownish 

yellow, all tibiae brown, lightening to brownish yellow distally, all tarsi 1-3 brownish 

yellow, all tarsi 4-5 brown, gastral sternites and ovipositor sheaths brown. Head: 

Subtriangular-ovate in frontal view, 1.2X as high as wide; eyes sparsely setose, 1.8X as 

high as wide; head mostly coriaceous-imbricate, genae longitudinally strigose (Eady); 

raised, rounded transverse ridge present between lateral ocelli, causing ocelli to face 

latero-dorsally; ocellocular: postocellar: mid-to-lateral ocellus distance: lateral ocellus 

diameter about 1.8:4.2:1.7:1; scrobe high, narrow, reaching from torulus to dorsal margin 

of mid-ocellus (mid-ocellus in scrobe); scrobal basin smooth, scrobal walls smooth to 

coriaceous; margin of scrobal walls rounded dorsally and strongly carinate ventrally; 

interantennal carina raised, flattened, reaching 0.3X height of scrobe; toruli separated by 

1.5 torulus diameters; scape length 1.3X eye height; ventral surface of scape rounded; 

scape straight dorsally, bulging and bowed inward ventrally; anellus reduced and 

partially fused to F1; ratio of scape: pedicel: anellus+F1: F2: F3 about 5.2:1:2:1.8:1.6, F4 

5.8X as long as wide to F7 2.8X as long as wide; clava fused, 1-segmented; malar sulcus 

indistinct, although faint longitudinal depression present; gena rounded posteriorly; 

clypeus strongly delimited laterally, indistinct dorsally; clypeal margin protruding with 2 

strong teeth.  Mesosoma: Dorsally coriaceous, except metanotum which is smooth, 
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polished; dorsally with sparse, white setae (slightly more dense on scutellum); ratio of 

pronotum: scutum: scutellum: propodeum about 3.3:1:1.2:2.7; pronotum about as wide as 

long (although partially obscured dorsally by mounting); lateral surface of pronotum with 

deep, rounded, longitudinal depression delimited by carina both dorsally and ventrally; 

scutum >2X as wide as long (partially obscured dorsally by mounting); posterior scutellar 

margin smooth; metanotum wide, transverse, vertical band; propodeum antero-medially 

coriaceous, antero-laterally transversely striate, becoming longitudinally striate 

posteriorly; plicae absent; postspiracular sulcus wide, shallow, mostly smooth; spiracle 

2X its own diameter from metanotum; spiracle facing postero-laterally; prepectus 

triangular, in same plane as pronotum; acropleuron smooth ventrally to coriaceous 

medially to diagonally striate antero-laterally; mesepisternum antero-ventrally areolate, 

postero-dorsally transversely striate, mesepimeron anteriorly areolate-transversely striate, 

posteriorly smooth, except dorso-posteriorly coriaceous; femoral depression distinct 

dorsally, less distinct posteriorly, indistinct anteriorly; metapleuron areolate, with large, 

irregular transverse striae near coxal insertion; metapleuron fused to propodeum anterior 

to propodeal spiracle; 1 metatibial spur, 1.5X width of metatibia at point of insertion; 

metabasitarsus about 6.7X as long as wide, about 0.5X length of remaining tarsi; 

posterior 1/2 of metacoxa transversely striate; pro- and mesocoxa anteriorly with sparse, 

white setae; meso- and metatibia not spinose; apterous, forewing reduced to membranous 

lump anteriorly, hindwing apparently absent.  Metasoma: 1.4X length of mesosoma; 

petiole about 2.3X as long as broad, transversely striate ventrally, rough-areolate 

laterally, imbricate dorsally; ratio of GT1: GT2-6: GT7: ovipositor sheaths about 

4.5:3.9:1:1; all tergites dorsally covered in white setae (separated by 0.5-1X setal length), 
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except sparse to absent in anterior 4/5 of GT1 and anterior 2/3 of GT5, and dense on 

GT6-7 and ovipositor sheaths; ovipositor tip apico-dorsally serrate. Male: Same as 

female. 

 

Etymology: from irido-, meaning rainbow, from the variety of colors present on the 

specimen. 

Distribution: Namibia. 

Hosts: Unknown. 

 

Myrmicolelaps aurantius, New Species 

(Figs. 25-35, 64) 

 

Type Information: Holotype female (CNC). “S.A.E. Trans. Guernsey Farm, 

15km.E.Klaserie, XII-19-31-1985, yellow mal., M. Sanborne.” Paratypes: 5 females and 

5 males, same data as holotype. 

 

Description: Female. 2.3 mm. Color: Bright orange with the following exceptions: head 

metallic green; antenna - clava brownish yellow, clava light brown; mesepimeron ventral 

to acropleuron, posterior margin of metacoxa brownish with metallic purple; mesocoxa 

brown dorsally to off-white ventrally; legs mostly whitish orange, with distal end of 

metatibia brown; gaster brownish orange, with bronze highlights developing posteriorly; 

ovipositor sheath brown.  Head: Ovate in frontal view, about as high as wide; eyes 

sparsely setose, 1.9X as high as wide; head mostly finely areolate; lateral ocelli not on 
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raised, rounded transverse ridge, facing slightly laterally, mostly dorsally; ocellocular: 

postocellar: mid-to-lateral ocellus distance: lateral ocellus diameter about 2.3:4.9:2:1; 

scrobe high, narrow, reaching from torulus to dorsal margin of mid-ocellus (mid-ocellus 

in scrobe); scrobal basin and walls finely areolate; interantennal area carinate, not 

flattened, reaching 0.3X height of scrobe; toruli separated by 1.6 torulus diameters; scape 

length subequal to eye height; ventral surface of scape rounded; scape slightly laterally 

bowed inward; anellus reduced and partially fused to F1; ratio of scape: pedicel: 

anellus+F1: F2: F3 about 4:1:1.3:1.1:1.2, F4 2.5X as long as wide to F7 2.2X as long as 

wide; clava fused, 1-segmented; malar sulcus distinct; clypeus strongly delimited 

laterally, indistinct dorsally; clypeal margin protruding and with 2 symmetrical rounded 

lobes.  Mesosoma: Dorsally mostly very finely areolate, except scutum smoother medial 

to notauli; dorsally with sparse, white setae; ratio of pronotum: scutum: scutellum: 

propodeum about 3.1:1:1.1:3.7; pronotum about 1.1X longer than wide; pronotum 

without lateral depression; scutum 2.1X as wide as long; posterior scutellar margin 

smooth; metanotum narrow band, sculpturally undifferentiated from propodeum; 

propodeum anteriorly finely areolate, becoming longitudinally strigose (Eady) 

posteriorly; plicae absent; postspiracular sulcus wide, shallow, mostly smooth; spiracle 

6X its own diameter from metanotum; spiracle facing postero-laterally; prepectus 

triangular, in same plane as pronotum; acropleuron coriaceous ventrally to finely areolate 

dorsally; mesepimeron areolate; femoral depression indistinct; metapleuron finely 

areolate; metapleuron distinct from propodeum anterior to propodeum spiracle; 1 

metatibial spur, 1.1X width of metatibia at point of insertion; metabasitarsus about 7.2X 

as long as wide, about 0.6X length of remaining tarsi; posterior 1/2 of metacoxa 
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transversely striate; pro- and mesocoxa anteriorly mostly bare; mesotibia with single 

spine on inner surface; metatibia not spinose; apterous, forewing and hindwing 

apparently absent.  Metasoma: 1.2X length of mesosoma; petiole about 2.2X as long as 

broad, mostly finely areolate except transversely striate antero-ventrally; ratio of GT1: 

GT2-6: GT7: ovipositor sheaths about 7:2:1.8:1; GT1-7, ovipositor sheath with white 

setae; ovipositor tip apico-dorsally serrate. Male: Same as female. 

 

Etymology: from auranti-, meaning orange, from the bright orange coloration on the 

meso- and meta-soma of the specimen. 

Distribution: South Africa, Eastern Transvaal. 

Hosts: Unknown. 

 

Neapterolelaps  Girault 

(Figs. 36-41, 50, 51, 56, 57) 

 

Neapterolelaps  Girault 1913[175]: 86-87.  Type species: Neapterolelaps lodgei Girault 

(orig. desig. and by monotypy). 

Australolaelaps  Girault 1925: 96.  Type species: Australolaelaps aeniceps Girault (by 

monotypy). New synonymy. [Type specimen of genus examined]  

Austrolaelaps  Girault 1929: 2.  Type species: Austrolaelaps  nigrisaepta Girault (by 

monotypy). [Synonomized by Boucek 1988] 

Pinocchio  Pagliano & Scaramozzino 1990. [Unneccesary emendation, synonomized by 

Noyes 2003] 
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Diagnosis:  Neapterolelaps can be identified by 3 unique features: 1) metacoxa 

posteriorly with vertical brush of white setae (Fig. 39), 2) anterior surface of GT1 lateral 

to petiole with thick tufts of white setae (Fig. 37, 38), 3) longer metatibial spur at least 

2X width of the metatibia at point of insertion (Fig. 40). Additionally, all species of 

Neapterolelaps have a carinate posterior genal margin, a carinate occipital margin, 

sparsely setose eyes, and lack both the typical diparine bristles and a frenum. 

 

Discussion:  Boucek (1998) synonomized Austrolaelaps, based on the fact that the only 

difference between the females of the two genera was propodeal sculpture variation, and 

no differences between the males existed.   Pagliano and Scaramozzino (1990) offered 

the replacement name Pinocchio, as they incorrectly claimed Neapterolelaps was 

preoccupied.  Noyes (2003) states that it was offered as a replacement name for 

Neapterolelaps Dodd, although it was obvious Pagliano and Scaramozzino meant 

Neapterolelaps Girault. 

Two new species of Neapterolelaps are described here, viridescens and mitteri, 

which bridge the morphological gap between the genera Australolaelaps Girault and 

Neapterolaelaps Girault.  N. viridescens and N. mitteri possess notauli, a scutellum, and a 

prepectus similar to Australolaelaps Girault, while their antennae and epipygium 

resemble that of Neapterolelaps Girault.  N. viridescens and N. mitteri  have only one 

feature which are unique among the clade: they are brachypterous, having wings 

intermediate in size between the two genera.  This character was not coded in the 

phylogenetic analysis, because it is extremely variable within many taxa.  Additionally, 
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N. viridescens has a slightly more clavate antenna and longer wings than N. mitteri (both 

characters have been historically used to distinguish Australolaelaps Girault from 

Neapterolelaps Girault), suggesting that these taxa may be snapshots into a spectrum of 

continuous variation. 

The new species have distribution disjunctive from both Australolaelaps Girault 

and Neapterolaelaps Girault (N. viridescens and N. mitteri are found in southeastern 

Australia and Tasmania, while Australolaelaps Girault and Neapterolelaps Girault are 

found in Northeastern Australia and surrounding islands).  Perhaps N. viridescens and N. 

mitteri represent relict species left from a time when the entire clade had a much wider 

distribution, and a variety of intermediate forms existed.  As the two newly described 

species would likely form a paraphyletic taxon if described as new genus, 

Australolaelaps Girault is herein synonymized with Neapterolelaps Girault despite the 

large suite of morphological features separating the two taxa.  

Neapterolelaps is sister-group to the remainder of Diparinae and represents the 

only lineage of diparines to evolve before the typical pattern of bristles so often used to 

identify the subfamily.  Molecular results (Desjardins et al., in prep) showed strong 

groupings of Neapterolelaps and the remainder of Diparinae.  However, the molecular 

data had significant difficulty in uniting these groups, supporting the hypothesis that this 

is an ancient split within Diparinae.  Morphologically, Neapterolelaps is defined by 3 

non-homoplastic and 4 homoplastic synapomorphies as discussed in the diagnosis. 

 

 Number of Species: 6 described species, many undescribed (>10).  
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Distribution: Eastern Australia: north to Papua New Guinea, east to New Caledonia, and 

south to Tasmania.  Collected in forested areas, particularly rainforests.  Boucek (1988) 

mentioned an undescribed species near aeniceps present in southern India and Sri Lanka, 

but no specimens were seen during the course of this study to support this. 

Hosts: Unknown. 

Key to Species: Partial key given below.  The type specimens of leai Dodd and lodgei 

Girault were not examined, and therefore cannot be separated in the key from nigrisaepta 

Girault.  Additionally, the males of all three species are undescribed, but as whole can be 

keyed from the males of aeniceps.  Males thought to be near the newly described species, 

viridescens and mitteri, are also keyed below and are discussed further in the viridescens 

section. 

 

Key to the species of Neapterolelaps Girault 

 

1. Female       2 

 Male       5 
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2. (1) Notauli Y-shaped, joining before posterior scutal margin; shiny black band 

present along posterior margin of scutum; apterous, forewing present only as 

membranous lump with single long dark bristle (Fig. 37); scutellum slightly 

raised and pointed posteriorly (Fig. 38)  leai Dodd, lodgei Girault, 

and nigrisaepta Girault 

Notauli \ /-shaped (i.e. normal), meeting posterior scutal margin separately (Figs 

50, 51); without shiny black band along posterior margin of scutum; 

macropterous or brachypterous; scutellum rounded, convex, and gently sloping 

postero-ventrally (Fig. 50, 51)   3 

3. (2) Macropterous; epipygium >0.7X remaining metasoma; antenna filiform  

        aeniceps (Girault) 

Brachypterous; epipygium <0.5X remaining metasoma; antenna clavate  

       4 

4. (3) Head metallic green; metapleuron transversely striate; propodeum irregularly 

alveolate (Fig. 50); forewing 0.7X length of mesosoma; submarginal vein with 

strong, dark bristles     viridescens Desjardins, new  

species 

 Head non-metallic, brownish-orange; metapleuron smooth; propodeum mostly 

smooth, lightly wrinkled posteriorly (Fig. 51); forewing 0.3X length of 

mesosoma; submarginal vein without strong, dark bristles  

mitteri Desjardins, new 

species 
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5. (1) Petiole laterally with brush of white setae along entire length; gastral termites 

without thick tufts of white setae laterally  leai Dodd, lodgei Girault 

and nigrisaepta Girault 

Either petiole bare, or lateral brush of white setae only present on anterior half; 

GT4-6 with thick tufts of white setae  laterally  6 

6. (5) Funicular segments greater than 1.5X as long as wide, with erect setae longer than 

width of funicular segment        

       aeniceps Girault 

Funicular segments less than 1.5X as long as wide, with erect setae shorter than 

width of funicular segment    near viridescens Desjardins, 

new species and mitteri 

Desjardins, new species 

 

Species of Neapterolelaps: 

 

aeneiceps  (Girault). AUSTRALIAN: Australia. 

Australolaelaps aeniceps Girault 1925: 96.  2 females (syntypes): [Queensland]: 

Kuranda, coll. A. P. Dodd. (QM, examined). 

 

leai  Dodd.  Australian: Norfolk Island. 

Neapterolelaps leai Dodd 1924: 168.  Holotype female: Lord Howe Island, coll. 

A. M. Lea. (SAM, not examined). 
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lodgei  Girault.  AUSTRALIAN: Australia (Queensland). 

Neapterolelaps lodgei Girault 1913: 87.  Holotype female: Queensland: Mount 

Tambourine, rotting leaves, coll. A. M. Lea. (SAM, not examined). 

 

nigrisaepta  Girault.  AUSTRALIAN: Australia (Queensland). 

Austrolaelaps nigrisaepta Girault 1929: 2.  Holotype females: Cairns, coll. A. P. 

Dodd. (QM, examined). 

 

Neapterolelaps viridescens Desjardins, New Species 

(Fig. 50, 56) 

 

Type information: Holotype female, ANIC. “35.22S 148.50E ACT, Blundells Ck. 850 

m., 3km E Piccadilly Circus, Oct. 1985 Lawrence, Weir and Johnson., flight 

intercept/window trough trap.” 

 

Description: Female. 3.1 mm. Color: Brownish orange with metallic green head and 

brown areas as follows: anellus plus F1-7; medial posterior portion of lateral lobe of 

mesoscutum; posterior margin of scutellum anterior to frenum; dorso-posterior blotch on 

GT1; GT5 except for anterior margin; posterior margin of GT7; ovipositor sheaths. 

Head: Subtriangular in frontal view, slightly wider than high (1.2:1); head with short, 

white, sparse setae, which are short dorsally, becoming twice as long ventrally; occipital 

carina faint, present only as dorsal line; vertex coriaceous becoming coriaceous-reticulate 
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on upper face to reticulate on lower face; ratio of ocellocular: postocellar: mid-to-lateral 

ocellus distance: lateral ocellus diameter about 1.6: 5: 3.4: 1; scrobe high, reaching 4/5 of 

distance from torulus to midocellus; scrobal basin polished; scrobal walls coriaceous-

striate; interantennal carina strong, reaching about 0.4X height of scrobe; toruli separated 

by 1.5 torulus diameters; antenna strongly clavate; scape about 0.7X eye height; anellus 

1.5-2X broader than long; ratio of scape: pedicel: anellus: F1: F2: F3 about 38: 20: 1: 13: 

10: 10: 7; F4 as long as broad; F5 slightly broader than long; clypeus poorly delimited. 

Mesosoma: Dorsally imbricate, becoming reticulate in posterior region of scutellum; 

ratio of pronotum: scutum: scutellum: propodeum about 1.7: 2.8: 2.5: 1; row of longer 

darker setae on medial posterior margin of pronotum; pronotum 1.6-2X wider than long, 

transversely striate laterally; antero-lateral margin of pronotum with carina reaching 0.3X 

height of pronotum; scutum wider than long (1.9:1); ratio of scutellum: frenum about 4.1: 

1; marginal rim of scutellum with lightly grooved, pitted lamella; metanotum medially 

with grooved, pitted lamella; propodeum irregularly alveolate; plicae strong, latero-

medially pointed and attached to second, semicircular carinae adjacent to postspiracular 

sulcus; postspiracular sulcus deep, with transverse carinae; spiracle 1.5X own diameter 

from metanotum; spiracle facing dorsally; callus densely setose, projecting posteriorly 

beyond postspiracular sulcus; prepectus triangular, not in same plane as pronotum, 

abutting at about 100º angle; mesepimeron mostly smooth, with transversely striate 

region near dorsal margin; femoral depression deep, smooth, well defined anteriorly; 

metapleuron transversely striate; all coxae with clumps of white setae on anterior 

margins; meso- and metatibias spinose; longer metatibial spur about 1.7X length of 

shorter, about 3X width of metatibia at point of spur insertion; metabasitarsus 5.5X as 
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long as wide, about 0.7X length of remaining tarsi; hind coxae distinctly transversely 

striate; wings brachypterous, forewing about 0.7X length of mesosoma; hind wings 

sinuate, narrow, with marginal vein, about 0.7X length of forewing; submarginal vein of 

forewing with 6 strong, dark setae; ratio of submarginal vein: marginal vein 1.7:1. 

Metasoma: About 1.9X length of mesosoma; ratio of GT1: GT2-6:GT7:ovipostor sheaths 

about 2.3:2.2:1.2:1; GT1 dorsally without setae; GT4-6 each with single transverse row 

of white setae of uniform density; ovipositor apico-dorsally serrate. Male: Unknown, but 

see below. 

 

Discussion: Although the male of viridescens, or the newly described mitteri, is not 

known with certainty, a specimen from Tasmania (ANIC, “41.21S 147.22E, Barrow Ck. 

8km NE Nunamara, TAS, 12 Jan – 6 Feb 1983, I.D. Naumann & J.C. Cardale, 

malaise/ethanol.”) probably represents the male of a closely related species.  It does not 

belong to either newly described species, as it differs significantly from these taxa in 

propodeal and metapleural sculpture.  Since the male cannot be positively associated with 

any females, it is not described at this time.  However, characteristics which distinguish 

this specimen from aeniceps, leai, lodgeit, and nigrisaepta are mentioned in the key 

above. 

 

Etymology: viridescens, meaning green, named after the metallic green head present in 

the species. 

Distribution: Southeastern Australia (Australian Capitol Territory). 

Hosts: Unknown. 
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Neapterolelaps  mitteri Desjardins, New Species 

(Fig. 51, 57) 

 

Type information: Holotype female, ANIC. “41.22S 145.35E, Wandle R. 10km, NNE 

Waratah, TAS, 1 Feb. 1983, I.D. Naumann & J. C. Cardale, ex. ethanol.” 1 paratype 

female, ANIC “41.23S 147.25E, Mt. Barrow 11km E, by N Nunamara, TAS. 30 Jan 

1983, I.D. Naumann & J.C. Cardale, ex. ethanol.” 

 

Description: Female. 2.7 mm. Color: Brownish orange, with the following areas a 

lighter brownish yellow: clava, coxae, hind tibia and tarsi, dorsal region of GT7, and the 

following exceptions: F5 light brown becoming darker through F7, thick longitudinal 

light brown band on anterior half of GT1, meeting thinner transverse light brown band in 

middle of GT1; posterior third of dorsal surface and entire ventral surface of GT1 brown, 

becoming light brown on GT2-5; tips of ovipositor sheaths brown. Head: Subtriangular-

circular in frontal view, slightly wider than high (1.2:1); head with short, white, sparse 

setae of uniform length; occipital carina present only as dorsal line; vertex lacunose 

becoming coriaceous on upper face to irregularly striate on lower face; ratio of 

ocellocular: postocellar: mid-to-lateral ocellus distance: lateral ocellus diameter about 2: 

4.6: 2.8: 1; scrobe high, reaching 4/5 of distance from torulus to midocellus; scrobal 

basin polished; scrobal walls coriaceous; interantennal carina weak, reaching about 0.3X 

height of scrobe; toruli separated by 1.4 torulus diameters; antennae weakly clavate; 

scape height subequal to eye height; anellus about 3X broader than long; ratio of scape: 

pedicel: anellus: F1: F2: F3 about 23: 12: 1: 7: 7: 6; F4 slightly longer than broad; F5 as 
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long as broad; clypeus poorly delimited. Mesosoma: Dorsally coriaceous-imbricate, 

becoming imbricate on scutellum; ratio of pronotum: scutum: scutellum: propodeum 

about 1.3: 2: 1.7: 1; mesosoma covered in fine, white setae; row of slightly longer setae 

on latero-posterior margins of pronotum; pronotum about 1.7X wider than long, sparsely 

and irregularly striate laterally; antero-lateral margins of pronotum with faint carina 

reaching 0.3X height of pronotum (may be mistaken for vertical striae); scutum wider 

than long (1.7:1); ratio of scutellum: frenum about 4.3:1; marginal rim of scutellum with 

lightly grooved, pitted lamella; metanotum medially with grooved, pitted lamella; 

propodeum mostly smooth, posteriorly lightly wrinkled; nucha irregularly transversely 

striate; plicae strong, pointing laterally; postspiracular sulcus with sparse, white setae, 

forming a dense row along posterior and medial (plical) margins, setae arching toward 

callus; setae on inner margin of callus arching toward plicae, forming a cylindrical tunnel 

around sulcus; postspiracular sulcus deep, mostly smooth, slightly rough posteriorly; 

spiracle 1.6X own diameter from metanotum; callus densely setose, projecting 

posteriorly beyond postspiracular sulcus; prepectus triangular, not in same plane as 

pronotum, abutting at about 100º angle; mesepimeron smooth, with divoted region near 

dorsal margin between fore and metawing insertions; femoral depression deep, smooth 

,well defined anteriorly; metapleuron smooth; all coxae with clumps of white setae on 

anterior margins; meso- and metatibias spinose; longer metatibial spur about 2.1X length 

of shorter, about 2.7X width of metatibia at point of spur insertion; metabasitarsus about 

6X as long as wide, about 0.7X length of remaining tarsi; hind coxae faintly transversely 

striate; wings brachypterous, forewing about 0.3X length of metasoma; hind wings small, 

round, membranous, about 0.35X length of forewing; forewing without strong, dark 
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setae; ratio of submarginal vein: marginal vein 3.3:1. Metasoma: About 1.8X length of 

mesosoma; ratio of GT1: GT2-6:GT7:ovipostor sheaths about 6.9:2.8:1.8:1; GT1 dorsally 

with sparse, white setae; GT4-6 each with single transverse row of white setae, sparse 

medially and denser laterally; ovipositor apico-dorsally serrate. Male: Unknown.  

 

Etymology: named for my advisor, Dr. Charles Mitter, who assistance was invauable in 

the completion of my dissertation. 

Distribution: Tasmania. 

Hosts: Unknown. 

 

Netomocera  Boucek 

 

Netomocera  Boucek 1954: 49-50.  Type species: Netomocera setifera Boucek (orig. 

desig. and by monotypy). 

 

Diagnosis: Netomocera females are easily identified as they are the only diparines with a 

strongly asymmetrical clava.  The female of Netomocera is most likely to be confused 

with Chimaerolelaps.  Netomocera has a very short petiole (broader than long) and 2 

pairs of scutellar bristles, while Chimaerolelaps has a long petiole (at least 2X as long as 

broad) and 3 pairs of scutellar bristles.  The male of Netomocera can be identified by a 

combination of features.  First, it has bristles on the vertex and  dorsal surface of the 

mesosoma, similar to males of Dipara and Lelaps.  The male of Netomocera can be 

distinguished from both genera by having a short petiole (at most as long as wide), 
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whereas Dipara and Lelaps have long petioles (>2X longer than wide).  Additionally, the 

male of Lelaps has a median clypeal tooth while the male of Netomocera does not. 

 

Discussion: Netomocera is resolved at sister-group to the Lelaps clade, although there is 

little evidence in the phylogenetic analysis to support this.  The Lelaps clade has an F1 at 

least 1.5X as long as F2, and this character is variable in Netomocera (although 

Netomocera usually has an F1 subequal in length to F2, undescribed species have been 

observed with an elongate F1).  Therefore, this feature is synapomorphic for the group in 

1 of 2 most parsimonious reconstructions.  Additionally, Netomocera has a different 

phylogenetic position in each of the analyses (although it is always fairly basal within 

Diparinae), and the exact position of Netomocera within Diparinae remains uncertain. 

 

Number of Species: 7 described species.  

Distribution: Cosmopolitan.  Known from all continents except Antarctica. 

Hosts: Unknown. 

Key to Species: None. 

 

Species of Netomocera: 

 

africana  Hedqvist.  AFROTROPICAL: South Africa.   

Netomocera africana Hedqvist 1971: 238-239 (Figs. 1, 2).  Holotype female?: S. 

Africa, Pondoland, Port St. John, 6-25 Febr. 1924, coll. R. E. Turner. (BMNH, 

not examined). 1 female and 3 male paratypes: S.  Africa, Pondoland, Port. St. 
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John, 6-25 Febr. 1924, coll. R. E. Turner. (1 male, BMNH, not examined, 1 

female, KHPC, not examined), Dec. 1923, coll. R. E. Turner. (1 male, BMNH, 

not examined, 1 male, KHPC, not examined). 

 

alboscapus  Hedqvist.  AFROTROPICAL: Congo. 

Netomocera alboscapus Hedqvist 1971: 238 (Figs. 1,2).  Holotype female: 

Congo. (KHPC, not examined).  

 

nearctica  Yoshimoto.  NEARCTIC: Canada. 

Netomocera nearctica Yoshimoto 1977: 1044-1048 (Figs. 3, 10, 22, 28).  

Holotype female: Chatterton, 13 mi North of Belleville, Ont., 27.V.1968, M63 

Top, coll. C. D. Dondale, in meadow.  Allotype male: Ottawa, Ont., 3.VI.1940, 

coll. O. Peck. (CNC, not examined). 

 

nigra  Sureshan & Narendran.  ORIENTAL: India. 

Netomocera nigra Sureshan & Narendran 1990: 223-224 (Figs. 7-14).  Holotype 

female: India: Kerala, Calicut University Campus, vii.1986, coll. T. C. Narendran 

and party.  Allotype male: India: Kerala, Calicut University Campus, i.1986, T. C. 

Narendran and party.  1 female and 3 male paratypes: India: Kerala, Peechi, 

29.x.1985, T. C. Narendran and party (1 female), India: Kerala, Calicut 

University Campus, i.1986 and xii.1986, coll. T. C. Narendran and party (2 

males), India: Kerala, Calicut University Campus, 3.v.1988, coll. P. M. Sureshan 

(1 male). 
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rufa  Hedqvist.  AFROTROPICAL: South Africa. 

Netomocera rufa Hedqvist 1971: 241 (Figs. 1, 2).  Holotype female: S. Africa, 

Pondoland, Port St. John, July 10-31, 1923, coll. R. E. Turner. (BMNH, not 

examined). 

 

sedlaceki  Boucek.  AUSTRALIAN: Australia (Queensland, ACT). 

Netomocera sedlaceki Boucek 1988: 336 (Figs. 606-607).  Holotype female: 

QLD: Brookfiled, nr Brisbane, 9.i.1983, pan trap, coll. Z. Boucek.  20 male and 2 

female paratypes:  QLD: 1 male, Conway Range nr Proserpine, 2.xii.1976, coll. 

Z. Boucek  (1 male), Mt Ossa N of Mackay, 28.x.1976, coll. Z. Boucek (1 male), 

Mt Archer nr Rockhampton, 4.xii.1976, coll. Z. Boucek (2 males), Cooloola Nat. 

Park, vi.1980, coll. J. S. Noyes (9 males), Brookfield, 27.xii.1982, 14. and 

18.i.1983, coll. Z. Boucek (4 males and 2 females), Acacia Ridge nr Brisbane, 

15.i.1977, coll. Z. Boucek (2 males), Capalaba, 8.vi.1980, coll. J. S. Noyes (1 

male), 40 km W of Warwick, 31.x.1976, coll. Z. Boucek (1 male), Mt 

Tambourine, 21.xii.1976, coll. Z. Boucek (1 male), Mt Tambourine, x.-xi.1977, 

coll. Galloway (4males), Mt. Tambourine, 3.iii.1984, coll. L. Masner (1 male), 

Bell Bird Creek, Mt Lamington Nat. Park, 30.v.1966, coll. Z. Liepa (1 male), 

ACT: Ainslie, 8.ii.1977, coll. Z. Boucek (1 male). (ANIC, not examined). 

 

setifera  Boucek.  PALEARCTIC: Eastern Europe. 
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Netomocera setifera Boucek 1954: 50-53 (Fig. 1).  Holotype female: Pouzdrany 

in southern Moravia, 3. VI. 1941, coll. Hoffer.  1 allotype and 1 paratype males: 

Noutonice-Kováry in Central Bohemia, 6. VI. 1953, coll. Z. Boucek.  5 male 

paratypes: Cejc, VII. 1940, and Turold in Pavlov Hills, 10. VII. 1952, in southern 

Moravia. (NMP, not examined).   

 

Nosodipara  Boucek 

(Fig. 66) 

 

Nosodipara  Boucek 1988: 330-331.  Type species: Nosodipara monteithorum Boucek 

(orig. desig. and by monotypy). 

 

Diagnosis: Female Nosodipara are uniquely recognized by having 5 anelli (antennal 

formula 11533).  In addition, a combination of two characters also defines the genus.  

First, they have a large, transverse, black cavity on the mesosternum.  Females of the 

genus Pseudoceraphron also possess this cavity.  Generally this cavity is mostly covered 

by the pronotum and procoxae and only visible laterally, although in Nosodipara 

monteithorum the cavity is exposed and clearly visible.  Also, female Nosodipara possess 

a conical scutellum which is postero-laterally compressed and tooth-like.  The only other 

genera with conical scutella are the African Pyramidophoriella, Conodipara, 

Conophorisca, and some Dolichodipara, which all lack the mesosternal cavity.  The male 

Nosodipara is unknown, although it is suspected to be similar to the male Dipara. 
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Discussion:  Nosodipara forms a clade with Pseudoceraphron in all phylogenetic 

analyses.  This clade is strongly supported by 7 synapomorphies: a clubbed antennae, a 

micropilose clava, Y-shaped notauli, a flat and wide propodeum, a vertical postspiracular 

sulcus, presence of a mesepisternal depression, and the loss of metacoxal striations. Only 

the notaular form and loss of striations are homoplastic in the analysis.  It is unclear 

whether or not Nosodipara represents a monophyletic taxon.  It appears paraphyletic in 

the morphological analysis  (Nosodipara ferrana positioned as sister-taxon to 

Pseudoceraphron), based on Nosodipara ferrana sharing reduced and convex axillae 

with Pseudoceraphron regieri.  However, this character is transformed multiple times in 

the Nosodipara and Pseudoceraphron clade.  Additionally, bristle presence/absence 

supports the paraphyly of Nosodipara in one of two most parsimonious reconstructions. 

However, bristles are sporadically lost and regained throughout the clade.  Therefore the 

evidence for Nosodipara is somewhat tenuous.   

Alternatively, monophyly of Nosodipara would be supported by the presence of 5 

anelli, although this may represent an intermediate in a transformation series from the 

single anellus of Pyramidophoriella to the 7 anelli present in Pseudoceraphron.  Many 

other characters differentiate Nosodipara from Pseudoceraphron in a diagnostic sense. 

However, they all appear sympleisiomorphic in the analysis (e.g., a laterally bulging 

pronotum).  As the support for Nosodipara paraphyly is limited, the taxonomy of the 

genus will remain the same.  In addition to the inconclusive phylogenetic evidence, 

synonymizing Nosodipara with Pseudoceraphron would unite two taxa with extreme 

morphological differences (Pseudoceraphron is defined by 7 synapomorphies, 6 of them 

non-homoplastic). Alternatively, creating a new genus for Nosodipara ferrana would set 
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a precedent for the description of newly discovered species of Nosodipara as separate 

genera.   

 

Number of Species: 2 described (northern Queensland), and possibly 1 undescribed 

similar to monteithorum (southern Queensland).  

Distribution:  Queensland, Australia.  Found in rainforest litter. 

Hosts: Unknown. 

Key to Species: given below. 

 

Key to the species of Nosodipara Boucek 

 

1. Vertex without strong, dark bristles; F2 longer than F1    

      Nosodipara monteithorum  

Boucek 

 Vertex with strong, dark bristles; F2 reduced, shorter than F1   

      Nosodipara ferrana  

Desjardins, new species 
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Species of Nosodipara: 

 

monteithorum  Boucek.  AUSTRALIAN: Australia (Queensland). 

Nosodipara monteithorum Boucek 1988: 331.  Holotype female: QLD: Plateau S 

of The Head, via Killarney, rainforest pitfall trap, 17.xi.1974, coll. G. and S. 

Monteith. (ANIC, not examined). 

 

Nosodipara ferrana Desjardins, New Species 

(Fig. 66) 

 

Type information: Holotype female, QM “Aust: QLD: NE: West, Claudia R, Iron 

Range, 4 Dec 1985, G. Monteith. QM Berlesate No. 691, 12.45S 143.14E, Rainforest 

50m, sieved litter.” 1 Paratype female with same data except “3 Dec 1985. QM Berlesate 

No. 690.” 

 

Description: Female. 1.4 mm. Color: Mostly pale yellowish to orangish brown, with the 

following exceptions: clava white; flagellar segments 6-8, and to a lesser extend 5, 

brown; ventral third of mesepimeron orangish brown; small circle anterior to cercus 

brown. Head: Subcircular in frontal view; about 1.3X as high as wide; eyes bare; vertex 

with 2 long and 4 short strong, dark setae; head with sparse, white setae, becoming 

slightly more dense and twice as long ventrally; head mostly smooth, ocellar triangle and 

occiput coriaceous; lateral ocelli connected by dark carina; ratio of ocellocular: 

postocellar: mid-to-lateral ocellus distance: lateral ocellus diameter about 2:8:5:1; scrobe 
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height about 0.75X distance from toruli to mid-ocellus; scrobal basin and walls 

coriaceous; interantennal area with wide carina reaching about 0.5X height of scrobe, 

continuing as weakly raised band to top of scrobe; toruli separated by about 1.75 torulus 

diameters; scape about 0.8X eye height; A1 3X as broad as long to A5 1.3X as broad as 

long (only flagellar segments 6 and 8 appearing to have mps); ratio of scape: pedicel: A1: 

A2: A3: A4: A5: F1: F2: F3 about 20:9:1:2:2.5:2.5:3:5:3:5; clypeus strongly delimited 

laterally, weakly delimited dorsally.  Mesosoma: pronotum and scutum dorsally 

imbricate, scutellum granulose; ratio of pronotum: scutum: scutellum: propodeum about 

2:3:2:1; pronotum posteriorly with a row of long, thin, white setae, these setae also 

sparsely present on scutum and scutellum; pronotum 2.3X as wide as long; pronotum 

postero-laterally with smooth, depressed area; scutum 1.7X as wide as long; scutellum 

slightly conical, gently rounded anteriorly and sharply rounded posteriorly; scutellum 

angled, with level of propodeum below level of scutum; posterior scutellar margin 

smooth; metanotum thin, smooth, depressed, most apparent posterior to axillae and 

medial region of scutellum; propodeum anteriorly with thin, smooth band, separated from 

remainder of finely areolate sculptured propodeum by carinate edge; plica absent; 

postspiracular area smooth, flat, facing postero-laterally; sulcus between postspiracular 

area and metapleuron vertical; spiracle 4X its own diameter from metanotum, facing 

postero-laterally; callus absent; prepectus triangular, not in same plane as prontum, 

abutting at about 135° angle; mesepimeron smooth, slightly depressed (mesepimeron = 

femoral depression), triangular in shape with longest side against metapleuron; 

metapleuron smooth; 1 metatibial spur, length about 1.5X width of metatibia at point of 

insertion; metabasitarsus 2.7X as long as wide, about 0.5X as long as remaining tarsi; 
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metacoxa without striations; all coxae bare; metatibia spinose; apterous, forewing present 

as membranous lump with single strong, protruding bristle, hindwing completely absent. 

Metasoma: About 2.2X length of mesosoma; petiole short, broader than long, granulose; 

ratio of GT1:GT2-6:GT7:ovipositor sheaths about 3.9:2.6:1.4:1; setae sparsely 

distributed across GT1 and 7; ovipositor tip covered by sheaths. Male: Unknown. 

 

Etymology: ferra-, meaning iron, from the Iron Range locality in which it was collected. 

Distribution: Australia: Far North Queensland. 

Hosts: Unknown. 

 

Pseudoceraphron  Dodd 

(Figs. 42-49, 67-69) 

 

Pseudoceraphron  Dodd 1924.  Type species: Pseudoceraphron pulex Dodd. 

Dipareta  Boucek 1988: 332.  Type species: Dipareta albifrons Boucek (orig. desig. and 

by monotypy). New synonymy. [Type specimen of genus examined] 

Malinka  Boucek 1988: 333.  Type species: Malinka nana (orig. desig. and by 

monotypy). New synonymy. [Type specimen of genus not examined] 

 

Note: Dessart (1967) transferred Pseudoceraphron from Megaspilinae (Ceraphronidae) 

to Diparinae. 
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Diagnosis:  Pseudoceraphron is most easily identified by the presence of 7 anelli in the 

female, the eye extended posteriorly beyond the occiput and obscuring the pronotum in 

lateral view, and a posteriorly concave metacoxa, all of which are unique among 

Diparinae.  All other diparines have at most 5 anelli, an eye which is not extended 

posteriorly beyond the occiput (pronotum visible in lateral view), and a concave 

metacoxa. 

 

Discussion:  Pseudoceraphron is united by 7 synapomorphies, 6 of which are non-

homoplastic in the analysis: a carinate posterior genal margin, eye extended posteriorly, 7 

female anelli, a wide, flat scutellum wide, a propodeum which is depressed lateral to the 

plicae, concave metacoxae, and an anteriorly pinched GT1.  Historically, Boucek (1988) 

separated his genera Dipareta and Malinka from Pseudoceraphron Dodd based primarily 

on notaular structure and bristle patterns.  While notaular structure supports monophyly 

of Malinka Boucek and Pseudoceraphron Dodd in the phylogenetic analysis, newly 

described species show variability in the bristle patterns within and between these 

groups.  Dipareta Boucek is supported as paraphyletic in the analysis.  Dipareta 

albifrons Boucek is sister-group to Pseudoceraphron Dodd + Malinka Boucek based on 

two synapomorphies: loss of the acropleuron expansion and the axillae.  Therefore, 

Dipareta Boucek and Malinka Boucek are herein synonymized with Pseudoceraphron 

Dodd, based on the strong evidence for monophyly of the whole clade, reduced evidence 

for monophyly of Pseudoceraphron Dodd and Malinka Boucek, and evidence for the 

paraphyly of Dipareta Boucek. 
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 Boucek (1988) diagnoses, but does not describe, a male specimen from the ANIC 

which he states does not belong to the species albifrons but does belong to Dipareta.  

This specimen resembles a small Dipara male but has a reduced number of flagellar 

segments (8 flagellar segments excluding the anellus compared to Dipara’s 10).  

However, this specimen cannot be associated for certain with any female, and therefore 

remains undescribed. 

 

Number of Species: 6 described species (Australia: Queensland, Papua New Guinea, 

New Caledonia), and many undescribed species from these areas. 

Distribution: Queensland, Australia east New Caledonia and north to Papua New 

Guinea.  

Hosts: Unknown. 

Key to species: Given below. 

 

Key to species of Pseudoceraphron Dodd 

 

1. Propodeum laterally with pair of strong, dark bristles; black, tear-drop shaped 

markings present lateral to notauli   2 

Propodeum without bristles; scutum uniformly colored without tear-drop shaped 

markings      3 
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2. (1) Occipital margin rounded; scutum laterally with a pair of bristles 

Pseudoceraphron nana 

Boucek 

Occipital margin carinate; scutum without bristles Pseudoceraphron fijensis 

Desjardins, new species 

3. (1) Notauli widely spaced, subparallel, meeting posterior scutal margin separately; 

pronotum not visible in dorsal view   4 

Notauli Y-shaped, converging prior to meeting posterior scutal margin; pronotum 

visible in dorsal view     5 

4. (3) Without bristles on dorsal surface of mesosoma; occipital margin carinate  

        Pseudoceraphorn pulex 

Dodd 

With bristle pairs on the dorsal surface of the pronotum and scutellum; occipital 

margin rounded     Pseudoceraphron burwelli  

Desjardins, new species 

5. (3) Bristles present on vertex but not on scutum; axillae reduced but visible  

        Pseudoceraphron regieri 

Desjardins, new species 

Bristles absent from vertex but present on scutum; axillae absent   

       Pseudoceraphron albifrons  

Boucek 
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Species of Pseudoceraphron: 

 

albifrons  (Boucek).  AUSTRALIAN: Australia, New Zealand. 

Dipareta albifrons Boucek 1988: 332.  Holotype female and 7 paratype females: 

QLD: Bellenden Ker Range, Summit TV Stn., 1560 m, 25.-31.x.1981.  One 

paratype female collected on 1.-7.xi.1981. coll. G. Monteith.  (Holotype in QM, 

paratypes in QM and BMNH, examined). 

 

nana  (Boucek).  AUSTRALIAN: Papua New Guinea. 

Malinka nana Boucek 1988:333 (Fig. 605).  Holotype female and 2 female 

paratypes: PNG: New Ireland, Utu, Liga, 30.vii.1979, coll. J. Bourne. (holotype in 

MHNG, paratypes in BMNH and MHNG, examined).  1 female paratype: New 

Ireland, Lelet Plateau, Limbin, 24.vii.1979, coll. J. Bourne. (MHNG or BMNH, 

not examined). 

 

pulex  Dodd.  AUSTRALIAN: Lord Howe Island. 

Pseudoceraphron pulex Dodd 1924: 174-5.  Holotype female: Fallen leaves, Lord 

Howe Island, A. M. Lea. SAM, not examined). 
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Pseudoceraphron regieri Desjardins, New Species 

(Fig. 67) 

 

Type Information: Holotype female (QM) “Aust: Qld: NE, Mt. Finnigan Summit, 30 

Nov 1985, G. Monteith, D. Cook, QM Berlese No. 700, 15.48’S 145.17’E, Rainforest 

1100m, Sieved litter.” Paratype female (QM) same as holotype. 

 

Description: Female. 1.5 mm. Color: Brownish orange with the following exceptions: 

GT1 brown, becoming dark brown near posterior margin, GT7 anterior to cercus margin 

dark brown, gena yellowish white, clava + F1 light brown.  Head: Subtriangular in 

frontal view, 1.5X as wide as high; eyes bare; head with 6 stout, dark bristles posterior to 

occipital margin; occipital margin sinuously carinate, carina crossing lateral ocelli; head 

mostly smooth, posterior margin of gena faintly striate, area below toruli faintly striate, 

with striae circling up to dorsal edge of parascrobal area; ocellocular: postocellar: mid-to-

lateral ocellus distance: lateral ocellus diameter about 3.3:3.3:1.7:1; scrobe present only 

as indistinct, shallow, gently sloping depression; interantennal carina semicircular, 

convex, reaching less than 1 torulus diameter above toruli; toruli separated by 1.6 torulus 

diameters; scape about 0.8X eye height; scape with strong ventral carina; scape laterally 

bowed outward; A1 about 3X as broad as long to A7 about 4X as long as broad; ratio of 

scape: pedicel: A1: A2: A3: A4: A5: A6: A7: F1 about 25:10:1:2:2:2:2:2:2:6; clypeus 

finely delimited.  Mesosoma:  Dorsally mostly smooth, with pronotum coriaceous and 

lateral lobes of mesoscutum faintly coriaceous; with long, dark setae sparsely covering 
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dorsal surface; ratio of pronotum: scutum: scutellum: propodeum about 1.3:1.9:1.1:1;  

pronotum 3.3X wider than long; pronotum barely visible laterally; scutum 2.4X wider 

than long; notauli deeply pitted with transverse carinae; axillae very small, flat, present 

only at anterio-lateral corners of scutellum; scutellum mostly flat (slightly raised 

posteriorly), with scutum and propodeum at the same level; posterior scutellar margin 

smooth; metanotum present as triangular sclerite lateral and posterior to axilla, not visible 

posterior of scutellum; propodeum mostly smooth, raised and rounded medially for 

insertion of petiole; plicae strong; postspiracular area smooth, flat, facing postero-

laterally; sulcus between postspiracular area and metapleuron vertical; spiracle 4X its 

own diameter from metanotum, facing postero-ventrally;  callus absent; prepectus 

triangular, not in same plane as pronotum, abutting at about 135° angle; mesepimeron 

smooth, slightly depressed  (mesepimeron = femoral depression), bulging anteriorly 

ventral to acropleuron, 3.2X as high as wide; metapleuron smooth, depressed posteriorly; 

one metatibial spur, 1.7X width of metatibia at point of insertion; metabasitarsus about 

2.8X as long as wide, about 0.5X length of remaining tarsi; metacoxa without transverse 

striae, mostly bare anteriorly except for few setae near distal end; meso- and metatibia 

not spinose; apterous, forewing reduced to membranous stump with single long, dark, 

protruding bristle, hindwing apparently absent.  Metasoma: 2.4X length of mesosoma; 

petiole smooth, short, about 2X as broad as long; ratio of GT1: GT2-6: GT7: ovipositor 

sheaths about 6.5:1:1:1; anterior half of GT1 with long, dark setae (similar to dorsal 

mesosomal setae) sparsely covering dorsal  and dorso-lateral surface, posterior half with 

lighter, more widely spaced setae; ovipositor smooth and pointed. Male: Unknown. 
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Etymology: Named for one of my committee members, Dr. Jerome Regier, whose 

guidance was invaluable in the completion of the molecular component of my 

dissertation. 

Distribution: Australia: Queensland. 

Hosts: Unknown. 

 

Pseudoceraphron burwelli Desjardins, New Species 

(Figs. 42-49, 69) 

 

Type Information: Holotype female (QM) “New Caledonia 9913, 22.03’Sx166.28’E, 

Mt Dzumac road, 700m, 1 Dec 2000, G.B. Monteith, Pyrethrum, trunks & logs.” 

Paratype female (QM) “New Caledonia 9901, 22.05’Sx166.22’E, Mt Mou, base, 200m, 

23 Nov 2000, G.B. Monteith, Pyrethrum, trunks & logs.” Paratype female (QM) “New 

Caledonia 9919, 21.45’Sx166.00’E, Mt Do Summit, 1000m, 21 Nov 2000, G.B. 

Monteith, Pyrethrum, trunks & logs.” Paratype female (QM) “New Caledonia 9931, 

22.11’Sx166.01’E, Mt Koghis, 500m, 22 Nov 2000, G.B. Monteith, pyrethrum, trunks & 

logs.” 

 

Description: Female. 1.2 mm. Color: Brownish black with the following exceptions: 

head bluish black, scape mostly brownish yellow, distal 1/4 of scape + flagellum brown, 

mandibles brownish orange,  tibia proximally dark brown, lightening to brownish yellow 

distally, tarsi proximally brownish yellow, darkening to brown distally, GT7 posterior to 

cercus brownish yellow, ovipositor sheath yellow anteriorly, dark brown posteriorly, 
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ovipositor yellow.  Head: Subtriangular in frontal view, 1.25X as wide as high; eyes 

bare; occipital margin carinate, carina posterior to lateral ocelli; head mostly smooth, 

posterior margin of gena faintly striate, area around torulus with faint, circular striae; 

ocellocular: postocellar: mid-to-lateral ocellus distance: lateral ocellus diameter about 

4:12:6.4:1; scrobe present only as indistinct, shallow, gently sloping depression; 

interantennal area slightly convex; toruli separated by 2 torulus diameters; scape about 

0.9X eye height; scape without strong ventral carina; scape laterally bowed outward; A1 

about 3X as broad as long to A7 about 4X as long as broad; ratio of scape: pedicel: A1: 

A2: A3: A4: A5: A6: A7: F1 about 21:6:1:1:1:1:1:1:1:3; clypeus poorly delimited.  

Mesosoma:  Dorsally coriaceous; mostly bare, except for a few pairs of thin, white setae, 

and 2 medial scutal and 2 posterior scutellar bristles; ratio of scutum: scutellum: 

propodeum (pronotum entirely obscured) about 2.3:2.2:1; scutum 3.2X wider than long; 

notaular grooves smooth; axilla only indicated by diagonal sulcus at antero-lateral edge 

of scutellum; scutellum flat, with scutum at slightly higher level than propodeum; 

posterior scutellar margin smooth; metanotum absent; propodeum smooth medially, 

coriaceous laterally, raised medially for insertion of petiole with longitudinal carina 

delimiting lateral edge of raised area; plica strong, propodeum strongly depressed lateral 

to plica; postspiracular area smooth, flat, facing postero-laterally; sulcus between 

postspiracular area and metapleuron vertical; spiracle 5X its own diameter from 

metanotum, facing postero-ventrally;  callus absent; prepectus triangular, in similar plane 

as pronotum; mesepimeron smooth, slightly depressed  (mesepimeron = femoral 

depression), diamond-shaped, 4.5X as high as wide; metapleuron smooth, depressed 

medially; one metatibial spur, 0.6X width of metatibia at point of insertion; 
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metabasitarsus about 1.7X as long as wide, about 0.2X length of remaining tarsi; 

metacoxa without transverse striae, mostly bare anteriorly except for few setae near distal 

end; meso- and metatibia not spinose; apterous, forewing reduced to membranous stump 

with single long, dark, protruding bristle, hindwing apparently absent.  Metasoma: 3.4X 

length of mesosoma; petiole smooth, short, about 2.3X as broad as long; ratio of GT1: 

GT2-6: GT7: ovipositor sheaths about 10.8:2:1:1.5; metasoma dorsally with sparse, fine, 

white setae; ovipositor smooth and pointed. Male: Unknown. 

 

Etymology: Named for Chris Burwell, who generously hosted my visit to the 

Queensland museum, provided a large amount of mounted Australian material, and was 

invaluable in assisting in my collection of many of the taxa used in the molecular portion 

of my dissertation. 

Distribution: New Caledonia. 

Hosts: Unknown. 

 

Pseudoceraphron fijensis Desjardins, New Species 

(Fig. 68) 

 

Type Information: Holotype female (QM) “Fiji: Kadavu. Mt, Korogatule, 300m, near 

Matasawalevu, 4-7 July 1987, G. Monteith/Pyrethrum/Logs, Trees.” Paratype female 

(QM) “Fiji: Viti Levu, Nadarivatu Reserve, 11 July 1987, G. Monteith, QM Berlese No. 

775, 17.34’S 177.57’E, Rainforest, 800m, sieved litter.” 

 



 

 162 
 

 

Description: Female. 1.4 mm. Color: Head, pronotum, scape, clava light brownish 

yellow; pedicel, A5-7, F1 brown; A1-4, eye white; pronotum and scutum brownish 

orange; scutum with tranverse tear-drop shaped bands lateral to notauli; propodeum 

brown; mesosoma laterally brown; legs mostly brownish orange, metatibia off-white; 

GT1-6 brown dorsally, becoming brownish orange ventro-laterally; GT7, ovipositor 

sheath mostly white, apex of ovipositor light brown.  Head: Subtriangular in frontal 

view, 2X as wide as high; eyes bare; occipital margin carinate, carina at lateral ocelli; 

head smooth; ocellocular: postocellar: mid-to-lateral ocellus distance: lateral ocellus 

diameter about 9.3:8:3.3:1; scrobe present only as indistinct, shallow, gently sloping 

depression; interantennal area carinate, carina not extending dorsally into scrobal 

depression; toruli separated by 1.2 torulus diameters; scape about 0.8X eye height; scape 

with strong ventral carina; scape laterally bowed outward; A1 about 2.5X as broad as 

long to A7 about 2X as long as broad; ratio of scape: pedicel: A1: A2: A3: A4: A5: A6: 

A7: F1 about 28:10:1:1:1:1:1:1.5:2:2.5; clypeus well delimited.  Mesosoma:  Dorsally 

mostly smooth, scutellum finely coriaceous; mostly bare, except for 2 posterior scutellar 

bristles; ratio of pronotum (partially obscured): scutum: scutellum: propodeum about 

1.4:3:1:1.1; pronotum (visible portion) 4.5X wider than long; scutum 2.6X wider than 

long; notauli transverse anteriorly, turning posteriorly at anterior margin of tear-drop 

shaped black markings and proceeding parallel to posterior scutal margin; notaular 

grooves smooth; axilla absent; scutellum flat, emarginated medially by scutum, at same 

level as propodeum; posterior scutellar margin smooth; metanotum absent; propodeum 

coriaceous, raised medially for insertion of petiole with longitudinal carina delimiting 

lateral edge of raised area; plica strong, propodeum strongly depressed lateral to plica, 
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with single bristle pair on lateral edge of depressed area; postspiracular area smooth, flat, 

facing postero-laterally; sulcus between postspiracular area and metapleuron vertical; 

spiracle not visible;  callus absent; prepectus not visible; mesepimeron smooth, slightly 

depressed  (mesepimeron = femoral depression), diamond-shaped, 5.3X as high as wide; 

metapleuron smooth, depressed medially; one metatibial spur, 1.5X width of metatibia at 

point of insertion; metabasitarsus about 2.3X as long as wide, about 0.3X length of 

remaining tarsi; metacoxa without transverse striae, bare; meso- and metatibia spinose; 

apterous, forewing and hindwing apparently absent.  Metasoma: 5.7X length of 

mesosoma; petiole smooth, barely visible, about 6X as broad as long; propodeum mostly 

smooth but coriaceous antero-dorsally; propodeum with longitudinal invaginations just 

posterior to lateral margins of petiole insertion; ratio of GT1: GT2-6: GT7: ovipositor 

sheaths about 5.4:2.6:1.3:1; metasoma dorsally with sparse, fine, white setae; ovipositor 

smooth and pointed. Male: Unknown. 

 

Etymology: Named after the island of Fiji, on which the specimen was collected. 

Distribution: Fiji. 

Hosts: Unknown. 

 

Pyramidophoriella  Hedqvist 

(Figs. 54-55) 

 

Pyramidophoriella  Hedqvist, 1969: 178-179.  Type species: Pyramidophoriella 

albiclava Hedqvist (orig. desig.). 
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Diagnosis:  Pyramidophoriella has a propodeum with 2 large dorso-lateral horns, with 

propodeal spiracles situated on the lateral surface of horns (Fig. 55).  Although most 

diparines lack these horns completely, smaller dorso-lateral propodeal projections have 

been noted in some species of Lelaps.  In these cases, however, the spiracles are not 

situated on the horns.  Additionally, Pyramidophoriella completely lacks notauli.  Aside 

from Pyramidophoriella, the only diparine which has been recorded as lacking notauli is 

Dipara machadoi.  However, the type specimen of the latter taxon could not be located to 

verify the description. 

 

Discussion:  Pyramidophoriella is resolved at the base of the clade containing 

Nosodipara and Pseudoceraphron based on 1 synapomorphy, the anterior expansion of 

the tegula.  This relationship suggests that Nosodipara and Pseudoceraphron were part of 

a recolonization of Australia from Africa, and they are nested deep within a clade of 

genera endemic to Africa. 

 

Species of Pyramidophoriella: 

 

albiclava  Hedqvist.  AFROTROPICAL: South Africa. 

Pyramidophoriella albiclava Hedqvist 1969: 179 (Figs. 2, 3).  Holotype female: 

S. Africa, Pondoland, Port St. John, July 10-31, 1923, coll. R. E. Turner. (BMNH, 

not examined).  19 female paratypes: Pondoland, Port St. John, Feb. 6-25, 1924 (5 

females), Jan, 1924 (5 females), 18-31 Mar. 1924 (1 female), 1-17 Mar. 1924 (1 
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female), July 10-31 1923 (1 female), Sept. 1923 (1 female), E. Cape Prov. 

Katberg, 4000 ft. Oct. 1932 (1 female), Cape Prov., Somerset East, 1-26, i.1931 

(1 female), and Cape Prov., Somerset East, Nov. 1930 (2 females). (BMNH and 

KHPC, not examined).  

 

brunnea  Hedqvist.  AFROTROPICAL: South Africa. 

Pyramidophoriella brunnea Hedqvist 1969: 179-180 (Fig. 3).  Holotype female: 

S. Africa, Pondoland, Port St. John, 6-25 Febr. 1924, coll. R. E. Turner. (BMNH, 

not examined). 

 

Taxa removed from the Diparinae 

 

Calolelaps  Timberlake 

 

Calolelaps  Timberlake 1925: 184-186.  Type species: Calolelaps basalis Timberlake 

(orig. desig.). 

 

Discussion: The three Hawaiin genera Calolelaps, Neolelaps, and Stictolelaps (and to a 

lesser extent Mesolelaps) possess no characters that would suggest their inclusion within 

Diparinae.  They lack the cercal brush, dorsal bristles, hind coxal striations, expanded 

GT1, and single anellus, in addition to having a convex dorsellum, any of which may hint 

at inclusion within Diparinae.  Mesolelaps does possess an expanded GT1 and single 

anellus, although it lacks both diparine synapomorphies: presence of a cercal brush and 
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absence of a convex dorsellum.  These genera were likely initially placed within 

Diparinae because they share a median clypeal tooth with Lelaps.  The removal of 

Mesolelaps from Diparinae and subsequent placement in the Pteromalinae + 

Miscogasterinae clade would make Mesolelaps the only genus in that group with a single 

anellus. 

 Yoshimoto (1967) discussed the phylogenetic placement of the Hawaiin genera, 

which he treated as members of Miscogasterinae.  However, he made no formal 

declaration of their transfer from Diparinae to Miscogasterinae, and in fact made no 

mention of Diparinae whatsoever.  An examination of the original descriptions (Ashmead 

1904, 1901; Timberlake 1925) shows that both authors originally placed these genera in 

“Lelapinae.”  Boucek (1988) treated Mesolelaps as an extralimital genus of Diparinae, 

and made no statement about the remaining genera or the placement of any of the genera 

in Miscogasterinae.  Additionally,  Yoshimoto (1967) stated that “Calolelaps Timberlake 

(=Stictolelaps Timberlake).”  However, he made no declaration of synonymy there either.   

Yoshimoto, in an unpublished manuscript dated later than his 1967 paper, treated 

Calolelaps and Stictolelaps as separate genera, and described a new species of 

Stictolelaps.  In this manuscript Yoshimoto planned to remove these four genera and 

place them in their own tribe, Neolelapini.  He also stated that these genera were 

associated with the tribes Miscogasterini and Trigonoderini.  Paul Hanson (pers. comm.) 

also suggested that these specimens share a similar habitus with Trigonoderini, although 

they lack characters to place them in either of the trigonoderine clades as defined by 

Heydon (1997).  Calolelaps is herein removed from Diparinae and placed in 

Miscogasterinae, without tribal affiliation. 
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 The holotype female of Calolelaps basalis is heavily damaged, with only two legs 

remaining on the point mount and the rest of the specimen lost.  However, the allotype 

male remains entirely intact, and the taxonomic decisions made here are based on that 

specimen.  The holotype of Calolelaps coeruleus appears to be lost.  Although it was 

recorded to be housed in the Bishop Museum, there is no unit tray there to mark its 

presence now or in the past.  No record has been found of it at any other museum. 

 

Species of Calolelaps: 

 

basalis  Timberlake.  OCEANIAN: Hawaii. 

Calolelaps basalis Timberlake 1925: 186-188 (Fig. 6).  Holotype female: 

[Hawaii]: Mount Kaala, Oahu, at 2000 ft. elevation, from Eragrostis grandis, 

May 18, 1920. coll Timberlake.  Allotype male: [Hawaii]: Palolo, Oahu, 2000 ft., 

1903. coll Perkins. (BISH, examined). 

 

coeruleus  Timberlake.  OCEANIAN: Hawaii. 

Calolelaps coeruleus Timberlake 1925: 188-189.  Holotype female: Hawaii: 

Kealakekua, Kona, at 3500 ft. elevation, from Myoporum sandwicense, August 

11, 1919. coll. Timberlake. (type location unknown). 
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Dinarmolaelaps  Masi 

 

Dinarmolaelaps  Masi 1917: 172.  Type species: Dinarmolaelaps protus Masi (by 

monotypy). 

 

Discussion:   Based on examination of the holotype specimen, Dinarmolaelaps belongs 

near or within Homoporus (R. Burks, pers comm).  The holotype of Dinarmolaelaps 

vatomandryi is missing both the head and gaster.  The thorax bears little resemblance to 

that of D. protus, and it is difficult to speculate on the relationship between the two taxa.  

Dinarmolaelaps is herein removed from Diparinae and placed in Pteromalinae. 

 

Species of Dinarmolaelaps: 

 

protus  Masi.  AFROTROPICAL: Seychelles.  

Dinarmolaelaps protus Masi 1917: 172-173.  2 males and one female (desig. 

uncertain). ‘Silhouette: Mare aux Cochons.-Mahé: “cultivated country at about 

1,000 ft.”’. (BMNH, examined). 

 

vatomandryi  Risbec.  AFROTROPICAL: Madagascar. 

Dinarmolaelaps vatomandryi Risbec 1952: 325-325 (Fig. 53).  Holotype male: 

Vatomandry, VIII, 1940. coll. A. Seyrig. (Paris Museum, examined). 
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Liepara  Boucek 

 

Liepara  Boucek 1988: 327-328.  Type species: Liepara dentata Boucek (orig. desig.). 

 

Discussion: The genus Liepara Boucek is herein removed from the Diparinae, and 

positioned within the Pteromalidae as an unplaced genus.  The phylogenetic position of 

Liepara is discussed in the phylogenetic analysis section. 

 

Species of Liepara: 

 

dahmsi  Boucek.  AUSTRALIAN: Australia (Queensland). 

Liepara dahmsi Boucek 1988: 328.  Holotype female and 2 female paratypes: 

QLD: Cooloola Nat. Park, 10.x.1979, coll. E. C. Dahms. (holotype and 1 paratype 

in QM, 1 paratype in BMNH, examined).  

 

dentata  Boucek.  AUSTRALIAN: Australia (New South Wales, Victoria). 

Liepara dentata Boucek 1988: 328.  Holotype female: NSW: Cudmirah Reserve 

NNE of Milton, 14.iv.1968, coll. Z. Liepa. (ANIC, examined).  2 female and 1 

male paratypes: VIC: Black’s Spur E of Melbourne, 5.ii.1983, coll. Z. Boucek. 

(BMNH, examined). 
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Mesolelaps  Ashmead 

 

Mesolelaps  Ashmead 1901: 313.  Type species: Mesolelaps cyaneiventris Ashmead 

(orig. desig. and by monotypy). 

 

Discussion: Mesolelaps is herein removed from Diparinae and placed in 

Miscogasterinae, without tribal affiliation, based on the reasoning discussed in the 

generic entry for Calolelaps. 

 

Species of Mesolelaps: 

 

cyaneiventris  Ashmead.  OCEANIAN: Hawaii. 

Mesolelaps cyaneiventris Ashmead 1901: 313-314 (Plate 8, Fig. 8).  Type 

information uncertain: “Hawaii: Kilauea; Kona, taken in August, September, and 

November; Olaa, in November.” (USNM, examined). 

 

Neolelaps  Ashmead 

 

Neolelaps  Ashmead 1901: 312.  Type species: Neolelaps hawaiiensis Ashmead (orig. 

desig.). 
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Discussion: Neolelaps is herein removed from Diparinae and placed in Miscogasterinae, 

without tribal affiliation, based on the reasoning discussed in the generic entry for 

Calolelaps. 

 

Species of Neolelaps: 

 

flavipes  Ashmead.  OCEANIAN: Hawaii. 

Neolelaps flavipes Ashmead 1901: 313 (Plate 8, Fig. 7).  Type information 

uncertain: “Kauai (high plateau). Taken in August 1894.” (USNM, examined). 

 

 

hawaiiensis  Asmead.  OCEANIAN: Hawaii. 

Neolelaps hawaiiensis Asmead 1901: 313.  Holotype female: “Kauai: 

Koholuamo, in April” (USNM, examined). 

 

Seyrigina  Risbec 

 

Seyrigina  Risbec 1952: 381.  Type species: Seyrigina gracile Risbec (by monotypy).  

 

Discussion:  The holotype of Seyrigina gracile is missing both the head and gaster.  

However, the tarsi are four segmented, and the specimen appears to belong to Eulophinae 

(Eulophidae).  Seyrigina is therefore transferred to the Eulophinae (Eulophidae).  The 
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holotype of Seyrigina rizicola is not located at the Paris Museum, and is presumed to be 

lost. 

 

Species of Seyrigina: 

 

gracile  Risbec.  AFROTROPICAL: Madagascar. 

Seyrigina gracile Risbec 1952: 381-383 (Fig. 59).  Type designation uncertain : 1 

female: Bekily, IX, 1936, coll. A. Seyrig.  1 male: Tananarive, I, 1930, coll. A. 

Seyrig. (female: Paris museum, examined, male: type location unknown). 

 

rizicola  Risbec.  AFROTROPICAL: Madagascar. 

Seyrigina rizicola Risbec 1960: 169-171 (Fig. 2).  Holotype female: “1 femelle 

récolté sur riz. II.1949. Tsimbazaza. Renaud Paulian.” (type location unknown). 

 

Stictolelaps  Timberlake 

 

Stictolelaps  Timberlake 1925: 189-190.  Type species: Stictolelaps flaviventris 

Stictolelaps (orig. desig.). 

 

Discussion: Stictolelaps is herein removed from Diparinae and placed in 

Miscogasterinae, without tribal affiliation, based on the reasoning discussed in the 

generic entry for Calolelaps. 
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flaviventris  Timberlake.  OCEANIAN: Hawaii. 

Stictolelaps flaviventris Timberlake 1925: 190-191 (Fig. 7).  Holotype female: 

Nunanu Pali, Oahu, 1904, coll. Perkins.  Allotype male: Palolo Hill trail, Oahu, 

April 9, 1916, coll. Timberlake. (BISH, examined). 

 

stigmatus  Timberlake.  OCEANIAN: Hawaii. 

Stictolelaps stigmatus Timberlake 1925: 191-192 (Fig. 8).  Holotype male: Niu 

ridge, Oahu, Feb. 10, 1918, coll. Timberlake. (BISH, examined). 

 

Taxa removed from Diparinae and placed in synonymy 

 

Notanisus Walker 

 

Notanisus Walker 1837: 352. Type species: Notanisus versicolor Walker (by monotypy). 

…(see Gibson 2003) 

Bekiliella  Risbec 1952: 378.  Type species: Bekiliella cyanea Risbec (by monotypy). 

New Synonymy. 

 

Discussion: Bekiliella is known only from the holotype specimen.  Two additional 

specimens, also labeled “Bekiliella cyanea”, are located at the Paris Museum.  These 

additional specimens have distinctly less metallic coloration than the holotype specimen, 

and may or may not represent a different species.  Regardless, the holotype is congeneric 

with Notanisus, and Bekiliella is herein synonomized with Notanisus. 
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Species of  Notanisus: 

 

...(see Gibson 2003) 

 

cyanea  (Risbec).  AFROTROPICAL: Madagascar. 

Bekiliella cyanea Risbec 1952: 378-381 (Fig. 59).  Holotype male: [Madagascar]: 

Bekily, XI, 1938. coll. A. Seyrig. (Paris Museum, examined). 

 

Spalangiopelta Masi 

 

Spalangiopelta Masi 1922: 169. Type species: Spalangiopelta brachyptera Masi (by 

monotypy). 

Diparisca  Hedqvist 1964: 54-55.  Type species: Diparisca ferrierei Hedqvist (orig. 

desig. and by monotypy). New synonymy. 

 

Discussion:  Diparisca, known only from the type specimen of D. ferrierei, is herein 

synonomized with Spalangiopelta.  That holotype specimen has been examined and 

conclusively identified as Spalangiopelta.  Darling (1991a) mentioned an undescribed 

species from Brazil (Nova Teutonia and San Jose Barreiro), but postponed its description 

because he only had male material.  The holotype of D. ferrierei is believed to be the 

female associated with the aforementioned male.  Additionally, 2 female specimens from 

the same locality (and apparently the same species) exist in the collection at the CNC.  It 
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is possible that the specimens were split up in collections based on their sexual 

dimorphism. 

 

Species of Spalangiopelta: 

 

...(see Darling 1991a) 

 

ferrierei  (Hedqvist).  NEOTROPICAL: Brazil. 

Diparisca ferrierei Hedqvist 1964: 55-56.  Holotype female and paratype female: 

Brazil, Nova Teutonia (27°15’ B. 52°23’ L), December 1962. coll. F. Plaumann.  

(holotype: KHPC, examined, location of paratype unknown). 
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Chapter 2: Molecular phylogenetics of Pteromalidae (Hymenoptera) using four 

nuclear protein-coding genes 

 

Abstract 
 
 
 

 Chalcidoidea, one of the largest superfamilies of parasitic Hymenoptera, has 

major importance in the biological control of insect pests. However, phylogenetic 

relationships both within and between chalcidoid families have been poorly understood, 

particularly within Pteromalidae, one of largest chalcidoid families.  Forty-two taxa 

broadly representing Chalcidoidea and more specifically Pteromalidae were sequenced 

for 4620 bp of four nuclear protein-coding genes, including 1719bp of CAD, 708bp of 

DDC, 1142bp of enolase, and 1044bp of PEPCK.  The combined data set was analyzed 

using maximum likelihood methods, and the AU test was used to test support for non-

monophyly of taxonomic groups which appeared para- or polyphyletic in the tree.  

Phlyogenetic relationships that have been supported by previous morphological and 

molecular evidence were recovered, including the monophyly of Chalcidoidea, the sister-

group relationship of Mymaridae to the remainder of Chalcidoidea, and the basal 

placement of Encarsia (Aphelinidae) within Chalcidoidea - Mymaridae.  Groups well 

supported as monophyletic by morphology but resolved as polyphyletic in previous 

molecular analyses were recovered here as monophyletic, including Chalcididae, 

Eucharitidae + Perilampidae, and Eunotini (Pteromalidae: Eunotinae). The hypothesis of 

wood-boring beetle parasitism as the ancestral biology of Chalcidoidea is rejected, 

although the alternate hypothesis, egg parasitism, is neither supported nor rejected.  The 
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monophyly of Pteromalidae is strongly rejected (p<0.001) with respect to a number of 

families, including Chalcididae, Eucharitidae, Eurytomidae, Perilampidae, and possibly 

Torymidae.  The 'pteromalid lineage' of families is generally recovered as monophyletic.  

The ancestral pteromalid was likely a wood-boring beetle parasitoid, in the form of either 

Cerocephalinae or Cleonymini (Cleonyminae).  New hypotheses are proposed for 

relationships within the 'pteromalid lineage,' including Eutrichosomatinae (Pteromalidae) 

as the basal lineage of the perilampid/eucharitid clade, and Colotrechnini (Pteromalidae: 

Colotrechninae) + Asaphinae (Pteromalidae).  Evidence for monophyly of the pteromalid 

subfamilies Diparinae, Eunotinae, and Cleonyminae was ambiguous, and the monophyly 

of Colotrechninae was strongly rejected (p<0.001).  These results demostrate that nuclear 

protein-coding genes are a powerful source of data for resolving relationships within 

Chalcidoidea. 
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Introduction 

 

 Chalcidoidea, one of the largest superfamilies of parasitic Hymenoptera, includes 

about  22,000 described species (Noyes 2003).  The majority of chalcidoids, commonly 

called chalcids, are parasitoids.  They are a conspicuous element in natural foodwebs, and 

also have major importance in the biological control of insect pests.  For example, 

introduction of the  chalcidoid Neodusmetia sangwani  into the U. S. to control the 

rhodesgrass mealybug is estimated to have saved at least $200M annually (Dean et 

al.1979).  Yearly savings of up to $250M have resulted from introduction of 

Epidinocarsis lopezi into Africa to control the cassava mealybug (Norrgard 1988a, b).  

Chalcidoids have also played key roles in the control of such diverse pests as coconut 

leaf-mining beetle in Fiji, cereal leaf beetle in the U.S., spiny blackfly in Japan, citrus 

blackfly in Cuba, and soybean looper in the U.S. (Debach and Rose 1991, Puttler et 

al.1980).  

 The ability of chalcidoids to control such a diverse array of insect pests is  

reflected in their broad array of life history strategies.  Chalcidoids may be endo- or 

ectoparasitic, idio- or koinobionts (killing the host immediately or at a later life stage), 

arrheno- or thelytokous (unfertilized eggs develop into males or parthenogenetically into 

females), and show tremendous variety in other life history features as well.  They are 

known to parasitize 13 orders of insects, as well as a variety of arachnids and even 

nematodes.  Reversion to phytophagy, primarily gall-forming and seed-feeding, has also 

occurred  in Chalcidoidea. A variety of hypotheses, often conflicting, have been offered 

about the evolution of chalcid  life histories. For example, both egg parasitism (Dowton 
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and Austin 2001) and ectoparasitism of wood-boring beetles (Boucek 1988) have been 

argued to be the ancestral chalcidoid habit.  

Chalcidoid evolution offers a prominent example of diversification associated 

with shifts in ecological roles, waiting reconstruction and deconstruction by phylogenetic 

analysis. A sound phylogenetic classification would also facilitate the use of chalcids in 

biological control, as the biology of poorly known  potential control agents can be 

predicted in part from knowledge of their close relatives. 

Monophyly for Chalcidoidea, which currently contains 20 families (Grissell and 

Schauff 1997), is well established (Gibson 1986), and a basal position for  Mymaridae is 

supported by both morphological (Heraty et al.1997, Quicke et al.1994) and molecular 

evidence (Campbell et al. 2000).  Despite the ecological and economic importance of 

Chalcidoidea, however, phylogenetic relationships both within and between chalcidoid 

families are still largely obscure.  Noyes (1990) offered an intuitive scheme of family 

relatedness,  and recent morphological cladistic studies have treated several individual 

families or small complexes of families (e.g. Heraty and Darling 1984, Woolley 1988, 

Gibson 1989, Wijesekara 1997, and Heraty 2000). 

A central difficulty is the status of the problematic family Pteromalidae, one of 

the three largest in the superfamily (3506 species; Noyes 2003) and often considered its  

“garbage can.”  Pteromalidae is defined only by the absence of features defining other 

chalcidoid families, and has been speculated to be paraphyletic with respect to a number 

of these families.  These are often referred to collectively as the ‘pteromalid lineage,’ 

alternatives being the ‘mymarid’ and ‘eulophid lineages’.  The ‘pteromalid lineage’ is 

defined here, following Gibson et al. (1999), as chalcidoids with 5 tarsal segments and, to 
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a lesser degree, with at least 8 flagellar segments and a recurved protibial spur, and is 

comprised of Agaonidae, Chalcididae, Encyrtidae, Eucharitidae, Eupelmidae, 

Eurytomidae, Leucospidae, Perilampidae, Pteromalidae, Tanaostigmatidae, and 

Torymidae (Campbell et. al. 2000).  Thirty-one subfamilies are currently recognized 

within Pteromalidae (Noyes 2003), although inclusion and exclusion of many subfamilies 

is still highly uncertain.  Numerous useful hypotheses have been advanced about 

relationships among subfamilies (e.g. Boucek 1974, Boucek 1988a, b, Darling 1988, 

Graham 1969), but none have been subjected to rigorous phylogenetic analysis.  A 

subfamily-level phylogeny for the pteromalids and other associated chalcidoids would 

therefore be a major step toward better understanding of chalcidoid phylogeny and 

evolution. 

Török and Abraham (2001) conducted the only broad-ranging morphological 

phylogenetic study of Pteromalidae.  Their data set consisted of 90 characters coded for 

38 exemplars, representing seven families all belonging to the ‘pteromalid lineage.’ 

Eleven subfamilies of Pteromalidae were represented, although the taxon sampling was 

heavily focused on Pteromalinae and Miscogasterinae (20 taxa). Chalcididae and 

Eurytomidae were used as outgroups, which is problematic as these families may render 

Pteromalidae paraphyletic.  The positions of many taxa were unstable in their analyses, 

and although the authors report that Pteromalidae emerged as polyphyletic, they cited no 

supporting characters.  Thus, it is difficult to draw strong conclusions from this study.  

Previous molecular studies of relationships within and among chalcid families, 

based mainly on the widely-used mitochondrial and nuclear ribosomal markers, have 

yielded limited resolution, particularly with regard to Pteromalidae. Analyses of 28S 
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rRNA have supported placement of Elasmidae within Eulophidae (Gauthier et al. 2000) 

and  polylphyly of Agaonidae sensu lato (Rasplus et al.1998).   However, a study of the 

same gene region by Campbell et al. (2000), sampling multiple chalcid families and 

seven pteromalid subfamilies, resolved the basal position of Mymaridae but little else, 

and failed to recover a number of morphologically well-supported groups.  Alignments 

were problematic in all of these studies.  Mitochondrial protein-coding genes have been 

applied to higher-level  hymenopteran phylogenetics (e.g. Dowton and Austin 1995, 

2001), but resolution was limited by extreme base compositional heterogeneity across 

taxa.  The generally high A/T content of hymenopteran mitochondria (e.g., ~85% in  Apis 

mellifera) also limits the amount the amount of phylogenetic information. 

Given this evidence, it seems clear  that additional markers are needed to solve 

problems of hymenopteran phylogeny, including pteromalid/chalcid relationships.  

Protein-coding nuclear genes are an especially promising source of evidence for insects 

generally, and have begun to be applied in Hymenoptera.  Several studies of this order  

have included sequences of the nuclear gene elongation factor-1α (EF-1α; Belshaw and 

Quicke 1997, Belshaw et al. 2000, Dowton and Austin 1998, 2001).  Danforth et al. 

(2004) used wingless and long-wavelength opsin, in addition to EF-1α, to resolve 

Cretaceous-age divergences in bees.  Rokas et al. (2002) examined the phylogenetic 

utility of eight genes in cynipid wasps, including both EF-1α and long-wavelenth opsin, 

and concluded that the latter show promise for resolving intra-familial divergences within 

parasitic Hymenoptera.   

The study presented here provides the first comprehensive phylogenetic analysis 

of relationships across the major subfamilies of Pteromalidae and associated chalcids 
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using nuclear protein-coding genes. At total of 4620 bp were sequenced, from four  

nuclear protein-coding genes previously shown to be useful in resolving Cretaceous-age 

divergences in insects.  These genes studied were: CAD (part of the rudimentary locus; 

1719 bp); dopa decarboxylase (DDC; 708 bp), enolase (1142 bp), and 

phosphoenolpyruvate carboxykinase (PEPCK; 1044 bp). These genes were selected in 

part on criteria discussed by Friedlander et al. (1992), including probable phylogenetic 

utility, low apparent copy number, extensive coding regions, and a lack of obvious 

nucleotide bias and internal repeats. They were also chosen  for their complementary 

rates of divergence, in hopes that they would collectively provide resolution across the 

varying depths that pteromalid/chalcid phylogeny probably represent. 

 Taxa were chosen to represent a broad range of families in the ‘pteromalid 

lineage’ and subfamilies of Pteromalidae.  Multiple representatives from different 

families, subfamilies, and tribes were chosen both to test the ability of the nuclear 

protein-coding genes to recover these clades, and to test the monophyly of the taxonomic 

groups themselves.  A broad range of outgroups were chosen which reached from inside 

to outside the superfamily in order to ensure accurate rooting of the tree. 
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Methods 

 

Taxon Sampling 

 

 Taxa included in the analysis are listed in Table 1.  Three outgroups were chosen 

from outside the superfamily, including one from Ceraphronidae (Ceraphronoidea) and 

one each from Scelionidae and Platygasteridae (Platygastroidea).  Both groups have been 

previously hypothesized as close relatives of Chalcidoidea (e.g., Dowton and Austin 

2001).  Gonatocerus (Mymaridae) was also included as an outgroup as its basal position 

within Chalcidoidea is strongly supported.  Additional taxa chosen from outside the 

‘pteromalid lineage’ included one eulophid (Tetrasitchus) and Encarsia (Aphelinidae), 

which resolved as a basal chalcidoid in the Campbell et. al (2000) analysis based on 28S 

rDNA.  The taxa were chosen particularly to break up a long branch which appeared 

between Gonatocerus and the remainder of Chalcidoidea during preliminary analyses.  

The ‘pteromalid lineage’ is represented by five families in addition to Pteromalidae: 

Chalcididae, Eucharitidae, Eurytomidae, Perilampidae, and Torymidae.  Although these 

families are not a comprehensive list of  members of the ‘pteromalid lineage,’ constraints 

on the taxonomic size of the data set prevented the inclusion of additional taxa.  Families 

were generally excluded because they represented very small clades (e.g., Leucospidae, 

Ormyridae) or they were too poorly defined to select appropriate exemplars (e.g., 

Agaonidae).  Although Perilampidae represents a small number of taxa, it was included 

in the analysis because its relationship with Eucharitidae is well supported and could be 

used to evaluate the ability of the data set to recover known clades.  Eurytomidae was 



 

 184 
 

 

intended to be represented by two taxa: Eurytoma (Eurytominae) and Heimbra 

(Heimbrinae).  However, the extraction of Eurytoma proved too poor for amplification, 

and time constraints prevented amplification from a second specimen.  Within 

Pteromalidae, 14 subfamilies are represented by 31 genera, including two tribes of 

Colotrechninae, Eunotinae, and Diparinae, and three of Cleonyminae. 

 

Gene Sampling 

 

CAD is a multienzymatic protein, composed of carbamoyl-phosphate synthetase 

II (CPSase), aspartate transcarbamylase, and dihydro-orotase, that catalyses multiple 

steps in the de novo synthesis of pyrimidines.  Moulton and Wiegmann (2004) used ~4kb 

of CAD (particularly the CPSase domain) to resolve relationships within eremoneuran 

Diptera.  The trees they recovered were strongly concordant with dipteran phylogenies 

based on morphology and 28S rDNA.  In this study, I sequenced 1719 bp of the CPSase 

domain, which corresponds roughly to the 5’ end of Moulton and Wiegmann’s 4kb 

fragment.  

DDC catalyzes the conversion of tyrosine to dopamine, and of tryptophan to 

serotonin.  In contrast to PEPCK, both synonymous and non-synonymous changes in 

DDC have proven useful for resolving relationships within and between families and 

superfamilies of Lepidoptera (Fang et al.1997, Friedlander et al. 1998, 2000).  In this 

study I sequenced 708 bp of DDC, which lies approximately in the center of previously 

studied fragments. 
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Enolase catalyzes the conversion of 2-phosphoglycerate to phosphoenolpyruvate 

in the glycolytic pathway, and catalyzes the reverse reaction during gluconeogenesis.  

Enolase was judged to be more slowly evolving than PEPCK or DDC by Friedlander et 

al. (1992), and it has been recently utilized to resolve Lower-Mesozoic-aged relationships 

within curculionid beetles  (Farrell et al. 2001, Sequeira and Farrell 2001).  Two copies 

of enolase were discovered in beetles by Sequeira and Farrell (2001), but these were 

easily distinguishable by intron structure. Although only one copy amplified in most taxa 

in this study, two copies were found in a few.  Intron structure could not be examined 

because the gene was amplified by RT-PCR, but the two copies within species were 

much more divergent from each other than from the apparently corresponding copies in 

other taxa.  Thus, establishment of orthology was not problematic.  

PEPCK and DDC were initially judged to be comparably intermediate in rate 

(Friedlander et al. 1992), but  DDC has subsequently been shown to evolve much more 

rapidly.  PEPCK catalyzes the conversion of oxaloacetate to phosphoenolpyruvate during  

gluconeogenesis. Non-synonymous changes in PEPCK recovered Mesozoic-aged 

subordinal divergences in Lepidoptera (Friedlander et al. 1996), but the amino acid 

sequence was largely invariant at lower taxonomic levels.  In an application of  ~500 bp 

of PEPCK to the phylogeny of Apidae: Xylocopinae (Leys et al. 2002), information 

occurred largely in the third codon position.  In this study 1044 bp of PEPCK were 

sequenced, of which the Leys et al. and Friedlander  et al. fragments correspond  roughly 

to the 3’ half. 
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Sample Collection and Storage 

 

 Most specimens were collected directly into 100% EtOH at room temperature and  

transferred within a month to storage at –80°C.  Specimens collected in malaise traps in 

95% EtOH proved satisfactory, as long as they were placed in 100% EtOH at –80°C 

within a month of collection.  Vouchers for all taxa except Alloterra sp. (for which only a 

single specimen was collected) are stored at –80°C at the Center for Biosystems 

Research, University of Maryland Biotechnology Institute.  Since extractions were 

conducted on entire specimens, voucher specimens represent individuals judged to be the 

same species based on morphological analysis and from the same collecting event.  

 

Extraction and Amplification 

 

 Total nucleic acid (TNA) extractions were performed using an SV Total RNA 

Isolation System (Promega).  Extractions were conducted on entire specimens, due to the 

minute size of these insects (most are <2mm).  The extractions were subsequently 

lyophilyzed and rehydrated in a smaller volume (20 µl, 1/5 of initial volume) to 

concentrate the nucleic acids.  All genes were amplified by RT-PCR to avoid introns.  

Reverse transcription was performed in 10µ of a solution including 2µl 25mM MgCl2, 

1µl 10X PCR buffer II (Applied Biosystems), 4µ 2.5mM dNTPs, 0.5µl RNase inhibitor 

(Applied Biosystems), 0.5µl RTase (Applied Biosystems), 1µl RC primer (20pm/µl), and 

1µl of template.  RT amplifications which used the general dT primer replaced the 1µl of 

specific primer with 0.5µl dT primer and 0.5µl H2O.  RT protocol was 42° for 35 min 
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followed by 99° for 5 min.  Most of the RT steps used the reverse complement primer.  

However, a general dT primer was used to amplify the enolase fragment 23F/344R, 

because the RC primer preferentially amplified an undesired DNA fragment.  PCR was 

performed in a 50µl solution which included the 10µl solution from the RT Step, 2µl 

25mM MgCl2, 4µl 10X PCR buffer II (Applied Biosystems), 30.5µl H2O, 0.5µl Taq 

solution (1 part Amplitaq [5u/µl, Applied Biosystems] and 1 part TaqStart Ab [7µM, 

Clonetech], 2µl F primer [20pm/µl], and 1µl RC primer [20pm/µl].  When the general dT 

primer was used during the RT step, 1µl H2O was replaced with 1 addtional µl of RC 

primer.  PCR protocol followed a touchdown method: 94° for 30 s, 24 cycles starting at 

50° for 30 s and changing at –0.4° and +2 s/cycle, 94° for 30 s, 45° for 30 s, 12 cycles at 

72° starting at 2 min and changing at +3 s/cycle, followed by 72° for 10 min.  In the case 

of DDC, enolase, and PEPCK, double stranded amplification products were isolated from 

1.4% agarose gels.  Primers were removed from CAD products were directly without gel 

isolation, due to the lack of visible product produced in the RT-PCR phase.  All 

fragments were then reamplified using PCR and nested primers to both improve product 

yield and ensure clean products. The reamplifications were done in a 50µl solution with 

similar proportions to the PCR solution described in the RT-PCR step, and included 1µl 

of the isolated RT-PCR products.  Reamplication protocol was as follows: 94° for 30 s, 

50° for 30 s, 21 cycles at 72° starting at 1 min and increasing +2 s/cycle, followed by 72° 

for 10 min.  All products were then gel isolated a second time.  In cases where 

concentration of the isolated product was high enough for sequencing, a second 

reamplification was performed using M13 sequences added to the 5’ end of all primers, 

and these products were again gel isolated and purified.  
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Primer Developement 

 

All primers are listed in Table 2.  Primers with a C following the number are 

designed to be specific to Chalcidoidea, while the primer with an M following the 

number is designed to be specific to Gonatocerus (Mymaridae).  CAD was amplified in 

two fragments: 46F/350RC reamplified with M13REV/309RC and 295F/673RC 

reamplified with M13REV/606RC.  In cases where these steps resulted in no visible bands 

on agarose gels, various combinations of other listed primers were attempted (e.g. 

46F/350RC reamplified with 61CF/ M13(-21)).  DDC was initially amplified using 

1.7F/4RC.  Nested PCR reamplification used M13REV/3.3RC and 1.9CF/M13(-21) (1.9F 

for outgroups) to produce two overlapping fragments.  In taxa where the fragment was 

not amplified by this method, 1.6F was used in placed of 1.7F, and the nested reamps 

described above were used.  Enolase was amplified in 2 fragments: 23F/344RC 

reamplified with M13REV/241RC and 167F/407RC reamplified with M13REV/406RC.  

For PEPCK, 2-3 fragments were amplified: 159CF/351RC (155F for outgroups) 

reamplified with M13REV/335RC and 291F/510RC reamplified with 292F/ M13(-21).  In 

many cases 292F/510RC did not produce a clean band, and in these cases the RT-PCR 

product was reamplified using both 344CF/ M13(-21) (344F for outgroups) and 

M13REV/501RC to produce 2 overlapping fragments.  Gonatocerus (Mymaridae) had a 

single amino acid insertion near the 501RC primer, which significantly altered its amino 

acid sequence through the primer region.  A taxon-specific primer (501MRC) was 

developed specifically for this amplification. 
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Sequencing and Assembly 

 

Products were isolated a final time and directly sequenced (both strands) from 

M13 primers.  Sequence chromatograms were checked for accuracy, and contigs were 

assembled using the software package Staden (Staden 1999).  Alignments were 

straightforward due to sequence and length conservation, and were done manually in 

GDE (Smith et al 1994).  

 

Phylogenetic Analysis 

 

The data were partitioned by gene and codon position, and each partition was 

examined for base compositional homogeneity using the χ2 test as implemented in 

PAUP* version 4 (Swofford 1999).  All parsimony and likelihood analyses were 

conducted using PAUP* version 4 (Swofford 1999).  Parsimony analyses were performed 

both on all nucleotides and on amino acids using equal weights and a heuristic search 

with 100 random addition replicates.  Additionally, parsimony analyses were run using 

both individual genes and the combined data set.  Maximum likelihood analyses were 

performed using a GTR+Γ+I model on both all nucleotides and nt1 and 2 only.  The 

model was selected using a generalized likelihood ratio test with likelihoods calculated in 

PAUP* on a neighbor-joining tree from J-C, F81, HKY, GTR, GTR+Γ, GTR+I, and 

GTR+Γ+I models.  Maximum likelihood analyses were performed as follows: 1) A 

starting tree was generated using the parsimony criterion and all nucleotides equally 

weighted.  Only one of the most parsimonious trees was saved at this step. 2) Likelihood 
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parameters were estimated from the parsimony tree, and a likelihood analysis was 

performed using the tree from step 1, the estimated parameters, and nearest-neighbor 

interchange. 3) Likelihood parameters were estimated from the final step-2 tree, and this 

tree and parameter set were used for a second likelihood analysis using tree bisection and 

reconnection.  4) The final tree from step 3 was saved and its likelihood parameters were 

estimated. 5) The likelihood parameters were set to those estimated in step 4, a heuristic 

search with 100 random addition replicates and TBR branch swapping was performed, 

and the most likely tree from step 5 was also saved.  Two different types of searches 

(steps 1-4 and 5) were performed in order to maximize the chance of actually finding the 

most likely tree, although in all analyses the tree from step 4 topologically matched the 

step 5 tree.  Bootstrap values were calculated on the analysis of all nucleotides using a 

GTR+Γ+I model with parameters set to those estimated in step 4, using 350 replicates 

and 10 random addition sequences per replicate.  Combinability of the individual gene 

data sets was tested using the ILD test (Farris et al 1994) as implemented in PAUP* 

version 4 (Swofford 1999) using the amino acid data set, as no preferred analysis 

included equal weighting of synonomous and non-synonomous substitutions.  The ILD 

test was based on 100 replicates and 10 random addition sequences per replicate, and an 

analysis was run for all genes and for all 2-gene combinations.  Taxonomic groups which 

were rendered paraphyletic in the phylogenetic analysis were tested against the null 

hypothesis of monophyly using Shimodaira’s approximately unbiased (AU) test (2002), 

as implemented in the CONSEL package (Shimodaira and Hasegawa 2001).  Constraint 

trees used for the AU test were generated as in steps 1-4 above, except that in all searches 

the group being tested was constrained as monophyletic. 
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Results 

 

Characteristics of  genes 

 

As predicted, the four genes showed complementary rates of divergence.  

Pairwise comparisons across chalcidoids at second codon positions (nt2) showed that 

enolase evolves most slowly (0-3% uncorrected pairwise distance), followed by PEPCK 

(1-6%), DDC (0-9%), and CAD (2-13%) divergence.  For all genes, nt3 showed 

moderate divergence across taxa within the same tribes (9-24% minimum uncorrected 

pairwise distances across genes) but appeared to approach saturation in more distant 

comparisons, with maximum pairwise divergences ranging from 66-76%.  Base 

composition (Table 3) was homogenous across taxa at nt1 and nt2 for all genes.  

However, nt3 was  significantly non-homogenous across taxa for all genes.   

The ILD tests (Table 4) showed minimal evidence of discordant phylogenetic 

signal among genes. When all genes were analyzed together, homogeneity of signal was 

rejected at a modest level (p = 0.02). However, among the twelve pairwise combinations 

of genes, homogeneity was rejected, at modest levels (p = 0.02 – 0.05), only in the 

comparisons involving enolase.  

 

Phylogeny estimation 

 

Unweighted, unordered parsimony analyses of both all nucleotides and inferred 

amino acids yielded trees with little resolution or bootstrap support (results not shown). 
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This discussion will therefore focus on the maximum likelihood analyses, which  yielded 

more resolved trees with higher branch support.   

In the best ML-score tree found for all nucleotides under the  GTR+Γ+I model 

(Figure 70), 23 of 42 nodes have bootstrap support (BP) > 50%, of which 16 have BP > 

70%.   Monophyly of Chalcidoidea is supported (71% BP), as is the basal placement of 

Mymaridae (96% BP).  Encarsia (Aphelinidae) branches off next (77% BP), in 

agreement with Campbell et al. (2000), followed by Eulophidae. The remaining families, 

all belonging to the ‘pteromalid lineage,’ form a monophyletic group, albeit with weak 

support.  

The basal branches within the ‘pteromalid lineage’ are all subfamilies of 

Pteromalidae, namely, Herbertinae, Cerocephalinae, Spalangiinae, and Cleonyminae: 

Cleonymini.  Pteromalidae, therefore, is paraphyletic with respect to all the other 

‘pteromalid lineage’ families sampled, namely, Eurytomidae, Torymidae, Chalcididae, 

Eucharitidae, and Perilampidae. Chalcididae itself is recovered as monophyletic (95% 

BP).  Some, but not all, relationships of individual families to sub-groups of Pteromalidae 

are strongly supported. A clade consisting of Eucharitidae plus Perilampidae (59% BP) is 

strongly grouped with Eutrichosomatinae (Pteromalidae) (82% BP).  Both Eurytomidae 

and Torymidae fall (separately) within a moderately well supported clade consisting 

otherwise of the pteromalid groups Colotrechnini, Asaphinae, Pireninae and 

Coelocybinae. Monophyly of Pteromalidae is conclusively rejected overall by the 

approximately unbiased (AU) test of Shimodaira (2002; p = 7 x 10-15). 

Within Pteromalidae, monophyly was nearly always strongly supported for tribes 

represented by multiple exemplars, including: Neapterolelapini (100% BP) and Diparini 
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(58% BP) of Diparinae;  Lyscini (98% BP) of Cleonyminae; and Eunotini (100% BP) 

and Moranilini (100% BP) of Eunotinae.   Monophyly of some subfamilies, e.g., 

Cerocephalinae (100% BP), was supported. A number of other subfamilies appeared 

para- or polyphyletic in the tree, including Diparinae, Eunotinae, Ormocerinae, 

Cleonyminae, and Colotrechninae, but support for these conclusions was generally weak.  

In particular, one of the two taxa included from Ormocerinae, Hemadas, has sometimes 

been placed within Pteromalidae without subfamily affiliation rather than within 

Ormocerinae.  The AU test significantly rejected monophyly only for Miscogasterinae (p 

= 0.017) and Colotrechninae (p=.0002; see below). 

A number of interesting relationships among pteromalid subfamilies (and other 

families) are suggested by this analysis, although the deeper divergences are mostly 

weakly supported. There is some support (59% BP) for a clade consisting of the entire 

‘pteromalid lineage’ except Herbertinae and Cerocephalinae.  There is moderate support 

(73% BP) for a clade comprising Pteromalinae, Miscogasterinae, Colotrechnini 

(Colotrechninae), Asaphinae, Eurytomidae, Ganstrancistrus + Semiotellus, Torymidae, 

and Coelocybinae, and somewhat weaker support (63% BP) for a group including these 

plus Diparinae, Lyscini (Cleonyminae), Hetreulophini (Colotrechninae) and Moranilini 

(Eunotinae).  Within this assemblage, Colotrechnini and Asaphinae are strongly 

supported as sister groups (90% BP). Miscogasterinae and Pteromalinae form a clade 

together (55% BP), though  neither subfamily is monophyletic.  

The ML tree using nt1 and 2 only based on a GTR+Γ+I model is shown in Figure 

71.  Clades marked with “*” were recovered in both analyses but with bootstrap support 

<50% in the nt1+2 analysis.  The topologies of this tree and the all-nts tree were highly 
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congruent at the tips and base of the phylogeny, and all nodes supported by >75% 

bootstrap support in the all-nts tree were resolved in the nt1+2 tree.  Chalcidoidea was 

also resolved as monophyletic in both analyses, as was the clade Eutrichosomatinae + 

(Eucharitidae + Perilampidae).  All con-tribal taxa were recovered in monophyletic 

clades in both analyses.  The ‘pteromalid lineage,’ supported as monophyletic in the all-

nts analysis, was monophyletic in the nt1+2 analysis with the exception of Torymidae.  

Torymidae changed positions drastically in the two analyses, moving from nested deep 

within Pteromalidae (in a clade supported  with 73% BP) to the base of tree, positioned 

basally to Eulophidae.  Herbertinae in particular was recovered as sister-group to 

Eulophidae, and Cleonymini retained a basal position in the complex.  However, 

Spalangiinae and Cerocephalinae formed a clade deep with Pteromalidae rather than 

basally.   

The large, moderately supported clade in the all-nts analysis loses a significant 

number of members, but the group appears to be united by a much longer branch.  The 

clade retains the Pteromaline-Miscogasterine complex, which is sister group to Heimbra 

+ (Colotrechnini + Asaphini), as it was resolved in the all-nts analysis.  Torymidae, and 

the pteromalid subfamilies Pireninae and Coelocybinae are removed from the clade.  The 

internal phylogeny of Diparini is identical in both analyses as Lelaps + (Parurios + 

(Dipara + Alloterra)).  
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Discussion 

 

Chalcidoid and pteromalid phylogeny 

 

 The monophyly of Chalcidoidea is well supported in this analysis (71% BP for 

all-nucleotide ML, recovered in both analyses), corroborating previous morphological 

and molecular evidence.  Previously, Gibson (1986) hypothesized Chalcidoidea to be 

monophyletic based on 3 morphological synapomorphies: 1) presence of multiporous 

plate sensillae on the antennal flagellum, 2) unique position of mesothoracic spiracle, and 

3) prepectus visible externally. The basal position of Mymaridae, strongly supported here 

(96% BP for all-nucleotide ML, recovered in both analyses), also corroborates 

morphological evidence, including unique features of the ovipositor (Quicke et al. 1994) 

and thoracic musculature (Heraty et al. 1997).  Additionally, Campbell et. al’s (2000) 

analysis using 28S rDNA resolved  Chalcidoidea as monophyletic and Mymaridae as the 

basal-most taxon, although without strong bootstrap support. 

In Campbell et al’s (2000) analysis, Encarsia (Aphelinidae) came out basal to all 

chalcids except for Mymaridae and a few other aphelinid genera. (Aphelinidae is most 

likely polyphyletic [Gibson et al. 1999], thus Encarsia is referred to here by its generic 

rather than family name).  Encarsia was included in this analysis in an attempt to break 

up the long branch between the mymarid and the remaining chalcidoids, and was placed 

in that position with moderate support (77% BP in all-nts, recovered in both analyses).  

The congruence between this analysis and that of Campbell et al. (2000) in recovering 
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basal chalcidoid relationships that are well supported by morphology suggests that both 

28S rDNA and protein-coding nuclear genes are useful at this deeper level. 

The ‘pteromalid lineage,’ supported as monophyletic in the all-nts analysis, was 

monophyletic in the nt1+2 analysis with the exception of Torymidae. The position of this 

family differs drastically between the two trees and should be regarded as unsettled.  The 

decisive rejection of monophyly of Pteromalidae by the AU test suggests that 

classification of the pteromalid lineage will need extensive revision, once relationships 

are established in more detail than at present. Either  the majority of other families in the 

‘pteromalid lineage,’ including  Eurytomidae, Chalcididae, Eucharitidae,  Perilampidae, 

and possibly Torymidae, should be classified as derived groups within Pteromalidae, or 

Pteromalidae should be divided into multiple families. 

Within the ‘pteromalid lineage,’ some morphologically-based groups which  

appeared polyphyletic in the Campbell et al. (2000) analysis were well supported as 

monophyletic in this analysis, including Eunotini (Eunotinae), Chalcididae, and 

Eucharitidae + Perilampidae.  The monophyly of Eunotus + Scutellista (Eunotini) was 

strongly supported (100% BP in all-nts, recovered in both analyses), as was the 

monophyly of Hockeria + Dirhinus (Chalcididae) (95% BP in all-nts, recovered in both 

analyses).  While Campbell et al. (2000) had a broader tribal-level sampling of 

Chalcididae, none of the tribes were resolved as sister-taxa, including the two resolved as 

monophyletic in this analysis (Dirhinae and Haltichellinae).  The recovery of Chalcididae 

as monophyletic in this analysis adds support for the ability of nuclear protein-coding 

genes to recover chalcidoid relationships, as the group is strongly supported as 

monophyletic by morphological evidence (Wijesekara 1997).  Differences in taxa most 
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likely do not account for the difference in clade recovery between this analysis and that 

of Campbell et al. (2000), as identical genera of Eunotini and Chalcididae were sampled 

in both groups. 

Although Boucek (1988) considered Eutrichosomatinae to be one of the most 

primitive members of Pteromalidae, no hypotheses have been put forth regarding its 

sister-group relationships.  Monophyly of the Eucharitidae + Perilampidae is supported 

by morphological evidence, primarily characteristics of their planidiaform larvae (Heraty 

and Darling 1984).  Campbell et al.’s (2000) study of 28S rRNA did not support this 

clade as monophyletic.  The present analysis supports the monophyly of Perilampidae + 

Eucharitidae  (59% BP in all-nts, recovered in both analyses), and strongly supports the 

monophyly of  Eutrichosomatinae + (Perilampidae + Eucharitidae) (82% BP in all-nts, 

recovered in both analyses).   

One large pteromalid clade which is supported as monophyletic in both analyses 

is (Pteromalinae, Miscogasterinae) + (Heimbra + (Colotrechinae: Colotrechnini + 

Asaphinae)).  The AU test results showed that while monophyly of Pteromalinae was not 

significantly less likely than non-monophyly, the monophyly of Miscogasterinae was 

significantly less likely (p<0.05).  This suggests that even if the two do not truly render 

each other paraphyletic as suggested by the tree, minimally Pteromalinae renders 

Miscogasterinae paraphyletic.  It should be noted that the two representatives of 

Miscogasterinae belong to different tribes, Polstonia belonging to Sphegigasterini and 

Plutothrix to Trigondonerini, suggesting that Trigodonerini may represent the basal 

lineage of the complex with Sphegigasterini derived from Miscogasterinae.  A novel 

finding in this study is the strongly supported sister-group relationship between 
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Colotrechnus (Colotrechini) and Enogerra (Asaphinae) (90% BP in all-nts, recovered in 

both analyses).  A close relationship with these two groups has never been proposed, and 

no morphological characters have been recorded to unite them. 

Four subfamilies of pteromalids appeared to be polyphyletic in these analyses.  

Monophyly of Colotrechninae was strongly rejected (p<0.001) by the AU test.  

Colotrechninae is morphologically defined by the advanced placement and sculpture of 

the axillae, and this analysis suggests that these characters are independently derived in 

the two represented colotrechnine tribes, Colotrechnini and Hetreulophini.  Tribes of 

Diparinae, Eunotinae, and Cleonyminae were strongly recovered as monophyletic, but 

like Colotrechninae were recovered as polyphyletic at the subfamily level.  However, 

when subjected to the AU test, monophyly of Diparinae, Eunotinae, and Cleonyminae 

was not significantly less likely than non-monophyly.  Gibson’s (2003) morphological 

phylogenetic analysis of Cleonyminae produced similar results, as he could neither 

support its monophyly nor find a group that assuredly rendered it paraphyletic. 

The phylogeny of Diparinae was studied using morphological characters 

(Desjardins, in prep), and monophyly of the group was strongly supported.  As 

previously mentioned, while Diparinae was not recovered as monophyletic in this 

analysis, its monophyly was not rejected.  Desjardins (in prep) also divided the subfamily 

into 2 tribes, Diparini and Neapterolelapini.  The phylogenetic analysis here supports this 

split, as both tribes are recovered as monophyletic in the analysis.  Additonally, the basal 

position of Lelaps with respect to Dipara, Alloterra, and Parurios is supported in both 

morphological and molecular analyses. 
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While not providing a phylogeny with robust support at all levels, nuclear 

protein-coding gene data has provided a more well-supported hypothesis about the 

phylogeny of Chalicidoidea, and particularly the ‘pteromalid lineage,’ than other 

attempts.  These genes proved superior to 28S rDNA in resolving monophyly of groups 

that were well supported by morphological evidence, and both basal and tip clades within 

Chalicidoidea were well supported.  The many short internal branches of the phylogeny 

are likely the result of an explosive and rapid diversification within the superfamily, and 

the addition of new nuclear protein-coding gene data should expand phylogenetic 

resolution into these areas of the phylogeny. 

 

Evolution of life histories 

 

 The phylogenetic relationships hypothesized here permit re-examination of 

several long-standing hypotheses about the evolution of different types of parasitism in 

Chalcidoidea. Parasitism of wood-boring beetles has long been thought to be the 

ancestral trophic habit of chalcidoids, presumably because the symphytan family 

Orussidae, the sister-group to all parasitic Hymenoptera, also has this life history trait. 

Additionally, many other parasitoid groups typically viewed as primitive (e.g., 

Proctotrupoidea) also parasitize wood-boring beetles.  However, the basal position of 

Mymaridae and Encarsia in this analysis provides evidence against the hypothesis that 

wood-boring beetle parastism is ancestral within Chalcidoidea.  While mymarids are egg 

parasitoids, Encarsia parasitizes scale insects and whiteflies.  Additionally, the first 

wood-boring beetle parasitoid to appear within Chalcidoidea is Cerocephalinae, which 
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appears 4 nodes up from the node uniting Chalcidoidea.  An explanation that parasitism 

of insects other than wood-boring beetles was derived independently in Mymaridae, 

Aphelinidae, Eulophidae, and possibly Herbertinae (Pteromalidae) from an ancestor 

which pararasitized wood-boring beetles is highly unparsimonious.  

The implications for egg parasitism from this study are ambiguous, as within this 

phylogenetic context it appears to be an apomorphic biology of Mymaridae.  It is 

possible that the ancestral chalcidoid started as an egg parasitoid and moved on to scale 

insects, which are similary small and immobile hosts.  Knowledge of the sister-taxa to 

Chalcidoidea and their biologies might provide evidence to support this hypothesis.  

Mymarommatoidea is a rare superfamily (although common in the fossil record) which 

was hypothesized by Gibson (1986) to be sister-group to Chalcidoidea based on 3 unique 

characteristics of internal morphology.  The hosts of Mymarommatoidea are unknown, 

but the extremely small size of these insects suggests that egg parasitism is likely.  The 

sister-group to Mymarommatoidea is largely unknown.  Some analyses by Dowton and 

Austin (1994, 1997) suggest that Platygastroidea may the sister-group of this clade, 

although they did not appear so in all analyses.  As Platygasteridae is composed entirely 

of egg parasitoids, a sister group relationship between Platygastroidea and 

Mymarommatoidea + Chalcidoidea would add additional support to the anscestral state 

of egg parasitism within Chalcidoidea. 

 Regardless, these phylogenetic results suggest evolutionary trends opposite of 

what has typically thought to have occurred within Chalcidoidea.  The large, robust 

bodied wood-boring beetle parasites (e.g., many cleonymine pteromalids) are obviously 

derived within Chalcidoidea, while small bodied parasitoids of immobile hosts are more 
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basal.  Groups such as Mymaridae are thought of as highly reduced within Chalcidoidea.  

However, the molecular data suggest that groups such Cleonyminae have 

morphologically “expanded” from smaller and simpler body form.  Within the 

‘pteromalid lineage,’ however, it is likely that wood-boring beetle parastism is ancestral.  

The groups which appear to occupy basal positions within this lineage, such as 

Cerocephalinae and  Cleonymus (Cleonyminae), typically possess this biology.   

The sister-group relationship between Eutrichosomatinae (Pteromalidae) and 

Eucharitidae + Perlilampidae is also biologically interesting. Although not sampled in 

this analysis, morphological evidence for Chrysolampinae (classified in either 

Perilampidae or Eucharitidae) supports its placement as sister-group to Perilampidae + 

Eucharitidae (Heraty and Darling 1984), and it would likely be derived in this clade 

relative to Eutrichosomatinae.  Both Chrysolampinae and Eutrichosomatinae are primary 

parasitoids of Coleoptera in flowering plants (Boucek 1974, Darling and Miller 1991, 

Darling 1997).  As both Eucharitidae and Perilampidae lay their planidiaform larvae in 

flower heads, this suggests that their anscestor may have provided an environment for the 

evolution of a planidiaform larva.  Future studies of the Eucharitidae + Perlilampidae 

clade should include Eutrichosomatinae as an outgroup. 
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Table 1.  Taxa sampled in this study, and their higher classification within Hymenoptera. 
 
Higher Taxon Genus 
Ceraphronoidea  
    Ceraphronidae Genus indet. 
Chalcidoidea  
    Chalcididae  
        Dirhinae Dirhinus sp. 
        Haltichellinae Hockeria sp. 
    Encyrtidae Encarsia sp. 
    Eucharitidae Kapala sp. 
    Eulophidae Tetrastichus sp. 
    Eurytomidae Heimbra opaca 
    Mymaridae Gonatocerus sp. 
    Perilampidae Steffanolampus 

sp. 
    Pteromalidae  
        Asaphinae Enoggera sp. 
        Cerocephalinae Neocalosoter sp. 
 Theocolax sp. 
        Cleonyminae  
            Chalcedectini Chalcedectus sp. 
            Cleonymini Cleonymus sp. 
            Lyiscini Epistenia sp. 
 Thaumasura sp. 
        Coelycobinae Ormyromorpha 

sp. 
        Colotrechninae  
            Colotrechnini Colotrechnus sp. 
            
Hetreulophini 

Hetreulophus sp. 

         Diparinae     Australolaelaps 
sp. 

 Neapterolelaps sp.
 Alloterra sp. 
 Dipara sp. 
 Lelaps sp. 
 Parurios sp. 
        Eunotinae  
            Eunotini Eunotus sp. 
 Scutellista sp. 
            Moranilini Moranila sp. 
 Ophelosia sp. 
  
  
  

Higher Taxon Genus 
        Eutrichosoma- 
            tinae 

Eutrichosoma sp. 

        Herbertiinae Herbertia sp. 
        
Miscogasterinae 

Plutothrix sp. 

 Polstonia sp. 
        Ormocerinae Hemadas sp. 
         Semiotellus sp. 
        Pireninae Gastrancistrus  

sp. 
        Pteromalinae Brachycaudonia 

sp. 
 Psilocera sp. 
        Spalangiinae Spalangia 

cameroni 
    Torymidae Torymus sp. 
Platygastroidea  
    Platygasteridae Genus indet. 
    Scelionidae Genus indet. 
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Table 2.  Primers used in this study.  F denotes a forward primer, RC denotes the reverse 
complement sequence of a reverse primer.  Primers labeled with C are specific to 
Chalcidoidea, while the primer labeled with M specific to Gonatocerus (Mymaridae). 
 
Gene Primer Name Primer Sequence (5’ to 3’) 
CAD 46F GTN GTN TTY CAR CAN GGN ATG GT 
 61CF GAY CCN TCN TAY TGY GAR CAR AT 
 295F TAY GGY AAY MGN GGN CAY AA 
 309RC CAR AAY CAY GGN TTY GCN GTN GA 
 309CF CAR AAY CAY GGN TTY GCN ATH GA 
 350RC CAR TTY CAY CCN GAR CAY 
 606RC TGG AAR GAR RTN GAR TAY GAR GTN GT 
 673RC GAR TGY AAY RTN CAR TAY GC 
DDC 1.6F TTY CAY GCN TAY TTY CC 
 1.7F GCH TGY ATY GGN TTY WCN TGG AT 
 1.9F ATG HTN GAY TGG YTV GGY CAR ATG 
 1.9CF ATG YTN GAY TGG YTN GGN AAR ATG 
 3.3RC TTY AAY TTY AAY CCN CAY AAR TGG 
 4RC GAY TAY MGD CAY TGG CAR ATH CC 
Enolase 23F AAY CCN ACN GTN GAR GT 
 167F GCN ATG CAR GAR TTY ATG 
 241RC ATH GGN ATG GAY GTN GC 
 344RC AAR GTN AAY CAR ATH GG 
 406RC GCN AAR TAY AAY CAR 
 407RC AAR TAY AAY CAR HTN YTN CGN ATH GAR GA 
PEPCK 155F CGN TTC CCN GGN TGY ATG 
 159CF TGY ATG AAR GGN CGN ACN 
 291F GAR GGN TGG YTN GCN GAR CA 
 292F GAR GGN TGG YTN GCN GAR CAY ATG 
 344F/335RC GAY GAY ATH GCN TGG ATG ARR TT 
 344CF GAY GAY ATH GCN TGG ATG CGN TT 
 351RC ATH AAY CCN GAR AAY GGN TTY TTY GG 
 501RC ATG CAY GAY CCN TTY GCN ATG 
 501CRC ATG AAY GAY CCN TTY GCN ATG 
 501MRC CAY GAY CCN TTY GCA ATG  
 510RC TTY TTY GGN TAY AAY TTY GG 
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Table 3.  Base composition partitioned by gene and codon position.   P-values are listed 
for the χ2 test against a null hypothesis of base composition homogeneity across taxa. 
            
    
gene codon position A C G T χ2 p-value 
pepck nt1 0.30 0.20 0.35 0.15 1.00 
 nt2 0.26 0.26 0.22 0.26 1.00 
 nt3 0.16 0.37 0.27 0.20 <0.001* 
ddc nt1 0.24 0.19 0.37 0.20 1.00 
 nt2 0.31 0.22 0.19 0.28 1.00 
 nt3 0.28 0.22 0.20 0.30 <0.001* 
enolase nt1 0.32 0.15 0.38 0.15 1.00 
 nt2 0.34 0.25 0.14 0.27 1.00 
 nt3 0.19 0.31 0.20 0.30 <0.001* 
cad nt1 0.28 0.23 0.32 0.17 0.72 
 nt2 0.32 0.23 0.18 0.27 1.00 
 nt3 0.19 0.30 0.27 0.24 <0.001* 

   
 
 
 
Table 4.  P-values for pairwise comparisons of gene combinability using the ILD test.  
When all genes were included, the null hypothesis of homogeneity was rejected at the 
0.05 level (p = 0.02). 
 
 DDC Enolase CAD 
PEPCK 0.08 0.03* 0.28 
DDC - 0.05* 0.07 
Enolase - - 0.02* 
 
 
 
Table 5.  P-values from the A.U. test of non-monophyly.  Taxonomic groups which did 
not appear monophyletic in the ML tree were subjected to the test. 
 
taxonomic group p-value 
Eunotinae 0.412 
Pteromalinae 0.376 
Diparinae 0.225 
Cleonyminae 0.143 
Miscogasterinae 0.017 
Colotrechninae 2x10-4 
Pteromalidae 7x10-15 
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Figure 1.  Preferred phylogenetic hypothesis.  Maximum parsimony tree based on 
successive approximations of the data set excluding Bohpa but including bristle 
positional characters.  Names in “()” refer to the classification of the taxon prior to this 
study.  Names followed by “*” refer to units in the phylogenetic analysis, and do not 
represent valid names. 
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Figure 2.  Maximum parsimony tree based on successive approximations of the data set 
excluding both Bohpa and bristle positional characters.  Names in “()” refer to the 
classification of the taxon prior to this study.  Names followed by “*” refer to units in the 
phylogenetic analysis, and do not represent valid names. 
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Figure 3.  Maximum parsimony tree based on successive approximations of the data set 
including Bohpa but excluding bristle positional characters.  Names in “()” refer to the 
classification of the taxon prior to this study.  Names followed by “*” refer to units in the 
phylogenetic analysis, and do not represent valid names. 
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Figure 4.  Maximum parsimony tree based on successive approximations of the data set 
including both Bohpa and bristle positional characters.  Names in “()” refer to the 
classification of the taxon prior to this study.  Names followed by “*” refer to units in the 
phylogenetic analysis, and do not represent valid names. 
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Figures 5-10.  Conophorisca grisselli: 5, antenna; 6, clava; 7, head (frontal view); 8, 
head (ventro-latero-frontal view); 9, mesosoma (dorso-lateral view); 10, mesosoma - 
pronotum (dorso-lateral view). 
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Figures 11-16.  Conophorisca grisselli: 11, mesosoma (lateral view); 12, metasoma 
(lateral view); 13, cercus.  Lelaps sp. A: 14, antenna; 15, clava; 16, clypeus. 
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Figures 17-22.  Lelaps sp. A: 17, cercus.  Lelaps sp. B: 18, head (dorsal view); 19, 
mesosoma (dorsal view); 20, mesosoma (lateral view); 21, metacoxa.  Moranila sp.: 22, 
mesosoma (dorsal view). 
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Figures 23-28.  Moranila sp.: 23, metacoxa (lateral view); 24, cercus.  Myrmicolelaps 
aurantius: 25, antenna; 26, anellus; 27, head (frontal view); 28,  mesosoma (lateral view). 
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Figures 29-34.  Myrmicolelaps aurantius: 29, scutum + scutellum (dorsal view); 30, 
scutellum (dorso-lateral view); 31, propodeal foramen + metasternum (posterior view); 
32, metaleg; 33, metatibial spur; 34, metasoma (lateral view). 



 

 215 
 

 

 
 
 
 
 
 
 
Figures 35- 40.  Myrmicolelaps aurantius: 35, cercus.  Neapterolelaps sp.: 36, head 
(frontal view); 37, mesosoma (lateral view); 38, mesosoma (dorso-posterior view); 39, 
metacoxa (lateral view); 40, metatibial spur. 
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Figures 41-46.  Neapterolelaps sp.: 41, cercus.  Pseudoceraphron burwelli: 42, antenna; 
43, clava; 44, head (frontal view); 45, clypeus; 46, mesosoma including coxae (lateral 
view). 
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Figures 47-52.  Pseudoceraphron burwelli: 47, mesosoma excluding coxae (lateral 
view); 48, mesosoma (dorsal view); 49, propodeum + metasternum (posterior view).  
Neapterolelaps viridescens: 50, mesosoma (dorso-lateral view).  Neapterolelaps mitteri: 
51, mesosoma (dorso-lateral view).  Pondia sp.: 52, scrobe. 
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Figures 53-55.  Pondia sp.: 53, mesosoma (dorsal view).  Pyramidophoriella sp.: 54, 
mesosoma (lateral view); 55, mesosoma (dorso-lateral view).
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Figures 56-61.  Lateral habitus views: 56, Neapterolelaps viridescens; 57, N. mitteri; 58, 
Cerodipara sabensis; 59, Chimaerolelaps villosa; 60, Conophorisca littoriticus; 61, C. n. 
grisselli.  
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Figures 62-67.  Lateral habitus views: 62, Dozodipara insularis; 63, Myrmicolelaps  
iridius 64, M. aurantius; 65, Lelaps noorti; 66, Nosodipara ferrana; 67, 
Pseudoceraphron regieri. 
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Figures 68-69.  Lateral habitus views: 68, Pseudoceraphron fijensis; 69, P. burwelli. 
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Figure 70.  Maximum likelihood tree based on a GTR+Γ+I model including all 
nucleotides.  Bootstrap percentages >50 are shown above the corresponding branches.  
Higher classification is listed to the right of the taxa.  Names ending in –dae represent 
family names of non-pteromalid taxa.  Names ending in –nae represent non-pteromalid 
subfamily names. 
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Figure 71.  Maximum likelihood tree based on a GTR+Γ+I model excluding nt3.  
Bootstrap percentages >50 are shown above the corresponding branches.  Branches 
marked with an “*” were also recovered in the all-nts analysis. 
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APPENDIX I 

 

Character coding for morphological phylogenetic analysis.  Numbers in “()” denote 

polymorphism.  Numbers in “{}” denote ambiguity.  Names in “()” refer to the 

classification of the taxon prior to this study.  Names followed by “*” refer to units in the 

phylogenetic analysis, and do not represent valid names.  

 

Lelaps noorti  100001001000000001000????????030110000010100000100000 

00000??000?010111????00 

Cerodipara sabensis 200000000010100000001000?0010030110002310110000000100 

00100??000?010111????01 

Boeria   300000000001100000001110?1110130110002000100000000100 

00100??000?0101111???01 

Spalangiopelta    00110000000010200000(01)(02)(01)(02)?(03)(01)(02)004000003 

0000000000100000000001100000001101(01)1111 

Calolelaps                   110{12}00001000101000000????????0400000000000000001000 

10000000110100000000???00 

Mesolelaps                  100000001000100000000????????0400000000100000001000?00 

00000100000100000???00 

Neolelaps                    100100000000101010000????????0400000000000000001000100 

00000100000000000???00 

Stictolelaps                 100{12}000010001010(12)0000????????04000000000000000010 



 

 225 
 

 

0010000000100100000000???00 

Ormyromorpha        000100001010112020201000?0110011??00000000000001000000 

10000000000001000??100 

Lelapsomorpha        200100000010112020201201?3210011??000000000?0001000000 

(01)0000000000001000??100 

Eunotus                      010210001(01)01(01)(01)0120000????????040000000010001000 

100000001000000001100000??000 

Moranila                     010210001(01)00110120001012?21100400000000102000001000 

00000000000001110000??000 

Neapterolelaps (Australolaelaps) 010111000001000010000????????0400000000101 

0000010000001110110000011111111000 

Neapterolelaps          011111000001100000000????????0202?00112101000001000000 

1110110011011111112000 

Neapterolelaps viridescens  010111000001100020000????????0400000000101000001 

0000001110??00010111111??000 

Neapterolelaps mitteri         010111000001100020000????????0400000000101000001 

0000001110??00010111111??000 

Liepara                      20020000000010002000120111110040000000000000000100000 

001000000000101100??000 

Pseudoceraphron (Dipareta) albifrons    010{12}0000010020402?011000?1000020 

2?004331113011001100010001??000?1101111???00 

Pseudoceraphron (Malinka) nana       01020000110020402?011000?10110202?1 

04311113011001100010001??000?1101111???00 
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Pseudoceraphron pulex         01021000110020402?010????????0400000431111301100 

1100010001??000?1101111???00 

Pseudoceraphron (Dipareta) regieri  010{12}1000010020402?010????????0202 

?00413111301100111001?001??000?1101111???00 

Pseudoceraphron burwelli     01021000110020402?011000?1010040000043111130110 

01100010001??000?1101111???00 

Pseudoceraphron (Malinka) fijensis   01021000110020402?011000?00110202?10 

4311113011001100010001??000?1101111???00 

Nosodipara monteithorum     001110000000203020010????????1202?002231110001001 

110010000??000?0101111???00 

Nosodipara ferrana 000110000000203021011100?00001202?00213111000100111001 

0000??000?0101111???00 

Pondia                       300310000000100020001120?11002202?00321001200000000000 

0100??1020010111122000 

Pyramidophoriella     300{12}00000000100000000????????002???022011120000010?? 

000100??000?000111????00 

Conodipara scutellata        200001001001000010100????????2301100213111200000 

0011010100??12000101110??000 

Conophorisca anullata        20000101000?0000?0?00????????2301100221111200020 

001?010100??11000101110??000 

Myrmicolelaps (Dolichodipara) scutellata  200001000001000010200????????2301101 

2211212000200011110100??11000101110??000 

Conophorisca littoriticus       200001010000000000100????????2301100221111200020 



 

 227 
 

 

0011010100??11000101110??000 

Conophorisca grisselli           300001011000000000200????????2301100221111200020 

0011010100??11000101110??000 

Myrmicolelaps (Dolichodipara) iridius        20000100?001000010200????????2301101 

2211212000200011110100??11000101110??000 

Myrmicolelaps paradoxus      200010001001000010200????????3601000521111000020 

0011110100??11000101110??000 

Myrmicolelaps aurantius      2000000000010000{01}0200????????1701301521111400 

0200011110100??11000101110??000 

Dipara (Grahamisia) 300??10000001000{01}0001101011001202?10000001000001000 

1000100110010010111122000 

Dipara sensu stricto*        3000(01)10000001000{01}00011(01)10111013011000000 

01(04)000010001000100110010010111122000 

Dipara (Australian Dipara*)  301{01}?100000(01)10(01)020001111111100(46)0(01)00 

00000010100010000000100110010010111122000 

Dipara (Parurios)     3000?1000000100000001111011100501200000001020001000000 

0100110010010111100000 

Dipara turneri           3011111000001000{01}0001100?11000501200000001000001000 

0000100??001?0101111???00 

Dipara (Fiji Dip/Par*)       300{01}111000001000{01}0001120?11000511200420111 

4000010000000100??001?0101111???00 

Dipara (Indonesian Pondia*) 300{12}?1000000100000001101011002501200300001000 

001000(01)000100??0010010111122000 
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Dipara (Micro Dipara*)       300{01}?00000001000200011010111006010(01)0000001 

000001000000010011001?0101111???00 

Netomocera    3000?10000001100(012)(01)001111?11100400000000001000001 

000(01)000100110000010111110000 

Lelaps                       100001000000100011001111?11100(46)0(01)0000000010(01)000 

1000(01)0001001100(01)0010111111000 

Lelaps (Spalangiolelaps)       100001000000100011001111?11100301100000101000001 

0001000100110000010111111000 

Dipara (Alloterra)    300{01}00001000102020000????????1601000311101400001000 

1010100110010010111100000 

Dipara (Pseudipara) 200200000001101020001101011100601000000101000001000000 

0100111010010111122000 

Cea                          000{01}01001000002000000????????0400000000000000001000 

10000001100000001000??111 

Bohpa                        000101000000002020000????????0400000643111100000000000 

0000??000?0001101???01 

Dozodipara                200{01}01010000100000000????????03011007001011?0000000 

(01)010100??000?010111????00 

Chimaerolelaps         3000010000001000{01}?001301112100400000000001010001000 

(01)000100111010010111111000 
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