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Airfield design is challenging for several reasons. It is limited by various constraints, 

such as airport usability, airspace clearance standards and geometric specifications. In addition, 

many factors must be considered, such as environmental issues, construction cost, obstructions, 

winds, runway exits and airport accessibility. The conventional runway design process relies on 

trial-and-error. It is laborious and usually suboptimal. Thus a mathematical model can help 

reduce the design time and improve the design quality. 

In this thesis, three models are developed for runway design optimization. The first model 

identifies feasible runway orientations based on crosswind limitations, the second optimizes 

runway location and orientation, and the third optimizes runway longitudinal-grade design. 

Various constraints and cost components are considered in the models. Genetic algorithms (GAs) 

are adopted in order to solve this problem, while a “Feasible Gates” method is used to reduce the 

search space and enhance computation efficiency. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and Motivation 

The design of an airport runway that only aims to satisfy the most basic requirements is quite 

challenging, and optimizing the design is even more difficult. There are various factors 

associated with building an airport runway, such as environmental impacts, construction cost, 

existing obstructions, winds, runway exits, airport accessibility, land use and auxiliary areas for 

facility construction. In addition, geometric specifications, airspace clearance standards and 

environmental issues are all essential constraints to the project.  

Conventional runway design is conducted with a “trial-and-error” process (Ashford et al. 2011). 

Engineers attempt different combinations of runway location, orientation and longitudinal-grade 

design, test the feasibility of geometry and crosswind components, and evaluate total cost with 

the considerations of the features of runway. This manual process is generally laborious and 

complicated. Moreover, it is difficult to find the optimal solution. Therefore, developing a 

mathematical model and algorithm is an efficient way to reduce design time and explore better 

solutions. 

 Previous studies on runway orientation optimization mainly focused on critical crosswind 

component, without a comprehensive consideration of runway construction costs. On the other 

hand, no previous study on the optimization of runway longitudinal-grade design has been found, 

but some methods and models for highway and railroad alignment design are somewhat 

analogous and may be partly transferable to runways. 
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The runway design problem is divided here into two steps. The first step focuses on runway 

location and orientation while the second step focuses on runway longitudinal-grade design 

optimization. This method can reduce the number of decision variables in each problem and 

improve overall computation efficiency.  

In this thesis, three new models are proposed. The first model identifies the region of feasible 

runway orientations, the second model optimizes the runway location and orientation and the 

third model optimizes runway longitudinal-grade design. 

1.2 Problem Statement 

Generally, statewide-integrated airport system planning first identifies the area of new airports, 

and then the specific design of an airport is prepared in airport master planning. The construction 

of runways is very important for airport planning, since it affects the entire layout of airport 

facilities, such as terminal configuration (Bandara and Wirasinghe 1992), taxiway, parking lot 

(Jia 2005) and airport access. 

In runway design optimization, three important basic factors are runway location, orientation and 

longitudinal grade. The goal is to find a solution that satisfies numerous constraints using 

minimum construction cost. The runway design constraints are shown in the table 1.1. 
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Table 1.1 Runway design constraints 

Name Constraint 

Location 

1. Airspace clearance standards. 

2. Area of interest. 

Orientation 

1. Airspace clearance standards. 

2. Usability factor of the airport. 

Longitudinal-grade design 

1. Airspace clearance standards. 

2. Runway longitudinal-grade design specifications. 

 

Not all factors affecting runway design are considered in this thesis. For example, noise is a 

major factor, especially when the area of interest is near residential zones (Espey et al. 2000 and 

Prats et al. 2011). In addition, airport accessibility, cost of land and interference with other 

airports or sensitive areas are some other important factors to be considered in determining 

runway location and orientation. These factors should be considered in the future studies. 

The standards of FAA approach categories C and D are used in this thesis as an example. The 

considered requirements and cost components are described as below. 

Area of Interest 

As stated early in this section, statewide integrated airport system planning specifies a general 

area for future airport building. Thus, the search area should be limited in this designated area. 
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 Airspace Clearance Standards 

Airports must be free from obstructions that could be potentially hazardous to landings and 

takeoffs. Airspace clearance standards define several imaginary surfaces surrounding each 

runway. Any natural or artificial objects penetrating these surfaces are considered as obstacles 

for air navigation.  In this thesis, the layout of imaginary surfaces is based on Federal Aviation 

Administration (FAA) regulations in FAR Part 77 (1975). 

The imaginary surfaces include primary surface, approach surface, horizontal surface, transition 

surface and conical surface, as shown in Figure 1.1. Under these constraints, the runway must be 

located precisely in a site without any imaginary surfaces penetration, or all obstructions must be 

removed.  

 

          

(a)                                                                   (b) 
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(c)                                                                 (d) 

Figure 1.1 Imaginary surfaces 

(a) Approach and transition surfaces; (b) Primary, horizontal and conical surfaces;   

(c) Combined imaginary surfaces; (d) Aerial view of imaginary surfaces 

Usability Factor of the Airport 

Due to the advantage of headwind and the disadvantage of crosswind for both takeoffs and 

landings, it is desirable to orient main runways along the direction of the prevailing winds. FAA 

and International Civil Aviation Organization (ICAO) have developed a series of standards for 

maximum permissible crosswind components. When the crosswind component exceeds the 

maximum allowable value, the runway should not be used. In addition, the ICAP (Aerodromes 

2009) and FAA (FAA 2012), require that the usability of an airport should not be less than 95%.  

According to Ashford (2011), the usability factor is defined as the percentage of time during 

which the use of the runway is not restricted because of an excessive crosswind component. Thus 

the crosswind component should be under the maximum value at least 95% of the time. If a 
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single runway orientation fails to meet the requirement, more runway orientations must be 

provided. However, only a single-runway situation is considered in this thesis.  

Runway longitudinal-grade design specifications 

Runways are relatively flat, but an absolutely level runway may result in excessive earthwork 

costs. According to the ICAO and the FAA, runway longitudinal-grade design criteria include 

maximum longitudinal grade, maximum grade for first and last quarter, maximum effective 

grade, maximum grade change, distance between points of intersection, and length of vertical 

curve. In addition, FAA (2012) specifies the runway line-of-sight standards. For runways 

without full parallel taxiways, any point 5 feet above the runway centerline must be mutually 

visible with any other point 5 feet above the runway centerline. 

FAA (2012) also requires the runway safety area (RSA) to be graded for reducing the risk of 

damage to aircraft in the event of an undershoot, overshoot, or excursion from the runway. The 

part of the RSA between the runway ends must be longitudinally parallel to the runway 

centerline. For the first 200    of the runway safety area beyond the runway ends, the slope is 

downward from the ends and not steeper than 3%.  For the remainder of the safety area, the 

longitudinal slope should be such that no part of the runway safety area penetrates the approach 

surface. The maximum negative grade is 5% for that part of the safety area. 

Runway Cross Section 

Except for runway, shoulders and RSA should also be graded. The cross-section Template is 

shown as in Figure 1.2. For approach categories C and D of FAA, the cross-section slope of 

runway is between 1% and 1.5%, and for RSA it is between 1.5% and 3.0%. Since shoulder 
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width is relatively small (10 ft to 25 ft), the grade range for shoulders is assumed to be the same 

as that for runways. 

 

Figure 1.2 Transverse-grade Limitations for Approach Categories C and D (modified from 

Ashford et al. 2011) 

Cost Components 

Earthwork cost and earthwork transportation cost are embedded in the models. Earthwork cost is 

defined as the cost of embankment and excavation. It includes the earthwork generated from 

grading runway, runway safety area, the areas taxiway and facilities construction and removing 

natural obstructions. Earthwork transportation cost represents the cost of hauling earth from one 

site to another. 

For runway longitudinal-grade design optimization model, pavement cost is also included. For 

runway location and orientation optimization model, facility connection cost is considered. The 

facility connection cost represents the taxiing delay cost of aircraft and taxiway construction 

cost.  
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1.3 Research Objective and Scope 

The runway optimization problem is divided into two parts in this thesis. The first part deals with 

runway location and orientation optimization, while the second focuses on runway longitudinal-

grade design optimization. The goals of these two problems are stated as follows. 

1. Different orientation and location of runway result in different location for clearance area 

and the areas for taxiway and facility construction. The earthwork is highly sensitive to 

the runway location and orientation. The objective is to find the optimal solution that 

minimizes the construction cost.  

2. Runway length varies linearly with the gradient and pavement cost is proportional to 

runway length. The clearance area increases when runway length increases. Therefore, 

optimized longitudinal-grade design that follows the ground profile results in less 

earthwork cost for the runway and runway safety area, while a longer runway means 

more pavement cost, and probably more earthwork cost from removing obstructions. The 

goal is to achieve a minimum total cost based on these trade-offs. 

Thus, the problem of this thesis is defined as: 

Given an area of interest, optimize runway orientation, location and longitudinal-grade design. 

In order to achieve this objective, several goals must be pursued: 

1) Propose a model for identifying the region of feasible runway orientation. 

2) Develop a model for optimizing the location and orientation. 

3) Develop a model for optimizing the runway longitudinal-grade design. 

4) Find the feasible gates of runway longitudinal-grade design in order to improve the 

computation efficiency of the proposed genetic algorithm. 
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The design of an airport runway is a result of compromises among many factors and costs, such 

as land use, noise, obstruction clearance cost, flight path and construction cost. However, only 

the important and sensitive factors are considered in developing a reasonable mathematical 

model.  

1.4 Research Approach 

Each chapter of this thesis has different approaches. 

1) Optimization of runway location and orientation 

First, the Monte Carlo method is applied to determine the region of feasible runway 

orientations. Then a model considering construction costs is developed for 

comprehensively optimizing runway location and orientation. Finally genetic algorithm 

(GA), that only includes simple crossover and mutation operators, is applied to optimize 

the location and orientation.  

2) Optimization of runway longitudinal-grade design 

An optimization model is developed that considers earthwork cost and transportation 

cost. A GA with specially designed operators is developed for searching the optimal 

solution. The “feasible gate” approach is applied here to enhance the computation 

efficiency.  
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CHAPTER 2 

LITERATURE REVIEW 

The literature review for this thesis covers two main aspects. The first part reviews the scopes 

and methods of runway location and orientation optimization. The second part reviews the 

optimization of runway longitudinal-grade design. Since no previous study about the second part 

has been found, the literature review focuses on some pertinent highway and railroad alignment 

optimization models, and discusses how similar ideas can be applied to runways. 

2.1 Optimization of Runway Location and Orientation 

In aviation, crosswind is the component of prevailing wind that is perpendicular to runway center 

line. With the increment of crosswind, the difficulty of landings and takeoffs increases. 

Especially in inclement weather, runways are affected by standing water and snow, so the 

maximum acceptable crosswind decreases. Since crosswinds are hazardous to aviation safety, the 

airport is forbidden to be used when the speed of crosswind is higher than the allowable value.  

Thus, orientation of runway should be designed to ensure aircraft land or takeoff into the wind to 

improve the usability of an airport.  According to the standards of FAA and ICAO, runway 

orientation should be well designed so that the usability factor of the airport is not less than 95%.  

The conventional method for determining runway orientation is the wind rose method (Ashford 

and Wright 1998). This method defines wind directions and speeds in a polar coordinate system. 

The angle denotes the direction of wind, and the radius denotes the wind speed. Circles and 

radial lines divide the wind rose into many cells. The number in each cell is the probability for 

wind to blow in that particular range of directions and speeds, as shown in Figure 2.1. A template 
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is placed on the wind rose. The width of template is the allowable crosswind component. The 

usability is calculated by the coverage of the template. The wind rose method is based on a 

spreadsheet. Manual calculation is time-consuming. Besides, it is inaccurate for the cells that are 

only partially covered by template.  

A computer model called WNDROS was developed by Mousa (2000) to automate the process of 

wind rose analysis. This model adopted the geometric method to calculate the adjustment factor 

of cells that are partially covered, and acquires the optimal solution through an exhaustive 

search. In addition, Mousa (2001) also proposed a similar method for two-runway orientation 

optimization. The WNDROS model can precisely calculate the usability through the geometry. 

Nevertheless, very high accuracy seems meaningless in this problem, since the wind data is quite 

rough. Moreover, the geometric method was very complicated since many cases must be 

considered. A GIS-based wind rose method was presented by Jia et al. (2005). This model took 

advantage of ArcGIS to avoid the intensive geometric computation. However, it cannot handle 

multiple runway systems. Chang (2013) also presented a model for optimizing multiple runway 

orientations. This model can find not only the optimal solution, but also the feasible region of 

runway orientation. Thus it was useful for developing comprehensive optimization models in the 

future studies. Moreover, this model adopted an approximation method to calculate the 

adjustment factors for partially covered sectors. It reduced the computation time and avoids 

geometric calculation. However, in comparison with other models, this approximation method 

impaired the accuracy of the usability factor. Oktal and Yildirim (2013) presented a new model 

for optimizing the runway orientation. They tested every observation of wind data to determine if 

it is within the template. The usability was calculated by the percentage of observations that meet 

the crosswind requirements. This method avoided the calculation of partially covered sectors.  
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Figure 2.1 Wind Rose and Template (Ashford et al. 2011) 

All the studies mentioned above focused on maximizing airport usability factor. However, as 

Chang (2013) stated, “the actual runway orientation is the result of compromises between the 

airport usability and additional factors”. A comprehensive model is desirable for practical use.  

In this thesis, the Monte Carlo Method is adopted for calculating the usability factors of runway 

systems. As discussed above, the biggest difficulty with the wind rose method is the computation 

of the adjustment factors for partially covered cells. The proposed modified Monte Carlo Method 

avoids this step and efficiently and accurately calculates usability factors. The optimal 
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orientation can be identified through an exhaustive search. Besides, a model is developed for 

comprehensively optimizing runway location and orientation. 

2.3 Optimization of Runway Longitudinal-Grade Design 

Similarly to highway alignment design, the conventional method for runway longitudinal-grade 

design is laborious and it could hardly achieve a near-optimal design. The runway longitudinal-

grade design (RLD) is analogous to that for highway and road transit. Although some factors are 

different, the formulation of highway vertical alignment and road transit alignment could be 

applied to runway problems with additional considerations. There are several existing 

optimization methods for HVA.  

Easa (1988a) formulated an enumeration model for acquiring minimum earthwork embankment, 

excavation and allocation cost of highway construction while satisfying the geometric 

constraints. In another paper Easa (1988b) added more detailed considerations of the cost of 

borrow pit and landfill in the model. The first stage in Easa’s model is the selection of highway 

vertical alignment, while the second stage is for earthwork allocation optimization. The model 

integrated these two stages together. However, one disadvantage of Easa’s proposed model was 

that it was based on an enumeration method, so it can find the global optimal solution only after 

trying all combinations, and the solutions are discrete. 

Linear programming models were also adopted for optimizing highway alignment, such as 

Moreb et al. (1996). With some well-developed algorithms, such simplex, this method can 

guarantee the global optimal solution and comparatively short computation time. However, this 

method cannot cope with non-linear cost functions and constraints, which are necessary in 
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runway longitudinal-grade design. Besides, it is not clear that runway alignment can be specified 

well enough by a polynomial function (Jong 1998). 

Dynamic programming (Goh, Chew and Fwa 1988, Puy Huarte 1973 and Murchland 1973) is 

another method in the highway alignment optimization. In this method, each station is treated as 

a stage of in a dynamic model. Each sub-problem is iteratively optimized in these successive 

phases. This method has three disadvantages. First, the search space is not continuous. Second, 

the vertical alignments generated from dynamic programming are usually piecewise segments 

(Jong 1998). Thus, it is too rough to be used without a refinement by engineers. Third, the 

effectiveness of dynamic programming model is low, so the quality of solution is limited by 

computer capacity. 

Heuristic algorithms are also adopted for solving highway alignment optimization problems. The 

series of papers by Jong, Jha and Schonfeld (2000), Jong and Schonfeld (2003), Jha and 

Schonfeld (2004), provided an evolutionary formulation for optimizing three-dimension 

alignment simultaneously. They showed that a genetic algorithm is an efficient way to search for 

an optimized solution for highway alignment problem because it was comprehensive and the 

search space could be continuous. Jong and Schonfeld (2003) also verified the effectiveness of 

their proposed model and algorithms with a statistical test. Jong, Jha and Schonfeld (2000) and 

Jha and Schonfeld (2004) also adopted GIS into their model, which made the model more 

practical. Kang and Schonfeld (2007) proposed a method called feasible gates to enhance the 

effectiveness of GA. The feasible gate method improves efficiency by identifying the feasible 

region of each variable in advance, so that each offspring in GA is guaranteed to be feasible. 

Kang (2009) presented a prescreening and repairing method for improving the efficiency of GAs. 

This method identified and repaired infeasible solutions whose violations are small. However, 
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infeasible alignments whose violations of constraint are too severe were discarded before explicit 

evaluation. Fwa (2002) chose GAs as the optimization technique for highway vertical alignment 

since it did not require information on differentiability, convexity, or other auxiliary properties. 

In addition, Fwa verified the validity of GA in a simple example, by comparing the solution 

calculated by GA to the one obtained from dynamic programming. 

Kim and Schonfeld (1997) first analyzed the benefit of applying dipped vertical alignment 

between rail transit stations. They used a numerical example to demonstrate that dipped track 

profiles can significantly reduce propulsive energy, braking energy, and travel times. Kim and 

Schonfeld (2012) used a deterministic simulation model to verify the benefit of dipped rail transit 

alignment. Jha et al. (2007) proposed a comprehensive model integrated GAs and GIS system for 

optimizing three-dimensional rail transit route between two stations. This study was based on 

their previous highway vertical optimization research, but with different design criteria and cost 

components. Lai and Schonfeld (2010) presented a practical rail transit optimization 

methodology that can track alignment connecting several stations. This model can 

comprehensively optimize rail transit alignment considering various cost components. Lai and 

Schonfeld (2012) extended their model to analyze vehicle dynamics through a simulation process.  

The highway alignment optimization problem has been extensively studied over the past decades. 

Some of these studies were successfully applied to solve rail transit alignment optimization 

problems. The airport runway vertical alignment problem is analogous to vertical highway 

alignment problem. This study utilizes and modifies existing methodologies and genetic 

algorithms of highway alignment optimization for the runway vertical alignment optimization 

problem.  
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CHAPTER 3 

OPTIMIZATION OF RUNWAY LOCATION AND 

ORIENTATION 

The search region of an optimization of runway location and orientation is limited by two 

constraints. The location must be bounded in the area of interest. The constraint for runway 

orientation is that the usability of the airport must be no less than 95%. In this chapter, the Monte 

Carlo method is applied to determine the feasible region of runway orientation based on standard 

wind data. With the feasible region of location and orientation, a comprehensive model is 

developed for minimizing the runway construction cost. 

3.1 Monte Carlo Method 

The Monte Carlo method is a probabilistic model for calculating approximate solutions for 

problems that are difficult to solve by other explicit methods. It is widely used in optimization 

and numerical integration problems. 

Calculating the area of an irregular shape is a very basic application of the Monte Carlo method. 

There are generally several steps to follow. First, define a regular domain which contains the 

irregular area. Second, generate random points within the domain. Third, count the number of 

points in the irregular area and out of it. Fourth, determine the ratio of two counts.  Fifth, the area 

of the irregular shape is the product of the ratio and the regular area. 
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Figure 3.1 Using the Monte Carlo Method to Compute the Area of a Semicircle 

As shown in Figure 3.1, to calculate the area of a circle, we draw a larger square that contains the 

circle. Then, we generate a certain number of random points in the whole domain. Let   denote 

the number of points located in the circle,   denote the total number of random points, and   

denote the area of the square. Then the area of the circle is: 

   
 

 
                                                            (3-1) 

Note that the points in this example are uniformly distributed. However, in other problems 

random points may follow other probabilistic distributions. As in the wind rose method, 

locations of points are also related to wind data. The details will be presented in the next section. 

3.2 Model of Wind Rose 

In the models of previous studies, the wind rose is built in the Cartesian coordinate system. 

However, due to the feature of wind rose, it would be easier to build it in the polar coordinate 

system. Angle   is denoted as the direction of wind, and radius   is denoted as the wind speed.   

In order to calculate the feasible region of orientation, five steps should be followed. 
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Step 1: Set up the boundary for each cell.  

As shown in Figure 3.1, angle   denotes the direction of wind, and radius   denotes the wind 

speed. Thus, cell     is the region within boundary  (       ) and (       ). Note that, for cells 

connected to the origin, the boundary of wind speed is (    ). 

Step 2: Place random points. 

As shown in Figure 3.1, each cell has a percentage number. They represent the probability for 

wind blowing within those ranges of direction and speed. Use     to denote the probability of 

cell    . When randomly placing the points, we take the probability into consideration. Let     be 

the possibility that points will be located within one particular cell. Thus, inside the cells, the 

distribution of random points is uniform; however, on the whole template, the distribution is 

weighted by the possibilities. With the increment of the number of points, the total number of 

points located in cell     is, 

    
   

 
                                                                (3-2) 

where   is the total number of points; 

   is the total percentage of wind, whose value is always 1. 

There will be     points randomly placed in the cell    , as shown in Figure 3.1. The angle of 

each point is a random value in the range of          , and the radius of each point is a random 

value in the range of          . Use      to denote a random value in a given range. We thus 

obtain equations (3) and (4). 

                                                                       (3-3) 
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                                                                        (3-4) 

 

Figure 3.1 Random Points on Wind Rose 

Therefore, with the definitions above, the usability of a runway is equal to the percentage of 

points that is covered by the template. 

Step 3: Count the points located in the template  

Since it is difficult to determine the position of a point relative to a line in the polar coordinate 

system, we convert all the points to the Cartesian coordinates system by using the following 

equations: 
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                                                               (3-5) 

  
 

    
                                                               (3-6) 

Assume the angle of the runway centerline is  , and         . Thus, 

                                                                   (3-7) 

in which, 

                                                                 (3-8) 

Two lines of the template intersect with the line that is perpendicular to the centerline and passes 

through the origin. The two intersection points’ coordinates are as follows: 

   
 

√(  
 

  )
  and      

 

√(  
 

  )
                                          (3-9) 

   √   
  

(  
 

  )
  and      √   

  

(  
 

  )
                              (3-10) 

For         , a point is in the template if the equation (3-11) is true. 

(    )       (    )                                        (3-11) 

For       , a point is in the template if the equation (3-12) is true. 

(    )       (    )                                        (3-12) 

For    , a point is in the template if the inequality (3-13) is true. 

                                                                  (3-13) 
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For            , a point is in the template if the equation (3-14) is true. 

                                                                  (3-14) 

Step 4: Calculate the usability 

Let   denote the number of points located in the template. The usability can be calculated using 

equation (3-15). 

  
 

 
                                                               (3-15) 

Step 5: Convert 

Note that angles in polar coordinate system start from east counterclockwise, but the 

conventional wind rose method measures from north clockwise. Convert the angles from  , 

which is measured from the east counterclockwise, into   , which is measured from the north 

clockwise. 

      (         )                                            (3-16) 

This equation is adopted from Mousa (2000). 

3.3 Optimization Model 

The optimization model is set to search for the runway location and orientation that generates 

minimum cost within the area of interest and the feasible region of orientation. Runway location 

and orientation optimization are related to various costs, but only earthwork cost, earthwork 

transportation cost and facility connection cost are considered in this model since these costs are 

highly sensitive to the change of runway location and orientation. A basic genetic algorithm with 

only simple crossover and mutation operators is applied here to search for the optimal solution. 
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 Methodology 

To build a runway, obstructions above the imaginary surfaces must be removed. The area of 

runway must be graded to satisfy the geometric specifications. The area around the runway must 

be graded for taxiway construction. This area will be referred to as “taxiway area” for 

convenience. Moreover, designers must also designate at least one area for facility construction, 

such as terminal, cargo warehouse and control tower. Thus the goal is to find the runway location 

and orientation with minimum earthwork cost for runway, taxiway and facility construction. In 

this model, several assumptions are made as follows: 

1. Obstructions above the imaginary surfaces must be removed. 

2. There must be a rectangular area surrounding runway, namely taxiway area. It includes 

runway area, runway safety area and the area for taxiway construction. The amount of 

taxiway area is predefined by designer, but the length and width could vary in a range.  

3. There must be at least one rectangular area near the runway for future facilities construction. 

The elevation difference between the areas for facility construction and runway should be in 

an allowable range. The shape of the areas for facility construction is variable, but the 

required amount of area is a given constant. 

4. Facility connection costs are assumed to increase linearly with the distances between the 

facilities and the runway. Longer distance between facilities and runway results in higher 

taxiway construction cost and aircraft taxiing delay cost. 

5. Taxiway area and the areas for facility construction must be graded to be nearly flat with 

some allowable gradient. 
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With these assumptions, there are three kinds of area, namely taxiway area, area for facility 

construction and clearance area. Clearance area is the region where imaginary surfaces stand. 

The treatments of earthwork for each kind of area are different, as summarized in table 3.1. 

Table 3.1 Treatments of Earthwork for Different Areas 

Name Treatment 

Taxiway area Grading to be nearly flat with some allowable gradient 

Areas for facility construction Grading to be nearly flat with some allowable gradient 

Clearance area 

Excavation is necessary to remove obstructions; 

Embankment is acceptable as long as it is under imaginary 

surfaces. 

 

Formulation 

Denote the taxiway area as area zero. Let the areas for facility construction as area        . Use 

(        )  to represent the 3-dimentional location of the starting point of the runway. The 

starting point is one of the ends of the runway. Let    to denote the orientation of runway. For 

each area of facility, we use (        ) to denote the 3-dimentional locations and    to denote 

the orientations. Let    be the gradient of area   for          . In addition, the length of area 

  is denoted as    for          . Consequently the cost function is defined as in equation (3-

17).  
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Total cost includes earthwork cost    , facility connection cost     and earthwork transportation 

cost   . The goal is to minimize total construction cost. The objective function is defined as in 

(3-18).  

The amount of earthwork embankment and excavation are calculated according to the ground 

profile and treatments in Table 3.1. Earthwork cost is assumed to vary linearly with the amount 

of earth to be cut and filled, as shown in equation (3-19). As defined in equation (3-20), the 

facility connection cost is related to distances between the runway and the facilities.   
  is the 

average Euclidean distance from the centroids of facility    to  runway starting and ending point. 

The unit of coefficient   is defined as             . In addition, for any given solution, 

earthwork transportation cost is relevant to the allocation plan. The earthwork transportation cost 

resulting from the optimal allocation plan will be adopted in the objective function. A linear 

program is applied to obtain the minimum transportation cost, and the details are discussed in the 

next section. Moreover,    is a penalty cost corresponding to the set of constraints (3-28) to (3-

32) whose details will be presented later. 

   (                                                     )           (3-17) 

        (         (  ))                                (3-18) 

                                                                                                                        (3-19) 

   ∑ (   
 ) 

                                                        (3-20) 

                   

Subject to: 
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                                                         (3-20) 

                                                         (3-21) 

    ̅         ̅                                          (3-22) 

                                                                   (3-23) 

  
       

                                                  (3-24) 

   
       

                                               (3-25) 

                                                         (3-26) 

where,    is the volume of earthwork for fill,      ; 

     is the volume of earthwork for cut,      ; 

     is the unit cost of embankment,              ; 

     is the unit cost of excavation,            ; 

    and    are the lower and upper bound of the area of interest on the y-axis; 

    and    are the lower and upper bound of the area of interest on the x-axis; 

             ̅ is the allowable elevation difference between runway and facilities; 

             and    are the lower and upper bound of the region of feasible runway orientation; 

      
  and   

 are the lower and upper bound of length of each area. 

  
  is the upper bound of gradient of each area; 
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    is the height of facility  ; 

    is the lowest height of imaginary surfaces at a particular location; 

   is the number of areas for facility construction. 

The set of constraints (3-20) and (3-21) defines the x-axis and y-axis bounds of the area of 

interest. There is no bound for    since the cost function can automatically force    to a 

reasonable value. The set of constraints (3-22) limits the elevation differences between facilities 

and runway to less than  ̅. Constraint (3-23) requires that the orientation of runway must be in 

the feasible region. The set of constraints (3-24) defines the upper and lower bound of the length 

of the areas for taxiway and facilities construction. Note that we define the width         , 

where    is the area. Thus the areas do not vary with the change of length. The set of constraints 

(3-25) limits the gradient of each area in a predefined range. The set of constraints (3-26) 

prevents facilities from penetrating the imaginary surfaces. 

In addition, the overlaps of taxiway area and areas for facility construction must be excluded. 

This constraint is hard to be explicitly defined since the search region of one area is related to all 

others. However, determining if there is any overlap is easy. Thus, a simple method is to add a 

penalty cost in the objective function. If there is any overlap in these areas,    equals to a huge 

number, namely big M. Otherwise,    equals to zero. 

To determine if two rectangles overlap, we can check if any vertex of one rectangle is inside of 

the other. The following method is adopted to determine if a point is inside a rectangle. Let   as 

a vertex of the rectangle,   and   as the adjacent vertices of point   . Thus,   is inside the 

rectangle if and only if 
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                                                 (3-27) 

Denote             as four vertices of area  , for          . Therefore, the penalty function 

is defined below. 

                                                         (3-28) 

                                                         (3-29) 

                                                         (3-30) 

                                                         (3-31) 

          

   {
                               (    )    (    )        
                                                                                                     

             (3-32) 

 Linear programming for earthwork transportation 

Transportation cost is related to the allocation plan of earthwork. A poor plan can result in the 

waste of resources, such labor and time, while transportation cost can be decreased with a 

optimized allocation plan. Only the optimal allocation with the minimum transportation cost 

should be adopted in the objective function. This problem can be solved by linear programming. 

This linear programming model adopts the method of Easa (1988) and Mayer and Stark (1981) 

with some modifications. For a runway the formulation is more complex than for a highway 

since a broader are must be considered. 

First we divide all areas into     squares with same length   , as shown in Figure 3.2. Then 

we calculate the amount of fill or cut earthwork in each cell. For cells that only contain 
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embankment or excavation, the amount is simply the sum of earthwork. Besides, for cells that 

contain both embankment and excavation, the amount of earthwork is the absolute value of their 

sum. We classify these cells as cut cell or fill cell based on whether the cell needs net 

embankment or net excavation. Assume the earthwork transportation cost is zero for earth 

transported inside the cell due to the short distance. The calculation error resulting from this 

assumption decreases with the size of cells into which the area is divided. The outside of taxiway 

area, facility area and clearance area is assumed as borrow pit and landfill. Earth can be 

excavated from the outside to cells or filled from cells to the outside without limitation. 

 

Figure 3.2 Cells in Taxiway Area and Clearance Area 

We compute the distances between each cut cells to fills cell by the coordinates of centroids. 

Assume that the distance from each cell to landfill and borrow pit is the shortest Euclidean 

distance from the cell to the nearest boarder. Suppose that the cost to transport one cubic foot of 

earth among cells varies linearly with the distance between their centers as in equation (3-33). 

Let    denote the unit cost. Different   values denote different origin-destination pairs.     

means that the transportation is between different cells.     or     denotes that the 

transportation is from borrow pit to cells or from cells to landfill. 
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                     (   )                                                                (3-33) 

            (   )  √ (   )   (   )                                   (3-34) 

Note that the number of variables in the sub-problem is  
(   ) 

 
    . When dividing each 

area into more cells, the number of variables increases greatly. This may greatly increase 

computation time, or even make the problem unsolvable for some software because of limitation 

of computer memory. However, it is obvious that if two cells are too far apart, there is literally 

no earthwork transportation between them. That is because the objective function prevents this 

expensive allocation plan. Thus it is reasonable to assume that transportation occurs only if two 

cells are within an acceptable distance   , so that unnecessary variables could be eliminated 

without losing much accuracy. Users could also set the value of    to control the accuracy. The 

variables from cells to landfill or borrow pit should always be retained. The objective function is 

shown in equation (3-35). Constraints (3-36) to (3-39) are based on the Table 3.1. 

                    ∑ ∑  (   ) (   )   ∑   ( )  ( )  ∑   ( )  ( )                 (3-35) 

Constraints: 

  ∑  (   )    ( )     ( )                                                                            (3-36)  

∑    
  (   )    

   ( )     ( )                                                                   (3-37) 

   ∑  (   )     ( )                                                                                           (3-38) 

                                                     (   )   ( )   ( )                                                     (3-39) 

Where: 
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  ( ) denotes the amount of earthwork of cut cell  ; 

  ( ) denotes the amount of earthwork of fill cell  ; 

  ( ) denotes the maximum amount of earthwork that could be filled in cell   in clearance area; 

   
  denotes the shrinkage (or swell) factor of earthwork excavated from cut cell  , and to be 

compacted in fill cell  ; 

  
  denotes the shrinkage (or swell) factor of earthwork excavated from borrow pit, and to be 

compacted in fill cell  ; 

 (   ) is the amount of earthwork to be transported from cut cell   to fill cell  ; 

  ( ) is the amount of earthwork to be disposed from cut cell   to landfill; 

  ( ) denote the amount of earthwork to be transported from borrow pit to fill cell  ; 

 (   ) is the cost to haul one cubic foot earthwork from cut cell   to fill cell  ;  

  ( ) denote the cost to haul one cubic foot earthwork from cut cell   to landfill; 

  ( ) is the cost to haul one cubic foot earthwork form borrow pit to fill cell  ; 

   is the number of cut cells; 

   is the number of fill cells; 

   is the number of fill cells in clearance area, but exclude the cells in taxiway area; 

    is the set of fill cells that are less than    away from cut cell  ; 
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    is the set of cut cells that are less than    away from fill cell  ; 

    is the set of cut cells less than    away from imaginary surfaces fill cell  . 

3.4 Genetic Algorithm 

Recall that the decision variables in the proposed model includes the three-dimensional 

coordinates of runway starting point and the areas for facility construction , orientations, and 

lengths of the areas for taxiway and facilities construction. Total cost is a complex nonlinear 

function of all the variables. Although the problem is based on a three-dimensional space, the 

search space is a hyperspace.   

In this case, GAs are chosen for several reasons. First, at any step in the search GAs deal with a 

population of candidate solutions rather than on solution. These are spread throughout the 

solution space, so the chance of reaching the global optimum is increased significantly (Goldberg, 

1989). Second, the search is processing in several directions and approaching to the optimum 

simultaneously (Haupt et al. 2004). Third, objective function itself does not need to be linear, 

and no gradient information is required (Goldberg, 1989). These properties of GAs make them 

practical for the proposed model and, for complicated and noisy objective functions, they are 

more likely to achieve good solutions than conventional techniques. 

The process of basic GAs can be simply described by the following pseudo code: 

Begin: 

1. Generate initial population. 

2. Prune the population based on the fitness value. 

3. Repeat until meet the termination rule. 



  

32 

 

a. Select pairs from the older generation to mate. 

b. Refill population by crossover and mutation. 

c. Eliminate the individuals with less fitness value. 

d. Group the remaining individuals for next round. 

End; 

4. Output 

Encoding 

In genetic algorithms, solutions, constraints and objective functions are analogous to population, 

environment, and the measure to evaluate the fitness of each individual candidate solution. Each 

solution is encoded into a chromosome such as   in equation (3-31), which contains a set of 

genes. 

    (                                                     )           (3-40) 

Variables in this model should be floating-point number rather than integer in order to search a 

continuous space. For notational convenience, we denote          as a uniformly distributed 

random number in the closed interval        . The domain of each variable is defined as follows:. 

                                                                         (3-41) 

                                                                     (3-42) 

                                                                     (3-43) 

                                                                                (3-44) 

                                                                  (3-45) 
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      [  
    

 ]                                                        (3-46) 

         
                                                         (3-47) 

          and           define the area of interest and the range of elevation.    and    limit the 

runway orientation to the feasible region that we obtain from the model in section 3.2. For the 

facility construction areas, the orientation can be any value between     and     .   
  and    

  are 

the length limitations for each area.   
  is the gradient upper bound for each area. 

Fitness function 

For genetic algorithms, fitness represents the performance of a chromosome in the environment.  

Fitness is the value returned by the proposed fitness function (3-17). Since the goal is to 

minimize the total cost, a lower fitness value indicates a higher probability of survival. 

For constraint (3-24), penalty functions are adopted. By adding penalties in the fitness function, 

violation of constraints will increase the total cost, so that the infeasible solutions are prohibited 

from being selected for the next generation. 

Selection 

Two ways are commonly used to select chromosomes for reproduction of the next generation. 

One, based on proportionate selection, determines the probability of choosing each chromosome. 

Thus, even the genes with very low fitness will be possibly chosen. The other one is ordinal-

based section. In this case, we first rank the chromosomes according to their fitness values and 

only the ones with highest rankings may be chosen.  
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Operators 

Crossover and mutation are two basic way to reproduce offspring. Crossover is the process of 

randomly choosing genes from two parents. With this operator, offspring can retain the good 

genetic information that result in higher fitness and abandon the bad ones. A crossover operator 

allows the search process to focus on local optimal solutions. On the other hand, concentration 

on local optima may keep the search away from the global optimal solution. The process of 

crossover does not generate new genes. Therefore mutation is included in the algorithm to 

provide the offspring with some new genes that they cannot inherit from their parents. It helps 

maintain the diversity of genetic information. In this model, we only include the uniform 

crossover and simple mutation. 

(1) Uniform crossover 

Suppose two chromosomes,    and   , are chosen to reproduce. For the resulting offspring, each 

gene comes either from    or   . One possible offspring is   . Note that    inherits gene    and 

   from   , and all others genes from   . 

   (  
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

 )             (3-48) 
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 )             (3-49) 

   (  
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

    
    

 )              (3-50) 

(2) Simple mutation 
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Let   (                                            )  be the chromosome chosen to 

mutate. Randomly pick one or more variables to mutate in a given range. For example, variable 

   is chosen. Then new value of    and new chromosome    are as follows: 

   
  =                                                                        (3-51) 

   (  
                                           )                    (3-52) 

Termination rule 

The search process repeats until a termination rule has been activated. In this model, the search 

stops if there is no improvement within a given number of generations, or it reaches a pre-set 

number of generations. 
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CHAPTER 4 

OPTIMIZATION OF RUNWAY LONGITUDINAL-GRADE 

DESIGN 

Since the limitations of runway longitudinal-grade design are very strict, designers usually only 

consider how to satisfy the geometric specifications; however, designs which closely follow the 

ground profile while still meeting the requirements, can reduce construction cost.  

In this chapter, a runway longitudinal-grade optimization model considering pavement cost, 

earthwork cost and earthwork transportation cost, is proposed for minimizing runway 

construction cost. Earthwork generated from grading runway and runway safety area (RSA) and 

removing natural obstructions are considered in the model. Pavement cost varies linearly with 

the length of runway, and earthwork cost is assumed to vary linearly with the amount of earth 

that must be cut and filled. For earthwork transportation, a linear program is adopted to secure 

the optimal allocation plan, and the corresponding cost is adopted as earthwork transportation 

cost in the objective function. A genetic algorithm with specified operators is applied to solve 

this problem. In addition, as mentioned previously, constraints of runway longitudinal-grade 

design are strict. Many randomly generated offspring are infeasible. Thus, a “feasible gates” 

method (Kang, Schonfeld and Jong 2007) is applied to narrow search space to enhance the 

computation speed. The flow chart of the model is shown in Figure 4.1. 
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Figure 4.1 Flow Chart of the Runway Longitudinal-Grade Design Optimization Model 
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4.1 Formulation 

Five factors strongly influence required runway length (Ashford et al. 2011): performance 

characteristics of aircraft using the airport, landing and takeoff gross weights of the aircraft using 

this airport, temperature, elevation of the airport and runway gradient. As the goal is to optimize 

runway longitudinal-grade design, only runway gradient   varies with solutions in the proposed 

model. Here, basic runway length    is defined as the runway length considering all factors 

except for runway gradient. Therefore, the design runway length    is the product of gradient 

factor    and basic runway length   . The gradient factor    is defined in equation (4-1). The 

effective gradient    is the maximum difference in runway elevations divided by the runway 

length. 

                                                              (4-1) 

Assume the runway is evenly divided by   stations into      sections. Thus the length of each 

section         (   ), as shown in Figure 4.2. The elevation of the first station is assumed to 

be the same as the elevation obtained from the runway location and orientation optimization 

model.  Let the starting point to be the reference point. The distance from the starting station to 

station   is   . The elevation of each station is   . The slope of each section is calculated as: 

                                                      
        

       
                                                 (4-2) 

The longitudinal grades of RSA between the runway ends are assumed to be parallel to runway 

centerline. Let    and    denote the slopes of the first 200 feet of the RSA beyond the runway 

ends, while    and    denote the slopes of the remainder of RSV. 
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Figure 4.2 Elements of the Model 

Objective function 

The objective function is set to minimize construction cost, which includes pavement cost, 

earthwork cost and earthwork transportation cost. Variables are the elevations of stations of the 

runway    and the slopes of the RSA beyond the runway ends   . Thus the cost function is 

defined in (4-3) and the objective function is specified in equation (4-4). The pavement cost 

varies linearly with the pavement area, as in equation (4-5). Earthwork cost is assumed to vary 

linearly with the amount of earth to be cut and filled, as in equation (4-6). For a given solution of 

elevation of stations, different allocation plan results in different earthwork transportation cost, 

and the optimal one will be adopted in the objective function. A subroutine linear program, 

similar to section 3.3, is applied to obtain the minimum transportation cost. The only difference 

is that the earthwork in the runway area should be considered separately. 

In addition, runway and RSA cross-section designs also affect earthwork cost. A simple method 

is applied in this model. If the ground profile is higher than the upper bound of cross-section 

profile in that part of runway or RSA, then the largest allowable grade is chosen. If the ground 

profile is lower than the lower bound of cross-section profile, then the smallest allowable grade 
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is chosen. Otherwise, we choose the grade that connects the cross-section profile to the ground 

profile. 

   (                  )                                         (4-3) 

           ∑(      (  )    )                              (4-4) 

                                                              (4-5) 

                                                                                                                         (4-6) 

In the above equations: 

    is the elevation of station  ,          ; 

   is the station of RSA beyond the runway ends,         ; 

   is the runway pavement cost; 

     is the earthwork cost, including embankment and excavation cost; 

     is the earthwork transportation cost; 

     is unit cost of pavement,            ; 

               is the runway width; 

                is the volume of earthwork for fill; 

     is the volume of earthwork for cut; 

     is the unit cost of embankment,            ; 
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     is the unit cost of excavation,            . 

Constraints 

According to FAA runway longitudinal-grade design Criteria, six geometric requirements and 

the runway sight distance requirements must be satisfied. Besides, there are requirements for the 

part of the RSA extending the runway ends. The following constraints are based on FAA 

approach categories C and D. 

a. Maximum longitudinal grade 

Maximum longitudinal grade within the second and third quarter of runway must be less than 

1.5%. In equation (4-7),   is index of sections within the second quarter and third quarter of the 

runway. 

                                                                  
(   )

 
    

 (   )

 
                                  (4-7) 

b. Maximum grade first and last quarter 

                                                                     
(   )

 
        

 (   )

 
                         (4-8) 

In equation (4-8),   is index of sections within the first quarter and last quarter of the runway. 

c. Maximum effective grade 

                                                         
         

   
                                                        (4-9)   

     and      are the elevations of the highest and lowest point of the crest of runway 

centerline. 
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d. Maximum change 

                                                     ̇  |       |     %                                (4-10) 

e. Distance between points of intersection 

                                       (   ̇       ̇ )                         (4-11) 

f. Length of vertical curve 

                              
   ̇

 
             

     ̇

 
                      (4-12)  

g. Sight distance requirement 

For runways without full parallel taxiways, any point 5 feet above the runway centerline must be 

mutually visible with any other point 5 feet above the runway centerline. Set     as the line 

connecting points (       ) and (       ). Let    
  denote the x-axis coordinate of line     

when y-axis coordinate equals   .  Thus the constraint is as follows:. 

   
                                                (4-13)  

h. For the first 200 feet of the RSA beyond the runway ends 

                                                                 (4-13) 

i. For the remainder of the RSA 

                                                            (4-14) 

j. Grade change limitation in RSA 

                                                           (4-15) 
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4.2 Genetic Algorithm Modifications 

In this model each solution is encoded as a chromosome, which contains a set of genes as shown 

in equation (4-16): 

      (              )                                            (4-16) 

As Jong and Schonfeld (2003) suggested, the values of stations should be floating-point numbers 

rather than discrete number in order to search through a continuous space.   
  and   

  are the 

lower bound and upper bound of gene   , as in equation (4-17): 

           
    

                                                         (4-17) 

The search space of    is determined by the elevations of surrounding stations. The method for 

calculating the bounds of search space will be discussed in the section 4.3. The search space of 

   is constant as shown in equations (4-13) to (4-15).  

To improve the computation efficiency in this certain case, several specifically designed 

operators and initialization methods are added in the basic GA. 

Initial population 

a. Randomly generated runway profile  

Only initialization and mutation could introduce new genetic information. The 

comprehensiveness of first generation is very important to the performance of GAs. Thus, it is 

necessary to have some random individuals in the first generation. 

b. Flat runway profile 
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Considering the high cost of runway pavement, the solutions that generate shorter runway length 

might be good guesses. It is recommended that the chromosome containing the same elevation as 

starting point should be included in the initial population. Thus, one of chromosomes in the first 

generation is: 

          (              )                                           (4-18) 

c. Runway profile closely following the terrain 

If runway longitudinal-grade design is closer to ground profile, it can result in less earthworks 

volume in the runway area. However, it might not be feasible if we put all intersection points on 

the existing ground. Consequently, points that are close to ground profile but are still within the 

feasible range would be included in the first generation. 

Operators 

Crossover and mutation are two kinds of common operator in GAs. The process of crossovers 

makes the search converge on good solutions. Nevertheless, a search process without mutation 

may fall into local optimum. That is why mutation must be added to keep the search more 

diverse. Well-defined operators can improve the performance of proposed GA. 

a. Uniform mutation 

Let only one gene on chromosome   (              )  mutate. Generate a random 

number           to denote which gene is mutated. Thus the gene   of   mutates in its 

feasible region. 

b. Flat mutation 
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This operator is designed to flatten the runway longitudinal grade. As discussed before, a flatter 

longitudinal-grade design leads to a shorter runway, which may result in less total cost. For   

(              ) , let        (        ) , and       (        ) . Then,    

   
      and          

  . 

c. Single Crossover 

Assume that   (              )  and    (  
    

    
    

    
 )  crossover. Generate a 

random number           to denote which gene to crossover. Then we obtain two new 

chromosomes. Equations (4-19) and (4-20) illustrate a possible outcome of single crossover. 

                                                 (        
          )                                          (4-19) 

                                                  (  
    

       
       )                                         (4-20) 

d. Uniform crossover 

Suppose that chromosome   (              )  and    (  
    

    
    

    
 ) ) 

crossover to produce   . Generate     random numbers         . If      then the gene   

of     is inherited from  ; otherwise gene   is inherited from   . 

4.3 Feasible Gates 

In highway alignment optimization models, the feasible gates method (FG) developed by Kang 

et al (2007) is an approach to enhance the computation efficiency and solution quality by 

avoiding infeasible solutions from the process of initial generation and mutations. FG predefines 

the feasible region for proposed GAs so that infeasible solutions are avoided to be generated. 
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Even though this concept was originally proposed for highway design, it is also very useful in 

runway longitudinal-grade design optimization.  

Since the runway geometric specifications are much more restricted compared to highways, the 

feasible domain is usually very small. Many solutions must be eliminated for violating 

constraints. Without predefined FGs to narrow the search space down to feasible region, it would 

be difficult to generate the initial generation. Besides, almost all of the mutations will be invalid. 

It is time-consuming to generate too many infeasible solutions, and it even affects the quality of 

the model. Consequently, determining the feasible gates of runway longitudinal-grade design is 

desirable. 

Constraints discussion 

Recall the geometric constraints presented in section 4.1. We do not discuss the FGs for RSA 

slopes since these constraints are constant.  Constraints   and   are actually the same but with 

different parameters in different sections. It would be easy to obtain the FG of Constraint   in the 

model. We just need to restrict the elevations of other stations according to the distance from 

them to the current lowest and highest station. Constraints  ,   and   are the strictest. 

Constraints   and   can be eliminated since constraint   is a subset of constraints   and   in this 

model. Let’s transform equation (4-11) to equation (4-21) as follows.  

        

    
 

    

    
 (   ̇       ̇ )                                    (4-21) 

Basically, in order to achieve an accurate solution, the length of section      should not exceed 

1000 feet. Thus if we set      to be 1000, equation (4-21) is as follows: 

(   ̇       )                                                    (4-22) 
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Thus constraint   is included in constraint  . In addition, constraint   can be transformed as: 

                       
          

   
 

    

   
 (   ̇       ̇ )                                    (4-23) 

Constraint   is included in  . Therefore constraints     can be eliminated.  

Before discussing the feasible gates in different situations, we define the symbols that will be 

used next section as follows. 

Let    denote the lower bound   ; 

         denote the upper bound   ; 

        
   denote the provisional lower bound of    subject to constraints  ; 

        
  denote the provisional upper bound of    subject to constraints  ; 

             
  denote the provisional lower bound of    subject to constraints   based on station  ,                                                  

where    ; 

             
  denote the provisional upper bound of    subject to constraints   based on station 

 , where    ;  

Note that            denotes constraint   and  , constraint   ,constraint   and constraint   

respectively. 

According to the discussion above, the feasible gates are defined as follow. 
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FG in generation process 

In the generation process, feasible gates are easier to calculate than in mutation process since the 

feasible regions of undefined stations are only limited by previous stations. The following steps 

are designed to find the bounds of station   (     ). 

a. Constraint   and   

 

 

Figure 4.3 Bounds of Constraints   and   

  
               

      (       )                         (4-24) 

  
               

      (       )                         (4-25) 

    
  is the length of that part of section (   ) located  in the first or last quarter of the 

runway. 

b. For constraint   

  
              (       )                               (4-28) 

  
     (       )                                        (4-29) 

c. For constraint   

Case 1, if        , no bounds. 

Case 2, if      : 
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As shown in Figure 4.4,   is defined as the grade change at station     . B is is the 

maximum allowable grade change at station    . It is defined as in equation (4-30). 

  (
    

    
  )                                                  (4-30) 

Thus, 

  
       (      )                                       (4-31) 

  
       (      )                                       (4-32) 

 

Figure 4.4 The Bounds of Constraint   

d. For constraint   

 

 
Figure 4.5 The Bounds of Constraints   

In generation process, there is no upper bound for constraint  . We must check the sight distance 

of all previous stations in order to calculate the lower bounds of station   . Denote    as the 
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points on the runway at station  , while    as the points 5 feet above the runway at station  . Use 

    to denote the intersect of line      and the vertical line at station  , where      . Let     

denote the elevation of point    . The lower bound of constraint   is defined below. 

  
     (   )                                                         (4-25) 

where         (   ) and                . 

 

All in all, lower bound for    is       (  
    

    
    

 ) ; upper bound for    is    

   (  
    

    
 ). 

FG in mutation process 

During mutation process, it becomes relatively harder to determine the upper and lower bound 

for one particular station, since points on both sides will limit the variation of the variable that is 

chosen for mutation. 

a. Constraint   and   

 

Figure 4.5 The Bounds Resulting From Constraint   and   

         
               

      (       )                     (4-33) 

         
               

      (       )                    (4-34) 
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      (       )                         (4-33) 

         
             

      (       )                        (4-34) 

  
  is the length of that part of section   located  in the first or last quarter of the runway. 

Thus   
      (         

           
 );       

      (         
           

 ). 

b. Constraint   

  
              (     )          for all                  (4-45) 

  
     (     )                  for all                  (4-46) 

c. Constraint   

There are four limitations when    changes. As shown in Figure 4.6, in order to obtain the 

feasible gate of station  , we need to consider station    ,    ,     and     . 

 
Figure 4.6 The Bounds Resulting From Constraint   

First, the FG based on     . Consider that   changes with   , and it is limited by  .  

         
       (      )                                           (4-47) 

         
       (      )                                          (4-48) 

Second, the FG based on     . Consider that   changes with   , and it is limited by  .  
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       (       )                                        (4-49) 

         
       (       )                                       (4-50) 

Third, the FG based on       Consider that E and B change with   , and they limit each other. 

For lower bound: 

 If                (     
    

    ⁄ )            

      Then set  

      (      )       (     
    

    ⁄ )                             (4-51) 

  
               

                  

     
                                  (4-52) 

  So, 

          
       (      )                                        (4-53) 

 Else, 

  Then set 

      (      )       (     
    

    ⁄    )                     (4-54) 

  
              

             

     
                                      (4-55) 

 So, 

         
       (      )                                       (4-56) 
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For upper bound: 

 If                (     
    

    ⁄ )            

  Then set 

      (      )       (     
    

    ⁄ )                   (4-57) 

  
              

                  

     
                                   (4-58) 

  So, 

          
       (      )                                         (4-59) 

 Else: 

  Let       (      )       (     
    

    ⁄    )                (4-60) 

  
               

             

     
                                        (4-61) 

 So, 

            
       (      )                                      (4-62) 

Fourth, for FG based on       The similar method for calculating FG based on      could be 

applied to obtain    
  and    

 .  

Thus, 
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      (         

           
           

           
 )                  (4-63) 

  
      (         

           
           

           
 )              (4-64) 

Specially, for    , there is no          
  and          

 for    , there is no          
 ; for 

   , there is no          
  and          

 ; for      , there is no          
 . 

d. Constraint   

 
Figure 4.5 The Bounds of Constraints   

We must check the sight distance of all other stations in order to calculate the lower bound 

of station   , as shown in Figure 4.5. Denote    as the points on the runway at station  , while 

   as the points 5 feet above the runway at station  . Use     to denote the intersection of 

line      and the vertical line at station  . Let     denote the elevation of point    . The 

lower bound of constraint   is defined below. 

  
     (   )                                                      (4-25) 

where, if         (   ) then                 ; 

            else if               then                .  
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For upper bound, we just need to make sure that station   does not block the sight line 

among other stations.  Denote     as the intersection of line      and the vertical line at 

station    Let     denote the elevation of    . Thus the upper bound of constraint   is as 

follows. 

  
     (   )                                                         (4-25) 

where,         (   ) then               ; 

All in all, lower bound for    is       (  
    

    
    

 ); upper bound for    is    

   (  
    

    
    

 ).  
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CHAPTER 5  

CASE STUDY 

In order to test the accuracy and efficiency of the proposed models and genetic algorithms, a 

numerical example is presented in this chapter. Wind data and topographic data are from two 

different real projects, so they are collected from different sites. The standard wind data, as 

shown in Table A1 in the appendix, are adopted from FAA Advisory Circular (FAA 1989). The 

topographic data, from US 220 project, are shown as maps in Figures 5.1 and 5.2.  We assume it 

is reasonable to combine them as the data set for the case study.  

As can be seen, the northwestern part of the area of interest is mountainous. There is a canyon 

from southwest to northeast. Comparing to other parts of the map, the southeast is more flat and 

the elevation in this area is lower. Therefore, after optimization, the runway is expected to be 

located and oriented on the southeastern part. In addition, if crosswind allows, the optimal 

solution may also be in the canyon area.  

The design parameters of the proposed case are summarized in Table 5.1.  
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Figure 5.1 Contours of the Terrain 
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Figure 5.2 3-D view of the Terrain 
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Table 5.1 Design Parameters for Case Study 

Parameter Design Value 

First Model – Runway Feasible Orientation 

Allowable crosswind 13 knots 

Increment of angle      
  

Second Model – Runway Location and Orientation Optimization 

Basic runway length 10000    
Runway width 200    
Transportation cost $8,000 per thousand cubic yards per mile; 

Excavation cost $7,200  per thousand cubic yards; 

Embankment cost $9,600 per thousand cubic yards; 

Landfill earthwork cost Same as regular cost 

Borrow pit earthwork cost Same as regular cost 

Shrinkage factor   
  and    

  1.0 

Number of areas for facility construction One 

Facility connection cost coefficient    50,000     
Facility area 48,000,000     

Facility length lower and upper bound 6000   , 15000    
Maximum allowable gradient for facility area 3.0% 

Design facility height 1,000    
Taxiway area 80,000,000     

Taxiway length lower and upper bound 16,000   , 20,000    
Maximum allowable gradient for taxiway area 2.0% 

Earthwork transportation acceptable distance 6,000    
Allowable elevation difference  ̅ 100    
  

Third Model – Runway Longitudinal-Grade Design Optimization 

Basic runway length and width Same as in the second model 

Transportation, excavation and embankment cost Same as in the second model 

Shrinkage factor   
  and    

  1.0 

Longitudinal-grade and Cross-section design 

criteria 
FAA approach categories C and D 

Runway pavement cost  312.5      

Number of longitudinal-grade design stations 20 

 

5.1 The Region of Feasible Runway Orientation 

We transfer the data in Table A1 to percentages through dividing the total number of 

observations by each count. After calculations, the acceptable orientation is found to range from 
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     (      )  to       (      )  , as shown in Figure 5.2. The optimal orientation is 

     (      )  with 96.94% usability. The minimum usability is 93.64%, which is oriented 

at     (      ). Calculation time is 202.5s. 

 
 

Figure 5.3 Feasible Region of Runway Orientation 

5.2 Runway Location and Orientation Optimization 

The the output is shown in Table 5.3 and Figure 5.5. The earthwork distribution is shown in 

Figure 5.6. The allocation plan of earthwork is shown in Figure 5.7 and 5.8. Note that the arrows 

line from each point to borrowpit and landfill mean that there are earthwork tranported bewteen 

them, but it does not represent the distance between them. The distance is assume to be measured 

from the centroid of cells to the nearest bound. 
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Table 5.3 Output of Optimization Model 

Output Value 

runway orientation        
runway x-coordinate 125470.99    

runway y-coordinate 160287.25   

runway elevation 844.16   

length of taxiway area  17782.18   

width of taxiway area  4498.88    

gradient of taxiway area  0. 663% 

facility orientation 112.19  
facility x-coordinate 129042.20    

facility y-coordinate 180739.76    

facility elevation 844.90    

length of facility area  12789.01    

width of facility area  3753.22    

gradient  of facility area  2.043% 

Earthwork transportation cost $224,950,000 

Earthwork excavation cost $803,300,000 

Earthwork embankment cost $602,480,000 

Facility connection cost $1,038,100,000 

Total cost $2,668,800,000 

 

As shown in Table 5.2 and Figure 5.3, the runway is located in the southeastern part of the area 

of interest. There is no earthwork in the clearance area, but a large amount of eathwork is in the 

areas for facility contruction and taxiway area, as shown in Figure 5.8.  As shown in Figure 5.9, 

the allocation of earthwork of this optimal solution. Surplus earth in taxiway area is mainly 

transported to clearance area as long as it is still under the maximum allowable amount. The 

earthwork in the area for facility contruction needs the balance of landfill and borrow pit.  
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Figure 5.5 Optimal Location and Orientation for Runway and Facility 

 



  

63 

 

 

Figure 5.6 Optimal Location and Orientation for Runway and Facility (Enlarged) 

 

Figure 5.7 Earthwork Distribution 
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Figure 5.8 Earthwork Allocation 

5.3 Runway Longitudinal-Grade Design Optimization 

According to the last section, optimal orientation is       s, and the location is (125470.99, 

160287.26). With these inputs, runway alignment optimization model is applied. The outputs are 

shown in Figure 5.9 and Table 5.4. As we can see, the optimized alignment follows the ground 

profile so that the earthwork cost could be reduced. In addition, the cross-section design of the 

first station of the runway is shown in Figure 5.10. More cross-section design may be found in 

the appendix. 
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Figure 5.9 Optimized Runway Longitudinal-Grade Design 

 

Figure 5.10 Cross-Section Design of the First Station 
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Table 5.4 Output of Runway Longitudinal Grades 

station X-coordinate(ft) Elevation(ft) 

1 -5000.0 844.2 

2 -4473.7 840.6 

3 -3947.4 839.1 

4 -3421.1 838.3 

5 -2894.7 839.0 

6 -2368.4 840.4 

7 -1842.1 840.2 

8 -1315.8 839.5 

9 -789.5 840.4 

10 -263.2 842.1 

11 263.2 845.7 

12 789.5 850.1 

13 1315.8 856.3 

14 1842.1 861.7 

15 2368.4 865.3 

16 2894.7 869.1 

17 3421.1 872.8 

18 3947.4 875.9 

19 4473.7 878.4 

20 5000.0 878.8 

 

Table 5.5 Output of Runway RSA Slope 

X-coordinate(ft) Slope 

-6000 to -5200 -0.048 

-5200 to 5000 -0.028 

5000 to 5200 0.000 

5200 to 6000 0.014 

 

The total cost of the optimal solution is          . If we set the longitudinal grades to be flat 

(elevations are the same as the starting point), then the total cost would be          . The 

improvement rate is 11.0%. Considering the expense of a runway, even though the improvement 

rate is not high, the saving is still considerable. 
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5.4 Sensitivity Analyses 

In this section, two sensitivity analyses of two parameters are conducted to examine the 

influence of their value on the solution. 

Pavement cost 

The gradients of runway are highly constrained by pavement cost. Since gradients have the effect 

of increasing the required runway length, runway longitudinal-grade design is expected to be 

more level when pavement cost increases. We define 8 scenarios with different pavement costs 

but keep other parameters unchanged.  

  Table 5.6 Results with Different Pavement Costs 

Scenario 
Pavement Cost 

(     ) 

Effective 

Grade 

Runway Length 

(  ) 

Total Cost 

( ) 

1 312.5 0.404% 10403.6 8.117E+08 

2 625.0 0.393% 10393.1 1.462E+09 

3 937.5 0.286% 10285.6 2.106E+09 

4 1250.0 0.165% 10164.6 2.741E+09 

5 1562.5 0.165% 10164.7 3.381E+09 

6 1875.0 0.126% 10125.9 4.011E+09 

7 2187.5 0.107% 10106.7 4.644E+09 

8 2500.0 0.045% 10045.0 5.275E+09 

 

As can be seen in Table 5.5, the effective grade and runway length decreases while pavement 

cost increases. When we set pavement cost to be 8 times that of the scenario 1, the effective 
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grade is only 0.045%, which means the runway is almost level. Figure 5.10 illustrates the 

optimal runway longitudinal designs in different scenarios. 

 

Figure 5.11 Longitudinal Designs in Different Scenarios 

Earthwork cost and earthwork transportation cost 

Earthwork cost and earthwork transportation cost are highly related to the gradients of runway. If 

we keep the pavement cost unchanged and decrease the earthwork cost and earthwork 

transportation cost, the benefit from making the runway longitudinal-grade design follows 

ground profile would be less. Thus, it is expected that cheaper earthwork cost and earthwork 

transportation costs will result in flatter runway profiles. 

Ten scenarios are defined with different earthwork cost and earthwork transportation cost, as 

shown in Table 5.7. The results in different scenarios verified the expectation. Effective gradient 

decreases as the earthwork cost and earthwork transportation cost increase. 
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Table 5.7 Results with Different Earthwork Cost and Earthwork Transportation Cost 

Scenario 

Transportation 

cost 

$/(1000yd³*mile) 

Excavation 

cost 

$/(1000yd³) 

Embankment 

cost 

$/(1000yd³) 

Effective 

Gradient 

Runway 

Length             

ft 

Total 

Cost       

$ 

1 8000 7200 9600 0.404% 10421.2 8.1E+08 

2 7200 6480 8640 0.393% 10392.7 7.9E+08 

3 6400 5760 7680 0.393% 10392.8 7.8E+08 

4 5600 5040 6720 0.393% 10392.7 7.6E+08 

5 4800 4320 5760 0.393% 10392.7 7.4E+08 

6 4000 3600 4800 0.306% 10305.9 7.3E+08 

7 3200 2880 3840 0.306% 10306.0 7.1E+08 

8 2400 2160 2880 0.259% 10259.4 6.9E+08 

9 1600 1440 1920 0.150% 10149.5 6.7E+08 

10 800 720 960 0.000% 10000.0 6.5E+08 
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CHAPTER 6 

CONTRIBUTIONS AND FUTURE WORK 

6.1 Contributions 

1. A new method is developed for searching the feasible runway orientation region with 

standard wind data. This method takes advantage of the Monte Carlo method, uses 

weighted distribution of random point to represent the wind distribution, and constructs 

the wind rose mathematically in polar coordinates. It avoids the intensive geometric 

calculation for partially covered cells and also guarantees the accuracy of usability 

calculation. 

2. A model is proposed for optimizing the construction cost of runway location and 

orientation. To practically solve this problem, taxiway area and the areas for facility 

construction are also considered in the model with several assumptions. Earthwork cost, 

earthwork transportation cost and facility connection cost are included in this model 

since they are sensitive to runway location and orientation. A linear program is adopted 

to determine the optimal allocation of earthwork and corresponding earthwork 

transportation cost. A basic genetic algorithm, as discussed in section 3.4, can efficiently 

optimize the runway location and orientation. Compared to previous studies, the 

proposed model includes more factors and constraints that affect the runway location 

and orientation optimization problem. Thus, this model can comprehensively solve this 

problem. 

3. A runway longitudinal-grade design optimization model is presented in chapter 4. Based 

on known location and orientation, this model can optimize the runway longitudinal-
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grade design. FAA and ICAO runway design geometric specifications are satisfied. A 

genetic algorithm is adopted to search for the optimal solution. Some self-defined 

operators of GA are also developed for improving the performance of the GA.  

4. Since the geometric constraints of runways are very strict, many randomly generated 

offspring are infeasible. To avoid generating infeasible offspring and to improve the 

computation efficiency, the feasible gate method is adopted here. As discussed in the 

section 4.3, feasible gates can be achieved after a series of calculations. 

5. In the chapter 5, a case study is presented to test the performance of proposed models. 

The first model can efficiently obtain feasible runway orientations relatively quickly. 

The second model can find an optimized solution for runway location and orientation as 

expected. The third model optimizes the runway longitudinal-grade design. The 

optimized runway profile follows ground profile. 

6. The sensitivity analysis shows that runway longitudinal-grade design is highly related to 

runway pavement cost, earthwork cost and earthwork transportation cost. The runway 

profile tends to be flatter when runway pavement cost increases. Similarly, the effective 

gradient of runway declines as the unit cost of earthwork and earthwork transportation 

decreases. 

6.2 Future Work 

1. Some validation of the proposed solution methods should be pursued in future studies. 

One possible method is a statistical test such as that presented in Jong and Schonfeld 

(2003). They fit a distribution to the fitness value of a randomly generated large sample 

of solutions. Based on the distribution, the probability of obtaining solutions better than 

optimized solution found by the genetic algorithm could be estimated. Hopefully, that 
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probability would be extremely small. Another possible way to validate the models is by 

comparing the outputs of the proposed models with the designs of other experienced 

airport engineers. 

2. In future studies, additional factors should be considered in the model. For example, 

noise and land-use cost are two significant factors when the airport is close to residential 

areas. Airport accessibility also affects the location and orientation of a runway. 

3. A model for optimizing multiple runway orientations and locations could be extended 

from the proposed model. For multiple runway systems, more details must be 

considered. Besides, the feasible regions of runway orientation should be determined 

based on multiple-runway cases. 

4. Integrated models that simultaneously consider runway location, orientation and 

longitudinal-grade design may be developed in the future. 
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APPENDIX 

Table A1 Wind Data 

      Speed 

 

Direction 

Number of observations 

0-3 

(knot) 

4-6 

(knot) 

7-10 

(knot) 

11-16 

(knot) 

17-21 

(knot) 

22-27 

(knot) 

28-33 

(knot) 

34-40 

(knot) 

Total 

06 to 15 469 842 568 212 0 0 0 0 2091 

16 to 25 568 1,263 820 169 0 0 0 0 2820 

26 to 35 294 775 519 73 9 0 0 0 1670 

36 to 45 317 872 509 62 11 0 0 0 1771 

46 to 55 268 861 437 106 0 0 0 0 1672 

56 to 65 357 534 151 42 8 0 0 0 1092 

66 to 75 369 403 273 84 36 10 0 0 1175 

76 to 85 158 261 138 69 73 52 41 22 814 

86 to 95 167 352 176 128 68 59 21 0 971 

96 to 105 119 303 127 180 98 41 9 0 877 

106 to 115 323 586 268 312 111 23 28 0 1651 

116 to 125 618 1,397 624 779 271 69 21 0 3779 

126 to 135 472 1,375 674 531 452 67 0 0 3571 

136 to 145 647 1,377 574 281 129 0 0 0 3008 

146 to 155 338 1,093 348 135 27 0 0 0 1941 

156 to 165 560 1,399 523 121 19 0 0 0 2622 

166 to 175 587 883 469 128 12 0 0 0 2079 



  

74 

 

176 to 185 1,046 1,984 1,068 297 83 18 0 0 4496 

186 to 195 499 793 586 241 92 0 0 0 2211 

196 to 205 371 946 615 243 64 0 0 0 2239 

206 to 215 340 732 528 323 147 8 0 0 2078 

216 to 225 479 768 603 231 115 38 19 

 

2253 

226 to 235 187 1,008 915 413 192 0 0 0 2715 

236 to 245 458 943 800 453 96 11 18 0 2779 

246 to 255 351 899 752 297 102 21 9 0 2431 

256 to 265 368 731 379 208 53 0 0 0 1739 

266 to 275 411 748 469 232 118 19 0 0 1997 

276 to 285 191 554 276 287 118 0 0 0 1426 

286 to 295 271 642 548 479 143 17 0 0 2100 

296 to 305 379 873 526 543 208 34 0 0 2563 

306 to 315 299 643 597 618 222 19 0 0 2398 

316 to 325 397 852 521 559 158 23 0 0 2510 

326 to 335 236 721 324 238 48 0 0 0 1567 

336 to 345 280 916 845 307 24 0 0 0 2372 

346 to 355 252 931 918 487 23 0 0 0 2611 

356 to 05 501 1,568 1,381 569 27 0 0 0 4046 

Calm 7729 

       

7729 

Total 21676 31828 19849 10437 3357 529 166 22 87864 
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Figure A1 Index of Cross-Section Designs 
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