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 The atmospheric carbon dioxide (CO2) observations reveal a seasonal cycle 

that is dominated by the growth and decay of land vegetation. Ground-based and 

aircraft-based observations indicate that the amplitude of this seasonal cycle has 

increased over the past five decades, suggesting enhanced biosphere activity. 

Previous studies have tried to explain the amplitude increase with stimulated 

vegetation growth by higher concentrations of CO2 and warming, but the 

understanding of all the important mechanisms and their relative contribution is still 

lacking. This work comprises of three individual studies that contribute to better 

understanding of the CO2 amplitude increase over time and space. With improved 

crop simulation scheme in a terrestrial carbon model, a new mechanism—the 

intensive farming practices of the agricultural Green Revolution—is presented as a 

driver of changes in the seasonal features of the global carbon cycle. Results are 



  

further compared with eight other models’ simulations and a number of observation-

based datasets on the seasonal characteristics of simulated carbon flux, and on the 

relative contribution of rising CO2, climate and land use/cover change. In addition, 

future projections on the amplitude change of CO2 seasonal cycle are examined using 

simulations from 10 Coupled Model Intercomparison Project Phase 5 (CMIP5) earth 

system models. Results from this work demonstrate that human land-management 

activities are powerful enough to modify the basic seasonal characteristics of the 

biosphere, as reflected by atmospheric CO2. Models attribute 83±56%, −3±74% and 

20±30% of global carbon flux amplitude increase to the CO2, climate and land 

use/cover factors, respectively. Additionally, the models’ underlying mechanisms for 

the simulated carbon flux amplitude increase in different regions are substantially 

different. Strong productivity increase under higher CO2 concentration is also seen in 

the CMIP5 models, leading to 62±19% global mean CO2 amplitude increase in 2081-

2090 compared to 1961-1970. Both groups of models suggest that models simulating 

larger amplitude increase tend to show a larger gain in land carbon sink (with a cross-

model R2 of ~0.5 in both cases). Overall, this work presents significant insights in the 

change of CO2 amplitude and model representation of global carbon cycle.  
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Chapter 1: Introduction 

Background 

 Since 1958, continuous atmospheric measurement at Mauna Loa (MLO), 

Hawaii (19.5°N, 155.6°W, 3400m altitude) has recorded an increase from <320 parts 

per million (ppm) to over 400 ppm in the mixing ratio of atmospheric CO2 (Figure 1-

1). This increase of ~80 ppm directly corresponds to 170 petagrams (Pg) of additional 

carbon (using a factor of 2.12 PgC ppm−1 according to Prather et al., 2012)), or 620 

Pg of additional CO2 accumulated (from 1958 to now) in the atmosphere.   

 

Figure 1-1: Monthly mean atmospheric carbon dioxide at Mauna Loa Observatory, 

Hawaii from 1958 to 2015 (red curve). The black curve presents the long-term trend, 

after correction for the average seasonal cycle. (Figure from NOAA/ESRL: 

www.esrl.noaa.gov/gmd/ccgg/trends/, accessed on Sep 8, 2015) 
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 The atmospheric CO2 increase is primarily caused by fossil fuel combustion, 

which had increased from 3.1 PgC y−1 in 1960-1969 to 8.9 PgC y−1 in 2004-2013 (Le 

Quéré et al., 2015).  The carbon release from fossil fuel combustion and land 

use/cover changes (~1.5 PgC y−1, according to inventory-based estimates) would have 

caused a rising atmospheric CO2 twice as fast as observed. Instead, the capacity of 

ocean and terrestrial ecosystems absorbing CO2 is also increasing, collectively taking 

up more than half of the increased CO2 from fossil fuel combustion and land 

use/cover changes (Le Quéré et al., 2015). Ocean and land each contributes 

approximately equally to the carbon sink, which has increased to 2.6±0.5 PgC y−1 and 

2.9±0.8 PgC y−1, respectively, over 2004-2013 (Le Quéré et al., 2015). While the 

ocean carbon sink is estimated from observations and models, the terrestrial carbon 

sink is estimated from the residual of the other budget terms (Eq 1, Le Quéré et al., 

2015): 

SLAND = EFF +ELUC - (GATM + SOCEAN )            (1) 

Where EFF is the CO2 emissions from fossil fuel combustion and cement production, 

ELUC is the CO2 emissions resulting from human induced land-use change, GATM is 

the growth rate of CO2 in the atmosphere and SOCEAN is the ocean uptake of CO2. The 

size and location of this terrestrial carbon sink remains a major source of uncertainty, 

and the future projections are not consistent in the sign and magnitude of land-

atmosphere carbon fluxes (Friedlingstein et al., 2013). 

 In addition to the long-term increase, the atmospheric CO2 record also shows 

a prominent seasonal cycle (Figure 1-1, red curve) with peak-to-trough amplitude of 

6.5 ppm. The seasonal cycle is characterized with a 5-month decrease (minimum in 
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October) and a 7-month increase (maximum in May), mostly attributed to the growth 

and decay of plants in Northern Hemisphere (NH) (Heimann, 1986). In an early study 

investigating the trend of MLO CO2 over 1958–1972, Hall et al. (1975) found no 

evidence of long-term amplitude change. However, a few years later, rapid increase 

in MLO CO2 amplitude was observed (Pearman and Hyson, 1981; Cleveland et al., 

1983; Bacastow et al., 1985). This increasing trend of MLO CO2 amplitude was 20% 

for 1964-1994 (Keeling et al., 1996), but declined considerably in the following 

decade (Buermanm et al., 2007). Updated estimates (Graven et al., 2013; Zeng et al., 

2014) put the trend at 15% for 1961-2010, slightly lower than the number given by 

Keeling et al. (1996) 20 years ago, which is consistent with the declining trend of the 

CO2 seasonal amplitude derived from space-borne measurements (Schneising et al., 

2014). Four decades of CO2 observations at a high latitude site—Point Barrow, 

Alaska (71.3°N, 156.6°W, 11m altitude) generally exhibited similar decadal 

variability, but with two fold increasing trend compared with MLO record. Overall, 

the evolution of MLO CO2 amplitude during 1958-2015 can be described as a 

relatively steady long-term increase, modulated by decadal variations.  

Whether the CO2 amplitude will increase or decrease in the future is an open 

question. Both rising temperature and increasing CO2 may result in elevated CO2 

amplitude in response to stimulated ecosystem activities. In contrast, the increasing 

frequency, intensity and/or duration of heat waves, drought and flood (IPCC, 2013) 

may reduce the ecosystem productivity and thus the CO2 seasonal amplitude. As an 

important indicator of terrestrial ecosystem activity, the seasonal cycle of MLO CO2 

observation will be closely monitored to provide more valuable data in future. 
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However, to make reasonable projections on how its amplitude will change in the 

future, it is crucial to better understand the underlying mechanisms for its amplitude 

increase in the past.  

  

Causes of historical CO2 seasonal amplitude increase 

Using observational evidence and modeling simulations, many scientists have 

studied the causes of historical CO2 seasonal amplitude increase. Changes in 

ecosystem productivity and respiration directly influence the CO2 seasonal amplitude, 

as the atmospheric CO2 seasonal cycle is closely tied to ecosystem activities 

(Randerson et al., 1997). Earlier studies have speculated on decreasing global primary 

production in response to global changes (such as acid rain and deforestation) 

(Reiners, 1973; Whittaker and Likens, 1973). However, no decreasing trend of CO2 

amplitude was observed, probably because the biosphere was too big to be affected or 

the degradation of biosphere was balanced by enhanced ecosystem productivity (Hall 

et al., 1975). These complex interactions are controlled by several factors including 

CO2 fertilization effect, climate change and land use change. 

 

The CO2 fertilization effect 

One of the earliest suggestions was that increase in the CO2 concentration 

would function similar to fertilizer (thus the term “CO2 fertilization”), enhancing 

metabolic activity of the land biota, and therefore increasing the CO2 seasonal 

amplitude (Bacastow et al., 1985). This idea has been supported by several in situ 

experiments, where an increased plant growth was observed under higher-than-
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normal CO2 concentrations (Wulff and Strain, 1982; Grifford, 1977). Similarly, 

numerous other studies extensively have discussed the various CO2 fertilization 

mechanisms including increased photosynthesis and suppressed photorespiration 

(Bazzaz, 1990), improved efficiency in water (Field et al., 1995) and nutrients use 

(Drake et al., 1997), and reduced sensitivity to drought (Korner, 2000). Free Air CO2 

Enrichment (FACE) experiments also suggested enhanced forest ecosystem 

productivity under higher partial pressure of CO2 (Ainsworth and Long, 2005; 

DeLucia et al., 2005). Even though, all this evidence is consistent in some aspect, the 

response of individual species would often change drastically at the community level 

(Bazzaz, 1990), or with different experiment design (Klironomos et al., 2005), and 

field/model studies on plant communities were inconclusive (Curtis et al., 1989; 

Oechel et al., 1994).  

Nitrogen (Reich and Hobbie 2013; Sillen and Dieleman 2012) and phosphorus 

(Vitousek et al., 2010), as mostly discussed, could significantly limit the CO2 

fertilization effect in actual ecosystems compared to those under controlled 

experiments. Observational evidence, such as data from International Tree ring Data 

Bank (ITRDB), suggested that CO2 fertilization affects only about 20 percent of sites 

globally (Gedalof and Berg, 2010). Little biomass stimulation was observed under 

elevated CO2 when nitrogen or phosphorus and water were limited in three long-term 

(>5 years) open air CO2 × N experiments (Schneider et al., 2004; Dukes et al., 2005; 

Reich et al., 2006). Overall, the effect of CO2 fertilization at the global scale remains 

inconclusive, but according to some observational and modeling evidences, it should 
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explain no more than 25% of the observed amplitude increase (Kohlmaier et al., 

1989). 

 

Climate change impact 

Keeling et al. (1996) observed a close relationship between annually averaged 

land surface temperature and CO2 amplitude change, with the CO2 amplitude peak 

lagging two years behind the temperature peak, at several sites including MLO. This 

high CO2 sensitivity to temperature could not be explained by short-term 

photosynthesis response, which is typically a 40-100% increase for every 10°C 

increase in temperature (Larcher, 1984). They also observed a phase advance of about 

one week during the declining phase of the cycle, suggesting a lengthening of the 

growing season, but reasons were not provided for the long-term CO2 amplitude 

increase. Nevertheless, their study inspired a follow-up work by Myneni et al. (1997) 

which showed an increase in the seasonal amplitude of satellite-derived normalized 

difference vegetation index (NDVI) during 1981-1991, especially at 45-70°N, 

associated with the lengthening of growing season.  However, lengthening of growing 

season does not necessarily mean a higher peak ecosystem productivity (Baptist et al., 

2010). Earlier spring may even decrease peak summer productivity with soil moisture 

deficiency in peak summer (Buermann et al., 2013). Many other climate-related 

changes, including invasive species and community shifts are part of the complicated 

ecosystem responses to climate change (Walther et al., 2002) that may have led to the 

observed temperature-CO2 seasonal amplitude relationship.  
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Such relationship did not persist in the decade following the discovery by 

Keeling et al. (1996). As displayed in Figure 1-2, Buermann et al. (2007) found that 

 

 
 

Figure 1-2: Time series of the relative amplitude of the seasonal cycle of atmospheric 

CO2 at the MLO (black) and anomalies in observed annual land temperatures (red) 

for the latitudinal band from 30°N to 80°N (except Greenland). The relative 

amplitudes are in respect to the mean amplitude of the first 5 year of CO2 record 

(1959–1963). Temperature anomalies are relative to the 1959–2004 study period 

(Buermann et al., 2007). 

 

 

despite the increase in land temperature after 1994, CO2 amplitude at MLO 

decreased. This decline was attributed to reduction in carbon sequestration over North 

America (due to drought during 1998-2003), and a shift in atmospheric circulation 
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patterns. On the other hand, by comparing recently available aircraft observations 

with earlier data from 1958-1961, Graven et al. (2013) found that the CO2 seasonal 

amplitude at altitudes of 3 to 6 km had increased by 50% for 45-90°N, substantially 

higher than the rate observed at MLO and Point Barrow. This magnitude of CO2 

amplitude increase implied a rise of 30 to 60% in the carbon fluxes from northern 

extratropical land ecosystems, especially the boreal forests, a change that was 

significantly underrepresented in the terrestrial ecosystem models participating in the 

fifth phase of the Coupled Model Intercomparison Project (CMIP5) (Figure 1-3). 

They suggested that climate change may have shifted ecosystem age and species 

composition, which could be responsible to the CO2 amplitude increase (Graven et 

al., 2013).  

 

 

Figure 1-3: Change in amplitude of the seasonal cycle of CO2 between 1958 to 1961 

and 2009 to 2011 versus amplitude of the seasonal cycle for 2009to 2011 at 500 mb, 

averaged over 45° to 90°N, in observations and in simulations of the CMIP5 land 

models (Graven et al., 2013). 
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Land use/cover change 

Even though, the role of land use/cover change in altering the terrestrial 

ecosystem has been extensively studied, its impact on CO2 seasonal amplitude was 

largely over looked. Only a few studies (Hall et al., 1975; McGuire et al., 2001) 

briefly discussed this particular issue. Changes in land cover (i.e., deforestation and 

forest regrowth) can alter the seasonal cycle of carbon flux, due to different 

ecosystem productivities of old and new ecosystems. Furthermore, sudden carbon 

release during the conversion processes (i.e., slash and burn) can strongly affect the 

seasonal carbon cycle. Similarly, even without changing the land cover, advancement 

in agricultural technology (irrigation, fertilizers, and crop varieties with high 

yield/resistance) and different land management practices can strongly impact the 

crop productivity and also the seasonal carbon cycle. In the last fifty years, the global 

agricultural production has tripled, an incredible achievement that is largely due to 

improved farming practices. Compared to natural systems, crops have a short 

growing season, and in some cases a larger seasonal amplitude compared to nearby 

natural vegetation (Miles et al., 2012). It is possible for crops to have a significant 

impact on the seasonal cycle of carbon flux, especially in the mid-latitude regions 

(world’s major crop belt). 

 

Priority Questions Regarding CO2 amplitude increase 

 1. Is the observed CO2 amplitude increase sufficiently explained by the effects 

of CO2 fertilization and climate change? Could agriculture intensification 

significantly alter the observed atmospheric CO2 seasonal cycle? 
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 2. Can the latest generation of terrestrial ecosystem models capture the 

seasonal characteristics of global carbon cycle? How important are the different 

controlling factors according to the models? 

 3. Will the atmospheric CO2 amplitude—indicator of terrestrial ecosystem 

activities—continues to increase in the future? How reliable are the model 

projections? 

 

Objectives 

1. To investigate if agricultural intensification would cause increase in CO2 

amplitude, the mechanisms and latitudinal patterns, and its strength relative to other 

factors.  

2. To evaluate the simulation of the seasonal cycle of global carbon flux 

spatially and temporally with latest generation of dynamic vegetation models, and to 

attribute relative contributions of different factors in the model simulated amplitude 

change of land-atmosphere carbon flux. 

3.  To explore the future projection of CO2 amplitude change using fully 

coupled earth system models, and to understand the main contributors (ecosystem 

production or respiration, main regions of contribution) that lead to the projections.  

 

The Dissertation and its Organization 

 Chapter 1 (this chapter) introduced the background of the long-term increase 

in atmospheric CO2 concentration measured at MLO; the global carbon budget; and 

the decadal variation and long-term trend of the atmospheric CO2 seasonal amplitude 
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increase. Then a short overview is presented on some of the major causes (CO2 

fertilization, climate change and land use/cover change) of the observed amplitude 

increase in atmospheric CO2. 

 Chapter 2 describes an initial modeling attempt to capture the first-order effect 

of agricultural intensification on the global carbon cycle. The rationale regarding why 

agricultural intensification can impact the CO2 seasonal cycle will be explained. 

Simulated changes in the phase and amplitude of global total land-to-the-atmosphere 

carbon flux will also be discussed. This will be followed by the temporal and spatial 

patterns of the carbon flux, contributions of natural vegetation versus cropland at 

different latitudes, and the magnitude of land use/cover contribution relative to CO2 

fertilization and climate change.  

 Chapter 3 expands the investigation of model simulated amplitude increase of 

terrestrial carbon flux to eight other terrestrial ecosystem models, under the same 

experiment protocol. The model simulations of net carbon flux will be carefully 

evaluated against observation-based datasets on global and regional seasonal cycle. 

Then the relative contributions from CO2 fertilization, climate and land use/cover 

change will be quantified globally and regionally. In addition, the spatial attribution 

of the factorial experiment results will be examined with a new “two-month 

difference” method. 

 Chapter 4 extends the interest towards future projection of CO2 amplitude 

increase, analyzing simulation results from fully coupled models contributing to the 

Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report. We 

will explore the close relationship between the seasonal cycle of CO2 and net 
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terrestrial carbon flux, and the seasonal cycle of the latter will be separated into net 

primary production (NPP) and respiration. The spatial patterns of carbon flux from 

individual models and the multi-model mean will also be presented and analyzed for 

the main contributing region.  

 Finally, Chapter 5 presents conclusions and scientific significance of the 

results presented in previous chapters. The dissertation concludes with discussions of 

future research directions.  
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Abstract 

A long-standing puzzle in the global carbon cycle is the increase in the 

amplitude of the seasonal cycle of atmospheric CO2 (Bacastow et al., 1985; Keeling 

et al., 1996). This increase likely reflects enhanced biological activity in the Northern 

Hemisphere (NH). It has been hypothesized that vegetation growth may have been 

stimulated by higher concentrations of CO2 as well as warming in recent decades, but 

the role of such specific mechanisms has not been quantified and they have been 
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unable to explain the full range and magnitude of observations. Here we suggest 

another potential driver of the increased seasonal amplitude: the intensification of 

agriculture from the Green Revolution that led to a 3-fold increase in world crop 

production over the last 5 decades. Our analysis of CO2 data and atmospheric 

inversions shows a robust 15% long-term increase in CO2 seasonal amplitude from 

1961 to 2010 that is punctuated by large decadal and interannual variations. The three 

pillars of the Green Revolution, consisting of high yield cultivars, fertilizer use, and 

irrigation, are represented in a terrestrial carbon cycle model. The results reveal that 

the long-term increase in CO2 seasonal amplitude arises from two major regions: the 

mid-latitude cropland between 25N-60N and the high-latitude natural vegetation 

between 50N-70N. The long-term trend of seasonal amplitude is 0.3% per year, of 

which sensitivity experiments attribute 43% to land use change, 31% to climate 

variability and change, and 26% to CO2 fertilization. The recent decade 2001-2010 

has an earlier vegetation growth (by 1-2 weeks) and a deeper maximum drawdown of 

CO2 in July (by 5 PgC y−1), compared to the early decade 1961-70, suggesting human 

land use and management is a key driver in the changing seasonal ‘breathing’ of the 

biosphere.   

 

Introduction 

Superimposed on the continued increase in the atmospheric CO2 concentration 

is a prominent seasonal cycle with peak-to-trough amplitude of about 6 ppm (Tans, P. 

P. & Keeling, 2013). This cycle arises mostly from the seasonal imbalance of growth 

and decay of the Northern Hemisphere (NH) biosphere as vegetation takes up CO2 
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during the boreal spring and summer growing season and releases CO2 back into the 

atmosphere throughout the year (Bacastow et al., 1985; Tucker et al., 1986; Keeling 

et al., 1996). The CO2 seasonal amplitude has increased over time, suggesting an 

increase in NH biosphere activity (Heimann, 1986; Keeling et al., 1996; Randerson et 

al., 1997). Early work suggested enhanced vegetation growth due to stronger 

fertilization at higher level of CO2, but the observed amplitude increase would require 

an unrealistically large CO2 fertilization effect (Kohlmaier et al., 1989). Another 

tantalizing possibility is the enhanced vegetation growth or the ‘greening’ of the high 

latitude regions in response to warming over the last few decades that has resulted in 

a lengthening of the growing season (Keeling et al., 1996; Myneni et al., 1997; 

Buermann et al., 2007). Despite of their plausibility and the apparent correlation 

between the rising CO2/temperature and the increasing CO2 seasonal amplitude, such 

possibilities could not be quantitatively verified in comprehensive carbon cycle 

models (Kohlmaier et al., 1989; McGuire et al., 2001). For instance, while a strong 

CO2 fertilization effect can produce a large seasonal amplitude change in some 

models, the required increases in productivity and mean carbon sink are not 

consistent with other observational constraints (Randerson et al., 1997; Cadule et al., 

2010; Piao et al., 2013). Here we suggest that human land use and management have 

modified the seasonal characteristics of the global carbon cycle, and is a ‘missing 

link’ to the puzzle of increasing CO2 seasonal amplitude.  

In a 50-year time span from 1961 to 2010, the world population more than 

doubled, from 3 to 7 billion, while crop production tripled, from 0.5 to 1.5 PgC y−1 

(Petagram carbon per year; Figure 2-1). It is striking that the 3-fold increase in crop 
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Figure 2-1: Changing world population (billions), cropland area (million kilometer 

squared) and annual crop production (PgC) during 1961-2010. Crop production 

tripled to support 2.5 times more people on only 20% more cropland area, enabled by 

the agricultural Green Revolution.  Plotted in (c) is the VEGAS model simulated crop 

production, compared to estimate from FAO statistics. The inset in (c) shows 

modeled GPP for three periods 1901-10, 1961-70, and 2001-10 for a location in the 

US Midwest agricultural belt (98W, −40N) that was initially naturally vegetated and 

later converted to cropland. The change in seasonal characteristics from these 

transitions may have contributed to the change in atmospheric CO2 seasonal 

amplitude.  

 

 

production was accompanied by a mere 20% increase in the land area of major crops 

from 7.2 to 8.7 million km2 (Table 2-1). Higher crop production is thus due mostly to 

greater yield per unit area, an extraordinary technological feat often termed the 

agricultural Green Revolution. The higher yield can be attributed to three major 

factors: high yield crop varieties such as hybrid dwarf rice and semi-dwarf wheat, use 

of fertilizer and pesticide, and widespread use of irrigation (Jain, 2010). 
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Table 2-1:  Summary of changes in population, cropland area, and crop production 

from 1961 to 2010 from FAO data and other statistics, and Harvest Index (HI), 

Management Intensity (MI) and NPPcrop from the VEGAS model. Crop production is 

harvested edible parts of crops, while NPPcrop is total biomass production including 

above and below-ground biomass. Harvest Index (HI) is grain and above-ground 

biomass ratio. All are measured in terms of carbon mass, which is typically about 

50% of plant dry mass. Model results are in parentheses. 

 

 

 

 

The plausibility of a potential Green Revolution impact on the CO2 seasonal 

cycle follows from a ‘back-of-envelope’ estimate. The global total terrestrial 

biosphere Net Primary Productivity (NPP) is about 60 PgC y−1, and the seasonal 

variation from peak to trough is between 30-60 PgC y−1 (Cramer et al., 1999). Of the 

60 PgC y−1 in NPP, about 6 PgC y−1, or 10% is associated with crop production as the 

human appropriated NPP (Vitousek et al., 1986; Imhoff et al., 2004; Haberl et al., 

2007).  Assuming a doubling in crop NPP, i.e., 3 PgC y−1 increase, this leads to an 

increase of global NPP by 5-10% (3 divided by 60 or 30). This rate is substantial 

compared to the increase in CO2 seasonal amplitude (Randerson et al., 1997). 

We studied this hypothesis by analyzing a variety of observational data and 

model output, including the Mauna Loa (MLO) CO2 record from 1958 and a global 

total CO2 index from 1981 (Tans, P. P. & Keeling, 2013), and atmospheric inversions 

 Population 

(billions) 

Cropland 

area  

(million 

km2) 

Crop 

production 

(PgC y−1) 

Harvest 

Index 

(HI) 

Management 

Intensity 

(MI, relative 

to 2000) 

Total production on 

cropland (NPPcrop, 

PgC y−1) 

1961 3 7.2 0.5 (0.6) (0.31) (0.9) (4.0) 

2010 7 8.7 1.5 (1.4) (0.49) (1.03) (6.2) 

Change  

2010-1961  

4 1.5 1.0 (0.8) (0.18) (0.13) (2.2) 

Percent 

change 

2010-1961 

130% 20% 200% 

(130%) 

(60%) (12%) (55%) 
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Jena81 and Jena99 (Rodenbeck et al., 2003) and the CarbonTracker (Peters et al., 

2007). Another key tool is the terrestrial carbon cycle model VEGAS (Zeng, 2003; 

Zeng et al., 2005a) which, in a first such attempt, represents the increase in crop 

Gross Primary Productivity (GPP) by changes in crop management intensity (MI) and 

Harvest Index (HI, ratio of grain and total aboveground biomass). Seasonal amplitude 

is calculated using a standard tool CCGCRV (Thoning et al., 1989). Details are 

described in Methods.  

 

Results and Discussion 

 

Mean seasonal cycle 

The VEGAS model was run from 1701 to 2010, forced by observed climate, 

annual mean CO2 and land use and management history. The model simulates an 

increase in crop production from 0.6 PgC y−1 in 1961 to 1.4 PgC y−1 in 2010, a 0.8 

PgC y−1 increase, slightly smaller than the FAO statistics of 1 PgC y−1 (Figure 2-1). 

The net terrestrial carbon flux to the atmosphere (FTA) has a minimum in July, 

corresponding to the highest rate of vegetation growth and carbon uptake (Figure 2-2 

inset). The maximum of FTA occurs in October when growth diminishes yet the 

temperature is still sufficiently warm for high rates of decomposition in the NH. The 

model simulated seasonal cycle of FTA, in both amplitude and phasing, is within the 

range of uncertainty from the atmospheric inversions (Figure 2-3). 
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Figure 2-2: Temporal evolution of seasonal amplitude. Trends for VEGAS simulated 

land-atmosphere carbon flux FTA (black), of MLO CO2 mixing ratio (CO2MLO, green) 

and global CO2 mixing ratio (CO2GLOBAL, purple), and FTA from atmospheric 

inversions of Jena81 (red), Jena99 (brown), and CarbonTracker (blue). Changes are 

relative to the 1961-70 mean for VEGAS and the other time series are offset to have 

the same mean for 2001-2010. Seasonal amplitude is calculated as the difference 

between the maximum and the minimum of each year after detrending and band pass 

filtering with a standard tool CCGCRV (Extended Data Fig. 3). A 7-year bandpass 

smoothing removes interannual variability whose 1-σ standard deviation is shown for 

CO2MLO (green shading) and VEGAS FTA (grey shading).  Inset: average seasonal 

cycle of VEGAS FTA (PgC y−1) for the two periods 1961-70 and 2001-10, showing 

enhanced CO2 uptake during spring/summer growing season.          
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Figure 2-3: Average seasonal cycle of land-atmosphere carbon flux. FTA (in PgC y−1) 

for the period 2001-2010 from VEGAS model, compared to atmospheric inversions 

of Jena81, Jena99, and CarbonTracker. 

 

In the decade of 1961-1970, the average seasonal amplitude of FTA is 36.6 

PgC y−1. It increased to 41.6 PgC y−1 during 2001-2010 (Figure 2-2 inset). This 

amplitude increase appears mostly as an earlier and deeper drawdown during the 

spring-summer growing season. Using −15 PgC y−1, the mid-point of FTA drawdown 

as a threshold, we find that the growing season has lengthened by 14 days, with 

spring uptake 10 days earlier. The annual mean FTA is −1.6 PgC y−1 for 2001-2010, 

implying a net sink whose value is within the uncertainty range from global carbon 

budget analysis (Le Quéré et al., 2013). This mean sink increased over the period, 
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suggesting a relation between seasonal amplitude and the mean sink (Randerson et 

al., 1997). 

 

Temporal evolution 

The temporal evolution of the seasonal amplitude of FTA exhibits a long-term 

rise of 15% over 50 years, or 0.3% per year (Figure 2-2 and Table 2-2; also see 

Figure 2-4 for the detrended monthly time series). There are large decadal and 

interannual variabilities. Mauna Loa CO2 mixing ratio (CO2MLO) shows a similar  

 

Table 2-2: The trend of CO2 seasonal amplitude change from three model sensitivity 

experiments. Each experiment has only a single forcing of climate (CLIM) or CO2 

(CO2) or land use and management (LU) change. Their percentage contributions are 

in parenthesis and the total is SUM. Additionally, the experiment ALL is the 

simulation with all three forcings as in Figures 2-2 and 2-3. The trend is calculated 

with a least-square linear fit of the unsmoothed time series of seasonal amplitude of 

modeled land-atmosphere carbon flux FTA, and may be somewhat different from a 

visual inspection of Figure 2-2 where the data has been smoothed to remove 

interannual variability. 

 
 CLIM CO2 LU SUM ALL 

1961-2010 trend 

(% per year) 

 

0.088 

 

0.076 

 

0.135 

 

0.299 

 

0.319 

Percentage 

contribution to 

SUM 

29% 26% 45% 100%  

 

 

overall trend but only resemblance to VEGAS on decadal time scales. Most 

noticeably, a rise in CO2MLO during 1975-85 precedes a similar rise in VEGAS by 

several years. This rise was a focus of earlier research (Kohlmaier et al., 1989;  

Keeling et al., 1996). A major caveat is that Mauna Loa CO2 is not directly  
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Figure 2-4: Time series analysis for seasonal cycles. (a) MLO CO2; (b) MLO CO2 

growth rate (dCO2/dt); (c) Net land-atmosphere carbon flux (FTA) from VEGAS; (d) 

Net land-atmosphere carbon flux from the atmospheric inversion of Jena81. Trends 

and high frequency variations have been removed following Thoning et al. (1989)23. 

Seasonal amplitude in Figures 2-3 is calculated as the difference between maximum 

and minimum of each year. 
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comparable with modeled FTA because this single station is also influenced by 

atmospheric circulation, as well as fossil fuel emissions and ocean-atmosphere fluxes. 

The comparison is nonetheless valuable because MLO is the only long-term record 

and is generally considered representative of global mean CO2 (Heimann, 1986). 

We also include in our comparison a global total CO2 index (CO2GLOBAL) and 

FTA from three atmospheric inversions. The seasonal amplitude of CO2GLOBAL, 

Jena81 and VEGAS are similar but with some differences in the early 1980s (Figure 

2-2). Otherwise they are similar to VEGAS, supporting above interpretation of local 

influence in MLO CO2 (Buermann et al., 2007). In contrast, if only considering the 

period since 1981, MLO CO2 shows little trend because much of the increase 

occurred earlier in the 1970s. A decrease in seasonal amplitude in the late 1990s are 

seen in all data, possibly due to drought in the NH midlatitude regions (Zeng et al., 

2005b; Buermann et al., 2007). Similarly, there is consistency in the rapid increase in 

the first few years of the 21st century.  In our view, the change in the seasonal CO2 

amplitude is best characterized as relatively steady long-term increase, modulated by 

decadal variations, though the appearance can alternatively be viewed as periods of 

slow changes or even slight decreases punctuated by large episodic increases. 

 

Spatial pattern 

We further analyze the spatial patterns underlying the seasonal amplitude of 

land-atmosphere carbon flux. The latitudinal distribution of seasonal amplitude of FTA 

(Figure 2-5) shows major contribution from NH mid-high latitude regions 30N-70N, 

primarily driven by the large seasonal temperature variations there. The two  
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Figure 2-5: Latitude dependence of the seasonal amplitude of land-atmosphere carbon 

flux. Fluxes are summed over latitude bands for the VEGAS model and from two 

atmospheric CO2 inversions Jena99 and the CarbonTracker. Northern Hemisphere 

(NH) mid-high latitude region, driven by winter-summer temperature contrast, is the 

main contributor. The Southern Hemisphere has opposite phase from the NH, but its 

contribution to global total is small due to its small land area. The two subtropical 

maxima around 10N and 10S are due to the wet-dry seasonal shift in the Inter-

Tropical Convergence Zone (ITCZ) and monsoon movement that are out of phase and 

largely cancel each other out in terms of their net contribution to global total Fta 

seasonal amplitude.  The results are resampled into 2.5° latitude bands and the unit is 

PgC y−1 per 2.5° latitude from the original resolutions of 0.5°×0.5° for VEGAS, 

5.0°×5.0° for Jena99 and 1.0°×1.0° for CarbonTracker. 

 

 

subtropical zones centered at 10N and 10S have smaller but distinct seasonal cycles 

caused by the subtropical wet-dry monsoon-style rainfall changes. The Southern 

Hemisphere (SH) between 40S-25S has a clear seasonal cycle with opposite sign of 

NH, but it is much smaller due to less landmass. The atmospheric inversions also 

depict these broad features, in particular, the major peak in the NH. VEGAS 

overestimates the seasonal amplitude between 30N-45N compared to both inversions. 
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Because of seasonal phase differences even within the same hemisphere, the 

latitudinal distribution does not automatically add up to the global total in Figure 2-2 

inset, in particular, SH partially cancels out the NH signal. 

 

Natural vegetation vs. cropland 

Next we examine the relative contributions of natural vegetation vs. cropland 

in driving the rising seasonal amplitude of FTA. We conducted a similar latitudinal 

analysis of modeled FTA but separated cropland from natural vegetation, using a  

Figure 2-6: Latitudinal distribution of the seasonal amplitude of land-atmosphere 

carbon flux. Calculated separately for natural vegetation (green lines) and cropland 

(red lines), for the averages of two periods 1961-1970 (dashed) and 2001-2010 

(solid). Unit: PgC y−1 per 2.5 degree latitude. 

 

 

cropland mask for year 2000. Results are shown in Figure 2-6. While the seasonal 

cycle is dominated by natural vegetation at high latitude, cropland is important in the 

latitude bands 25N-60N, encompassing the world’s major agricultural lands of Asia, 
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Europe and North America. Between 35N and 45N, the seasonal amplitude of FTA on 

cropland is even higher than natural vegetation. In the SH, there is some contribution 

from cropland between 20S-40S. A confounding factor is the contemporaneous 

change in cropland area. However, a sensitivity experiment conducted using the 

cropland mask of 1961 yielded similar results. 

The seasonal amplitude increase between the two time periods 1961-70 and 

2001-10 is clear both in the naturally vegetated area and cropland area (Figure 2-6). 

Over cropland, seasonal amplitude increased nearly everywhere, while major increase 

occurred in NH natural vegetation between 50N and 70N. Because the model is 

forced by the three factors: climate, CO2 and land use changes, the seasonal 

amplitude increase in natural vegetation can only come from climate and CO2. 

Between 25N-50N, there is little amplitude change from natural vegetation, 

suggesting the combined effect of climate and CO2 is small there. This can arise from 

two possibilities: either both effects are small, or climate and CO2 have opposite 

impacts that more or less cancel each other out. Because CO2 fertilization likely 

enhances NPP and therefore CO2 amplitude (Kohlmaier et al., 1989), changes in 

climate may have had a negative impact on the mid-latitude natural vegetation. In 

contrast, the large FTA seasonal amplitude change seen in cropland area between 35N 

and 55N suggests that land use is responsible there, assuming that crop responds to 

the combined effect of climate and CO2 in a way similar to natural vegetation in the 

same climatic zone. The spatial pattern of NPP trend (Figure 2-7) shows largest 

increase in NH agricultural belts of North America, Europe and Asia, supports the 

above interpretation on a key role from the intensification of agriculture. 
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Figure 2-7: Modeled linear trends (kgC m−2 over 50 years, upper panel) from 1961 to 

2010 show major increases in agricultural areas of North America, Europe and Asia 

(lower panel: crop fraction in 2000). There are also wide spread increases in much of 

Northern Hemisphere especially the high latitude regions in response to warming and 

CO2 fertilization effect. Together, they are mostly responsible for the increase in FTA 

and CO2 seasonal amplitude. Decreases in some regions are due to climate trends. 

 

 

It may seem surprising that cropland can have such a large impact, because 

crops are often considered less productive compared to the natural vegetation they 

replace, though the opposite may be found for highly productive crops or on irrigated 

arid land (Vitousek et al., 1986; Kohlmaier et al., 1989). However, for the impact on 

CO2 seasonal cycle, what matters most is the fact that crops have a short but vigorous 

growing season, leading to a sharper peak and larger seasonal amplitude in GPP 
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(Figure 2-1c inset). A sensitivity experiment shows that land cover change interacts 

with land management in a non-trivial way (Methods), but the contribution of crops 

to the increased seasonal amplitude is due mostly to higher crop productivity. Recent 

space-based measurements of sun-induced fluorescence (SIF) shows vividly that at 

the height of NH growing season (July), cropland has highest productivity, even more 

than the surrounding dense forests with similar climate conditions (Figure 2-8), an 

effect that is broadly captured by VEGAS, but in general not by the other three 

models analyzed. 

 

Figure 2-8: Sun-induced chlorophyll fluorescence (SIF). Measurements with the 

GOME-2 instrument on board the MetOp-A satellite platform (Guanter et al., 2014) 

are compared to GPP estimates from the data-driven model from MPI-BGC (Jung et 

al., 2011), and 4 mechanistic carbon cycle models (VEGAS, LPJ, Orchidee, and LPJ-

Guess) from the TRENDY international project. 

 

 

Data 

To further delineate the relative contribution of climate, CO2 fertilization and 

land use, we conducted three additional model experiments, termed CLIM, CO2 and 
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LU, respectively. In each experiment, only one of the three forcings is used as model 

driver while the other two are fixed. Figure 2-9 shows the evolution of FTA seasonal  

 

Figure 2-9: Attribution of causes with factorial analysis.  Relative change of seasonal 

amplitude from three sensitivity experiments, each with a single forcing: climate only 

(CLIM), CO2 only (CO2), and land use and management only (LU). The results from 

CO2 and LU are added on top of CLIM sequentially. The ALL experiment is the same 

as in Fig.2, driven by all three forcings. 

 

 

amplitude, similar to Figure 2-2, but with the fluxes from the three experiments added 

successively. The sum of the three experiments is similar but not identical to the 

original simulation (ALL). We calculated the trend to be 0.088% per year for CLIM, 

0.076% for CO2, and 0.135% for LU, corresponding to percentage contributions of 

29%, 26% and 45% (Table 2-2). The SUM of the three is 0.299% per year, or 3% per 

decade, or 15% over 50 years. Given uncertainties in the model and data, the 

quantitative attribution should only be considered suggestive. In particular, VEGAS 

has a CO2 fertilization strength weaker than some other models that can account for 
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the full amplitude change with fertilization alone (McGuire et al., 2001). A more 

challenging task would be to explain better spatial patterns as models may under-

estimate significantly the high latitude trend (Graven et al., 2013) even if the global 

total is simulated correctly, the latter being the focus of this paper.  Carbon cycle 

models may have a long way to go in explaining the long-term changes in the 

seasonal cycle (Graven et al., 2013; Guanter et al., 2014), but our results strongly 

suggest that intensification of agriculture should be included in consideration. 

 

Research significance 

It is generally known that land use activities such as deforestation and intense 

agriculture tend to release carbon to the atmosphere, and recovery from past land 

clearance sequesters carbon. Our study here suggests yet another aspect of human 

impact on the global carbon cycle and the Earth system: The very basic rhythm of 

seasonal ‘breathing’ of the biosphere has also been modified by human land 

management activities.  

 

Methods 

 

Data 

Crop production and cropland area is aggregated from FAO statistics for the 

major crops (FAOSTAT, http://faostat.fao.org/site/567/default.aspx#ancor). 

Specifically, it is the sum of the cereals (wheat, maize, rice, barley, etc.) and five 

other major crops (cassava, oil palm, potatoes, soybean and sugarcane), which 

comprises of 90% of the global amount of carbon harvested. Following Ciais et al. 

http://faostat.fao.org/site/567/default.aspx#ancor
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(2007), conversion factors are used to convert the wet biomass to dry biomass, then to 

carbon content.  The final conversion factor from wet biomass to carbon is 0.41 for 

cereals, 0.57 for oil palm, 0.11 for potatoes, 0.08 for sugarcane, 0.41 for soybean and 

cassava. 

 

Sun-induced chlorophyll fluorescence (SIF) data are derived from top-of-

atmosphere radiance spectra measured by the Global Ozone Monitoring Experiment-

2 (GOME-2) instrument on board the Eumetsat’s MetOp-A platform. SIF retrievals 

are performed in the 715-758 nm spectral window, sampling the second peak of the 

SIF emission (Joiner et al., 2013). The retrievals have been quality-filtered, 

aggregated as monthly averages and gridded globally in half-degree grid boxes. The 

SIF is thought to be a direct indicator of GPP, though the relationship may be 

complex (Parazoo et al., 2013; Guanter et al., 2014). 

 

Mauna Loa and global mean CO2 are both from NOAA/ESRL 

(www.esrl.noaa.gov/gmd/ccgg/trends/). The MLO CO2 record dates back to 1958 but 

is limited to one single station. The global average is based on multiple marine 

surface sites, available from 1981, and is constructed by first fitting a smoothed curve 

as a function of time to each site, and then the smoothed value for each site is plotted 

as a function of latitude for 48 equal time steps per year. A global average is 

calculated from the latitude plot at each time (Thoning et al., 1989; Masarie and Tans, 

1995). 

 

http://www.esrl.noaa.gov/gmd/ccgg/trends/
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Atmospheric inversions use CO2 concentration measurements from a global 

network of stations and information on atmospheric motion in a transport model to 

infer the surface CO2 fluxes. The two inversions from the Max Planck Institute of 

Biogeochemistry (Rodenbeck et al., 2003) used here are version 3.4 (http://www.bgc-

jena.mpg.de/~christian.roedenbeck/download-CO2/), with Jena81 for the period 

1981-2010 using CO2 data from 15 stations, and Jena99 from 61 stations for 1999-

2010. The CarbonTracker (Peters et al., 2007) from NOAA/ESRL is the version 

CT2011 (http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/), covering 2000-2010, 

using flask samples from 81 stations, 13 continuous measurement stations and 9 

towers. CarbonTracker also uses the surface fluxes from land and ocean carbon 

models as prior fluxes. 

 

Calculation of CO2 and flux seasonal amplitude The seasonal amplitude of 

MLO or global CO2 growth rate and fluxes from model and inversions was calculated 

as the difference between maximum and minimum values of each year using high-

frequency filtered data with the standard package CCGCRV from NOAA/ESRL 

(http://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html), involving polynomial 

and harmonic fitting, detrending and band-pass filtering. 

 

Modeling the agricultural Green Revolution 

Important progress has been made in modeling agriculture in global carbon 

cycle models (Kucharik and Brye, 2003; Gervois et al., 2004; Bondeau et al., 2007). 

Such models typically simplify the problem of dealing with multiple crops by using 

http://www.bgc-jena.mpg.de/~christian.roedenbeck/download-CO2/
http://www.bgc-jena.mpg.de/~christian.roedenbeck/download-CO2/
http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/


 

 33 

 

only a handful of crop functional types. Yet this still requires a large number of input 

data or assumptions on irrigation, crop selection, fertilizer use, planting, harvesting 

and other management practices that vary widely in space and time. More 

importantly, there is a general lack of information on historical changes in these 

driver data and parameter values so that the temporal changes are not easily 

represented in such models. Here we adopt a minimalist approach, aiming at 

capturing the first-order effects relevant to the global carbon cycle with generic rules, 

avoiding the need for unavailable details. Acknowledging its coarse ‘precision’, to 

our knowledge, it is a first attempt in global carbon cycle modeling to simulate the 

intensification of agriculture associated with the Green Revolution. The results are 

validated using FAO crop production, human appropriated NPP, satellite 

measurements of chlorophyll fluorescence and site flux measurements (below). 

 We simulate agriculture with a generic crop functional type that represents an 

average of the three dominant crops: maize, wheat and rice. The characteristics are in 

many respects similar to warm C3 grass, one of the natural PFTs in VEGAS (Zeng et 

al., 2005a). A major difference is the narrower temperature growth function to 

represent warmer temperature requirement than natural vegetation. Management of 

cropland is modeled as an enhanced gross carbon assimilation rate by the human-

selected cultivar, application of fertilizers and pesticides, and irrigation. These three 

factors are thought to have contributed about equally to the increase in agricultural 

productivity over the last half century (Sinclair, 1998). However, the intensity of 

management varies widely and has not always changed in synchrony in different parts 

of the world. Instead of using an extensive set of actual management data that are not 
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available or incomplete, we model the first-order effects on carbon cycle by 

parameterizations with the following rules.  

To represent the enhanced productivity from cultivar and fertilization, the 

gross carbon assimilation rate is modified by a management intensity factor (MI) that 

varies spatially and changes over time:  

)                 (1) 

where M1 is the spatially varying component while M0 is a scaling parameter. M1 is 

stronger in temperate and cold regions while tropical countries tend to be less, 

represented here using the annual mean temperature as a surrogate. The term in 

parentheses is the temporal change, modeled by a hyperbolic tangent function, with 

parameter values such that in 1961 it was about 10% lower than in 2000, and 20% 

lower asymptotically far back in time (Figure 2-10, top panel). 

 

Figure 2-10: Management Intensity (MI, relative to year 2000) and Harvest Index 

(HI) change over time as used in the model. The analytical functions are hyperbolic 

tangent (see text), and the parameter values correspond to 10% smaller MI in 1961 

compared to 2010, and the HI index is 0.31 in 1961 and 0.49 in 2010, based on 

literature review (Sinclair, 1998). 

 

MI =M0M1(1+ 0.2 tanh(
year- 2000

70
)
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To represent the effect of irrigation, the soil moisture function beta (β=w1 for 

unmanaged grass, where w1 is surface soil wetness) is modified as: 

(2) 

The irrigation intensity Wirrg varies spatially from 1 (no irrigation) to 1.5 (high 

irrigation), corresponding to a β range of 0 (no irrigation) to 0.33 (high irrigation) 

under extreme dry natural condition (extreme desert: w1=0). This formulation also 

modifies β when w1 is not zero, but the effect of irrigation becomes smaller when w1 

increases and has no effect when w1 is one (saturated). Thus β (therefore 

photosynthesis rate) depends on naturally available water (w1) as well as irrigation. 

This is a ‘gentler’ approach compared to the assumption of unlimited amount of water 

on irrigated land, as is sometimes assumed in modeling. The spatial variation in Wirrg 

represents a tropical vs. temperate regional difference. Unlike fertilizer/cultivar 

effects, no temporal changes are assumed because if a place is planted with crop, 

some water must be made available, no matter in which period of agricultural history. 

This assumption may underestimate increased irrigation in some regions, but is the 

simplest assumption to make in the absence of region-time specific data. 

Planting is not prescribed, but allowed whenever the climate condition is 

suitable, for example, when temperature requirement is satisfied in temperate and 

cool regions. This captures much of the spring planting, but misses some other types 

of practice such as winter wheat which has an earlier growth and harvest, a limitation 

of our simple rule-based approach without using actual regional agricultural practice 

data. Crop is harvested when crop matures, determined by LAI growth rate slowing 

down to a threshold value. This combination of climate-determined planting and 

b =1-
1-w1

Wirrg
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harvest criteria automatically leads to double crops in some warm regions, but it may 

or may not agree with the actual practice there. Rather, the simulated results only 

suggest a cropping potential given the characteristics of our generic crop and climate. 

After harvest, grain goes into a harvest pool whereas the residue is sent to the 

metabolic carbon pool and decomposes rapidly. A key advancement in agriculture has 

been the use of high yield dwarf cultivar with more edible parts (grain) per unit total 

biomass, especially since the Green Revolution in the 1960s. This is represented by 

the Harvest Index (HI): the edible fraction of aboveground biomass. HI varies 

somewhat for different crops, and we use 0.45 for year 2000, a value typical of the 

three major crops: maize, rice, and wheat (Sinclair, 1998; Haberl et al., 2007). The 

temporal change is modeled as: 

(3) 

so that at the beginning of the Green Revolution in 1961 HIcrop was 0.31, a difference 

of 0.14 from the 2000 value of 0.45, based on literature review (Sinclair, 1998). The 

parameter values above also imply HIcrop = 0.18 far back in time (year = −∞), and 

HIcrop=0.49 in 2010 (Figure 2-10, lower panel).  

The harvested crop is redistributed according to population density, resulting 

in the lateral transport of carbon. As a result, there is net carbon uptake in cropland 

areas and large release of CO2 in urban areas. To the first-order approximation, the 

lateral transport is applied within each continent. Additional information of cross-

region trade was also implemented for eight major world economic regions. 

 

HIcrop = 0.45(1+0.6 tanh(
year -2000

70
))
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Validation of crop simulation 

There is a general lack of relevant global data on the change in agriculture. A 

key data is the FAO global crop production statistics, spanning the period 1961-

present. Additionally, we validate the model simulation with estimates of global crop 

NPP (Haberl et al., 2007), and flux measurement (fluxdata.org) at site level. Neither 

of the latter two offers information on long-term change, but is useful for validating 

model’s crop simulation of present state. 

 

FAO statistics Our modeled crop production increased from 0.6 PgC y−1 in 

1961 to 1.4 PgC y−1 in 2010, somewhat slower than FAO statistics (from 0.5 to 1.5) 

(Figure 2-1 and Table 2-1). The general trends are very similar. FAO statistics has 

somewhat larger year to year variation, likely due to human factors influencing crop 

production other than climate variability, thus not represented in the model. Note that 

‘crop production’ in the FAO parlance is only the edible parts (mostly grain, but also 

include other parts such as storage organs in potatoes), while the total biological NPP 

on cropland is called NPPcrop, including all edible or non-edible biomass above and 

below ground. Thus NPPcrop, not ‘crop production’, is the quantity that is directly 

relevant to carbon cycle. The Harvest Index is needed to relate them. 

 

Human appropriated NPP The global total NPP on cropland NPPcrop of 

cropland area is 6.2 PgC y−1 at 2010, within the range of statistics-based estimate of 

6.05-8.18 PgC y−1 (Haberl et al., 2007). Such agreement is encouraging given the 

simplicity in our model representation of agriculture and the uncertainties in the 
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statistics-based estimates. Because of the large increase in HI, the modeled 130% 

increase in crop production corresponds to a smaller increase in NPPcrop, from 4 PgC 

y−1 in 1961 to 6.2 PgC y−1 in 2010, a 55% increase (Table 2-1). 

 

Sun-induced chlorophyll fluorescence (SIF) We compared remotely sensed 

chlorophyll fluorescence (Parazoo et al., 2013; Guanter et al., 2014) with 4 

mechanistic carbon cycle models participating in the TRENDY intercomparison 

project (VEGAS, LPJ, Orchidee, LPJ-Guess), and a data-driven model MPI-BGC, 

shown in Figure 2-8. SIF is considered a direct measurement of GPP, as opposed to 

net carbon flux, thus offering high-resolution global coverage of GPP that is 

otherwise impractical to obtain with in-situ methods. While the SIF-GPP relationship 

may be complex, the spatial pattern can be a particularly meaningful comparison 

(Guanter et al., 2014). At the height of a NH growing season (July 2009), the highest 

GPPs, according to the satellite fluorescence measurements, are found in US and 

European agricultural region. Interestingly, 3 of the 4 models do not capture this 

pattern, instead showing highest GPP in boreal and partly temperate forest regions. 

The spatial pattern of VEGAS modeled GPP agrees reasonably well with satellite 

fluorescence, perhaps not surprisingly as VEGAS is the only model among these four 

to have a representation of the increased productivity due to agricultural Green 

Revolution. 
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FLUXNET site comparison We compared the NEE and its components GPP 

and Re at Bondville, Illinois, a no-till maize-soybean site of the 

AmeriFlux/FLUXNET network (http://www.fluxdata.org:8080/SitePages/siteInfo.asp 

x?US-Bo1). The results are shown in Figure 2-11. Model simulated NEE, GPP and Re  

 

 

Figure 2-11: Model-Data site validation. Comparison of VEGAS model (line) and 

FLUXNET observations (circles) at an agricultural site Bondville, Illinois 

(88.290398W, 40.006199N). (a) GPP,  (b) Re (total ecosystem respiration), (c) NEE 

(=Re−GPP; Net Ecosystem Exchange, i.e., net land-atmosphere carbon flux), in gC 

m−2 month−1. Shown are seasonal cycles averaged over the period 1996-2007.  

 

 

are all in broad agreement with the measurements, with slightly larger seasonal 

amplitude in NEE. In fact, the level of agreement is somewhat surprising given the 

simplicity of the model. This may be in part due to the fact that our crop functional 

type has the characteristics that closely match this site. The carbon uptake occurs 

mostly during the short growing season of June-August, but at a very high rate with 

maximum GPP of 450 gC m−2 in July. This short-duration-high-growth feature can 

also be seen in Figure 2-1c inset, and is a major characteristic that has contributed to 

the increased seasonal amplitude. 
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Sensitivity experiment on land cover effects 

There is a compounding factor of land cover change (conversions between 

land cover types such as cropland and natural vegetation) vs. change in land 

management practices (fertilizer, irrigation etc.). We inferred that the contribution to 

CO2 seasonal amplitude trend is dominated by land management because of the 3-

fold increase in crop production compared to only 20% cropland area change. To 

quantify this conjecture, we conducted an additional model sensitivity experiment in 

which only land cover is allowed to change but with land management fixed at 2000 

value. The result is that land cover change alone would decrease the seasonal cycle 

amplitude of FTA by 0.06% per year, compared to 0.3% per year increase in the ALL 

experiment (Table 2-2). Thus, the land cover change effect alone would reduce the 

trend (with all forcings) by 17% (0.06/(0.3+0.06); assuming linearity). This is 

certainly a nontrivial effect, though the 2000 values for management intensities likely 

lead to overestimation. The fact that it decreases the seasonal amplitude against the 

increasing trend may be a bit surprising. This is because the overall increase in 

cropland area occurred mostly in the Tropics while regions north of 30N actually has 

seen decrease in cropland area (due to a variety of factors: cropland abandonment, 

reforestation, urbanization, etc.) where the seasonal cycle is most profound.  

 

Availability of data and model output 

The standard VEGAS model output analyzed here is provided through the 

international TRENDY project (http://dgvm.ceh.ac.uk) as used in the Global Carbon 

Project annual carbon budget analysis (Le Quéré et al., 2013) and the NACP 

MsTMIP project (http://nacp.ornl.gov/MsTMIP.shtml), downloadable from either 

http://dgvm.ceh.ac.uk/
http://nacp.ornl.gov/MsTMIP.shtml


 

 41 

 

site. The model output and the processed data are also available directly from the 

authors. The use of the data is subject to fair use and the acknowledgement of the 

providers. 

 

Supplementary Information 

 Experiments were conducted to assess a ‘parametric’ uncertainty. We asked 

the question “How would model simulated trend in seasonal amplitude differ if key 

parameters in management intensity have a given error?”. For this, we obtained a 

preliminary version of FAO data-based spatially-varying crop NPP estimates from T. 

West. We took the difference between our modeled crop NPP and this 

observationally-based NPP. We then used this difference to infer an ‘error bar’ of our 

model parameter uncertainty in management intensity (Equation 1 in Methods). We 

then conducted two simulations to bracket the range of resulting FTA seasonal 

amplitude. The results are shown in Figure 2-12 below. The resulting trend has an 

uncertainty range of 0.311± 0.027 (% y−1). The relative error in trend is thus 8.5% 

(0.027/0.311), which is smaller than the uncertainty associated with interannual 

variability which we used to indicate uncertainty (Figure 2-2).  
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Figure 2-12: Uncertainty due to model parametric errors in representing agricultural 

NPP. 
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Chapter 3: Attributing the role of CO2, climate and land use in 

regulating the seasonal carbon fluxes in terrestrial ecosystems: a 

multimodal analysis 
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Abstract 

 Seasonal amplitude increase in atmospheric CO2 directly reflects the 

dynamics of terrestrial ecosystems. Several studies have tried to explain the amplitude 

increase with different controlling factors, but the precise understanding on their 

relative contribution is still lacking. In this study, the net terrestrial carbon flux to the 

atmosphere (FTA) simulated by nine models from the TRENDY dynamic global 

vegetation model project during 1961-2012 are examined for its mean seasonal cycle 

and amplitude trend. While some models exhibit similar phase and amplitude 

compared to atmospheric inversions, with spring-early summer drawdown and late 

summer-autumn rebound, some other models tend to rebound too early in mid-

summer. The increasing trend of global FTA amplitude (19%) and its decadal 

variability for 1961-2012 from the model ensemble generally agrees with surface 

observations. However, models’ ensemble mean underestimates the magnitude of the 
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seasonal cycle by 40% compared to atmospheric inversions. For the increase in global 

FTA amplitude, factorial experiments attribute 83±56%, −3±74% and 20±30% to 

rising CO2, climate change and land use/cover change, respectively. Seven out of the 

nine models suggest that CO2 fertilization effect is a stronger control over the FTA 

amplitude increase—with the notable exception of VEGAS, which attributes 

approximately equally to the three factors. Generally, all models display an enhanced 

seasonality over the boreal region in response to high-latitude warming, but a 

negative climate contribution from part of the Northern Hemisphere temperate region, 

and the net result is a divergence over the effect of climate change. Six of the nine 

models show positive land-use effect, but the spatial patterns are substantially 

different. In general, models with a larger amplitude increase tend to have a larger 

gain in land carbon sink (R2=0.61). Our results suggest that understanding the 

regional difference in the effect of rising CO2, climate and land use/cover changes is 

crucial in improving model representation of global carbon cycle.  

 

Introduction 

The amplitude of CO2 seasonal cycle, largely controlled by vegetation dynamics in 

Northern Hemisphere (NH) (Hall et al., 1975; Pearman and Hyson, 1980; Bacastow 

et al., 1985), is a good indicator of terrestrial ecosystem activities. Since 1958, 

atmospheric CO2 measurements at Mauna Loa, Hawaii have tracked a 15% rise in the 

peak-to-trough amplitude of the detrended CO2 seasonal cycle, suggesting an 

enhanced ecosystem activity due to changes in ecosystem production or respiration 

strength or due to a shift in the relative timing of their phases (Randerson et al., 

1997). In addition, some evidence suggests a latitudinal gradient in CO2 amplitude 
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increase in the NH, with larger increase at Pt. Barrow, Alaska (0.6% y−1) than at 

Mauna Loa (0.32% y−1) (Randerson et al., 1999; Graven et al., 2013).  Previous 

studies have attempted to attribute the long-term CO2 amplitude increase to 

stimulated vegetation growth under rising CO2 and increasing nitrogen deposition 

(Bacastow et al., 1985; Sillen and Dieleman, 2012; Reich and Hobbie, 2013).  

Another possible explanation offered is the effect of warmer climate, especially in 

boreal and temperate regions, on the lengthening of growing season, enhanced plant 

growth (Keeling et al., 1996; Keenan et al., 2014), vegetation phenology (Thompson, 

2011),  ecosystem composition and structure (Graven et al., 2013). The agricultural 

green revolution due to widespread irrigation, increasing management intensity and 

high-yield crop selection, could also contribute to the dynamics of the CO2 seasonal 

amplitude (Zeng et al., 2014; Gray et al., 2014). Even though these studies are helpful 

in understanding the role of CO2, climate and land use/cover changes, the detailed 

understanding of the relative contribution of these factors still remains unclear. 

 Dynamic vegetation models are useful tools not only in understanding the 

contribution of various mechanisms but also offering insights on how terrestrial 

ecosystems respond to external changes. There are a few studies that have tried to 

examine the CO2 amplitude increase. For example, in a unique modeling study 

conducted by McGuire et al. (2001), both CO2 fertilization and land use/cover 

changes were found to contribute to CO2 amplitude increase at Mauna Loa, but the 

four models disagreed on the role of climate and the relative importance of the factors 

they studied. Using a four-box diffusing model, Thompson (2011) found that a shift 

springtime phenology of terrestrial biomes is the dominant factor contributing to CO2 
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amplitude increase. Similarly, by analyzing data from aircraft campaigns, Graven et 

al. (2013) suggested that strong climate effect altering ecosystem structure could 

possibly be the leading cause of observed amplitude increase over Northern mid-high 

latitudes. They also found that models underestimate significantly the amplitude 

increase compared to observations north of 45N obtained at 3-6 kilometer 

altitude(Graven et al., 2013), even though the models seem to be able to simulate the 

amplitude increase measured at the Mauna Loa and Point Barrow surface stations 

(Zhao and Zeng, 2014). In addition to aforementioned reasons, agricultural 

intensification could be of similar importance in regulating the CO2 amplitude 

increase (Zeng et al. 2014). Based on these and other reported studies, it is difficult to 

determine independent and relative contribution and importance of each of these 

factors. Since the published work by McGuire et al. (2001), no specific study has 

explored the reliability of models’ simulation of seasonal carbon cycle and quantified 

the relative contribution of various factors affecting it. Recent simulations from 

models participating the TRENDY model intercomparison project provide an 

opportunity to evaluate how well these models simulate the seasonal cycle of carbon 

flux (global and large latitudinal band) and investigate the importance of various 

model factors in controlling the amplitude increase in global carbon cycle. 

 An important trait of the three main factors we consider in this study (i.e. CO2, 

climate and land use/cover change) is their different regional influence. Rising CO2 

would likely enhance productivity in all ecosystems at both regional and global 

levels. Climate warming may affect high latitude ecosystems more than tropical and 

subtropical vegetation, and droughts would severely affect plant growth in water-
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limited regions. Similarly, the effect of land use/cover change may be confined to 

agricultural fields and places with land conversion, mostly in mid latitude regions. 

Therefore, it is necessary to investigate the regional patterns of seasonal cycle change 

of carbon flux. A number of recent studies have addressed different aspects of the 

seasonal amplitude. For example, Peng et al. (2015) performed extensive evaluation 

on the first synthesis of TRENDY models (Sitch et al., 2015), comparing the seasonal 

cycle of modeled carbon flux against site measurements; however, they did not 

explore the increase of seasonal amplitude. Based on another model intercomparison 

project—MsTMIP (Huntzinger et al., 2013; Wei et al., 2014), Ito et al. (2015) 

focused on examining the relative contribution of CO2, climate and land use/cover 

changes, but little model evaluation was performed. In order to further explore and 

understand the seasonal fluctuation of carbon fluxes, a more comprehensive study 

including both the model evaluation and factorial analysis is needed.  

Using both the latest TRENDY models simulations and observations, in this 

study we aim to achieve two main goals: 1) Assess how well the models simulate the 

climatological seasonal cycle and seasonal amplitude change of the carbon flux 

against a number of observational based datasets (CO2 observations and atmospheric 

inversions); 2) Analyze the relative contribution from the three main factors (CO2 

fertilization, climate and land use/cover change) to the seasonal amplitude increase, 

both at the global and regional level.  
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Methods 

Terrestrial Ecosystem Models 

 Monthly net biosphere production (NBP) simulations for 1961-2012 from 

nine TRENDY models participating in the Global Carbon Project (GCP2012, 

http://www.globalcarbonproject.org) are examined (Table 3-1). We primarily 

evaluated 

 

Table 3-1: Basic information for the nine TRENDY models used in this study. 
 

Model Name Abbreviation Spatial Resolution Nitrogen 

Cycle 

Reference 

Community 

Land Model 4.5 

CLM4.5BGC 1.25° × 0.94° yes Oleson et al. 

(2013) 

ISAM ISAM 0.5° × 0.5° yes Jain et al. (2013) 

Joint UK Land 

Environment 

Simulator 

JULES 1.875° × 1.25° no Clark et al.  

(2011) 

Lund-Potsdam-

Jena 

LPJ 0.5° × 0.5° no Sitch et al. 

(2003) 

LPX-Bern LPX-Bern 0.5° × 0.5° yes Stocker et al. 

(2014) 

ORCHIDEE-CN OCN 0.5° × 0.5° yes Zaehle and 

Friend (2010) 

ORCHIDEE ORCHIDEE 2° × 2° no Krinner et al. 

(2005) 

VEGAS VEGAS 0.5° × 0.5° no Zeng et al. 

(2005) 

VISIT VISIT 0.5° × 0.5° no Kato et al. 

(2013) 

 

 

http://www.globalcarbonproject.org/
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 results from the most realistic S3 experiment, where the models are driven by time-

varying CO2, climate and land use/cover data (Appendix A). In addition, we also used 

results from the S1 (time-varying CO2 only, with repeated or randomized or fixed 

climate cycles and constant 1860 land use) and S2 (time-varying CO2 and climate, but 

constant 1860 land use) experiments. 

 

Observations and observational based estimates  

One of the most important reasons for the large uncertainty associated with 

the terrestrial ecosystem models is the lack of observation constraints. This is 

especially true for long-time continuous CO2 records extending back to the 1960s. 

Nevertheless, we believe it is still valuable to first evaluate the spread of the models, 

and whether they are able to capture the features of CO2 seasonal cycle. Although not 

a direct comparison (terrestrial carbon fluxes contribute about 90% to the seasonal 

cycle of CO2, as indicated by Randerson et al., 1997 and  Graven et al., 2013), 

monthly Mauna Loa record from 1961 to 2012 and a global monthly CO2 index for 

the period of 1981-2012 are employed, both retrieved from NOAA’s ESRL 

(www.esrl.noaa.gov/gmd/ccgg/trends/). Details on the derivation of the global CO2 

index can be found in Thoning et al. (1989) and Masarie and Tans (1995). 

A more direct comparison with fluxes from the process-based models are 

monthly gridded fluxes from atmospheric inversions, which combine measured 

atmospheric CO2 concentration at multiple sites across the globe with atmospheric 

tracer transport driven by meteorological data. Two representative inversions, Jena 

(Jena81 and Jena99, Rodenbeck et al., 2003) and the CarbonTracker (Peters et al., 
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2007), are included for comparison (Appendix B). For an exhaustive intercomparison 

of the atmospheric inversions, see Peylin et al. (2013). 

 

Calculating the mean seasonal cycle and its amplitude change 

All monthly NBP and inversion derived fluxes are first resampled to a 

uniform 0.5° × 0.5° global grid in unit of kgC m−2 y−1. For the TRENDY model 

simulations, we further define net carbon flux from terrestrial to the atmosphere 

(FTA), which simply reverses the sign of NBP, so that positive FTA indicates net 

carbon release to the atmosphere, and negative indicate net carbon uptake. FTA 

represents the sum of residual land sink and land use emission, including fluxes from 

ecosystem production and respiration, fire, harvest, etc., although some model may 

not simulate all the processes. Changes in global atmospheric CO2 concentration then 

equal to FTA plus ocean-atmosphere flux and fossil fuel emission. For inversion-

derived fluxes, only terrestrial ecosystem fluxes are used (bio optimized flux plus fire 

flux for carbon tracker), which are conceptually similar to FTA except that 

atmospheric transport is included. Atmospheric transport can significantly affect local 

carbon fluxes (Randerson et al., 1997), however, the impact is limited on global and 

large zonal band totals. 

Consistent with previous studies (Buermann et al., 2007; Graven et al., 2013), 

the seasonal amplitude of Mauna Loa Observatory or global CO2 growth rate and 

fluxes from model simulations and inversions are computed with the CCGCRV 

package from NOAA/ESRL (http://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.ht 

http://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html
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ml). This package first filtered out the high-frequency signals with a series of internal 

steps involving polynomial and harmonic fitting, detrending and band-pass filtering, 

and then the amplitude is defined as the difference between each year’s maximum 

and minimum. For the latitudinal plots only, we simply use maximum and minimum 

of each year as seasonal amplitude without first filtering the data. Previous studies 

(Randerson et al., 1997; Graven et al., 2013) have established that FTA accounts for 

most of seasonal amplitude change from atmospheric CO2, and Mauna Loa CO2 

record is considered to represent the evolution of global mean CO2 well (Kaminski et 

al., 1996). Therefore, similar to our earlier work (Zeng et al., 2014), we evaluated the 

amplitude change of modeled FTA with Mauna Loa CO2, ESRL’s global CO2 and the 

atmospheric inversions, to assess whether the models are able to capture both the 

global trend and latitudinal patterns. For relative amplitude changes, we compute the 

multi-model ensemble mean after deriving the time series (relative to their 1961-1970 

mean) from individual model simulations, so that models with large amplitude change 

would not have a huge effect on the ensemble mean. Additionally, global and 

regional mean seasonal cycles between the models and inversions are compared. We 

further compared the seasonal amplitude of zonally averaged FTA from TRENDY and 

atmospheric inversions. To smooth out minor variations but ensure similar phase in 

aggregation, we first resampled FTA into 2.5° resolution, then summed over latitude 

bands for the 2001-2010 mean FTA seasonal cycle. 

 

Factorial analyses 

A major part of this study is to determine the relative contribution to FTA 

seasonal amplitude from the three factors: CO2 fertilization, climate change, and land 

http://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html
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use/cover change. Firstly, relative amplitude for 1961-2012 (relative to 1961-1970 

mean seasonal amplitude) from the experiments S1, S2 and S3, respectively, are 

calculated using the CCGCRV for each model, and a linear trend (in % y−1) is 

determined for that period. We assume that models simulate these three main effects 

fairly linear, and the use of relative amplitude for percentage change would minimize 

impacts of some differing implementation choices like climate data in S1 (CO2) 

among the models. Therefore, the S2 (CO2+Climate) results would show a trend that 

is the sum of CO2 and climate effects, and the S3 (CO2+Climate+Land Use/Cover) 

simulations would include trends from time-varying CO2, climate and land use/cover 

change (abbreviated as LandUse for text and figures). With this linear assumption, 

effect of CO2, climate and land use/cover are quantified as the trend for S1, trend of 

S2 minus S1 trend, and trend of S3 minus S2 trend, respectively.  

 

Spatial attribution 

Spatial attribution of global FTA amplitude change can be complicated due to 

the phase difference at various latitudes. For example, the two amplitude peaks at 

Northern and Southern subtropics caused by monsoon movements are largely out of 

phase, and the net contribution to global FTA amplitude increase after their 

cancelation is small (Zeng et al., 2014). For the purpose of quantifying latitudinal and 

spatial contributions for each model, we define a unique quantity—“max-min 

difference”—as the difference between each model’s global FTA maximum and 

minimum of its 2001-2010 mean seasonal cycle summarized in Table 3-2. For 

example, for VEGAS, this “max-min difference” is FTA in November minus FTA in 

July in each year. For another model, the months of FTA maximum/minimum (Table 
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3-2), therefore its defined “max-min difference” could be different. Then, for all three 

experiments conducted by all models, trends of this “two-month difference” over 

1961-2012 are computed at every latitude band. The spatial aggregation of the 

resulting latitudinal-dependent trends would then approximately equal to trend of 

global FTA maximum-minus-minimum seasonal amplitude. 

 

Results 

Mean seasonal cycle of FTA  

Four of the nine models (CLM4.5BGC, LPX-Bern, ORCHIDEE and VEGAS) 

simulate a mean global FTA seasonal cycle of similar amplitude and phase compared 

with the Jena99 and CarbonTracker inversions (Figure 3-1, Table 3-2). The other five  

 

 

Figure 3-1: Mean seasonal cycle of global net carbon flux from nine TRENDY 

models (S3 experiment) and two inversions, Jena99 and CarbonTracker, averaged 

over 2001-2010. 
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models have much smaller seasonal amplitude than inversions, and the shape of the 

mean seasonal cycle is also notably different. As a result, models’ ensemble global 

FTA has seasonal amplitude of 26.1 PgC y−1 during 2001-2010, about 40% smaller 

than the inversions (Table 3-2). The model’s ensemble annual mean FTA (residual 

land sink plus land use emission) is −1.1 PgC y−1 for 2001-2010, 30% smaller than 

the inversions (Table 3-2). With the exception of ORCHIDEE and VEGAS,  

 

Table 3-2: Global mean net land carbon flux, seasonal amplitude, the maximum and 

minimum months of FTA for the nine TRENDY models and their ensemble mean 

during 1961-1970 and 2001-2010 periods. For the later period, characteristics of the 

atmosphere inversions Jena99 and CarbonTracker are also listed. 

 

Model FTA (PgC y−1) Seasonal Amplitude  

(PgC y−1) 

FTA 

Minimum 

FTA 

Maximum 

 1961-

1970 

2001-

2010 

1961-

1970 

2001-2010 2001-2010 2001-2010 

CLM4.5BGC 0.1 −2.4 38.4 44.3 Jun Nov 

ISAM 0.7 0.0 17.6 19.1 Jun Oct 

JULES −0.2 −1.7 15.1 19.0 May Aug 

LPJ 1.3 −0.6 18.6 23.4 Jun Mar 

LPX-Bern 0.6 0.0 33.0 37.9 Jun Jan 

OCN 0.9 −1.8 16.1 21.6 Jun Nov 

ORCHIDEE 0.1 −0.7 35.7 39.9 Jul Mar 

VEGAS −0.4 −1.5 40.7 46.7 Jul Nov 

VISIT 0.2 −1.4 25.3 28.9 Jun Nov 

Ensemble 0.4 −1.1 22.4 26.1 Jun Nov 

Jena99  −1.7  46.8 Jul Oct 

CarbonTrack

er 

 −1.6  39.9 Jul Nov 
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maximum CO2 drawdown simulated by the models is one to two months earlier than 

inversions (Table 3-2). In some models (ISAM, JULES, and LPJ to a lesser extent) 

FTA rebounds back quickly, resulting in a late summer FTA maximum. A likely cause 

is the strong exponential response of soil respiration to temperature increase, which 

may lead to heterotopic respiration higher than NPP in summer. For example, the 

HadCM3LC that employs TRIFFID, an earlier version of JULES3.2 used in this 

study, is found to have a large mid-summer peak carbon release over temperate North 

America (Cadule et al., 2012). Another possibility is carbon release from crop 

harvest. However, such effect may be limited, as the annual harvested carbon flux in 

several models including LPJ is spread over 12 months to minimize the rapid flux 

(Poulter 2015, personal communication). 

 TRENDY models and inversions agree best over the boreal region (Figure 3-

2). While underestimating the global seasonal cycle, LPJ and VISIT both simulate 

similar boreal FTA amplitude as inversions. In addition to ORCHIDEE and VEGAS, 

LPJ and LPX-Bern also simulate maximum CO2 drawdown in July for the boreal 

region, same as the inversions, while the other five models have the FTA minimum in 

June. Large model spread is present for the Northern temperate region especially in 

summer. Both inversions and models agree marginally over the phase of the FTA 

seasonal cycle in the tropics. The Northern and Southern tropics show mean seasonal 

cycles that are largely out of phase except for LPJ. The Southern extra-tropics exhibit 

even smaller FTA amplitude due to its small biomass, and most models and inversions 

indicate a maximum FTA in the NH summer, opposite in phase to its NH counterpart. 
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Figure 3-2: Mean seasonal cycle of net carbon flux totals over boreal (50-90N), 

Northern temperate (23.5-50N), Northern tropics (0-23.5N), Southern tropics (0-

23.5S) and Southern extra-tropics (23.5-90S) from nine TRENDY models and two 

inversions, Jena99 and CarbonTracker, averaged over 2001-2010. 

 

 

The latitudinal pattern of the multi-model median FTA amplitude is remarkably 

similar to the inversions (Figure 3-3). A notable feature is the large seasonality over 

NH mid-high latitude region driven by temperature contrast between winter and 

summer. The model median also captures the two subtropical maxima around 10N 

and 15S that are caused by tropical monsoon movement.  The main difference  
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Figure 3-3: Latitude dependence of the seasonal amplitude of land-atmosphere carbon 

flux from the TRENDY multi-model median (red line, and the pink shade indicates 

10 to 90 percentile range of model spread) and two atmospheric CO2 inversions 

Jena99 and CarbonTracker. Fluxes are first resampled to 2.5° × 2.5° grids, then 

summed over each 2.5° latitude bands (PgC y−1 per 2.5° latitude) for the TRENDY 

ensemble and inversions. 

 

 

 

between the TRENDY models and the two inversions is in the tropics and SH, with 

the models showing higher amplitude and large spread in the tropics, mostly from the 

ORCHIDEE model (Figure 3-4). Seasonal amplitude over 37-45N and 53-60N is also 

larger from TRENDY models than the inversions. A majority of the models display 

larger amplitude in the tropics and Northern temperate regions (Figure 3-4). Only 

three models (ISAM, JULES and OCN) exhibit underestimation of seasonal 

amplitude in the north of 45N. Because of phase difference among the models and at  
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Figure 3-4: Latitude dependence of the seasonal amplitude of land-atmosphere carbon 

flux from each TRENDY model and two atmospheric CO2 inversions Jena99 (black 

dashed) and the CarbonTracker (grey dashed). Fluxes are first resampled to 2.5 × 2.5° 

grids, then summed over each 2.5° latitude bands (PgC y−1 per 2.5° latitude) for the 

TRENDY ensemble and inversions.  

 

 

different latitudinal bands, for spatial and cross-model aggregated carbon fluxes, the 

seasonal amplitude is reduced. Similarly, analyses by Peng et al. (2015) with an 

earlier set of TRENDY models (Sitch et al., 2015) show approximately equal number 

of models overestimating and underestimating carbon flux compared to flux sites 

north of 35N. However, once the carbon fluxes of different phases are transported and 

mixed, seven out of nine models underestimate the CO2 seasonal amplitude compared 

to CO2 site measurements (Peng et al., 2015). Note that even at the same latitude 



 

 60 

 

band, factors like monsoons, droughts, and spring snow melt, etc. could lead to 

longitudinal difference in the phase of seasonal cycle (Figures 3-5 and 3-6). 

 

 

Figure 3-5: The FTA minimum (peak carbon uptake) month for the 2001-2010 average 

for each spatial grid based on the S3 experiment results from the nine TRENDY 

models. 

 

 

 

Figure 3-6: The FTA maximum (peak carbon release) month for the 2001-2010 

average for each spatial grid based on the S3 experiment results from the nine 

TRENDY models. 
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Temporal evolution of FTA seasonal amplitude  

During 1961-2012, the seasonal amplitude of Mauna Loa CO2 observations 

has increased by 0.85±0.18 ppm—an increase of 15±3% over 52 years (Figure 3-7).  

 

Figure 3-7: Trends for seasonal amplitude of TRENDY simulated multi-model 

ensemble mean land-atmosphere carbon flux FTA (black), of MLO CO2 mixing ratio 

(CO2MLO, green) and global CO2 mixing ratio (CO2GLOBAL, purple), and of FTA from 

atmospheric inversions of Jena81 (red), Jena99 (orange), and CarbonTracker (blue). 

The trends are relative to the 1961-70 mean for the TRENDY ensemble and Mauna 

Loa CO2, and the other time series are offset to have the same mean as the TRENDY 

ensemble for the last ten years (2003-2012). A 9-year Gaussian smoothing (Harris, 

1978) removes inter-annual variability for all time series, and its 1-σ standard 

deviation is shown for CO2MLO (green shading). Note that the grey shading here 

instead indicates 1-σ models’ spread, which is generally larger than the standard 

deviation of TRENDY ensemble’s decadal variability. Inset: average seasonal cycles 

of models’ ensemble mean FTA (PgC y−1) for the two periods: 1961-1970 (dashed, 

lighter grey shade indicates 1-σ model spread) and 2001-2010 (solid, darker grey 

shade indicates 1-σ model spread), revealing enhanced CO2 uptake during 

spring/summer growing season. Mean seasonal cycles global FTA from the 

atmospheric inversions for 2001-2010 are also shown (same color as the main figure) 

for comparison.       
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Similarly, the seasonal amplitude of global total FTA simulated by TRENDY models 

shows an increasing trend of 19±8% for the same period. This amplitude increase 

appears mostly as an earlier and deeper drawdown during the spring and summer 

growing season, mostly in June and July (Figure 3-7 inset). Changes in peak carbon 

uptake contribute to 91±10% of the amplitude increase, while increase in respiration 

contributes to 9±10% of the amplitude increase. Gurney and Eckels (2011) suggest 

trend in respiration increase is more important, but they averaged all months instead 

of maxima and minima in their amplitude definition. The multi-model ensemble mean 

tracks some characteristics of the decadal variability reflected by the Mauna Loa 

record: stable in the 1960s, rise in the 1970-1980s, rapid rise in the early 2000s, and 

decrease in most recent 10 years. One notable mismatch is during the 1990s: a 

declining trend is found for Mauna Loa CO2’s seasonal amplitude, which may be 

related a decadal shift of atmospheric transport (Buermann et al., 2007), while the 

model ensemble shows a continued increasing trend in global FTA amplitude. 

Nevertheless, about half of the models do mirror the decreasing trend in the 1990s 

(Figure 3-8). Details on models’ FTA global and regional amplitude changes in 2001-

2010 compared to 1961-1970 are listed in Table 3-3. 
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Figure 3-8: Trends for seasonal amplitude of global total net carbon fluxes from S1 

(CO2 only), S2 (CO2+Climate) and S3 (CO2+Climate+Land Use/Cover) for each 

individual TRENDY model. Mauna Loa CO2 seasonal amplitude is shown for 

comparison purpose. All amplitude time series are relative to their own 1961-1970 

mean amplitude. 
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Table 3-3: The seasonal amplitude (maximum minus minimum, in PgC y−1) of mean 

net carbon flux for 2001-2010 relative to the 1961-1970 period, according to the nine 

TRENDY models (values are listed as percentage change in brackets, for both regions 

and the entire globe). The four large latitudinal regions are the same as in Figure 3: 

boreal (50-90N), temperate (23.5-50N), Northern tropics (0-23.5N), Southern tropics 

(0-23.5S), and Southern extra-tropics (23.5-90S). Values from the two inversions 

Jena99 and CarbonTracker are also listed for comparison. 

 
Model Global Boreal Northern 

Temperate 

Northern 

Tropics 

Southern 

Tropics 

Southern 

extra-Tropics 

CLM4.5BGC 44.3(15%) 31.9(17%) 19.2(15%) 7.2 (22%) 6.5 (−2%) 4.9(4%) 

ISAM 19.1 (9%) 12.1(11%) 7.4(13%) 6.0(1%) 6.9 (−8%) 0.4(4%) 

JULES 19.0(26%) 12.2(24%) 14.3(9%) 11.6(0%) 11.3(11%) 2.2(−24%) 

LPJ 23.4(26%) 23.0(18%) 14.7(11%) 10.5(9%) 11.8(16%) 2.0(−12%) 

LPX-Bern 37.9(15%) 26.9(10%) 19.3(6%) 8.3(9%) 4.6 (−6%) 4.2(15%) 

OCN 21.6(34%) 12.3(33%) 11.1(23%) 9.7 (17%) 8.3(3%) 2.0(14%) 

ORCHIDEE 39.9(12%) 23.4(14%) 19.1(5%) 22.7(9%) 18.7(2%) 1.4(37%) 

VEGAS 46.7(15%) 22.3(17%) 24.7(10%) 4.0 (11%) 3.4 (12%) 2.1(6%) 

VISIT 28.9(14%) 22.9(12%) 15.6(8%) 3.4(9%) 3.2(1%) 3.1(18%) 

Ensemble 26.1(17%) 18.0(19%) 12.4(15%) 8.0(8%) 4.9(−3%) 2.1(13%) 

Jena99 46.8 23.3 21 8.2 8.5 1.5 

CarbonTracker 39.9 26.5 16.3 5.3 5.8 2.4 

 

 

 

=Attribution of global and regional FTA seasonal amplitude 

 Similar to the Mauna Loa CO2 observations, models agree on increase of 

global FTA seasonal amplitude during 1961-2012 (Figure 3-9). By computing the 

ratios between amplitude trends from rising CO2, climate change and land use/cover 

change with the total trend for each model, we find the effect of varying CO2, climate 

and land use/cover contribute to 83±56%, −3±74% and 20±30% to the simulated  
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Figure 3-9: Attribution of the seasonal amplitude trend of global net land carbon flux 

for the period 1961-2012 to three key factors of CO2, climate and land use/cover. The 

red dots represent models’ global amplitude increase of FTA from the S3 experiment, 

and error bars indicate 1-σ standard deviation. The increasing seasonal amplitude of 

FTA is decomposed into the influence of time varying atmospheric CO2 (blue), climate 

(light green), and land use/cover change (gold). Also shown is the trend of Mauna 

Loa CO2 seasonal amplitude (thick black line) and its 1-σ standard deviation (grey 

shade) for the same period. 

 

 

global FTA amplitude increase. All models simulate increasing amplitude for total FTA 

in the boreal (50-90N) and Northern temperate (23.5-50N) regions, and most models 

also indicate amplitude increase in the Northern (0-23.5N) and Southern tropics (0-

23.5S) (Figure 3-10). There is a less agreement on the sign of amplitude change 

among the models in the Southern extra-tropics (23.5-90S). Individual model’s global 

and regional trends of FTA amplitude attributable to the three factors (CO2, climate 

and land use/cover) are listed in Table 3-4. For most models, latitudinal contribution 

to global FTA amplitude (computed by the “two-month difference” method) show that 

the pronounced mid-high latitude maxima in the NH dominate the simulated 

amplitude increase over 1961-2012 (Figure 3-11, red dashed line for S3 results). All 

models also indicate a negative contribution from at least part of the Northern 

temperate region.  
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Table 3-4: Global and regional attribution of CO2, climate change and land use/cover change effects on the relative amplitude changes 

of FTA simulated by the TRENDY models, and the ensemble mean of the relative changes during 1961-2012 period (% y−1). The 

models are listed in the order of simulated S3 global relative amplitude increase for this period (most to least). 

 

Model 

Global Boreal Northern Temperate Northern Tropics Southern Tropics Southern extra-Tropics 

CO2 CLIM LU ALL CO2 CLIM LU ALL CO2 CLIM LU ALL CO2 CLIM LU ALL CO2 CLIM LU ALL CO2 CLIM LU ALL 

OCN 0.68 −0.33 0.30 0.65 0.50 0.16 0.12 0.78 0.52 −0.18 0.32 0.65 0.16 0.12 0.05 0.34 0.24 0.00 −0.07 0.17 0.52 −0.17 −0.09 0.26 

LPJ 0.45 −0.07 0.12 0.50 0.33 −0.04 0.02 0.32 0.02 0.26 0.01 0.29 0.17 0.01 0.00 0.19 0.21 −0.24 0.39 0.36 0.02 −0.05 −0.16 −0.18 

JULES −0.10 0.61 −0.08 0.43 −0.02 0.49 −0.02 0.45 0.09 0.40 −0.17 0.32 0.02 −0.02 −0.07 −0.08 0.12 0.06 0.02 0.20 0.06 −0.30 0.05 −0.19 

VISIT 0.28 0.21 −0.05 0.43 0.24 0.16 −0.07 0.33 0.27 −0.06 0.04 0.25 0.27 −0.07 −0.08 0.12 0.02 0.15 −0.06 0.11 0.31 −0.06 0.19 0.44 

CLM4.5BGC 0.23 0.02 0.08 0.34 0.16 0.14 0.08 0.38 0.23 −0.03 0.18 0.37 0.22 0.19 0.10 0.50 0.35 −0.28 0.01 0.08 0.07 0.01 0.06 0.14 

VEGAS 0.09 0.11 0.13 0.32 0.07 0.19 0.11 0.38 0.11 −0.08 0.22 0.25 0.22 0.27 −0.26 0.23 0.24 0.58 −0.35 0.47 0.11 −0.25 0.23 0.09 

LPX-Bern 0.30 −0.12 0.05 0.22 0.20 0.06 0.02 0.28 0.33 −0.25 0.05 0.12 0.19 0.06 0.00 0.24 0.19 0.00 −0.09 0.10 0.23 −0.11 0.20 0.32 

ORCHIDEE 0.32 −0.25 0.15 0.21 0.29 −0.12 0.09 0.27 0.31 −0.18 −0.02 0.11 0.18 −0.01 0.09 0.26 0.24 −0.05 −0.10 0.08 0.20 0.42 −0.02 0.60 

ISAM 0.26 −0.03 −0.03 0.19 0.32 −0.02 0.00 0.30 0.24 −0.01 −0.01 0.22 0.24 −0.10 −0.06 0.08 0.28 −0.24 −0.11 −0.08 0.22 −0.01 −0.52 −0.31 

Ensemble 0.28 0.02 0.07 0.37 0.23 0.11 0.04 0.39 0.24 −0.01 0.07 0.29 0.19 0.05 −0.03 0.21 0.21 0.00 −0.04 0.17 0.19 −0.06 −0.01 0.13 

 

  



 

 67 

 

 
Figure 3-10: Attribution of the seasonal amplitude trend of regional (boreal (50-90N), 

Northern temperate (23.5-50N), Northern tropics (0-23.5N), Southern tropics (0-

23.5S) and Southern extra-tropics (23.5-90S)) net land carbon flux for the period 

1961-2012 to three key factors CO2, climate and land use/cover. The red dots 

represent models’ global amplitude increase of FTA from the S3 experiment. The 

increasing seasonal amplitude of FTA is decomposed into the influence of time 

varying atmospheric CO2 (blue), climate (light green), and land use/cover change 

(gold).  
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Figure 3-11: Latitudinal contribution of trends for seasonal amplitude of global land-

atmosphere carbon flux from TRENDY models in the three sensitivity experiments. 

Fluxes are summed over each 2.5° latitude bands (PgC y−1 per 2.5° latitude) before 

computing the “max-min difference” (refer to Methodology section for definition). 

For each 2.5° latitude band, trend is calculated for the period 1961-2012.   

 

 

The rising CO2 factor 

Seven of the nine models suggest that CO2 fertilization effect is most 

responsible for the amplitude increase, while VEGAS attribute it to be approximately 

equal among the three factors (Figure 3-9). The CO2 fertilization effect alone appears 

to cause most of the amplitude increase in a majority of models, with notable 

contribution from climate change and land use/cover change in CLM4.5BGC and 

VEGAS (Figure 3-8). The effect of rising CO2 appears to be slightly negative for 

JULES, possibly reflecting uncertainty associated with experiment design 
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(randomized climate is used to drive JULES). For each model, rising CO2 in the 

boreal, Northern temperate and the Southern extra-tropics leads to a similar trend 

(Figure 3-10). The magnitude of this trend may indicate each model’s differing 

strength for CO2 fertilization. This is possibly due to similar phases of FTA seasonal 

cycle within the three regions that are mainly driven by climatological temperature 

contrast. The positive amplitude trend in the carbon flux of the Northern and Southern 

tropics from CO2 fertilization is similar, and they likely would cancel out each other 

because their seasonal cycles are largely out of phase. Latitudinal contribution 

analyses reveal that trends in the Northern mid-high latitude is the main contributor to 

global FTA amplitude increase when considering CO2 fertilization effect alone (Figure 

3-11, blue line).  

 

The climate change factor 

The effect of climate change on FTA amplitude is mixed: five models (OCN, 

LPJ, LPX-Bern, ORCHIDEE and ISAM) attribute climate change as a negative factor 

for the FTA amplitude increase, and four models (JULES, VISIT, CLM4.5BGC and 

VEGAS) suggest it is a positive effect (Figure 3-9).  The high-latitude greening effect 

is evident in six out of nine models (Figure 3-10), contributing on average 29% of 

boreal amplitude increase. The latitudinal contribution analyses (Figure 3-11) also 

suggest that warming induced high latitude “greening” effect is present in all models, 

but this positive contribution only exhibits a wide range of influence in about half of 

the models (CLM4.5BGC, JULES, VEGAS and VISIT). The latitudinal patterns also 

reveal that, once climate change is considered, the contribution from the Northern 

temperate region around 40N shifts to negative in all models. In the Northern 



 

 70 

 

temperate (23.5-50N) region, climate change alone would decrease the FTA amplitude 

except for JULES and LPJ (Figure 3-10), possibly related to mid-latitude drought 

(Buermann et al., 2007). This is consistent with findings by (Schneising et al., 2014), 

who observed a negative relationship between temperature and seasonal amplitude of 

xCO2 from both satellite measurements and CarbonTracker during 2003-2011 for the 

Northern temperate zone. The negative contribution from the temperate zone 

counteracts the positive boreal contribution, suggesting the net impact from climate 

change on FTA amplitude may not be as significant as previously suggested. With 

changing climate introduced, some models’ global FTA amplitude generally mirror the 

decadal variability in the amplitude of Mauna Loa CO2 observations, including the 

decline in the 1990s (Figure 3-8). OCN and ORCHIDEE appear to be especially 

sensitive to the climate variations after the 1990s, resulting a decrease in FTA 

amplitude. It is also apparent from the time series figure that the strong increasing 

trend of FTA amplitude from climate change in JULES is mostly due to the sharp rise 

from early 1990s to early 2000s, suggesting some possible model artifact (Figure 8). 

The effect of climate change is more mixed in both tropics and the Southern extra-

tropics. 

 

The land use/cover change factor 

Six of the nine models show that land use/cover change leads to increasing global FTA 

amplitude (Figure 3-9). Land use/cover change appears to amplify FTA seasonal cycle 

in boreal and Northern temperate regions for most models. For some models 

(VEGAS, CLM4.5BGC and OCN), this effect is especially pronounced in the 

Northern temperate region where most of the global crop production takes place 
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(Figure 3-10). Note that the effect of land use/cover change includes two parts: one is 

the change of land use practice without changing the land cover type; the other is the 

change of land cover, including crop abandonment etc. VEGAS simulates time-

varying management intensity and crop harvest index, which is an example of 

significant contribution from land use change (Zeng et al., 2014). For many other 

models, land cover change is possibly the more important factor. During 1961-2012, 

large cropland areas were abandoned in the Eastern U.S. and central Europe, often 

followed by forest regrowth. New cropland expanded in the tropics and South 

America, Midwest U.S., East and central North Asia and the Middle East. How such 

change affect the global FTA amplitude is determined by the productivity and seasonal 

phase of the old and new vegetation covers. For CLM4.5BGC, JULES, LPJ and 

ORCHIDEE, enhanced vegetation activity from growing forest in these regions 

contribute positively to global FTA amplitude increase (Figure 3-12). In contrast, for 

LPX-Bern, VISIT, and VEGAS in the Eastern U.S., loss of cropland leads to decrease 

in the amplitude. Additional cropland in the Midwest U.S. and East and central North 

Asia contribute negatively to FTA amplitude trend for JULES, LPJ and ORCHIDEE. 

These regions however, are major zones contributing the amplification of global FTA 

for LPX-Bern, OCN, VEGAS and VISIT. One mechanism mentioned previously is 

agricultural intensification: in fact, CO2 flux measurements over corn fields in the 

U.S. Midwest show much larger seasonal amplitude than over nearby natural 

vegetation (Miles et al., 2012). Another plausible mechanism is irrigation, which can 

alleviate adverse climate impact from droughts, and crops may have a stronger 

seasonal cycle than the natural vegetation they replace in these regions. The overall 
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effect of land use/cover change for each model therefore, is often the aggregated 

result over many regions that can only be revealed by spatially explicit patterns. 

When examining the latitudinal contribution only (Figure 3-11), CLM4.5BGC, LPX-

Bern, OCN and VEGAS are quite similar, even though the spatial pattern reveal 

CLM4.5BGC is very different from the other three models (Figure 3-12). For JULES, 

LPJ and ORCHIDEE a significant part of land use/cover change contribution comes 

from the tropical zone (Figure 3-11).  

 

 

Figure 3-12: Contribution from land use/cover change on trends in the seasonal 

amplitude of global land-atmosphere carbon flux. For each spatial grid, the trend is 

computed as trends of the “max-min difference”  (refer to Methodology section for 

definition) in the S2 experiment (changing CO2 and climate) subtracted by trends in 

S1 (changing CO2 only). 
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Discussion and conclusion 

Our results show a robust increase of global and regional (especially over the 

boreal and Northern temperate regions) FTA amplitude simulated by all TRENDY 

models. During 1961-2012, TRENDY models’ ensemble mean global FTA relative 

amplitude increase (19±8%) is found to be comparable with the CO2 amplitude 

increase (15±3%) at Mauna Loa. Additionally, their decadal variability generally 

agrees well. This amplitude increase mostly reflects the earlier and deeper drawdown 

of CO2 in the NH growing season. The models in general, especially the multi-model 

median, also simulate latitudinal patterns of FTA mean amplitude that is similar with 

the atmospheric inversions results. Their latitudinal patterns capture the temperature 

driven seasonality from the NH mid-high latitude region and the two monsoon driven 

subtropical maxima, although the magnitude or extent vary.  Despite the general 

agreements between the models’ ensemble amplitude increases and the limited 

observation-based estimates, considerable model spread are noticeable. Five of the 

nine models considerably underestimate the global mean FTA seasonal cycle 

compared to atmospheric inversions, and peak carbon uptake takes place one or two 

months too early in seven of the nine models. The seasonal amplitude of model 

ensemble global mean FTA is 40% smaller than the amplitude of the atmosphere 

inversions. In contrast to the divergence in simulated seasonal carbon cycle, 

atmospheric inversions in Northern temperate and boreal regions are well 

constrained: 11 different inversions agree on July FTA minimum in the Northern 

Hemisphere (25-90N), with no more than 20% difference in amplitude (Peylin et al., 

2013). 
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The simulated amplitude increase is found to be due to a larger FTA minimum 

associated with a stronger ecosystem growth. Over the historical period, global mean 

carbon sink is also increasing over time, suggesting a possible relationship between 

seasonal amplitude and the mean sink (Randerson et al., 1997; Zhao and Zeng, 2014; 

Ito et al., 2015). For the nine models, we found a moderate relationship between 

enhanced mean land carbon sink and the seasonal amplitude increase similar to 

reported results by in Zhao and Zeng (2014), with an R-squared value of 0.61 (Figure 

3-13). However, no clear relationship is found between mean land carbon sink and 

FTA seasonal amplitude. Models with a strong mean carbon sink (for example JULES 

and OCN) have relatively weak seasonal amplitude, and the LPX-Bern model shows 

no carbon sink despite having a strong FTA seasonality. The 2014 Global Carbon 

Budget report (Le Quéré et al., 2015) estimated a total land carbon sink of 1.5±0.6 

PgC y−1 from carbon budget analyses (fossil fuel emission minus atmospheric growth 

rate minus ocean carbon sink), and only four models (JULES, OCN, VEGAS and 

VISIT) are within the uncertainty range of this budget-based analysis. In spite of their 

similar mean land carbon sink, the shape of their FTA seasonal cycle differs. While 

VEGAS also shows a similar seasonal carbon cycle compared to inversions, the other 

three models exhibit an unrealistically long growing season with half the amplitude as 

the inversions. July and August are the only two months with net carbon release for 

JULES, whereas OCN and VISIT both have a long major growing season from May 

to September. Given that the mean FTA seasonal cycle is relatively well constrained, 

insights gained from analyzing modeled seasonal amplitude of carbon flux may help 

to understand the considerable model spread found in the mean global carbon sink for 
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the historical period (Le Quéré et al., 2015), which is possibly due to varied model 

sensitivity to different mechanisms (Arora et al., 2013). Examining details of models’ 

mechanical difference could also help to better assess the different future projections 

on both the magnitude and direction of global carbon flux (Friedlingstein et al., 2006, 

2013).  

 

 
Figure 3-13: Relationship between the increase in net biosphere production (NBP, 

equal to −FTA) and increase in NBP seasonal amplitude (as in Figure 4’s red dots), for 

1961-2012 period for nine TRENDY models. Error bars indicate the standard errors 

of the trend estimates. Amplitude increase and associated standard deviation in 

Mauna Loa CO2 is plotted in green horizontal line and shade, respectively. Increase in 

residual land sink is estimated by taking the difference between two residual land 

sinks, over 2004-2013 and 1960-1969 (an interval of 44 years), as reported in Le 

Quéré et al. (2015). This difference is then scaled by 52/44 (to make it comparable 

with models’ NBP change for this figure), which is displayed in black vertical line 

and shade (error add in quadrature, assuming Gaussian error for the two decadal 

residual land sinks, then also scaled). The cross-model correlation (R2=0.61, p < 0.05) 

suggests that a model with a larger net carbon sink increase is likely to simulate a 

higher increase in NBP seasonal amplitude. 
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Compared to earlier studies, this study performed most detailed analyses of 

the TRENDY factorial experiments results to date. Unlike many previous studies that 

focused on comparing season cycle at individual CO2 monitoring stations (Randerson 

et al., 1997; Peng et al., 2015), we studied the global and large latitudinal bands. Such 

quantities often demonstrate well-constrained seasonality that is relatively robust 

against uncertainty from atmospheric transport, fossil fuel emission, biomass burning 

etc.. We found greater uncertainty is found for the tropics and Southern extra-tropics 

regions where atmospheric CO2 observations are relatively sparse. Tropical 

ecosystems are also heavily affected by biomass burning, however the models used in 

this study may have differently employed (or omitted) fire dynamics. For models that 

do have fire simulation/suppression, they may not be driven by observed fire data, 

making their results less comparable with observation-based estimates. These 

uncertainties however, are unlikely to affect our main conclusions because of limited 

contribution of tropics to global FTA amplitude increase. Another possibly important 

factor is the impact from increased nitrogen deposition, which may have been include 

in the “CO2 fertilization” effect for some models with full nitrogen cycle (Table 3-1), 

however this can only be explored in future studies, as the TRENDY experiment 

design does not separated out the nitrogen contribution. 

Our factorial analyses highlight differential control from rising CO2, climate 

change and land use/cover change among the models, with seven out of nine models 

indicating major contribution (83±56%) to global FTA amplitude increase from the 

CO2 fertilization effect. The strength of CO2 fertilization varies among models, but 

for each model its magnitude in the boreal, Northern temperate and Southern extra-
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tropics regions is similar. Models are split regarding the role of climate change, as 

compared with the models ensemble mean (−3±74%). Regional analyses show that 

climate change amplifies the boreal FTA seasonal cycle but weakens the seasonal 

cycle for other regions according to most models. By examining latitudinal trends 

from the “max-min difference”, we found all models indicate a negative climate 

contribution over the mid-latitudes, where droughts might have reduced ecosystem 

productivity. This negative effect offsets the high latitude “greening” over high 

latitudes, which in some models result in a net negative climate change impact on 

global FTA amplitude. Such mechanism cast doubt on whether climate change is the 

main driver of the global FTA amplitude increase. Land use/cover change, according 

to a majority of the models, appears to amplify the global FTA seasonal cycle 

(20±30%), however the mechanisms seem to differ for different models. Conversion 

to/from cropland could either increase or decrease the seasonal amplitude, depending 

on how models simulate the seasonal cycle of cropland compared to natural 

vegetation it replaces/precedes. For the same pattern of increasing amplitude, the 

underlying causes could include irrigation that mitigates negative climate effect, 

agricultural management practices and other mechanisms. 

Overall, FTA seasonal cycle and its amplitude are effective indicators for 

diagnosing model sensitivity to various mechanisms in different regions. With limited 

observations, such detailed utilization can provide additional constraints for the 

terrestrial biosphere models, in addition to the residual land carbon sink and its 

interannual and decadal variabilities. Future efforts are required to improve the 

seasonal cycle simulation, by realistically representing the strength of relevant 
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mechanisms and incorporating the missing processes. Expanding observations from 

satellite, flight campaigns, flux towers and CO2 monitoring stations provide 

increasing insights on seasonal characteristics of terrestrial ecosystems such as plant 

phenology. Large-scale campaigns like the Next-Generation Ecosystem Experiments 

(NGEE) in the arctic and tropics may hopefully reduce large uncertainty in 

understanding the role of ecosystems for these key regions. Progresses in model 

development, observational records and advanced analyses techniques would likely 

reduce uncertainty from the model ensemble and increase our confidence in their land 

carbon sink projections.  

 

Supplementary figures 

Similar to Figure 3-12, spatial patterns of S1, S2-S1 and S3 experiments are 

displayed here as supplementary figures, because the main features are similar to the 

latitudinal contribution figure 3-11, unlike the land use/cover change spatial plot. 

These figures are all computed using the “two-month difference” method.  
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Figure 3-S1: Contribution of trends for seasonal amplitude of global land-atmosphere 

carbon flux for each TRENDY model in the S1 experiment (changing CO2 only). 

Trends are calculated for the period 1961-2012 for the “two-month difference” (refer 

to Methodology section for definition).  
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Figure 3-S2: Similar as Figure 3-S1, but for trends in the S2 experiment (changing 

CO2 and climate) subtracting trends in S1, therefore representing effect of climate 

change with the linear assumption. 
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Figure 3-S3: Similar as Figure 3-S1, but for trends in the S3 experiment (changing 

CO2, climate and land use/cover). 

 

Appendix 

 

A. Environmental drivers for TRENDY 

For observed rising atmospheric CO2 concentration, the models use a single 

global annual (1860-2012) time series from ice core (before 1958: Joos and Spahni, 

2008) and the National Oceanic and Atmospheric Administration (NOAA)’s Earth 

System Research Laboratory (after 1958: monthly average from Mauna Loa and 

South Pole CO2, south pole data is constructed from the 1976-2014 average if not 

available). For climate forcing, the models employ 1901-2012 global climate data 

from the Climate Research Unit (CRU, version TS3.21, http://www.cru.uea.ac.uk) at 

monthly (or interpolate to finer temporal resolution for individual models) temporal 

http://www.cru.uea.ac.uk/
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resolution and 0.5° × 0.5° spatial resolution. For land use/cover change history data, 

the models adopt either gridded yearly cropland and pasture fractional cover from the 

History Database of the Global Environment (HYDE) version 3.1 

(http://themasites.pbl.nl/tridion/en/themasites/hyde/, Klein Goldewijk et al., 2011), or 

the dataset including land use history transitions from L. Chini based on the HYDE 

data. 

 

B. Environmental drivers for TRENDY 

The Jena inversion is from the Max Planck Institute of Biogeochemistry, v3.7 

at 5° × 5° spatial resolution (http://www.bgc-

jena.mpg.de/~christian.roedenbeck/download-CO2/, Rodenbeck et al., 2003), 

including two datasets abbreviated as Jena81 for the period of 1981–2010 using CO2 

data from 15 stations, and Jena99 using 61 stations for 1999–2010. Another 

inversion-based dataset used is the CarbonTracker, version CT2013B from 

NOAA/ESRL at 1° × 1° spatial resolution 

(http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/, Peters et al., 2007) for the period 

of 2000–2010, which integrates flask samples from 81 stations, 13 continuous 

measurement stations and 9 flux towers, and the surface fluxes from land and ocean 

carbon models as prior fluxes. These two inversion-based datasets are vastly different 

in their approach in inversion algorithm, choice of atmospheric data, transport model 

and prior information (Peylin et al., 2013). For example, to minimize the spurious 

variability introduced by changes in availability of observations through examine 

period, the Jena inversion provides multiple versions with different record length, 

each only use records covering its full period (for example, Jena99 includes more 

http://themasites.pbl.nl/tridion/en/themasites/hyde/
http://www.bgc-jena.mpg.de/~christian.roedenbeck/download-CO2/
http://www.bgc-jena.mpg.de/~christian.roedenbeck/download-CO2/
http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/
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stations than Jena81, but with a shorter period). The CarbonTracker however, opt for 

assimilating all quality-controlled data (with outliers removed) favoring a higher 

spatial resolution in estimated carbon fluxes. Therefore, we chose these two 

inversions to capture to some extent the uncertainty in atmospheric inversions. 
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Abstract 

In the Northern Hemisphere, atmospheric CO2 concentration declines in 

spring and summer, and rises in fall and winter. Ground-based and aircraft-based 

observation records indicate that the amplitude of this seasonal cycle has increased in 

the past. Will this trend continue in the future? In this paper, we analyzed simulations 

for historical (1850-2005) and future (RCP8.5, 2006-2100) periods produced by 10 

Earth System Models participating in the Fifth Phase of the Coupled Model 

Intercomparison Project (CMIP5). Our results present a model consensus that the 

increase of CO2 seasonal amplitude continues throughout the 21st century. Multi-

model ensemble relative amplitude of detrended global mean CO2 seasonal cycle 

increases by 62±19% in 2081-2090, compared to 1961-1970. This amplitude increase 
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corresponds to a 68±25% increase in Net Biosphere Production (NBP). The results 

show that the increase of NBP amplitude mainly comes from enhanced ecosystem 

uptake during Northern Hemisphere growing season under future CO2 and 

temperature conditions. Separate analyses on Net Primary Production (NPP) and 

respiration reveal that enhanced ecosystem carbon uptake contributes about 75% of 

the amplitude increase. Stimulated by higher CO2 concentration and high-latitude 

warming, enhanced NPP likely outcompetes increased respiration at higher 

temperature, resulting in a higher net uptake during the Northern growing season. The 

zonal distribution and spatial pattern of NBP change suggest that regions north of 

45°N dominate the amplitude increase. Models that simulate a stronger carbon uptake 

also tend to show a larger increase of NBP seasonal amplitude, and the cross-model 

correlation is significant (R=0.73, p<0.05) 

 

Introduction 

 Modern measurements at Mauna Loa, Hawaii (19.5°N, 155.6°W, 3400m 

altitude) have shown an increase in atmospheric CO2 concentration from <320 ppm in 

1958 to 400 ppm in 2013. There is also a mean seasonal cycle that is characterized 

with a 5-month decrease (minimum in October) and a 7-month increase (maximum in 

May). The peak-to-trough amplitude of this seasonal cycle is approximately 6.5 ppm, 

which represents a close average of a large portion of the Northern Hemisphere (NH) 

biosphere (Kaminski et al., 1996) where the amplitude ranges from about 3 ppm near 

the Equator to 17 ppm at Point Barrow, Alaska (71°N). The seasonal variation of 

Mauna Loa (MLO) CO2 reflects the imbalance of growth and decay of the NH 
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biosphere. Early studies have speculated that global primary production would 

decrease because of global changes such as acid rain and deforestation (Reiners, 

1973; Whittaker and Likens, 1973). If this is the case, assuming changes in 

respiration are similar at peak and trough of the CO2 seasonal cycle, we might 

observe a reduction of CO2 seasonal amplitude. However, Hall et al. (1975) found no 

evidence of long-term amplitude change from 15 years of MLO CO2 record (1958-

1972). They concluded that either the biosphere is too big to be affected yet or the 

degradation of biosphere is balanced by enhanced CO2 fertilization and increased use 

of fertilizers in agriculture. 

In 1970s through 1980s, the metabolic activity of the biosphere seems getting 

stronger, as indicated by rapid increase in MLO CO2 amplitude (Pearman and Hyson, 

1981; Cleveland et al., 1983; Bacastow et al., 1985). Enhanced CO2 fertilization was 

considered as a major factor, and climate change a possible cause (Bacastow et al., 

1985). Keeling et al. (1996) linked the amplitude increase with climate change by 

showing the two-year phase lag relationship between trends of CO2 amplitude and 30-

80°N mean land temperature. Unlike CO2 fertilization, the combined effect of climate 

(temperature, precipitation, etc.) introduces strong interannual variability to the CO2 

amplitude change. In the early 1990s, despite of the continuing rise of 30-80°N mean 

land temperature, CO2 seasonal amplitude at MLO has declined. Buermann et al. 

(2007) attributed this decline to the severe drought in North America during 1998-

2003.  

 In late 1990s, the increasing trend resumed at MLO. The latest analysis shows 

a 0.32% yr−1 increase in MLO amplitude and a 0.60% yr−1 increase in Point Barrow 
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(BRW) amplitude (Figure 1A in Graven et al., 2013). This trend (over 50 years) 

corresponds to an increase of 16% in MLO, and 30% in BRW CO2 seasonal 

amplitude, respectively. Graven et al. (2013) also compared aircraft measurements 

taken at 500hPa and 700hPa heights in 1958–1961 and 2009–2011, suggesting an 

even larger (~50%) increase of CO2 seasonal amplitude north of 45°N. Furthermore, 

to infer the model-simulated CO2 amplitude increase at 500hPa, they applied two 

atmospheric transport models to monthly Net Ecosystem Production (NEP) from the 

historical simulation (Exp3.2) results of eight CMIP5 models. Compared with aircraft 

data, they found the CMIP5 models simulated a much lower amplitude increase. 

Surface CO2 monitoring stations have two major limitations. First, they are 

sparse. For several decades, the Global Monitoring Division of NOAA/Earth System 

Research Laboratory (ESRL) has measured CO2 from >100 surface monitoring sites 

(Conway et al., 1994). Only some have over 30 years of record. Similarly, Randerson 

et al. (1997) determined the CO2  amplitude trend north of 55°N by averaging flask 

data from five stations. Second, the surface CO2 stations do not measure carbon 

exchange between the land/ocean and atmosphere directly. Atmospheric inversion 

models are capable of providing surface carbon fluxes with global coverage. 

However, the resolution and accuracy of these models are inherently limited due to a 

small number of stations used, and errors in atmospheric transport (Peylin et al., 

2013). 

 Process-based Terrestrial Biosphere Models (TBMs) can generate surface 

fluxes over the past for longer period, usually with a spatial resolution of half to three 

degrees. Thus, they offer opportunities to understand the mechanisms of CO2 
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amplitude increase better. McGuire et al. (2001) calculated amplitude trends of total 

land-atmosphere carbon flux (north of 30°N) from four TBMs. Compared to Mauna 

Loa CO2, they found the trend was overestimated by one of the four models and 

underestimated by the other three. They suggest the observed trend may be a 

consequence of the combined effects of rising CO2, climate variability and land use 

changes, which has also been recognized in previous studies (Kohlmaier et al., 1989; 

Keeling et al., 1995, 1996; Randerson et al., 1997, 1999; Zimov et al., 1999). Models 

show varied extent of amplitude increase, possibly due to their different sensitivities 

to CO2 concentration and climate. Interestingly, Graven et al. (2013) found that 

CMIP5 models underestimate the CO2 amplitude increase in the mid-troposphere at 

latitudes north of 45°N. However, previous observations indicated that the models 

might overestimate CO2 fertilization effect (Piao et al., 2013), suggesting that our 

understanding of the amplitude trend is still limited. 

 In the future, we do not know if the CO2 amplitude will increase or decrease. 

With temperature rise and CO2 increase, we may see a further increase of CO2 

amplitude. On the other hand, the frequency and/or duration of heat waves are very 

likely to increase over most land areas, and the Increases in intensity and/or duration 

of drought and flood are likely (International Panel on Climate Change, 2013). As a 

result, the ecosystem productivity may decrease, which may reduce the CO2 

amplitude. In this study, we analyzed the fully coupled CMIP5 earth system model 

runs as part of the Fifth Assessment Report (AR5) of the United Nations' 

Intergovernmental Panel on Climate Change (IPCC). Specifically, we looked into the 

emission-driven simulations, which include many of the aforementioned processes 
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and feedbacks. Our specific questions are: 1). How do the CMIP5 models predict the 

amplitude and phase changes of CO2 seasonal cycle in the future? 2). Are the changes 

mostly driven by changes in ecosystem production or respiration? 3). Where do the 

models predict the largest CO2 amplitude changes will occur?  

 

Method 

Model descriptions  

  We analyzed historical and future emission-driven simulation results from 10 

CMIP5 ESMs. The historical simulations, referred to as experiment 5.2 or ESM 

historical 1850-2005 run (Taylor et al., 2012), were forced with gridded CO2 

emissions reconstructed from fossil fuel consumption estimates (Andres et al., 2011). 

The future simulations, referred to as experiment 5.3 or ESM RCP8.5 2006-2100 run, 

were forced with projected CO2 emissions, following only one scenario—RCP8.5 

(Moss et al., 2010). We chose the emission-driven runs because the fully coupled 

ESMs in these runs have interactive carbon cycle component. Global atmospheric 

CO2 concentrations are simulated prognostically, therefore they reflect the total effect 

of all the physical, chemical, and biological processes on Earth, and their interactions 

and feedbacks with the climate system. We obtained model output primarily from the 

Earth System Grid Federation (ESGF), an international network of distributed climate 

data servers (Williams et al., 2011). For the GFDL model, we retrieved results from 

its Data Portal (http://nomads.gfdl.noaa.gov:8080/DataPortal/cmip5.jsp). The main 

characteristics of the 10 models are listed in Table 4-1.  

 



 

 90 

 

Table 4-1: List of Models used and their characteristics 

 

Models Modeling Center 
Land 

Component 

Resolution 

(Lon × 

Lat) 

Reference 

BNU-

ESM 

Beijing Normal University, 

China 
CoLM3 

2.8125° × 

2.8125° 
Ji et al. (2014) 

CanESM2 

Canadian Centre for 

Climate Modeling and 

Analysis, Canada 

CTEM 

 

2.8125° × 

2.8125° 

Arora et al.  

(2011) 

CESM1-

BGC 

Community Earth System 

Model Contributors, NSF-

DOE-NCAR, USA 

CLM4 
1.25° × 

0.9° 

Long et al.  

(2013) 

 

GFDL-

ESM2m 

NOAA Geophysical Fluid 

Dynamics Laboratory, 

USA 

LM3 2.5° × 2° 
Dunne et al.  

(2013) 

INM-CM4 
Institute for Numerical 

Mathematics, Russia 
 2° × 1.5° 

Volodin et al.  

(2010) 

IPSL-

CM5A-LR 

Institut Pierre-Simon 

Laplace, France 
ORCHIDEE 

3.75° × 

1.875° 

Dufresne et al.  

(2013) 

MIROC-

ESM 

Japan Agency for Marine-

Earth Science and 

Technology, Atmosphere 

and Ocean Research 

Institute (University of 

Tokyo), and National 

Institute for Environmental 

Studies, Japan 

MATSIRO + 

SEIB-DGVM 

 

2.8125° × 

2.8125° 

Watanabe et 

al. (2011) 

MPI-

ESM-LR 

Max Planck Institute for 

Meteorology, Germany 
JSBACH 

2.8125° × 

2.8125° 

Ilyina et al.  

(2013) 

MRI-

ESM1 

Meteorological Research 

Institute, Japan 
HAL 

1.125° × 

1.125° 

Yukimoto et 

al. (2011) 

NorESM1-

ME 

Norwegian Climate Centre, 

Norway 
CLM4 

2.5° × 

1.875° 

Tjiputra et al.  

(2013) 

 

 

Analysis procedure 

  We first analyzed the monthly output of prognostic atmospheric CO2 

concentrations to evaluate the change of CO2 seasonal amplitude (defined as 

maximum minus minimum of detrended seasonal cycle) from 1961 to 2099. 
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Atmospheric CO2 was obtained primarily as the area- and pressure-weighted mean of 

CO2 across all vertical levels—a better representation of atmospheric carbon content 

than surface CO2. The INM-CM4 model does not provide CO2 concentration, so we 

converted its total atmospheric mass of CO2 to mole fraction. We excluded the IPSL 

model from analyses in Section 3.1 and 3.2 because its CO2 output is not available. 

Only CanESM2 provides three different realizations for both historical and future 

runs, and we simply use its first realization in our comparison. We believe this choice 

would lead to a more representative result than including all realizations of CanESM2 

in multi-model averaging.  

  To extract the CO2 seasonal cycle from the monthly records, we applied the 

curve-fitting procedures using the CCGCRV software developed at the National 

Oceanic and Atmospheric Administration Climate Monitoring and Diagnostics 

Laboratory (Thoning et al., 1989; http://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/ 

crvfit.html). This algorithm first fits the long-term variations and the seasonal 

component in the monthly CO2 record with a combination of a trend function and a 

series of annual harmonics. Then the residuals are filtered with fast Fourier transform 

and transformed back to the real domain. Specifically, we followed the default setup 

of a quadratic polynomial for the trend function, a four-yearly harmonics for the 

seasonal component, and long/short-term cutoff values of 667 days/80 days for the 

filtering in our analyses. We examined the phase change of CO2 detrended seasonal 

cycle by counting how frequent the maxima and minima occur in different months. 

We used two definitions of seasonal amplitude in our analyses that yield similar 

results: one directly comes from the CCGCRV package, and another definition is 
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simply maximum minus minimum of detrended seasonal cycle in each year. For each 

model’s monthly global mean CO2, we first computed the detrended CO2 seasonal 

cycle as the annual harmonic part plus the filtered residue using the short-term cutoff 

value. Then we started to investigate the global carbon budget in each model:  

𝑑𝐶𝑂2

𝑑𝑡
= 𝐹𝐹𝐸 − 𝑁𝐵𝑃 + 𝐹𝑂𝐴                                 (1) 

The left term is the change of CO2 concentration (or CO2 growth rate), which we 

simply computed as the difference between the current month and previous month’s 

concentration—this leads to a half-month shift earlier than the results indicate. The 

right hand side (RHS) comprises of fossil fuel emission (FFE), net biosphere 

production (NBP, or net terrestrial-atmosphere carbon exchange, positive if land is a 

carbon sink) and net ocean-atmosphere flux (FOA, positive if ocean releases carbon). 

For each model, we checked and ensured that the sum of individual flux terms on the 

RHS of equation (1) equals to the CO2 growth rate. 

  Previous studies have limited the impact of FFE and FOA on trends in CO2 

amplitude to less than a few percent change (Graven et al. 2013). Therefore we 

focused on examining the seasonal cycle of NBP in this study. To investigate whether 

the NBP amplitude change is mostly due to enhanced production or respiration, we 

inspected the seasonal cycle of NPP and respiration separately. The INM model does 

not provide NPP output, so it is excluded in this part of analyses. For respiration, one 

complication is that, even though NBP represents the net terrestrial-atmosphere 

carbon exchange in all models (thus allowing model comparison), its further 

breakdown varies. For example, the GFDL-ESM2M model’s NBP has component 

fluxes including NPP, heterotrophic respiration (Rh), land use change (fLuc), fire 
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(fFire), harvest (fHarvest) and grazing (fGrazing). In contrast, NBP approximately 

equals to NPP minus Rh in CanESM2. Instead of directly adding all flux components 

such as Rh and fLuc for each model (which would be unnecessary and difficult since 

not all fluxes are provided), we defined Rh
* (dominated by Rh) such that 

𝑅ℎ
∗ = 𝑁𝑃𝑃 − 𝑁𝐵𝑃                                            (2) 

  Additionally, we analyzed the spatial patterns of NBP change between future 

(2081-2090) and historical (1961-1970) period. We approximated NBP amplitude 

change as the difference between the peak seasons of carbon uptake and release by 

the biosphere, namely May-July and October-December averages, respectively. We 

chose three-month averages for multi-model ensemble, because not all models 

simulate peak uptake in June and peak release in October. Monthly output of NBP, 

NPP and Rh
* (derived from NBP and NPP) from all models were first resampled to 

2°*2° grids. Then the spatial and zonal means for both May-July and October-

December were computed.   

 

Results 

Changes of CO2 and NBP seasonal amplitude  

 The CMIP5 models project that the increase of CO2 seasonal amplitude 

continues in the future. Figure 4-1a shows detrended and globally averaged monthly 

column atmospheric CO2 from 1961 to 2099, averaged over nine models (no IPSL).  
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Figure 4-1: Nine-model (excluding IPSL) averaged monthly detrended a). Global 

mean CO2 (ppm, column average); b). Global mean CO2 growth rate (PgC Month−1, 

using a conversion factor of 1 ppm = 2.12 PgC Month−1); and c). Global total −NBP 

(PgC Month−1) from 1961 to 2099. Panel d) presents eight-model (excluding IPSL 

and INM) averaged monthly detrended global mean CO2 (ppm) at lowest model level 

and ESRL’s global mean detrended surface CO2 observation (shown in green). 

 

 

 The models project an increase of CO2 seasonal amplitude (defined as 

maximum minus minimum in each year) by about 70% over 120 years, from 1.6 ppm 

during 1961-1970 to 2.7 ppm in 2081-2090. The increase is faster in the future than in 

the historical period. Another feature is that the trend of minima (−0.63 ppm 

Century−1) has a larger magnitude than the trend of maxima (0.41 ppm Century−1), 

suggesting that enhanced vegetation growth contributes more to the amplitude 

increase than respiration increase. Gurney and Eckels (2011) found the trend of net 

flux in dormant season is larger than that of growing season. However, they applied a 

very different definition for amplitude, considering all months instead of maxima and 

minima, to analyze the atmospheric CO2 inversion results from 1980-2008. 

Specifically, they defined growing season net flux (dormant season net flux) as the 

total of any month for which the net carbon flux is negative (positive), and amplitude 

as the difference of the two net fluxes. It is no surprise they reached a conclusion that 

seems to contradict ours, since growing season is much shorter than dormant season 
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at global scale. Figure 4-1b and 4-1c present detrended global mean CO2 growth rate 

(1 ppm=2.12 PgC Month−1 for unit conversion) and global total −NBP, two quantities 

showing very similar characteristics as expected. All models simulate an increase in 

amplitude, although considerable model spread is found (Table 4-2). In addition, we 

notice a phase advance of maxima and minima by counting their time of occurrence 

(data not shown). Excluding models above one standard deviation from the ensemble 

mean yields similar results.  

 

Table 4-2: Amplitude (maximum minus minimum) of global mean column 

atmospheric CO2, CO2 growth rate (CO2g) and global total NBP, averaged over 1961-

1970 and 2081-2090 for the nine models, and their multi-model ensemble (MME) 

and standard deviation (SD). 

 

Models 

CO2 (ppm) CO2g (PgC Month−1) 
−NBP (PgC 

Month−1) 

1961-

1970 

2081-

2090 

1961-

1970 

2081-

2090 

1961-

1970 

2081-

2090 

BNU-ESM 1.54 2.96 2.2 4.91 1.88 4.42 

CanESM2 0.9 1.53 1.12 2.05 1.2 1.83 

CESM1-BGC 1.2 1.76 1.51 2.59 1.6 2.38 

GFDL-

ESM2m 
2.37 3.81 3.42 5.93 3.52 6.24 

INM-CM4 0.27 0.41 0.38 0.57 0.3 0.49 

MIROC-

ESM 
2.55 3.92 3.93 5.98 3.77 5.37 

MPI-ESM-

LR 
3.45 5.47 4.35 6.37 4.61 7.51 

MRI-ESM1 1.97 4.04 2.37 5.21 2.63 5.7 

NorESM1-

ME 
1.23 1.8 1.6 2.63 1.74 2.73 

MME* 1.72 2.86 2.32 4.03 2.36 4.07 

SD 0.97 1.59 1.34 2.09 1.38 2.33 
 

*The multi-model ensemble (MME) here is a simple average over the nine models in 

the table. The values are slightly larger than given in text because of averaging 

method (in the main text, multi-model averaging of detrended variables are done first, 

then their amplitude are computed and mean amplitude changes are derived).  

 



 

 96 

 

 To illustrate how well the models reproduce the seasonal variations of CO2, 

we compared the multi-model ensemble global CO2 at the lowest model level—not 

equivalent to the height of surface CO2 measurement, but relatively close—with 

ESRL’s global mean CO2 over 1981-2005 (Figure 4-1d). The surface CO2 seasonal 

amplitude estimated by the model ensemble is lower than that of ESRL’s global CO2 

estimate (Ed Dlugokencky and Pieter Tans, NOAA/ESRL, 

www.esrl.noaa.gov/gmd/ccgg/trends/), however the amplitude increases are similar 

(Table 4-3). This surface station-based global CO2 estimate also indicates that the 

amplitude increase is dominated by the trend of minima. 

 

Table 4-3: Amplitude increase (ppm) and trends of maxima/minima of surface CO2 

from eight models, their multi-model ensemble (MME), and ESRL’s Global mean 

CO2 (CO2GL). 

 

Models 

 

 

1981-1985 

(ppm) 

 

2001-

2005 

(ppm) 

 

Percent 

Change  

 

 

Trend of 

Minima 

(ppm 

10yr−1) 

 

Trend of 

Maxima 

(ppm 

10yr−1) 

 

BNU-ESM 2.71 3.1 14.39% −0.099 0.096 

CanESM2 3.04 3.24   6.58% −0.064 0.02 

CESM1-BGC 2.05 2.18   6.34% −0.032 0.044 

GFDL-ESM2m 3.71 3.76   1.35% −0.033 0.095 

MIROC-ESM 3.39 3.61   6.49% −0.078 0.045 

MPI-ESM-LR 6.19 7.02 13.41% −0.25 0.171 

MRI-ESM1 3.69 3.85   4.34% −0.095 0.031 

NorESM1-ME 2.37 2.47   4.22% −0.024 0.016 

MME 3.1 3.37   8.71% −0.084 0.065 

CO2GL 4.11 4.4   7.06% −0.102 0.024 

 

 

 We further calculated the change of relative amplitude (relative to 1961-1970) 

for each model. The amplitude here is computed by the CCGCRV package. As 

http://www.esrl.noaa.gov/gmd/ccgg/trends/
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illustrated in Figure 4-2, all nine models show an increase in both global mean CO2 

and total NBP seasonal amplitude. CO2 seasonal amplitude has increased by 62±19%  

 

 

Figure 4-2: Time series of the relative seasonal amplitude (relative to 1961-1970 

mean) of a). Global mean atmospheric CO2; and b). Global total NBP from 1961 to 

2099. Thick black line represents multi-model ensemble, and one standard deviation 

model spread is indicated by light grey shade. 

 

 

in 2081-2090, compared to 1961-1970; whereas NBP seasonal amplitude has 

increased by 68±25% over the same period (see Table 4-4 for details of individual 

models). The trend of increase is much higher in the future (CO2/NBP: 0.70%/0.73% 

per year during 2006-2099) than in the historical period (0.25% and 0.28% per year  
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Table 4-4: Column atmospheric CO2 and NBP amplitude (computed by CCGCRV, 

slightly different from max minus min) Increases of nine models by 2081-2090 

relative to their 1961-1970 values and their multi-model ensemble (MME). 

 

Models CO2 NBP 

BNU-ESM 93% 113% 

CanESM2 65%   47% 

CESM1-BGC 46%   47% 

GFDL-ESM2m 57%   79% 

INM-CM4 51%   67% 

MIROC-ESM 52%   39% 

MPI-ESM-LR 54%   58% 

MRI-ESM1 99% 106% 

NorESM1-ME 45%   58% 

MME 62%   68% 

 

 

during 1961-2005 for CO2 and NBP), albeit the model spread also becomes larger in 

the future. When we applied the same procedure to the Northern Hemisphere (25-

90°N) mean CO2 and total NBP for the eight models (excluding INM-CM4 which 

only has global CO2 mass), we saw a higher amplitude increase and larger model 

spread: 81±46% and 77±43% for CO2 and NBP, respectively. 

 

Production vs. respiration 

 Our next major question is whether the amplitude increase of NBP is largely 

driven by NPP or respiration. We computed the mean seasonal cycle of detrended 

CO2 growth rate, −NBP, −NPP (reverse signs so that negative values always indicate 

carbon uptake) and Rh
* in two periods: 1961-1970 (black) and 2081-2090 (red), for 

the nine models (for this and following analyses, we excluded INM which does not 

provide NPP, and included the IPSL model except for CO2 growth rate). The seasonal 

cycle of −NBP resembles that of detrended CO2 growth rate (Figure 4-3a-d), 
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Figure 4-3: Seasonal cycle of detrended global mean CO2 growth rate (a, b), global 

total −NBP (c, d), global total −NPP (e, f), and global total Rh
* (g, h, computed as 

NPP minus NBP), averaged over 1961-1970 and 2081-2090 for the CMIP5 models 

(excluding INM, also excluding IPSL for CO2 growth rate). Seasonal cycles of 

individual models are presented in the left panel (dashed for 1961-1970, and solid for 

2081-2090). Ensemble mean and one standard deviation model spread (black/grey for 

1961-1970, red/pink for 2081-2090) are displayed in the right panels. Blue arrows 

mark the changes in June and October (NBP maxima and minima), except for CO2 

growth rate and −NPP, where arrows also indicate phase shifts of minima between the 

two periods. We show −NBP and −NPP so that the negative values represent carbon 

uptake by the biosphere, and positive values indicate carbon release from the 

biosphere. Note that −NBP and its two components −NPP and Rh* are not detrended, 

so that the sum of panels f and h equals to panel d. Detrended −NBP seasonal cycle 

(not shown) looks very similar to panel d, as its trend is small compared to the 

magnitude of seasonal cycle.  
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confirming that the activities of land ecosystem dominate the CO2 seasonal cycle and 

its amplitude increase in the model simulations. Except for CanESM2 (also noted in 

Anav et al., 2013), and BNU-ESM (which simulates a second peak carbon uptake 

around November) to some extent, most models can reproduce the net uptake of 

carbon during spring and summer (when increasing NPP overcomes respiration) and 

the net carbon release during fall and winter at global scale: net carbon uptake peaks 

in June (five models) or July (three models) for the historical period, and exclusively 

in June for the future period. However, the model spread on amplitude is large: 

CESM1-BGC and NorESM1-ME, which has the same land model (CLM4) that 

features an interactive nitrogen cycle, are characterized by a small seasonal amplitude 

of −NBP — merely 30% of those on the high end of the models (IPSL-CM5A-LR 

and MPI-ESM-LR). The seasonal amplitude of multi-model ensemble NBP, 

computed as maximum minus minimum (June-October), has increased from 2.7 PgC 

Month−1 to 4.7 PgC Month−1 (Figure 4-3d). This 2 PgC Month−1 amplitude increase is 

the sum of enhanced net carbon uptake in June and higher net release in October, and 

the enhancement in uptake (1.4 PgC Month−1) is nearly three times as large as the 

release increase (0.5 PgC Month−1).  

 We then investigate the June and October changes of −NPP and Rh
*, 

respectively. By definition, their sum should equal to the amplitude change of −NBP. 

NPP has increased in all months (Figure 4-3e, f), with much larger changes during the 

NH growing season. The amplitude of multi-model ensemble NPP has increased from 

4.8 PgC Month−1 to 7.1 PgC Month−1, and an increase from 2.7 to 4.3 PgC Month−1 is 

found for Rh
*. In June, NPP increase (4.5 PgC Month−1) is larger than that of Rh

* (3.1 
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PgC Month−1), resulting in enhanced net uptake. In October, NPP increase (1.9 PgC 

Month−1) is smaller than that of Rh
* (2.4 PgC Month−1), leading to enhanced net 

release. These results are consistent with trends of maxima and minima in Figure 4-

1.The models also indicate a shift in peak NPP from July to June, consistent with the 

shift of CO2 minima.  

 

Spatial and latitudinal contributions 

 To further investigate the regional contribution to NBP amplitude increase, we 

plotted the 10-model mean −NBP changes (Figure 4-4) over peak NH growing season 

(May-July, panel a) and dormant season (October-December, panel b). Because the 

models disagree on the time of maximum and minimum NBP (Figure 4-3), our choice 

of doing seasonal averages would be more representative of the models than 

averaging over one month. Note that the difference between the two seasonal 

averages is smaller than the peak-to-trough amplitude, but here we are only 

concerned with the spatial pattern. We saw stronger net carbon uptake in May-July 

almost everywhere north of 45°N, and also over the Tibetan Plateau and some places 

near equator. Net carbon uptake weakens over Western United States and Central 

America, South and Southeast Asia and Central South America. The change of net 

carbon release in October-December generally shows an opposite spatial pattern, with 

a noticeably smaller magnitude north of 45°N. 

 In addition, we calculated the corresponding zonal averages (panel c). The 

area-weighted totals of the zonal mean curves correspond to the future minus 

historical averages of global total −NBP (Figure 4-3d), averaged over May-July and  
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Figure 4-4: Spatial patterns and latitudinal distributions of 10-model mean −NBP (gC 

m−2 day−1) changes between 2081-2090 and 1961-1970, during mean a) peak growing 

season (May-July) and b) dormant season (October-December). Panel c aggregates 

the spatial patterns in panels a and b zonally, where the black curve corresponds to 

the −NBP changes in May-July (panel a), and the red curve corresponds to the −NBP 

changes in October-December (panel b). Further reduction of −NBP in peak growing 

season—where the black curve falls on the left of the zero line, and increase of −NBP 

in dormant season—where the red curve is on the right of the zero line, both 

contribute to amplitude increase. We shade those instances in green, and shade the 

reversed case (contribute negatively to global total −NBP amplitude increase) in 

yellow. It is clear that the amplitude increase is dominated by the boreal regions, and 

by changes in peak growing season.  

 

 

October-December, respectively. These two curves do not account for phase 

difference; instead, they approximate latitudinal contribution to the amplitude 

increase of global total −NBP. It is apparent that this increase is dominated by regions 



 

 103 

 

north of 45°N with a weak contribution from the Southern Hemisphere tropics (25°S-

0°). The Northern subtropical region and Southern Hemisphere (10-30°N, 55-35°S) 

partly offset the amplitude increase. It is also clear that the amplitude increase is 

dominated by changes in peak growing season (the green shade is larger on the left of 

the zero line than on its right), consistent with our findings in the previous section. 

 Analogous to the cold-warm seasonality in the temperate/boreal region, the 

tropics has distinctive dry and wet seasons, and recently Wang et al. (2014) suggested 

the tropical ecosystem is becoming more sensitive to climate change. In our analyses 

on the multi-model ensemble patterns, the tropical region exhibits a small negative 

contribution to the seasonal amplitude increase of global total −NBP. This does not 

mean the net carbon flux in the tropics, which has a different seasonal cycle phase, 

would experience an amplitude decrease in the future. To illustrate the seasonal 

amplitude change at different latitudes, we show the zonal amplitude of NBP in the 

historical (black) and future (red) periods for all models (Figure 4-5). At every 2° 

band, we first calculated a ten-year mean seasonal cycle, then compute its amplitude 

(maximum minus minimum). Most models predict an increase in NBP seasonal 

amplitude at almost every latitude under the RCP85 emission scenario. Only two of 

the models, CanESM2 and MIROC-ESM, predict decreased seasonality for parts of 

the tropics and subtropics. Unlike in Figure 4-4c, an area-weighted integral cannot be 

performed due to different phases zonally. The Southern Hemisphere has an opposite 

phase from its Northern counterpart, but its magnitude is small due to its small land 

area. The two subtropical maxima around 10°N and 10-15°S reflect the wet-dry 

seasonal shift in the Inter-Tropical Convergence Zone (ITCZ) and monsoon  
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Figure 4-5: Zonal amplitude of NBP from the 10 CMIP5 models (PgC Month−1 per 2° 

band), averaged over 1961-1970 (black) and 2081-2090 (red). For each model, NBP 

is first regridded to a 2° × 2° common grid. Monthly zonal totals are then computed 

for every 2° band, which determine the amplitude (maximum minus minimum) at 

every band. The Southern Hemisphere has an opposite phase from its northern 

counterpart, but its magnitude is small due to its small land area. The two subtropical 

maxima around 10°N and 10-15°S reflect the wet-dry seasonal shift in the Inter-

Tropical Convergence Zone (ITCZ) and monsoon movement. They have similar 

magnitude as the Northern Hemisphere maxima in about a third of the models, 

however their net contribution to global total NBP seasonal amplitude is small, 

because they are out of phase and largely cancel each other out. 
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movement. They are comparable to the NH maxima in terms of both amplitude and 

amplitude increase for about a third of the models, however they are out of phase and 

largely cancel each other out.  

 To further illustrate this cancelation effect, we aggregated monthly −NBP 

over six large regions: the globe (90°S-90°N), Northern boreal (50-90°N), Northern 

temperate (25-50°N), Northern tropics (0-25°N), Southern tropics (25°S-0°) and 

Southern Hemisphere (90-25°S) (Figure 4-6). It is clear that the changes of global 

−NBP seasonal cycle mostly come from the Northern boreal region; it partly comes 

from the Northern temperature region in a few models. The seasonal cycle of the 

Northern tropics is characterized by spring maxima and fall minima, and prominent 

increases of its seasonal amplitude are found for BNU-ESM, GFDL-ESM2M and 

IPSL-CM5A-LR. However, they are largely counterbalanced by the Southern tropics. 

For GFDL-ESM2M, changes in the Southern tropics are larger than its Northern 

counterpart, but even so, the net contribution of tropical regions to its global −NBP 

seasonal amplitude (September maxima minus June minima) increase is limited to 

about 25%, the largest of all models. 
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Figure 4-6: Seasonal cycles of global and regional total –NBP, averaged over 1961-

1970 (black) and 2081-2090 (red). The last month of the year is repeated. The 

Northern and Southern subtropics are clearly out of phase and largely cancel each 

other out. GFDL-ESM2M represents the largest tropical contribution to its global 

−NBP seasonal cycle (maxima in September and minima in June) of all models, 

accounting for about a quarter of the amplitude increase. 
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Mechanisms for amplitude increase 

 As discussed in Section 1, two major mechanisms for amplitude increase 

identified in previous literature are CO2 fertilization effect and high latitudes 

“greening” in a warmer climate. Both mechanisms lead to enhanced ecosystem 

productivity during peak growing season, and consequently more biomass to 

decompose in dormant season, therefore increasing the amplitude of NBP seasonal 

cycle. Because models have different climate and CO2 sensitivity (Arora et al., 2013), 

their relative importance may vary. In the case of CMIP5 ESMs, two additional 

sensitivity experiments are recommended: Fixed Feedback 2 (esmFdbk2) and Fixed 

Climate 2 (esmFixClim2). The former keeps CO2 concentration fixed but allows 

physical climate change responding to increasing historical and future (RCP4.5) 

concentrations; the latter keeps climate fixed under preindustrial CO2 condition but 

allows the carbon cycle to respond to historical and future (RCP4.5) CO2 increase. 

This setup does not permit quantifying the contribution of CO2 increase and climate 

change to NBP amplitude increase: one major difference is the use of RCP4.5 

concentrations instead of RCP8.5 emissions. However, we can still make qualitative 

assessments by examining the spatial patterns. We will focus on the high latitude 

regions, which contribute most to amplitude increase of global total NBP.  

 Of the 10 models we studied, only CanESM2, GFDL-ESM2M and IPSL-

CM5A-LR have submitted NBP output for these two experiments (MIROC submitted 

output for esmFixClim2 only). Here we display the spatial patterns of −NBP changes 

for GFDL-ESM2M (Figure 4-7) and IPSL-CM5A-LR (Figure 4-8). CanESM2 results  
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Figure 4-7: Spatial patterns of GFDL-ESM2M −NBP (gC m−2 day−1) changes 

between 2081-2090 and 1961-1970, during mean peak growing season (May-July, 

first row) and dormant season (October-December, second row) for the esmFdbk2 

(first column, constant CO2 fertilization and changing climate) and esmFixClim2 

(second column, constant climate and rising CO2) experiments. The Northern high 

latitude regions show mixed response to climate change during peak growing season 

(panel a), and most of the Northern temperate and boreal regions see enhanced carbon 

uptake under elevated CO2 (panel b). Net carbon release is increased both under 

climate change (panel c) and elevated CO2 conditions (panel d), however they have 

different spatial patterns. 

 

 

are not shown because it does not correctly reproduce the phase of global total NBP 

seasonal cycle. The changes of −NBP for both models during peak growing season 

are clearly dominated by CO2 fertilization effect (right panels). In contrast, climate 

change under fixed CO2 fertilization conditions has mixed effects on high latitude 

regions. Northern high latitude net carbon release in October-December is increased 

both under climate change (Figure 4-7c) and elevated CO2 conditions (Figure 4-7d) 

for GFDL-ESM2M, but over different regions. For IPSL-CM5A-LR however, net 

carbon release increase in regions north of 45°N is only obvious under elevated CO2 

condition. 
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Figure 4-8: Same as figure 4-7, but for IPSL-CM5A-LR.  Both the carbon uptake in 

peak growing season and net carbon release in dormant season are clearly dominated 

by changes in atmospheric CO2 rather than climate for this model.  

 

 

 Our results only indicate CO2 fertilization effect is the dominant factor for 

NBP seasonal amplitude increase in some models. For models with strong carbon-

climate feedbacks and weak/moderate water constraints in Northern high latitude 

regions, climate change may be more important. However, we cannot find a clear 

example due to data availability. MIROC-ESM is known to have strong carbon-

climate feedback (Arora et al., 2013). From its simulation under fixed climate (figure 

not shown), we found no obvious patterns of widespread net carbon release increase 

in dormant season, suggesting climate change may play a bigger role for this model. 

The HadGEM model is another possible candidate; it is also a particularly interesting 

model to analyze since one of its historical simulations represented the largest 
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increase in CO2 amplitude in Graven et al. (2013). Unfortunately, for the ESM 

simulations, both CO2 and NBP from HadGEM are not available on the ESGF 

servers. 

 

Relationship with mean carbon sink 

 Our analyses above suggest CO2 fertilization effect is a major mechanism 

causing the amplitude increase in some models. If it is important in most models, we 

expect to see models with a larger change in mean carbon sink simulate a higher 

increase in seasonal amplitude. By plotting the −NBP change against NBP seasonal 

amplitude increase for all 10 models (Figure 4-9), we found there is indeed a negative 

cross-model correlation (R=−0.73, p<0.05), indicating models with a stronger net 

carbon uptake are likely to simulate a larger increase in NBP seasonal amplitude. 

Note that this result is based on the 10 models we analyzed; it is subject to large 

uncertainty and may change substantially with inclusion or exclusion of certain 

model(s). Again all models show an increase in NBP seasonal amplitude, even though 

they disagree on the direction of future NBP change. While our study hint at a 

possible relationship between mean carbon sink and NBP seasonal amplitude, it is 
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Figure 4-9: Relationship between −NBP change and increase of NBP seasonal 

amplitude, calculated as the differences between 2081-2090 and 1961-1970 for 10 

CMIP5 ESMs. The negative cross-model correlation (R=−0.73, p<0.05) suggests that 

a model with a larger net carbon sink increase is likely to simulate a higher increase 

in NBP seasonal amplitude. 

 

 

beyond our scope to discuss further, or comment on why models show such different 

mean sink estimate. Interested readers may refer to the insightful discussion on this 

issue in Friedlingstein et al. (2013). 
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Discussion 

 We have primarily focused on model ensembles of aggregated quantities. 

Ensemble patterns are sometimes dominated by only a few models due to large 

seasonality variations among the models. However, the close examination of each 

individual model show that the spatial patterns of −NBP change during peak growing 

season (May-July) are all dominated by high latitude regions (approximately north of 

45°N). In CESM1-BGC and NorESM1-ME models, enhanced net carbon uptake are 

confined to some of the high latitude regions (Figure 4-10). Models differ on finer 

details. For example, about half of the models predict an obvious increase of net 

carbon uptake for the Tibetan Plateau. It is worth mentioning that the esmFixClim2 

experiment of MIROC-ESM shows little change in NBP for this region under 

elevated CO2 alone. High latitude regions also dominate the increase of net carbon 

release in October-December for most models (Figure 4-11). One exception is INM-

CM4, which displays very small change in the dormant season, and most of its NBP 

amplitude increase comes from enhanced carbon uptake during peak growing season. 

BNU-ESM and CanESM2 have some limitations in reproducing the correct phase of 

global −NBP seasonal cycle. Exclusion of these two models from ensemble mean 

calculation exhibits very similar spatial and zonal patterns as shown in Figure 4-4. 

Another caveat is the assumption of 1961-1970 as the historical condition and 2081-

2090 as future condition. This choice is valid if the selected variables have roughly 

monotonic trends, and ten years is long enough to smooth out most of the interannual 

variability. Figure 4-2 suggests that this assumption is quite reasonable for model 

ensembles, and acceptable for individual models. 
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Figure 4-10: Spatial patterns of −NBP (gC m−2 day−1) changes between 2081-2090 

and 1961-1970, during peak growing season (May-July mean) for the 10 models. 
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Figure 4-11: Spatial patterns of −NBP (gC m−2 day−1) changes between 2081-2090 

and 1961-1970, during dormant season (October-December mean) for the 10 models. 
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We presented aggregated quantities due to large model uncertainty in space. We have 

largely omitted model evaluation against observations (due to limited observation 

during 1961-1970). However, this step can be helpful in model evaluation studies 

(Anav et al., 2013; Peng et al., 2015). One concern is to examine whether the models 

can reproduce observed CO2 seasonal amplitude increase at the two stations with 

longest observation records—Mauna Loa, Hawaii and Point Barrow, Alaska. To 

address this issue, we extracted simulated CO2 concentration from eight models at 

their model grid that is closest to Mauna Loa in the three-dimensional space (similar 

procedure for Point Barrow). The results of this comparison at one model grid can 

reflect multiple sources of model uncertainties (such as uncertainties in the 

atmospheric tracer transport and mixing simulations). For example, GFDL-ESM2M 

is known to simulate a damped CO2 gradient (Dunne et al., 2013) which has long 

been identified as a deficit in models of the atmospheric CO2 cycle (Fung et al., 

1987).  

 Figure 4-12 (and Figure 4-13 for more details) presents the changes of CO2 

seasonal amplitude at Mauna Loa for the models and observation. CO2 seasonal 

amplitude is underestimated by a factor of 2 in three quarters of the models. However, 

the amplitude increase from ensemble model estimate (0.36±0.24% per year, error 

range represents one standard deviation model spread) is much closer to observation 

(0.34±0.07% per year, error range represents one standard error of the least-squared 

trend calculation). MPI-ESM-LR reproduces both the magnitude and trend of Mauna  
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Figure 4-12: CO2 mean seasonal amplitude (ppm) during 2001-2005 and increase in 

CO2 seasonal amplitude at Mauna Loa during 1959-2005 (% yr−1, linear trend) from 

eight CMIP5 models and observation. The big black circle represent surface CO2 

observation at Mauna Loa, Hawaii (19.5°N, 155.6°W; 3400m above sea level). The 

colored squares represent the 700 hPa (close to the altitude of Mauna Loa station 

surface) CO2 output at the original grid that covers Mauna Loa from each of the eight 

models. Error bars indicate ±1 standard error in the trend calculation. Compared to 

the surface observation, only MPI-ESM-LR and GFDL-ESM2M overestimate CO2 

mean seasonal amplitude at Mauna Loa, while the other models underestimate this 

amplitude. Models split between overestimating and underestimating the CO2 

seasonal amplitude increase at Mauna Loa. 
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Figure 4-13: CO2 seasonal amplitude (1951-2100) from eight models (excluding INM 

and IPSL) at the model grid that covers Mauna Loa, Hawaii (19.5°N, 155.6°W) at 

700hPa. The thick black line represents seasonal amplitude of observed Mauna Loa 

CO2 records during 1959-2005. All curves are computed by the CCGCRV package. 

Note that 1951-2005 model data are from esmHistorical, and 2006-2100 data are 

from esmRCP85. 

 

 

Loa CO2 seasonal amplitude reasonably well. For Point Barrow (Figures 4-14 and 

Figure 4-15), MPI-ESM-LR also simulates a similar amplitude increase to 

observation, but the magnitude of amplitude is much larger (almost twice). All other 

models underestimate the amplitude, but for the amplitude increase, the model 

ensemble (0.46±0.21% per year) again is similar to observation (0.43±0.10% per 

year). MRI-ESM1 is found to reproduce both the magnitude and increase of Point 

Barrow CO2 amplitude quite well.  
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Figure 4-14: CO2 mean seasonal amplitude (ppm) during 2001-2005 and increase in 

CO2 seasonal amplitude at Pt. Barrow during 1974-2005 (% yr−1, linear trend) from 

eight CMIP5 ESMs and observation. The big black circle represent surface CO2 

observation at Point Barrow, Alaska (71.3°N, 156.5°W; 11m above sea level). The 

colored squares represent the CO2 output at lowest model level (four models at 1000 

hPa, and four at 925 hPa) at the original grid that covers Point Barrow from each of 

the eight models. Error bars indicate ±1 standard error in the trend calculation. 

Compared to the surface observation, only MPI-ESM-LR overestimate the CO2 mean 

seasonal amplitude at Point Barrow, while the other models underestimate this 

amplitude. Models split between overestimating and underestimating the CO2 

seasonal amplitude increase at Point Barrow.  
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Figure 4-15: CO2 seasonal amplitude (1951-2100) from 8 models (excluding INM 

and IPSL) at the model grid that covers Point Barrow, Alaska (71.3N, 156.5W) at 

lowest level (four models at 1000hPa, and four others at 925hPa). The thick black line 

represents seasonal amplitude of observed Point Barrow CO2 records during 1974-

2005. All curves are computed by the CCGCRV package. Note that 1951-2005 model 

data are from esmHistorical, and 2006-2100 data are from esmRCP85. 

 

 

 Graven et al. (2013) found the CMIP5 models substantially underestimate the 

amplitude increase of CO2 north of 45°N at altitude of 3 to 6 km. However, we did 

not find the models underestimate Point Barrow CO2 amplitude increase at surface 

level. One big difference is the observational data used for comparison. During the 

1974-2005 period, CO2 seasonal amplitude increases by 0.43% yr−1, or 21.5% over 50 

years at the Point Barrow station. This is much lower than the ~50% amplitude 

increase found between the two aircraft campaigns during 1958-1961 and 2009-2011 
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(Graven et al., 2013). This difference might be attributed to mechanisms controlling 

the vertical profile of CO2 concentration. It is also not clear to what extent the large 

interannual variability of CO2 seasonal amplitude affects the trend estimation of 

observed CO2 amplitude increase. 

 Under the RCP8.5 emission scenario, CMIP5 showed a 62±19% increase of 

CO2 seasonal cycle globally from 1961-1970 to 2081-2090. The increase is 85±48% 

at Mauna Loa (range indicates one standard deviation model spread), and 110±42% at 

Point Barrow. Even though the CMIP5 models are able to reproduce the increase of 

CO2 seasonal amplitude at the two locations, some of the models rely heavily on the 

CO2 fertilization mechanism, which may be too strong compared to observational 

evidence. Previous research suggest it should explain no more than 25% of the 

observation at a high fertilization effect permitted by lab experiments (Kohlmaier et 

al., 1989). Similarly, Randerson et al. (1997) found the linear factor of CO2 

fertilization has to be 4 to 6 times greater than the mean of the experimental values, in 

order to explain the 0.66% yr−1 amplitude increase (north of 55°N) during 1981-1995. 

Recent studies have indicated that some important mechanisms, such as changes in 

ecosystem structure and distribution (Graven et al., 2013) and land use intensification 

(Zeng et al., 2014), are missing in the current CMIP5 models. Yet another main 

source of uncertainty is future CO2 emissions. The RCP8.5 scenario used to drive the 

ESMs is on the high side of future scenarios. Also, the emission-driven runs simulate 

higher CO2 than observed over the historical period, and such biases are likely to 

accumulate over time as the increase of atmospheric CO2 growth rate accelerates 

(Hoffman et al., 2014). 
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The models do not have the same strength of carbon-climate feedback, but even if 

they do, their response to climate change may vary significantly simply because they 

simulate very different climate change. To briefly address this issue, we present soil 

moisture (Figure 4-16 and 4-17) and near-surface temperature (Figure 4-18 and 4-19)  

 

 

Figure 4-16: Spatial patterns of soil moisture (cm) changes between 2081-2090 and 

1961-1970, during peak growing season (May-July mean) for the 10 models. 
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Figure 4-17: Spatial patterns of soil moisture (cm) changes between 2081-2090 and 

1961-1970, during dormant season (October-December mean) for the 10 models. 
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Figure 4-18: Spatial patterns of near-surface soil temperature (°C) changes between 

2081-2090 and 1961-1970, during peak growing season (May-July mean) for the 10 

models. 
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Figure 4-19: Spatial patterns of near-surface soil temperature (°C) changes between 

2081-2090 and 1961-1970, during dormant season (October-December mean) for the 

10 models. 
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changes for all models. All the models show temperature increase, but in different 

ranges. The more prominent difference was observed in the spatial pattern of soil 

moisture changes predicted by models. The combined effect of soil moisture regimes, 

temperature change and PFT specifications could cause diverse behaviors of models 

over same regions. Such are important caveats that highlight the importance of 

sensitivity experiments and warrant more in-depth future studies. 

 The combined effect of climate and CO2 changes not only alters the balance 

between production and respiration for existing ecosystems, but also lead to changes 

of ecosystem types. For example, Figure 4-20 shows that the tree fraction has 

increased over wide areas of the Northern high latitude regions for MPI-ESM-LR and 

INM-CM4. Figure 4-21 reveals notable natural grass increase over the Northern high 

latitude regions for BNU-ESM. Such widespread vegetation change has not been 

observed during the satellite era, and it is possibly yet another highly uncertain 

mechanism contributing to amplitude increase in some CMIP5 models.  
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Figure 4-20: Changes of tree cover fractions between future (2081-2090) and 

historical (1961-1970) periods from six CMIP5 ESMs. The values represent 

fractional cover changes relative to the whole grid cell, instead of relative change of 

tree cover. For MPI-ESM-LR and INM-CM4, tree fraction has increased over wide 

areas of the Northern high latitude regions. For MIROC-ESM, tree fraction has 

generally decreased over the same regions, possibly in response to a hotter and drier 

climate condition. 
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Figure 4-21: Changes of natural grass fractions between future (2081-2090) and 

historical (1961-1970) periods from six CMIP5 ESMs. The values represent 

fractional cover changes relative to the whole grid cell, instead of relative change of 

natural grass cover. Notable increase over the Northern high latitude regions is found 

for BNU-ESM.  

 

 The major crops are characterized by high productivity in a short growing 

season, and they tend to have larger NBP seasonal amplitude compared to the natural 

vegetation they replace (usually natural grass). An increase in cropland fraction over 

high latitude regions could contribute to the seasonal ampltiude increase of NBP. As 

far as we know, no CMIP5 model has accounted for agricultural intensification, and 

only some models have implemented a conversion matrix (Brovkin et al., 2013). 

Therefore, the most important change implemented in the CMIP5 models is fractional 
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land cover change based on Hurtt et al. (2011). In Figure 4-22 we present the change 

of crop fraction, available from five models. It is apparent that crop area has increased  

 

  

Figure 4-22: Changes of crop fraction between future (2081-2090) and historical 

(1961-1970) periods for five CMIP5 ESMs. Except for INM-CM4, the models show 

similar patterns of crop fraction change, which is expected given they are all driven 

by the same land cover change scenario.  

 

 

mostly in the Tropics, while regions north of 30N have actually seen a decrease (due 

to a variety of factors: cropland abandonment, reforestation, urbanization, etc.). 

Therefore, crop fractional cover change alone may decrease the NBP seasonal 
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amplitude in CMIP5 simulations. A better representation of land use change, 

especially the agricultural intensification, is needed in CMIP5 models to represent the 

CO2 and NBP seasonal cycle better. On a side note, the other major part of land cover 

change—pasture (often treated as natural grass in ESMs, Brovkin et al., 2013) 

fraction change is unlikely to have a significant effect on NBP seasonal amplitude in 

the CMIP5 simulations.  

 

Conclusion 

 Under the RCP8.5 emission scenario, all models examined in this study 

project an increase in seasonal amplitude of both CO2 and NBP. The models’ results 

indicate an earlier onset and peak of Northern Hemisphere biosphere growth and 

decay under future climate and CO2 conditions. The amplitude increase is dominated 

by changes in net primary productivity, and changes in regions north of 45°N. Our 

results suggest the models simulating a larger mean carbon sink increase are likely to 

project a larger increase in NBP seasonal amplitude. Considerable model spread is 

found, likely due to different model setup and complexity, different climate 

conditions simulated by the models, sensitivity to CO2 and climate and their 

combined effects, and strength of feedbacks. Our findings indicate factors including 

enhanced CO2 fertilization and lengthening of growing season in high-latitude regions 

outcompetes possible severe drought and forest degradation (leading to loss of 

biosphere productivity) in the future.  

 Despite of the model consensus in global CO2 and NBP seasonal amplitude 

increase, and a reasonable representation of CO2 seasonal amplitude increase at 
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Mauna Loa and Point Barrow compared to surface in-situ observations, the 

mechanisms contributing to these changes are debatable. CO2 fertilization may be too 

strong, and factors like ecosystem change and agricultural intensification are under-

represented or missing in the CMIP5 ESMs. Future model-intercomparison projects 

should encourage models to participate in consistent and comprehensive sensitivity 

experiments.  
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Chapter 5:  Conclusion and future perspective 

Conclusions addressing main research questions 

 The individual studies in this dissertation examined the causes and future 

projections of CO2 amplitude increase using surface observation-based estimates and 

ecosystem models. In Chapter 2, it was argued that land use/cover change, especially 

agricultural intensification, is an important driver to the observed CO2 amplitude 

increase measured at Mauna Loa and surface stations worldwide. Sensitivity 

experiments conducted by our VEGAS model attributed the long-term trend of FTA 

seasonal amplitude increase approximately equally to CO2, climate, and land 

use/cover change (Figure 2-9). In Chapter 3, a comprehensive comparison of 

simulated amplitude change of carbon flux was conducted for nine terrestrial 

biosphere models including VEGAS. Some models were found to have serious issues 

in simulating the amplitude and phase of average seasonal cycle for 2001-2010 

(Figure 3-1). In addition, spatial analyses highlighted considerable regional difference 

in the effect of CO2, climate and land use/cover changes (Figure 3-11, Figure 3-12). 

For the simulated amplitude increase of FTA, factorial experiments attributed 83±56%, 

−3±74% and 20±30% to CO2, climate change and land use/cover change, respectively 

(Figure 3-9). Finally, in Chapter 4, future projections of CO2 amplitude increase from 

ten fully coupled CMIP5 Earth system models were examined. Some of the CMIP5 

models have terrestrial biosphere model component similar to the models analyzed in 

Chapter 3 (i.e., ORCHIDEE is the terrestrial biosphere model component of IPSL-

CM5A-LR). The CMIP5 models projected an increase of CO2 seasonal amplitude by 
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about 70% for 1961-2090 (Figure 4-1), and most models exhibited a relatively linear 

CO2 amplitude increase throughout that long period (Figure 4-2). 

 Detailed conclusions addressing the main research questions outlined in 

Chapter 1 are presented below: 

 

1.  Is the observed CO2 amplitude increase sufficiently explained by the effects of 

CO2 fertilization and climate change? 

 Agricultural intensification, especially over the Northern mid-latitude regions 

(Figure 2-6), is also an important driver to the observed CO2 amplitude increase 

measured at Mauna Loa and other surface stations (Chapter 2). The VEGAS model is 

the only terrestrial biosphere model that simulates the tripling of agricultural 

production through time-varying management intensity and harvest index (Figure 2-

10). According to VEGAS, the large increase in cropland productivity accounted for 

45% of global FTA amplitude increase, higher than the effect of CO2 fertilization and 

high latitude warming (Table 2-2). One reason was enhanced crop productivity driven 

by agricultural intensification, which was reflected by large trend of NPP increase 

over cropland area (Figure 2-7). Similarly, satellite-based estimate of Normalized 

Difference Vegetation Index (NDVI) also showed greatest increasing rate for 1981-

2010 over cropland and other intensely used land classes (Mueller et al., 2014). 

Another reason was that crops on these intensively managed land demonstrated a 

narrower growing season with higher peak productivity compared to nearby natural 

vegetation (Figure 2-1 inset, Miles et al., 2012). Therefore, cropland could contribute 
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significantly to the amplification of global FTA amplitude, even though it only covers 

about 20% of land area in Northern mid-latitude.  

In addition to change in land use management practices, land cover change 

also had noticeable effect on global FTA amplitude, reducing the trend of global FTA 

amplitude increase by 17% in VEGAS. This was because of a decrease in cropland 

area north of 30N due to a variety of factors: cropland abandonment, reforestation, 

urbanization, etc., where the seasonal cycle of carbon flux over cropland had higher 

amplitude than the natural ecosystem it replaces. However, five of eight other 

TRENDY terrestrial biosphere models (except VEGAS, the TRENDY models do not 

simulate change in land use management) suggested land cover change would 

actually increase global FTA amplitude, as demonstrated by sensitivity experiment 

results (Chapter 3). While land use/cover change on average accounted for 20% of 

global FTA amplitude increase in the nine TRENDY models, the spatial contribution 

was notably different (Figure 3-12), suggesting varied model mechanisms. In many of 

the models, cropland was treated as natural grassland, and whether land conversion 

would increase or decrease FTA amplitude depended on the difference in seasonal 

carbon flux between the old and new vegetation cover. For example, for some models 

(CLM4.5BGC, LPJ, ORCHIDEE), reforestation in the eastern U.S. led to increase in 

FTA amplitude, whereas for some other models (LPX-Bern, VEGAS, VISIT), such 

process resulted in FTA amplitude reduction. Overall, results in this research 

demonstrated that change in land use management and land cover should both be 

considered in explaining the observed CO2 amplitude increase. 
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2. Can the latest generation of terrestrial ecosystem models capture the seasonal 

characteristics of global carbon cycle? 

 Several terrestrial ecosystem models had issues in simulating even the basic 

characteristics of global FTA seasonal cycle (Chapter 3). Five of the nine models 

examined underestimated the amplitude of the FTA seasonal cycle by about 50% 

compared to atmospheric inversions, and some models (ISAM, JULES, LPJ) had the 

tendency to rebound too early in mid-summer, possibly due to the strong exponential 

response of soil respiration to temperature increase. Similarly, the ORCHIDEE model 

exhibited FTA seasonal amplitude over the tropical regions five times as high as the 

multi-model median and atmospheric inversions. Even for the three models 

(CLM4.5BGC, LPX-Bern, VEGAS) that agreed broadly with atmospheric inversions, 

the underlying mechanisms and spatial patterns were substantially different (Figure 3-

12, 3-S2, 3-S3). The comparison results suggested that at most one, possibly none of 

the terrestrial ecosystem models correctly captures the seasonal characteristics of 

global carbon cycle for the right reasons. 

 Previous studies (Keeling et al., 1996; Graven et al., 2013) suggested warming 

over high latitude regions could result in lengthening of growing season and changes 

in ecosystem composition and structure, and therefore contributing to the FTA 

amplitude increase. Aircraft measurements showed the amplitude increase was larger 

at higher latitude (Graven et al., 2013), supporting the role of high latitude warming. 

However, factorial experiments showed that climate change effect in the TRENDY 

models on average exhibited a near neutral (−3±74%) effect on global FTA amplitude. 

The reason was that the enhanced vegetation activity in the high latitude was offset by 
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the reduced seasonality in the mid-latitude regions, possibly due to mid-latitude 

droughts (Buermann et al., 2007). While all the models simulated both mechanisms 

(Figure 3-11), the models’ climate sensitivity varied, and as a result, the simulated net 

effect of climate change on global FTA amplitude was largely divided. Instead, CO2 

fertilization exhibited a dominant role on global FTA amplitude increase (83±56%), 

much higher than the upper limit of earlier estimate (Kohlmaier et al., 1987). Since 

the effect of CO2 fertilization is proportional to gross assimilation rate of vegetation, a 

dominant CO2 fertilization effect was unlikely to fully explain the latitudinal gradient 

of FTA amplitude increase, further suggesting terrestrial biosphere models need 

further improvement in order to capture the seasonal characteristics of global carbon 

cycle. 

 

3. Will the atmospheric CO2 amplitude—indicator of terrestrial ecosystem 

activities—continues to increase in the future?  

 According to results from the CMIP5 Earth system models (Chapter 4), the 

atmospheric CO2 amplitude would continue to increase almost linearly in the future, 

to about 70% higher than 1960s by the end of this century (Figure 4-1, Figure 4-2). 

As revealed by TRENDY’s (Chapter 3) and CMIP5’s sensitivity experiments results 

(Figure 4-6, Figure 4-7), this continuing amplitude increase was likely due to the 

dominant role of CO2 fertilization effect under the business-as-usual high carbon 

emission scenario. In addition, the FTA amplitude increase was mostly attributable to 

higher vegetation productivity (enhanced NPP) during peak growing season (Figure 

4-3), and over most land area over 45N (Figure 4-4). The strong CO2 fertilization 
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effect also overcame increased respiration for the 1961-2099 period (except for 

MIROC-ESM, a model with high climate sensitivity that showed little change in FTA 

amplitude after 2080). In general, the CO2 amplitude increase in the CMIP5 model 

simulations showed little sign of slowing down, suggesting the models might be too 

optimistic and may lack important negative feedbacks such as soil depletion of 

essential nutrients (such as nitrogen and phosphorous), excessive warming/drought, 

air/water pollution, and many other factors related to the intensive activity of 

increasing human population and development. Similar to TRENDY models (Chapter 

3), CO2 fertilization effect in the CMIP5 models was probably too strong at 

ecosystem level. Additionally, the CMIP5 model simulations did not include 

agricultural intensification presented in our VEGAS model (Chapter 2). Agricultural 

intensification was likely an important reason for the historical CO2 amplitude 

increase, and crop yield recently showed signs of stagnation (Ray et al., 2012). 

Therefore, if a weaker CO2 fertilization effect is closer to reality, large increase in 

atmospheric CO2 amplitude is unlikely to occur in the future. 

 

Additional findings from the dissertation 

 Questions regarding the relationship with terrestrial carbon sink and model-

data inconsistency also gave rise to two unique findings below: 

 First, both the CMIP5 and TRENDY models showed a moderate cross-model 

correlation between simulated increase in global land carbon sink (−FTA) and increase 

in global FTA amplitude (Figure 3-13, Figure 4-9). This relationship suggested that a 

larger increase in global land carbon sink is usually accompanied by a larger FTA 
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amplitude increase in model simulation, most likely due to a stronger peak of growing 

season. Considering that most models showed strong CO2 fertilization effect, 

enhanced vegetation gross rate under elevated CO2 likely caused both increased 

carbon sink and stronger peak growing season. One tantalizing possibility is to use 

observed atmospheric CO2 seasonal cycle as an additional observational constraint for 

the future land carbon sink. As previous studies (Randerson et al., 1997; Graven et 

al., 2013) suggested, terrestrial carbon fluxes contribute about 90% to the seasonal 

cycle of CO2. While the inventory-based estimate of residual land carbon sink is 

subject to large uncertainty range (Figure 3-13), atmospheric CO2 measurement in 

general is better constrained. However, additional analyses have to be performed first 

in order to better understand the representativeness of surface CO2 stations, and in 

particular, to what extent can Mauna Loa CO2 observation represent the global 

average CO2. 

 Second, comparison of CMIP5 simulated CO2 with measurements at surface 

stations revealed a major difference in CO2 amplitude observed at surface and a 

higher (3-6 km) altitude. Aircraft CO2 measurements at high altitude suggested a 

much larger amplitude increase (over 1% y−1) than the amplitude increase of surface 

CO2 observation at Point Barrow, Alaska (0.4-0.6 % y−1, depending on the time 

period and data source, in-situ or flask measurements). We showed the most 

consistent comparison between simulated and observed CO2 for 1974-2005 at Point 

Barrow and for 1959-2005 at Mauna Loa, both displaying no obvious 

underestimation in simulated amplitude increase (Figure 4-12, Figure 4-14). It is a 

major mystery why aircraft measurements show much larger amplitude increase than 
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surface observations, suggesting more observation and analyses are necessary. Most 

of the models did show an underestimation of CO2 amplitude averaged over 2001-

2005, similar to the underestimation of global FTA amplitude (Figure 3-1), suggesting 

possible model deficiencies. 

 

Future research directions 

It is “almost inevitable” that the world population will rise from 7.3 billion 

today to 9.7 billion in 2050, according to latest UN projections (United Nations, 

2015). The increase in population and larger ecological footprint per capita would 

potentially further alter the environment. As suggested in this work, in general the 

current models’ representation of the agricultural system is insufficient and seems to 

lack negative feedbacks. In order to produce realistic future simulations until the end 

of this century or longer, it is necessary for the global models to have a bidirectional 

coupling of the human-earth system. 

Efforts expanding our data collection both spatially and temporally would be 

crucial for continuous monitoring, better understanding and informed projection of 

global carbon cycle. Several recent observation campaigns (i.e., the Next-Generation 

Ecosystem Experiments in the arctic and tropics) have already taken place, and they 

will hopefully reduce uncertainties of model parameterizations in these regions. 

Similarly, continuous data collection from satellite CO2 measurements (i.e., 

SCIAMACHY, GOSAT and OCO-2) can be cross validated with ground and aircraft 

observation, providing much needed better data constraints both spatially and 

temporally. In order to monitor and understand ecosystem changes, priority should be 
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given to ensure consistent long-term observations. After analyzing data from different 

sources, regions with high uncertainty can be identified, which will improve the 

efficiency of future experiments. 

The accumulation and advanced processing (i.e., the Multi-Tree Ensemble of 

FLUXNET data in Jung et al., 2009) of observation and observation-based datasets 

have facilitated better assessment and comparison of different models. The recent 

model intercomparison projects (TRENDY, MsTMIP, ISI-MIP, etc.) has also 

provided opportunity to evaluate models under a consistent framework, which is 

helpful for further data-model integrations and assessing ecosystem changes and 

impacts. However, as indicated in this work, more effort should be invested in 

interpreting the model results. Because of the large model spread in simulating the 

terrestrial carbon cycle, the traditional approach of leaning heavily on model 

ensemble mean may risk burying important details from individual model, especially 

if individual model results are not displayed. For smaller model groups, it is 

challenging to participate in all the model intercomparison projects and have a wide 

representation. Therefore, better coordination among different projects and improved 

experiment design should be explored to encourage participation of more modeling 

groups.  

In an effort to improve model’s performance, the VEGAS model was 

improved with a new crop scheme, better high latitude representation, snow scheme 

and Gregorian calendar during the participation of MsTMIP and TRENDY projects. 

Current and planned model development work involves applying data assimilation for 

better parameter estimation and simulation of vegetation diurnal cycle. These 
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improvements will provide foundation for refining crop simulation, along with 

recently available yield and fractional cover data for key crop types (Ray et al., 2012). 

Currently there is one generic crop type in the model, which may not capture the 

seasonal cycle of some crops like winter wheat, leading to a possible overestimation 

of the agricultural intensification effect. Adding an additional crop functional type 

could improve overall crop simulation without over complicating the model, and it 

warrants interesting future work. 

One important feature highlighted in this work is weak CO2 fertilization in 

VEGAS, which has been discussed previously in the Friedlingstein et al. (2006) 

C4MIP (Coupled Carbon Cycle Climate Model Intercomparison Project) study. This 

feature represents our opinion that weaker CO2 fertilization may be more likely than 

strong CO2 fertilization represented in some other models. To verify this scenario, we 

may need additional observational evidence. If this is true, then we have to rethink 

not only the future projection of CO2 amplitude increase, but also the fate of future 

land carbon sink. If the land ecosystems cannot take up as much CO2, or even release 

CO2 in future, then the rate of atmospheric CO2 increase and thus warming of the 

climate could be much faster. Such knowledge is very useful and have significant 

policy implications.  
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