TECHNICAL RESEARCH REPORT

Simple Optimization Problems
via Majorization Ordering

by Y.B. Kim, A.M. Makowski

T.R. 96-5

IR

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

Simple Optimization Problems

via Majorization Ordering

Younc B. Kim ARMAND M. Makowskit
dosa@src.umd.edu armand@src.umd.edu
Abstract

We introduce and explicitly solve a novel class of optimization problems
which are motivated by load assignment issues in crossbar switches with output
queueing. The optimization criterion is given in the majorization ordering sense.
The solution to these problems indirectly provide solutions to a large class of
convex optimization problems under a linear constraint.

1 Introduction

The notion of majorization (and its derivatives) provides a powerful tool to formal-
ize statements concerning the relative size of components of two vectors, viz., the
components (z1,...,Zx) of the vector = are “less spread out” than the components
(y1,-.-,yx) of the vector y. As elegantly demonstrated in the monograph of Mar-
shall and Olkin [7], these notions, in both deterministic and stochastic forms, have
found widespread use in many diverse fields of mathematics and their applications.

Recently, several authors have made use of majorization ideas to identify optimal
scheduling and load balancing strategies for various resource allocation problems
[2, 3]. In this paper, we consider a novel class of optimization problems which are
motivated by load assignment issues in crossbar switches with output queueing; this
application is discussed in some detail in Sections 3 and 4. These optimization
problems which we now define, are in the majorization sense, and have the following

tElectrical Engineering Department and Institute for Systems Research, University of Mary-
land, College Park, MD 20742. The work of these authors was supported partially through NSF
Engineering Research Centers Program Grant NSFD CDR-88-03012 and through NASA Grant
NAGW277S.

generic form: For every vector p in]Rf and every constant ¢ > 0, we define the
subset A(p, ¢) of [0,1]¥ by

K
Apic) = {Ae0,1)%: 3 pde =}
k=1

This set A(p; c) is non-empty whenever c satisfies the condition

K
0<c< Zpk. (1.1)
k=1

With < denoting the majorization ordering (a precise definition is given at the end
of this section), we seek vectors A* and A~ in A(p; c) such that

YA, p) < Y(A,p) < ¥(AT,p), A€ A(p;c) (1.2)

where we have used the notation

’7(Aap) = ()\1]31,--- ,/\KPK)7 A€ [03 1]K7 pE]R'-I: .

The main results of this paper are contained in Theorems 2.1 and 2.2 of Section 2
where we provide explicit expressions for the optimizers A* and A~ in terms of ¢
and p. We follow up in Sections 3 and 4 with an outline of how these optimization
results can be used to determine the best and worst loading vectors for a non-
blocking crossbar switch under the output queueing strategy.

In addition to providing answers to some natural questions raised by the results
of [5], Theorems 2.1 and 2.2 have the following curious byproduct which is of inde-
pendent interest, especially to readers interested in convex optimization: To simplify
matters somewhat, we take p = (1,...,1) = e so that now (A, p) = X for every A
in [0,1]%. The relation < being a partial ordering on RK, it is natural to seek the
mappings ¢ : RX — R which are monotonic for the majorization ordering <, i.e.,
mappings with the property that ¢(z) < ¢(y) whenever £ < y. Such mappings
are called Schur-convex mappings in honor of I. Schur who first studied them. The
class of Schur-convex functions is very large, and includes convex and symmetric
mappings [7, C.2, p. 67], among other things. With this definition, we conclude
from (1.2) that

(A7) € p(A) S p(AT), A€ Alese). (1.3)

for any Schur—convex function ¢ : RX 5 R. Therefore, the vectors A~ and A™,
whose existence is established in Theorems 2.1 and 2.2 are solutions to the opti-
mization problems

Minimize ¢ over the set A(e;c) (1.4)

and
Maximize ¢ over the set A(e;c) (1.5)

where o : RK 5 R is any Schur-convex function. In other words, the same vector
A™ (resp. A1) can be chosen to simultaneously solve all the problems (1.4) (resp.
(1.5)) with Schur—convex functions (.

As should be apparent from the discussion above, the equivalence of (1.2) and
(1.3) suggests that some information could be gleaned from viewing certain convex
optimization problems as optimization problems in the majorization sense. In this
vein, the reader will easily check that Theorems 2.1 and 2.2 yield answers to the
following convex optimization problems which generalize (1.4) and (1.5): For every
vector p in]Rf with ming—; g pr > 0 and a constant ¢ > 0 such that 0 < ¢ <
Z,Ic"zl Pk, consider the problem

Minimize (resp. Maximize) ¢ over the set B(p;c)

where B(p; c) is the subset of R¥ defined by

K
Bipie)={xcRX: 0<zx <pi, k= 1,...,K;Zxk =c}.
k=1
and ¢ : RK — R is a Schur-convex function. Again, a single solution vector can
be selected that will do the job for all Schur—convex functions!

A few words on the notation used in this paper: The kt* component of any
element « in RX is denoted either by z* or by =, k = 1,..., K, so that ¢ =
(z',...,2%) or (z1,...,zx). A similar convention is used for R¥ -valued random
variables (rvs). For any vector & = (z1,...,zx) in R¥, let z1) Sz < STk
denote the components of & arranged in increasing order. For vectors = and ¥ in

RX, we say that z is majorized by y, and write & < y, whenever the conditions

k k
Sze > Z:y(i), k=1,2,...,K (1.6)
i=1 i=

and
K

K
sz = Zy,-, (1.7)
i=1

i=1
hold. If conditions (1.6) all hold without (1.7), then we say that « is weakly super-
majorized by y, and write & <% y.

2 The Main Results

In this section we establish the existence of and expression for the vectors A~ and A+
satisfying (1.2). Throughout the discussion we assume the vector p to be selected
so that

0<pr<p2 £+~ <pk,s (2.1)

and we leave it to the reader to check that there is no loss of generality in doing so.

Theorem 2.1 Assume (1.1) and (2.1) to hold.
1. If ¢ < pg, then the vector At = (0,...,0, I—f;) is an element of A(p;c) which
satisfies

70 p) <7(At,p), A€ Alp;c). (2:2)
2. If pg < ¢, there exists a unique integer m = 2,..., K such that
K K
Y p<ce< Z Pk (2.3)
k=m k=m-1

and the vector A defined by

_ K
At =(0,...,0, S Zk=mPl 1 (2.4)
N e’ Pm—-1 N e’
m—2 K-m+1

is an element of A(p;c) which satisfies (2.2);

Before giving a proof of this result, we note that in both cases the vector A" can be

expressed through the formula (2.4) provided we define m as
K
m=min{i=1,...,K:Y p <c} (2.5)
k=i

with the natural convention that if the set of indices entering the definition (2.5) is
empty, then m = K +1 and Zf=K+1pk = 0.

Proof. (Claim 1) If ¢ < pg, then the vector (0,...,0, ﬁ) is indeed an element of
A(p; ¢), and the validity of (2.2) is well known in that case [7].

(Claim 2) Set Q; = 3K ,pk, i = 1,..., K, and the statement on m is therefore
equivalent to the monotone sequence ¢ — @;, 7 = 1,..., K, changing sign exactly
once. Condition pg < ¢ and (1.1) together imply Qx < ¢ < Q;, so that a change

of sign must occur. The uniqueness of the integer m satisfying (2.3) follows from
the strict monotonicity of ¢ — @;, ¢ = 1,..., K, a fact implied by (2.1). We also
conclude from (1.1) that 2 < m < K, and A" is well defined. The definition (2.3) of
m implies 0 < A} _, < 1, and A" is therefore an element of A(p;c). It is also plain
that A{p1 < Afp2 < -+ < Akpk.

To establish (2.2) for some A in A(p;c), it suffices to show that for any permu-
tation o of {1,..., K}, we have the inequalities

K K
D Aoy S DM, k=1,...,K. (2.6)
Using (2.4) and the definition of A(p;c), we see that
K K
D Ae@Poiy Sc=Y Api, k=1,...,m-1
1=k 1=k

and (2.6) thus holds for k = 1,...,m—1. On the other hand, because A,(;y < AF =1,
m,.

1= .., K, we have from (2.1) that

K K K
Z)‘a(i)pa(i) < Z)‘a(z)pi < Z A?-ph k=m,....K
i=k i=k i=k

and (2.6) also holds for k =m,..., K. [

The quantities
8
DOEKPI_C7 DSE(K_S)Ps+l“(C“ZPi), 3=17"'7K_1
1=1

will be useful for characterizing the vector A~ which satisfies (1.2).

Theorem 2.2 Assume (1.1) and (2.1) to hold.
1. If ¢ < Kpy, then the vector A~ given by

C C
A= (—, ..
(Kpl KPK)

is an element in A(p;c) which satisfies

Y(AT,p) <v(A,p), A€ A(p;o). (2.7)

2. If Kp; < c, then there exists a unique integer t = 1,2,...,K — 1 such that
D, 1 <0< D, (28)

and the vector A~ defined by

A =(,...,1 c=kapk C”EL””“)
L (K- K -)

is an element of A(p; c) which satisfies (2.7).

To clarify the proof of this result, and to see why we might expect it in the first
place, we make the following change of variable: With A(p;c) we associate the set
B(p; ¢) defined by

B(p;c) {r(A,p), A€ A(p;o)}
K

{zeRF: 0<zp <prk=1,...,K;) =z =c}
k=1

Since p1 > 0, the sets A(p;c) and B(p;c) are in one-to-one correspondence with
each other through the transformations

x =v(A,p) ifand only if A; = Eﬁ:, i=1,...,K. (2.9)
The original problem of finding A~ in A(p;c) satisfying (2.7) is clearly equivalent
to that of finding an element =* in B(p; ¢) such that

*

¥ <z, z€B(p;c) (2.10)

with * and A~ related through (2.9).

We expect the minimizing element z* to be as “balanced” as possible given the
constraints defining B(p; ¢); in fact, in the absence of the component constraints, the
minimizing element would be simply given by £(1,...,1). In general this vector
will not be the minimizing element since a priori it is possible for (1.1) to hold
while Kp; < ¢ for some s = 1,..., K — 1. This suggests that in constructing =*
we should attempt to keep as many components identical as possible, while meeting
the constraints on all the components. In view of (2.1) this construction would
obviously start with z7 = p; for the smallest indices, and would lead to guessing «*
in the form

¥ = (P1,02,- - ,Ps5:Gy---, Q) (2.11)

6

for some integer s = 1,..., K —1 (the case s = K is ruled out by the strict inequality
in (1.1)) and scalar a > 0. Such a choice (2.11) should be a reasonable candidate for
the most balanced vector in B(p;c) provided additional constraints are met: First,
given s, we must have p; < a for otherwise a more balanced vector in B(p;c) could
be constructed (by transfers [7, p. 134]) from &* given by (2.11). The fact that =*
is an element of B(p;c) further imposes a < ps+1 and p1 + ... +ps + (K ~s)a=c.
Hence, a is uniquely determined and the index s must be selected such that

Cc— 2i=1pk

<a< with a =
bs S Ps+1 K —s

(2.12)

Note that (2.12) for some s = 1,..., K — 1 is equivalent to D,_; < 0 < Dy, thereby
giving a clue for the need of condition (2.8). In Theorem 2.3 below we show that
the guess (2.11)—(2.12) indeed satisfies (2.10).

Theorem 2.3 Assume (1.1) and (2.1) to hold.

1. Ifc < Kpy, then the vector £(1,...,1) is an element in B(p; c) which satisfies
(2.10);

2. If Kp; < c, then there exists a unique integer t = 1,2,..., K — 1 such that
(2.8) holds and the vector x* defined by

c— E}::lpk c— ch:l Pk)

1
o T Kt (2.13)

T = (plap25-' - Pty

is an element of B(p;c) which satisfies (2.10).

In view of the transformation (2.9) Theorems 2.2 and 2.3 are clearly equivalent.

Proof. We have Dy < D, < Dy <... < Dg. 1 as we note that
D;—Ds;_ 1 =(K—-38)(ps+1—ps) =20, s=1,...,K. (2.14)

(Claim 1) If ¢ < Kpy, then £ < pi, k=1,...,K, and the vector £(1,...,1) is
indeed an element of B(p;c); that it satisfies (2.10) is well known [7, p. 7).

(Claim 2) The condition Kp; < c is equivalent to Dy < 0, and (1.1) yields
Dg_1 > 0. The existence and uniqueness of an integer t satisfying (2.8) is now
immediate from (2.14), and =* given by (2.13) is thus well defined. As a consequence
of (2.8) this vector is an element of B(p;c), and its components are in increasing

order. Thus, in order to establish its minimality within B(p;c), we need only show
for any element z of B(p;c) that

k k
Yoar>Y =y, k=1,...,K (2.15)

=1 =1
If p; < z(;) for some i = 1,..., K, then at most (i — 1) components of & do not
exceed p;, but this contradicts the fact that at least ¢ components in x lie in the

interval [0, p;]. Hence, z(;y < p;foralli=1,...,K, and (2.15) holdsfor k = 1,...,¢.
Next, suppose that n is the first index greater than ¢ for which (2.15) fails, i.e,,

n—1 n—1
Z z; < Z z(;; and Z z; > Z T(y)- (2.16)
? : i=1 i=1
From (2.16) we note that
n—1 n n n—1
Z:B:-I—.’L‘; = Z.’Z‘: < Zx(i) < fo—%zm (2.17)
i=1 i=1 i=1 i=1

so that z; < T(,). On the other hand, the first part of (2.16) being equivalent to
C— Y1 X7 > c¢—)7 3(;), we get from (2.13) that

c=Yhoipk | =
(K —n)—=2=L2 5 3" 2 2 (K —)z (2.18)

The resulting inequality

¢
c— 3 k=1Pk
is in clear contradiction with the conclusion z}, < z(,) derived earlier from (2.17),
and (2.15) must hold forallk =t+1,..., K.]

3 Non-Blocking Switches with Output Queueing

In this section we present the model used by the authors in [4, 5, 6] to discuss var-
ious stochastic comparison results for a class of non-blocking switches with output
queueing. With K input ports and L output ports, this model is parameterized by
a vector of rates A (in [0,1]%) and by probability vectors ry = (7%1,-..,7kL) (in

S, ={r=(r,...,r1) €[0,1]F : Tk re = 1}), k = 1,..., K. We organize these
K vectors into the K x L routing matrix R given by
1 m11...7T1L
R=|:|= :
TK TK1..--TKL
With each set of such vectors, we associate {0,1}-valued rvs {A%, (), t =
0,1,...} and {1,...,L}-valued rvs {vf(r¢), t = 0,1,...}, k = 1,..., K. These
rvs are all defined on some probability triple (2, F,P). During the discussion we
make the following assumptions: (i) For each k = 1,..., K, the rvs {A¥, (M), t =
0,1,...} are i.i.d. rvs with

P[4f,,(m) =1] =1-P[4f, =0] =X

forallt =0,1,...; (ii) Foreach k =1,..., K, thervs {vE(re), t=0,1,...} are i.i.d.
rvs with
P[Vtk(‘l'k)=] = Tk¢, £=1,...,L

for all t =0,1,...; and (iii) The 2K collections of rvs {A¥, (M), ¢ =0,1,...} and
{vk(ry), t=0,1,...}, k=1,..., K, are mutually independent.

These quantities are given the following interpretation [4, 5]: At the beginning
of time slot [¢,¢+ 1), new cells arrive into the system, with AF. (M) cell arriving at
the k' input port, k = 1,..., K. The destination of a cell arriving at the k™ input
port is encoded in the rv vE(ry), and is declared upon arrival. All cells which arrive
during a time slot and which are destined for a given output port, are transported
across the switch during that single time slot, and put into the corresponding output
buffer in random order. With the notation

K
gh (A R) = 31 [uk(ri) =] Af (),
k=1
we see that a batch of &£ ,(\, R) cells are destined for the £ output port during
time slot [t,t +1).

During any time slot at most one cell can be transmitted, or equivalently, served.

Let Q¢(A, R) denote the number of cells present at the beginning of time slot [t,t+1)

in the £t* output buffer, £ =1,..., L. If we assume the system to be initially empty
at time ¢ = 0, then the queue size process evolves according to the recursion

QA R) = 0
Qf-}-l(AaR) = [Qf(AaR) - 1]+ +€te+1(A,R), t= 0,1,.... (31)

9

For each £ = 1,...,L and n = 1,2,..., let Df(), R) denote the delay of the
nt? cell to arrive at the £%* output port, i.e., D5(X, R) represents the time that
elapses between the arrival of the n cell at the £** output port and the end of its
transmission. At each of the output queues, we assume that batches are processed
in order of arrival, i.e., all cells in the m** batch are served before the cells in the
(m + 1)"t batch, m = 1,2,..., but the order of service within a given batch is
random. As a result, the delay process of the n** cell can be decomposed into two

successive stages, and we can write
D}(\,R) =W;i(\,R) + B{(A, R)

where the rv W£(\, R) counts the number of slots required for transmitting all the
cells in the batches which have arrived before that containing the n® cell, and the
rv B{(), R) denotes the number of slots that the nt® cell needs to wait before it is
served, once the batch to which it belongs starts being served.

The recursions (3.1) are very similar to the Lindley recursion for single server
queues, and by arguments similar to those used in that context, we can show the
following facts [4, 5, 6]: We define the offered load to the £* output buffer by

K
pe N\ R) =D Nere, £=1,...,L. (3.2)
k=1

Whenever the conditions pg(A, R) < 1, £ = 1,...,L, are satisfied simultaneously,
there exists an INI—valued rv Q(\,R) = (Q'(\,R), ..., Q¥(\, R)) such that
Q.(\R) = (Q}\ R),...,QF (), R)) = Q(\, R) (with =, denoting weak con-
vergence [1]). In such circumstances, the system is termed stable and Q(X, R) is
called the steady—state queue size vector or the queue size in statistical equilibrium.
If for some £ = 1,..., L, we only have p;(\, R) < 1, then the one-dimensional con-
vergence Qf(A, R) =>; Q°(\, R) still takes place and the £*h output queue is then
said to be stable. In that case, we also have D{(\, R) =, D%\, R) for some v
D(\, R) given by
D*(\, R) =« Q“(\,R) + B*(\,R)

where B{(\, R) is the forward recurrence time associated with ¢£(\, R) and Q(\, R)
and BY(\, R) are independent rvs.

10

4 Comparison Results and One—Dimensional Bounds

We now present several stochastic comparison results that describe how changes in
arrival rates and routing probabilities affect the various performance measures; these
results were obtained in the companion paper [5, 6]. To simplify the presentation,
for each rate vector A and routing matrix R, we write

Ye(A R) = (Mr1gy- .., AkTKe), €=1,...,L.

We focus here only on results concerning performance measures that are as-
sociated with a single output destination. Results concerning the delay measures
associated with input ports are also available in [4, 5] but are omitted in for the sake
of brevity. Throughout the notation <;.; is used to denote the convex increasing
ordering on the collection of distributions [8].

Theorem 4.1 Assume that for some £ =1,...,L, the comparison
7Z(Av R) =<¥ '7[(A,, Rl) (43)

holds. Then we have Qf(N,R') <icz QYA R) for all t = 0,1,.... If in addition
pe(A,R) < 1, then in statistical equilibrium we have Q*(\, R’} <icz Q% A\, R),
BY\,R') < B\, R) and D*(N, R') <icz D(\, R).

Under (4.3), the stability condition ps(\, R) < 1 implies ps(A\', R') < 1, so that
the £** output queue is stable in both systems and the comparisons have a well-
defined meaning. Furthermore, in the comparison of Theorem 4.1, if the total load
(3.2) to the £** output queue is constrained to some given value, then condition (4.3)
is equivalent to

Ye(A R) < 7e(X, R'). (4.4)

Theorem 4.1 thus suggests a way to obtain lower and upper bounds on the queue
size metrics (among other things) by seeking the “extremizers” in the conditions
(4.4) under certain load constraints. As the reader may have already realized, this
leads to the generic problems presented in Section 1.

For the remainder of the discussion, we fix some £ = 1,..., L and consider two
situations which are both associated with the £* output queue.

Problem A — For a given arrival vector A\, we seek the routing matrix R which
minimizes (resp. maximizes) the performance measures at the ¢* output queue
subject to the total load (3.2) to the €** output queue being constrained to some

11

given value, say pg. In view of Theorem 4.1 (and remarks following it) it suffices to
identify routing matrices R~ and R™ such that

7£(Aa R—) = 7£(Aa R) = 7£(Aa R+) (45)

amongst the routing matrices R which satisfy the load equation

K
> Arke = pe. (4.6)
k=1

eth gth

Since we are concerned only with the £* output queue, we need only specify the
column of the routing matrices involved, and the problem thus reduces to finding

vectors ¢~ and c* in the set A(X; pg) such that
YA€) <7 e) =7, eh), e € A(Xipy).

With this notation, ¢~, ¢ and c¢* represent the £!* column of the routing matrices
R, R and R, respectively, appearing in (4.5). By invoking the results of Section 2
we can now easily characterize ¢~ and ¢*, and we do so under the assumptions
0<A <...<Akgand 0 < pp < K | A

By specializing Theorem 2.1, we find

— +
ct =(0,...,0,a",1,...,1)
S— N’

m—2 K-m+1

with m and a* given by

K
mEmin{i=2,...,K:Z)\k§pg} and a
’\m—l

k=1

On the other hand, Theorem 2.2 immediately yields the following: If p; < KAj, then

c = (7{%,...,7(%\‘;), whereas if K\; < pg, then there exists ¢t (t = 1,...,K — 1)
such that S
— Pt 2 k=1
= 7= < .
n<a K —¢ —)‘H—l (47)
and _ _
¢ =(1,...,1,—— ..., 2 (4.8)
S—— /\t+1 AK

t

In sum, for a given arrival vector A, any routing matrix whose ¢** column is given

by ¢* (resp. ¢~) will minimize (resp. maximize) the performance measures at

12

the £'" output queue subject to the load constraint (4.6). Here minimization and
maximization are understood in the sense of the stochastic ordering <;.;.

Of particular interest is the situation where the input ports are equiloaded, i.e.,
A= %(1, ...,1) for some A > 0. The feasibility constraint now reads p; < A, and
additional simplifications occur: We have
Kp—(K-m+ 1))

A
while, as would be expected, we find that (4.7)-(4.8) specialize to ¢~ = &(1,...,1).

A
Problem B — For a given routing matrix R, we now seek the arrival vector

m=[K(1—%)]+1 and ot =

A which minimizes (resp. maximizes) the performance measures at the £* output
queue subject to the load constraint (4.6) at the £ output queue. Again, with
c¢ denoting the £** column of the routing matrix R, we need only identify arrival
vectors A~ and AT such that v,(A7,R) < 7,(A, R) < 7,(A",R) for all arrival
vectors A satisfying (4.6), and the problem thus reduces to finding vectors A~ and
AT in the set A(eg; pe) such that

YA, ee) <v(A,e0) < ¥(At,ce), A€ Alcg pe). (4.9)

In order to characterize A~ and A*, we again invoke the results of Section 2 under
the assumptions 0 < ry < ... <rgrand 0 < pp < E,If:l rr¢. This time, we have

At =(0,...,0,6%,1,...,1)
e’ N’
m~2 K—m+1
with m and b" given by
K _«K
mEmin{i=2,...,K:Zrkg§pg} and b+5w.
k=i rm—l,l

Theorem 2.2 implies the following: If py < K7y, then A™ is given by

A= (;:u’"" K/:;(z)'
Finally, if Kry1p < pg, then there exists t = 1,..., K — 1 such that
ryg < b = P Lek=1The _KZ Eztl TR < Ti41,0
and
A=Q,.1, 0
R{—' Tt+1,¢ TKe

13

Therefore, for a given routing matrix R, in the sense of the stochastic ordering <;..,
the arrival vector A* (resp. A~) minimizes (resp. maximizes) the performance

measures at the £h

output queue subject to the load constraint (4.6) at that queue.
These results are only one-dimensional, and in general are not independent of ¢, so
that the arrival vectors A~ and At obtained earlier do not simultaneously satisfy
(4.9) under (4.6) for all£=1,...,L.

We now consider the often-studied situation where the addressing scheme is
input independent in the sense that R has all its row identical with ry = r, k =
1,..., K, for some vector r = (r1,...,r1) in Sg. In that case the constraint (4.6)
takes the form YK, A = E:- = A, with 0 < A < K. Under this constraint, the
vectors A~ and A given by A~ = £(1,...,1) and

At =(0,...,00 = (K -m+1),1,...,1)
ARG ARG
m—2 K-m+1
where m = [K — A] + 1 do satisfy the inequalities (4.5) simultaneously for all
£=1,...,L.

References

[1] P. Billingsley, Convergence of Probability Measures, J. Wiley & Sons, New York
(NY), 1968.

[2] C.-S. Chang, X.L. Chao and M. Pinedo, “A note on queues with Bernoulli
routing,” Proceedings of the 29th IEEE Conference on Decision and Control,
Honolulu (HI), December 1990, pp. 897-902.

[3] C.-S. Chang, “A new ordering for stochastic majorization: Theory and appli-
cations,” Advances in Applied Probability 24 (1992), pp. 604-634.

[4] Y.-B. Kim, On the Performance of Crossbar Switches: Stochastic Comparison
and Large Size Asymptotics, Electrical Engineering Department, University of
Maryland, College Park (MD). Expected May 1996.

[6] Y-B. Kim and A.M. Makowski, “Stochastic comparison results for non—
blocking switches with output queueing,” Queueing Systems — Theory & Ap-
plications, submitted 1996.

[6] Y.-B. Kim and A.M. Makowski, “Load balancing for non-blocking switches
with output queueing,” ir preparation.

14

[7] A.W. Marshall and 1. Olkin, Inequalities: Theory of Majorization and Its Ap-
plications, Academic Press, New York (NY), 1979.

[8] S. Ross, Stochastic Processes, J. Wiley & Sons, New York (NY), 1984.

15

