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Leisure time physical activity (PA) and exercise training help to improve and 

maintain cognitive function in healthy older adults and in adults with the APOE-ε4 

allele, a genetic risk for Alzheimer’s Disease (AD).  Earlier work finding increased 

functional connectivity in the Default Mode Network (DMN) after a 12-week 

walking intervention in 16 older adults with mild cognitive impairment is presented in 

Chapter 3. The primary dissertation study investigating differences in brain function 

depending on PA level and genetic risk for AD prior to changes in cognition is 

presented in Chapters 4-6. 

Useable resting state and anatomical MRI scans were collected from 69 

healthy adults (22-51 years) as well as saliva for APOE genotyping (carriers defined 

as homozygotes or heterozygotes of the ɛ4 allele) and responses to the Paffenbarger 



 

 

Physical Activity Questionnaire (High PA >1500 kcal, Low PA <1500 kcal per 

week).  The following network measures of functional connectivity were calculated: 

global efficiency; node strength of Default Mode Network (DMN) and Fronto-

Parietal Network (FPN) hubs and hippocampal subsections; and long-range 

connectivity of the medial prefrontal cortex (mPFC) and posterior cingulate cortex 

(PCC) in the DMN.  

Multiple linear regression analysis revealed statistically significant results for 

the long-range connectivity of the left PCC, a prominent hub of the DMN, and left 

mPFC.  The differences in projected trajectories of the connectivity are potentially 

reflective of the compensatory time-course in our participants based on interactions of 

PA level and APOE status.  The Low PA non-carriers had a positive slope indicating 

increased connectivity with age while carriers and non-carriers in the High PA 

category had horizontal aging trajectories.  PA is associated with cognitive reserve 

(CR), a term describing the protection and adaptation of cognitive processes through 

neural efficiency and compensation mechanisms, and it is possible the Low PA non-

carriers exhibited compensatory increases in connectivity of the left mPFC-PCC 

earlier than High PA study participants due to lower levels of CR. The promising 

findings that rs-fMRI can be used as an early detection of brain changes sensitive to 

PA levels and APOE-ɛ4 status are critical to the research and treatment of AD. 
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Chapter 1: Introduction 

As increasing numbers of people are living longer (World Population Ageing Report, 

United Nations, 2015), memory decline due to physiological aging and pathophysiological 

changes is growing as a public health issue (World Health Organization). Alzheimer’s disease 

(AD) will be growing in prevalence because of the swelling proportion of elderly in the global 

population, and this will come with great social and financial cost.  AD is the most expensive 

disease in the United States, and there is no current cure (Alzheimer’s Association, 2016).  If the 

onset of AD could be delayed by a few years, costs would vastly decrease and a greater number 

of older adults would complete their lives with memories and personalities intact.  One of the 

difficulties in treating AD is that we do not fully understand how the healthy brain functions and 

adapts.  

The fronto-parietal network, responsible for executive control, and the default mode 

network, important for episodic memory, are disrupted during the aging process.  Additionally, 

the hippocampus, also important for episodic memory, decreases in volume with aging.  Volume 

decreases in anterior white matter (part of the fronto-parietal network) do not appear to be 

accelerated in early AD, indicating that these are age related disruptions (Head et al., 2004), but 

the DMN has a greater loss of communication in AD patients compared to age matched healthy 

controls (Damoiseaux, Prater, Miller, & Greicius, 2012).  The combination of age related fronto-

parietal disruptions and AD pathology beginning in the medial temporal lobe (MTL) is 

devastating to cognition (Buckner, 2004).  

It is well established that PA protects cognition in healthy aging and reduces the 

likelihood of experiencing cognitive decline (Cotman & Berchtold, 2002; Etgen et al., 2010; 
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Laurin, Verreault, Lindsay, MacPherson, & Rockwood, 2001; Middleton, Barnes, Lui, & Yaffe, 

2010; Middleton et al., 2011; Scarmeas et al., 2009).  The mechanisms by which PA protects and 

preserves cognition in older adults are still being explored, but suggestions include exercise 

induced neurogenesis in the hippocampus (Erickson et al., 2011; Pereira et al., 2007) and 

protection of the white matter tracts (Oberlin et al., 2016; J. C. Smith et al., 2016) vulnerable to 

aging (Buckner, 2004).  Thus, PA has been implicated as an ideal intervention to preserve 

memories and delay cognitive decline, thus reducing both financial and societal costs of AD.  

Continued investigation of the mechanisms by which PA protects cognition will assist in our 

understanding of how the brain functions and adapts, and perhaps give us insights into the 

pathophysiology of AD.  

While PA is a protector against cognitive decline, carriers of the ɛ4 allele of the APOE 

gene are at increased risk for cognitive decline and AD (Farrer et al., 1997).  APOE is involved 

in lipid transport (Bu, 2009; Holtzman, Herz, & Bu, 2012), and while the mechanisms that 

increase the risk are still not determined, some potential neural explanations include increased 

amyloid burden (Chételat & Fouquet, 2013; Reiman et al., 2009), smaller grey matter volumes 

(K. Chen et al., 2007; Honea, Vidoni, Harsha, & Burns, 2009; O'Dwyer et al., 2012; Plassman et 

al., 1997; Shaw et al., 2007; Wishart et al., 2006), altered metabolism (Jagust, Landau, & 

Initiative, 2012; Knopman et al., 2014; Perkins et al., 2016) and connectivity changes of the 

posterior cingulate cortex and precuneus that mirror AD (Fleisher et al., 2009; McKenna, Koo, 

Killiany, & Initiative, 2015; Sheline et al., 2010).  However, not all ɛ4 carriers will be diagnosed 

with AD (Saunders et al., 1993), and perhaps there are some lifestyle behaviors, such as PA, that 

can moderate this genetic risk.  A possible explanation of this apparent moderation of genetic 

risk is that PA may augment a person’s ability to withstand brain disruption or damage.  
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Investigating the effects of PA in vulnerable networks of healthy carriers of genetic risk is 

important in the effort to understand these moderating mechanisms. 

 PA may increase the brain’s ability to tolerate damage and recruit alternate networks by 

increasing levels of cognitive reserve. Cognitive reserve (CR) is a concept to explain why 

individuals with identical observed evidence of brain disruption will have different clinical 

diagnoses based on cognitive performance (Buckner, 2004; Stern, 2009).  An individual with 

higher CR would be able to withstand greater amounts of brain damage than an individual with 

less CR before a critical threshold is reached and cognitive processes decline (Barulli & Stern, 

2013).   One neural implementation of CR that enables this greater capacity to withstand 

damages is the ability to recruit alternate brain network (Stern, 2009).  PA has been implicated as 

one of the factors that increases cognitive reserve (Fratiglioni, Paillard-Borg, & Winblad, 2004), 

and it is possible that PA protects against cognitive decline by aiding the ability of the brain to 

recruit existing and alternate networks.  Our laboratory has shown that 12 weeks of walking in 

older adults already experiencing cognitive decline due to AD, with a diagnosis of mild cognitive 

impairment, enabled the recruitment of frontal and parietal regions implicating enhanced ability 

to compensate (Chirles et al., 2017). This enhanced compensation would increase cognitive 

reserve and thus possibly delay cognitive decline. 

Despite the evidence that PA protects cognition, few studies have investigated the effects 

of PA on brain networks throughout the lifespan.  The effects of PA on the networks disrupted 

by the aging process need to be studied at all stages in order to more fully understand the 

influence of PA on brain plasticity.  Additionally, despite the evidence that carriers of the APOE-

ε4 allele have disrupted networks similar to the changes observed in aging and AD before non-
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carriers (Sheline et al., 2010), there has not been research to illuminate the interactive effects of 

PA and APOE-ε4 allele on these networks.   

Specific Aim 1:  To investigate the association of self-reported leisure-time PA on the 

fronto-parietal network, DMN, and hippocampal connectivity in young adulthood to middle 

adulthood. 

 Specific Aim 2:  To investigate the association of the interaction of PA and APOE-ε4 

status on the fronto-parietal network, DMN, and hippocampal connectivity from young 

adulthood to middle adulthood. 

 

The following chapter reviews the literature necessary to address these specific aims and 

lay the theoretical foundation for the study described in Chapters 4-6.  First, a review is 

presented on the effects of aging and AD on the fronto-parietal network, the DMN, and 

hippocampus.  Secondly, resting state functional connectivity and the benefits of using a network 

approach to understand the brain are explored.  This section includes subsections covering 

changes in the networks due to aging and AD, as well as the effect of APOE-ε4 status on 

connectivity.  Finally, the protective effects of PA on cognition in healthy adults and in those at 

risk for AD are described, and the literature describing the current understanding of PA’s effect 

on resting state network functional connectivity are presented.   
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Chapter 2:  Literature Review 
 

Section 2.1: Brain, Age and Alzheimer’s Disease  

Subsection 2.1.1:  Effect of Aging and AD on Frontal-Striatal Circuits 

Evidence suggests that frontal white matter is particularly vulnerable to aging, and while 

there is age related loss throughout all brain regions, it is greatest in the frontal cortex than 

compared to other cortical and subcortical regions (Buckner, 2004).  These age related changes 

to volume and structure of cerebral white matter (WM) (Bartzokis et al., 2004; Paus, Pesaresi, & 

French, 2014; Peters, 2002) have been identified as a possible neuroanatomical substrate of the 

cognitive differences and decline that are exhibited with increasing age (Bartzokis et al., 2004; 

Bender, Prindle, Brandmaier, & Raz, 2016; Bennett & Madden, 2014; Walhovd, Johansen-Berg, 

& Káradóttir, 2014). The regions included in this network are the anterior prefrontal cortex, 

insular and frontal operculum cortices, the temporo-parietal junction, and the dorsal posterior and 

anterior cingulate gyri (Dosenbach et al., 2006; Rushworth, Walton, Kennerley, & Bannerman, 

2004).  These areas are involved in executive function, a network responsible for task switching 

and controlling attention.  In this system, 65% of older adults over the age of 75 years show 

white matter abnormalities (Ylikoski et al., 1995).  

Older adults without dementia do experience difficulty on cognitive tasks that require 

attention and executive function (Craik, Morris, Morris, & Loewen, 1990; West, 1996), and 

consistently research has shown that these attention and executive function difficulties are 

distinct from memory loss due to Alzheimer’s disease(Buckner, 2004).  Some memory functions, 

such as word retrieval and vocabulary, that are disrupted in AD remain relatively constant 

throughout the healthy aging process (Nyberg, Bäckman, Erngrund, Olofsson, & Nilsson, 1996; 
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Park et al., 1996; Schaie & Willis, 2010), and difficulties in  However, what is so devastating in 

AD is that predicted memory impairment from AD pathology is synergistically worse with 

frontal-striatal circuit disruptions (Buckner, 2004).  If these frontal-striatal circuits can be 

protected, then AD symptomology will be mitigated.   

Subsection 2.1.2:  Distinct Effects of Aging and AD on the Hippocampus 

The famous study participant, HM, instigated the intense research and study of the role of 

the hippocampus in memory (Squire, 2004).  This subject’s unique damage to the hippocampus 

and resultant memory symptoms implicated the hippocampus as having an integral role in 

declarative memory (Eichenbaum, 2004), and as subsequent lesion studies have demonstrated, 

the hippocampus is vital in the encoding and retrieval of specific personal experiences, otherwise 

known as episodic memory (Schacter, 1997, 2000) .  The encoding and retrieval of episodic 

memories that include spatial, temporal, and sensory integration utilize the circuit properties of 

the hippocampus subfields (Eichenbaum, 2004).   

Higher resolution fMRI research techniques have made it possible to investigate the 

subfields of the hippocampus (Yassa & Stark, 2011), and this has led to the amassing of evidence 

suggesting  region specific effects of healthy aging and AD on the hippocampus (S. A. Small, 

Schobel, Buxton, Witter, & Barnes, 2011).  The entorhinal cortex (EC), dentate gyrus (DG), 

CA1, and CA3, all subregions of the hippocampus, appear to be preferentially vulnerable to 

either aging or AD pathology.  The EC is the first region to exhibit AD pathology (Gómez-Isla et 

al., 1996; S. A. Small et al., 2011) yet is preserved in aging as evidenced by older adults in their 

9th decade showing little change in the EC (Hedden & Gabrieli, 2004).   Effects of aging are 

predominately in the DG (Yassa & Stark, 2011) CA3 and CA1. The DG has a primary role in 

discriminating between two similar objects or events (S. A. Small et al., 2011; Yassa & Stark, 
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2011), and this ability is altered in aging (Yassa & Stark, 2011).  Due to the difficulty of 

separating it anatomically from the DG, the CA3 is often lumped together with DG as the same 

region of interest (ROI) and has also had the role of object discrimination attributed to it (S. A. 

Small et al., 2011; Yassa & Stark, 2011).  The CA3 is particularly sensitive to increases in 

cortisol, and as cortisol most often increases with age, this may explain the deterioration of the 

CA3 over the course of aging (S. A. Small et al., 2011).  The CA1, responsible for re-coding the 

incoming information into bundles, otherwise called chunking (Kesner, Lee, & Gilbert, 2004), 

and appears to be highly sensitive to vascular disease and high glucose levels (S. A. Small et al., 

2011).  Again, this area is vulnerable to the aging process as age is a risk factor for vascular 

disease and disrupted glucose clearance (Basu et al., 2003).   

While the total hippocampal volume decreases in both aging and AD, the hippocampus in 

AD patients is consistently smaller (Jack et al., 1997). In a meta-analysis of 28 studies (n = 3422, 

age range = 24.5-84) Fraser et al. (2015) determined that the average rate of hippocampal 

atrophy is 0.85% per year.  This rate does change over the lifespan, however, and was calculated 

to be 0.38% per year when age is less than 55, 0.98% per year during ages 55 to less than 70, and 

at 1.12% per year in studies when the subjects were 70 years or older.  Other research studies 

have determined atrophy of the hippocampus to about 2-3% decrease per decade through the 

aging process and observed increases to about 1% per annum after age 70 (Hedden & Gabrieli, 

2004). An interesting caveat to aging and AD research is that there is often the “contamination” 

of healthy elder subjects with elders who are in the preclinical stages of AD (Buckner, 2004). 

This may explain the predominance of medial temporal lobe (MTL) dysfunction in aging studies 

when this may be the antecedent of AD.  In fact, 30-60% of neuron loss previously associated 

with aging is absent in older adults in their 9th decade who do not show any AD pathology, and 
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the meta-analysis by Frasser et al. (2015) did not distinguish between healthy aging and elders in 

the preclinical stages of AD. 

Subsection 2.1.3:  Effects of Age and AD on Default Mode Network  

The default mode network (DMN) spans the frontal, temporal, and parietal regions of the 

brain.  These areas the posterior cingulate, ventral and superior frontal medial cortices, and 

bilateral occipital cortices, middle frontal cortices, and middle temporal cortices including the 

hippocampus and parahippocampus (Buckner, Andrews-Hanna, & Schacter, 2008; Fox et al., 

2005; M. D. Greicius, Srivastava, Reiss, & Menon, 2004).  This network was first identified as a 

“task negative” network by Fox et al. (2005) as these regions consistently had BOLD fMRI 

activity during the absence of a task compared to task conditions.  While at first this “task 

negative” status induced a confusion and uncertainty about purpose of this network, it is now 

believed to be involved in flexible self-relevant mental reflections and explorations that 

anticipate and evaluate possible future events (Buckner et al., 2008).  Additionally, this network 

overlaps and is strongly integrated in episodic memory (Buckner et al., 2008; Vincent et al., 

2006). 

The DMN has attracted much attention in neuroscience research because of its relevance 

to aging and disease (Buckner, 2013; Buckner et al., 2008; Buckner et al., 2009; Buckner, 

Snyder, Sanders, Raichle, & Morris, 2000).  The purpose of this section is to give a general 

presentation of the changes that occur in the DMN over the course of aging and throughout the 

AD progression.  In order to do so, many of these studies include the term “functional 

connectivity”.  While this term and studies are more fully developed and explored in a later 

section, for the present we will consider this term to mean communication between spatially 

separate brain regions. 
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Damoiseaux et al. (2012) measured the modularity of the DMN in AD patients over the 

course of 2 to 4 years.  The posterior default mode network at baseline had reduced connectivity, 

but the anterior and ventral default mode networks had increased connectivity compared to 

controls. At follow up, however, the entire DMN had reduced connectivity compared to controls. 

Hillary et al. (2015) effectively summarized the connectivity changes that are expected due to the 

neuronal disruption in AD.  First, there is compensatory hyperconnectivity in the frontal/parietal 

regions, and then overall loss of connectivity as AD progresses.  In aging, these connections are 

not lost, but anterior to posterior connections are weakened (Andrews-Hanna et al., 2007). 

A hypothesized underlying neural substrate for functional connectivity is the white matter 

structural architecture (Honey, Kötter, Breakspear, & Sporns, 2007), and white matter integrity is 

also a subject of aging studies relating to the DMN. In one of the few longitudinal studies 

investigation the relationship between white matter changes and cognitive performance, Bender 

et al. (2016) conducted a two year longitudinal study in 96 healthy adults (baseline age range = 

18-79).  Diffusion tensor imaging (DTI) was used to measure fractional anisotropy (FA), mean 

diffusivity (MD), axial diffusivity (DA) and radial diffusivity (RD), and changes in white matter 

structure were found in the episodic memory network that highly overlaps with the DMN.  These 

changes were coupled with improved cognitive scores on associative memory tasks.  

Interestingly, while increased FA and lower RD was associated with better performance at 

baseline, a reversal of these indices in the two-year time-period was connected to positive 

changes in cognition.  While the longitudinal design gives a unique insight into the WM changes 

over time that concur with cognitive improvements, individual genetic and environmental 

influences in network structure (e.g. APOE status and PA status) were not considered in the 

analyses.   
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Section 2.2: Resting State Functional Connectivity 

Subsection 2.2.1: General Description 

Functional connectivity is a method to study spatial and temporal properties of brain 

regions using the spontaneous BOLD activity that stems from the brain’s energy metabolism 

(Fox & Raichle, 2007).  While much of the original fMRI research focused on task based 

activations, there is less than a 5% change in signal induced by tasks (Raichle & Mintun, 2006).  

This change in signal is independent and additive to the underlying spontaneous activity.  Most 

of the signal, with accounts for 20% of the total body energy metabolism, is accounted for by the 

‘resting’ brain (Fox & Raichle, 2007; Raichle, 2011).  This signal of the resting brain can be 

distinguished from cardiac and respiratory noise factors because of its 1/frequency distribution:  

there is greater power to detect this signal at lower frequencies (Zarahn, Aguirre, & D'Esposito, 

1997).  Noise has a flat power density function: there is an equal distribution across frequencies.  

During the beginning of fMRI usage, the signal during this resting state was considered to be 

noise, yet consistent findings in the functional connectivity research find that brain regions 

known to be functionally related tend to have correlated spontaneous BOLD activity (Fox & 

Raichle, 2007).  Repeatedly, complex systems that have been identifies using various task 

paradigms also demonstrate this correlated spontaneous BOLD activity, and this connectivity 

survives different states of task, sleep, and anesthesia. Differences in functional connectivity 

have been associated with variability in human behavior (Fox & Raichle, 2007).   

Functional connectivity has been described as an interesting window on the underlying 

synchrony of neuronal process (Varoquaux & Craddock, 2013). While these signals are 

meaningful, the underlying physiology explaining these signals is still unknown.  It is believed to 
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have a different underlying physiology than task based induced BOLD.  Nitric oxide synthesis 

blocker successfully blocked stimulus-related increases in blood flow, but the spontaneous 

BOLD was unchanged (Golanov, Yamamoto, & Reis, 1994). 

One must be careful about how functional connectivity is interpreted.  While correlations 

of spontaneous activity do exist in neuro-anatomical systems, this analysis technique is unable to 

distinguish direct anatomical pathways and polysynaptic pathways (Fox & Raichle, 2007).  The 

particular parcellation for the connectivity analysis also will determine the conclusions that may 

be made from the results, and current parcellations are on the macroscopic, not neuronal, scale.  

(de Reus & van den Heuvel, 2013).    

Currently, there are three predominate theories to explain the role of spontaneous BOLD. 

First, it is a record or memory of previous use (D. J. Foster & Wilson, 2006; Kenet, Bibitchkov, 

Tsodyks, Grinvald, & Arieli, 2003) .  Thus, regions that are activated for the same task will have 

spontaneous correlations during no task.  Secondly, the organization and coordination of 

neuronal activity will be greater in areas that are routinely enrolled in similar tasks, and this is 

reflected in the spontaneous signal (Salinas & Sejnowski, 2001; Shatz, 1996).  Finally, a theory 

that is gaining more experimental support is that the coordinated spontaneous activity is a 

prediction of expected use and not a record of past use (Körding & Wolpert, 2006; Pouget, 

Dayan, & Zemel, 2003).   

Despite the uncertainly on the function of spontaneous BOLD, resting state connectivity 

is quickly becoming a marker for diagnostic and prognostic information (Fox & Raichle, 2007).  

Differences in the intrinsic activity structure have been found in Alzheimer’s disease, multiple 

sclerosis, depression, schizophrenia, ADHD, autism, epilepsy, blindness, and spatial neglect 

following stroke (Fox & Raichle, 2007).   
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In this dissertation, the subject area is aging and Alzheimer’s disease.  A vast amount of 

research is being done studying the functional connectivity changes that are due to physiological 

and pathological reasons.  In fact, resting state functional connectivity is emerging as a new 

biomarker that may potentially be more sensitive to neuronal network integration and function 

that is necessary for higher level cognition and so horribly attacked in AD.  This method has 

been used to identify network differences before the presentation of any cognitive difficulties in 

individuals at risk for AD in older adults (Sperling et al., 2011), and is emerging as a viable 

method to detect the efficacy of treatments in patients with AD (Goveas et al., 2011; Li et al., 

2012). 

Resting state functional connectivity has been used to test the efficacy of drug 

interventions in mild AD.  Basal forebrain medial cholinergic pathways are altered in aging and 

AD, and acetylcholinesterase inhibitors, such as donepezil, are administered to reinstate the 

cholinergic innervation.  Areas of increased blood flow in the medial cholinergic pathway after 

12 weeks of donepezil treatment have also been found to have increased functional connectivity 

(Li et al., 2012). The hippocampal network is an area of high cholinergic innervation, and 12 

weeks of donepezil have increased the connectivity between the hippocampus, insula, and 

thalamus (Goveas et al., 2011). In these drug treatment interventions, increases in connectivity 

were associated with increases in the AD rating scale – cognitive subset. 

Subsection 2.2.2:  Methods to Measure Functional Connectivity 

In the seed based approach to functional connectivity, the time course from one region of 

interest, the seed, is extracted.  This time course is then correlated with the rest of the brain, and 

the assumption is that a correlation in the time series indicates that the spatially separate brain 

regions are functionally connected.  It is important to remember that the correlations are 
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truncated, thus not normally distributed, and typically a Fisher to z transformation is performed 

before the statistical analysis steps. In one sense, this method is very simple and yet has a very 

straightforward interpretation (Fox & Raichle, 2007).   In resting state research, the seed based 

approach is the most common method employed, and comparisons between studies are possible.  

As a result of the simplicity, there are weaknesses to this method.  The results do depend on the 

choice of seed, and it is possible that the seedtime course is not statistically independent from the 

remaining time courses in the brain.  Importantly, multiple brain systems cannot be 

simultaneously studied (Fox & Raichle, 2007), and it is impossible to make conclusions about 

networks (Habeck & Moeller, 2011). Despite the weaknesses, when the research question 

concerns the connectivity of one region of interest, this is an appropriate approach. 

In fMRI research, methods exist to account for the mass univariate testing in the 

statistical analysis steps.  Multiple comparisons are an issue as the data most often includes more 

than 80,000 voxels.  The most typical method in the seed based approach to account for this 

issue is by using cluster extent thresholding (Woo, Krishnan, & Wager, 2014).  From an arbitrary 

primary threshold, clusters of contiguous voxels with a voxel-wise statistic value above this 

threshold are detected.  The false positive probability of this region as a whole is controlled and 

not for each voxel.  This limits how many comparisons are done.  The family-wise error rate is 

obtained from a sampling distribution of the largest null hypothesis cluster size among the 

suprathreshold voxels within the brain.  This method had relatively high sensitivity and 

dramatically decreases the type II errors likely with Bonferroni corrections.  Unfortunately, many 

researchers then make conclusions that are not supported by this statistical correction (Woo et 

al., 2014).  The null-hypothesis for this test is that there is no significant correlation with any 

voxel in that cluster. Thus, the rejection of the null hypothesis is that there is a correlation with at 
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least one voxel in that cluster, and the cluster-level p value is the probability that there is a 

correlation somewhere in the cluster. Yet, many papers exist claiming correlations with an entire 

cluster that covers several anatomical regions (Woo et al., 2014). 

Independent component analysis (ICA) or principal component analysis (PCA) is a data 

driven approach to analyze resting state networks with functional connectivity (Fox & Raichle, 

2007).  In this method, linear combinations of multiple effects are unmixed and spatial maps are 

created that capture functional networks or noise.  This method assumes that brain networks are 

mutually orthogonal, and it is a very useful method for isolating sources of noise and for data 

reduction (Habeck & Moeller, 2011).  Statistically, the signals is decomposed so that the 

components are maximally independent (Fox & Raichle, 2007).  Despite these strengths, there 

are some difficulties in the interpretation of this method, and due to these issues, the resulting 

components may not be intrinsically meaningful.  Additional evidence needs to be provided for 

these analysis (Habeck & Moeller, 2011). One of the major issues stems from the dependence of 

the results on the number of components the algorithms is requested to find, and the 

determination of which components reflect neuro-anatomical systems or noise depends entirely 

upon the user (Fox & Raichle, 2007).  This method assumes orthogonal or independent 

networks, but that in fact may not be the case.   

Brain networks are complex systems, and many complex systems are represented 

mathematically as a network defined by a collection of nodes (vertices) and links (edges) 

between pairs of nodes (Rubinov & Sporns, 2010).  These networks can be quantified into single 

metrics that limit multiple comparison issues.  The first step is to define these nodes that can be 

determined in using several methods (Bullmore & Sporns, 2009), and the result of the 

subsequent metrics depends greatly on the node selection( N : number of nodes).  The 
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assumption is that these nodes are spatially separate and cover the entire cortex  (Rubinov & 

Sporns, 2010) and match functional units (Varoquaux & Craddock, 2013).  Once nodes are 

determined, the second step is to define the association between these nodes (Bullmore & 

Sporns, 2009).  The most common method for determining an association between nodes is 

correlation measures, but time series are dynamic and time sliding windows are also used to 

capture the dynamism of the signal.  Whether a link exists between two nodes is determined by 

thresholding (Rubinov & Sporns, 2010), and this is part of step three.  An association matrix is 

generated from all the pairwise associations, and each element has an arbitrary threshold applied 

to produce a binary or undirected adjacency matrix (NxN) (Bullmore & Sporns, 2009).  The final 

step is to calculate the network parameter that is of interest to the research question and compare 

this parameter to a population of random networks with equivalent network characteristics such 

as number of nodes, links, and the degree distribution (Rubinov & Sporns, 2010).  Rubinov and 

Sporns (2010) provide mathematical definitions of several network metrics, and Table 1 defines 

terms used in this paper. 
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Table 1: Definition of Network Terms 

Centrality A measure of how central or influential a node is relative to the rest of 

the network. 

 

Clusters Densely interconnected groups of brain regions. 

 

Degree distribution The summarization of all the node degrees across a whole network. 

 

Edge  Pairs of nodes are linked by edges, also called links or connections. 

 

Global efficiency A measure of functional integration that is the average inverse shortest 

path length.  

 

Hubs Hubs may be identified on the basis of several network measures, 

including high degree, short average path length, or high betweenness 

centrality.  

 

Local efficiency A measure of functional segregation:  efficiency within a module.  

 

Modularity Degree to which a given network can be decomposed into a set of 

non-overlapping, overlapping, or hierarchically arranged modules.  

 

Motif  A small subset of network nodes and edges, forming a subgraph. 

 

Network Set of nodes (elements) and edges (relations).  

 

Node A network element which may represent a neuron, a neuronal 

population, a brain region, a brain voxel, or a recording electrode.  

Nodes are also referred to as vertices. 

 

Node degree The number of connections (incoming and outgoing) that are attached 

to a given node.   

 

Path length In weighted graphs, the length of the path is the sum of the edge 

lengths, which can be derived by transforming the edge weights. 

 

Small worldness A property of networks that combines high clustering with a short 

characteristic path length compared to a population of random 

networks composed of the same number of nodes and connections. 

Definitions from “Networks of the Brain” by Olaf Sporns (2011). 

The assumption in graph network studies is that all networks found in natural and 

technological systems have non-random features that deviate from randomness.  These deviation 
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reflects the specific characteristics and functionality of that network (Bullmore & Sporns, 2009).  

Thus, the final step in complex network measures is to generate statistics calculated on null-

hypothesis random networks that share the basic network characteristics.   There are many 

strengths to this method, and it is quickly becoming the method of choice for research studies 

investigation functional connectivity and networks (Rubinov & Sporns, 2010).  Network 

measures have shown consistent overlap of anatomical and functional modules in the macaque 

cortex, and complex brain networks can be reliably quantified with easily computable measures 

that are neurobiologically meaningful (Rubinov & Sporns, 2010).  Small-worldness, and other 

large-scale organizational aspects of network are consistent across different anatomical 

parcellation templates. 

In fact, differences between individual subjects network characteristics were preserved 

across several parcellation templates when there were more than 200 nodes (de Reus & van den 

Heuvel, 2013).  In a study using computational modeling of a macaque monkey cortex using the 

structural anatomy as a substrate for spontaneous activity, structural-functional connections were 

consistent at multiple time scales (Honey et al., 2007).  The computationally induced episodes of 

synchronization were consistent with experimental observations, and the models suggest that the 

cortical resting state consists of multiple time scale oscillations that are shaped by the anatomical 

structure.  While the BOLD signal reflects spontaneous fluctuations at a slow time scale 

(~0.10Hz), these observations may be an aggregate of many couplings and decouplings that 

occur at a far more rapid pace (~10Hz).   

Despite the strengths of this method, there are weaknesses that must be acknowledged 

and addressed in research studies employing network measures.  Networks using different 

parcellation schemes or network order (N) will not result in identical numerical values of 
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network measures and cannot be quantitatively compared (de Reus & van den Heuvel, 2013; 

Rubinov & Sporns, 2010).  Additionally, links are the result of arbitrary thresholding and results 

are most informative is shown across a range of thresholds (Rubinov & Sporns, 2010).  

Currently, in the mathematical definitions of network measures, negative weights (as a result of 

negative correlations) are not able to be quantified and thus are currently discarded (Rubinov & 

Sporns, 2010).  Anatomically, nodes that are in structurally confined areas will have a lower 

degree distribution, and thus a lower probability of high degree nodes, due to their limited 

capacity of making connections (Bullmore & Sporns, 2009; de Reus & van den Heuvel, 2013). 

The weaknesses of graph theory do not discredit the method, but rather are important to 

understand to develop appropriate methods for particular research questions and inform the 

researcher on the conclusions that can be made from the results.  For instance, while a greater 

number of nodes allow for greater special resolution, the researcher must be aware that this 

increases the probability of measuring intrinsic smoothness inducing spurious connections (de 

Reus & van den Heuvel, 2013).  While the practice of comparing structural and functional 

connectivity networks is quickly gaining group, there are innate differences in network density 

(functional networks will have greater density) that makes direct comparisons difficult.   

The differences in sparsity must be addressed when comparing systematic differences 

between groups.  One method to address such sparsity differences is to apply different link 

thresholds for each matrix (de Reus & van den Heuvel, 2013).  Neurobiological interpretation of 

network topology depends on the parcellation scheme (either anatomical, randomly generated, 

voxel based) and the determination of links (de Reus & van den Heuvel, 2013; Rubinov & 

Sporns, 2010), and the choice of parcellation should be related to the research questions.  
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Normalization is a key step in graph theory analysis.  This is due to the fact that there are 

both intrinsic and transient structures in a network, and it is the intrinsic structures that are of 

interest to the researcher (Zalesky, Fornito, & Bullmore, 2012).  Using correlation as a 

connectivity measures inherently gives rise to more clusters than random networks due to the 

transitive property (Zalesky et al., 2012).  This is due to indirect paths and their corresponding 

direct connections are more likely to both be present in the link measure, while in a randomly 

generated network these would not be both present.  Measures of small-worldness, such as 

modularity, efficiency, and centrality, will all be influenced by the transitive nature of correlation 

measures (Zalesky et al., 2012).  One must be aware that small-world networks can be 

overestimated.  Ensuring that the random networks generated also have the transitive nature will 

give credence to the network measures generated from the data (Zalesky et al., 2012).  

The calculation of the network measure of interest, F, in the observed network, captures 

the networks intrinsic and transient structure.  Fnull is the same network measure calculated for 

the null hypothesis.  This is generated from the repeated calculations of the F measure averaged 

over a collection of generated random networks, and Fnull should capture only the transient 

structure.  Thus, when normalization is performed, F/Fnull will result in a network measure that 

only reflects the intrinsic structure of the network.   

One of the major benefits of using network measures in research is that it limits mass-

univariate testing.  The number of tests performed “scales” as the number of regions used, and 

thus correcting for these multiple comparisons will greatly reduce the statistical power of finding 

real differences (Varoquaux & Craddock, 2013).  A less stringent method is to control for the 

false discover rate (FDR), but often the assumptions needed to apply FDR are not met 

(Varoquaux & Craddock, 2013).   
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By using a network approach with resting-state fMRI, a unified approach to the neural 

substrates of cognition may be investigated (Voytek & Knight, 2015) across aging and disease 

states that is not possible with basic task activation studies.  There is difficulty in studying the 

changes of structural connections across the lifespan because of the changes in myelination that 

occur adds difficulty to diffusion tensor imaging interpretations, but observational captures of the 

spontaneous neuronal activity is important in understanding the development of the brain 

(Sporns, 2011) and how it naturally compensates to neurological disruption (Hillary et al., 2014; 

Hillary et al., 2015).  The brain has been called the most complex organism in the universe, and 

it is only logical to use complex network analysis when trying to comprehend the amazing 

dimensions of the organ that sits in our own heads.   

As with any approach, strengths and limitations must be understood and used properly in 

interpretation of results.  Models should be chosen to match the question being asked in the 

situation at hand (Varoquaux & Craddock, 2013).  As George Box has said, “All models are 

wrong; some models are useful.”   

Subsection 2.2.3:  Using resting state functional connectivity to understand the role of the 

hippocampus, fronto-parietal network, DMN, and changes due to aging and AD. 

Resting state functional connectivity and the many models using this concept have provided 

researchers with important insights into how the brain develops, operates, and changes due to 

aging and pathologies.  Simple correlation measurements between ROI’s have revealed the 

importance of the connectivity of the PCC and hippocampus in episodic memory.  Wang et al. 

(2010) found that greater connectivity between the PCC and hippocampus was associated with 

better performance on a face/name recall task involving episodic memory.  Wang et al. (2010) 

also investigated the importance of inter-hemisphere connectivity and memory performance.  
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Greater bilateral hippocampus connectivity was associated with better performance on a word 

recall task.  This was not a global connectivity effect as the hippocampus connectivity 

correlation was much more significant than the inter-hemisphere connectivity of the motor 

cortex.   

Aging and development also alters the fronto-parietal network as shown through resting 

state functional connectivity studies.  Fair et al. (2009) was able to demonstrate that fronto-

parietal network brain regions that are closely segregated in childhood become more diverse as a 

young adult. In this sample, the connectivity strength decreased in local regions and becomes 

stronger with regions further away anatomically in young adults and this appeared to be true 

across several networks.  Archard and Bullmore (2007) found decreases in global efficiency 

(thus an increase in path length) in adults over the age of 60.  While small-worldness is 

maintained across the lifespan, a rebalancing of functional segregation and integration occurs 

through childhood development, and young, middle, and late adulthood, and this rebalancing is a 

possible neural substrate for cognitive changes (Sporns, 2011).   

In the DMN, young children have very sparse anterior-posterior connections that are 

highly connected in young adults (ages 21-31) (Fair et al., 2008). These are the same connections 

that are disrupted with aging (Andrews-Hanna et al., 2007), and as mentioned previously, these 

aging effects are synergistically devastating when coupled with AD pathology (Buckner, 2004).  

An intervention, such as physical activity, that protects these connections will have vast benefits 

to the growing aging population. 

In the AD literature, resting state functional connectivity is emerging as a viable 

biomarker to detect changes before clinical symptoms emerge (Sperling et al., 2011).  Hedden 

(2009) investigated the activations in the DMN and hippocampal network in PiB+ (amyloid 
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deposition at levels of those with AD) and PiB- healthy older adults.  PiB+ older adults had 

similar hypo activity as found in MCI patients - that included a decreased deactivation of the 

DMN areas during the task.  This decreased activation correlated to a decreased connectivity of 

the hippocampus with the PCC.  These results could not be explained by atrophy or age, and it 

was network unique – similar differences in connectivity were not found in the visual cortex.  

Drzezga (2011) investigated cluster loss (as measured by voxel wise whole brain connectivity) in 

healthy elders PiB-, healthy elders PiB+, and MCI with PiB+ results  The healthy PiB- adults 

showed similar cluster (also called hub) distribution as young adults in a study performed by 

Buckner et al. (2009), but the PiB+ group had significant loss of clusters in the PCC and angular 

gyrus regions.  The MCI group had an absence of clusters in the PCC, angular gyrus, and 

disrupted cluster distribution in the temporal memory related regions. These results could not be 

explained due to atrophy. These disruptions are similar to what is found in patients already 

diagnosed with AD.  Sans-Agrita (2010) measured functional connectivity using clustering from 

graph theory to compare cognitively healthy older adults and AD patients.  There was a 

significant loss of global integration, and the AD presented clustering closer to a random 

network.   These pre-clinical studies illustrate that communications between brain areas are 

disrupted and network alterations occur before clinical symptoms appear.  This network 

approach allows for such preemptive detections and perhaps more effective treatments.   

 

[More information on network disruptions on the AD continuum are included in Chapter 3]. 

 

Subsection 2.2.4:  Effects of APOE-ε4 on Network Connectivity 

Healthy adults with the APOE-ε4 allele have consistently been shown to have 

deficiencies in episodic memory (Wisdom, Callahan, & Hawkins, 2011), and this coincides with 
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disruptions in the connectivity of the hippocampus, disruptions in the DMN, and disruptions in 

the fronto-parietal network – all of which are involved in episodic memory.  Harrison et al. 

(2016) measured the connectivity differences of the subregions of the hippocampus in APOE-ε4 

carriers (n = 34)  and non-carriers (n = 46) during an associative memory task.  Carriers were 

found to have lower function connectivity of the anterior hippocampus with several regions of 

the DMN during encoding and retrieval.  This is consistent with the theory that the AD 

progression begins in the anterior regions, the EC, of the hippocampus.  Heise et al. (2014) found 

an overall reduction of the functional connectivity between the hippocampus and PCC in female 

APOE-ε4 carriers.  This was found in a sample of 86 cognitively healthy adults (age range = 30 

– 78).  This reduction in functional connectivity was accompanied with increased MD, DA, and 

DR in the white matter of left and right cingulum tracts.  No measures of PA were included in 

this study. 

Goveas et al. (2013) conducted a seed based analysis in middle age adults (age range 45 – 

60) in APOE-ε4 carriers (n = 20) and non-carriers (n = 26) to investigate the communication of 

the hubs of the fronto-parietal network and the DMN.   The PCC was used as the seed for the 

DMN, and the dorsolateral prefrontal cortex was used as a seed for the fronto-parietal network.  

In both networks, carriers had diminished functional connectivity, and this was in subjects 

without cognitive decline or gray-matter atrophy.  In another study investigating internetwork 

communication, Chen et al. (2015) found significant loss of small worldness (as measured by 

pathlength) in the functional connectivity networks in APOE-ε4 allele carries as compared to 

non-carriers in cognitively healthy older adults. This was due primarily to the loss of 

connectivity in the PCC.    
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Healthy adults with the APOE-ε4 allele have similar disrupted functional connectivity of 

the precuneus, as those on the AD progression (Sheline et al., 2010).  In 100 cognitively intact 

older adults (CDR=0) without amyloid plaque buildup or decreased CSF A42, APOE-ε4 carriers 

had greater connectivity of the precuneus than APOE-ε4 negative adults with the medial 

prefrontal cortex and BA10 (Sheline et al., 2010). The APOE-ε4 carriers also had negative 

correlations with the caudal oribital cortex and dorsal occipital cortex (BA19), while the non-

carriers had positive correlations.  The non-carriers had negative correlations and the APOE-ε4 

carries had positive correlations with the following areas:  right gyrus rectus, right hippocampus, 

and left superior temporal gyrus/frontoparietal operculum (BA22).  Thus, with a few exceptions, 

the APOE-ε4 positive, cognitively intact adults, show increased connectivity of the precuneus 

with brain regions in the DMN compared to low risk groups (Fleisher et al., 2009; McKenna et 

al., 2015; Sheline et al., 2010).  While tempting to infer that increased connectivity is a negative 

outcome and an indicator of decline because of the association with at risk populations, this 

increased connectivity in the DMN has been shown to correlate with improved episodic memory 

performance in ε4 carriers (Matura et al., 2014). In fact, increased connectivity appears to be a 

compensatory response to neuronal disruption (Hillary et al., 2015).  Interventions that increase 

the connectivity of the precuneus with the DMN may in fact be increasing the brains ability to 

compensate to neuronal disruption. Consequently, however, when age increases and AD 

pathology develops, these carriers may not be able to further compensate and this may explain 

the increased incidence of AD in APOE-ε4 carriers. 

Resting state functional connectivity is a viable method for detecting the neuronal 

substrates of changes in cognitive abilities across the lifespan and in APOE-ε4 carriers.  Simple 

correlations between hub regions, network level metrics, and node degree have all provided 
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insights into the brain connections that enhance cognition.  Factors that protect or augment these 

connective properties will aid in preserving the cognitive abilities of our growing older 

population.  In the following sections, evidence that physical activity is a candidate protective 

factor against detrimental aging effects and alterations in the connectivity patterns of APOE-ε4 

carriers is presented.      

Section 2.3: Protective Effects of Exercise 

Subsection 2.3.1:  Evidence for Protection in Healthy Aging 

There is accumulating evidence that higher levels of physical activity offer protection 

against cognitive decline in older adults. Etgen et al. (2010), as part of the prospective cohort 

INVADE study, published results from 3,903 cognitively intact adults over the age of 55 years. 

These participants took the 6-Item Cognitive Test cognitive test, similar to the Mini Mental State 

Exam, at baseline and again two years later.   Physical activity (PA) was assessed by simply 

asking the participants the number of days they participated in strenuous physical activity.  The 

subjects were divided into three PA groups:  no PA (no regular PA), moderate PA (less than 3 

times per week) and high PA (3 or more times per week).  At baseline, 418 participants were 

classified with cognitive impairment.  Across the entire cohort, the risk of developing cognitive 

impairment was significantly reduced in the high and moderate PA groups as compared to the no 

PA group (odds ratio[OR] 0.57, 0.37-0.87 95% confidence interval [CI], p = 0.01, and OR, 0.54, 

95% CI, 0.35-0.83, p = 0.005, respectively).  When further analysis was done on the participants 

without prodromal phase dementia or cognitive impairment, the reduction was even greater for 

the high PA and moderate PA groups (OR, 0.44, 95% CI, 0.24-0.83, p = 0.01, and OR, 0.46, 

95% CI, 0.25-0.85, p = 0.01, respectively).   While the large sample size and measurement of 
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many cardiovascular health measures added to the strength of this study, conclusions about the 

mechanisms of this protective effect cannot be addressed.  Additionally, while the 6-Item 

Cognitive Test has been indicated to be sensitive to mild cognitive impairment and correlates 

well to the Mini Mental State Exam, it is not a comprehensive neuropsychological exam, and 

specific memory domains and cognitive functions are not measured.    

   Middleton et al. (2010) found in 9,344 women over the age of 65 who self-reported 

activity during teenage years had a reduced incidence of cognitive impairment, as defined by 1.5 

standard deviations below the age group mean.  Additionally, women who reported becoming 

active later in life also had a lower incidence of cognitive decline than those who remained 

inactive throughout their life.  Thus, the findings indicated that physical activity at any point 

during the life span reduced the risk of cognitive impairment.  Middleton et al. (2011) also used 

more objective measures of total physical activity to correlate with reduced incidence of 

cognitive decline.  Activity energy expenditure was calculated using doubly labeled water to 

measure total energy expenditure and indirect calorimetry to measure resting metabolic rate.  In 

the 197 men and women in the study, there was a significantly reduced incidence of cognitive 

decline in those in the highest tertile of activity expenditure compared to the lowest tertile.  

Cognitive decline was defined as a reduction of 1 standard deviation on the Mini Mental State 

Exam at the 2-year or 5-year follow up. 

As part of the Canadian Study of Health and Aging, Laurin et al. (2001) found that 

participants in the 4,615 person sample with a self-report of high or moderate sessions of leisure 

time activity at least 3 times per week  had a reduced risk of Alzheimer’s disease compared to 

those that reported no activity.  Scarmeas et al. (2009) found that in a prospective cohort study 

comprising of 1,880 older adults that were initially cognitively healthy, 282 incidents of 
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Alzheimer’s disease were documented in an average follow up of 5.4(3.3) years.  Adherence to a 

Mediterranean diet and physical activity were independently had a reduced hazard ratio 

compared to not adhering to the diet or no physical activity.  The combination of diet adherence 

and physical activity also resulted in a lower hazard ratio compared to no diet adherence and no 

physical activity.  Buchman et al. (2012) found total daily physical activity was associated with a 

reduced incident of Alzheimer’s disease in 716 older adults who wore wrist activity monitors and 

followed for 4 years. 

In a review of physical activity studies in cognitively healthy older adults, increases in 

physical fitness have corresponded to improvements in executive control and cognitive 

inhibition, but the results were varied in the exact cognitive functions that were improved, and 

several studies had no significant result (Angevaren, Aufdemkampe, Verhaar, Aleman, & 

Vanhees, 2008).  Despite the fact that consistent cognitive improvements were not observed, the 

benefit of physical activity extends into the realm of cognitive reserve.  The functional definition 

of cognitive reserve is the ability to effectively recruit brain networks (Habeck et al., 2003; 

Scarmeas et al., 2003; Stern, 2003; Stern et al., 2005), which suggests PA may be changing the 

organization of the networks in a protective manner, independent of any behavioral effects on 

cognition. 

The hippocampus is a focus of many research studies attempting to explain the protective 

effects of PA.  Erickson et al. (2011) measured changes in hippocampal volume in a randomized 

controlled study in 120 older adults.  Subjects in the moderate exercise group demonstrated a 2% 

volume increase in the anterior hippocampus after 12 months of aerobic exercise compared to 

subjects in the stretching control group.  This effectively delayed age-related decline in the 

hippocampus volume by 1 to 2 years, and the hippocampal volume increase in the exercise group 
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was correlated with improvement on spatial learning tasks [left hippocampus; r = 0.23, p < 0.05; 

right hippocampus: r = 0.29, p < 0.02].  The spatial learning task consisted of a computerized 

program requiring the participants to remember the location of one, two, or three black dots on 

the screen. Subjects with higher initial fitness in the controlled group had an attenuated decline in 

hippocampal volume compared to the low fitness controlled group members.   Pereira et al. 

(2007) provided a proxy in vivo measurement in rats of exercise induced neurogenesis in the 

hippocampus by correlating BrdU labeling of neurogenesis with increased cerebral blood volume 

MRI measurements in the hippocampus.  Eleven healthy human subjects, 21 – 44 years old, 

participated in a 12-week running program and demonstrated similar increases in hippocampal 

cerebral blood volume.  More recently, Kleemeyer et al. (2016)  found increased fitness was 

associated with increased hippocampal volume in older adults.  These effects have also been 

found in middle adulthood (Thomas et al., 2016), and yet six weeks of no aerobic activity was 

enough time for the hippocampus to return to baseline volumes.   

While increased hippocampal volume does induce great excitement as a mechanism for 

the protection against cognitive decline and AD, few tests have been done to assess the 

functionality of new neurons in the hippocampus after PA interventions.  Additionally, memory 

engrams are not contained solely in the hippocampus but is spread throughout the cortex and 

require healthy connections to cortical regions. 

As a response to the requirement of healthy connections to serve brain function and 

higher-level cognition, several recent studies have investigated the connection between WM 

structure and PA or physical fitness.  The fact that evidence suggest WM changes can occur 

quickly and are accompanied with cognitive improvements (Engvig et al., 2012; Hofstetter, 

Tavor, Tzur Moryosef, & Assaf, 2013; X. Wang, Casadio, Weber, Mussa-Ivaldi, & Parrish, 
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2014) is a strong indicator that this may be the mechanism by which physical activity protects 

against age related cognitive decline and alters resting state brain networks.  Oberlin et al. (2016) 

found VO2max, a measure of cardiorespiratory fitness, was associated with WM microstructure 

corona radiate, anterior internal capsule, fornix, cingulum, and corpus callosum in two 

experiments (N = 113, mean age = 66.61, and N = 154, mean age = 65.66).  They found higher 

VO2max correlated with greater FA values in these tracts, and a mediation analyses revealed these 

tracts established an indirect path between VO2max and spatial working memory performance.  

While the samples were from randomized controlled exercise intervention trials, only baseline 

measurements were included in this paper.  Additionally, while this study had consistent results 

across samples, they did not measure APOE-ε4 status.  Smith et al. (2016) did investigate the 

interaction of APOE-ε4 status and physical activity on white matter microstructure in healthy 

older adults (N = 88, age range = 65 – 89).  Interaction of APOE-ε4 status and PA levels 

(measured using self-report questionnaire) were found in many white matter tracts.  In tracts 

related memory, higher FA and lower RD were associated with greater levels of PA in older 

adults without the APOE-ε4 allele, but sedentary ε4 positive older adults had higher FA values 

and lower RD values than the active ε4 positive older adults.  The sedentary ε4 positive group 

had shown decline in episodic memory during a previous 18-month period, yet they had similar 

directional FA and RD values as the APOE-ε4 negative group that did not show decline. 

 In a review of fMRI studies investigating PA, WM, and age, Sexton et al. (2016) found 

that these studies emphasize the between subject variability in WM measures.  Reviews on PA’s 

effect on grey matter in the brain consistently show increased volumes in the hippocampal and 

prefrontal regions (Erickson, Weinstein, & Lopez, 2012), yet the directionality of WM 

microstructure and locations of these changes are inconsistent (Sexton et al., 2016).  A common 
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interpretation of these inconsistencies in the literature is that DTI measures of WM do not only 

measure the integrity of the white matter but are also influenced by the directionality of the fibers 

in each voxel, and that these changes are indicative of unique reorganization of these tracts 

(Bender et al., 2016; Johansen-Berg, 2012; Sexton et al., 2016; J. C. Smith et al., 2016).  The 

directionality of the white matter fibers and the instance of crossing fibers influence the 

eigenvectors in each voxel that are used to calculate RD and DA (Wheeler-Kingshott & 

Cercignani, 2009), and FA is inversely related to RD and DA.  The individualistic development 

of networks influenced by intrinsic and extrinsic factors (example genetics and PA) (Sporns, 

2011) make white matter fibers a heterogeneous arrangement. Thus, WM tracts vary across 

people in their interconnections and crossing fibers, despite having a common primary 

architecture.  In fact, crossing fibers construct 60-90% of voxels in WM (Jeurissen, Leemans, 

Tournier, Jones, & Sijbers, 2013; Vos, Jones, Jeurissen, Viergever, & Leemans, 2012).  The 

inconsistent findings of PA on DTI measurements of WM do match the network approach to the 

brain and would be explained by re-organization of the white matter fibers rather than solely due 

to changes of the myelination.  An area that still needs to be addressed is that the development of 

the networks, and the genetic and environmental influences, PA being the primary environmental 

variable of interest, on these networks, needs to be studied over the entire lifespan.  

Subsection 2.3.2:  Protection in Older Adults at Risk for Alzheimer’s Disease 

Two of the risk factors for AD are a diagnosis of mild cognitive impairment and the 

APOE-ε4 allele, and several studies have shown PA or exercise training has a protective effect in 

subjects with these risk factors.  MCI is a classification for older adults with memory decline that 

do not yet meet the criteria for AD (Petersen, 2004; Petersen et al., 1999). Within 5 years 50% of 

these individuals progress to AD (Gauthier et al., 2006).  In 179 subjects meeting the criteria for 
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MCI, higher physical activity scores reduced the risk of conversion to dementia over an average 

2.59 year follow up (Grande et al., 2014).  Individuals diagnosed with MCI were also 

investigated by Smith et al. (2013).  Healthy elders and those with MCI (total of 33 subjects) 

underwent a 12-week walking intervention that improved VO2peak by about 10%.  A semantic 

memory task was performed in the MRI before and after the exercise intervention.  Both the 

healthy elders and the MCI seemed to improve neural efficiency as demonstrated by decreased 

activation when comparing familiar vs. unfamiliar activations during correct responses.  Both 

groups also improved in trial 1 learning of the RAVLT.   In this same sample, increased fitness 

scores were correlated with increases in cortical thickness (Reiter et al., 2015).  In two other 

intervention studies with similar sample sizes, one study found cognitive improvement only in 

the women (Baker, Frank, Foster-Schubert, Green, Wilkinson, McTiernan, Plymate, et al., 2010), 

and the other found no cognitive improvement at all (Miller et al., 2011).   These results 

exemplify what a meta-analysis of random controlled exercise training studies in MCI found – 

inconsistency in cognitive improvements (Gates, Fiatarone Singh, Sachdev, & Valenzuela, 

2013).  This does not indicate that the interventions with no cognitive improvements were 

ineffective, however.  It is plausible that unmeasured alterations to networks occurred, despite 

small or no behavioral changes.  The need for functional connectivity studies to be done in MCI 

with exercise interventions would address this possibility.   

The APOE-ε4 allele is a genetic risk factor for sporadic AD (Corder et al., 1993), and 

evidence is starting to amass that indicate PA has a strong protective effect in individuals with 

this particular allele (J. C. Smith, K. A. Nielson, J. L. Woodard, et al., 2013).  Woodard et al. 

(2012) conducted a longitudinal study investigating the interactive effects of cognitive activity, 

hippocampal volume, APOE status, and physical activity levels on cognitive decline.  Cognitive 
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decline was defined as one standard deviation below a baseline measurement on the Dementia 

Rating Scale (a measure of global cognitive functioning), or the Rey Auditory Learning Test 

Immediate Recall or Delayed Recall (a measure of learning capacity and episodic memory). 

Hippocampal volume, APOE status, self-reported cognitive activity (such as creative writing or 

reading), and self-reported physical activity were collected at baseline, and after 18 months, 

neuropsychological testing was repeated.  The researchers found a significant interaction effect 

of APOE-ε4 status and physical activity levels in predicting cognitive decline.  Subjects with the 

APOE-ε4 allele and low physical activity had a higher likelihood of cognitive decline than 

subjects with the APOE-ε4 allele and high physical activity. Interestingly, reported cognitive 

activities did not predict decline nor interact with PA or APOE genotype.  Schuit et al. (Schuit, 

Feskens, Launer, & Kromhout, 2001) followed 560 Dutch men over 3 years, and the odds ratio 

for cognitive decline was greater for APOE-ε4 carriers compared to non-carriers  [OR: 3.7, 95% 

CI: 1.1–12.6].  However, in the APOE-ε4 group, higher self-reported levels of PA greatly 

decreased the odds ratio compared to carriers with lower levels of self-reported PA [active 

carriers as reference group, OR:3.9, 95% CI: 1.2–12.9]. 

In unique studies investigating the interaction of self-reported PA and the APOE on fMRI 

semantic memory activation(J. C. Smith et al., 2011) and hippocampal volume changes in 

cognitively healthy older adults (J. C. Smith et al., 2014), subjects were classified by their 

genotype (High Risk – having at least one ε4 allele) and by their PA (High PA, leisure time 

physical activities 3 or more times per week).  The High Risk/High PA group had the greatest 

activation during the semantic name task, and these activations appear to be protective.  After 18 

months, the Low Risk (both high and low PA) maintained hippocampal volume, as well as the 

High Risk/High PA subjects.  However, the High Risk/Low PA group decreased hippocampal 
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volume by 3%.  Head et al. (2012) also investigated the interaction between PA and APOE status 

in cognitively healthy older adults.  Subjects with the APOE-ε4 allele positive or negative were 

classified as high or low PA using self-report.  While overall the ε4 positive subjects had higher 

amyloid burden (part of the AD pathology) as measured by PiB-PET than the ε4 negative 

subjects, it was the low PA ε4 positive subjects that had the highest burden.  There was no effect 

of PA on amyloid burden in the ε4 allele negative group.  Again, while low PA did not have an 

adverse effect on subjects without the APOE-ε4 allele, high PA did have a positive protective 

effect on the APOE-ε4 allele carriers.  Both studies provide evidence that PA may be most 

beneficial for those who are at genetic risk for AD. 

  

Section 2.4: Evidence for Physical Activity Protecting Resting State Networks 

Subsection 2.4.1:  Young Adults 

Young adults are often used as a control for older adults in functional connectivity 

studies, but very few have inspected the relationship between PA and network connectivity in 

young adults.  Kamijo et al. (2010) looked at the connectivity within the executive function 

network in 20 sedentary and 20 active young adults (mean age =21.2) during an executive 

control task.  Phase locked synchrony (PLV) between 19 electrodes was calculated to determine 

strength of connectivity, and the strength of the PLV was stronger in the active group at the 300-

400ms time epoch. In a study comparing seed based connectivity in the FPN and DMN of 

collegiate male runners and healthy non-athlete controls, several connections in the FPN were 

stronger in the athlete group (Raichlen et al., 2016).  These results were due to positive 

correlations in the athlete group between the right parietal region FPN seed and the 

middle/superior frontal regions and correlations not different from zero in the non-athlete 
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controls, as well as strong positive correlations in the athlete group between the left anterior 

region FPN seed and the superior/mid frontal regions and anticorrelations in the control group.  

In the DMN, there were anti-correlations of DMN seeds with clusters in motor control, 

somatosensory, and visual networks in the athlete group that were not present in the control 

group.  The anti-correlation of the DMN with task-positive regions has been associated with 

improved cognitive performance (Guerra-Carrillo, Mackey, & Bunge, 2014).  The conclusion of 

the authors of the male collegiate athlete /non-athlete connectivity study is that the co-activation 

of brain regions during endurance running enhances the connectivity of resting state networks 

that may explain the protection of physical activity against cognitive decline in older adults. 

Subsection 2.4.2:  Middle Aged Adults 

 A database search did not result in any findings investigating the effects of PA on resting 

state networks in middle-aged adults.  Yet, the development of networks is throughout the entire 

lifespan, and plasticity during middle age will affect the plasticity of the older brain.  Research 

investigating how PA influences resting state networks in this period before the onset of age 

related cognitive decline is of utmost importance in understanding how the healthy brain 

functions. 

Subsection 2.4.3:  Healthy Elders 

The literature on the effects of PA on resting state networks in healthy older adults is 

more expansive and yields promising results.  Burdette et al. (2010) conducted a four month 

exercise intervention in older adults with a control group learning about healthy aging (age 70-85 

years, total n =11 ).  Resting state connectivity was measured using node degree and modularity 

calculated from a voxel level binary connectivity matrix.  Hubs were defined as being in the top 
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15% of node degree, and hubs were found in the hippocampus of the exercise group while this 

was not the case in the control group.  When whole brain metrics were used, no differences were 

found between groups (Burdette et al., 2010).  The small sample size may be the reason 

differences were not detected at the whole brain network measurements level. 

Voss et al. (2010) conducted a randomized one-year exercise intervention in older adults 

(walking group: mean age = 67.3, n = 30; control group: mean age = 65.4, n = 35  ), with a 

young adult control group (mean age = 23.9 , n=32).  Functional connectivity was measured as 

the strengths of the z-transformed correlation of time-series between ROI’s in networks shown to 

be disrupted in aging. Several regions in the DMN and fronto-executive network were stronger 

in the walking group compared to older adult controls.  Network metrics were not measured in 

this study. 

Boraxbekk et al. (2016) analyzed functional connectivity changes over the course of 10 

years as part of the Betula prospective cohort study.  Subjects used in this study had current and 

accumulated physical activity (as indexed from BMI, waist circumference, pulse, blood 

pressure,and maximum grip strength) and resting state scans (n = 196, age range = 25 – 80).   

The results showed PA was associated with increased functional voxel wise connectivity of the 

PCC, a hub of the DMN that is disrupted with age and connected with age related cognitive 

decline.  While the variables for the PA index score have been associated with PA, the levels of 

PA for the individuals in this study were not directly measured. 

A review of PA studies and brain networks consistently found increased connectivity in 

fronto-executive networks and the DMN  in older adults (P. Huang, Fang, Li, & Chen, 2016), but 

there were few additional studies included other than those mentioned above.  
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Subsection 2.4.4:  Adults with MCI 

While studies have indicated that PA delays the conversion of MCI to AD, there is very 

limited research investigating changes in functional connectivity due to PA in adults with MCI.  

Klados et al. (2016) used resting state electroencephalogram (EEG) to measure of strength of 

node connectivity before and after a randomized combined cognitive and physical training in 

older adults (n = 25 in each group, mean age = 68.8) meeting MCI criteria.  Connectivity was 

measured using the square of the magnitude of coherence between the node signals, and node 

strength was calculated as the sum of the edges weights.  After the intervention, more bilateral 

connections were found in the combined group compared to the controls in parietal, prefrontal, 

occipital, and temporal regions. 

Seed based results that were obtained from data collected in our laboratory have indicated 

increased connectivity of the PCC, a hub of the DMN, with frontal and parietal regions after a 

12-week walking intervention in healthy older adults and in those with MCI (Smith et al., in 

review).  The paper is included in Appendix A of this proposal.  The conclusion of this paper 

was that the walking intervention increased the ability of the PCC to recruit frontal and parietal 

brain regions, which may reflect enhanced compensation.  This increased recruitment may 

indicate more cognitive reserve, and thus may explain PA’s role in reducing the incidence of 

cognitive decline.   

Section 2.5:  What is missing in the literature? 

 There is an utmost need to understand how the healthy brain functions and adapts to the 

aging process.  This will aid in the effort to preserve cognitive function in the increasing 

proportion of elderly persons in our global population and inform treatment research for 

neurological diseases, such as AD.  Despite the evidence that PA protects cognition, very few 
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studies have been done investigating the effects of PA on brain networks in older adults and 

minimal studies in young adults.  Middle adulthood, as the preceding stage of older adulthood, 

will continue to lay the formation of networks in the brain and will influence the plasticity of 

these networks as older adults.  The effects of PA on the networks disrupted by the aging process 

need to be studied at all stages.  Additionally, despite the literature demonstration that carriers of 

the APOE-ε4 allele have disrupted networks similar to the changes observed in aging and AD 

before non-carriers, there has not been research to illuminate the interactive effects of PA and 

APOE-ε4 allele on these networks.  The overarching goal of the dissertation research was to 

begin the research to fill in these gaps.  We expected in to find that PA increased the integration 

of networks and the node strength of the hubs of these networks, and the strongest effects would 

be found in APOE-ε4 carriers.  While not testable with methods and data available, it is plausible 

that the underlying cause of these effects of PA are the protection of the white matter tracts in the 

fronto-striatal circuit that are so disrupted in aging.  It is through the preservation and 

enhancement of these white matter connections that counteract the age-related decline in 

cognition and increase the cognitive reserve that delays symptomology when AD pathologies 

have begun. 
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Section 3.1: Abstract 

Background: Effective interventions are needed to improve brain function in Mild 

Cognitive Impairment (MCI), an early stage of Alzheimer’s disease (AD).  The posterior 

cingulate cortex (PCC)/precuneus is a hub of the Default Mode Network (DMN) and is 

preferentially vulnerable to disruption of functional connectivity in MCI and AD.   

Objective: We investigated whether 12 weeks of aerobic exercise could enhance 

functional connectivity of the PCC/precuneus in MCI and healthy elders.  

Methods: Sixteen MCI and 16 healthy elders (age range = 60-88) engaged in a supervised 

12-week walking exercise intervention.  Functional MRI (fMRI) was acquired at rest; the 

PCC/precuneus was used as a seed for correlated brain activity maps.  

Results: A linear mixed effects model revealed a significant interaction in the right 

parietal lobe: the MCI group showed increased connectivity while the healthy elders showed 

decreased connectivity.  In addition, both groups showed increased connectivity with the left 

postcentral gyrus.  Comparing pre to post intervention changes within each group, the MCI 

group showed increased connectivity in 10 regions spanning frontal, parietal, temporal and 

insular lobes and the cerebellum.  Healthy elders did not demonstrate any significant 

connectivity changes. 

Conclusion: The observed results show increased functional connectivity of the 

PCC/precuneus in individuals with MCI after 12 weeks of moderate intensity walking exercise 

training.  The protective effects of exercise training on cognition may be realized through the 

enhancement of neural recruitment mechanisms, which may possibly increase cognitive reserve. 

Whether these effects of exercise training may delay further cognitive decline in patients 

diagnosed with MCI remains to be demonstrated.  
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Section 3.2: Introduction 

 Neuropathological changes associated with Alzheimer’s disease (AD) occur many years 

before the onset of clinical symptoms (Jack et al., 2010).  Older adults who have declined 

cognitively but who do not meet criteria for a diagnosis of AD are often classified as having 

Mild Cognitive Impairment (MCI) (Petersen, 2004; Petersen et al., 1999), and more than half of 

these individuals progress to an AD diagnosis within five years (Gauthier et al., 2006).  There is 

an urgency to identify biomarkers for preclinical detection of neuropathology prior to the onset 

of symptoms in order to inform treatment strategies and to aid in the understanding of AD 

progression (Pievani, de Haan, Wu, Seeley, & Frisoni, 2011).  Resting state functional 

connectivity is emerging as a viable biomarker and predictor of future conversion to AD (Albert 

et al., 2011; M. Greicius, 2008; Pievani, Filippini, van den Heuvel, Cappa, & Frisoni, 2014; 

Yamasaki, Muranaka, Kaseda, Mimori, & Tobimatsu, 2012) and as an indicator of treatment 

efficacy (Goveas et al., 2011; Li et al., 2012). 

Resting state functional connectivity in this paper is based on the correlations of 

spontaneous blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging 

(fMRI) signals during the absence of an external task.  It is assumed to reflect the underlying 

anatomy of the neuronal architecture (Buckner et al., 2009) through direct and indirect neural 

networks consisting of monosynaptic and polysynaptic connections (Allen et al., 2005; Vincent, 

Kahn, Snyder, Raichle, & Buckner, 2008; Vincent et al., 2007).  Temporal correlations of 

spatially distinct brain regions indicate either direct or indirect neuronal connections, and resting 

state functional connectivity has been found to predict performance on higher order cognitive 

tests (Andrews-Hanna et al., 2007; L. Wang, Laviolette, et al., 2010; L. Wang, Negreira, et al., 

2010).  Higher order cognitive processes require the integration of several segregated, domain-

specific neural processing pathways (Buckner et al., 2009), and these diverse pathways intersect 
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in regions of the brain called ‘hubs’, characterized by a disproportionately high number of 

functional, and often concurrently anatomical, connections (O. Sporns, Honey, & Kötter, 2007).  

These hubs, while few in number, may limit the large metabolic cost of neural communication 

by integrating otherwise disparate networks (Bassett & Bullmore, 2006) and play an important 

role in information flow (Power, Fair, Schlaggar, & Petersen, 2010).  The posterior cingulate 

(PCC) and precuneus regions together constitute a key hub of the default mode network (DMN).  

This hub fosters efficient communication between the DMN and the medial temporal lobe 

(MTL) network, a network with an important role in memory processes (Alvarez & Squire, 

1994) that is highly vulnerable to AD pathology (Albert, 2011).  The PCC/precuneus is also an 

area associated with the accumulation of amyloid-β (Aβ) plaque, a hallmark of AD pathology 

(Buckner et al., 2009).  The PCC/precuneus exhibits reduced functional connectivity in MCI, 

early AD (M. D. Greicius & Menon, 2004; Zhou et al., 2008), and in clinically normal older 

adults that test positive for brain amyloid burden (Drzezga et al., 2011; Hedden et al., 2009).  

Changes in the functional connectivity of the PCC/precuneus have also been associated with 

accelerated atrophy and other preclinical pathological changes associated with AD (Buckner et 

al., 2005; C. Huang, Wahlund, Svensson, Winblad, & Julin, 2002; Zhou et al., 2008), 

underscoring its potential role as a predictive biomarker.  Thus, alterations in resting state 

functional connectivity, while concurrently associated with cognitive decline, may also precede 

measureable cognitive changes.   

Prior to evidence of cognitive decline in AD, the PCC/precuneus exhibits increased 

connectivity with frontal and parietal brain regions that do not show AD pathology until very late 

disease stages (Zhang et al., 2009), and there is growing evidence that increased recruitment of 

these frontal regions in older adults is a compensatory response to aging (Buckner, 2004).  
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Although this compensatory response is associated with neuronal damage (Hillary et al., 2015), it 

is also thought to be indicative of maintaining cognitive function (Reuter-Lorenz & Park, 2010, 

2014).  In individuals diagnosed with MCI and AD, declines in connectivity have been noted in 

brain areas affected early in the progression of AD, such as the MTL (Albert, 2011).  

Interventions or treatments that preserve and/or increase the connectivity of the PCC/precuneus 

with available frontal and parietal resources in older adults may help promote cognitive stability. 

It is well established that both leisure time physical activity and exercise training help to 

improve and maintain cognitive function in healthy older adults (Cotman & Berchtold, 2002; 

Kramer, Erickson, & Colcombe, 2006), even in those at increased risk for AD (Gates et al., 

2013; Heyn, Abreu, & Ottenbacher, 2004; J. C. Smith, K. A. Nielson, J. L. Woodard, et al., 

2013; Woodard et al., 2012).  Aerobic training in healthy elders appears to increase the 

functional connectivity within the DMN (Voss et al., 2010) and hippocampal networks (Burdette 

et al., 2010).  Furthermore, although local neuronal networks exhibit deterioration in healthy 

elders, high levels of physical activity have been shown to protect these networks (Heisz, Gould, 

& McIntosh, 2015).  Exercise training in individuals diagnosed with MCI has been shown to 

improve cognition (Baker, Frank, Foster-Schubert, Green, Wilkinson, McTiernan, Plymate, et 

al., 2010; Gauthier et al., 2006; Lautenschlager et al., 2008; J. C. Smith, K. A. Nielson, P. 

Antuono, et al., 2013) and increase neuronal efficiency during a semantic memory retrieval task 

(J. C. Smith, K. A. Nielson, P. Antuono, et al., 2013), but it is not known if exercise training 

results in changes to neural network functional connectivity in older adults diagnosed with MCI.  

If exercise training does increase the connectivity of hubs enhancing network recruitment in this 

population, it may indicate a gain of cognitive reserve that would help to preserve cognitive 

abilities and possibly delay cognitive decline.  Cognitive reserve is a concept that explains the 
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typically nonlinear relationship between cognitive performance and neuronal damage or brain 

disruption (Buckner, 2004), and is associated with the ability to recruit additional brain networks 

when the primary networks are disrupted (Stern, 2009) as in MCI.  Greater levels of cognitive 

reserve proxies, such as education, have been associated with increased functional connectivity 

(Arenaza-Urquijo et al., 2013), and physical activity (PA) also has been implicated as one of the 

factors that increases cognitive reserve (Fratiglioni et al., 2004).  

The current study extends this literature with evidence that aerobic exercise training may 

stimulate functional connectivity of the PCC/precuneus in individuals diagnosed with MCI.  This 

is a continuation of our previously published paper that reported a 12-week walking intervention 

resulted in decreased fMRI activation in several cortical regions during a semantic memory-

related task (J. C. Smith, K. A. Nielson, P. Antuono, et al., 2013).  We hypothesized that healthy 

elders and individuals diagnosed with MCI would demonstrate increased connectivity between 

the PCC/precuneus and frontal-parietal cortices from before to after the intervention, indicating 

enhanced network recruitment capabilities.  We expected increased connectivity to the MTL in 

the MCI group, as the MTL is particularly vulnerable to AD progression (Albert, 2011). 

Section 3.3: Material and Methods  

 

Participants and pre-screening 

This study used resting state fMRI data from participants (17 MCI and 18 healthy elders) 

described in previous work (J. C. Smith, K. A. Nielson, P. Antuono, et al., 2013), except that 

resting state fMRI data were missing for one MCI and two healthy elder participants.  

Community dwelling older adults, ages 60 to 88, were recruited through physician referrals, local 

newspaper advertisements, and in-person informational sessions at retirement communities and 

recreational centers.  Interested volunteers who were still eligible after a phone interview met 
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face-to-face with a study team member to review all procedures, expectations, possible risks, and 

a physician approval form for moderate intensity exercise was obtained.  A neurological 

evaluation completed the eligibility evaluation.  Informed consent was obtained from all 

individual participants included in the study.  All procedures were in accordance with the ethical 

standards of the institutional and/or national research committee and with the 1964 Helsinki 

declaration and its later amendments or comparable ethical standards. 

Inclusion and exclusion criteria  

In order to maximize the effect of exercise training, all study participants indicated they 

engaged in only light physical activity two or fewer days/week for the past six months.  

Participants were excluded if they reported a history or evidence of: 1) medical illnesses or 

conditions that may affect brain function (including glaucoma, chronic obstructive pulmonary 

disease, and untreated hypertension); 2) neurological illnesses or conditions (including cerebral 

ischemia, vascular headache, head trauma with loss of consciousness (>30 min), epilepsy, carotid 

artery disease, cerebral palsy, brain tumor, normal-pressure hydrocephalus, chronic meningitis, 

pernicious anemia, multiple sclerosis, Huntington’s disease, Parkinson’s disease or HIV 

infection); 3) current untreated Axis I psychiatric disturbance meeting DSM-IV Axis I criteria 

(including substance abuse or dependence and severe depressive symptoms); 4) exclusion 

criteria specific to MR scanning (such as pregnancy, history of claustrophobia, weight 

inappropriate for height, and ferrous objects within the body); 5) any unstable or severe 

cardiovascular disease or asthmatic condition; 6) left-handedness (laterality quotient [LQ] <50) 

(Oldfield, 1971); 6) current use of psychoactive medications, except stable doses of 

antidepressants; and 7) history of transient ischemic attack or >4 on the modified Hachinski 

ischemic scale.  Participants were also excluded if they scored >15 on the Geriatric Depression 
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Scale (GDS) (Yesavage, 1988) or showed relatively impaired activities of daily living (ADL) 

using the Lawton and Brody Self-Maintaining and Instrumental Activities of Daily Living Scale.    

Neuropsychological test battery and clinical criteria for MCI 

The Neuropsychological test battery included the Mini-Mental State Exam (Folstein, 

Folstein, & McHugh, 1975), Mattis Dementia Rating Scale-2 (DRS) (Jurica, Leitten, & Mattis, 

2001), Rey Auditory Verbal Learning Test (AVLT) (Rey, 1964), Logical Memory and Letter-

Number Sequencing subtests of the Wechsler memory Scale-III (Wechsler, 1997), Symbol-Digit 

Modalities Test (A. Smith, 1991), Controlled Oral Word Association Test (Benton & Hamsher, 

1978), animal fluency, and the Clock Drawing Test (Cosentino, Jefferson, Chute, Kaplan, & 

Libon, 2004).  This comprehensive battery was administered before and after the exercise 

intervention, and alternate forms of the AVLT and DRS were used at each testing session.    

Cognitive status of the participants was determined using the core clinical criteria set by 

the NIH-Alzheimer’s association workgroup on MCI due to AD (Albert et al., 2011).  MCI was 

defined as a subjective concern regarding a change in cognition supported by an informant, 

impairment in one or more cognitive domains (defined as 1.5 standard deviations below age and 

education matched means on delayed recall on the AVLT), and intact activities of daily living.  

Three neuropsychologists (including K.A.N.) reached a consensus on impairment.  A neurologist 

ruled out all other possible etiologies.  Healthy elders had no specific cognitive complaint, intact 

cognitive performance in all domains, and intact activities of daily living.   

Exercise test 

Participants completed a submaximal exercise test on a motorized treadmill (General 

Electric, Milwaukee, WI) to estimate peak aerobic capacity (V̇O2peak) before and after the 

exercise intervention.  The exercise test used a modified Balke-Ware protocol of 2.0 miles/hr 
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beginning with a 00 grade and increasing 10 per minute (American College of Sports Medicine, 

2010).  Concentrations of oxygen and carbon dioxide in expired air were collected every 15 

seconds by a metabolic measurement system (ParvoMedics, Sandy, UT).  Each test included 

measurements of heart rate, blood pressure (every 2 minutes), and ratings of perceived exertion 

(RPE; each minute).  Test termination criteria included reaching 85% of age-predicted heart rate 

max, a diastolic blood pressure greater than 110 mmHg, or the participant’s desire to stop.  The 

peak rate of oxygen uptake (V̇O2peak) was estimated from the highest V̇O2 value achieved during 

the test (expressed as ml/kg/min at STPD) (American College of Sports Medicine, 2010).  

Additional details have been described by Smith et al. (2013). 

Exercise intervention 

A qualified personal fitness trainer or an exercise physiologist supervised the participants 

in the 12-week intervention at fitness centers located near the participants’ homes or within their 

communities.  The exercise intensity, session duration, and weekly frequency were increased 

during the first four weeks until the participants were walking for 30 minutes, four times a week, 

at approximately 50-60% of HRR (heart rate reserve).  Each session began and ended with 10 

minutes of light walking and flexibility exercises.  Participants wore a Polar® heart rate monitor 

and provided subjective RPE’s using the Borg 6-20 RPE scale throughout each exercise session 

at minutes 5, 15, and 30 (Borg, 1998; Cook, O'Connor, Eubanks, Smith, & Lee, 1997).  The 

treadmill grade and/or speed were modified to moderately challenge the participant based on the 

heart rate and perception of effort (not more than 15 on the Borg scale).  This is considered a 

moderate intensity exercise for older adults (Mazzeo & Tanaka, 2001).   
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MRI acquisition procedures 

Prior to the first MRI acquisition using a General Electric (Waukesha, WI) 3.0 Tesla 

scanner, participants were familiarized with the MRI environment by lying in a mock scanner.  

During MRI acquisition, participants were instructed to lie as still as possible and foam padding 

was used to limit movement and improve comfort.  Anatomical and resting state sequences were 

run during the scanning session.  High-resolution, three-dimensional spoiled gradient-recalled at 

steady-state (SPGR) anatomic images were acquired (TE = 3.9ms; TR = 9.6ms; inversion 

recovery (IR) preparation time = 450ms; flip angle = 12°; number of excitations (NEX) = 1; slice 

thickness = 1.0mm; FOV = 240mm; resolution = 256 x 224).  During the resting state scan, 

participants were instructed to keep their eyes open and to look at a fixation cross.  A gradient-

echo, echo-planar pulse sequence sensitive to blood oxygenation level-dependent (BOLD) 

contrast were acquired (TE = 25ms; TR = 2000ms; flip angle = 77°; NEX = 1; 36 axial slices; 

4.0 mm isotropic voxels; FOV = 240mm; resolution = 64 x 64; duration 6 minutes). 

MRI preprocessing 

Preprocessing steps were done using tools from the Analysis of Functional NeuroImages 

(AFNI) software package (Cox, 1996).  During the initial preprocessing and analysis, the 

researcher (TC) was blind to each participant’s group classification.  Time series and anatomical 

images were aligned and skull-stripping, slice time correction, and motion correction procedures 

were performed.  The first 3 TRs were removed, a 0.005 to 0.10 Hz bandpass filter was applied, 

and the following sources of noise were regressed out: six-parameter rigid body head motion, 

ventricle signal, white matter signal, mean global signal, and the derivatives of the motion 

parameters, white matter signal, and ventricle signal.  The time series data were smoothed using 
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a 4mm full-width at half-maximum Gaussian blur and normalized to Montreal Neurological 

Institute (MNI) space.   

Seed based analysis  

The seed based analysis was also conducted using AFNI.  The seed region of interest 

(ROI) was defined using a 5mm spherical mask surrounding the MNI coordinates -2, -50, 36, the 

peak voxel coordinates of the PCC/precuneus reported by Buckner and colleagues (Buckner et 

al., 2009).  The time course in the ROI was extracted, and seed correlation maps for all 

participants at each testing session were formed by correlating the seed ROI with all other voxels 

in the brain.  A Fisher’s r to z transformation was implemented to normalize the correlation 

coefficients.  Group and Time differences were analyzed using linear mixed effects (G. Chen, 

Saad, Britton, Pine, & Cox, 2013) and cluster-based analysis (after interpolation to 2 mm3 

voxels, 105 voxels or more with primary threshold = 0.01; cluster-based statistic p < 0.05, 

FWER controlled).  This allows for sensitivity (minimizing Type II errors), while maintaining 

some spatial specificity.  The AFNI 3dLME command was used to run the linear mixed effects 

model using age as a covariate.  This is an ideal analysis for repeated measures analyses because 

it allows for random intercepts; thus initial variability in the correlations are taken into account.  

F-statistics indicate main effects and interactions, and we also conducted post hoc paired sample 

t-tests within each group to assess changes from baseline to post-intervention. 

Section 3.4: Results 

 

Participant and baseline characteristics 

Usable resting state fMRI data were available for 16 healthy elders and 16 participants 

diagnosed with MCI.  As shown in Table 1, the healthy elders and individuals diagnosed with 

MCI did not significantly differ in sex, age, education, depression or activities of daily living.  
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As expected, the MCI group exhibited poorer baseline performance than the healthy group on all 

but two neuropsychological subtests (DRS Attention and DRS Construction).  Participants’ 

baseline characteristics are presented in Table 1. 

Table 1.  Demographic data and baseline characteristics of the participants diagnosed 

with mild cognitive impairment (MCI) and the healthy elders (HE). 

Table 2:  Demographic Data and Baseline Characteristics of Published Study. 

Variables MCI (n=16) HE (n=16) Group Difference 

 Mean (SD) Mean (SD) p-value 

Demographics    

Age (y) 79.6  (6.8) 76.1 (7.2)  0.167 

Education (y) 15.6  (3.1) 16.6 (2.1)  0.322 

Sex* 6M, 10F 3M, 13F  0.238 

    

Depression Symptoms and   

Activities of Daily Living   

GDS 4.9  (4.1) 3.8 (2.8)  0.386 

Lawton ADL 4.7  (0.5) 4.8 (0.5)  0.705 

    

Neuropsychological Testing   

Logical Memory IR 27.1 (12.7) 43.1 (6.6) <0.001 

Logical Memory DR 15.9 (10.4) 25.9 (5.8)  0.002 

Logical Memory Recognition 22.9   (3.7) 26.0 (1.8)  0.005 

DRS Total 128.1 (13.3) 140.3 (2.5)  0.001 

LNS Total 6.9   (2.7) 9.4 (1.9)  0.005 

BDS 17.1   (2.1) 18.8 (0.5)  0.004 

COWS FAS 29.8 (12.1) 41.9 (9.4)  0.003 

Category Fluency - Animals 12.4   (6.5) 20.4 (4.2) <0.001 

Clock Drawing Test 2.6   (1.2) 1.4 (0.9)  0.003 

Logical Memory, Wechsler Memory Scale-III subtest: IR, immediate recall; DR, delayed recall; 

DRS, Mattis Dementia Rating Scale-2; LNS, Wechsler Adult Intelligence Scale-III Letter 

Number Sequencing; BDS, Behavioral Dyscontrol Scale; COWA, Controlled Oral Word 

Association Test; GDS, Geriatric Depression Scale (scores were available for 14 MCI, 15 HE); 

ADL, activities of daily living. *p-value based on chi-sq. 
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Exercise intervention fidelity 

The mean (SD) number of exercise sessions attended, adherence rate, exercise intensity 

and perceived exertion over the first 4 weeks and during weeks 5-12 of the intervention did not 

differ between groups.  Out of a total of 44 sessions, 42.3 (2.2) were completed resulting in a 

96.1 (5.0) % adherence rate.  During weeks 1-4 and weeks 5-12, the mean intensity was 46.9 

(7.1) %HRR and 54.7 (11.0) %HRR, respectively.  RPEs were most closely associated with the 

verbal descriptor “light” at 10.6 (1.8) and 10.8 (2.0) during the first 4 weeks and last 8 weeks, 

respectively.  There was also a mean increase over the 12-week intervention in V̇O2peak by 

2.0ml/kg/min – an approximate 10.6% increase in cardiorespiratory fitness.  More details 

regarding the change in cardiorespiratory fitness can be found in Smith et al. (2013).  

Neuropsychological test performance  

Neuropsychological test results for the entire sample (35 participants) have been 

previously reported (J. C. Smith, K. A. Nielson, P. Antuono, et al., 2013).  The results reported 

here are consistent with those reported by Smith et al. (2013), and reflect the slightly smaller 

sample size (32 participants) in the current study.  A repeated measures ANOVA revealed a 

significant effect of Time in Trial 1 of AVLT (p = .013), where both groups demonstrated 

improvement from baseline to post-intervention (mean (SD): MCI pre: 3.75 (2.02), MCI post: 

4.81 (1.97)); healthy elders pre: 5.50 (2.00) healthy elders post: 6.38 (1.57)).  The Group by 

Time interaction for Trial 1 was not significant (p = 0.800), and there were no significant 

changes in the other Rey AVLT indices. 

Seed based functional connectivity: Group by Time interaction 

Connectivity results are based on the correlation maps of the mean BOLD time course 

from the PCC/precuneus seed ROI and the remaining voxels in the brain.  One significant Group 
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by Time interaction was observed and is presented in Figure 1A and Table 2.  The MCI group 

showed an increased correlation between the PCC/precuneus and right inferior parietal lobe 

(IPL).  The healthy elders showed a decreased correlation with the cluster in the right IPL.    

Seed based functional connectivity: Time main effects 

A Time main effect, reflecting significant changes from before to after the intervention 

on average collapsed across both groups, was found in the left postcentral gyrus.  There was an 

increased correlation of the PCC/precuneus with this cluster, and the region is presented in 

Figure 1B and Table 2.   

Table 2.  Regions that showed a significant Group by Time interaction and Time main 

effect for functional connectivity changes with the PCC/Precuneus from before to after a 

12-week exercise training intervention in older adults diagnosed with mild cognitive 

impairment (MCI; n = 16) and healthy elders (HE; n = 16). 

Table 3:  Regions that Showed a Significant Group by Time Interaction and Time Main Effect in Published 

Study. 

Region BA k Peak Voxel  F MCI HE 

   x y z  Pre (r) Post (r) Pre (r) Post (r) 

Group by Time interactions          

Parietal Lobe           

R IPL  39 110 48 -70 38 36.66 0.31a 0.46a 0.49b 0.28b 

Time main effects           

Parietal Lobe           

L Postcentral Gyrus 40 213 -44 -34 50 24.77 0.01 0.12 -0.14 0.01 

Common superscript within region indicates significant difference, p<0.01.  BA: Brodmann 

Area; k: cluster size; r and F: correlation and statistic of the peak, respectively; MCI: mild 

cognitive impairment; HE: healthy elders; L: left hemisphere; R: right hemisphere; IPL: inferior 

parietal lobule.   xyz: MNI coordinates.  Pre indicates baseline; Post indicates after exercise 

intervention. Shown in Figure 1. 
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Figure 1:  Group by time interactions and main effects of time for functional connectivity of the 

PCC/precuneus in response to a 12-week walking exercise intervention in older adults diagnosed 

with mild cognitive impairment and healthy elders. 

 

Statistically significant (family-wise error corrected, p < .05) Group by Time interactions 

and main effects of Time for functional connectivity of the PCC/precuneus in response to 

a 12-week walking exercise intervention in older adults diagnosed with mild cognitive 

impairment (MCI; n = 16) and healthy elders (HE; n = 16). The mean correlation 

coefficients, MNI coordinates, and cluster size for each region are shown in Table 2. 

Panel A:  A significant Group by Time interaction was found in the right inferior parietal 

lobule (IPL), where functional connectivity with the PCC/precuneus increased after 

exercise training in the MCI group and decreased in the HE group. Panel B:  Functional 

connectivity significantly increased between the PCC/precuneus and the postcentral 

gyrus after exercise training in both the MCI and HE groups.  

Seed based functional connectivity:  Post-hoc t-tests: Changes within each group 

Significant changes in the MCI group are identified in Table 3 and Figure 2A.  The MCI 

group exhibited increased correlations after the exercise intervention in ten regions.  Clusters had 
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peak voxels in the right MFG, superior frontal gyrus, postcentral gyrus, PHG, and claustrum.  

Clusters were also found in the left IPL and bilateral precentral gyrus (two clusters in the left 

precentral gryrus) and culmen.  No significant clusters demonstrating changes in connectivity 

across time were found in the healthy elders group. 

Table 3.  Regions that showed a significant change in functional connectivity with the 

PCC/precuneus from before to after a 12-week exercise training intervention in older 

adults diagnosed with mild cognitive impairment (MCI; n = 16). 

Table 4:  Regions that Showed a Significant Change in Functional Connectivity with the 

PCC/precuneus in Published Study. 

Region 

BA k x y z t-statistic 

MCIpost>MCIpre       

Frontal Lobe       

R Middle Frontal Gyrus 6 187 30 -4 64 4.41 

R Precentral Gyrus 6 193 48 -4 38 5.00 

R Superior Frontal Gyrus 10 170 32 56 2 4.87 

L Precentral Gyrus 6 177 -24 -16 74 4.59 

 6 147 -44 -12 32 4.43 

Parietal Lobe       

R Postcentral Gyrus 3 215 48 -22 44 4.74 

L IPL 40 167 -50 -34 46 3.93 

Temporal Lobe       

R PHG 30 139 12 -48 2 3.94 

Insular Lobe       

R Claustrum 13 128 36 -2 4 4.33 

Cerebellum       

L Culmen  173 -32 -48 -36 4.83 

BA: Brodmann Area including the peak voxel; k: cluster size; xyz: peak voxel MNI coordinates; 

MCI: mild cognitive impairment.  L: left hemisphere; R: right hemisphere; IPL: inferior parietal 

lobule; HP: hippocampus; PHG:  parahippocampal gyrus.  Pre indicates baseline; Post indicates 

after exercise intervention.  Shown in Figure 2. 
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Figure 2:  Resting state functional connectivity changes with the PCC/precuneus seed 

region in response to a 12-week walking exercise intervention in older adults diagnosed 

with MCI and healthy elders.  

 

Figure 2.  Resting state functional connectivity changes with the PCC/precuneus seed 

region in response to a 12-week walking exercise intervention in older adults diagnosed 

with mild cognitive impairment (MCI; n = 16). All 10 highlighted brain regions indicate 

increased functional connectivity with the PCC/precuneus from before to after exercise 

training (family-wise error corrected, p < .05).  The MNI coordinates and cluster sizes for 

each region are shown in Table 3. 

Section 3.5: Discussion 

We investigated the effects of a 12-week walking intervention on the functional 

connectivity of the PCC/precuneus in individuals diagnosed with MCI and healthy elders.  We 

hypothesized that both the MCI group and healthy elders would show increased connectivity 

with frontal and parietal regions, suggestive of enhanced recruitment of preserved brain regions.  
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We also hypothesized that the intervention would increase PCC/precuneus connectivity with 

MTL regions in the MCI group.  We did find the hypothesized changes in functional 

connectivity of the PCC/precuneus with frontal, temporal, and parietal brain regions in the MCI 

group, but only one region, the left postcentral gyrus, showed increased connectivity in both 

groups.  Additionally, a group by time interaction in the right IPL revealed that the MCI group 

showed the expected increased connectivity while the healthy elders demonstrated decreased 

connectivity in this region.  These results, in conjunction with the findings from our previously 

published paper on the same subjects (J. C. Smith, K. A. Nielson, P. Antuono, et al., 2013), may 

indicate that exercise training has divergent effects on neural compensation and neural efficiency 

in the MCI group compared to healthy elders. 

In developing our hypotheses for this study, we focused primarily on neural 

compensation as demonstrated by increased connectivity of the PCC/precuneus with preserved 

brain regions as a mechanism to increase cognitive reserve.  After exercise training, the MCI 

group, presumed to be on the AD continuum, did demonstrate increased synchrony between 

compensatory networks and the PCC/precuneus, a region preferentially targeted in AD 

pathology. We expected, but did not observe, a similar increase in connectivity after exercise 

training in the healthy elders.  This prediction was based on a previous report by Voss and 

colleagues (Voss et al., 2010), which found trends of connectivity changes in the DMN after 6 

months of exercise training.  However, these effects did not reach statistical significance in their 

study until after the 12-month intervention.  As our intervention lasted only 3 months, it is 

possible that a longer exercise intervention is needed to observe connectivity changes in 

cognitively healthy older adults.   
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Another hypothesized mechanism to increase cognitive reserve is augmenting neural 

reserve – an indicator of neural efficiency (Barulli & Stern, 2013).  In our previous paper 

utilizing the same subjects (J. C. Smith, K. A. Nielson, P. Antuono, et al., 2013) , we found 

group differences in activation changes in the precuneus and PCC during a famous name 

discrimination task.  While both groups maintained equal task performance, the activation 

intensity decreased in the healthy elders after the exercise intervention, while there were no 

changes in the MCI group.  This suggests increased neural efficiency in the healthy elders (as 

found in several other regions of the semantic memory network), and a need to maintain a 

compensatory response in the MCI group, as this region is targeted by AD pathology.  

Unfortunately, we were not able to measure levels of amyloid deposition or neurological damage 

in either group, so this possibility needs to be further explored.  However, our current results are 

consistent with this interpretation and suggest that the MCI group demonstrated neural 

compensation through increased connectivity of the PCC/precuneus, while the healthy elders, 

who appear to not have reached a critical threshold for age related changes, did not require 

neural compensation (Barulli & Stern, 2013).  Rather, exercise training may have resulted in 

increased neural reserve (or efficiency) of the PCC/precuneus, as indicated by our previously 

published findings of reduced activation during memory retrieval (J. C. Smith, K. A. Nielson, P. 

Antuono, et al., 2013).  While the participants diagnosed with MCI did not differ in education 

from the healthy elders group (both were highly educated), the presence of cognitive impairment 

indicates a critical threshold was reached through combined age-related and AD processes.  

Thus, in those diagnosed with MCI, our findings support the idea that exercise training may 

stimulate increased cognitive reserve through enhanced recruitment of compensatory networks, 

such as increased function connectivity with a key neural hub in the PCC/precuneus. 
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As a first attempt to examine changes in resting state functional connectivity in MCI after 

an exercise intervention, we conducted a priori post hoc analyses to further explore the 

functional connectivity changes within this group.  Results showed that the MCI group 

demonstrated increased connectivity of the PCC/precuneus with frontal and parietal regions from 

pre to post intervention.  These effects suggest improved coordination of intrinsic activity of 

PCC/precuneus and several network regions including the fronto-parietal network (bilateral 

precentral gyrus and right middle frontal gyrus), the somatosensory network (right postcentral 

gyrus), and DMN regions (right superior frontal gyrus and left IPL).  There was also increased 

connectivity between the PCC and the right parahippocampal gyrus, a region that links the DMN 

to the medial temporal lobe system (Ward et al., 2014).  The increased connectivity suggests 

possible enhancement of posterior-anterior connections vulnerable to aging (Andrews-Hanna et 

al., 2007; Buckner, 2004).  Our findings raise the possibility that these increased compensatory 

connections across networks connected to the PCC/precuneus may in part explain the neural 

protective effects of physical activity in MCI.  This pattern of stronger connectivity with the 

PCC/precuneus after exercise training is a stark contrast to the typical progression of 

connectivity disruptions with the emergence of clinical symptoms.  As AD progresses there has 

been shown to be an initial decrease in functional connectivity within the DMN, followed by 

compensatory hyperconnectivity in the frontal/parietal network regions, and ultimately, with 

severe dementia, an overall loss of connectivity (Hillary et al., 2015).  The increased functional 

connectivity after exercise training observed in the MCI group between the PCC/precuneus and 

the other 10 regions suggests a possible reversal of the expected progression of connectivity 

decrements in MCI and, furthermore, enhancement of recruitment mechanisms that would 
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increase cognitive reserve and possibly delay cognitive decline.  Future randomized controlled 

trials should test this hypothesis. 

Interestingly, the MCI group showed increased connectivity with regions in the insular 

lobe and cerebellum after the walking intervention.  Connectivity in insular networks are 

reported to correspond to cognitive performance in individuals with amnesic MCI and 

cognitively healthy older adults (Xie et al., 2012).  Additionally, while we focused on the 

recruitment of frontal and parietal regions by the PCC/precuneus as an example of increased 

compensation to protect the DMN, the cerebellar region identified in our study corresponds to 

regions identified to be functionally related to the DMN (2011).  Our results may indicate that 

the insular lobe and cerebellum are additional resources of reserve for the DMN. These results 

should be interpreted with some caution due to lower signal to noise ratio in these regions and 

particularly in the cerebellum.  

Future research on the effects of an exercise intervention on functional connectivity in 

MCI and healthy elders should address potential mechanisms for these effects.  Candidate 

measures that have been linked to exercise training would be BDNF, which has been found to 

modify functional connectivity (P. P. Foster, 2015), cerebral blood flow (Burdette et al., 2010), 

hippocampal brain volume (Erickson et al., 2011; J. C. Smith et al., 2014) white matter integrity 

(J. C. Smith et al., 2016), and Aβ plaque burden (Head et al., 2012).  Given the evidence that 

exercise may oppose the actions of acetylcholinesterase in the hippocampus and cerebral cortex 

of rats (Pihlajamaki & Sperling, 2009), the effects of exercise training on the cholinergic system 

should also be considered.  We have also recently reported, in this same cohort, that increased 

cardiorespiratory fitness after the exercise intervention was positively correlated in both groups 

with increased cortical thickness in regions including the precuneus, posterior cingulate cortex, 
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pre-central and post-central gyri, and the medial and middle frontal gyri (Reiter et al., 2015); 

regions that partly overlap with the areas that showed changes in resting state connectivity in the 

current analysis.  Future studies should focus on multimodal imaging techniques to understand 

the mechanisms of exercise on neural plasticity in older adults and if this changes by disease 

state.  

The lack of a non-exercise control group is a limitation of this study, and some caution is 

warranted in the interpretation of these effects.  We cannot rule out the possibility that the 

walking intervention and its social context (most participants exercised alone under the 

supervision of a certified personal trainer) combined to produce changes in connectivity.  

However, the passage of time does not seem to be a plausible explanation for the changes we 

observed, as a longitudinal study in healthy older adults (ages 49 to 79) found functional 

connectivity within the DMN to be stable over a period of six years (Persson, Pudas, Nilsson, & 

Nyberg, 2014).  We observed that several regions showed bilateral increases in functional 

connectivity, and the fact that the effects were more pronounced in those diagnosed with MCI 

argues against a generalizable influence of the experimental context.  

Many longitudinal studies have shown that the risk of cognitive decline is reduced in 

older adults who are physically active (Etgen et al., 2010; Middleton et al., 2011) and cognition 

is protected in individuals with MCI who have greater physical activity (Baker, Frank, Foster-

Schubert, Green, Wilkinson, McTiernan, Plymate, et al., 2010; Lautenschlager et al., 2008).  Our 

results indicate that these protective effects may manifest in individuals with MCI through the 

enhanced recruitment of the PCC/precuneus, an important hub for higher order cognitive 

processes, and the preservation of posterior-anterior resting state functional connections.  These 

connections are vulnerable in normal aging, and when these aging effects are combined with AD, 
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the results are even more devastating to cognition (Buckner, 2004).  The pathological processes 

of AD and normal aging have divergent effects on brain networks (Hedden & Gabrieli, 2004; S. 

A. Small et al., 2011), and the differential effects of exercise training on functional connectivity 

in our study suggest that exercise-induced neural plasticity may vary based on AD progression 

and available cognitive reserve.  While it remains to be conclusively demonstrated that exercise 

training may delay the conversion of individuals diagnosed with MCI to AD, or delay the onset 

of MCI among the cognitively intact, these results further underscore the complexity and 

pleiotropic nature of exercise as a potential intervention to modify neural network connectivity 

along the AD continuum.  
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Chapter 4:  Dissertation Study Introduction and Methods 
 

Section 4.1:  Introduction 

As increasing numbers of people are living longer (World Population Ageing Report, 

United Nations, 2015), memory decline due to physiological aging and pathophysiological 

changes is growing as a public health issue (World Health Organization). Alzheimer’s disease 

(AD) will be growing in prevalence because of the swelling proportion of elderly in the global 

population, and this will come with great social and financial cost.  AD is the most expensive 

disease in the United States, and there is no current cure (Alzheimer’s Association, 2016).  If the 

onset of AD could be delayed by a few years, costs would vastly decrease and a greater number 

of older adults would complete their lives with memories and personalities intact.  One of the 

difficulties in treating AD is that we do not fully understand how the healthy brain functions and 

adapts.  

To address these research needs, we propose using resting state function connectivity and 

complex network graph theory. Resting state functional connectivity is a measure of coherent 

spontaneous blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging 

(fMRI) signals during the absence of an external task. It is assumed to reflect the underlying 

white matter structural connectivity (M. D. Greicius, Supekar, Menon, & Dougherty, 2009) 

(Buckner et al., 2009) and synchronous neural activity (Fox & Raichle, 2007).  Observational 

captures of the spontaneous neuronal activity are important in understanding the development of 

the brain (Sporns, 2011) and how it naturally compensates to neurological disruption (Hillary et 

al., 2014; Hillary et al., 2015).  By using a network approach, a unified approach to the neural 

substrates of cognition may be investigated (Voytek & Knight, 2015) across aging and disease 

states that is not possible with basic task activation studies.  The brain has been called the most 
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complex organism in the universe, and the use of complex network theory allows for single 

metrics that quantify the topologies of the networks of interest. 

The networks of interest in this study are the fronto-parietal network and the default 

mode network (DMN).  The fronto-parietal network, responsible for executive control, and the 

DMN, important for episodic memory (Buckner et al., 2008; Vincent et al., 2006) and 

overlapping with semantic memory systems (Binder, Desai, Graves, & Conant, 2009), are 

disrupted during the aging process.  Anterior-posterior connections also diminish with age, and 

the medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC) have been shown to 

have a reduction in connectivity with age that correlated with poorer cognitive performance 

(Andrews-Hanna et al., 2007). Communication between brain regions is accomplished via white 

matter tracts, and age related changes to the volume and structure of white matter (WM) 

(Bartzokis et al., 2004; Paus et al., 2014; Peters, 2002) have been identified as a possible 

neuroanatomical substrate of the cognitive differences and decline that are exhibited with 

increasing age (Bartzokis et al., 2004; Bender et al., 2016; Bennett & Madden, 2014; Walhovd et 

al., 2014). 

Although there are apparently no additional effects on anterior white matter tracts 

involved in the fronto-parietal network due to early AD (Head et al., 2004; Head, Snyder, Girton, 

Morris, & Buckner, 2005), the DMN has a greater loss of communication in AD patients 

compared to age matched healthy controls (Damoiseaux et al., 2012; Hillary et al., 2015; Sanz-

Arigita et al., 2010).  The combination of age-related disruptions to fronto-parietal circuits and 

AD pathology beginning in the MTL is devastating to cognition (Buckner, 2004).  

 Observed evidence that factors indicating brain disruption do not completely predict 

individual cognitive performance is referred to as cognitive reserve (Buckner, 2004).  Cognitive 



 
 

 

63 

 

reserve is also referred to as the ability to recruit brain networks (Stern, 2009).  Physical activity 

(PA) has been implicated as one of the factors that increases cognitive reserve (Fratiglioni et al., 

2004),  and it is well recognized that both leisure time PA and exercise training help to improve 

and maintain cognitive function in healthy older adults (Cotman & Berchtold, 2002; Kramer et 

al., 2006), and in those at increased risk for AD (Gates et al., 2013; Heyn et al., 2004; J. C. 

Smith, K. A. Nielson, J. L. Woodard, et al., 2013; Woodard et al., 2012).  Evidence also exists 

that PA influences the integrity and organization of the white matter tracts (Bender et al., 2016; 

Oberlin et al., 2016; Sexton et al., 2016; J. C. Smith et al., 2016) so disrupted in the aging 

process.  

Resting state functional connectivity is an apt method for investigating the interactive 

effects of PA and age on the brain networks as the underlying anatomical neural substrate for 

intrinsic functional connectivity appears to be the structural white matter connections (Honey et 

al., 2007; van den Heuvel & Sporns, 2013) vulnerable to aging. Thus  PA has been shown to 

increase connectivity in the brain networks disconnected during the aging process (P. Huang et 

al., 2016).  Four months of an exercise intervention in older adults found the hippocampus had 

greater overall connectivity as measured by the number of connections to other brain regions 

(Burdette et al., 2010), and twelve months of an exercise intervention increased the connections 

between brain regions in the DMN and fronto-executive network in older adults compared to 

controls (Voss et al., 2010).   In a cohort study covering 10 years (subjects’ age ranged from 25-

80 years) higher levels of PA was associated with increased functional voxel wise connectivity 

of the PCC, a hub of the DMN.  We have shown with data from our lab that 12 weeks of walking 

in healthy older adults and in older adults diagnosed with mild cognitive impairment (MCI), a 

risk factor of AD, increased the connectivity of the posterior cingulate/precuneus (PC/p) with 
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frontal and parietal regions (Chirles et al., 2017).  These increases in connectivity are apparent 

compensatory mechanisms protecting connections disrupted with age, perhaps through the 

protection and reorganization of white matter tracts, which would increase cognitive reserve and 

thus delay cognitive decline.   

Despite the evidence that PA protects cognition, few studies have investigated the effects 

of PA on brain networks throughout the lifespan and middle adulthood has not been included at 

all.  Yet, as Sporns (2011) asserts in the book, Networks of the Brain, the influences of the 

middle adulthood stage lay the foundation for network plasticity in late adulthood While small-

worldness (a measure of non-randomness in complex graph theory) is maintained across the 

lifespan, a rebalancing of functional segregation and integration occurs through childhood 

development, and young, middle, and late adulthood, and this rebalancing is a possible neural 

substrate for cognitive changes (Sporns, 2011)..  The effects of PA on the networks disrupted by 

the aging process need to be studied at all stages. 

In the literature investigating the effects of PA on functional connectivity across the 

lifespan, one important variable is missing.  Despite the findings that among carriers of the 

APOE-ε4 allele (a genetic risk factor for AD) (Corder et al., 1993; Okuizumi et al., 1994) PA 

appears to provide greater protection of cognition and hippocampal volume compared to APOE-

ε4 non-carriers (Head et al., 2012; J. C. Smith et al., 2014; J.C. Smith, K.A. Nielson, J.L. 

Woodard, M. Seidenberg, & S.M. Rao, 2013; Woodard et al., 2012), there has not been research 

to illuminate the interactive effects of PA and APOE-ε4 allele on the functional connectivity of 

these networks.   

Connectivity studies in cognitively healthy APOE-ε4 carriers have shown disrupted 

functional connectivity similar to changes observed in aging and AD (Sheline et al., 2010).  
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Older APOE-ε4 carriers have shown lower functional connectivity between the anterior 

hippocampus, important for episodic memory (Squire, 2004), and several regions of the DMN 

during encoding and retrieval (Harrison et al., 2016).  Additionally, an overall reduction of the 

functional connectivity between the hippocampus and the PCC was found in female APOE-ε4 

carriers ages 30-78 (Heise et al., 2014).  In middle aged adults, the PCC and dorsolateral 

prefrontal cortex (DLPFC), hubs of the DMN and fronto-parietal network respectively, showed 

diminished functional connectivity (Goveas et al., 2013).  A different effect is found with the 

precuneus, and with a few exceptions, studies have found cognitively intact adults with the 

APOE-ε4 allele demonstrate increased connectivity of the precuneus with brain regions in the 

DMN compared to low risk groups (Fleisher et al., 2009; McKenna et al., 2015; Sheline et al., 

2010).  This increased connectivity in the DMN has been shown to correlate with improved 

episodic memory performance in ε4 carriers (Matura et al., 2014). In fact, increased connectivity 

appears to be a compensatory response to neuronal disruption (Hillary et al., 2015).  

Consequently, however, when age increases and AD pathology develops, these carriers may not 

be able to further compensate and this may explain the increased incidence of AD in APOE-ε4 

carriers. 

Aging is a lifetime process, and how networks develop and establish connections over 

this lifetime will affect the response to any treatment or stimulus.  The interaction of PA, APOE-

ε4 status, and age on network connectivity measures in healthy adults is needed to appreciate the 

natural adaptations of the brain to overcome neurological disruption.  This knowledge will help 

to preserve and protect the memories of our elders by informing AD treatment research.   
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Section 4.2:  Specific Aims 

Subsection 4.2.1:  PA and Age Interactions on Network Connectivity Measures 

Specific Aim 1:  To investigate the association of self-reported leisure-time PA on the 

fronto-parietal network, DMN, and hippocampal connectivity in young adulthood to middle 

adulthood. 

 

Hypotheses:  

1) Global efficiency in the DMN and fronto-parietal network, node degree, and long-range 

connectivity between the PCC and mPFC will decrease with increased age. 

2) Subjects who meet the weekly recommendations for moderate to vigorous intensity PA 

will have greater measures of network integration (global efficiency) in the DMN and 

fronto-parietal network than the low PA group across the entire age range.   

3) Subjects who meet the weekly recommendations for moderate to vigorous intensity PA 

will have greater node strength of the hippocampal subregions, precuneus, PCC, and 

DLPFC than the low PA group across the entire age range. 

4) Subjects who meet the weekly recommendations for moderate to vigorous intensity PA 

will show greater connectivity between the mPFC and PCC than the low PA group across 

the entire age range. 

Subsection 4.2.2:  PA, APOE-ε4 Status, and Age Interactions  

Specific Aim 2:  To investigate the association of the interaction of PA and APOE-ε4 

status on the fronto-parietal network, DMN, and hippocampal connectivity from young 

adulthood to middle adulthood. 

 

Hypotheses:  

1) APOE-ε4 carriers will have smaller measures of network integration (global efficiency) 

in the DMN than the non-carrier group across the age range. 
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2) APOE-ε4 carriers will have smaller measures of node strength of the anterior 

hippocampus and PCC compared to the non-carrier group across the age range. 

3) The APOE-ε4 carriers will have larger measures of node strength of the precuneus 

compared to the non-carrier group across the age range. 

4) APOE-ε4 carriers with levels of PA that meet the weekly recommendations for moderate 

to vigorous intensity PA will have connectivity measures that are not different from the 

non-carriers who meet the recommendations for moderate to vigorous intensity PA. 

Section 4.3:  Description of Study 

Subsection 4.3.1: Summary of Overall Study 

The current study is a secondary analysis from a primary study aimed at the cognitive 

benefits of cognitive training via computer games. The study was approved by the University of 

Maryland, College Park Institutional Review Board (IRB) and conducted in accordance with the 

Federal Policy for the Protection of Human Subjects. A total of 264 participants were recruited 

through University of Maryland electronic list serves, local community online newsletters, 

craigslist.org, and flyers.  The recruitment literature described the study as looking for 

participants interested in improving memory by using “brain games.”  The desired age range was 

20-50 years old.  Volunteers who had 1) neurological illnesses or conditions; 2) medical illnesses 

or conditions that may affect brain function; 3) current untreated Axis I psychiatric disturbance 

meeting DSM-IV Axis I criteria; or 4) contraindications for MRI scanning (ex. ferrous objects in 

body, pregnancy, claustrophobia, left-handedness (laterality quotient [LQ] <50 (Oldfield, 1971) 

were not included in the study. 
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After screening performed by research team members in the Psychology department, 

participants were provided with information about the study and signed an informed consent 

form. Participants were also informed of a $100 stipend.  Day one of the study included the 

collection of physical activity and estimated cardiovascular fitness measures.  Physical activity 

was assessed using the Paffenbarger Physical Activity Questionnaire (Paffenbarger, Blair, Lee, 

& Hyde, 1993; Paffenbarger, Wing, & Hyde, 1978), readiness to perform exercise was assessed 

using the Physical Activity Readiness Questionnaire (PAR-Q), and VO2max was estimated using 

the YMCA cycle protocol (W. R. Thompson, Gordon, & Pescatello, 2010). Saliva was collected 

to determine APOE genotype. 

Subjects Used in this Study: 

 Of the 264 subjects collected in the parent study, 77 of these subjects had baseline fMRI 

scans and self-reported physical activity collected. Subjects self-reported education levels (1 = 

less than high school degree; 2 = high school degree; 3 = some college; 4 = bachelor’s degree; 5 

= some graduate school; 6 = master’s degree; 7 = PhD, MD, JD).   

Physical Activity Readiness Questionnaire (PAR-Q): 

The physical activity readiness questionnaire from the Public Health Agency of Canada, 

the PAR-Q, was administered to assess the participants’ ability to perform the sub maximal test 

to estimate cardiovascular fitness. The seven questions in this questionnaire determine if the 

individual should obtain a physician’s approval before activity.  All subjects were found to be 

ready to perform the YMCA cycle protocol.   

Paffenbarger Physical Activity Questionnaire:   

This questionnaire was employed to assess weekly caloric expenditure due to physical 

activity.  Also known as the College Alumnus Activity Survey (Paffenbarger, Blair, Lee, & 
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Hyde, 1993), these eight questions assess the average weekly time spent performing sport and 

recreational activities over the past year.  Estimated intensity of these activities is used to 

calculate the metabolic equivalent units of task (MET), and total expenditure also includes an 

estimation of blocks walked and stairs climbed.  

YMCA cycle protocol:   

This protocol measures a subject’s heart rate at a series of submaximal work rates (W. R. 

Thompson et al., 2010). The age predicted heart rate max is also used to extrapolate the 

individual’s VO2max.  In this test, the two to four 3-minute stages of continuous pedaling on a 

cycle ergometer are performed with heart rate measured during the last 15 to 20 seconds of 

minute 2 and minute 3.  If the subject’s heart rate varies more than five beats per minute, then 

this state should continue for an additional minute.  The first stage is set at a work rate of 0.5kg 

at 50 rpms (or 150 kg/min), but subsequent stage work rates depend on the subject’s heart rate.  

Once the test is completed (with at least 2 stages of steady state continuous cycling), HR during 

the last minute of each steady-state stage is plotted against work rate.  The line defined by these 

points is then extended to the age predicted HR max (220-age).  A vertical line is then dropped to 

the x-axis to estimate the maximal effort work rate.  This is then used in the following equation 

to predict the individual’s VO2max. 

 Eq 1) VO2max = SM2 +[b x (HRmax – HR2)]; 

where SM2 is the sub-maximal VO2 at the last workload, HR2 is the individual’s HR at the last 

workload, and b is the multi-stage slope prediction.   

Other calculations needed are: 

Eq a) SM2=(Last Workload(W)/Body mass (kg))*10.8 + 7 

Eq b) SM1=(Previous Workload(W)/Body mass (kg))*10.8 + 7 

Eq c) b = (SM2- SM1)/( HR2- HR1) 
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APOE genotyping:   

 

DNA samples were obtained using a mouthwash procedure (Lum & Marchand, 1998).  

Participants abstained from food or drink for one hour before the collection and rinsed with 10ml 

of mouthwash for 45 seconds before spitting into a 30-ml test tube.  Research assistants labeled 

and stored the samples at -20o C.  The unprocessed samples were stored for one to five months 

before DNA isolation and genotyping. Participants were classified as ε4 carriers if their genotype 

was either heterozygous (ε3/ε4 or ε2/ε4) or homozygous (ε4/ε4). 

DNA Isolation Procedures 

Isolation of the DNA followed methods prescribed by Puregene EP DNA Purification Kit 

(Gentra).  DNA samples were centrifuged for 10 minutes, and the supernatant was poured off 

before 1 ml of cell lysis solution was added.  The samples were vortexed for 20 seconds and then 

incubated for 15 minutes at room temperature. Before the samples for vortexed for 20 seconds 

again, 10μL of proteinase K solution (20mg/mL) were added to cells. Samples were incubated a 

second time for 10 minutes at room temperature. The samples were then vortexed for 20 seconds 

after adding 340 μL of protein precipitation solution and then incubated at 4o C for 10 minutes. 

Following incubation, supernatant was poured into 15-mL tubes containing 1 mL of 

100% isoproponal. Samples were inverted 50 times and then centrifuged for 10 minutes, and the 

supernatant poured off.  Next, 1 mL of 70% ethanol was added to the sample and tubes were 

inverted 5 times, followed by a 1 minute centrifuge. The samples were centrifuged for 1 minute 

after the ethanol was poured off.   Before placing the samples in an incubator at 37o C for 10 

minutes to dry, residual ethanol was removed using a pipette.   Incubation at the same 

temperature continued for 48 hours after adding 400μL of DNA hydration solution to the 

samples.   
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After the 48-hour incubation period, the supernatant was poured off and 2 mL of cell 

lysis solution added to the samples to begin a second isolation procedure. Samples were vortexed 

for 20 seconds and then incubated in a 65o C water bath for one hour. Samples were vortexed 

again for 20 seconds and centrifuged for 15 minutes after adding 800 μL of protein precipitation 

solution.   

The supernatant was poured into 2.4 mL of 100% isopropanol in 15-ml tubes.  Tubes 

were gently inverted 50 times and centrifuged for five minutes.  Next, 2.4 mL of 70% ethanol 

were added to samples after the supernatant was poured off, and tubes were inverted five times. 

Samples were centrifuged for three minutes and ethanol was poured off.  After samples were 

centrifuged again for three minutes, a pipette was used to remove residual ethanol from tube. 

Samples were incubated at 37o C for 10 minutes to dry. Samples were incubated for 48 hours at 

37o C after adding 400 μL of DNA hydration solution to tube. Upon completion of incubation, 

samples were centrifuged for one minute and stored at 4o C in 1.5 mL Eppendorf tubes.  

DNA Genotyping 

The following primers were used to genotype APOE 2, 3, and 4 alleles: F-5’ ACT 

GAC CCC GGT GGC GGA GGA GAC- 3’; R-5’ TGT TCC ACC AGG GGC CCC AGG CGC 

TC- 3’. The following steps constituted the thermal profiling cycle profile: 1) incubation at 95o C 

for 5 minutes; 2) 45 cycles of 95o C for 30 seconds, 63o C for 30 seconds, and 72o C for 30 

seconds; and 3) incubation at 72o C for 5 minutes. Two restriction digests were used (15 μL of 

PCR product and either 0.2 μl of HaeII OR 0.75 μl of AflIII) and were incubated at 37o C 

overnight. Digests were analyzed separately on a 3% agarose gel for two hours, and genotypes 

were determined according to observed fragment sizes. DNA sequence-verified controls with 

each genotyping reaction determined genotype accuracy. 
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MRI acquisition procedures: 

Participants were scanned on the second day of coming to the lab, and an additional scan 

was performed after the 5-week cognitive training.  A 3.0 Tesla Siemens TRIO scanner (Siemens 

Medical Systems, Erlangen, Germany) with a 32-channel head coil at the Maryland 

Neuroimaging Center was used.  During MRI acquisition, participants were instructed to lie as 

still as possible and foam padding was used to limit movement and improve comfort.  

Anatomical and resting state sequences were run during the scanning session.  High-resolution, 

three-dimensional multi planar reconstructed (mpr) anatomic images were acquired (TE = 

2.32ms; TR = 1900ms; inversion recovery (IR) preparation time = 900ms; flip angle = 9°; slice 

thickness = 0.9 mm; voxel size = 0.9x0.9x0.9mm; FOV = 230mm; resolution = 256 x 192, 

acquisition time (TA) = 4:26 minutes).  During the resting state scan, participants were instructed 

to keep their eyes open and to look at a fixation cross.  A gradient-echo, echo-planar pulse 

sequence sensitive to blood oxygenation level-dependent (BOLD) contrast were acquired (TE = 

24ms; TR = 2000ms; TR delay = 10ms; flip angle = 70°; 36 axial slices, interleaved; 3x3x3.2mm 

voxels; FOV = 192mm; resolution = 64 x 64; 160 volumes; duration 5:26 minutes). 

Preprocessing steps: 

Preprocessing steps were performed using tools from the Analysis of Functional 

NeuroImages (AFNI) software package (Cox, 1996) and FreeSurfer image analysis suite, version 

5.3.0 (http://surfer.nmr.mgh.harvard.edu)   In FreeSurfer, high-resolution structural data were 

used to create individual parcellations.  The first step included reconstruction of the brain using 

motion correction and conformation, non-uniform intensity normalization, and talairach 

transform computation.  The second reconstruction step drew the pial and white matter surfaces.  

Each subject was viewed and edited for surface smoothness and minor pial edits were necessary 
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for 18 subjects. Each subject’s cortical areas were transferred to a default mesh (fsaverage) and 

converted to the 17 sub-network parcellation from the Yeo et al. (2011) paper 

(http://www.freesurfer.net/fswiki/CorticalParcellation_Yeo2011).   

In AFNI, the functional time series were aligned to the anatomical images, and slice time 

correction, motion correction procedures, and intensity normalization to percent signal change 

were performed.  The first 3 TRs were removed, a 0.005 to 0.10 bandpass filter applied, and the 

following sources of noise were regressed out: six-parameter rigid body head motion, the 

derivatives of the motion parameters, ventricle signal, and white matter signal.  The time series 

data were smoothed using a 6mm full-width at half-maximum Gaussian blur.  Due to the 

importance of accounting for motion in functional connectivity analyses (Power, Barnes, Snyder, 

Schlaggar, & Petersen, 2012), any subject with a maximum head movement greater than 6mm (2 

voxels) was completely eliminated from the analysis as well as scrubbing individual time points 

with movement greater than 0.5mm from the analyses. Subjects were also eliminated from the 

analysis if more than 10% of the TRs were censored.  Two subjects were removed due to more 

than 10% of TRs being censored.  Group difference in motion was checked using t-tests on the 

mean frame displacement in each group (APOE-ε4 status and PA status).  

Functional Connectivity Measurements: 

The time courses of all the voxels in each ROI defined by the parcellations from the Yeo 

atlas were averaged. Using the Matlab toolbox for complex network measures 

(http://www.brain-connectivity-toolbox.net), weighted, undirected complex network measures 

were calculated from the nxn adjacency matrix for each participant.  Each element ij in the 

matrix was the z-transformed Pearson correlation between nodes i and j.  Negative correlations 

http://www.freesurfer.net/fswiki/CorticalParcellation_Yeo2011
http://www.brain-connectivity-toolbox.net/
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were replaced with a zero and not used in these calculations for network-based measures. 

(Rubinov & Sporns, 2010) 

Global efficiency and local efficiency in the DMN and fronto-parietal network, as 

measures of integration and segregation, respectively, were calculated.  The mathematical 

equations used were:  

 

(Rubinov & Sporns, 2010) 

 

mPFC and PCC Connectivity: 

 

The element in each subject’s adjacency matrix corresponding to mPFC-PCC connection 

in each hemisphere was used as a dependent variable measuring long-range connectivity.  

Node Degree of the hippocampus subregions, Precuneus, PCC, and DLPFC,:   

 

The precuneus, PCC, dorsal PFC, and lateral PFC were identified from the 17-

subnetwork FreeSurfer derived cortical parcellation.  However, the hippocampus is a subcortical 

region, and the following sections described how the hippocampal subregions were identified. 

Hippocampal Subregions 

The methods used to identify the hippocampus and segmenting the hippocampus into 

three subregions (head, body, and tail) followed the methods described in the Weiss et al. (2005) 

paper. FreeSurfer volumes were aligned into anterior commissure-posterior commissure space, 

thus dispensing with distortions due to reorientation and allowing for assessment of hippocampal 

volumes.  The uncal apex was used for the segmentation as an easily recognizable landmark. The 

anterior slice of the hippocampus is identifiable by FreeSurfer and identified the anterior end of 

the hippocampal head.  The posterior hippocampal head was identified moving caudally through 
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the images to the last slice in which the uncal apex was still visible.  The landmark for the most 

anterior slice of the hippocampal tail was identified as when the fornix separates from the 

hippocampus and is clearly visible (Watson et al, 1992).  Parcellation algorithms for the whole 

hippocampus in FreeSurfer identified the posterior slice of the tail. 

Masks were created from these identified subregions in each subject and used to create 

hippocampal head, body, and tail ROIs in the functional resting state data.  The time-series in 

these ROIs were averaged. 

Calculating Node Strength   

Using the Matlab (The Mathworks, Inc., Natick, MA, USA) toolbox, the weighted degree 

of each node (hippocampal subregions, precuneus, PCC, dorsal and lateral PFC) were calculated. 

 
 

Subsection 4.3.2:  Data Analysis 

Multiple linear regression models were used for each of the dependent variables (global 

efficiency, local efficiency, node strength, and PCC-mPFC connectivity). All dependent 

variables were continuous.  The independent variables were defined as the following: APOE 

status (ε4 positive (value 1), ε4 negative (value 2)), PA status (PA>1500 kcal/week (value 2), 

PA<1500 kcal/week (value 1)); Age (continuous); and the interaction predictors:  APOExAge, 

PAxAge, APOExPA, APOExPAxAge.  The data were checked for the following model 

assumptions:  homogeneity (via scatterplot of studentized residuals vs. predicted values and vs. 

values of independent variables), normality (via S-W test for normality, skewness, and kurtosis), 

linearity (via review of independent vs. dependent variable scatterplots), and noncollinearity (via 

tolerance tests).  Multiple comparison corrections were performed using Bonferonni corrections. 
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Chapter 5: Results 
Two subjects of the original 77 were excluded from the analyses because of movement 

during the resting state scan, one was not included due to a diagnosis of anxiety, and 5 had 

missing anatomical or resting data.  Thus, 69 participants were included in the final analyses.  

Section 5.1: Demographics 

 The demographics of the overall sample as well as the demographics of groups by APOE-ɛ4 

status and PA level are presented in Table 5. Demographics of the sample split into 4 groups 

(Low PA carriers and non-carriers, High PA carriers and non-carriers) are presented in Table 6.  

Table 5:  Subject Demographics 

  Entire Sample N = 69 APOE-ɛ4 

Non-carriers 

N = 50 

APOE-ɛ4 

Carriers         

N = 19 

APOE Group 

Differences 

Low PA 

Group        

N = 27 

High PA 

Group N = 42 

PA Group 

Differences 

  
Range Mean (SD) Mean(SD) Mean(SD) 

t-statistic             

(p value) 
Mean(SD) Mean(SD) 

t -statistic         

(p value) 

Sex (M/F)  28/41 21/29 7/12 0.152(0.457)* 9/18 19/23 0.966(0.452)* 

Age(years) 22 - 51 31.69(8.4) 31.5(8.8) 32.3(7.4) 0.351(0.727) 32.0(8.0) 31.5(8.7) 0.214(0.831) 

Weekly kcal 
56 - 

8878 
2353.4(1834.7) 2430.6(1916.1) 2150.4(1631.5) 0.564(0.575) 875.1(374.6) 3303.8(1768.9) 7.016(<0.001) 

Kcal > 6 

METS 
0 - 6923 824.9(1117.2) 904.5(1224.8) 619.5(764.2) 0.943(0.349) 262.3(346.6) 1195.4(1287.7) 3.670(<0.001) 

Time per 

week (min) 
0 - 1153 227.6(241.2) 239.0(260.8) 198.2(184.1) 0.623(0.535) 75.7(79.8) 327.5(259.8) 4.876(<0.001) 

Time sitting 

(hours) 
2 - 16 6.9(3.5) 6.7(3.5) 7.6(3.5) 1.017(0.313) 7.1(3.3) 6.8(3.7) 0.270(0.788) 

Bouts of 

Vigorous 

Exercise per 

week 

0 - 7 2.9(2.2) 2.8(2.1) 3.0(2.4) 0.225(0.833) 1.4(1.7) 3.9(1.9) 5.487(<0.001) 

Estimated 

VO2max 

(mlO2/min/kg) 

18 - 49 31.7(8.4) 33.0(8.6) 30.1(5.6) 1.052(0.297) 31.2(6.7) 33.1(8.7) 0.879(0.383) 

*Chi squared used.  Estimated VO2max scores available for 59 subjects (16 ɛ4 positive and 43 ɛ4 negative). One e4 negative subject is missing 6 MET 

information, time per week, sitting hours per day. 

No significant differences were found in sex distribution, age, weekly kcal, kcal > 6 

METS, time per week, time sitting, bouts of vigorous exercise per week, or estimated VO2max 

when comparing groups by APOE-ɛ4 status.  When comparing the groups by PA status (meeting 

1500 kcal per week or not), predictably there were significant differences between groups on 

Kcal > 6 Mets, time per week, and bouts of vigorous exercise per week.  There were no 

significant differences in time sitting, age, sex distribution, or APOE-ε4 status.  No differences 

were found in estimated VO2max. 
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Table 6:  Subject Demographics by PA and APOE-ɛ4 Group. 

  
Low PA 

Carriers Group 
N = 8 

Low PA Non-
carriers Group 

N = 19 

High PA Carriers 
Group N = 11 

High PA Non-
carriers Group N 

= 31 

Group Differences 

  
Mean (SD) Mean (SD) Mean (SD) Mean (SD) F -statistic p value 

Sex (M/F) 2/6 7/12 5/6 14/17 1.294* 0.731 

Age(years) 29.34(2.86) 33.07(9.22) 34.40(9.04) 30.50(8.55) 0.969 0.413 

Weekly kcal 961.75(321.38) 838.58(397.28) 3014.82(1663.30) 3406.32(1820.11) 16.302 <0.001 

Education 4.71 (1.50) 3.88 (1.46) 5.00 (1.00) 4.11 (1.40) 1.421 0.247 

*Chi squared used. The Low PA groups are significantly lower in weekly kcal than the High PA groups. Education 
Level was collected for 7 Low PA carriers, 16 Low PA non-carriers, 7 High PA carriers, and 27 High PA non-carriers.  

 

Section 5.2:  Motion Displacement  

A one-way ANOVA was conducted on the mean frame displacement (FD) due to motion 

for each group during the resting state fMRI scan, and there were no statistical differences 

[F(3,65) = 0.481, p = 0.696].  A one-way ANOVA was also conducted on the maximum FD due 

to motion, and again no differences were found between the four groups [F(3,65) = 0.698, p = 

0.557].   

Section 5.3: Hippocampal Volumes 

All hippocampal volumes were corrected for intracranial volume using previously 

established methods (Raz et al., 2005). A one-way ANOVA was conducted on the volumes of 

the right hippocampal head [F(3,65) = 0.0.374, p = 0.772], body [F(3,65) = 0.997, p = 0.400], tail 

[F(3,65) = 0.419, p = 0.740], total hippocampus [F(3,65) = 0.568, p = 0.638], and left 

hippocampal head [F(3,65) = 0.640, p = 0.592], body [F(3,65) = 0.578, p = 0.632], tail [F(3,65) = 

0.294, p = 0.829], and total hippocampus [F(3.65) = 0.376, p = 0.770].  No statistical differences 

were found between the four groups.  
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Section 5.4:  Model Description 

Several multiple linear regression models were conducted to determine if the dependent 

variables in this study could be predicted by the following models of independent predictors: 1) 

Age; 2) Age, PA level, PA levelxAge; 3) Age, APOE level, APOExAge; and 4) Age, APOE 

level, PAxAPOE, and PAxAPOExAge.  The null hypotheses tested were that the adjusted R2 

was equal to 0 and that the regression coefficients (i.e., the slopes) were equal to zero.  The data 

were screened for missing values and violation of assumptions.  There were no missing data.   

Tests of Assumptions  

In the previously mentioned models, there are three variables that are not interactions:  

Age, PA level ((PA>1500 kcal/week, PA<1500 kcal/week), and APOE level (ɛ4 carriers or non-

carriers).  Of the three, only age is continuous, and thus tests of linearity only included age as an 

independent variable. 

Section 5.5:  Global Efficiency 

The four multiple linear regression models were run with global efficiency as the 

dependent variable. The results are presented in Table 9, but no models reached significance. 

Linearity: Reviews of the partial scatterplots of the independent variable (age) and the 

dependent variable (Global Efficiency) indicated linearity was not violated. Additionally, a 

residual plot vs age demonstrated a random horizontal band within an absolute value of 2 or 3, 

also indicating linearity, with one data point as an exception. 

Normality:  Review of the S-W test for normality (SW = 0.823, df = 69, p < 0.001) and the 

skewness (2.110) and kurtosis (6.571) statistics suggested that normality was an issue. The Box-

Cox power transformation was performed due to the S-W test result, but when the regression 

model was run again, there were no significance differences in the outcome model. 
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Homogeneity of variance:  A relatively random display of points, where the spread of 

residuals appears fairly constant over the range of values of the independent variables (in the 

scatterplots of studentized residuals versus predicted values and studentized residuals against 

values of the independent variables) would provide evidence of homogeneity of variance.  In 

models 1 and 2, this evidence was clear.  However, in model 3, the studentized residuals vs. 

APOExAge displayed a possible negative trend as the right side of the graph had a much smaller 

spread of residuals.  Again, in model 4, a smaller spread of residuals on the right side was 

exhibited in the studentized residuals vs. APOExPAxAge.  In this model, the residuals vs. 

predicted values appeared to have a smaller spread on the left side of the graph.  While the 

graphs did not indicate major violations of the homogeneity of variance, there may be an 

increased likelihood of type II error. 

Multicollinearity: Due to the inclusion of interaction variables in the models, 

multicollinearity did exist (view Table 8). Table 7 illustrates the tolerance, and values less than 

0.10 suggest that multicollinearity is an issue.  This table is the same for all models of dependent 

variables in the result section. 
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Table 7:  Tolerance for Models 

Independent Variable Tolerance 

Model 1  
Age 1.00 
Model 2  
Age 0.077* 
PA Level 0.061* 
PA x age 0.036* 
Model 3  
Age 0.101 
APOE Level 0.053* 
APOE x age 0.034* 
Model 4  
Age 0.195 
APOE Level 0.482 
APOE x PA 0.059* 
APOE x PA x age 0.047* 

*Multicollinearity is an issue.  Analyses were redone with centering corrections to reduce multicollinearity, and 

significance findings of the models did not change. 
 

Table 8:  Correlations of all Independent Variables 

Correlations 

  Age PA Level 

APOE 

Level PAxAge 

APOE 

xAge PAxAPOE 

PAx 

APOExAge 

Age 1.000 -0.026 0.043 .641** .587** 0.061 .493** 

PA Level -0.026 1.000 -0.038 .726** -0.003 .628** .513** 

APOE Level 0.043 -0.038 1.000 0.039 .812** .720** .628** 

PAxAge .641** .726** 0.039 1.000 .425** .533** .758** 

APOExAge .587** -0.003 .812** .425** 1.000 .637** .832** 

PAxAPOE 0.061 .628** .720** .533** .637** 1.000 .871** 

PAxAPOExAge .493** .513** .628** .758** .832** .871** 1.000 

**Correlation is significant at the 0.01 level (2-tailed). 

 

Screening for Influential Points:  Model 1:  In model one, the maximum value for Cook’s 

distance is 0.265, and the maximum centered leverage value is 0.078, both under points of 

concern (value of 1 for Cook’s distance and 0.5 for maximum centered leverage)(Lomax & 

Hahs-Vaughn, 2012).  The maximum Mahal’s distance is 5.30, less than the chi-squared critical 

value of 5.99.  These values all indicated there are no data points exerting undue influence on the 

model. 
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Model 2:  In model two, the maximum value for Cook’s distance was 0.219, under the 

point of concern.  The maximum centered leverage value was 0.173, again under the point of 

concern.  However, the maximum Mahal’s distance was 11.75, greater than the chi-squared 

critical value of 9.49.  While two of the three values indicated there are no data points exerting 

undue influence on the model, the identified possible outlier was removed from the data and the 

model was run again.  The model did not change in significance. 

Model 3:  In model three, the maximum value for Cook’s distance was 0.556, under the 

point of concern.  The maximum centered leverage value was 0.393, greater than ideal (0.2) but 

below the value of concern.  The maximum Mahal’s distance was 26.725, greater than the chi-

squared critical value of 9.49.  While two of the three values indicated there are no data points 

exerting undue influence on the model, the identified possible outlier was removed from the data 

and the model was run again.  The model did not change in significance. 

Model 4:  In model four, the maximum value for Cook’s distance was 0.781, under the 

point of concern.  The maximum centered leverage value was 0.360, again not indicating any 

points with undue influence.  The maximum Mahal’s distance was 24.484, greater than the chi-

squared critical value of 11.07.  While two of the three values indicated there were no data points 

exerting undue influence on the model, the identified possible outlier was removed from the data 

and the model was run again, but the model did not change in significance.  As there were no 

reasons to believe the outlier was due to error or incorrectly measured data, and the outlier did 

not create nor negate a significate association, the possible outlier was included in the reported 

results. 
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Table 9:  Model Summary and Coefficients for Models of Global Efficiency 

 Global Efficiency 

Model Summary F Adj R2 p-value Std β p-value 

Model 1 0.335 -0.100 0.565   

Age    -0.710 0.565 

Intercept       0.511 <0.001 

Model 2 0.404 -0.270 0.751   

Age    -0.089 0.843 

PA Level    -0.132 0.791 

PAxAge    0.023 0.972 

Intercept       0.574 0.024 

Model 3 1.682 0.029 0.180   

Age    0.598 0.116 

APOE Level    1.086 0.041 

APOExAge    -1.218 0.063 

Intercept       0.096 0.650 

Model 4 0.961 -0.002 0.435   

Age    0.252 0.363 

APOE Level    0.235 0.185 

PAxAPOE    0.469 0.353 

PAxAPOExAge    -0.733 0.194 

Intercept       0.276 0.097 

 

None of the models for Global Efficiency reached significance levels.  

Section 5.6:  Long Range Connectivity of the mPFC-PCC 

Subsection 5.6.1:  Right Hemisphere 

 

The same four multiple linear regression models were run with the right mPFC-PCC 

correlation as the dependent variable. The results are presented in Table 10, but no models 

reached significance. 
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Linearity: Reviews of the partial scatterplots of the independent variable (age) and the 

dependent variable (the correlation between the PCC and mPFC in the right hemisphere) 

indicated linearity was not violated.  Additionally, a residual plot vs. age demonstrated a random 

horizontal band within an absolute value of 3, also indicating linearity, with two data points as an 

exception. 

Normality:  Review of the S-W test for normality (SW = 0.960, df = 69, p = 0.026) and the 

skewness (-.505) and kurtosis (2.083) statistics suggested in aggregate that normality was an 

issue (skewness statistic is in acceptable range). The Box-Cox power transformation was 

performed due to the S-W test result, but when the regression models were run again, there were 

no significance differences in the outcome model. 

Homogeneity of variance:  In models 1, 3 and 4, this evidence to support the assumption of 

homogeneity of variance was clear.  However, in model 2, the studentized residuals vs. predicted 

values displayed a possible negative trend as the right side of the graph had a much smaller 

spread of residuals, but not enough to warrant concern.   

Screening for Influential Points:  Model 1:  In model one, the maximum value for Cook’s 

distance was 0.344, under the point of concern.  The maximum centered leverage value was 

0.078, again under the point of concern.  The maximum Mahal’s distance was 5.30, less than the 

chi-squared critical value of 5.99.  These values all indicated there were no data points exerting 

undue influence on the model. 

Model 2:  In model two, the maximum value for Cook’s distance was 0.254, under the 

point of concern.  The maximum centered leverage value was 0.173, again under the point of 

concern.  However, the maximum Mahal’s distance was 11.75, greater than the chi-squared 

critical value of 9.49.  While two of the three values indicated there were no data points exerting 
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undue influence on the model, the identified possible outlier was removed from the data and the 

model was run again.  The model did not change in significance.  As there were no reasons to 

believe the outlier was due to error or incorrectly measured data, and the outlier did not create 

nor negate a significate association, the possible outlier was included in the reported results. 

Model 3:  In model three, the maximum value for Cook’s distance was 0.750, under the 

point of concern.  The maximum centered leverage value was 0.393, not indicating any undue 

influence.  The maximum Mahal’s distance was 26.725, greater than the chi-squared critical 

value of 9.49.  While two of the three values indicated there were no data points exerting undue 

influence on the model, the identified possible outlier was removed from the data and the model 

was run again.  The model did not change in significance.  As there were no reasons to believe 

the outlier was due to error or incorrectly measured data, and the outlier did not create nor negate 

a significate association, the possible outlier was included in the reported results. 

Model 4:  In model four, the maximum value for Cook’s distance was 0.498and the 

maximum centered leverage value of 0.360, both under the points of concern.  The maximum 

Mahal’s distance was 24.484, greater than the chi-squared critical value of 11.07.  While Cook’s 

distance and the centered leverage value indicated that there were no data points exerting undue 

influence on the model, the identified possible outlier was removed from the data and the model 

was run again.  The model did not change in significance.  As there were no reasons to believe 

the outlier was due to error or incorrectly measured data, and the outlier did not create nor negate 

a significate association, the possible outlier was included in the reported results. 
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Subsection 5.6.2:  Left Hemisphere 

The same four multiple linear regression models were run with the left mPFC-PCC 

correlation as the dependent variable. The results are presented in Table 10, and models 3 and 4 

were significant. 

Linearity: Reviews of the partial scatterplots of the independent variable (age) and the 

dependent variable (the correlation between the PCC and mPFC in the left hemisphere) indicated 

linearity was not violated. Additionally, a residual plot vs age demonstrated a random horizontal 

band within an absolute value of 3, also indicating linearity. 

Normality:  Review of the S-W test for normality (SW = 0.963, df = 69, p = 0.039) and the 

skewness (0.289) and kurtosis (1.677) statistics suggested in aggregate that normality was not an 

issue. The Box-Cox power transformation was performed due to the S-W test result, and when 

the regression model was run again, there were no significance differences in the outcome 

model. 

Homogeneity of variance:  In models 1, 3 and 4, there was a constant spread of residuals over 

the range of values of the independent variables and the predicted values indicating 

homogeneity.   

Screening for Influential Points:  Model 1:  In model one, the maximum value for Cook’s 

distance was 0.400, under the point of concern.  The maximum centered leverage value was 

0.078, again under the point of concern.  The maximum Mahal’s distance was 5.30, less than the 

chi-squared critical value of 5.99.  These values all indicated there were no data points exerting 

undue influence on the model. 

Model 2:  In model two, the maximum value for Cook’s distance (0.277) and the 

maximum centered leverage value (0.173), did not raise any concerns.  However, the maximum 

Mahal’s distance was 11.75, greater than the chi-squared critical value of 9.49.  While two of the 
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three values indicated there were no data points exerting undue influence on the model, the 

identified possible outlier was removed from the data and the model was run again.  The model 

did not change in significance.  As there were no reasons to believe the outlier was due to error 

or incorrectly measured data, and the outlier did not create nor negate a significate association, 

the possible outlier was included in the reported results. 

Model 3:  In model three, the maximum value for Cook’s distance was 1.268, and the 

maximum centered leverage value was 0.393, both indicating at least one influential point.  The 

maximum Mahal’s distance was 26.725, greater than the chi-squared critical value of 9.49.  The 

identified possible outlier was removed from the data and the model was run again.  The model 

did not change in significance.  

Model 4:  In model four, the maximum value for Cook’s distance was 0.960, and the 

maximum centered leverage value was 0.360, both under the point of concern.  The maximum 

Mahal’s distance was 24.484, greater than the chi-squared critical value of 11.07.  The identified 

possible outlier was removed from the data and the model was run again.  The model did not 

change in significance.  As models 3 and 4 had significant outcomes, the models without the 

outliers and with normality corrections are also presented in Table 11. 
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Table 10:  Models for Connectivity between mPFC and PCC 

 Right mPFC-PCC  Left mPFC-PCC 

Model Summary F Adj R2 p-value Std β p-value   F Adj R2 p-value Std β p-value 

Model 1 0.891 -0.002 0.349    0.051 -0.014 0.822   

Age    0.004 0.349     0.028 0.822 

Intercept       

 

1.114 <0.001         0.998 <0.001 

Model 2 1.211 0.009 0.313    2.451 0.060 0.071   

Age    0.558 0.205     1.129 0.010 

PA Level    0.805 0.103     1.260 0.010 

PAxAge    -1.016 0.114     -1.666 0.009 

Intercept       0.303 0.555         -0.229 0.632 

Model 3 1.695 0.300 0.177    3.510 0.100 0.020   

Age    0.579 0.128     1.133 0.003 

APOE Level    1.062 0.460     1.604 0.002 

APOExAge    -1.258 0.055     -1.999 0.002 

Intercept       0.265 0.548         -0.242 0.553 

Model 4 1.941 0.052 0.114    3.743 0.139 0.008   

Age    0.486 0.074     0.907 0.001 

APOE Level    0.034 0.841     0.043 0.791 

PAxAPOE    1.210 0.016     1.668 0.001 

PAxAPOExAge    -1.371 0.014     -1.995 0.00027 

Intercept       0.330 0.325         -0.050 0.871 

  
 
   
Table 11:  Significant Models for Connectivity of mPFC-PCC without Outliers and with 

Normality Corrections 

 Left mPFC-PCC*  Left mPFC-PCC* 

Model Summary F Adj R2 p-value Std β p-value   F Adj R2 p-value Std β p-value 

Model 3 4.595 0.139 0.006    2.884 0.078 0.043   

Age    1.287 0.001     1.071 0.005 

APOE Level    1.807 0.001     1.445 0.006 

APOExAge    -2.213 0.001     -1.773 0.006 

Intercept       -0.359 0.343         0.399 0.106 

Model 4 4.498 0.173 0.003    3.160 0.114 0.020   

Age    0.996 0.000     0.889 0.001 

APOE Level    0.103 0.525     0.033 0.842 

PAxAPOE    1.738 0.000     1.558 0.002 

PAxAPOExAge    -2.126 0.0001     -1.822 0.001 

Intercept       -0.113 0.690         -0.510 0.094 

*Without outliers.**With Box-Cox Transformation.       
 



 
 

 

88 

 

The results of the multiple linear regression models 3 and 4 suggest that a portion of the 

total variation in the long-range connectivity of the mPFC and PCC in the left hemisphere was 

predicted by Age, APOE level, and APOExAge in model 3, and Age, PAxAPOE, and 

PAxAPOExAge in model 4. 

Model 3:  The equation for this model was mPFC-PCC = 0.039*Age + 1.022*APOE 

Level – 0.031* APOExAge.  For age, the unstandardized partial slope (0.039) and standardized 

partial slope (1.133) are statistically different from 0 (t = 3.132, df = 65, p = 0.003).  For APOE 

Level, the unstandardized partial slope (1.022) and standardized partial slope (1.604) are 

significantly different from 0 (t = 3.197, df = 65, p = 0.002).  For the interaction effect, the 

unstandardized partial slope (-0.031) and standardized partial slope (-1.999) are statistically 

different from 0 (t = -3.227, df = 65, p = 0.002).  The model suggests there are changes in 

connectivity with every year increase in age, and that connectivity controlling for age would 

depend on APOE level, but due to multicollinearity issues with the interaction terms, it is very 

difficult to describe main effects.  The interaction indicates that the changes in connectivity due 

to age are different between the APOE Levels. Further investigation of the directionality of these 

changes was conducted using GraphPad Prism 7.0 (results presented in Figures 4 and 5).  Simple 

linear regression analysis revealed the carriers of the APOE-ɛ4 allele showed decreased 

connectivity by 0.016 each year while the non-carrier group did not change with age.  The 

intercept in model 3 (which does not hold a significant meaning as it would not make sense for 

all the independent variables to be 0) was not statistically significantly different from 0 (t = -

0.596, df = 65, p = 0.553).  The R2 value indicates that 10% of the variation in connectivity of 

the mPFC and PCC was predicted by age and APOE status (or level). Interpreted according to 

Cohen (1988), this suggests a small effect. 
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Model 4:  The equation for this model was mPFC-PCC = 0.031*Age + 0.028*APOE 

Level + 0.497*PAxAPOE – 0.015* PAxAPOExAge.  For age, the unstandardized partial slope 

(0.031) and standardized partial slope (0.907) were statistically different from 0 (t = 3.561, df = 

64, p = 0.001).   For APOE Level, the unstandardized partial slope (0.028) and standardized 

partial slope (0.043) were not significantly different from 0 (t = 0.266, df = 64, p = 0.791).  For 

PAxAPOE, the unstandardized partial slope (0.497) and standardized partial slope (1.668) were 

statistically different from 0 (t = 3.586, df = 64, p = 0.001).  For PAxAPOExAge, the 

unstandardized partial slope (-0.15) and standardized partial slope (-1.995) were significantly 

different from 0 (t = -3.853, df = 64, p = 0.00027). The model suggested there were changes in 

connectivity with every year increase in age, but that APOE level did not predict connectivity 

when controlling for age and PA level.  The PAxAPOE interaction indicated that when 

controlling for age, connectivity was predicted not by APOE status alone but was predicted by 

the PA level in the APOE category.  The PAxAPOExAge interaction indicated that the changes 

in connectivity due to age were different based on PA level, but depended on APOE status (or 

PA level). Further investigation of the directionality of these differences was conducted using 

GraphPad Prism 7.0 (results presented in Figures 4 and 5).  Simple linear regression analysis 

revealed the non-carriers in the Low PA group increased connectivity by 0.0198 per year, while 

carriers and non-carriers in the High PA group did not have slopes different from 0 (thus 

showing no change in connectivity with increased age).  In the High PA group, the slopes of the 

carriers and non-carriers did differ, but again, neither slope was different from 0.  The Low PA 

carriers did not have a slope different from 0, and did not show differences with any other group 

across age. The intercept in model 4 (which does not hold a significant meaning as it would not 

make sense for all the independent variables to be 0) was not statistically significantly different 
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from 0 (t = -0.163, df = 64, p = 0.871).  The R2 value indicates that about 14% of the variation in 

connectivity of the mPFC and PCC was predicted by age, APOE status (or level), and PA level. 

Interpreted according to Cohen (1988), this suggests a small effect. 

Additional Analyses: The low PA ɛ4 positive group only has 9 subjects all under the age of 

35 years. The above analysis was redone including only subjects under the age of 35.  There 

were no significant findings in this analysis.  Additionally, a 2(APOE level) x 2(PA level) 

ANOVA did not reveal any significant findings when performed on all subjects or when 

restricted to only subjects under the age of 35. 

To visually inspect the differing effects based on group, the graphs in Figure 3 and 4 and 

equations were generated using GraphPad Prism 7.0. 

Figure 3:  Correlation of left hemisphere mPFC and PCC by PA or APOE- ε4 group. 
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Legend:  Panel A:  Graphs show the linear regression line when plotting the correlation 

of the rs-fMRI timeseries of the mPFC and PCC in the left hemisphere versus age. Panel 

A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and 

circle data points.  High PA: red line and square data points.  *The slopes of the two 

equations were significantly different (F(1,65) = 7.263, p = 0.0090) indicating the Low 

PA group was increasing while the High PA group was not changing.  Panel B: 

Comparison of the regression lines of APOE-ε4 carriers and non-carriers.  APOE-ε4 

carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square 
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data points.  *The slopes of the two equations were significantly different (F(1,65) = 

10.39, p = 0.0020), indicating the carriers were decreasing in connectivity while the non-

carriers were not changing.  Both slope comparisons survived the Bonferroni correction 

for two comparisons (q = 0.025). 

 

Equations for each group in Figure 3: 

1) Low PA:  y = 0.01579x + 0.5056 

The slope was significantly different from 0 (F(1,25) = 5.6, p = 0.0260), but did not survive 

the correction for multiple comparisons (Bonferroni correction for 4 comparisons to 0, q = 

0.0125) 

2) High PA:  y = -0.006923x + 1.24  

The slope was not significantly different from 0 (F(1,40) = 1.897, p = 0.1761). 

3) APOE ε4 positive:  y = -0.0239x + 1.802 

The slope was significantly different from 0 (F(1,17) = 7.501, p = 0.0140), but just 

missed surviving the multiple comparison correction threshold. 

4) APOE ε4 negative:  y = 0.085x +0.7295 

The slope was not quite significantly different from 0 (F(1,50) = 3.455, p = 0.0690). 
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Figure 4:  Effects of PA and APOE-ε4 groups on correlation of left hemisphere mPFC-PCC. 
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  Legend:  Graphs show the linear regression line when plotting the Fisher’s z-transformed 

correlation of the rs-fMRI timeseries of the mPFC and PCC in the left hemisphere versus age.  

Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: 

Low PA APOE-ε4 non-carriers; Green line square data points:  High PA APOE-ε4 carriers; 

Purple line square data points: High PA APOE-ε4 non-carriers.  Panel A:  Comparing the 

regression lines of APOE-ε4 carriers and non-carriers in the Low PA category.  The slopes of the 
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regression lines were not significantly different from each other (F(1,23) = 2.929, p = 0.1005); 

Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA 

categories.  The slopes were not significantly different from each other (F(1,15) = 0.1768, p = 

0.6805); Panel C: Comparing the regression lines of Low PA APOE-ε4 carriers and High PA 

APOE-ε4 non-carriers.  The slopes were not significantly different from each other (F(1,35) = 

1.501, p = 0.2287); Panel D: Comparing the regression lines of Low PA APOE-ε4 non-carriers 

and High PA APOE-ε4 carriers.  1The slopes were significantly different from each other 

(F(1,26) = 11.51, p = 0.0022); Panel E: Comparing the regression lines of APOE-ε4 non-carriers 

with High and Low PA levels. 2The slopes were significantly different from each other (F(1,46) 

= 5.472, p = 0.0237); Panel F:  Comparing the regression lines of APOE-ε4 carriers and non-

carriers in the High PA category. 3The slopes were significantly different from each other 

(F(1,38) = 4.597, p = 0.0385).  The Bonferroni corrected significance level for 6 comparisons 

was p = 0.008.  

The following equations were generated for each line in Figure 4: 

1) Low PA ε4 positive:  y = -0.03971x + 2.234 

The slope was not significantly different from 0 (F(1,6) = 2.449, p = 0.1686). 

2) Low PA ε4 negative: y = 0.01981x + 0.3304 

The slope was significantly different from 0 (F(1,17) = 7.755, p = 0.0127) and just missed 

surviving the multiple comparison correction threshold (p = 0.0125). 

3) High PA ε4 positive: y = -0.0244x + 1.843 

The slope was not significantly different from 0 (F(1,9) = 4.229, p = 0.0669). 

4) High PA ε4 negative: y = -0.0004362x + 1.042 

The slope was not significantly different from 0 (F(1,29) = 0.006761, p = 0.9350).   
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Section 5.7:  DMN Hubs 

Four models were used to explain the node strength of four identified hubs of the DMN:  

bilateral precuneus and bilateral PCC.  The assumptions of linearity, normality, homogeneity of 

variance, and screening for influential points were examined.  None of the models reached 

significance (results presented in Table 13).  There were no changes in significance of the 

models when an assumption appeared to be violated and then appropriately accounted for in the 

model. 

Linearity: Reviews of the partial scatterplots of the independent variable (age) and the 

dependent variables (node strength of the left and right precuneus, left and right PCC) indicated 

linearity was not violated.  Additionally, a residual plot vs age demonstrated a random horizontal 

band within an absolute value of 3, also indicating linearity, with one data point consistently as 

an exception.  

Normality:  Review of the S-W test for normality and the skewness and kurtosis statistics 

[right hemisphere: precuneus (SW = 0.834, df = 69, p < 0.001; skewness (1.774); kurtosis 

(3.669)); PCC (SW = 0.833, df = 69, p < 0.001; skewness (1.742); kurtosis (3.429)); left 

hemisphere: precuneus (SW = 0.810 df = 69, p < 0.001; skewness (2.026); kurtosis (5.243)); 

PCC (SW = 0.817, df = 69, p < 0.001; skewness (2.137); kurtosis (6.494))] statistics suggested in 

aggregate that normality was an issue (skewness statistic was in acceptable range for the right 

hemisphere precuneus and PCC). The Box-Cox power transformation was performed to 

normalize the data, but when the regression models were run again, there were no significance 

differences in the outcome models. 

Homogeneity of variance:  When examining the models explaining the node strength of the 

4 identified hubs of the DMN, there was a constant spread of residuals over the range of values 
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of the independent variables and the predicted values indicating homogeneity.  However, there 

were some minor deviations in some graphs.  In the left precuneus and right PCC models, model 

3 had a larger spread at smaller independent variable values when graphing APOExAge vs. 

residuals, and the same was true in model 4 when graphing APOExPAxAge vs. residuals.  In the 

left PCC, model 2 had a larger spread of residuals at lower independent variable values when 

graphing vs. age and PAxAge.  This was also true in model 4 when graphing residuals vs. 

APOExPAxAge.  While the graphs did not indicate major violations of the homogeneity of 

variance, there may be an increased likelihood of type II error. 

Screening for Influential Points:  Table 12 presents Cook’s distance, centered leverage 

values, and Mahal’s distance (and the chi-squared critical values to compare to the Mahal’s 

distance).  In model one, all values indicated that there were no data points exerting undue 

influence.  However, in models 2, 3, and 4, Mahal’s distance was greater than the critical value.  

The models were re-run with the identified outlier removed, but all the models remained non-

significant.  As there were no reasons to believe the outlier was due to error or incorrectly 

measured data, and the outlier did not create nor negate a significate association, the possible 

outlier was included in the reported results. 
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Table 12:  Influential Points Statistics for DMN 

  

Cook's 

Distance 

Centered 

Leverage 

Mahal's 

Distance 

Chi2 

Critical 

Value 

Model 1  0.078 5.302 5.990 

R Precuneus 0.194    

R PCC 0.186    

L Precuneus 0.226    

L PCC 0.251       

Model 2  0.173 11.749 9.490 

R Precuneus 0.169    

R PCC 0.169    

L Precuneus 0.195    

L PCC 0.251       

Model 3  0.393 26.725 9.490 

R Precuneus 0.376    

R PCC 0.386    

L Precuneus 0.478    

L PCC 0.511       

Model 4  0.360 24.484 11.070 

R Precuneus 0.563    

R PCC 0.536    

L Precuneus 0.697    

L PCC 0.770       
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Table 13:  Node Strength in the DMN. 

 Right Precuneus  Left Precuneus 

Model Summary F Adj R2 p-value Std β p-value   F Adj R2 p-value Std β p-value 

Model 1 0.398 -0.009 0.530    0.604 -0.006 0.440   

Age    -0.077 0.530     -0.095 0.440 

Intercept      51.645 <0.001         52.525 <0.001 

Model 2 0.940 0.042 0.426    0.866 0.038 0.463   

Age    -0.096 0.828     -0.170 0.701 

PA Level    -0.205 0.678     -0.250 0.612 

PAxAge    0.021 0.974     0.107 0.867 

Intercept       67.165 0.087         71.554 0.070 

Model 3 2.255 0.052 0.900    1.581 0.025 0.202   

Age    0.702 0.063     0.588 0.123 

APOE Level    1.256 0.017     1.055 0.047 

APOExAge    -1.417 0.029     -1.239 0.059 

Intercept       -23.884 0.467         -11.128 0.739 

Model 4 1.348 0.020 0.262    0.866 -0.008 0.490   

Age    0.283 0.302     0.202 0.467 

APOE Level    0.293 0.095     0.209 0.239 

PAxAPOE    0.474 0.343     0.382 0.450 

PAxAPOExAge    -0.814 0.146     -0.666 0.239 

Intercept       10.691 0.677         21.018 0.421 

 Right Posterior Cingulate Cortex  Left Posterior Cingulate Cortex 

  F Adj R2 p-value Std β p-value   F Adj R2 p-value Std β p-value 

Model 1 0.495 -0.007 0.484    0.499 -0.007 0.482   

Age    -0.086 0.484     -0.086 0.482 

Intercept       47.305 <0.001         44.834 <0.001 

Model 2 0.350 0.016 0.789    1.162 0.007 0.331   

Age    -0.147 0.742     0.202 0.646 

PA Level    -0.158 0.752     0.139 0.777 

PAxAge    0.090 0.890     -0.443 0.488 

Intercept       58.717 0.121         34.965 0.337 

Model 3 1.545 0.023 0.211    2.011 0.043 0.121   

Age    0.614 0.108     0.592 0.117 

APOE Level    1.061 0.046     1.133 0.032 

APOExAge    -1.268 0.054     -1.237 0.057 

Intercept       -13.697 0.667         -19.168 0.536 

Model 4 0.645 0.039 0.633    1.807 0.045 0.138   

Age    0.227 0.417     0.290 0.283 

APOE Level    0.129 0.468     0.355 0.042 

PAxAPOE    0.505 0.323     0.445 0.367 

PAxAPOExAge    -0.708 0.214     -0.850 0.124 

Intercept       16.701 0.505         3.890 0.870 
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Section 5.8:  FPN Hubs 

Four models were used to explain the node strength of four identified hubs of the FPN:  

bilateral dorsal and lateral PFC.  The assumptions of linearity, normality, homogeneity of 

variance, and screening for influential points were examined.  None of the models reached 

significance (results presented in Table 15).  There were no changes in significance of the 

models when an assumption appeared to be violated and then appropriately accounted for in the 

model. 

Linearity: Reviews of the partial scatterplots of the independent variable (age) and the 

dependent variables (node strength of the left and right d-PFC and l-PFC) indicated linearity was 

not violated.  Additionally, a residual plot vs age demonstrated a random horizontal band within 

an absolute value of 3, also indicating linearity, with one data point as an exception in all but the 

right dorsal PFC.  

Normality:  Review of the S-W test for normality and the skewness and kurtosis statistics 

[right hemisphere: dorsal PFC (SW = 0.864, df = 69, p < 0.001; skewness (1.460); kurtosis 

(2.040)); lateral PFC (SW = 0.904, df = 69, p < 0.001; skewness (1.498); kurtosis (4.350)); left 

hemisphere: dorsal PFC (SW = 0.877 df = 69, p < 0.001; skewness (1.609); kurtosis (3.833)); 

lateral PFC (SW = 0.845, df = 69, p < 0.001; skewness (1.922); kurtosis (5.654))] statistics 

suggested in aggregate that normality was an issue (only skewness statistic remains in acceptable 

range). The Box-Cox power transformation was performed to normalize the data, but when the 

regression models were run again, there were no significance differences in the outcome models. 

Homogeneity of variance:  When examining the models explaining the node strength of the 

4 identified hubs of the FPN, there was a constant spread of residuals over the range of values of 

the independent variables and the predicted values indicating homogeneity.  However, there were 
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some minor deviations in some graphs.  In the bilateral dorsal PFC models, model 2 had a larger 

spread at smaller independent variable values when graphing age and PAxAge vs. residuals, and 

the same was true in model 3 when graphing APOExAge vs. residuals.  The right dorsal PFC 

model 4 also had the same larger spread at smaller independent variable values when graphing 

residuals vs. APOExPAxAge. While the graphs did not indicate major violations of the 

homogeneity of variance, there may be an increased likelihood of type II error. 

Screening for Influential Points:  Table 14 presents Cook’s distance, centered leverage 

values, and Mahal’s distance (and the chi-squared critical values to compare to the Mahal’s 

distance).  In model one, all values indicated that there were no data points exerting undue 

influence.  However, in models 2, 3, and 4, Mahal’s distance was greater than the critical value.  

The models were re-run with the identified outlier removed, but no model changed in 

significance findings.  The results remained nonsignificant, and the possible outlier was included 

in the results. 

   Table 14:  Influential Points Statistics for FPN. 

  

Cook's 

Distance 

Centered 

Leverage 

Mahal's 

Distance 

Chi2 

Critical 

Value 

Model 1  0.078 5.302 5.990 

R d-PFC 0.130     

R l-PFC 0.229     

L d-PFC 0.211     

L l-PFC 0.257       

Model 2  0.173 11.749 9.490 

R d-PFC 0.170     

R l-PFC 0.205     

L d-PFC 0.178     

L l-PFC 0.213       

Model 3  0.393 26.725 9.490 

R d-PFC 0.171     

R l-PFC 0.467     

L d-PFC 0.409     

L l-PFC 0.540       

Model 4  0.360 24.484 11.070 

R d-PFC 0.295     

R l-PFC 0.680     

L d-PFC 0.587     

L l-PFC 0.775       
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Table 15:  Node Strength in the FPN. 

 Right Dorsal PFC  Left Dorsal PFC 

Model Summary F Adj R2 p-value Std β p-value   F Adj R2 p-value Std β p-value 

Model 1 1.204 0.003 0.276    1.289 0.004 0.260   

Age    -0.133 0.276     -0.137 0.260 

Intercept       50.131 <0.001         47.037 <0.001 

Model 2 1.194 0.052 0.319    0.994 0.000 0.401   

Age    -0.217 0.621     -0.051 0.907 

PA Level    -0.274 0.576     -0.055 0.912 

PAxAge    0.120 0.851     -0.136 0.831 

Intercept       68.987 0.053         50.997 0.172 

Model 3 2.055 0.044 0.115    2.575 0.065 0.061   

Age    0.452 0.230     0.472 0.205 

APOE Level    1.015 0.054     1.091 0.037 

APOExAge    -1.070 0.099     -1.116 0.082 

Intercept       -5.394 0.857         -15.730 0.614 

Model 4 1.599 0.091 0.185    1.884 0.049 0.124   

Age    0.097 0.720     0.194 0.471 

APOE Level    0.356 0.042     0.340 0.050 

PAxAPOE    0.185 0.709     0.463 0.347 

PAxAPOExAge    -0.521 0.346     -0.759 0.168 

Intercept       21.691 0.350         5.786 0.810 

 Right Lateral PFC  Left Lateral PFC 

  F Adj R2 p-value Std β p-value   F Adj R2 p-value Std β p-value 

Model 1 0.062 -0.014 0.804    0.016 -0.015 0.901   

Age    0.030 0.249     0.015 0.901 

Intercept       43.975 <0.001         43.611 <0.001 

Model 2 0.521 -0.022 0.669    0.612 -0.017 0.610   

Age    0.215 0.629     0.294 0.509 

PA Level    0.072 0.885     0.174 0.725 

PAxAge    -0.285 0.659     -0.427 0.509 

Intercept       39.080 0.269         31.174 0.399 

Model 3 1.467 0.020 0.232    1.487 0.021 0.226   

Age    0.569 0.137     0.673 0.079 

APOE Level    0.947 0.075     1.064 0.046 

APOExAge    -0.985 0.132     -1.197 0.069 

Intercept       -7.188 0.810         -16.767 0.594 

Model 4 1.273 0.016 0.290    1.132 0.008 0.349   

Age    0.334 0.225     0.376 0.175 

APOE Level    0.324 0.066     0.270 0.126 

PAxAPOE    0.369 0.460     0.481 0.339 

PAxAPOExAge    -0.689 0.218     -0.814 0.148 

Intercept       9.934 0.667         5.968 0.806 
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Section 5.9:  Hippocampus Subsections 

Four models were used to explain the node strength of the three subsections of the 

hippocampus in both hemispheres:  head, body, and tail.  The assumptions of linearity, 

normality, homogeneity of variance, and screening for influential points were examined.  None 

of the models reached significance (results presented in Table 17).  There were no changes in 

significance of the models when an assumption appeared to be violated and then appropriately 

accounted for in the model. 

Linearity: Reviews of the partial scatterplots of the independent variable (age) and the 

dependent variables (node strength of the head, body, and tail of the hippocampus in both 

hemispheres) indicate linearity was not violated.  Additionally, a residual plot vs age 

demonstrated a random horizontal band within an absolute value of 3, also indicating linearity, 

with one data point as an exception in in the left body and tail and right tail. 

Normality:  Review of the S-W test for normality and the skewness and kurtosis statistics 

[right hemisphere: head (SW = 0.956, df = 69, p = 0.016; skewness (0.724); kurtosis (0.208)); 

body (SW = 0.897, df = 69, p < 0.001; skewness (1.428); kurtosis (3.284)); tail (SW = 0.924, df 

= 69, p < 0.001; skewness (1.126); kurtosis (1.681)); left hemisphere: head (SW = 0.945 df = 69, 

p = 0.004; skewness (0.880); kurtosis (0.680)); body (SW = 0.897, df = 69, p < 0.001; skewness 

(1.428); kurtosis (3.284)); tail (SW = 0.910, df = 69, p < 0.001; skewness (1.247); kurtosis 

(2.718))] statistics suggested in aggregate that normality was an issue (only skewness statistic 

remains in acceptable range, and kurtosis is in range for the right head, tail, and left head). The 

Box-Cox power transformation was performed to normalize the data, but when the regression 

models were run again, there were no significance differences in the outcome models. 
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Homogeneity of variance:  When examining the models explaining the node strength of the 

4 identified hubs of the FPN, there was a constant spread of residuals over the range of values of 

the independent variables and the predicted values indicating homogeneity.  However, in the left 

tail there was a wider spread of residuals when graphing vs. APOExAge at smaller independent 

variable values.  While the graph did not indicate a major violation of the homogeneity of 

variance, there may be an increased likelihood of type II error. 

  Screening for Influential Points:  Table 16 presents Cook’s distance, centered leverage 

values, and Mahal’s distance (and the chi-squared critical values to compare to the Mahal’s 

distance).  In model one, all values indicated that there were no data points exerting undue 

influence.  However, in models 2, 3, and 4, Mahal’s distance was greater than the critical value.  

The models were re-run with the identified outlier removed, but no model changed in 

significance findings.  The results remained nonsignificant, and the possible outlier was included 

in the results. 
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Table 16:  Influential Points Statistics for Hippocampal Subsections. 

  

Cook's 

Distance 

Centered 

Leverage 

Mahal's 

Distance 

Chi2 

Critical 

Value 

Model 1  0.078 5.302 5.990 

R Head 0.138     

R Body 0.128     

R Tail 0.120     

L Head 0.143     

L Body 0.206     

L Tail 0.184       

Model 2  0.173 11.749 9.490 

R Head 0.160     

R Body 0.142     

R Tail 0.148     

L Head 0.166     

L Body 0.156     

L Tail 0.137       

Model 3  0.393 26.725 9.490 

R Head 0.213     

R Body 0.233     

R Tail 0.156     

L Head 0.235     

L Body 0.446     

L Tail 0.402       

Model 4  0.360 24.484 11.070 

R Head 0.284     

R Body 0.352     

R Tail 0.105     

L Head 0.269     

L Body 0.537     

L Tail 0.427       
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Table 17:  Node Strength of Hippocampal Subsections 
 Right Head  Right Body  Right Tail 

Model Summary F Adj R2 p-value Std β p-value   F Adj R2 p-value Std β p-value   F Adj R2 p-value Std β p-value 

Model 1 0.052 -0.014 0.819    0.002 -0.015 0.962    1.825 0.012 0.181   

Age    -0.028 0.819     -0.006 0.962     -0.163 0.181 

Intercept       23.713 <0.001         24.796 <0.001         26.629 <0.001 

Model 2 0.599 -0.018 0.618    0.359 -0.029 0.783    1.585 0.025 0.202   

Age    0.523 0.241     0.151 0.735     -0.501 0.251 

PA Level    0.592 0.235     0.061 0.902     -0.556 0.254 

PAxAge    -0.835 0.199     -0.243 0.709     0.505 0.425 

Intercept       -1.579 0.943         22.315 0.290         51.442 0.025 

Model 3 0.765 -0.010 0.518    2.419 0.059 0.074    1.073 0.003 0.367   

Age    0.487 0.208     0.907 0.017     -0.053 0.889 

APOE Level    0.668 0.213     1.382 0.009     0.303 0.568 

APOExAge    -0.926 0.163     -1.655 0.011     -0.209 0.750 

Intercept       1.040 0.957         -19.588 0.264         15.897 0.423 

Model 4 0.716 -0.017 0.584    1.346 0.020 0.263    1.972 0.054 0.109   

Age    0.341 0.222     0.455 0.099     -0.300 0.265 

APOE Level    0.023 0.896     0.230 0.188     0.389 0.025 

PAxAPOE    0.579 0.256     0.667 0.184     -0.621 0.207 

PAxAPOExAge    -0.823 0.148     -1.039 0.065     0.322 0.556 

Intercept       7.208 0.624         0.085 0.995         29.174 0.052 

 Left Head  Left Body  Left Tail 

  F Adj R2 p-value Std β p-value   F Adj R2 p-value Std β p-value   F Adj R2 p-value Std β p-value 

Model 1 2.373 0.020 0.128    2.552 0.022 0.115    0.157 -0.013 0.693   

Age    -0.185 0.128     -0.192 0.115     -0.048 0.693 

Intercept       31.620 <0.001         32.565 <0.001         21.658 0.003 

Model 2 2.136 0.048 0.104    1.941 0.040 0.132    1.771 0.033 0.161   

Age    0.633 0.144     0.528 0.224     0.747 0.088 

PA Level    0.931 0.056     0.861 0.077     1.037 0.035 

PAxAge    -1.238 0.051     -1.086 0.087     -1.199 0.060 

Intercept       -4.514 0.816         -5.998 0.789         -29.988 0.233 

Model 3 1.442 0.019 0.239    2.238 0.052 0.092    1.144 0.006 0.338   

Age    0.279 0.462     0.514 0.171     0.602 0.118 

APOE Level    0.726 0.171     1.033 0.049     0.938 0.080 

APOExAge    -0.843 0.197     -1.277 0.049     -1.176 0.075 

Intercept       9.258 0.588         -4.173 0.830         -15.399 0.486 

Model 4 1.614 0.035 0.182    2.029 0.057 0.101    2.010 0.056 0.104   

Age    0.283 0.298     0.364 0.177     0.566 0.038 

APOE Level    0.079 0.647     0.035 0.837     -0.116 0.498 

PAxAPOE    0.876 0.080     1.056 0.034     1.364 0.007 

PAxAPOExAge    -1.065 0.057     -1.261 0.023     -1.404 0.012 

Intercept       7.944 0.542         1.817 0.903         -15.563 0.348 
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Chapter 6: Discussion 
 

In this study, we used rs-fMRI (resting state fMRI) and graph theory to investigate 

whether age, PA, APOE-ɛ4, and the interactions of these variables predict global efficiency, 

long-range connectivity in the DMN, node strength of hubs in the DMN, FPN, and the 

subsections of the hippocampus in young adulthood to middle adulthood. We aimed to determine 

if the selected metrics could capture differences in brain function depending on PA level and 

genetic risk for AD.  We hoped to add to the literature of how PA protects cognition by 

describing the natural adaptations to resting state networks, even in those with genetic risk for 

AD, prior to declines in cognitive abilities. By understanding the connectivity patterns, we may 

better predict future cognitive changes, but the current study only begins to address this question.   

While our results do not comprehensively describe and capture brain alterations prior to 

cognitive decline, we did gain insights into how changes in the functional connectivity of the 

mPFC-PCC relate to meeting health requirements of PA and genetic risk.  Our findings raise 

awareness that PA and APOE genotype may alter the time-course of compensatory increased 

functional connectivity of this connection, and effective protective interventions in individuals 

will either increase or decrease connectivity depending on the relationship between the time of 

treatment implementation and the point of compensatory increased functional connectivity.  Due 

to the dependency of expected outcomes on this time-course, PA and APOE genotype must be 

included when using rs-fMRI as an outcome measurement of intervention or clinical trials in AD 

research.  Precision medicine is a medical model utilizing environment, lifestyle, and biology to 

design specific prevention and treatment strategies to treat an individual, and our findings will 

assist in identifying target populations and expected outcomes on connectivity by informing 



 
 

 

106 

 

expectations of functional connectivity patterns of the mPFC-PCC and how they relate to PA and 

APOE genotype.  

 We began the study with the following specific aims: 

Specific Aim 1:  To investigate the association of self-reported leisure-time PA on the 

fronto-parietal network, DMN, and hippocampal connectivity in young adulthood to middle 

adulthood. 

 Specific Aim 2:  To investigate the association of the interaction of PA and APOE-ε4 

status on the fronto-parietal network, DMN, and hippocampal connectivity from young 

adulthood to middle adulthood. 

We had several hypotheses related to each aim, but we will begin this discussion with the 

significant findings and address possible reasons for the non-findings in the following sections. 

Section 6.1:  Findings on Connectivity of the mPFC-PCC in the Left Hemisphere 

Specific Aim 1: Hypothesis 4: Subjects who meet the weekly recommendations for 

moderate to vigorous intensity PA will show greater connectivity between the mPFC and 

PCC than the low PA group across the entire age range. 

In our analysis, Model 2 with the mPFC-PCC as the dependent variable was designed to test 

Specific Aim 1, hypothesis 4.  While this model did not quite reach significance, a subsequent 

analysis using PAxAge as the sole predictor found in the Low PA group, each year increase in 

age corresponded with a 0.016 increase in connectivity.  The High PA group was found to have a 

slope not different from zero indicating there were not changes in connectivity due to age in this 

sample.  However, as the slopes did significantly differ from each other, we could not test the 

elevations of the lines and a post hoc ANOVA did not reveal any difference between the means of 

the High and Low PA groups. Thus, our results indicated that the High PA group did not have a 
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greater correlation of the mPFC-PCC in the left hemisphere as we had expected. This finding 

caused us to review our earlier expectations, and while in advanced aging the correlation of these 

brain regions was positively correlated with episodic memory performance (Andrews-Hanna et 

al., 2007; Zhao et al., 2012), this may not be the case in young adults.  We further discuss the 

renewed look at our results in terms of CR and underlying biological mechanisms in future 

sections. 

Specific Aim 2:  Hypothesis 4: APOE-ε4 carriers with levels of PA that meet the weekly 

recommendations for moderate to vigorous intensity PA will have connectivity measures 

that are not different from the non-carriers who meet the recommendations for moderate 

to vigorous intensity PA. 

When we ran Model 3 with the mPFC-PCC as the dependent variable, there were main effects of 

age and APOE level, but the interaction revealed that carriers decreased in connectivity while the 

non-carriers did not have a regression slope different from zero (we focus on the interaction 

predictors because of the multicollinearity issue).  This indicated an apparent downward 

trajectory for the carriers and a horizontal trajectory for the non-carriers.  Model 4 investigated 

the interactive effects of PA and APOE, directly testing Specific Aim 2, Hypothesis 4.  We 

found the carriers and non-carriers in the High PA category did have different slopes of the 

regression lines.  However, neither the slope for the carriers nor the slope for the non-carriers 

was different from zero, indicating horizontal trajectories for those with High PA regardless of 

APOE status.  The Low PA non-carriers had positive slope indicating increased connectivity 

with age, and this trajectory was significantly different from both the carriers and non-carriers in 

the High PA category.  The Low PA carriers did not have a slope different from zero, nor did the 

slope differ from any other group.  However, we believe this is due to limitations in our data 
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(discussed in later sections) and not a representation of the trajectory of this group across our age 

range.  Thus, we did find that carriers and non-carriers had horizontal trajectories in our age 

range while the Low PA non-carriers increased.  It is harder to determine if there is a difference 

between carriers based on PA levels, but we have explanations of our data in relation to other 

studies in the following section. 

Section 6.2:  Findings and Relationship to Cognitive Reserve Theory 

In the cognitive reserve (CR) theory, neural compensation is the recruitment of alternate 

neural networks to perform the same cognitive processes that were disrupted due to pathology or 

age related changes, but this may occur in conjunction with improved or unchanged cognitive 

performance – an indication of maintenance (Barulli & Stern, 2013).   Rs-fMRI functional 

connectivity has the potential to be a unique tool to measure these compensatory recruitments.  

Currently, using rs-fMRI in relation to CR is not a customary practice, despite the apparent 

advantages to interpretation.  The compensation neural mechanism underlying CR is frequently 

studied using brain activation during a cognitive task, yet brain changes and aging both increase 

subjective difficulty (Barulli & Stern, 2013), and thus it is difficult to find the appropriate task 

and level of difficulty that would be comparable across a wide range of individuals.  The 

paradigms chosen are often very simple cognitive tasks that do not reflect experiences outside 

the scanner.  Functional connectivity analysis using rs-fMRI data is advantageous because it does 

not rely on task or performance, but is rather an observational capture of spontaneous neuronal 

activity reflecting brain communication regardless of the undertaken task.  Another benefit to 

using rs-fMRI is the promise of being an early biomarker of brain changes, and this early 

detection before the onset of cognitive decline is critical to the development of treatments to 

prevent AD (Albert et al., 2011).  
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The left PCC is a prominent hub of the DMN (Buckner et al., 2009), and it is possible the 

differences in the projected trajectories of the connectivity of this hub with the mPFC is 

reflective of the compensatory time-course in our participants based on the interactions of PA 

level and APOE status.  Unfortunately, the current study is cross-sectional in design, and there 

are no longitudinal measurements of changes in cognitive performance.  We cannot with 

certainty claim increased connectivity of the mPFC-PCC was correlated with improved or 

maintained cognition and thus meeting the criteria for a compensatory response. Interestingly, 

these regions do overlap with the significant areas of the PA main effect and PAxAPOE-ɛ4 status 

interactions on semantic memory in the Smith et al. (2011) fMRI study.   Additionally, a recently 

published study (Weng et al., 2017) endeavored to uncover the neural mechanisms underlying 

PA protective effects on cognition using core networks as seeds in a rs-fMRI analysis, and the 

PCC was included in the core network for the DMN.   After an acute bout of moderate intensity 

exercise, these researchers found there were transient increases in correlation of the spontaneous 

BOLD signal of the core DMN with several regions including the mPFC, thus again overlapping 

with the connection we found to have significance in the current study. It may be that these 

transient increases of connectivity lay the groundwork for future compensatory recruitment as 

concurrent activation induces white matter connections between brain regions (Sporns, 2011).     

Figure 5 is an illustration expanding upon the CR construct provided by Barulli and Stern 

(2013) to elucidate the timing of different events preceding cognitive decline and the relationship 

between levels of cognitive reserve, cognition status, and functional connectivity of the mPFC-

PCC.  The CR model published by Barulli and Stern (2013) is one of several models attempting 

to describe the adaptations and workings of the brain, but one of the other prominent theories is 

the STAC model by Reuter-Lorenz and Park (2014). This theory proposes the recruitment of 
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alternate networks and the reorganization of functional connections to maximize performance 

(such as in learning) or to minimize impact on cognition due to brain changes is a property of the 

brain at all stages of life.  While some proponents of this model claim it differs from CR theory, 

we view the STAC model as a detailed description of how life-long exposures build up CR to 

better adapt to normal aging or pathology as well as conceivably reducing the rate of these 

alterations (Barulli & Stern, 2013).  PA is one of the life experiences that has been shown to 

increase CR (Stern, 2006), and our measurement of the mPFC-PCC connectivity in the left 

hemisphere appeared to be the most sensitive to the timing of neural compensation processes in 

our sample.  Future studies will need to investigate other resting state connections and graph 

metrics to determine the dynamic patterns preceding cognitive changes and dementia in 

individuals with differing levels of CR as well as confirm the validity of the proposed model in 

Figure 5.   

 

Figure 5:  Adaptation of the CR mediation role with AD pathology and clinical 

diagnosis. 
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Adaptation of the CR mediation role with AD pathology and clinical expression 

presented by model presented by Barulli and Stern (2013). The x-axis in this 

model indicates time progression, and age-related changes as well as increases of 

AD neuropathology occur along this continuum.  Cognitive function is reflected 

along the y-axis, and the higher the CR, the more AD pathology and age-related 

changes are needed before the change points (Amieva et al., 2005; Hall et al., 

2007) and clinical diagnostic criteria are met for AD.  While it is likely that these 

concurrent brain changes progress at different rates, once the change point is 

reached, the decline of cognition is more rapid in the person with higher CR (Hall 

et al., 2007; Stern, 2006) due to the evidence that AD pathology will be more 

severe (Ewers, Insel, Stern, Weiner, & (ADNI), 2013; Stern, Alexander, 

Prohovnik, & Mayeux, 1992).  The new additions to this model are the 

superimposed red dotted lines indicating the proposed connectivity of the mPFC-

PCC in relation to cognitive changes. The connectivity pattern is placed on the 

graph in relation to the solid line indicating cognitive status and is not related to 

the y axis.  Increases in connectivity occur prior to changes in cognition, and the 

pattern would explain the direction of the regression lines in the current study.    

The blue dotted line illustrates what we hypothesize would occur (based on our 

Chirles et al. 2017 study) as a result of a PA intervention in an individual already 

experiencing cognitive decline. 

 

In a prior study, we demonstrated evidence that PA interventions in older adults with 

MCI aid in the recruitment of alternate brain networks to protect against cognitive decline 

(Chirles et al., 2017).  After 12 weeks of walking, a seed region including part of the PCC 
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increased connectivity with frontal regions in the participants diagnosed with MCI while there 

were no effects in the healthy elders.  Interpreting these results as they relate to CR, the 

participants in the MCI group had already experienced enough brain changes to exhaust the 

compensatory increased connectivity of the PCC region with frontal areas (evidenced by the 

declines in cognitive abilities). The PA intervention enabled compensatory responses of the PCC 

to function again and protect cognition by delaying the downward connectivity trajectory.  While 

also speculative, we interpreted the non-findings in our healthy elders to be consistent with our 

assertion that higher levels of CR (assumed to be true as the healthy elders were of the same age 

as the MCI group yet were not exhibiting cognitive decline) would prolong the period of 

effective compensation.  While the PA intervention did not increase the connectivity of the PCC 

in our healthy elders, it may have additionally prolonged the effective compensatory period.  

Future intervention studies need to confirm these theoretical explanations by measuring rates of 

cognitive decline and incidence of dementia over the course of several years.   

The current study’s findings also fit into the model explained in Figure 5, and proposed 

connectivity trajectories captured in the current study are presented in Figure 6.  The fact that our 

High PA subjects did not show any connectivity changes in the left hemisphere corresponds with 

the horizontal line segment of functional connectivity preceding the change point indicated with 

arrows.  PA increases CR (we describe potential mechanisms in the Biological Plausibility 

section), and we hypothesize the amount of brain changes due to age (as they are younger than 

50 years) and any existing pathology in these subjects does not yet require adaptation (proposed 

connectivity pattern Fig.6, Panel B).  We assume our Low PA group has lower levels of CR, and 

thus would have a change point in connectivity preceding a change in cognition earlier than the 

High PA group.  Our results support this as the Low PA non-carriers do show greater 
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connectivity as a function of age (proposed connectivity pattern Fig. 6, Panel C).    APOE-ɛ4 

carriers have been shown to have greater amounts of amyloid burden than age-matched non-

carriers (Morris et al., 2010), and brain regions first exhibiting these deposits are associated with 

earlier compensatory mechanisms evidenced by increased connectivity and subsequent loss of 

connectivity (Buckner et al., 2009; Hillary et al., 2015).  The current study results indicated the 

APOE-ɛ4 carriers decreased connectivity with age, and it is possible that our older carriers were 

indicating the loss of connectivity preceding cognitive decline.  However, the linear regression 

models employed in this study would not detect non-linear relationships and would miss if there 

were an increase in connectivity prior to the decrease in connectivity (proposed connectivity 

pattern Fig. 6, Panel D).  Regardless, we do not feel a loss of connectivity adequately explains 

our results as we did find the High PA carriers did not have slopes, as a function of age, that 

were significantly different from zero.  Our Low PA carriers were all younger than 32 years, and 

thus only carriers with High PA made up the data points at the older end of our age range.  It is 

possible that our Low PA carriers were exhibiting increased connectivity due to compensatory 

mechanisms, even at this early age, while the High PA carriers had a horizontal trajectory, 

indicating functional connections that did not yet require compensation (compensatory 

activations have been previously reported in young APOE-ɛ4 carriers (Matura et al., 2014)). The 

two trajectories superimposed upon each other would indicate a negative slope across our study’s 

age range in APOE-ɛ4 carriers (proposed connectivity pattern, Fig. 6, Panel E).  This 

interpretation of our results would suggest functional connectivity evidence that PA can mitigate 

the increased risk of decreased connectivity in APOE-ɛ4 carriers.  However, this is an 

interpretation that will need to be confirmed with future studies.  
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 A) Lifespan functional connectivity pattern:  changes in cognition are preceded 

by changes in connectivity. B) The High PA carriers and non-carriers have 

enough neural reserve to not yet require compensatory recruitment.  C) The Low 

PA Non-carriers have less CR and need to begin compensation demonstrated by 

increased connectivity. D) The increased rate of amyloid deposition in carriers of 

the APOE-ɛ4 allele along with age related changes initiate compensatory 

increased connectivity at an earlier age, and the compensation period is limited.  

E) Low PA carriers have begun compensatory increases in connectivity, but the 

High PA carriers have not yet reached a critical threshold of brain changes to 

initiate the compensatory mechanisms. 

We are not the first study to examine trajectories of function in relation to the APOE-ɛ4 

allele, and our interpretation of our results do coincide with another cross-sectional study 

investigating the effects of age and APOE genotype on rs-fMRI functional connectivity (Shu et 

Figure 6:  Proposed progression along the general functional connectivity 

pattern of the left mPFC-PCC related to levels of CR that would explain the 

results of the multiple linear regression analysis. 
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al., 2016).  Despite opposite susceptibilities to AD, cognitively normal carriers of the ɛ2 and ɛ4 

allele were found to have similar fMRI activations during memory tasks (Trachtenberg, Filippini, 

Cheeseman, et al., 2012) and intrinsic connectivity (Trachtenberg, Filippini, Ebmeier, et al., 

2012), and this apparently confusing finding is perhaps explained by the single time point 

comparisons rather than understanding the trajectory of the connectivity pattern.  Shu et al. 

(2016) modeled the connectivity of the PCC in a rs-fMRI seed based analysis in cognitively 

healthy ɛ2 and ɛ4 carriers.  In this cross-sectional study, significant effects of the different alleles 

were found in the connectivity of the PCC with the precuneus and ACC.  The ɛ4 carrier model 

demonstrated a decrease in functional connectivity in the DMN in the age range studied (54 to 80 

years), and the ɛ2 carriers demonstrated a positive aging trajectory – thus indicating an increase 

in connectivity with age.  If we view these results in conjunction with the CR model, the 

protective effect of ɛ2 carriers against the development of AD is demonstrated by increasing 

compensatory recruitment by the PCC during this age range while the ɛ4 carriers are already 

exhibiting the downward trajectory after peak compensatory connectivity in this age range 

leading towards cognitive decline.  It is this trajectory that explains the different risk ratios better 

than any single timepoint comparison. 

 Higher levels of CR may set the groundwork for future adaptations and minimize the 

effect of brain changes on cognition by delaying pathology and increasing the recruitment of 

alternate brain networks (Barulli & Stern, 2013).  Our study is unique in using rs-fMRI to detect 

differences in connectivity prior to changes in cognition in subjects with different PA levels and 

APOE-ɛ4 status.   Our limited age range does challenge our ability to interpret our results as 

different points of alteration of the connectivity pattern across the lifespan, but the model does 

explain the results of connectivity studies in AD and healthy at-risk adults. If the pattern of this 
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early detection of brain changes can be established, then we will better understand how the brain 

naturally adapts and this will inform AD treatment strategies.  However, there is danger of 

confusing inter-subject variability with intra-subject variability in this cross-sectional approach 

(W. K. Thompson, Hallmayer, O'Hara, & Initiative, 2011) to modeling connectivity patterns 

prior to cognitive decline.  We may not be presenting a genuine effect of age but rather 

individual or generational differences, and future longitudinal studies need to confirm that PA 

can protect against harmful brain changes to cognition and improve the ability to recruit alternate 

brain networks regardless of APOE-ɛ4 status, thus increasing CR and delaying cognitive decline 

and incidence of dementia.  

Section 6.3:  Biological Plausibility 

 It is established that higher levels of PA reduce the incidence of cognitive decline (Etgen 

et al., 2010; Laurin et al., 2001; Middleton et al., 2010; Middleton et al., 2011), and we now 

present biological plausibility that PA can change the connectivity trajectory of the mPFC-PCC 

that would explain this protection in both carriers and non-carriers of the APOE-ɛ4 allele.  There 

are many hypothesized neurophysiological mechanisms that may explain the protection of brain 

structure and function in human aging due to PA, but few have been confirmed in human brains 

and depend upon animal studies.  Cholinergic function in the hippocampus and cerebral cortex of 

rats has been shown to be improved by exercise (Ben et al., 2009), and rodent studies have 

demonstrated improved brain lipid metabolism and reduced neuroinflammation after PA 

interventions, thus counteracting the physiologic impact of the APOE-ɛ4 allele in the 

hippocampus (Intlekofer & Cotman, 2013).   Neurotrophic effects supporting neurogenesis in the 

dentate gyrus of rodents due to PA has been well supported (Trejo, Carro, & Torres-Aleman, 

2001; van Praag, Shubert, Zhao, & Gage, 2005), and this is an effect also seen in humans 
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(Erickson et al., 2011; Pereira et al., 2007).  While the hippocampus is a brain region inherently 

involved in cognitive processes involving memory, it is not where we found significant results in 

the current study. Due to this discrepancy, we focus our explanations of biological plausibility on 

amyloid beta deposition and altered glucose metabolism that do occur in the PCC of humans and 

have links to changes in functional connectivity. 

While findings are still inconsistent, most studies have found APOE-ɛ4 carriers to have a 

higher cortical Aß load compared to non-carriers (Fouquet, Besson, Gonneaud, La Joie, & 

Chételat, 2014). However, given that PA levels have been implicated in reducing Aß load in 

carriers comparable to non-carriers (Head et al., 2012), the inconsistency may be due to 

measurements of PA not being included in data collection and thus subsequent analyses.  

Amyloid plaque is a common subject of AD studies and has been linked to altered connectivity 

of cortical hubs in asymptomatic human subjects (Drzezga et al., 2011). However, it is unlikely 

in the current study that we are seeing changes in the connectivity of the mPFC-PCC due 

primarily to amyloid deposition as most studies have found amyloid pathology to begin after our 

age range (Jack et al., 2010), differences between carriers and non-carriers in amyloid burden 

manifest in adults older than 50 years (Fouquet et al., 2014), and rs-fMRI differences between 

carriers and non-carriers of the ɛ4 allele have been found in the absence of amyloid pathology in 

older adults (Sheline et al., 2010).  Moreover, functional activation differences between carriers 

and non-carriers in young adults (20-38 years) during episodic memory tasks (Matura et al., 

2014) also indicates differences in brain function occur long before the presence of AD 

pathology.  Despite the fact  it is unlikely that connectivity alterations in the age range of the 

current study are due to amyloid plaque buildup, there is evidence that the accumulation of 

amyloid beta is not the cause of AD but rather a downstream effect of differences in neural 
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metabolic function (Stranahan & Mattson, 2012).  Thus, our findings of differences in 

connectivity of the PCC, a target brain region of later amyloid plaque deposition reaching 

clinical levels in the AD continuum, supports the theory that this biomarker is a result of earlier 

pathologies increasing the risk of an AD diagnosis. 

The more likely candidate to explain our connectivity findings is differences in glucose 

metabolism that could reduce the ability to form resilient white matter architecture. Type II 

diabetes and insulin resistance increase the risk of cognitive decline  (Ott et al., 1996; 

Velayudhan et al., 2010; Yen et al., 2010), and improved glycemic control has been associated 

with improved cognitive abilities in non-diabetic individuals (Rolandsson, Backeström, Eriksson, 

Hallmans, & Nilsson, 2008), indicating a metabolic continuum that effects the ability of the brain 

to be protected against changes (Stranahan & Mattson, 2012).  While age is a risk factor for 

insulin resistance and developing type 2 diabetes (DeFronzo, 1981), findings of altered 

metabolism in  young APOE-ɛ4 carriers (20-39 years old) have been demonstrated in the PCC 

and prefrontal cortex (Reiman et al., 2004).  These areas have been shown to exhibit 

hypometabolism in older cognitively intact adults at genetic risk for AD (Reiman et al., 1996; G. 

W. Small et al., 1995).  The PCC, as a hub of the DMN, utilizes glycolysis (Vaishnavi et al., 

2010)  to meet the high energy demand (Buckner et al., 2005), and Perkins et al. (2016) found 

upregulated GLUT1 and GLUT3 transporters in postmortem PCC brain tissue of these young 

adult APOE-ɛ4 carriers compared to non-carriers.  GLUT1 is involved in the transportation of 

glucose across the blood brain barrier, and as this increase in protein levels of GLUT1 were not 

accompanied by increases in the mRNA levels, it is indicative of increased regulation of 

translational activity shifts (Perkins et al., 2016).  Additionally, APOE binds to rab11, a protein 

involved in GLUT3 trafficking to the neuron membrane surface, and this may explain the 
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apparent contradictory findings that protein levels were upregulated in areas associated with 

hypometabolism.  Hexokinase-1 sequesters imported glucose via phosphorylation, and Perkins et 

al. (2016) also found increased protein levels as another possible compensatory response to 

impaired glucose transport functionality in the young carriers.   Another apparent compensatory 

response in these young carriers were the increased protein levels of complexes I, II, and IV of 

the electron transport chain(ETC), necessary to mitochondrial function.  These same carriers 

have also been shown to have lower levels of mitochondrial cytochrome oxidase activity than 

noncarriers in the PCC indicative of declining mitochondrial function (Valla et al., 2010). This in 

conjunction with findings of altered synaptic structure in infants (Dean et al., 2014; Dumanis et 

al., 2009; Knickmeyer et al., 2014) provide more evidence that this upregulation of proteins may 

be indicative of early compensatory responses to altered energy metabolism pathways in the 

PCC of young adult APOE-ɛ4 carriers (Perkins et al., 2016).  The increased risk of cognitive 

decline in APOE-ɛ4 carriers and individuals on the more critical end of the metabolism 

continuum might result from the same metabolic inefficiency effects.  

Efficient metabolism in older adults is indicative of a reserve to function despite AD 

related changes (Cohen et al., 2009; Stranahan & Mattson, 2011, 2012), and it is possible this 

efficient metabolism is necessary in young and middle adulthood to lay the groundwork of white 

matter connections necessary for the recruitment of alternate brain networks when brain changes 

have hindered the function of the typical network paths. Interestingly, Middleton et al. (2010) 

found higher levels of PA reported during teenage years of women over the age of 65 were 

associated with a reduced incidence of cognitive impairment, which would fit with the 

hypothesis of earlier foundations of connections necessary for protected cognition. White matter 

tracts require a high metabolic cost (Tomasi, Wang, & Volkow, 2013), and inefficient 
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metabolism will not allow for easy formation of white matter tracts beyond what is necessary for 

brain function.  Thus, when the recruitment of alternate pathways is needed to maintain function 

due to brain alterations, carriers and adults with reduced metabolic efficiency are limited in 

alternate connections and thus must require increased communication along these relatively 

sparse existing pathways earlier in life than adults with a varied and strong white matter network.  

This may be what we are measuring in our current study. 

There is much evidence that PA improves glucose tolerance and insulin sensitivity (Heath 

et al., 1983; Rogers et al., 1988; Seals, Hagberg, Allen, et al., 1984; Seals, Hagberg, Hurley, 

Ehsani, & Holloszy, 1984) and that these improvements are associated with increased 

performance on executive function tasks (Baker, Frank, Foster-Schubert, Green, Wilkinson, 

McTiernan, Cholerton, et al., 2010). The mechanisms through which PA improves glycemic 

control and increases insulin sensitivity may be the reason PA reduces the risk of cognitive 

decline in the general population, and this reduced risk supports the conceptual understanding 

that metabolic reserve protects against cognitive decline, including AD.  However, while PA 

potentially has a plethora of effects at various stages of glycolysis, we propose a few 

mechanisms by which PA would result in improved glucose transport resulting in more efficient 

metabolism necessary for neural protection and plasticity (Stranahan & Mattson, 2011).   

First, GLUT3 trafficking to the neuron surface membrane is regulated by synaptic 

activity (Ferreira, Burnett, & Rameau, 2011), and it may be through the transitional activity 

induced by afferent projections from the motor cortex during acute bouts of PA that aid in the 

transport of GLUT3, thus reducing the dysregulatory effect of APOE-ɛ4 allele on protein 

functionality and improving glucose transport into the neuron. Secondly, PA also increases levels 

of BDNF (Cotman & Berchtold, 2002), a neurotrophic factor implicated in improved glucose 
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transport in cerebral cortical neurons (Burkhalter, Fiumelli, Allaman, Chatton, & Martin, 2003), 

again negating adverse effects of impaired glucose delivery into the neuron.  This dual effect on 

increased metabolic efficiency via PA may allow for enough energy to ‘wire’ together the 

neurons that “fire” together (paraphrase of Hebb’s Law: “Neurons that fire together wire 

together”) and enhance CR by enabling the establishment of a durable white matter network.   

While peripheral levels of insulin are decreased with PA (Heath et al., 1983) and 

associated with cognitive improvements (Tarumi et al., 2013), it still remains to be established 

that PA increases insulin sensitivity in the central nervous system, perhaps through the 

mechanisms mentioned previously. IDE (insulin-degrading enzyme) clears amyloid beta as well 

as insulin, and hyperinsulinemia, due to impaired glucose transport, would divert enzymatic 

resources from clearing the amyloid beta. PA increases insulin sensitivity, thus reducing the 

amount of diverted IDE and increasing the clearance of amyloid beta as evidenced in PA studies 

in APOE-ɛ4 carriers (Head et al., 2012). Sequentially, improved glucose transport leads to 

increased clearance of amyloid, and implicitly is one of the more compelling arguments that the 

accumulation of amyloid beta is a downstream effect of inefficient glucose metabolism and not 

the instigator of AD pathology.  While the amyloid plaques do additionally damage neurons and 

interneuronal communication, they may not be the initial cause of the dysfunction. Thus, PA 

protects cognition not only by increasing CR through improving metabolic efficiency, but 

through the prevention of additional secondary pathology that disrupts brain function. 

In summary, there is evidence of dysregulated metabolism in young APOE-ɛ4 carriers 

decades before the accumulation of amyloid plaque buildup indicating early compensatory 

measures due to reduced functional glucose transport across the blood brain barrier and into the 

neuron.  Accumulated evidence that PA influences the efficiency of glucose metabolism would 



 
 

 

122 

 

explain why PA reduces the risk of developing AD in the general population as well as in those 

with genetic risk for AD. The results from the current study could indicate that PA levels do alter 

the time course of compensatory connectivity increases of the PCC, which are related to 

metabolic processes. However, it is necessary to confirm this speculation with empirical data. 

Section 6.4:  Methodological Differences from Previous Literature 

 Our first specific aim of the current study was to investigate the association of self-

reported leisure-time PA on the fronto-parietal network, DMN, and hippocampal connectivity in 

young adulthood to middle adulthood.  Other than interactions of PA with age and APOE on the 

long-range connectivity in the left hemisphere, we failed to reject the null hypothesis with all 

other dependent variables.  We believe our non-findings may be explained due to methodological 

differences with the studies cited in our rationale.  Primarily, the differences in the age of our 

participants, the network measures used, and the subjective measure of PA may explain why we 

did not obtain significant results when testing the following hypotheses of Specific Aim 1: 

Hypothesis 1: Global efficiency in the DMN and fronto-parietal network, node degree, 

and long range connectivity between the PCC and mPFC will decrease with increased 

age. 

Hypothesis 2:  Subjects who meet the weekly recommendations for moderate to vigorous 

intensity PA will have greater measures of network integration (global efficiency) in the 

DMN and fronto-parietal network than the low PA group across the entire age range.   

Hypothesis 3:  Subjects who meet the weekly recommendations for moderate to vigorous 

intensity PA will have greater node strength of the hippocampal subregions, precuneus, 

PCC, and DLPFC than the low PA group across the entire age range. 
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Age is a factor that might account for the limited findings in this study.  Our oldest 

participant was 50, yet previous PA and connectivity studies demonstrating increased 

connectivity in the DMN defined the lower limit of their older participants to be 55 (Voss et al., 

2010) or 60 (Chirles et al., 2017).  Another exercise intervention study found greater node degree 

of the hippocampus in the exercisers, but again this study included cognitively healthy adults 

over the age of 70 years (Burdette et al., 2010).  Including participants older than 60 years would 

have extended our regression lines and perhaps allowed us to detect differences in middle age.  

Another possibility is that our sample is too young to have age related brain changes requiring 

compensatory recruitment to such an extent that differences in network measures (global 

efficiency, node degree) would be measurable.  The two PA intervention studies finding 

increased recruitment in the DMN measured connectivity as the correlation between two brain 

regions (Chirles et al., 2017; Voss et al., 2010) and did not use network measures.  Our 

significant result in the current study was a measure of the correlation between two brain regions, 

and it is possible in these cognitively healthy adults that there were not enough single connection 

differences to be detected by the network measures.   

The sums of the link strengths were calculated in the equations we used for global 

efficiency and node strength (defined below).

  

If some connections have compensatory increases in connectivity due to decreases in other 

connections, these changes are negated by the summation.  It is possible that our non-findings 

using global efficiency and node strength as dependent variables are indicative of successful 
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adaptations in these young and middle-aged adults.  The benefit of the network measures is that 

they encapsulate the organization and function of the brain in a holistic approach, but the 

downfall is that meaningful single connections indicative of brain changes may be missed.   

The choice of node size and number for the network influences the outcome 

measurements, and this may also explain our non-findings in this study.  Burdette et al (2010) 

used 15,000 network nodes and found the node degree of the hippocampus in older adults after a 

4-month exercise intervention increased due to connections with the anterior cingulate cortex 

(ACC).  The ACC was comprised of numerous network nodes, while in our study this region 

comprised 4 of 234 nodes.  The combination of variance and not enough connections to the ACC 

would mask any differences in the node strength of the subsections of the hippocampus if effects 

of PA on connections to the hippocampus were limited to this region.  While not strictly using 

network analysis, Boraxbekk et al. (2016) found  voxel-wise connectivity of the PCC was 

positively correlated with current and accumulated PA over the course of 10 years. Again, this 

study utilized a greater number of connections to determine an index of connectivity compared to 

the current study.  

The Paffenbarger Physical Activity Questionnaire was used to determine the physical 

activity status in this study as PA questionnaires are commonly employed by researchers 

investigating PA and the brain.  For example, white matter is evidenced to be the underlying 

neural substrate supporting functional connectivity, and Smith et al. (2016) found self-reported 

PA did have interactive effects with APOE-ɛ4 status on white matter integrity as measured using 

DTI. The Paffenbarger Questionnaire of total Index of weekly kilocalories correlates moderately 

strongly with VO2max (correlation coefficient 0.60) (Ainsworth, Leon, Richardson, Jacobs, & 

Paffenbarger, 1993), and physical fitness (as measured by VO2max) has been shown to have 
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associations with functional connectivity in networks affected by aging (Voss et al., 2016).  

When the analyses for the current study were redone with an estimated VO2max continuous 

measure, we did not uncover any additional significant findings.  While there is evidence to 

support using self-reported PA, a weakness in the current study is that while the reliability of the 

Paffenbarger Questionnaire is high for retest after one month interval (0.72) it decreases to 0.34 

after an interval of eight months (Ainsworth et al., 1993).  Thus, we cannot assume that the 

questionnaire results collected for this study accurately reflect PA habits for past year nor do we 

have a measure of life-long PA habits. 

Our second specific aim of the current study was to investigate the association of the 

interaction of PA and APOE-ε4 status on the fronto-parietal network, DMN, and hippocampal 

connectivity from young adulthood to middle adulthood.  Again, other than our findings related 

to the long-range connectivity of the mPFC-PCC in the left hemisphere, we failed to reject the 

null hypothesis with all other dependent variables.  We believe these non-findings when testing 

the following hypotheses of Specific Aim 2 are due primarily to the choice of metrics for our 

network analysis as well as the limited age range of the Low PA carrier group.     

Hypothesis 1: APOE-ε4 carriers will have smaller measures of network integration 

(global efficiency) in the DMN than the non-carrier group across the age range. 

Hypothesis 2: APOE-ε4 carriers will have smaller measures of node strength of the 

anterior hippocampus and PCC compared to the non-carrier group across the age range. 

Hypothesis 3: The APOE-ε4 carriers will have larger measures of node strength of the 

precuneus compared to the non-carrier group across the age range. 

In our younger sample, the non-findings concerning global efficiency and node strength 

may indicate compensatory mechanisms in the APOE-ɛ4 carrier group are successful and 
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network brain function has been maintained.  While differences have been found when 

comparing patient groups (Zhao et al., 2012), it is likely, as explained in an earlier section, that 

there are not enough single connection differences to be detected after summation.  Given our 

non-result when testing global measures, future investigations should investigate single 

connection differences between carriers and non-carriers.   

In the APOE-ɛ4 studies previously cited, hippocampal connectivity differences between 

carriers and non-carriers were limited to single connections or seed-based analyses during task-

based connectivity (Harrison et al., 2016; Heise et al., 2014). In 95 cognitively healthy 

individuals, age range 50-80, APOE-ɛ4 carriers had greater correlations of rs-fMRI time series 

between the hippocampus and posterior regions of the DMN that extended into the PCC 

(Westlye, Lundervold, Rootwelt, Lundervold, & Westlye, 2011).  The Heise et al. (2014) study 

found the reduced connectivity of the hippocampus with the PCC in female carriers, and Goveas 

et al. (2013) found carriers had greater functional connectivity of the PCC and precuneus in a 

seed based analysis. Koch et al. (2012) was not able to use connectivity of the PCC in the DMN 

to distinguish between cognitively healthy older adult carriers and non-carriers of the APOE-ɛ4 

allele nor between adults diagnosed with MCI or AD and concluded that single connections were 

of little diagnostic value.   PA levels were not included in this analysis, which may explain why 

differences were not found based on APOE status, and while single connections may be of 

predictive value of future cognitive decline they are not a distinguishable attribute when 

compensatory processes are no longer protecting cognition.  In cognitively intact individuals, 

single connection compensatory responses are successful and clinical criteria are not met, but in 

patient groups, the increased connectivity of single connections have not successfully inhibited 

cognitive changes, and thus cognitive difficulties manifest.  
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Hypothesis 4: APOE-ε4 carriers with levels of PA that meet the weekly 

recommendations for moderate to vigorous intensity PA will have connectivity measures 

that are not different from the non-carriers who meet the recommendations for moderate 

to vigorous intensity PA. 

It was not possible to determine APOE-ɛ4 status prior to recruitment and enrollment in 

our current study.  Subsequently, our Low PA APOE-ɛ4 carrier group was very small and not 

adequately represented across the age span. Results for this group could not be extrapolated 

beyond the age of 30 years.  This limited any statistical ability to determine differences in the 

regression models, and it may explain why we did not find the Low PA APOE-ɛ4 carrier group 

to differ from the non-carriers and the High PA groups.  This severely limited our ability to 

determine if higher levels of PA attenuated early compensation in carriers.   

Section 6.5:  Future Directions 

Our current study implicates PA as another factor to consider in understanding the 

connectivity pattern trajectory in individuals with genetic risk for AD, but a limitation is that we 

did not separate the different genotypes.  We based our analysis solely on having or not having 

the ɛ4 allele, yet the estimated risks for AD of the isoforms vary greatly [0.6 for APOE 2/2 or 

2/3; 2.6 for APOE 2/4; 3.2 for APOE3/4; and 14.9 for APOE 4/4 (Farrer et al., 1997)].  We 

included and APOE 2/4 participant in the carrier group, yet and carriers of the ɛ4 and ɛ2 allele 

have been shown to have different aging trajectories (Shu et al., 2016).  Increasing our sample 

size would allow us to investigate the aging trajectory of each isoform.  

The limited age range of the Low PA APOE-ɛ4 carriers as well as the entire sample is a 

limitation, but the recruitment of older subjects or the inclusion of publicly available data is a 

solution to this issue.  Future studies should also include a network node structure with smaller 
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nodes and higher spatial resolution, particularly in the ACC, to increase sensitivity to differences 

in brain function. We would also need to expand data collection to include life-time exposures 

that have been reported to increase cognitive reserve and affect brain network connectivity for 

future longitudinal studies.  Such exposures would be enriching experiences such as the 

intellectual stimulation associated with higher education (Coffey, Saxton, Ratcliff, Bryan, & 

Lucke, 1999), specialized occupation (Gaser & Schlaug, 2003), and literacy (Carreiras et al., 

2009).  Moreover, PA levels need to be through questionnaire and VO2max tests repeatedly across 

the age span and not just for the current year. While socioeconomic status, IQ, education, and 

occupation have opportunistic or financial limitations, PA is lifetime exposure that can be altered 

at any time regardless of previous behavior, and it is a prime method to use in intervention 

studies (Stern, 2006).  It is encouraging that in the current study leisure activities meeting the 

recommended amounts for general health appeared to indicate a delay in the need for 

compensation.  However, future longitudinal studies need to confirm this, and endpoints in this 

study need to include rates of slowed dementia and incidence of dementia that would require 

sensitive neuropsychological testing.  Table 18 describes some of the research questions that 

should be addressed in these future longitudinal studies.  
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Table 18:  Additional Questions for Future Research. 

1. Does lifetime PA increase the length of the compensation period (as 

measured using functional connectivity) and further delay cognitive 

decline in APOE-ɛ4 carriers and non-carriers to the same extent?  If so, 

is this augmented ability to compensate regulated to specific brain 

networks or hubs, or is it a global effect? 

2. Are there graph metrics sensitive to brain changes prior to change in 

cognitive status, or are single connections the best indicators?  Are there 

directionality differences depending on the metric used due to the 

dynamic and integrated nature of the brain? 

3. Does delayed change in connectivity delay change in cognitive status? 

 

Section 6.6:  Conclusion 

 This novel study used rs-fMRI connectivity and graph metrics to investigate the 

interactive effects of age, APOE-ɛ4, and PA on brain networks altered by AD and age and 

related these findings to levels of cognitive reserve.  We found the long-range connectivity of the 

mPFC-PCC in the left hemisphere had a positive age trajectory in our Low PA non-carriers, but 

a horizontal age trajectory in the High PA carriers and non-carriers of the APOE-ɛ4 allele.  This 

may indicate the Low PA non-carriers, due to lower levels of CR, were demonstrating 

compensatory increases in connectivity while High PA carriers and non-carriers in our age range 

did not yet require protective compensatory mechanisms.  We suggest that perhaps due to more 

efficient glucose metabolism, higher levels of PA allow the development of a more robust 

network architecture, thus increasing CR and reducing the risk of cognitive decline regardless of 
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APOE-ɛ4 status.  The validity of using rs-fMRI to detect differences in the time-course 

connectivity patterns sensitive to levels of CR still needs to be established, but the proposed 

future directions will aid this effort and are critical to the research and treatment of AD.  These 

future directions will also determine if delayed compensatory increases in functional 

connectivity of the mPFC-PCC in the DMN is indicative of delayed declines in episodic 

memory, the memory system supported by the DMN.  Early detection may be the key to 

identifying appropriate target populations for specific treatment studies allowing precision 

medicine to delay cognitive decline and preserve memories. Our study adds to the literature 

describing adaptations of the brain networks prior to clinical diagnoses, and uniquely relates 

these adaptations to PA level and genetic risk for AD.  
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Appendix 

Additional Graphs for Data 
 

Figure A1: Global Efficiency by PA or APOE-ε4 Group. 
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Legend:  Panel A:  Graphs show the linear regression line when plotting the global efficiency versus age. Panel A:  

Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle data points.  High PA: red 

line and square data points.  The slopes of the two equations are not significantly different (F(1,65) = 0.001234, p = 

0.9721).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  APOE-ε4 carriers:  green 

line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The slopes of the two 

equations are not quite significantly different (F(1,65) = 3.583, p = 0.0628).  

 

Equations of regression lines in Figure A1 generated by GraphPad Prism 7.0 software. 

1) Low PA:  y = -0.001351x + 0.536 

The slope is not significantly different from 0 (F(1,25) = 0.133, p = 0.7184). 

2) High PA:  y = -0.001196x + 0.4976  

The slope is not significantly different from 0 (F(1,40) = 0.2269, p = 0.6364). 

3) APOE-ε4 positive:  y = -0.008819x + 0.7856 

The slope is not significantly different from 0 (F(1,17) = 2.267, p = 0.1505). 

4) APOE-ε4 negative:  y = 0.0006761x + 0.4407 

The slope is not significantly different from 0 (F(1,48) = 0.1177, p = 0.7331). 

 

Equations of regression lines in Figure A2 generated by GraphPad Prism 7.0 software. 

5) Low PA APOE-ε4 positive:  y = -0.0201x + 1.111 

The slope is not significantly different from 0 (F(1,6) = 1.18, p = 0.3190). 

6) Low PA APOE-ε4 negative: y = -0.0001572x + 0.4859 

The slope is not significantly different from 0 (F(1,17)= 0.001516,  p = 0.9694).   

7) High PA APOE-ε4 positive: y = -0.008292x + 0.7714 

The slope is not significantly different from 0 (F(1,9) = 1.115, p = 0.3185). 

8) High PA APOE-ε4 negative: y = 0.0008641x + 0.4242 

The slope is not significantly different from 0 (F(1,29) = 0.1734, p = 0.6802).   
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Figure A2: Global Efficiency versus Age by PA and APOE-ε4 Groups. 
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Legend:  Graphs show the linear regression line when plotting global efficiency versus age.  Blue line and circle 

data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-ε4 non-carriers; Green line 

square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA APOE-ε4 non-carriers.  

Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low PA category.  The slopes 

of the regression lines are not significantly different from each other (F(1,23) = 0.9338, p = 0.3439); Panel B: 

Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The slopes are not 

significantly different from each other (F(1,15) = 0.1964, p = 0.6640); Panel C: Comparing the regression lines of 

Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are not significantly different from each 

other (F(1,35) = 2.197, p = 0.1472); Panel D: Comparing the regression lines of Low PA APOE-ε4 non-carriers and 

High PA APOE-ε4 carriers.  The slopes are not significantly different from each other (F(1,26) = 1.044, p = 0.3162); 

Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and Low PA levels. The slopes are not 

significantly different from each other (F(1,46) = 0.06196, p = 0.8045); Panel F:  Comparing the regression lines of 

APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not significantly different from each 

other (F(1,38) = 2.608, p = 0.1146).  
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Figure A3: Correlation of Right Hemisphere mPFC and PCC by PA or APOEε4 Group. 
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Legend:  Panel A:  Graphs show the linear regression line when plotting the correlation of the rs-fMRI timeseries of 

the mPFC and PCC in the right hemisphere versus age. Panel A:  Comparing the regression lines of High and Low 

PA.  Low PA: dark blue line and circle data points.  High PA: red line and square data points.  The slopes of the two 

equations are not significantly different (F(1,65) = 2.565, p = 0.1141).  Panel B: Comparing the regression lines of 

APOE-ε4 carriers and non-carriers.  APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  

blue line and square data points.  The slopes of the two equations are not quite significantly different (F(1,65) = 

3.827, p = 0.0547).  

 

Equations of regression lines in Figure A3 generated by GraphPad Prism 7.0 software: 

9) Low PA:  y = 0.005405x + 0.7924 

The slope is not significantly different from 0 (F(1,25) = 0.5182, p = 0.4783). 

10) High PA:  y = -0.009046x + 1.282  

The slope is not significantly different from 0 (F(1,40) = 3.009, p = 0.0905). 

11) APOE-ε4 positive:  y = -0.02046x + 1.676 

The slope is not significantly different from 0 (F(1,17) = 4.098, p = 0.0589). 

12) APOE-ε4 negative:  y = 0.000072x + 0.9705 

The slope is not significantly different from 0 (F(1,48) = 0.00024, p = 0.9877). 

 

 

Equations of regression lines in Figure A4 generated by GraphPad Prism 7.0 software. 

13) Low PA APOE-ε4 positive:  y = -0.007033x + 0.8209 

The slope is not significantly different from 0 (F(1,6) = 0.04698, p = 0.8356). 

14) Low PA APOE-ε4 negative: y = 0.006829x + 0.7132 

The slope is not significantly different from 0 (F(1,17) = 0.6331, p = 0.4372).   

15) High PA APOE-ε4 positive: y = -0.02479x + 1.86 

The slope is not significantly different from 0 (F(1,9) = 3.555, p = 0.0920). 

16) High PA APOE-ε4 negative: y = -0.003892x + 1.112 

The slope is not significantly different from 0 (F(1,29) = 0.5184, p = 0.4773).   
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Figure A4: Effects of PA and APOE-ε4 Groups on Right Hemisphere mPFC-PCC correlation. 
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Legend:  Graphs show the linear regression line when plotting the correlation of the rs-fMRI timeseries of the mPFC 

and PCC in the right hemisphere versus age.  Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line 

and square data points: Low PA APOE-ε4 non-carriers; Green line square data points:  High PA APOE-ε4 carriers; 

Purple line square data points: High PA APOEε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-

ε4 carriers and non-carriers in the Low PA category.  The slopes of the regression lines are not significantly different 

from each other (F(1,23) = 0.000023, p = 0.9962); Panel B: Comparing the regression lines of APOE-ε4 carriers in 

the High and Low PA categories.  The slopes are not significantly different from each other (F(1,15) = 0.4986, p = 

0.4909); Panel C: Comparing the regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  

The slopes are not significantly different from each other (F(1,35) = 1.1052, p = 0.7476); Panel D: Comparing the 

regression lines of Low PA APOE-ε4 non-carriers and High PA APOE-ε4 carriers.  The slopes are significantly 

different from each other (F(1,26) = 10.64, p = 0.0031); Panel E: Comparing the regression lines of APOE-ε4 non-

carriers with High and Low PA levels. The slopes are not significantly different from each other (F(1,46) = 1.263, p 

= 0.2670); Panel F:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the High PA category. 

The slopes are not significantly different from each other (F(1,38) = 3.157, p = 0.0836). 
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DMN Nodes 

 

Figure A5: Node Strength of Right Precuneus by PA or APOE-ε4 Group. 
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the right precuneus 

versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle data 

points.  High PA: red line and square data points.  The slopes of the two equations are not significantly different 

(F(1,65) = .001097, p = 0.9737).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  

APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The 

slopes of the two equations are significantly different (F(1,65) = 4.97, p = 0.0292).  

 

Equations of regression lines in Figure A5 generated by GraphPad Prism 7.0 software: 

17) Low PA:  y = 0.23385x + 57.8 

The slope is not significantly different from 0 (F(1,25) = 0.1572, p = 0.6951). 

18) High PA:  y = -0.2112x + 48.43  

The slope is not significantly different from 0 (F(1,40) = 0.302, p = 0.5857). 

19) APOE-ε4 positive:  y = -1.601x + 101.7 

The slope is not significantly different from 0 (F(1,17) = 3.523, p = 0.0778). 

20) APOE-ε4 negative:  y = 0.1388x + 38.9 

The slope is not significantly different from 0 (F(1,48) = 0.186, p = 0.6682). 

 

 

Equations of regression lines in Figure A6 generated by GraphPad Prism 7.0 software. 

21) Low PA APOE-ε4 positive:  y = -5.061x + 200.5 

The slope is not significantly different from 0 (F(1,6) = 2.545, p = 0.1617). 

22) Low PA APOE-ε4 negative: y = -0.03131x + 50.64 

The slope is not significantly different from 0 (F(1,17) = 0.002656, p = 0.9595).   

23) High PA APOE-ε4 positive: y = -1.49x + 99.79 

The slope is not significantly different from 0 (F(1,9) = 2.034, p = 0.1876). 

24) High PA APOE-ε4 negative: y = 0.121x + 35.69 

The slope is not significantly different from 0 (F(1,29) = 0.1151, p = 0.7369).
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Figure A6: Node Strength of Right Precuneus versus Age by PA and APOE-ε4 Groups. 

2 0 3 0 4 0 5 0

0

5 0

1 0 0

1 5 0

A

A g e

N
o

d
e

 
S

t
r

e
n

g
t

h L o w  P A  e 4 +

L o w  P A  e 4 -

2 0 3 0 4 0 5 0

0

5 0

1 0 0

1 5 0

B

A g e

N
o

d
e

 
S

t
r

e
n

g
t

h L o w  P A  e 4 +

H i g h  P A  e 4 +

2 0 3 0 4 0 5 0

0

5 0

1 0 0

1 5 0

C

A g e

N
o

d
e

 
S

t
r

e
n

g
t

h L o w  P A  e 4 +

H i g h  P A  e 4 -

2 0 3 0 4 0 5 0

0

5 0

1 0 0

1 5 0

D

A g e

N
o

d
e

 
S

t
r

e
n

g
t

h

L o w  P A  e 4 -

H i g h  P A  e 4 +

2 0 3 0 4 0 5 0

0

5 0

1 0 0

1 5 0

E

A g e

N
o

d
e

 
S

t
r

e
n

g
t

h

L o w  P A  e 4 -

H i g h  P A  e 4 -

2 0 3 0 4 0 5 0

0

5 0

1 0 0

1 5 0

F

A g e

N
o

d
e

 
S

t
r

e
n

g
t

h H i g h  P A  e 4 +

H i g h  P A  e 4 -

 
Legend:  Graphs show the linear regression line when plotting the node strength of the right precuneus versus age.  

Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-ε4 

non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA 

APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low 

PA category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 2.463, p = 

0.1302); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The 

slopes are not significantly different from each other (F(1,15) = 0.8926, p = 0.3597); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are significantly 

different from each other (F(1,35) = 0.0401, p = 4.546); Panel D: Comparing the regression lines of Low PA APOE-

ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from each other (F(1,26) = 

1.672, p = 0.2074); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and Low PA levels. 

The slopes are not significantly different from each other (F(1,46) = 0.05437, p = 0.8167); Panel F:  Comparing the 

regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not quite significantly 

different from each other (F(1,38) = 3.641, p = 0.0639).  
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Figure A7: Node Strength of Left Precuneus by PA or APOE-ε4 Group.  
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the left precuneus 

versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle data 

points.  High PA: red line and square data points.  The slopes of the two equations are not significantly different 

(F(1,65) = 0.02808, p = 0.8674).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  

APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The 

slopes of the two equations are not quite significantly different (F(1,65) = 3.695, p = 0.0590).  

 

Equations of regression lines in Figure A7 generated by GraphPad Prism 7.0 software: 

25) Low PA:  y = -0.3408x + 60.07 

The slope is not significantly different from 0 (F(1,25) = 0.3495, p = 0.5597). 

26) High PA:  y = -0.2259x + 48.58  

The slope is not significantly different from 0 (F(1,40) = 0.3289, p = 0.5695). 

27) APOE-ε4 positive:  y = -1.473x + 94.64 

The slope is not significantly different from 0 (F(1,17) = 2.727, p = 0.1170). 

28) APOE-ε4 negative:  y = 0.05336x + 41.78 

The slope is not significantly different from 0 (F(1,48) = 0.02759, p = 0.8688). 

 

 

Equations of regression lines in Figure A8 generated by GraphPad Prism 7.0 software. 

29) Low PA APOE-ε4 positive:  y = -4.547x + 181.4 

The slope is not significantly different from 0 (F(1,6) = 2.093, p = 0.1981). 

30) Low PA APOE-ε4 negative: y = -0.224x + 57.09 

The slope is not significantly different from 0 (F(1,17) = 0.1395, p = 0.7134).   

31) High PA APOE-ε4 positive: y = -1.431x + 95.8 

The slope is not significantly different from 0 (F(1,9) = 1.616, p = 0.2355). 

32) High PA APOE-ε4 negative: y = -0.1101x + 36.29 

The slope is not significantly different from 0 (F(1,29) = 0.09401, p = 0.7613). 
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Figure A8: Node Strength of Left Precuneus versus Age by PA and APOE-ε4 Groups. 
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Legend:  Graphs show the linear regression line when plotting the node strength of the left precuneus versus age.  

Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-ε4 

non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA 

APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low 

PA category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 1.863, p = 

0.1854); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The 

slopes are not significantly different from each other (F(1,15) = 0.6142, p = 0.4454); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are not quite 

significantly different from each other (F(1,35) = 3.659, p = 0.0640); Panel D: Comparing the regression lines of 

Low PA APOE-ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from each 

other (F(1,26) = 1.08, p = 0.3082); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and 

Low PA levels. The slopes are not significantly different from each other (F(1,46) = 0.2636, p = 0.6101); Panel F:  

Comparing the regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not 

quite significantly different from each other (F(1,38) = 3.067, p = 0.0880).  
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Figure A9: Node Strength of Right PCC by PA or APOE-ε4 Group.  
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the right PCC versus 

age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle data points.  

High PA: red line and square data points.  The slopes of the two equations are not significantly different (F(1,65) = 

0.01917, p = 0.8903).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  APOE-ε4 

carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The slopes of 

the two equations are not quite significantly different (F(1,65) = 3.863, p = 0.0536).  

 

Equations of regression lines in Figure A9 generated by GraphPad Prism 7.0 software: 

33) Low PA:  y = -0.285x + 51.83 

The slope is not significantly different from 0 (F(1,25) = 0.2.497, p = 0.6217). 

34) High PA:  y = -0.1935x + 44.94  

The slope is not significantly different from 0 (F(1,40) = 0.2699, p = 0.6063). 

35) APOE-ε4 positive:  y = -1.406x + 87.72 

The slope is not significantly different from 0 (F(1,17) = 3.002, p = 0.1012). 

36) APOE-ε4 negative:  y = 0.0824x + 37.01 

The slope is not significantly different from 0 (F(1,48) = 0.06795, p = 0.7955). 

 

 

Equations of regression lines in Figure A10 generated by GraphPad Prism 7.0 software. 

37) Low PA APOE-ε4 positive:  y = -5.522x + 204.8 

The slope is not significantly different from 0 (F(1,6) = 4.119, p = 0.0887). 

38) Low PA APOE-ε4 negative: y = -0.1028x + 46.11 

The slope is not significantly different from 0 (F(1,17) = 0.02933, p = 0.8660).   

39) High PA APOE-ε4 positive: y = -1.302x + 86.83 

The slope is not significantly different from 0 (F(1,9) = 1.685, p = 0.2266). 

40) High PA APOE-ε4 negative: y = -0.003892x + 1.112 

The slope is not significantly different from 0 (F(1,29) = 0.1576, p = 0.6943). 
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Figure A10: Node Strength of Right PCC versus Age by PA and APOE-ε4 Groups. 
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Legend:  Graphs show the linear regression line when plotting the node strength of the right PCC versus age.  Blue 

line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-ε4 non-

carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA APOE-

ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low PA 

category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 3.133, p = 

0.0900); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The 

slopes are not significantly different from each other (F(1,15) = 1.441, p = 0.2486); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are significantly 

different from each other (F(1,35) = 5.678, p = 0.0227); Panel D: Comparing the regression lines of Low PA APOE-

ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from each other (F(1,26) = 

1.187, p = 0.2860); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and Low PA levels. 

The slopes are not significantly different from each other (F(1,46) = 0.1427, p = 0.7074); Panel F:  Comparing the 

regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not significantly 

different from each other (F(1,38) = 2.975, p = 0.0927).  
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Figure A11: Node Strength of Left PCC by PA or APOE-ε4 Group. 
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the left PCC versus 

age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle data points.  

High PA: red line and square data points.  The slopes of the two equations are not significantly different (F(1,65) = 

0.4879, p = 0.4879).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  APOE-ε4 

carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The slopes of 

the two equations are not quite significantly different (F(1,65) = 3.747, p = 0.0573).  

 

Equations of regression lines in Figure A11 generated by GraphPad Prism 7.0 software: 

41) Low PA:  y = 0.06194x + 40.93 

The slope is not significantly different from 0 (F(1,25) = 0.01332, p = 0.9090). 

42) High PA:  y = -0.3835x + 46.9  

The slope is not significantly different from 0 (F(1,40) = 1.095, p = 0.3016). 

43) APOE-ε4 positive:  y = -1.364x + 87.24 

The slope is not significantly different from 0 (F(1,17) = 2.261, p = 0.1510). 

44) APOE-ε4 negative:  y = 0.06218x + 34.03 

The slope is not significantly different from 0 (F(1,48) = 0.05077, p = 0.8227). 

 

 

Equations of regression lines in Figure A12 generated by GraphPad Prism 7.0 software. 

45) Low PA APOE-ε4 positive:  y = -3.57x + 154.8 

The slope is not significantly different from 0 (F(1,6) = 1.203, p = 0.3148). 

46) Low PA APOE-ε4 negative: y = 0.3402x + 28.66 

The slope is not significantly different from 0 (F(1,17) = 0.4381, p = 0.5169).   

47) High PA APOE-ε4 positive: y = -1.069x + 75.02 

The slope is not significantly different from 0 (F(1,9) = 0.8583, p = 0.3784). 

48) High PA APOE-ε4 negative: y = -0.2171x + 40.21 

The slope is not significantly different from 0 (F(1,29) = 0.4764, p = 0.4955). 
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Figure A12: Node Strength of Left PCC versus Age by PA and APOE-ε4 Groups. 
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Legend:  Graphs show the linear regression line when plotting the node strength of the left PCC versus age.  Blue 

line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-ε4 non-

carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA APOE-

ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low PA 

category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 1.849, p = 

0.1871); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The 

slopes are not significantly different from each other (F(1,15) = 0.3742, p = 0.5499); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are not significantly 

different from each other (F(1,35) = 2.214, p = 0.1457); Panel D: Comparing the regression lines of Low PA APOE-

ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from each other (F(1,26) = 

1.651, p = 0.2102); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and Low PA levels. 

The slopes are not significantly different from each other (F(1,46) = 0.9783, p = 0.3278); Panel F:  Comparing the 

regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not significantly 

different from each other (F(1,38) = 1.021, p = 0.3187).  
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Figure A13: Node Strength of Right Dorsal mPFC by PA or APOE-ε4 Group. 
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the right dorsal mPFC 

versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle data 

points.  High PA: red line and square data points.  The slopes of the two equations are not significantly different 

(F(1,65) = 0.196, p = 0.6595).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  

APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The 

slopes of the two equations are not significantly different (F(1,65) = 2.323, p = 0.1323).  

 

Equations of regression lines in Figure A13 generated by GraphPad Prism 7.0 software: 

49) Low PA:  y = 0.2432x + 42.04 

The slope is not significantly different from 0 (F(1,25) = 0.2026, p = 0.6565). 

50) High PA:  y = -0.03088x + 45  

The slope is not significantly different from 0 (F(1,40) = 0.008, p = 0.9292). 

51) APOE-ε4 positive:  y = -0.0858x + 77.87 

The slope is not significantly different from 0 (F(1,17) = 0.9106, p = 0.3533). 

52) APOE-ε4 negative:  y = 0.2805x + 35.34 

The slope is not significantly different from 0 (F(1,48) = 1.029, p = 0.3155). 

 

 

Equations of regression lines in Figure A14 generated by GraphPad Prism 7.0 software. 

53) Low PA APOE-ε4 positive:  y = -1.429x + 99.08 

The slope is not significantly different from 0 (F(1,6) = 0.2208, p = 0.6550). 

54) Low PA APOE-ε4 negative: y = 0.4613x + 31.47 

The slope is not significantly different from 0 (F(1,17) = 0.6904, p = 0.4176).   

55) High PA APOE-ε4 positive: y = -0.6173x + 69.26 

The slope is not significantly different from 0 (F(1,9) = 0.3226, p = 0.5840). 

56) High PA APOE-ε4 negative: y = -0.1074x + 39.33 

The slope is not significantly different from 0 (F(1,29) = 0.1289, p = 0.7221). 
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Figure A14: Node Strength of Right Dorsal mPFC versus Age by PA and APOE-ε4 Groups. 
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Legend:  Graphs show the linear regression line when plotting the node strength of the right dorsal mPFC versus 

age.  Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-

ε4 non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA 

APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low 

PA category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 0.4057, p = 

0.5304); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The 

slopes are not significantly different from each other (F(1,15) = 0.04466, p = 0.8355); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are not significantly 

different from each other (F(1,36) = 0.5208, p = 0.4753); Panel D: Comparing the regression lines of Low PA 

APOE-ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from each other 

(F(1,26) = 0.9644, p = 0.3351); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and 

Low PA levels. The slopes are not significantly different from each other (F(1,46) = 0.3789, p = 0.5412); Panel F:  

Comparing the regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not 

significantly different from each other (F(1,38) = 1.769, p = 0.1915).  
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Figure A15: Node Strength of Left Dorsal mPFC by PA or APOE-ε4 Group. 
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the left dorsal mPFC 

versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle data 

points.  High PA: red line and square data points.  The slopes of the two equations are not significantly different 

(F(1,65) = 0.0458, p = 0.8313).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  

APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The 

slopes of the two equations are not quite significantly different (F(1,65) = 3.125, p = 0.0818).  

 

Equations of regression lines in Figure A15 generated by GraphPad Prism 7.0 software: 

57) Low PA:  y = -0.2711x + 48.61 

The slope is not significantly different from 0 (F(1,25) = 0.2547, p = 0.6182). 

58) High PA:  y = -0.4107x + 46.22  

The slope is not significantly different from 0 (F(1,40) = 1.169, p = 0.2861). 

59) APOE-ε4 positive:  y = -1.414x + 88.62 

The slope is not significantly different from 0 (F(1,17) = 3.259, p = 0.0888). 

60) APOE-ε4 negative:  y = -0.1034x + 36.45 

The slope is not significantly different from 0 (F(1,48) = 0.1096, p = 0.7421). 

 

 

Equations of regression lines in Figure A16 generated by GraphPad Prism 7.0 software. 

61) Low PA APOE-ε4 positive:  y = -3.153x + 138.2 

The slope is not significantly different from 0 (F(1,6) = 2.786, p = 0.1461). 

62) Low PA APOE-ε4 negative: y = -0.066x + 39.73 

The slope is not significantly different from 0 (F(1,17) = 0.01137, p = 0.9163).   

63) High PA APOE-ε4 positive: y = -1.366x + 88.03 

The slope is not significantly different from 0 (F(1,9) = 1.536, p = 0.2465). 

64) High PA APOE-ε4 negative: y = -0.2303x + 37.55 

The slope is not significantly different from 0 (F(1,29) = 0.4715, p = 0.4978). 
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Figure A16: Node Strength of Left Dorsal mPFC versus Age by PA and APOE-ε4 Groups. 
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Legend:  Graphs show the linear regression line when plotting the node strength of the left dorsal mPFC versus age.  

Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-ε4 

non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA 

APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low 

PA category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 1.082, p = 

0.3090); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The 

slopes are not significantly different from each other (F(1,15) = 0.2529, p = 0.6224); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are not significantly 

different from each other (F(1,35) = 1.995, p = 0.1666); Panel D: Comparing the regression lines of Low PA APOE-

ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from each other (F(1,26) = 

1.1238, p = 0.2760); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and Low PA 

levels. The slopes are not significantly different from each other (F(1,46) = 0.06535, p = 0.7994); Panel F:  

Comparing the regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not 

significantly different from each other (F(1,38) = 1.814, p = 0.1860).  
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Figure A17: Node Strength of Right Lateral mPFC by PA or APOE-ε4 Group.  
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the right lateral mPFC 

versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle data 

points.  High PA: red line and square data points.  The slopes of the two equations are not significantly different 

(F(1,65) = 0.196, p = 0.6595).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  

APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The 

slopes of the two equations are not significantly different (F(1,65) = 2.323, p = 0.1323).  

 

Equations of regression lines in Figure A17 generated by GraphPad Prism 7.0 software: 

65) Low PA:  y = 0.2432x + 42.04 

The slope is not significantly different from 0 (F(1,25) = 0.2026, p = 0.6565). 

66) High PA:  y = -0.03088x + 45  

The slope is not significantly different from 0 (F(1,40) = 0.008, p = 0.9292). 

67) APOE-ε4 positive:  y = -0.8058x + 77.87 

The slope is not significantly different from 0 (F(1,17) = 0.9106, p = 0.3533). 

68) APOE-ε4 negative:  y = 0.2805 + 35.34 

The slope is not significantly different from 0 (F(1,48) = 1.029, p = 0.3155). 

 

 

Equations of regression lines in Figure A18 generated by GraphPad Prism 7.0 software. 

69) Low PA APOE-ε4 positive:  y = -1.429x + 99.08 

The slope is not significantly different from 0 (F(1,6) = 0.2208, p = 0.6550). 

70) Low PA APOE-ε4 negative: y = 0.4613x + 31.47 

The slope is not significantly different from 0 (F(1,17) = 0.6904, p = 0.4176).   

71) High PA APOE-ε4 positive: y = -0.6173x + 69.26 

The slope is not significantly different from 0 (F(1,9) = 0.3226, p = 0.5840). 

72) High PA APOE-ε4 negative: y = 0.1074x + 39.33 

The slope is not significantly different from 0 (F(1,29) = 0.1289, p = 0.7221). 
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Figure A18: Node Strength of Right Lateral mPFC versus Age by PA and APOE-ε4 Groups. 
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Legend:  Graphs show the linear regression line when plotting the node strength of the right lateral mPFC versus 

age.  Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-

ε4 non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA 

APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low 

PA category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 0.4057, p = 

0.5304); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The 

slopes are not significantly different from each other (F(1,15) = 0.04466, p = 0.8355); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are not significantly 

different from each other (F(1,35) = 0.5208, p = 0.4753); Panel D: Comparing the regression lines of Low PA 

APOE-ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from each other 

(F(1,26) = 0.9644, p = 0.3351); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and 

Low PA levels. The slopes are not significantly different from each other (F(1,46) = 0.3789, p = 0.5412); Panel F:  

Comparing the regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not 

significantly different from each other (F(1,38) = 0.8264, p = 0.3691).  
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Figure A19: Node Strength of Left Lateral mPFC by PA or APOE-ε4 Group. 
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the left lateral mPFC 

versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle data 

points.  High PA: red line and square data points.  The slopes of the two equations are not significantly different 

(F(1,65) = 0.4414, p = 0.5088).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  

APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The 

slopes of the two equations are not quite significantly different (F(1,65) = 3.43, p = 0.0685).  

 

Equations of regression lines in Figure A19 generated by GraphPad Prism 7.0 software: 

73) Low PA:  y = 0.3106x + 38.69 

The slope is not significantly different from 0 (F(1,25) = 0.315, p = 0.5796). 

74) High PA:  y = -0.1205x + 46.2  

The slope is not significantly different from 0 (F(1,40) = 0.107, p = 0.7453). 

75) APOE-ε4 positive:  y = -1.073x + 83.61 

The slope is not significantly different from 0 (F(1,17) = 1.318, p = 0.2669). 

76) APOE-ε4 negative:  y = 0.3126x + 33.42 

The slope is not significantly different from 0 (F(1,48) = 1.283, p = 0.2630). 

 

 

Equations of regression lines in Figure A20 generated by GraphPad Prism 7.0 software. 

77) Low PA APOE-ε4 positive:  y = -4.758x + 193.2 

The slope is not significantly different from 0 (F(1,6) = 2.262, p = 0.1833). 

78) Low PA APOE-ε4 negative: y = 0.613x + 26.26 

The slope is not significantly different from 0 (F(1,17) = 1.336, p = 0.2637).   

79) High PA APOE-ε4 positive: y = -0.7428x + 71.2 

The slope is not significantly different from 0 (F(1,9) = 0.3896, p = 0.5480). 

80) High PA APOE-ε4 negative: y = -0.04094x + 40.01 

The slope is not significantly different from 0 (F(1,29) = 0.01765, p = 0.8952). 
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Figure A20: Node Strength of Left Lateral mPFC versus Age by PA and APOE-ε4 Groups. 
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Legend:  Graphs show the linear regression line when plotting the node strength of the left lateral mPFC versus age.  

Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-ε4 

non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA 

APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low 

PA category.  The slopes of the regression lines are not quite significantly different from each other (F(1,23) = 

3.409, p = 0.0777); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA 

categories.  The slopes are not significantly different from each other (F(1,15) = 0.9357, p = 0.3487); Panel C: 

Comparing the regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are 

significantly different from each other (F(1,35) = 4.753, p = 0.0361); Panel D: Comparing the regression lines of 

Low PA APOE-ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from each 

other (F(1,26) = 1.436, p = 0.2416); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High 

and Low PA levels. The slopes are not significantly different from each other (F(1,46) = 1.016, p = 0.3187); Panel 

F:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not 

significantly different from each other (F(1,38) = 0.8444, p = 0.3639).  
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Figure A21: Node Strength of Right Hippocampal Head by PA or APOE-ε4 Group.
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the right hippocampal 

head versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle 

data points.  High PA: red line and square data points.  The slopes of the two equations are not significantly different 

(F(1,65) = 1.687, p = 0.1986).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  

APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The 

slopes of the two equations are not significantly different (F(1,65) = 1.989, p = 0.1633).  

 

Equations of regression lines in Figure A21 generated by GraphPad Prism 7.0 software: 

81) Low PA:  y = 0.2857x + 13.69 

The slope is not significantly different from 0 (F(1,25) = 0.7716, p = 0.3881). 

82) High PA:  y = -0.2184x + 28.97  

The slope is not significantly different from 0 (F(1,40) = 0.9575, p = 0.3337). 

83) APOE-ε4 positive:  y = -0.5465x + 38.73 

The slope is not significantly different from 0 (F(1,17) = 1.47, p = 0.2420). 

84) APOE-ε4 negative:  y = 0.0945x + 19.89 

The slope is not significantly different from 0 (F(1,48) = 0.2281, p = 0.6351). 

 

 

Equations of regression lines in Figure A22 generated by GraphPad Prism 7.0 software. 

85) Low PA APOE-ε4 positive:  y = -0.8173x + 49.19 

The slope is not significantly different from 0 (F(1,6) = 0.301, p = 0.6030). 

86) Low PA APOE-ε4 negative: y = 0.3881x + 8.99 

The slope is not significantly different from 0 (F(1,17) = 1.137, p = 0.3011).   

87) High PA APOE-ε4 positive: y = -0.403x + 31.97 

The slope is not significantly different from 0 (F(1,9) = 0.4667, p = 0.5117). 

88) High PA APOE-ε4 negative: y = -0.084x + 26.06 

The slope is not significantly different from 0 (F(1,29) = 0.1299, p = 0.7211). 
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Figure A22: Node Strength of Right Hippocampal Head vs. Age by PA and APOE-ε4 Groups. 
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Legend:  Graphs show the linear regression line when plotting the node strength of the right hippocampal head 

versus age.  Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA 

APOE-ε4 non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: 

High PA APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in 

the Low PA category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 

0.439, p = 0.5142); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA 

categories.  The slopes are not significantly different from each other (F(1,15) = 0.04155, p = 0.8412); Panel C: 

Comparing the regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are 

not significantly different from each other (F(1,35) = 0.2496, p = 0.6205); Panel D: Comparing the regression lines 

of Low PA APOE-ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from 

each other (F(1,26) = 1.443, p = 0.2404); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with 

High and Low PA levels. The slopes are not significantly different from each other (F(1,46) = 1.339, p = 0.2531); 

Panel F:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes 

are not significantly different from each other (F(1,38) = 0.3828, p = 0.5398).  
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Figure A23: Node Strength of Right Hippocampal Body by PA or APOE-ε4 Group.
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the right hippocampal 

body versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle 

data points.  High PA: red line and square data points.  The slopes of the two equations are not significantly different 

(F(1,65) = 0.1406, p = 0.7089).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  

APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The 

slopes of the two equations are significantly different (F(1,65) = 6.822, p = 0.0112).  

 

Equations of regression lines in Figure A23 generated by GraphPad Prism 7.0 software: 

89) Low PA:  y = 0.07761x + 23.82 

The slope is not significantly different from 0 (F(1,25) = 0.05739, p = 0.8126). 

90) High PA:  y = -0.06094x + 25.32  

The slope is not significantly different from 0 (F(1,40) = 0.08814, p = 0.7681). 

91) APOE-ε4 positive:  y = -0.8732x + 54.2 

The slope is not significantly different from 0 (F(1,17) = 3.986, p = 0.0621). 

92) APOE-ε4 negative:  y = 0.2115x + 17.31 

The slope is not significantly different from 0 (F(1,48) = 1.458, p = 0.2331). 

 

 

Equations of regression lines in Figure A24 generated by GraphPad Prism 7.0 software. 

93) Low PA APOE-ε4 positive:  y = -2.114x + 92.05 

The slope is not significantly different from 0 (F(1,6) = 1.217, p = 0.3121). 

94) Low PA APOE-ε4 negative: y = 0.2364x + 16.91 

The slope is not significantly different from 0 (F(1,17) = 0.5552, p = 0.4664).   

95) High PA APOE-ε4 positive: y = -0.7146x + 47.69 

The slope is not significantly different from 0 (F(1,9) = 2.055, p = 0.1856). 

96) High PA APOE-ε4 negative: y = -0.1847x + 17.86 

The slope is not significantly different from 0 (F(1,29) = 0.7299, p = 0.3999). 
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Figure A24: Node Strength of Right Hippocampal Body versus Age by PA and APOE-ε4 

Groups. 
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Legend:  Graphs show the linear regression line when plotting the node strength of the right hippocampal body 

versus age.  Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA 

APOE-ε4 non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: 

High PA APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in 

the Low PA category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 

1.81, p = 0.1916); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  

The slopes are not significantly different from each other (F(1,15) = 0.5096, p = 0.4863); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are not significantly 

different from each other (F(1,35) = 2.441, p = 0.1272); Panel D: Comparing the regression lines of Low PA APOE-

ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from each other (F(1,26) = 

2.817, p = 0.1053); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and Low PA levels. 

The slopes are not significantly different from each other (F(1,46) = 0.01976, p = 0.8888); Panel F:  Comparing the 

regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not quite significantly 

different from each other (F(1,38) = 3.811, p = 0.0583).  
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Figure A25: Node Strength of Right Hippocampal Tail by PA or APOE-ε4 Group. 
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the right hippocampal 

tail versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle 

data points.  High PA: red line and square data points.  The slopes of the two equations are not significantly different 

(F(1,65) = 0.6444, p = 0.4251).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-carriers.  

APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data points.  The 

slopes of the two equations are not significantly different (F(1,65) = 0.1023, p = 0.7501).  

 

Equations of regression lines in Figure A25 generated by GraphPad Prism 7.0 software: 

97) Low PA:  y = -0.472x + 36.46 

The slope is not significantly different from 0 (F(1,25) = 0.2635, p = 0.2635). 

98) High PA:  y = -0.1536x + 21.45  

The slope is not significantly different from 0 (F(1,40) = 0.7329, p = 0.3970). 

99) APOE-ε4 positive:  y = -0.3856x + 33.74 

The slope is not significantly different from 0 (F(1,17) = 0.7849, p = 0.3880). 

100) APOE-ε4 negative:  y = -0.2348x + 24.82 

The slope is not significantly different from 0 (F(1,48) = 1.23, p = 0.2728). 

 

 

Equations of regression lines in Figure A26 generated by GraphPad Prism 7.0 software. 

101) Low PA APOE-ε4 positive:  y = -1.154x + 64.53 

The slope is not significantly different from 0 (F(1,6) = 0.2948, p = 0.6067). 

102) Low PA APOE-ε4 negative: y = -0.2996x + 27.04 

The slope is not significantly different from 0 (F(1,17) = 0.4623, p = 0.5057).   

103) High PA APOE-ε4 positive: y = 0.07669x + 11.85 

The slope is not significantly different from 0 (F(1,9) = 0.0272, p = 0.7745). 

104) High PA APOE-ε4 negative: y = -0.2058x + 23.68 

The slope is not significantly different from 0 (F(1,29) = 0.7815, p = 0.3839). 
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Figure A26: Node Strength of Right Hippocampal Tail versus Age by PA and APOE-ε4 Groups. 
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Legend:  Graphs show the linear regression line when plotting the node strength of the right hippocampal tail versus 

age.  Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-

ε4 non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA 

APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low 

PA category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 0.1515, p = 

0.7007); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The 

slopes are not significantly different from each other (F(1,15) = 0.5939, p = 0.4529); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are not significantly 

different from each other (F(1,35) = 0.352, p = 0.5568); Panel D: Comparing the regression lines of Low PA APOE-

ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from each other (F(1,26) = 

0.3562, p = 0.5558); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and Low PA 

levels. The slopes are not significantly different from each other (F(1,46) = 0.0362, p = 0.8511); Panel F:  

Comparing the regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not 

significantly different from each other (F(1,38) = 0.4579, p = 0.5027).  
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Figure A27: Node Strength of Left Hippocampal Head by PA or APOE-ε4 Group.
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the left hippocampal 

head versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle 

data points.  High PA: red line and square data points.  The slopes of the two equations are not quite significantly 

different (F(1,65) = 3.958, p = 0.0509).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-

carriers.  APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data 

points.  The slopes of the two equations are not significantly different (F(1,65) = 1.701, p = 0.1967).  

 

Equations of regression lines in Figure A27 generated by GraphPad Prism 7.0 software: 

105) Low PA:  y = 0.1897x + 17.31 

The slope is not significantly different from 0 (F(1,25) = 0.354, p = 0.5572). 

106) High PA:  y = -0.4888x + 39.12  

The slope is not significantly different from 0 (F(1,40) = 7.503, p = 0.0092). 

107) APOE-ε4 positive:  y = -0.678x + 46.43 

The slope is not significantly different from 0 (F(1,17) = 3.064, p = 0.0980). 

108) APOE-ε4 negative:  y = -0.1473x + 27.85 

The slope is not significantly different from 0 (F(1,48) = .06666, p = 0.4183). 

 

 

Equations of regression lines in Figure A28 generated by GraphPad Prism 7.0 software. 

109) Low PA APOE-ε4 positive:  y = -0.9895x + 55.86 

The slope is not significantly different from 0 (F(1,6) = 0.4182, p = 0.5418). 

110) Low PA APOE-ε4 negative: y = 0.311x + 11.63 

The slope is not significantly different from 0 (F(1,17) = 0.80, p = 0.3836).   

111) High PA APOE-ε4 positive: y = -0.642x + 44.99 

The slope is not significantly different from 0 (F(1,9) = 1.764, p = 0.2169). 

112) High PA APOE-ε4 negative: y = -0.4435x + 37.53 

The slope is not significantly different from 0 (F(1,29) = 5.571, p = 0.0252). 
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Figure A28: Node Strength of Left Hippocampal Head versus Age by PA and APOE-ε4 Groups.
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Legend:  Graphs show the linear regression line when plotting the node strength of the left hippocampal head versus 

age.  Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-

ε4 non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA 

APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low 

PA category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 0.5444, p = 

0.4681); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The 

slopes are not significantly different from each other (F(1,15) = 0.03849, p = 0.8471); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are not significantly 

different from each other (F(1,35) = 0.1912, p = 0.6646); Panel D: Comparing the regression lines of Low PA 

APOE-ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not significantly different from each other 

(F(1,26) = 2.586, p = 0.1199); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and Low 

PA levels. The slopes are significantly different from each other (F(1,46) = 4.378, p = 0.0419); Panel F:  Comparing 

the regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not significantly 

different from each other (F(1,38) = 0.2248, p = 0.6382).  
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Figure A29: Node Strength of Left Hippocampal Body by PA or APOE-ε4 Group.
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the left hippocampal 

body versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle 

data points.  High PA: red line and square data points.  The slopes of the two equations are not quite significantly 

different (F(1,65) = 3.025, p = 0.0867).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-

carriers.  APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data 

points.  The slopes of the two equations are significantly different (F(1,65) = 4.031, p = 0.0488).  

 

Equations of regression lines in Figure A29 generated by GraphPad Prism 7.0 software: 

113) Low PA:  y = 0.1476x + 17.29 

The slope is not significantly different from 0 (F(1,25) = 0.2303, p = 0.6355). 

114) High PA:  y = -0.5394x + 40.57  

The slope is not significantly different from 0 (F(1,40) = 5.143, p = 0.0288). 

115) APOE-ε4 positive:  y = -1.039x + 56.9 

The slope is not significantly different from 0 (F(1,17) = 3.917, p = 0.0642). 

116) APOE-ε4 negative:  y = -0.113x + 26.36 

The slope is not significantly different from 0 (F(1,48) = 0.3733, p = 0.5441). 

 

 

Equations of regression lines in Figure A30 generated by GraphPad Prism 7.0 software. 

117) Low PA APOE-ε4 positive:  y = -1.572x + 73.67 

The slope is not significantly different from 0 (F(1,6) = 0.91, p = 0.3769). 

118) Low PA APOE-ε4 negative: y = 0.3274x + 8.852 

The slope is not significantly different from 0 (F(1,17) = 1.167, p = 0.2952).   

119) High PA APOE-ε4 positive: y = -0.946x + 52.87 

The slope is not significantly different from 0 (F(1,9) = 1.788, p = 0.2140). 

120) High PA APOE-ε4 negative: y = -0.3546x + 35.54 

The slope is not significantly different from 0 (F(1,29) = 2.532, p = 0.1224). 
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Figure A30: Node Strength of Left Hippocampal Body versus Age by PA and APOE-ε4 Groups.
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Legend:  Graphs show the linear regression line when plotting the node strength of the left hippocampal body versus 

age.  Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-

ε4 non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA 

APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low 

PA category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 1.381, p = 

0.2520); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The 

slopes are not significantly different from each other (F(1,15) = 0.06839, p = 0.7973); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are not significantly 

different from each other (F(1,35) = 0.7092, p = 0.4054); Panel D: Comparing the regression lines of Low PA 

APOE-ε4 non-carriers and High PA APOEε4 carriers.  The slopes are not quite significantly different from each 

other (F(1,26) = 3.699, p = 0.0654); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High 

and Low PA levels. The slopes are not quite significantly different from each other (F(1,46) = 3.476, p = 0.0686); 

Panel F:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes 

are not significantly different from each other (F(1,38) = 1.57, p = 0.2889).  
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Figure A31: Node Strength of Left Hippocampal Tail by PA or APOE-ε4 Group.
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Legend:  Panel A:  Graphs show the linear regression line when plotting the node strength of the left hippocampal 

tail versus age. Panel A:  Comparing the regression lines of High and Low PA.  Low PA: dark blue line and circle 

data points.  High PA: red line and square data points.  The slopes of the two equations are not quite significantly 

different (F(1,65) = 3.657, p = 0.0603).  Panel B: Comparing the regression lines of APOE-ε4 carriers and non-

carriers.  APOE-ε4 carriers:  green line and circle data points.  APOE-ε4 non-carriers:  blue line and square data 

points.  The slopes of the two equations are not quite significantly different (F(1,65) = 3.265, p = 0.0754).  

 

Equations of regression lines in Figure A31 generated by GraphPad Prism 7.0 software: 

121) Low PA:  y = 0.4717x + 1.196 

The slope is not significantly different from 0 (F(1,25) = 1.577, p = 0.2208). 

122) High PA:  y = -0.371x + 3.238  

The slope is not significantly different from 0 (F(1,40) = 2.196, p = 0.1462). 

123) APOE-ε4 positive:  y = -0.8382x + 46.21 

The slope is not significantly different from 0 (F(1,17) = 2.552, p = 0.1286). 

124) APOE-ε4 negative:  y = 0.1106x + 15.4 

The slope is not significantly different from 0 (F(1,48) = 0.2358, p = 0.6295). 

 

 

Equations of regression lines in Figure A32 generated by GraphPad Prism 7.0 software. 

125) Low PA APOE-ε4 positive:  y = -0.8819x + 43.71 

The slope is not significantly different from 0 (F(1,6) = , p = 0.3055). 

126) Low PA APOE-ε4 negative: y = 0.577x + -3.466 

The slope is not significantly different from 0 (F(1,17) = 1.809, p = 0.1963).   

127) High PA APOE-ε4 positive: y = -1.022x + 55.3 

The slope is not significantly different from 0 (F(1,9) = 2.168, p = 0.1750). 

128) High PA APOE-ε4 negative: y = -0.1382x + 25.1 

The slope is not significantly different from 0 (F(1,29) = 0.316, p = 0.5783). 
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Figure A32: Node Strength of Left Hippocampal Tail versus Age by PA and APOE-ε4 Groups.
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Legend:  Graphs show the linear regression line when plotting the node strength of the left hippocampal tail versus 

age.  Blue line and circle data points:  Low PA APOE-ε4 carriers; Red line and square data points: Low PA APOE-

ε4 non-carriers; Green line square data points:  High PA APOE-ε4 carriers; Purple line square data points: High PA 

APOE-ε4 non-carriers.  Panel A:  Comparing the regression lines of APOE-ε4 carriers and non-carriers in the Low 

PA category.  The slopes of the regression lines are not significantly different from each other (F(1,23) = 0.4779, p = 

0.4963); Panel B: Comparing the regression lines of APOE-ε4 carriers in the High and Low PA categories.  The 

slopes are not significantly different from each other (F(1,15) = 0.003593, p = 0.9530); Panel C: Comparing the 

regression lines of Low PA APOE-ε4 carriers and High PA APOE-ε4 non-carriers.  The slopes are not significantly 

different from each other (F(1,35) = 0.2295, p = 0.6349); Panel D: Comparing the regression lines of Low PA 

APOE-ε4 non-carriers and High PA APOEε4 carriers.  The slopes are significantly different from each other 

(F(1,26) = 4.251, p = 0.0494); Panel E: Comparing the regression lines of APOE-ε4 non-carriers with High and Low 

PA levels. The slopes are not significantly different from each other (F(1,46) = 2.458, p = 0.1238); Panel F:  

Comparing the regression lines of APOE-ε4 carriers and non-carriers in the High PA category. The slopes are not 

significantly different from each other (F(1,38) = 2.395, p = 0.1300).  
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Glossary 
 

Amyloid A general term for protein fragments that the body produces 

normally. Beta amyloid is a protein fragment snipped from 

an amyloid precursor protein (APP). In a healthy brain, these 

protein fragments are broken down and eliminated.  

 

Brain plasticity The ability of the brain to modify its own structure and function 

following changes within the body or in the external environment. 

 

Clusters Densely interconnected groups of brain regions. 

 

Cognitive Reserve The phenomenon that brain disruption does not completely predict 

cognitive performance.  Also described as the ability to recruit 

brain networks.  

 

CSF A42 Cerebrospinal fluid beta-amyloid (1-42).  A biomarker for AD. 

 

Declarative Memory The capacity for conscious recollection about facts and events and 

is the kind of memory that is impaired in amnesia and dependent 

on structures in the medial temporal lobe and midline 

diencephalon.  

 

Dementia General term for a decline in mental ability severe enough to 

interfere with daily life. 

 

Diffusion tensor imaging  MRI-based neuroimaging technique which makes it possible to 

visualize the location, orientation, and anisotropy of the brain's 

white matter tracts.  

 

Edge  Pairs of nodes are linked by edges, also called links or connections. 

 

Electroencephalogram Test that detects electrical activity in the brain using small 

electrodes on the scalp. 

 

Episodic memory Relates to the formation and retrieval of specific personal 

experiences and allow the recollection of past events. 

 

Frontal-striatal circuit  Neural pathways that connect frontal lobe regions with the basal 

ganglia (striatum). 
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Functional connectivity A measure of coherence of signals assumed to reflect the 

underlying white matter structural connectivity and synchronous 

neural activity.  

 

Global efficiency A measure of functional integration that is the average inverse 

shortest path length.   

 

Hubs Hubs may be identified on the basis of several network measures, 

including high degree, short average path length, or high 

betweenness centrality.  

 

Local efficiency A measure of functional segregation:  efficiency within a module.  

 

Modularity Degree to which a given network can be decomposed into a set of 

non-overlapping, overlapping, or hierarchically arranged modules.  

 

Network Graph theory:  Set of nodes (elements) and edges (relations).  

Neuroscience:  spatially distributed, but functionally linked regions 

that continuously share information with each other.  

 

Node A network element which may represent a neuron, a neuronal 

population, a brain region, a brain voxel, or a recording electrode.  

Nodes are also referred to as vertices. 

 

Node degree The number of connections (incoming and outgoing) that are 

attached to a given node.  Across the whole network, all node 

degrees are often summarized in a degree distribution.  

 

Path length In weighted graphs, the length of the path is the sum of the edge 

lengths, which can be derived by transforming the edge weights. 

 

Pattern completion Reconstruction of complete stored representations from partial 

inputs that are part of the stored representation. 

 

Pattern separation Process by which overlapping or similar inputs (representations) 

are transformed into less similar outputs. 

 

Physical Activity Any bodily movement produced by skeletal muscles that requires 

energy expenditure. 

 

PiB PET imaging One of the most common methods to detect amyloid plaques.  

Positron emission tomography (PET) scan using PiB as the 

radioactive substance that binds to beta amyloid. 
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Priming The change in the ability to identify an object as a result of a 

specific encounter with the object. 

 

Semantic memory The acquisition and recall of general knowledge that is not tied to 

any specific personal experience and that can take a variety of 

forms:  words, facts, numbers, and rules. 

 

Small worldness A property of networks that combines high clustering with a short 

characteristic path length compared to a population of random 

networks composed of the same number of nodes and connections. 

 

VO2max Maximum volume of oxygen a body is capable of utilizing.  

Measure of cardiorespiratory fitness. 
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