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LYAPUNOV INVERSE ITERATION FOR COMPUTING A FEW RIGHTMOST
EIGENVALUES OF LARGE GENERALIZED EIGENVALUE PROBLEMS∗

HOWARD C. ELMAN† AND MINGHAO WU‡

Abstract. In linear stability analysis of a large-scale dynamical system, we need to compute the rightmost
eigenvalue(s) for a series of large generalized eigenvalue problems. Existing iterative eigenvalue solvers are not robust
when no estimate of the rightmost eigenvalue(s) is available. In this study, we show that such an estimate can be
obtained from Lyapunov inverse iteration applied to a special eigenvalue problem of Lyapunov structure. We also
show that Lyapunov inverse iteration will always converge in only two steps if the Lyapunov equation in the first
step is solved accurately enough. Furthermore, we generalize the analysis to a deflated version of this Lyapunov
eigenvalue problem and propose an algorithm that computes a few rightmost eigenvalues for the eigenvalue problems
arising from linear stability analysis. Numerical experiments demonstrate the robustness of the algorithm.

1. Introduction. This paper introduces an efficient algorithm for computing a few rightmost
eigenvalues of generalized eigenvalue problems. We are concerned with problems of the form

J (α)x = µMx (1.1)

arising from linear stability analysis (see [11]) of the dynamical system

Mut = f(u, α). (1.2)

M ∈ Rn×n is called the mass matrix, and the parameter-dependent matrix J (α) ∈ Rn×n is
the Jacobian matrix ∂f

∂u (u(α), α) = ∂f
∂u (α), where u(α) is the steady-state solution to (1.2) at

α, i.e., f(u, α) = 0. Let the solution path be the following set: S = {(u, α)|f(u, α) = 0}. We
seek the critical point (uc, αc) associated with transition to instability on S. While the method
developed in this study works for any dynamical system of the form (1.2), our primary interest is
the ones arising from spatial discretization of 2- or 3-dimensional time-dependent partial differential
equations (PDEs). Therefore, we assume n to be large and J (α),M to be sparse throughout this
paper.

The conventional method of locating the critical parameter αc is to monitor the rightmost
eigenvalue(s) of (1.1) while marching along S using numerical continuation (see [11]). In the stable
regime of S, the eigenvalues µ of (1.1) all lie to the left of the imaginary axis. As (u, α) approaches
the critical point, the rightmost eigenvalue of (1.1) moves towards the imaginary axis; at (uc, αc), the
rightmost eigenvalue of (1.1) has real part zero, and finally, in the unstable regime, some eigenvalues
of (1.1) have positive real parts. The continuation usually starts from a point (u0, α0) in the stable
regime of S and the critical point is detected when the real part of the rightmost eigenvalue of
(1.1) becomes nonnegative. Consequently, robustness and efficiency of the eigenvalue solver for the
rightmost eigenvalue(s) of (1.1) are crucial for the performance of this method. Direct eigenvalue
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solvers such as the QR and QZ algorithms (see [20]) compute all the eigenvalues of (1.1), but they
are too expensive for large n. Existing iterative eigenvalue solvers [20] are able to compute a small
set (k � n) of eigenvalues of (1.1) near a given shift (or target) σ ∈ C efficiently. For example, they
work well when k eigenvalues of (1.1) with smallest modulus are sought, in which case σ = 0. One
issue with such methods is that there is no robust way to determine a good choice of σ when we have
no idea where the target eigenvalues may be. In the computation of the rightmost eigenvalue(s),
the most commonly used heuristic choice for σ is zero, i.e., we compute k eigenvalues of (1.1) with
smallest modulus and hope that the rightmost one is one of them. When the rightmost eigenvalue is
real, zero is a good choice. However, such an approach is not robust when the rightmost eigenvalues
consist of a complex conjugate pair: the rightmost pair can be far away from zero and it is not clear
how big k should be to ensure that they are found. Such examples can be found in the numerical
experiments of this study.

Meerbergen and Spence [15] proposed the Lyapunov inverse iteration method, which estimates
the critical parameter αc without computing the rightmost eigenvalues of (1.1). Assume (u0, α0)
is in the stable regime of S and is also in the neighborhood of the critical point (uc, αc). Let
λc = αc − α0 and A = J (α0). Then the Jacobian matrix J (αc) at the critical point can be
approximated by A + λcB where B = dJ

dα (α0). It is shown in [15] that λc is the eigenvalue with
smallest modulus of the eigenvalue problem

AZMT + MZAT + λ(BZMT + MZBT ) = 0 (1.3)

of Lyapunov structure and that λc can be computed by a matrix version of inverse iteration.
Estimates of the rightmost eigenvalue(s) of (1.1) at αc can be obtained as by-products. Elman
et al. [8] refined the Lyapunov inverse iteration proposed in [15] to make it more robust and
efficient and examined its performance on challenging test problems arising from fluid dynamics.
Various implementation issues were discussed, including the use of inexact inner iterations, the
impact of the choice of iterative method used to solve the Lyapunov equations, and the effect of
eigenvalue distribution on performance. Numerical experiments demonstrated the robustness of
their algorithm.

The method proposed in [8, 15], although it allows us to estimate the critical value of the
parameter without computing the rightmost eigenvalue(s) of (1.1), only works in the neighborhood
of the critical point (uc, αc). In [8], for instance, the critical parameter value αc of all numerical
examples is known a priori, so that we can pick a point (u0, α0) close to (uc, αc) and apply Lyapunov
inverse iteration with confidence. In reality, αc is unknown and we start from a point (u0, α0) in
the stable regime of S that may be distant from the critical point. In this scenario, the method of
[8, 15] cannot be used to estimate αc, since J (αc) cannot be approximated by A + λcB. However,
quantitative information about how far away (u0, α0) is from (uc, αc) can still be obtained by
estimating the distance between the rightmost eigenvalue of (1.1) at α0 and the imaginary axis: if
the rightmost eigenvalue is far away from the imaginary axis, then it is reasonable to assume that
(u0, α0) is far away from the critical point as well, and therefore we should march along S using
numerical continuation until we are close enough to (uc, αc); otherwise, we can assume that (u, α0)
is already in the neighborhood of the critical point and the method of [8, 15] can be applied to
estimate αc.

The goal of this paper is to develop a robust method to compute a few rightmost eigenvalues of
(1.1) in the stable regime of S. The plan of the paper is as follows. In section 2, we show that the
distance between the imaginary axis and the rightmost eigenvalue of (1.1) is the eigenvalue with
smallest modulus of an eigenvalue problem similar in structure to (1.3). As a result, this eigenvalue
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can be computed efficiently by Lyapunov inverse iteration. In section 3, we present numerical results
for several examples arising from fluid dynamics, and provide an analysis of the fast convergence of
Lyapunov inverse iteration observed in our experiments. Based on the analysis, we also propose a
modified algorithm that guarantees convergence in only two iterations. In section 4, we show that
the analysis in sections 2 and 3 can be generalized to a deflated version of the Lyapunov eigenvalue
problem, which leads to an algorithm for computing k (1 ≤ k � n) rightmost eigenvalues of (1.1).
Details of the implementation of this algorithm are discussed in section 5. Finally, we make some
concluding remarks in section 6.

2. Computing the distance between the rightmost eigenvalue(s) and the imaginary
axis. Let (u0, α0) be any point in the stable regime of S and assume M is nonsingular in (1.1).
Let (µj , xj) (‖xj‖2 = 1, j = 1, 2, . . . , n) be the eigenpairs of (1.1) at α0, where the real parts
of µj , Re(µj), are in decreasing order, i.e., 0 > Re(µ1) ≥ Re(µ2) ≥ . . . ≥ Re(µn). Then the
distance between the rightmost eigenvalue(s) and the imaginary axis is −Re(µ1). Let A = J (α0)
and S = A−1M. To compute this distance, we first observe that −Re(µ1) is the eigenvalue with
smallest modulus of the n2 × n2 generalized eigenvalue problem

∆1z = λ(−∆0)z (2.1)

where ∆1 = S ⊗ I + I ⊗ S and ∆0 = 2S ⊗ S (I is the identity matrix of order n). We proceed in
two steps to prove this assertion. First, we show that −Re(µ1) is an eigenvalue of (2.1).

Theorem 2.1. The eigenvalues of (2.1) are λi,j = − 1
2 (µi + µj), i, j = 1, 2, . . . , n. For any

pair (i, j), there are eigenvectors associated with λi,j given by zi,j = xi ⊗ xj and zj,i = xj ⊗ xi.
Proof. Since (µj , xj) (j = 1, 2, . . . , n) are the eigenpairs of Ax = µMx,

(
1
µj
, xj

)
are the

eigenpairs of S. We first prove that the eigenvalues of (2.1) are {λi,j}ni,j=1. Let J be the Jordan

normal form of S and P be an invertible matrix such that S = PJP−1. Then

(−∆0)
−1

∆1(P ⊗ P ) = −1

2
(PJP−1 ⊗ PJP−1)−1(PJP−1 ⊗ I + I ⊗ PJP−1)(P ⊗ P )

= −1

2

(
PJ−1P−1 ⊗ PJ−1P−1

)
(PJ ⊗ P + P ⊗ PJ)

= −1

2
(P ⊗ P )

(
J−1P−1 ⊗ J−1P−1

)
(PJ ⊗ P + P ⊗ PJ)

= (P ⊗ P )

[
−1

2

(
I ⊗ J−1 + J−1 ⊗ I

)]
.

This implies that (2.1) and − 1
2

(
I ⊗ J−1 + J−1 ⊗ I

)
have the same eigenvalues. Due to the special

structure of the Jordan normal form J , I ⊗ J−1 + J−1 ⊗ I is an upper triangular matrix whose
diagonal entries are {µi + µj}ni,j=1. Consequently, the eigenvalues of − 1

2

(
I ⊗ J−1 + J−1 ⊗ I

)
are{

− 1
2 (µi + µj)

}n
i,j=1

= {λi,j}ni,j=1. Therefore, the eigenvalues of (2.1) are {λi,j}ni,j=1 as well.

Second, we show that zi,j is an eigenvector of (2.1) associated with the eigenvalue λi,j . For any
pair (i, j) (i, j = 1, 2, . . . , n),

∆1(xi ⊗ xj) = (S ⊗ I + I ⊗ S)(xi ⊗ xj) = (Sxi)⊗ xj + xi ⊗ (Sxj) =

(
1

µi
+

1

µj

)
(xi ⊗ xj),

and

∆0(xi ⊗ xj) = 2(S ⊗ S)(xi ⊗ xj) = 2(Sxi)⊗ (Sxj) =
2

µiµj
(xi ⊗ xj).
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Therefore, ∆1zi,j =
(

1
µi

+ 1
µj

)
µiµj

2 ∆0zi,j = λi,j (−∆0) zi,j . Similarly, we can show that ∆1zj,i =

λi,j (−∆0) zj,i
If µ1 is real, then −Re(µ1) = −µ1 = − 1

2 (µ1 + µ1) = λ1,1; if µ1 is not real (i.e., µ1 = µ2 and
x1 = x2), then −Re(µ1) = − 1

2 (µ1 + µ1) = − 1
2 (µ1 + µ2) = λ1,2 = λ2,1. In both cases, by Theorem

2.1, −Re(µ1) is an eigenvalue of (2.1).
We next show that −Re(µ1) is the eigenvalue of (2.1) with smallest modulus.
Theorem 2.2. Assume all the eigenvalues of Ax = µMx lie in the left half of the complex

plane. Then the eigenvalue of (2.1) with smallest modulus is −Re(µ1).
Proof. Let µj = aj + ibj . Then 0 > a1 ≥ a2 ≥ . . . ≥ an. If the rightmost eigenvalue of

Ax = µMx is real, then −Re(µ1) = λ1,1, and since 0 > a1 ≥ a2 ≥ . . . ≥ an, it follows that

|λ1,1|2 =
1

4
(a1 + a1)2 ≤ 1

4

[
(ai + aj)

2 + (bi + bj)
2
]

= |λi,j |2

for any pair (i, j). Alternatively, if the rightmost eigenvalues of Ax = µMx consist of a complex
conjugate pair, then a1 = a2, b1 = −b2, −Re(µ1) = λ1,2 = λ2,1, and similarly,

|λ1,2|2 = |λ2,1|2 =
1

4

[
(a1 + a1)2 + (b1 − b1)2

]
≤ 1

4

[
(ai + aj)

2 + (bi + bj)
2
]

= |λi,j |2

for any pair (i, j). In both cases, −Re(µ1) is the eigenvalue of (2.1) with smallest modulus.
Simple example: Consider a 4×4 example of Ax = µMx whose eigenvalues are µ1,2 = −1±5i,

µ3 = −2 and µ4 = −3 (see Figure 2.1a). The eigenvalues of the corresponding 16 × 16 eigenvalue
problem (2.1) are plotted in Figure 2.1b and listed in Table 2.1. As seen in Figure 2.1b, λ1,1 = 1−5i,
λ1,2 = λ2,1 = 1 and λ2,2 = 1 + 5i are the leftmost eigenvalues of (2.1), and λ1,2 = λ2,1 are the
eigenvalues of (2.1) with smallest modulus.

Table 2.1: The eigenvalues of (2.1) corresponding to the 4× 4 example

λ1,1 = 1− 5i
λ2,1 = λ1,2 = 1 λ2,2 = 1 + 5i
λ3,1 = λ1,3 = 1.5− 2.5i λ3,2 = λ2,3 = 1.5 + 2.5i λ3,3 = 2
λ4,1 = λ1,4 = 2− 2.5i λ4,2 = λ2,4 = 2 + 2.5i λ4,3 = λ3,4 = 2.5 λ4,4 = 3

Assume Ax = µMx has a complete set of eigenvectors {xj}nj=1. Then (2.1) also has a complete
set of eigenvectors {zi,j}ni,j=1. By Theorem 2.2, the distance between the imaginary axis and the
rightmost eigenvalue(s), −Re(µ1), can be found by inverse iteration applied to (2.1). Unfortunately,
this approach is not suitable for large n because it involves solving linear systems of order n2. In
[8, 15], an n2 × n2 eigenvalue problem similar in structure to (2.1) is dealt with by rewriting an
equation of Kronecker sums into an equation of Lyapunov form, i.e., (1.3). Here, similarly, we can
rewrite (2.1) into

SZ + ZST + λ(2SZST ) = 0. (2.2)

Any eigenpair (λ, z) of (2.1) is related to a solution (λ, Z) of (2.2), which we also refer to as an eigen-
pair of (2.2), by z = vec(Z). By Theorem 2.1 and the relation between (2.1) and (2.2), (λi,j , Zi,j)
(i, j = 1, 2, . . . , n) are the eigenpairs of (2.2) where Zi,j = xjx

T
i ; in addition, by Theorem 2.2,
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(a) The spectrum of Ax = µMx
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(b) The spectrum of (2.1)

Fig. 2.1: The spectrum of Ax = µMx and (2.1) for the 4× 4 example (•: double eigenvalues).

−Re(µ1) is the eigenvalue of (2.2) with smallest modulus. Furthermore, under certain conditions,
−Re(µ1) is an eigenvalue of (2.2) whose associated eigenvector is real, symmetric and of low rank.
Assume the following: (a1) for any 1 < i ≤ n, if Re(µi) = Re(µ1), then µi = µ1; (a2) µ1 is a
simple eigenvalue of Ax = µMx. Consequently, if µ1 is real, −Re(µ1) is a simple eigenvalue of
(2.1) with the eigenvector z1,1 = x1 ⊗ x1; otherwise, −Re(µ1) is a double eigenvalue of (2.1) with
the eigenvectors z1,2 = x1⊗ x1 and z2,1 = x1⊗ x1. When the eigenvectors of (2.2) are restricted to
the subspace of Cn×n consisting of symmetric matrices Z, then by Theorem 2.3 from [15], −Re(µ1)
has a unique (up to a scalar multiplier), real and symmetric eigenvector x1x

T
1 (if µ1 is real), or

x1x
∗
1 + x1x

T
1 (if µ1 is not real) where x∗1 denotes the conjugate transpose of x1. Therefore, we can

apply Lyapunov inverse iteration (see [8,15]) to (2.2) to find −Re(µ1), the eigenvalue of (2.2) with
smallest modulus:

Algorithm 1 (Lyapunov inverse iteration for (2.2))
1. Given V0 ∈ Rn with ‖V0‖2 = 1 and d0 = 1.
2. For ` = 1, 2, · · ·

2.1. Rank reduction1: compute S̃ = V T`−1SV`−1 and solve for the eigenvalue λ̃1 of

S̃Z̃ + Z̃S̃T + λ̃
(

2S̃Z̃S̃T
)

= 0 (2.3)

with smallest modulus and its eigenvector Z̃1 = Ṽ D̃Ṽ T , where Ṽ ∈ Rd`−1×r,
D̃ ∈ Rr×r with ‖D̃‖F = 1, and r = 1 (` = 1) or 2 (` ≥ 2).

2.2. Set λ(`) = λ̃1 and Z(`) = V`D̃VT` , where V` = V`−1Ṽ .
2.3. If

(
λ(`), Z(`)

)
is accurate enough, then stop.

2.4. Else, solve for Y` from

SY` + Y`S
T = −2SZ(`)ST (2.4)

1When ` = 1, (2.3) is a scalar equation and its eigenpair is
(
λ̃1, Z̃1

)
=
(
−S̃−1, 1

)
.
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in factored form: Y` = V`D`V
T
` , where V` ∈ Rn×d` is orthonormal and D` ∈ Rd`×d` .

As the iteration proceeds, the iterate
(
λ(`), Z(`) = V`D̃VT`

)
will converge to (−Re(µ1),VDVT )

where ‖D‖F = 1 and V = x1 (if µ1 is real) or V ∈ Rn×2 is an orthonormal matrix whose columns
span {x1, x1} (if µ1 is not real). Besides estimates of −Re(µ1), we can also obtain from Algorithm
1 estimates of (µ1, x1) by solving the small 1× 1 or 2× 2 eigenvalue problem(

VT` SV`
)
y = θy (2.5)

and taking µ(`) = 1
θ and x(`) = V`y. As V` converges to V,

(
µ(`), x(`)

)
will converge to (µ1, x1).

At each iteration of Algorithm 1, a large-scale Lyapunov equation (2.4) needs to be solved. We
can rewrite (2.4) as

SY` + Y`S
T = P`C`P

T
` (2.6)

(see [8] for details) where P` is orthonormal and is of rank 1 (` = 1) or 2 (` > 1). The solution to
(2.6), Y`, is real and symmetric and frequently has low rank (see [1, 16]). Since S is large, direct
methods such as [2,12] are not suitable. An iterative method that solves Lyapunov equations with
large coefficient matrix and low-rank right-hand side is needed. Krylov-type methods for (2.6),
such as the “standard” Krylov subspace method [13, 17], the Extended Krylov Subspace Method
(EKSM) [18] and the Rational Krylov Subspace Method (RKSM) [6, 7], construct approximate
solutions of the form Y approx` = WXWT where W is an orthonormal matrix whose columns span
the Krylov subspace and X is the solution to the small, projected Lyapunov equation (WTSW )X+
X(WTSW )T = (WTP`)C`(W

TP`)
T , which can be obtained using direct methods. For example,

the standard Krylov subspace method [13,17] builds the mp-dimensional Krylov subspace

Km(S, P`) = span
{
P`, SP`, . . . , S

m−1P`
}

(2.7)

where m is the number of block Arnoldi steps and p is the block size (i.e., rank of P`). The main
cost of solving (2.6) using Krylov-type methods is (m − 1)p linear solves with coefficient matrix
aA + bM, where values of the scalars a, b depend on the Krylov method used.

In step 2.1 (rank reduction) of Algorithm 1, although it may look like computing the reduced-

rank matrix S̃ = V T`−1SV`−1 requires another d`−1 linear solves with coefficient matrix A, in fact,

if a Krylov-type method is used to solve (2.6), S̃ can be obtained from the Arnoldi decomposition
computed by the Krylov-type method for no additional cost when ` > 1. Assume the standard
Krylov method is used to solve (2.6). In the (` − 1)st iteration of Algorithm 1, it computes the
Arnoldi decomposition

SV`−1 = V`−1Hm +Wm+1Hm+1,mE
T
m (2.8)

and the approximate solution Y approx1 = V`−1D`−1V
T
`−1, where the columns of V`−1 form an or-

thonormal basis for the Krylov subspace Km(S, P`−1) and are orthogonal to Wm+1. (In addition,
Hm ∈ Rmr×mr is block upper Hessenberg, Wm+1 ∈ Rn×r is orthonormal, Hm+1,m ∈ Rr×r and
Em holds the last r columns of the identity matrix of order mr, where r = 1 or 2.) This implies

that in the `th iteration of Algorithm 1, S̃ is simply Hm, which has been computed already. The
Arnoldi decomposition computed by EKSM or RKSM has a form that is more complicated than
(2.8); nonetheless, it produces the matrix S̃ needed for the next iteration as well.
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3. Numerical experiments. In this section, we test Algorithm 1 on several problems arising
from fluid dynamics. Note that when (1.2) comes from a standard (e.g., finite element) discretization
of the imcompressible Navier-Stokes equations, the mass matrix M is singular, leading to infinite
eigenvalues of (1.1) and singular S = A−1M. As in [8], we use the shifted, nonsingular mass matrix
proposed in [4], which maps the infinite eigenvalues of (1.1) to finite ones away from the imaginary
axis and leaves the finite eigenvalues of (1.1) unchanged. From here on, M refers to this shifted
mass matrix.

3.1. Example 1: driven-cavity flow. Linear stability analysis of this flow is studied in many
papers, for example, [9]. The Q2-Q1 mixed finite element discretization (with a 64 × 64 mesh) of
the Navier-Stokes equations gives rise to a generalized eigenvalue problem (1.1) of order n = 9539,
where the parameter α is the Reynolds number (denoted by Re) of the flow. (The Reynolds number
of this flow is defined to be Re = 1

ν , where ν is the kinematic viscosity). Figure 3.1a depicts the
path traced out by the eight rightmost eigenvalues of (1.1) for Re = 2000, 4000, 6000, 7800, at which
the steady-state solution to (1.2) is stable. As the Reynolds number increases, the following trend
can be observed: the eight rightmost eigenvalues all move towards the imaginary axis, and they
become more clustered as they approach the imaginary axis. In addition, although the rightmost
eigenvalue starts off being real, one conjugate pair of complex eigenvalues (whose imaginary parts
are about ±3i) move faster towards the imaginary axis than the other eigenvalues and eventually
they become the rightmost. They first cross the imaginary axis at Re ≈ 7929, causing instability
in the steady-state solution of (1.2) (see [8]).

Finding the conjugate pair of rightmost eigenvalues of (1.1) at a high Reynolds number (for
example, at Re = 7800) can be difficult. Suppose we are trying to find the rightmost eigenvalues
at Re = 7800 by conventional methods, such as computing k eigenvalues of (1.1) with smallest
modulus using the Implicitly Restarted Arnoldi (IRA) method [19]. If we use the Matlab function
‘eigs’ (which implements the IRA method) with its default setting, then k has to be as large as
250, since there are many eigenvalues that have smaller modulus than the rightmost pair. This
leads to at least 500 linear solves (with coefficient matrix A), and in practice, many more. More
importantly, note that the decision k = 250 is made based on a priori knowledge of where the
rightmost eigenvalues lie. In general, we cannot identify a good value for k that guarantees that
the rightmost eigenvalues will be found.

For four various Reynolds numbers between 2000 and 7800, we apply Algorithm 1 (with RKSM
as the Lyapunov solver) to calculate the distance between the rightmost eigenvalue(s) of (1.1) and
the imaginary axis. The results are reported in Table 3.2 (see Table 3.1 for notation). The initial
guess V0 is chosen to be a random vector of unit norm in Rn, the stopping criterion for the eigenvalue
residual is ‖R`‖F < 10−8, and the stopping criterion for the Lyapunov solve is

‖R`‖F < 10−9 ·
∥∥P`C`PT` ∥∥F = 10−9 · ‖C`‖F .

Note that both residual norms ‖R`‖F and ‖R`‖F are cheap to compute (see [8] for details). There-
fore, the main cost of each iteration is about d` linear solves of order n. All linear systems are solved
using direct methods. As shown in Table 3.2, the distances between the rightmost eigenvalue(s) of
(1.1) and the imaginary axis at Re = 2000, 4000, 6000, 7800 are 0.03264, 0.01608, 0.01084, 0.00514,
respectively. We also obtain estimates of the rightmost eigenvalue of (1.1) at the four Reynolds
numbers: -0.03264, -0.01608, -0.01084, and -0.00514+2.69845i.

We note two trends seen in these results. First, surprisingly, for all the Reynolds numbers
considered, Algorithm 1 converges to the desired tolerance (‖R`‖F < 10−8) in only 2 iterations.
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Fig. 3.1: (a) The eight rightmost eigenvalues for driven-cavity flow at different Reynolds numbers
(∗ : Re = 2000, ◦ : Re = 4000, ♦ : Re = 6000, � : Re = 7800). (b) The 300 eigenvalues with

smallest modulus at Re = 7800 (×: the rightmost eigenvalues).

Table 3.1: Notation for Algorithm 1

Symbol Definition

λ(`) the estimate of −Re(µ1), i.e., the eigenvalue of (2.2) with smallest modulus

Z(`) the estimated eigenvector of (2.2) associated with −Re(µ1)

µ(`) the estimated rightmost eigenvalue of Ax = µMx computed from (2.5)
Y approx` the approximate solution to the Lyapunov solution (2.6)

R`
SZ(`) + Z(`)ST + λ(`)(2SZ(`)ST ), the residual of the Lyapunov eigenvalue
problem (2.2)

R` SY approx` + Y approx` ST − P`C`PT` , the residual of the Lyapunov equation (2.6)
d` dimension of the Krylov subspace, i.e., rank of Y approx`

That is, only the first Lyapunov equation

SY1 + Y1S
T = P1C1P

T
1 (3.1)

needs to be solved, where P1 ∈ Rn and C1 ∈ R. Second, as the Reynolds number increases, it
becomes more expensive to solve the Lyapunov equation to the same order of accuracy (‖R`‖F <
10−9 · ‖C`‖F ), since Krylov subspaces of increasing dimension are needed (156, 241, 307 and 366 for
the four Reynolds numbers). We also tested Algorithm 1 using the standard Krylov method [17] to
solve the Lyapunov systems. To solve (3.1) to the same accuracy, this method requires subspaces
of dimension 525, 614, 770 and 896 for the four Reynolds numbers, which are much larger than
those required by RKSM (see Figure 3.2 for comparison). As a result, the standard method requires
many more linear solves.

8



Table 3.2: Algorithm 1 applied to Example 1 (Lyapunov solver: RKSM)

` λ(`) µ(`) ‖R`‖F ‖R`‖F d`
Re=2000

1 884.383 -884.383 1.32049e+02 1.40794e-10 156
2 0.03264 -0.03264 2.56263e-11 — —

Re=4000
1 -17765.8 17765.8 6.58651e+03 3.52618e-10 241
2 0.01608 -0.01608 4.25055e-10 — —

Re=6000
1 1301.24 -1301.24 8.55652e+02 6.52387e-10 307
2 0.01084 -0.01084 7.11628e-10 — —

Re=7800
1 695.951 -695.951 6.58622e+02 9.02875e-10 366
2 0.00514 -0.00514+2.69845i 3.62567e-11 — —

3.2. Example 2: flow over an obstacle. For linear stability analysis of this flow, see
[8]. The Q2-Q1 mixed finite element discretization (with a 32 × 128 mesh) of the Navier-Stokes
equations gives rise to a generalized eigenvalue problem (1.1) of order n = 9512. Figure 3.3a
depicts the path traced out by the six rightmost eigenvalues of (1.1) for Re = 100, 200, 300, 350
in the stable regime, and Figure 3.3b shows the 300 eigenvalues of (1.1) with smallest modulus at
Re = 350. (In this example, the Reynolds number Re = 2

ν .) As for the previous example, as the
Reynolds number increases, the six rightmost eigenvalues all move towards the imaginary axis, and
the rightmost eigenvalue changes from being real (at Re = 100) to complex (at Re = 200, 300, 350).
The rightmost pair of eigenvalues of (1.1) cross the imaginary axis and the steady-state solution to
(1.2) loses its stability at Re ≈ 373.

We again apply Algorithm 1 to estimate the distance between the rightmost eigenvalue(s) of
(1.1) and the imaginary axis for the four Reynolds numbers mentioned above. The results are
reported in Table 3.3. The stopping criteria for both Algorithm 1 and the Lyapunov solve (2.6)
remain unchanged, i.e., ‖R`‖F < 10−8 and ‖R`‖F < 10−9 · ‖C`‖F . For all four Reynolds numbers,
Algorithm 1 converges rapidly. In fact, we will show in section 3.4 that if the Lyapunov equation
(3.1) is solved more accurately, Algorithm 1 will converge in two iterations in all four cases as
observed in the previous example. Again we compare the performance of the standard Krylov
method and RKSM in solving (3.1). As for the cavity flow, the Krylov method needs a significantly
larger subspace than RKSM to compute a solution of the same accuracy (see Figure 3.4).

3.3. Example 3: double-diffusive convection problem. This is a model of the effects of
convection and diffusion on two solutions in a box heated at one boundary (see Chapter 8 of [21]).
The governing equations use Boussinesq approximation and are given in [3] and [5]. Linear stability
analysis of this problem is considered in [10]. The imaginary parts of the rightmost eigenvalues
of (1.1) near the critical point (uc, αc) have fairly large magnitude, and as a result, the rightmost
eigenvalues are further away from zero than many of the real eigenvalues close to the imaginary
axis. Conventional methods, such as IRA with a zero shift, tend to converge to the real eigenvalues
close to the imaginary axis instead of the rightmost pair.

We consider an artificial version Ax = µx of this problem, where A is tridiagonal of order

9
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(a) Re = 2000
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(b) Re = 4000
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(c) Re = 6000
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(d) Re = 7800

Fig. 3.2: Comparison of the standard Krylov method and RKSM for solving (3.1) in Example 1

n = 10, 000 with eigenvalues µ1,2 = −0.05± 25i and µj = −(j − 1) · 0.1 for all 3 ≤ j ≤ n. The 300
eigenvalues of A with smallest modulus are plotted in Figure 3.5 (left). A similar problem is studied
in [14]. If we use the Matlab function ‘eigs’ with zero shift to compute its rightmost eigenvalues, at
least 251 eigenvalues of A have to be computed to ensure that µ1,2 will be found. This approach
requires a minimum 502 linear solves under the default setting of ‘eigs’, and again in practice many
more will be needed. We apply Algorithm 1 to this problem (with the same stopping criteria for the
inner and outer iterations as in the previous two examples) and the results are reported in Table
3.4. It converges in just 3 iterations, requiring 90 linear solves to solve the two Lyapunov equations
to desired accuracy. As in the previous examples, RKSM needs a Krylov subspace of significantly
smaller dimension than the standard Krylov method (see Figure 3.5 (right)).
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Fig. 3.3: (a) The six rightmost eigenvalues for flow over an obstacle at different Reynolds numbers
(∗ : Re = 100, ◦ : Re = 200, ♦ : Re = 300, � : Re = 350). (b) The 300 eigenvalues with smallest

modulus at Re = 350 (×: the rightmost eigenvalues).

3.4. Analysis of the convergence of Algorithm 1. In the numerical experiments, we have
shown that Algorithm 1 converges rapidly. In particular, it converges in just two iterations in many
cases, for example, the driven-cavity flow at Re = 2000, 4000, 6000, 7800. In other words, only one
Lyapunov solve (3.1) is needed to obtain an eigenvalue estimate of desired accuracy in these cases.
The analysis below provides some insight into this fast convergence.

We introduce some notation to be used in the analysis. Assuming (1.1) and therefore (2.1) have

complete sets of eigenvectors, let {(λk, zk)}n2

k=1 denote the eigenpairs of (2.1), where ‖zk‖2 = 1 and
{λk} have increasing moduli, i.e., |λk1 | ≤ |λk2 | if k1 < k2. By Theorem 2.1, for each 1 ≤ k ≤ n2,
there exist 1 ≤ i, j ≤ n such that λk = λi,j = − 1

2 (µi + µj) and zk = zi,j = xi ⊗ xj .
2 Let

Zk = xjx
T
i , i.e., vec(Zk) = zk, so that {(λk, Zk)}n2

k=1 are the eigenpairs of (2.2). In addition,
let Lp = {λ1, λ2, . . . , λp} contain the p eigenvalues of (2.1) with smallest modulus, and let Ep =
{µi1 , µi2 , . . . , µid} be the smallest subset of eigenvalues of Ax = µMx that satisfies the following:
for any λk ∈ Lp, there exist µis , µit ∈ Ep such that λk = λis,it . Let Xp = {xi1 , xi2 , . . . , xid} hold
the eigenvectors of Ax = µMx associated with Ep. For a concrete example, consider again the 4×4
example in section 2. From Table 2.1, L7 = {λ1,2, λ2,1, λ3,3, λ1,3, λ3,1, λ2,3, λ3,2}, E7 = {µ1, µ2, µ3},
and X7 = {x1, x2, x3}.

We first look at standard inverse iteration applied to (2.1). Let the starting guess be z(1) =

v⊗v ∈ Rn2

, where v ∈ Rn is a random vector of unit norm. Since {zk}n
2

k=1 are linearly independent,

z(1) can be written as
∑n2

k=1 ξkzk with ξk ∈ C (assume ξk 6= 0 for any k). Note that the coefficients

{ξk}n
2

k=1 have the following properties: if zk1 = zk2 , then ξk1 = ξk2 ; moreover, if zk1 = xi ⊗ xj and

2Both sets of symbols {λi,j , zi,j}ni,j=1 and {λk, zk}n
2

k=1 denote the eigenpairs of (2.1). The double subscripts

indicate the special structure of the eigenpairs, whereas the single subscripts arrange the eigenvalues in ascending
order of their moduli. Our choice between the two notations depends on the context.
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Table 3.3: Algorithm 1 applied to Example 2 (Lyapunov solver: RKSM)

` λ(`) µ(`) ‖R`‖F ‖R`‖F d`
Re=100

1 -2.42460 2.42460 1.15123e+1 2.44638e-09 45
2 0.57285 -0.57285 1.28322e-4 1.15950e-11 22
3 0.57285 -0.57285 4.86146e-6 1.64039e-09 18
4 0.57285 -0.57285 9.49881e-7 5.11488e-09 10
5 0.57285 -0.57285 1.35238e-7 5.65183e-09 4
6 0.57285 -0.57285 2.30716e-8 8.18398e-10 4
7 0.57285 -0.57285 8.43416e-9 — —

Re=200
1 -2.45074 2.45074 1.16834e+1 3.00582e-09 63
2 0.32884 -0.32884+2.16396i 3.86737e-5 2.20976e-10 86
3 0.32884 -0.32884+2.16393i 1.30869e-8 2.04006e-10 46
4 0.32884 -0.32884+2.16393i 1.47390e-9 — —

Re=300
1 -2.47804 2.47804 1.18371e+01 4.49864e-09 75
2 0.10405 -0.10405+2.22643i 7.59831e-07 3.60446e-10 86
3 0.10405 -0.10405+2.22643i 2.18881e-10 — —

Re=350
1 -2.49317 2.49317 1.19385e+01 3.40780e-09 85
2 0.02411 -0.02411+2.24736i 2.80626e-08 3.84715e-10 90
3 0.02411 -0.02411+2.24736i 1.46747e-11 — —

Table 3.4: Algorithm 1 applied to Example 3 (Lyapunov solver: RKSM)

` λ(`) µ(`) ‖R`‖F ‖R`‖F d`
1 109.973 -109.973 4.33472e+00 3.28342e-11 40
2 0.05000 -0.05000+25.0000i 4.76830e-08 3.01965e-12 50
3 0.05000 -0.05000+25.0000i 1.56010e-13 — —

zk2 = xj ⊗ xi for some pair (i, j), then ξk1 = ξk2 . The first property is due to the fact that z(1) is
real, and the second one is a result of the special tensor structure of z(1). In the first step of inverse
iteration, we solve the linear system

∆1y1 = (−∆0)z(1). (3.2)

The solution to (3.2) is y1 = ∆−11 (−∆0)z(1) =
∑n2

k=1
ξk
λk
zk. Let yp1 be a truncated approximation of

y1 consisting of its p dominant components, i.e., yp1 =
∑p
k=1

ξk
λk
zk for some p� n2.

Next, we consider Algorithm 1 applied to (2.2). Let the starting guess be Z(1) = vvT , where v
is the vector that determines the starting vector for standard inverse iteration. At step 2.4 of the
first iteration, we solve the Lyapunov equation (3.1) where vec

(
P1C1P

T
1

)
= vec

(
−2SZ(1)ST

)
=

12



0 50 100 150 200
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

the dimension of the Krylov subspace

||R
1|| F

 

 
standard Krylov
RKSM

(a) Re = 100
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(b) Re = 200
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(c) Re = 300
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(d) Re = 350

Fig. 3.4: Comparison of the standard Krylov method and RKSM for solving (3.1) in Example 2

(−∆0)z(1) (see (2.4)) and vec(Y1) = y1, i.e.,

Y1 =

n2∑
k=1

ξk
λk
Zk. (3.3)

Let Y p1 denote the truncation of Y1 that satisfies vec (Y p1 ) = yp1 , i.e., Y p1 =
∑p
k=1

ξk
λk
Zk. Assume

p is chosen such that if λi,j ∈ Lp, then λi,j , λj,i ∈ Lp as well. Under this assumption and by

properties of the coefficients {ξk}n
2

k=1, Y p1 is real and symmetric and can be written as Y p1 = UGUT
where U ∈ Rn×d is an orthonormal matrix whose columns span Xp and G ∈ Rd×d is symmetric.
Recall from section 2 that the target eigenpair of (2.2) sought by Algorithm 1 is

(
λ1,VDVT

)
, where

λ1 = −Re(µ1), and V ∈ Rn×r (with r = 1 or 2) is x1 (if µ1 is real ) or an orthonormal matrix
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Fig. 3.5: Left: the 300 eigenvalues with smallest modulus (×: the rightmost eigenvalues). Right:
Comparison of the standard Krylov method and RKSM for solving (3.1) in Example 3

whose columns span {x1, x1} (if µ1 is not real). Since (λ1,VDVT ) is an eigenpair of (2.2),

S
(
VDVT

)
+
(
VDVT

)
ST + λ1

(
2S
(
VDVT

)
ST
)

= 0. (3.4)

For any p ≥ 1, x1, x1 ∈ Xp. Thus, U can be taken to have the form U = [V,V⊥] where VTV⊥ = 0.
Assume that step 2.4 of the first iteration of Algorithm 2 produces an approximate solution to

(3.1) of the form Y p1 by some means (that is, the approximate solution consists of the p dominant
terms of (3.3) where p satisfies the assumption above). Then at step 2.1 (rank reduction) of the
second iteration, we solve the d× d projected eigenvalue problem(

UTSU
)
Z̃ + Z̃

(
UTSU

)T
+ λ̃

(
2
(
UTSU

)
Z̃
(
UTSU

)T)
= 0 (3.5)

for the eigenvalue with smallest modulus, λ̃1, and its associated real, symmetric and rank-r eigen-
vector Z̃1 (r = 1 or 2). We then obtain an estimate of the target eigenpair of (2.2), namely(
λ̃1,UZ̃1UT

)
. It can be shown that this estimate is in fact exact, that is,

(
λ̃1,UZ̃1UT

)
=

(λ1,VDVT ).
Theorem 3.1. If

D1 =

[
D

0

]
d×d

,

then (λ1, D1) is an eigenpair of (3.5).
Proof. Left-multiply (3.4) by UT and right-multiply by U :

UTS(VDVT )U + UT (VDVT )STU + λ12UTS(VDVT )STU = 0.

Since U = [V,V⊥], it follows that VDVT = UD1UT . Therefore,(
UTSU

)
D1 +D1

(
UTSTU

)
+ λ1

(
2
(
UTSU

)
D1

(
UTSTU

))
= 0.
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Proposition 3.2. The eigenvalue of (3.5) with smallest modulus is λ̃1 = λ1.

Proof. Let S̃ = UTSU . Since the columns of U span Xp, the eigenvalues of S̃ are µ−1i1 , µ−1i2 , . . .,

µ−1id . Let ∆̃1 = S̃ ⊗ I + I ⊗ S̃ and ∆̃0 = 2S̃ ⊗ S̃. By Theorem 2.1, the eigenvalues of the d2 × d2
eigenvalue problem

∆̃1z̃ = λ̃
(
−∆̃0

)
z̃ (3.6)

are λ̃s,t = − 1
2 (µis + µit) for any 1 ≤ s, t ≤ d. Since µ1, µ1 ∈ Ep, Theorem 2.2 implies that the

eigenvalue of (3.6) with smallest modulus is λ̃1 = λ1, the eigenvalue of (2.1) with smallest modulus.
Since (3.5) and (3.6) have the same eigenvalues, the eigenvalue of (3.5) with smallest modulus is λ1
as well.

Recall that we solve the Lyapunov equation (3.1) using an iterative solver such as RKSM, which
produces a real, symmetric approximate solution Y approx1 . By Theorem 3.1 and Proposition 3.2, if
Y approx1 = Y p1 , then after the rank-reduction step in the second iteration of Algorithm 1, we obtain
the exact eigenpair

(
λ1,VDVT

)
of (2.2) that we are looking for. In reality, it is unlikely that the

approximate solution Y approx1 we compute will be exactly Y p1 . However, since Y p1 consists of the p
dominant terms of the exact solution (3.3), if Y approx1 is accurate enough, then Y approx1 ≈ Y p1 for
some p.

This analysis suggests that the eigenvalue residual norm ‖R2‖F can be made arbitrarily small
as long as the residual norm of the Lyapunov system ‖R1‖F is small enough. Therefore, we propose
the following modified version of Algorithm 1 (given τlyap, τeig > 0):

Algorithm 2 (Modified Algorithm 1)
1. Given V0 ∈ Rn with ‖V0‖2 = 1. Set ` = 1 and firsttry = true.

2. Rank reduction: compute S̃ = V T`−1SV`−1 and solve for the eigenvalue λ̃1 of (2.3) with

smallest modulus and its eigenvector Z̃1 = Ṽ D̃Ṽ T .

3. Set
(
λ(`), Z(`)

)
=
(
λ̃1,V`D̃VT`

)
where V` = V`−1Ṽ , and compute ‖R`‖F .

4. While ‖R`‖F > τeig:
4.1 if firsttry

compute an approximate solution Y approx1 = V1D1V
T
1 to (3.1) such that

‖R1‖F < τlyap · ‖C1‖F ; set ` = 2 and firsttry = false;
4.2 else

solve (3.1) more accurately and update V1;
4.3 repeat steps 2 and 3 to compute λ(`), Z(`) and ‖R`‖F .

In this algorithm, if
(
λ(2), Z(2)

)
is not an accurate enough eigenpair (‖R2‖F ≥ τeig), this is fixed

by improving the accuracy of the Lyapunov system (3.1). The discussion above shows that this will
be enough to produce an accurate eigenpair. Moreover, it is possible to get an improved solution
to (3.1) by augmenting the solution we have in hand. Assume that at step 4.1 of Algorithm 2, we
compute an approximate solution Y approx1 = V1D1V

T
1 to (3.1) where the columns of V1 span the

Krylov subspace Km(S, P1) (see (2.7) for definition), and then obtain an iterate
(
λ(2), Z(2)

)
in steps

2 and 3. If ‖R2‖F ≥ τeig, we perform one more block Arnoldi step to extend the existing Krylov
subspace to Km+1(S, P1), obtain a new approximate solution Y approx1 = V1D1V

T
1 to (3.1) where

the columns of V1 now span the augmented Krylov subspace Km+1(S, P1), and check convergence
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in steps 2 and 3 again. We keep extending the Krylov subspace at our disposal until the outer
iteration converges to the desired tolerance τeig.

We test Algorithm 2 on Example 2 and Example 3, where Algorithm 1 converged in more than
two iterations (see Tables 3.3 and 3.4). As in the previous experiments, we choose τlyap = 10−9 and
τeig = 10−8. The results are reported in Tables 3.5 and 3.6, from which it can be seen that if (3.1)
is solved accurately enough, Lyapunov inverse iteration converges to the desired tolerance in only
two iterations, as observed for the driven-cavity flow (see Table 3.2). In other words, it requires
only one Lyapunov solve (3.1). By comparing Tables 3.4 and 3.6, for example, we can see that in
order to compute an accurate enough approximate solution Y approx1 to (3.1), the dimension of the
Krylov subspace used must be increased from 40 to 43.

Table 3.5: Algorithm 2 applied to Example 2 (Lyapunov solver: RKSM)

` λ(`) µ(`) ‖R`‖F ‖R`‖F d`
Re=100

1 -2.42460 2.42460 1.15123e+1 4.45806e-12 65
2 0.57285 -0.57285 7.98509e-9 — —

Re=200
1 -2.45074 2.45074 1.16834e+1 2.79438e-12 83
2 0.32884 -0.32884+2.16393i 7.67144e-9 — —

Re=300
1 -2.47804 2.47804 1.18371e+1 1.35045e-10 86
2 0.10405 -0.10405+2.22643i 6.10287e-9 — —

Re=350
1 -2.49317 2.49317 1.19385e+1 1.07068e-09 88
2 0.02411 -0.02411+2.24736i 7.16343e-9 — —

Table 3.6: Algorithm 2 applied to Example 3 (Lyapunov solver: RKSM)

` λ(`) µ(`) ‖R`‖F ‖R`‖F d`
1 109.973 -109.973 4.33472e+0 4.71359e-12 43
2 0.05000 -0.05000+25.0000i 6.88230e-9 — —

4. Computing k rightmost eigenvalues. In section 2, we showed that when all the eigenval-
ues of (1.1) lie in the left half of the complex plane, the distance between the rightmost eigenvalue(s)
and the imaginary axis, −Re(µ1), is the eigenvalue of (2.2) with smallest modulus. As a result,
this eigenvalue can be computed by Lyapunov inverse iteration, which also gives us estimates of
the rightmost eigenvalue(s) of (1.1). In section 3, various numerical experiments demonstrate the
robustness and efficiency of the Lyapunov inverse iteration applied to (2.2). In particular, we
showed in section 3.4 that if the first Lyapunov equation (3.1) is solved accurately enough, then
Lyapunov inverse iteration will converge in only two steps. As seen in sections 3.1 and 3.2, when
we march along the solution path S, it may be the case that an eigenvalue that is not the rightmost
moves towards the imaginary rapidly, becomes the rightmost eigenvalue at some point and even-
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tually crosses the imaginary axis first, causing instability in the steady-state solution. Therefore,
besides the rightmost eigenvalue(s), it is helpful to monitor a few other eigenvalues in the rightmost
part of the spectrum as well. In this section, we show how Lyapunov inverse iteration can be ap-
plied repeatedly in combination with deflation to compute k rightmost eigenvalues of (1.1), where
1 < k � n.

We continue to assume that we are at a point (u0, α0) in the stable regime of the solution
path S and that the eigenvalue problem Ax = µMx with A = J (α0) has a complete set of
eigenvectors {xi}ni=1. For any i ≤ k, we also assume the following (as in assumptions (a1) and
(a2) in section 2): (a1′) if Re(µj) = Re(µi) and j 6= i, then µj = µi; (a2′) µi is a simple
eigenvalue. Let Et = {µ1, µ2, . . . , µt} be the set containing t rightmost eigenvalues of Ax = µMx
and Xt = [x1, x2, . . . , xt] ∈ Cn×t be the matrix that holds the t corresponding eigenvectors. Here
t is chosen such that t < k and if µi ∈ Et, then µi ∈ Et as well. We will show that given Xt,
we can use the methodology described in section 2 to find −Re(µt+1), that is, that −Re(µt+1) is
the eigenvalue with smallest modulus of a certain n2 × n2 eigenvalue problem with a Kronecker
structure like that of (2.1), and it can be computed using Lyapunov inverse iteration.

Lemma 4.1. Assume all the eigenvalues of Ax = µMx lie in the left half of the complex
plane. Then in the subset {λi,j}i,j>t of all the eigenvalues of (2.1), the one with smallest modulus
is −Re(µt+1).

Proof. If µt+1 is real, then −Re(µt+1) = λt+1,t+1. If µt+1 is not real, by assumptions (a1′),
(a2′) and the choice of t, µt+2 = µt+1, which implies that −Re(µt+1) = λt+1,t+2 = λt+2,t+1. The
rest of the proof is very similar to that of Theorem 2.2.

Consequently, if we can formulate a problem with a Kronecker structure like that of (2.1) whose
eigenvalues are {λi,j}i,j>t, then −Re(µt+1) can be computed by Lyapunov inverse iteration applied
to this problem. We will show how such a problem can be concocted and establish some of its
properties that are similar to those of (2.1).

Let Θt be the diagonal matrix whose diagonal elements are µ−11 , µ−12 , . . . , µ−1t , so that SXt =
XtΘt. Since Ax = µMx has a complete set of eigenvectors, there exists an orthonormal matrix
Qt ∈ Rn×t such that Xt = QtGt, where Gt ∈ Ct×t is nonsingular. Let

Ŝ =
(
I −QtQTt

)
S, ∆̂1 = Ŝ ⊗ I + I ⊗ Ŝ, and ∆̂0 = 2Ŝ ⊗ Ŝ.

We claim that the distance between µt+1 and the imaginary axis, −Re(µt+1), is the eigenvalue of

∆̂1z = λ
(
−∆̂0

)
z, z ∈ Range

(
∆̂0

)
(4.1)

with smallest modulus. To prove this claim, we first study the eigenpairs of Ŝ.

Lemma 4.2. The matrix I − QtQTt where Qt is defined above and I ∈ Rn×n is the identity
matrix has the following properties:

1.
(
I −QtQTt

)
Qt = 0;

2.
(
I −QtQTt

)i
=
(
I −QtQTt

)
for any integer i ≥ 1;

3.
(
I −QtQTt

)i
S
(
I −QtQTt

)j
=
(
I −QtQTt

)
S for any integers i, j ≥ 1.

Proof. The first two properties hold for any orthonormal matrix and the proof is omitted here.
To prove the third property, we first show that

(
I −QtQTt

)
S
(
I −QtQTt

)
=
(
I −QtQTt

)
S. Since
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SXt = XtΘt and Xt = QtGt, SQtQ
T
t = QtGtΘtG

−1
t QTt (Gt is invertible). Thus,(

I −QtQTt
)
S
(
I −QtQTt

)
=
(
I −QtQTt

)
S −

(
I −QtQTt

)
SQtQ

T
t

=
(
I −QtQTt

)
S −

(
I −QtQTt

)
QtGtΘtG

−1
t QTt

=
(
I −QtQTt

)
S

by the first property. This together with the second property establishes the third property.
Lemma 4.3. Let θ̂i = 0 for i ≤ t and θ̂i = 1

µi
for i > t. Let x̂i = xi for i ≤ t and

x̂i =
(
I −QtQTt

)
xi for i > t. Then

(
θ̂i, x̂i

)
(i = 1, 2, . . . , n) are the eigenpairs of Ŝ.

Proof. Let gi be the ith column of Gt. If i ≤ t, xi = Qtgi, thus

Ŝxi =
(
I −QtQTt

)
SQtgi =

(
I −QtQTt

)
QtGtΘtG

−1
t gi = 0

by the first property in Lemma 4.2. If i > t,

Ŝ
(
I −QtQTt

)
xi =

(
I −QtQTt

)
S
(
I −QtQTt

)
xi =

(
I −QtQTt

)
Sxi =

1

µi

(
I −QtQTt

)
xi

by the third property in Lemma 4.2.
Knowing the eigenpairs of Ŝ, we can find the eigenpairs of ∆̂0 and ∆̂1 with no difficulty.
Lemma 4.4. The eigenvalues of ∆̂1 are
1. 0, if i, j ≤ t;
2. 1

µi
, if i > t and j ≤ t;

3. 1
µj

, if i ≤ t and j > t;

4. 1
µi

+ 1
µj

, if i, j > t.

The eigenvalues of ∆̂0 are
1. 0, if i ≤ t or j ≤ t;
2. 2

µiµj
, if i, j > t.

Moreover, for each eigenvalue of ∆̂0 or ∆̂1, there are eigenvectors associated with it given by
ẑi,j = x̂i ⊗ x̂j and ẑj,i = x̂j ⊗ x̂i.

Proof. See the proof of Theorem 2.1.
Under the assumption that Ax = µMx has a complete set of eigenvectors, ∆̂0 also has a

complete set of eigenvectors {ẑi,j}ni,j=1. By Lemma 4.4, Range
(

∆̂0

)
= span {ẑi,j}i,j>t.

Theorem 4.5. The eigenvalues of (4.1) are {λi,j}i,j>t. For any λi,j with i, j > t, there are
eigenvectors ẑi,j and ẑj,i associated with it.

Proof. The proof follows immediately from Lemma 4.4 and the proof of Theorem 2.1.
Theorem 4.6. Assume all the eigenvalues of Ax = µMx lie in the left half of the complex

plane. Then the eigenvalue of (4.1) with smallest modulus is −Re(µt+1).
Proof. By Theorem 4.5, it suffices to show that |Re(µt+1)| ≤ |λi,j | for any i, j > t, which is

true by Lemma 4.1.

If we can restrict the search space of eigenvectors to Range
(

∆̂0

)
, we can apply inverse iteration

to ∆̂1z = λ
(
−∆̂0

)
z to compute −Re(µt+1). Let

Pt = {Z ∈ Cn×n|Z =
(
I −QtQTt

)
X
(
I −QtQTt

)
where X ∈ Cn×n}.
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Since

Range
(

∆̂0

)
= span {x̂i ⊗ x̂j}i,j>t = span

{(
I −QtQTt

)
xi ⊗

(
I −QtQTt

)
xj
}
i,j>t

,

if Z ∈ Pt, then z = vec(Z) ∈ Range
(

∆̂0

)
, and vice versa. Therefore, (4.1) can be rewritten in the

form of a matrix equation,

ŜZ + ZŜT + λ
(

2ŜZŜT
)

= 0, Z ∈ Pt. (4.2)

By Theorem 4.6, −Re(µt+1) is the eigenvalue of (4.2) with smallest modulus. As in section 2,
under certain conditions, we can show that −Re(µt+1) is an eigenvalue of (4.2) with a unique, real,
symmetric and low-rank eigenvector. Let Pst =

{
Z ∈ Pt|Z = ZT

}
be the subspace of Pt consisting

of symmetric matrices. As a result of assumptions (a1′) and (a2′), when the eigenspace of (4.2) is
restricted to Pst , −Re(µt+1) is an eigenvalue of (4.2) that has the unique (up to a scalar multiplier),
real and symmetric eigenvector(

I −QtQTt
)
xt+1x

T
t+1

(
I −QtQTt

)
or
(
I −QtQTt

) (
xt+1x

∗
t+1 + xt+1x

T
t+1

) (
I −QtQTt

)
.

Therefore, if we can restrict the search space for the target eigenvector of (4.2) to Pst , Lyapunov
inverse iteration can be applied to (4.2) to compute −Re(µt+1). Moreover, the analysis of section
3.4 (which applies to (2.2)) can be generalized directly to (4.2). This means that to compute
−Re(µt+1), it suffices to find an accurate solution to

ŜY1 + Y1ŜT = −2ŜZ1Ŝ
T (4.3)

in Pst . In general, solutions to (4.3) are not unique: any matrix of the form Y1 + QtXQ
T
t where

X ∈ Cn×n is also a solution, since ŜQt = 0 by Lemma 4.3. However, in the designated search space
Pst , the solution to (4.3) is indeed unique. In addition, we can obtain estimates for the eigenpair

(µt+1, x̂t+1) of Ŝ in the same way we compute estimates for (µ1, x1) in section 2 (see (2.5)).
The analysis above leads to the following algorithm for computing k rightmost eigenvalues of

Ax = µMx:

Algorithm 3 (compute k rightmost eigenvalues of Ax = µMx)

1. Initialization: t = 0, Et = ∅, Xt = ∅, Qt = 0, and Ŝ =
(
I −QtQTt

)
S.

2. While t < k:
2.1. Solve (4.2) for the eigenvalue with smallest modulus, −Re(µt+1), and its corresponding

eigenvector in Pst .
2.2. Compute an estimate

(
µapproxt+1 , x̂approxt+1

)
for (µt+1, x̂t+1).

2.3. Update:
if µapproxt+1 is real:

Et+1 ←
{
Et, µapproxt+1

}
, X̂t+1 ←

[
X̂t, x̂approxt+1

]
, t← t+ 1;

else:
Et+2 ←

{
Et, µapproxt+1 , conj

(
µapproxt+1

)}
, X̂t+2 ←

[
X̂t, x̂approxt+1 , conj

(
x̂approxt+1

)]
,

t← t+ 2.

2.4. Compute the thin QR factorization of X̂t: [Q,R] = qr
(
X̂t, 0

)
, and let Qt = Q,

Ŝ =
(
I −QtQTt

)
S.
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At each iteration of Algorithm 3, we compute the (t + 1)st rightmost eigenvalue µt+1, or the
(t+1)st and (t+2)nd rightmost eigenvalues (µt+1, µt+1). The iteration terminates when k rightmost
eigenvalues have been found. In this algorithm, we need to compute the eigenvalue with smallest
modulus for several Lyapunov eigenvalue problems (4.2) corresponding to different values of t. One
way to do this is to simply apply Algorithm 2 to each of these problems. In the next section, we
will discuss the way step 2.1 of Algorithm 3 is implemented, which is much more efficient. Note
that the technique for computing −Re(µt+1) (t > 0) introduced in this section is based on the
assumption that Qt, whose columns form an orthonormal basis for {xj}tj=1, is given. In Algorithm

3, Qt is taken to be a matrix whose columns form an orthonormal basis for the columns of X̂t. Such
an approach is justified in the next section as well.

We apply this algorithm to compute a few rightmost eigenvalues for some cases of the examples
considered in section 3. The results for step 2.1 in each iteration of Algorithm 3 are reported in Table
4.2 (see Table 4.1 for notation). For example, consider the driven-cavity flow at Re = 7800. From
Table 4.2, we can find the eight rightmost eigenvalues of Ax = µMx: µ1,2 = −0.00514± 2.69845i,
µ3 = −0.00845, µ4,5 = −0.01531 ± 0.91937i, µ6,7 = −0.02163 ± 1.78863i, and µ8 = −0.02996 (see
Figure 3.1a).

Table 4.1: Notation for Algorithm 3

Symbol Definition

λ(t) the estimate of −Re(µt+1), i.e., the eigenvalue of (4.2) with smallest modulus

Z(t) the estimated eigenvector of (4.2) associated with −Re(µt+1)
µapproxt+1 the estimated (t+ 1)st rightmost eigenvalue of Ax = µMx, i.e., µt+1

Rt
ŜZ(t) + Z(t)ŜT + λ(t)2

(
ŜZ(t)ŜT

)
, the residual of the Lyapunov eigenvalue

problem (4.3)

5. Implementation details of Algorithm 3. In the previous section, we proposed an algo-
rithm that finds k rightmost eigenvalues of (1.1) by computing the eigenvalue with smallest modulus
for a series of Lyapunov eigenvalue problems (4.2) corresponding to different values of t. In this
section, more details of how to implement this algorithm efficiently will be discussed.

5.1. Efficient solution of the Lyapunov eigenvalue problems. We first make a prelimi-
nary observation.

Proposition 5.1. The unique solution to (4.3) in Pst is Y1 =
(
I −QtQTt

)
Y1
(
I −QtQTt

)
,

where Y1 is the solution to (3.1).

Proof. The proof is straightforward with the help of Lemma 4.2.

By Proposition 5.1, if we know the solution Y1 to (3.1), we can formally write down the unique
solution Y1 to (4.3) in Pst . In practice, we do not know Y1; instead, we solve (3.1) using an iterative
solver (such as RKSM), which produces an approximate solution Y approx1 . The following proposition
shows that we can obtain from Y approx1 an approximate solution to (4.3) that is essentially as
accurate a solution to (4.3) as Y approx1 is to (3.1).

Proposition 5.2. Let Yapprox1 =
(
I −QtQTt

)
Y approx1

(
I −QtQTt

)
and R1 = ŜYapprox1 +

Yapprox1 ŜT + 2ŜZ1Ŝ
T . Then ‖R1‖F ≤ 4‖R1‖F , where R1 = SY approx1 + Y approx1 ST + 2SZ1S

T .
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Table 4.2: Algorithm 3 applied to Examples 1, 2 and 3

t λ(t) µapproxt+1 ‖Rt‖F t λ(t) µapproxt+1 ‖Rt‖F
Example 1 (Re=6000), k = 8 Example 1 (Re=7800), k = 8

0 0.01084 -0.01084 7.11628e-10 0 0.00514 -0.00514+2.69845i 3.62567e-11
1 0.02006 -0.02006+0.91945i 5.31308e-11 2 0.00845 -0.00845 1.92675e-09
3 0.03033 -0.03033+1.79660i 1.57820e-11 3 0.01531 -0.01531+0.91937i 1.06201e-10
5 0.03794 -0.03794 2.27041e-10 5 0.02163 -0.02163+1.78863i 6.81321e-11
6 0.04418 -0.04418+2.69609i 4.50346e-11 7 0.02996 -0.02996 1.86935e-10

Example 2 (Re=300), k = 6 Example 2 (Re=350), k = 6
0 0.10405 -0.10405+2.22643i 6.10287e-09 0 0.02411 -0.02411+2.24736i 7.16343e-09
2 0.32397 -0.32397 2.83185e-10 2 0.28408 -0.28408 1.46365e-10
3 0.39197 -0.39197 3.34178e-11 3 0.33571 -0.33571 3.81057e-11
4 0.60628 -0.60628 1.31394e-07 4 0.56485 -0.56485 6.03926e-08
5 0.87203 -0.87203 1.77364e-06 5 0.79196 -0.79196 9.20079e-07

Example 3, k = 6
0 0.05000 -0.05000+25.0000i 6.88230e-09
2 0.10000 -0.10000 1.50946e-12
3 0.20000 -0.20000 8.60934e-09
4 0.30000 -0.30000 1.31349e-07
5 0.40000 -0.40000 4.08853e-06

Proof. Using Lemma 4.2, we can show easily that R1 =
(
I −QtQTt

)
R1

(
I −QtQTt

)
. Therefore,

‖R1‖F ≤
∥∥I −QtQTt ∥∥2F ‖R1‖F ≤

(
1 + ‖Qt‖2F

)2 ‖R1‖F = 4‖R1‖F .

This analysis suggests the following strategy for step 2.1 of Algorithm 3: when t = 0, we
compute −Re(µ1) by applying Algorithm 2 to (2.2), in which a good approximate solution Y approx1

to (3.1) is computed; in any subsequent iteration where 0 < t ≤ k−1, instead of applying Lyapunov
inverse iteration again to (4.2), we simply get the approximate solution Yapprox1 to (4.3) specified
in Proposition 5.2, from which −Re(µt+1) can be computed. Details of this approach are described
below.

Recall that Y approx1 computed by an iterative solver such as RKSM is of the form V1D1V
T
1 ,

where V1 ∈ Rn×d1 is orthonormal and d1 = rank(V1) � n. We first rewrite Yapprox1 in a sim-
ilar form U(ΣWTD1WΣ)UT , where UΣWT is the ‘thin’ singular value decomposition (SVD) of(
I −QtQTt

)
V1. Then we can compute an estimate for −Re(µt+1) in the same way we compute esti-

mates for −Re(µ1) in Algorithm 1 or 2. That is, we solve the small, projected Lyapunov eigenvalue
problem

S̃hZ̃ + Z̃S̃Th + λ̃
(

2S̃hZ̃S̃
T
h

)
= 0 (5.1)

for its eigenvalue with smallest modulus, where S̃h = UT ŜU . Recall that the matrix S̃ = V T1 SV1 in
(2.3) can be obtained with no additional cost from the Arnoldi decomposition (for instance, (2.8)).
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Here, S̃h can be computed cheaply as well since

UT ŜU = Σ−1WTV1
T
(
I −QtQTt

)
SV1WΣ−1

by Lemma 4.2, and SV1 is given by the same Arnoldi decomposition. Let λ̃1 be the eigenvalue
with smallest modulus of (5.1), and Z̃1 = Ṽ D̃Ṽ T be the eigenvector associated with λ̃1. Then the

estimated −Re(µt+1) and eigenvector of (4.2) associated with it are λ(t) = λ̃1 and Z(t) = VtD̃VTt ,

where Vt = UṼ . In addition, by solving the small eigenvalue problem
(
VTt ŜVt

)
y = θy, we get an

estimate µapproxt+1 = 1
θ for µt+1 and x̂approxt+1 = Vty for x̂t+1.

5.2. Efficient computation of the matrix Qt. At each iteration of Algorithm 3, we need
an orthornormal basis for {xj}tj=1, the eigenvectors associated with the t rightmost eigenvalues of
Ax = µMx. When t = 0, we can get estimates for x1 from Lyapunov inverse iteration applied to
(4.2); however, when t > 0, we are only able to get estimates for the eigenvectors of the deflated

matrix Ŝ. We will discuss how an orthonormal basis for {xj}tj=1 can be computed efficiently from
these estimates.

We first consider the simplest case where all k rightmost eigenvalues of Ax = µMx are real.
In this case, we have the following result.

Proposition 5.3. For any t such that 1 ≤ t ≤ k,

span
{(
I −Qj−1QTj−1

)
xj
}t
j=1

= span {xj}tj=1 . (5.2)

Proof. We argue by induction.
1. When t = 1, since Q0 = 0,

span
{(
I −Q0Q

T
0

)
x1
}

= span {x1} .

The claim is trivially true.
2. When t = 2, since x2 =

(
I −Q1Q

T
1

)
x2 +Q1α1 where α1 ∈ C,

span
{(
I −Q0Q

T
0

)
x1,
(
I −Q1Q

T
1

)
x2
}

= span {x1, x2 −Q1α1} = span {x1, x2} .

3. Assume the claim is true for any t that satisfies 3 ≤ t ≤ k − 1. Now we want to show that
it is true for t+ 1. Note that xt+1 =

(
I −QtQTt

)
xt+1 +Qtαt, where αt ∈ Ct. Then by the

induction hypothesis,

span
{(
I −Qj−1QTj−1

)
xj
}t+1

j=1
= span {x1, x2, . . . , xt, xt+1 −Qtαt} = span {xj}t+1

j=1 .

Consequently, if we can find an orthonormal basis for
{(
I −Qj−1QTj−1

)
xj
}t
j=1

, then this is

an orthonormal basis for {xj}tj=1 as well. In Algorithm 3, the jth column of the matrix X̂t is

approximately
(
I −Qj−1QTj−1

)
xj ; therefore, Qt can be approximated by computing the thin QR

factorization of X̂t.
As seen in Table 4.2, some of the k rightmost eigenvalues of Ax = µMx are not real. In this

case, t may increase by 2 instead of 1 from one iteration to the next. Let T = {ti}si=0 (ti < ti+1)
be the collection of every value of t for which we need to solve the Lyapunov eigenvalue problem
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(4.2). Then t0 = 0, ts = k − 1 or k − 2, and ti+1 − ti = 1 or 2. For example, in the case of the
cavity flow at Re = 7800, if k = 8, then T = {0, 2, 3, 5, 7}. In the same way we prove Proposition
5.2, we can show that for any 1 ≤ i ≤ s,

span
{(
I −Qtj−1Q

T
tj−1

)
xtj ,

(
I −QtjQTtj

)
xtj

}i
j=1

= span
{
xtj , xtj

}i
j=1

. (5.3)

In Algorithm 3, if µtj is real, then the tj
th column of X̂ti is approximately

(
I −Qtj−1

QTtj−1

)
xtj ;

otherwise, the tj
th and (tj − 1)st columns of X̂ti hold estimates for

(
I −Qtj−1Q

T
tj−1

)
xtj and(

I −QtjQTtj
)
xtj . By (5.3), Qti can be approximated by computing the thin QR factorization

of X̂ti .

6. Conclusion. In this paper, we have developed a robust and efficient method of computing
a few rightmost eigenvalues of (1.1) at any point (u0, α0) in the stable regime. We have shown that
the distance between the rightmost eigenvalue of (1.1) and the imaginary axis is the eigenvalue with
smallest modulus of an n2×n2 eigenvalue problem (2.1). Since (2.1) has the same Kronecker struc-
ture as the one considered in previous work [8,15], this distance can be computed by the Lyapunov
inverse iteration developed and studied in these references, which also produces estimates of the
rightmost eigenvalue(s) as by-products. An analysis of the fast convergence of Lyapunov inverse
iteration in this particular application is given, which indicates that the algorithm will converge in
two steps as long as the first Lyapunov equation is solved accurately enough. Furthermore, assum-
ing t rightmost eigenpairs are known, we show that all the main theoretical results proven for (2.1)
can be generalized to the deflated problem (4.1), whose eigenvalue with smallest modulus is the
distance between the (t + 1)st rightmost eigenvalue and the imaginary axis. Finally, an algorithm
that computes a few rightmost eigenvalues of (1.1) is proposed, followed by a discussion on how to
implement it efficiently. The method developed in this study together with the method proposed in
[8,15] constitute a robust way of detecting the transition to instability in the steady-state solution
of a large-scale dynamical system.
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