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One of the holy grails of nanofluidic systems is to ensure significant flow rates

without applying a large pressure gradient. This has motivated researchers to study

different mechanisms of liquid transport in nanochannels involving physical effects

that exploit the large surface-to-volume ratio of such nanochannels. This thesis will

focus on two highly efficient non-pressure-driven flow mechanisms in nanochannels

functionalized by grafting the inner walls of nanochannels with end-charged polyelec-

trolyte (PE) brushes. We study two mechanisms to achieve flow augmentation: (i)

ionic diffusioosmosis (IDO), triggered by the application of an external concentration

gradient, and (ii) ionic thermoosmosis (ITO), triggered by a temperature gradient.

We find a non-intuitive scenario where the flow in nanochannels can be significantly

augmented by grafting the nanochannels with PE brushes. Given the difficulty in

attaining a desirable flow strength in nanochannels, we anticipate that this thesis will

serve as an important milestone in the area of nanofluidics.
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Chapter 1: Introduction

In this chapter, brief descriptions are first provided to describe the functionaliza-

tion of nanochannels for polymer and polyelectrolyte (PE) brushes and the different

applications in which such brush-functionalized nanochannels are used. Following

that, the literature on liquid transport in such brush-grafted nanochannels are dis-

cussed. Subsequently, the key research questions that will be addressed in this thesis

are discussed. Finally, the chapter ends with the outline of the structure and the

organization of the thesis.

1.1 Polymer and polyelectrolyte brushes: Applications

When chains of polymer molecules are attached to a substrate densely enough,

the interplay of the steric forces between the polymer molecules (in the form of the

excluded volume interactions) and the entropic effects (in the form of intrachain

elastic interactions) enforce the polymer molecules to attaion “brush”-like config-

uration, characterized by the height of the polymer brushes [1–11]. When these

polymer brushes are charged, they are called polyelectrolyte (PE) brushes [12, 13].

In such a system, an additional electrostatic force of interaction among the brushes

also contributes to the overall brush configuration. The presence of an electrolyte
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around charged PE brush creates an additional force due to the interaction of the

brushes with the induced electric double layer (EDL). The exact extent of this inter-

action depends on various parameters such as the such as the pH and salt content

of the electrolyte, charge density on the brushes, monomer distribution along the

brushes, possible confining effects where brushes are grafted on opposing surfaces,

etc [14–21]. The characteristics of the PE brushes, i.e. the brush height, the brush

grafting density, the charge density on the brushes, can thus be tuned as a response

to the environmental stimuli, which in turn makes these brushes ideal candidates for

functionalizing interfaces for a wide range of applications such as regulating cell ad-

hesion and cell culture [22, 23], modifying the substrate wettability [24–26], targeted

drug delivery [27, 28], enhanced oil recovery [29], stabilizing emulsions [30], design-

ing nanocomposites with tunable properties [31], flow valving [32, 33], ion sensing

and manipulation [34–36], biosensing [37,38], current rectification [39], fabrication of

nanofluidic diodes [40,41], and many more.

1.2 Liquid flows in polymer and PE brush grafted nanochannels

In comparison to the analysis of ion transport, liquid flows in nanochannels func-

tionalized with the grafting of PE brushes have been significantly less studied. This

has been primarily due to the well-accepted understanding that the presence of the

brushes will invariably retard the liquid transport in such brush-grafted nanochannels

stemming from the significantly large drag force imparted by the brushes. In fact,

most of the existing studies on liquid transport in PE-brush-grafted nanochannels
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confirm this message [19, 33, 42–48]. These papers suffer from one key limitation:

while modelling the transport that often depends on the salt concentration of the

electrolyte, they invariably consider a brush height that is unaffected by the salt and

pH effects. In a recent paper, Chen and Das [49] corrected this theoretical lacuna

and probed the electroosmotic (EOS) transport in a nanochannel grafted with end-

charged PE brushes in a setting that accounted for the appropriate salt-dependent

brush configuration. More importantly they discovered a most remarkable fluid me-

chanical situation in the context of liquid transport in brush grafted nanochannels:

they witnessed that for end-charged less densely grafted brushes, the localization of

EDL at the brush tip (this localization becomes stronger at larger salt concentration)

and the effect of the resulting localization of the EOS body force (arising from the

interaction of the EDL charge density and the applied axial electric field) became so

severe that the influence of the brush-induced enhanced drag was overwhelmed and

one witnessed an EOS transport that was more augmented as compared to the EOS

transport in brush-free nanochannels. Of course, for densely grafted end-charged

brushes, the drag force was again found to be larger making the overall EOS trans-

port weaker in comparison to the EOS transport in brush-free nanochannels. In this

thesis, we attempt to build on their work and apply this modeling in the context of an

induced EOS transport in presence of an applied concentration/temperature gradient,

i.e., investigate for the first time the ionic diffusioosmosis and ionic thermoosmosis in

end-charged PE-brush-grafted nanochannels.
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1.3 Main agenda of the present thesis

Our work aims to provide a theoretical basis for the augmentation/reduction of

liquid flows in nanochannels with an applied concentration gradient (Diffusio-osmosis)

and thermal gradient (Thermo-osmosis) across the channel.

Ionic diffusio-osmosis refers to the induction of a flow field and a tangential

electric field in an electrolyte confined in a nano-channel in the presence of an applied

gradient of the solvent concentration. We consider a case where the length of the

nanochannel is small enough such that the concentration profile can be treated as

linear along the length of the channel. In such a system, when there is an applied

charge density on the walls, an electric double layer (EDL) is formed. This EDL

plays an important role in creating an imbalance in the number density of the cations

and anions of the electrolyte in the bulk liquid. Such an imbalance, combined with

the linearly varying profile of the concentration, then triggers a Fickian diffusion of

the electrolyte, thus inducing a flow in the bulk liquid. It is important to note here

that this effect is negligible in a macro-channel, as the double layer is diminutive in

comparison to the channel width. However, such effects become important at micro

and nano scales. This induced flow creates a charge separation due to the difference

in the diffusivity of the ions, and combined with the electric field due to the EDL,

leads to a net electric field, which in turn drives the flow. This, as we will present

in the later chapters, leads to a two way coupling between the induced electric field

and the induced flow field. While the induced electric field is mostly dominated by

the gradient in the number density and not as much by the induced flow field, this
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study provides an insight into the factors influencing the strength and direction of

the induced flow.

On the other hand, Ionic thermo-osmosis occurs when a temperature gradient is

applied across a channel filled with an electrolyte. This temperature gradient has two

significant effects: (i) It creates a gradient in the number concentrations of the ions,

which creates an effect similar to ionic diffusio-osmosis, and (ii) It provokes differential

response between the positive and negative ions in case of a difference in their heats

of transport. Similar to ionic diffusio-osmosis, thus, this leads to an osmotic flow,

which is two-way coupled with the induced electric field. In both these phenomena,

the induced flow field is found to be significantly affected when the channels are

functionalized with PE-brushes. In this study, we will look at some of the factors

that affect this flow: (i) factors that are characteristics of the brushes viz., the length

of the brushes, and (ii) factors relating to the electrolyte, viz., salt concentration and

diffusivity ratios. We find that the interplay of these factors determine to what extent

the flow is either augmented or reduced. This, we believe, would be highly useful in

understanding the physics of the flow augmentation, and in exploring related avenues

for the same.

1.4 Organization of the thesis

Chapter 2 of this thesis deals with the effect of the ionic diffusioosmosis in

the presence of an axial salt concentration gradient in a nanochannel filled with an

electrolyte solution and grafted with end-charged PE brushes. We elucidate the
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importance of such a system based on past studies. Building on the past efforts on

the modeling of EDL electrostatics and brush interaction - both among the PE brushes

and between the PE brushes and the fluid - we then, provide the theoretical foundation

for the underlying physics in the problem. Following a brief explanation of the solution

techniques used, we then provide some interesting results of the parametric studies,

the parameters being concentration of the electrolyte itself, the length of each PE

brush, and the effect of a skewed diffusivities between the cations and the anions of

the electrolyte. We document the differences in the results , and attempt to provide

a physical explanation for the differences.

Chapter 3 of this thesis deals with the effect of the ionic diffusioosmosis in the

presence of an axial temperature concentration gradient in a nanochannel filled with

an electrolyte solution and grafted with end-charged PE brushes. The importance of

such a system lies in the fact that in many situations, the application of a termperature

gradient is easier than the application of a concentration gradient. Following the

template of chapter 2, we provide the theoretical foundation of the brush physics

and the physics of the interaction of the brushes with the electrolyte. We then

provide parametric results for the induced flow field and the induced electric field.

The parameters we have considered in this chapter include the concentration of the

electrolyte, the diffusivity ratio of the cations to anions, the difference in heats of

transport between the cations and the anions, and finally, the brush parameters.

Both the chapters end in a presentation of the summary of our findings, and scope of

future work.
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Chapter 2: Ionic Diffusoosmosis in Nanochannels Grafted with

End-charged Polyelectrolyte Brushes

In this chapter1, we develop a theory to study the imposed axial salt-concentration-

gradient-driven ionic diffusioosmosis (IDO) in soft nanochannels or nanochannels

grafted with end-charged poly- electrolyte (PE) brushes. Our analysis first quanti-

fies the diffusioosmotically induced electric field, which is primarily dictated by the

imposed concentration gradient (CG) with little contribution of the induced osmosis.

This induced electric field triggers an electroosmotic (EOS) transport, while the net

diffusioosmotic (DOS) transport results from a combination of this EOS transport

and a chemiosmotic (COS) transport arising from the pressure gradient induced by

the applied CG. Our results unravel that the DOS transport is massively enhanced in

nanochannels grafted with PE brushes with weak grafting density stemming from the

significantly enhanced EOS transport caused by the localization of the EOS body force

away from the nanochannel walls. This augmentation is even stronger for cases where

the COS transport aids the EOS transport. On the other hand, the DOS transport gets

1Contents of this chapter have been submitted as: R. S. Maheedhara, H. S. Sachar, H. Jing, and

S. Das,“Ionic Diffusoosmosis in Nanochannels Grafted with End-charged Polyelectrolyte Brushes,”

J. Phys. Chem. B (accepted).
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severely reduced in nanochannels grafted with dense PE brushes owing to the severity

of the brush-induced additional drag force. We anticipate that these findings will help

to unravel an entirely new understanding of induced electrokinetic transport in soft

nanochannels.

2.1 Introduction

Grafting nanoscale solid-liquid interfaces (e.g., surfaces of metallic nanoparti-

cles or the inner walls of nanochannels) by charged polyelectrolyte (PE) brushes have

been extensively used for a myriad of applications ranging from targeted drug de-

livery [50–52], oil recovery [53], water harvesting [54], selective sensing of ions and

charged biomolecules [36,55–57], gating and current rectification [35,39,58], and many

more. These applications depend on the functionalities rendered to these interfaces by

such PE grafting and have been quantified in terms of the responses of these brushes

to the substance-specific cues or some specific environmental cues. For such exam-

ples, often only the thermodynamics and the electrostatics of these brushes have been

theoretically probed [1–3, 5–7, 9, 14, 15]. On the other hand, relatively less research

has been conducted for probing the detailed fluid physics at these PE-brush-grafted

nanoscale interfaces. More significantly, the existing studies invariably neglect the role

of thermodynamics (e.g., coupled description of brush configuration and brush elec-

trostatics) in the fluid mechanics description [42,43,45,59–67]. This becomes evident

from the fact that these papers invariably consider a constant, ion-concentration-

independent brush height while modelling fluid flow at the brush-grafted interfaces.
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Very recently Chen and Das addressed this limitation and provided possibly the first

theoretical model where the PE brush thermodynamics has been accounted for in the

description of the flow field in nanochannels grafted with such PE brushes [49]. In

this paper, electroosmotic (EOS) transport through the nanochannels grafted with

end-charged PE brushes (such interfaces designed with end-charged PE brushes have

been considered previously as well [19,68,69]) was investigated – the fluid mechanics

model indeed accounted for the correct thermodynamics and the electrostatic behav-

ior of these end-charged brushes [49]. More importantly, this study established that

the presence of significantly tall brushes with weak grafting density will actually aug-

ment the EOS transport in brush-grafted nanochannels in comparison to the brush-

free nanochannels. This was an extremely counter-intuitive finding given the fact that

the presence of the brushes has always been believed to retard the nanofluidic trans-

port on account of the additional brush-induced drag [33]. This highly non-intuitive

phenomenon was explained by noting that the end-charged brushes localized the EDL

and hence the EDL-induced EOS body force at the non-grafted end of the brushes,

which is significantly away from the wall (the location of the maximum drag force).

As a consequence, the EOS body force of a given strength will have a much larger

effect on the velocity field triggering a much augmented velocity field. For large salt

concentrations, the EDLs became thin and consequently, this effect of the localization

of the EOS body force away from the wall became even more prominent leading to a

larger strength of the EOS transport. Of course, for the PE brushes having a much

larger grafting density, the brush-induced drag force outweighed this effect associated

with the localization of the EDL charge density and hence one indeed witnessed the
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classical result where the presence of the brushes severely weakened the flow field.

In the present paper, we shall study the ionic diffusioosmosis (IDO) in such

nanochannels grafted with end-charged PE brushes. Diffusioosmosis refers to the liq-

uid transport in presence of an applied gradient in concentration in ions or nonionic

solute – this gradient triggers a driving force (in form of pressure gradient and/or

an electric field) that triggers the fluid motion [70–74]. There has been signifiant ef-

fort in fundamentally understanding the DO in presence of both ionic [70,74–85] and

non-ionic solute gradients [73, 86–93] and applying that knowledge for a host of ap-

plications such as driving liquid flows in microchannels [88], amplifying the strength

of interfacial flows [91], designing self-powered microdevices for sensing purposes [93],

photo-induced manipulation of particles at solid-liquid interfaces [94], strategizing

new methods for phase separations [95], and many more. In this paper, we study for

the first time this new electrokinetic problem for soft nanochannels (i.e., nanochannels

grafted with end-charged PE brushes). Our theory accounts for the thermodynamics

and electrostatics of the brushes in developing the fluid mechanics model for the IDO

in brush-grafted nanochannels. Our theory leads us to an integro-differential equa-

tion that is solved numerically to unravel the physics of the IDO. Firstly, we quantify

the diffusioosmotically induced electric field, establishing the manner in which the

imposed concentration gradient (CG) dictates this electric field with insignificant

contribution from the induced osmotic effect. Secondly the diffusioosmotic (DOS)

flow is described as a combination of the induced electroosmotic (EOS) transport

(caused by this induced electric field) and a chemisoosmotic (COS) transport caused

by the induced pressure gradient owing to this imposed CG. We compare the re-
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sults of the PE-brush-grafted nanochannels with that of the brush-free nanochannels.

While there is a less difference in the overall induced electric field between these two

systems by virtue of the fact that the electric field is primarily dictated by the effect

of the imposed CG, the velocity fields vary massively between the brush-free and

brush-grafted nanochannels. The influence of charge localization induced enhance-

ment of the EOS velocity field [49] ensures that for sufficiently long but weakly grafted

brushes, the induced EOS transport and consequently the resulting DOS transport

gets massively enhanced for the nanochannels grafted with the PE brushes. Fur-

thermore, for conditions where the COS transport augments the EOS transport, this

enhancement is even larger. Moreover, such dominant role of the EDL (and hence

EOS body force) localization effect leads to a concentration-dependent behavior of

the DOS flow field in brush-grafted nanochannels that is completely opposite to what

occurs in brush-free nanochannels. Finally, we study the case where the grafting den-

sity of the brushes is much larger and therefore, on account of the dominant influence

of the brush-induced drag force, the DOS transport gets severely reduced as compared

to the DOS transport in brush-free nanochannels. In summary, our paper studies for

the first time the electrokinetic problem of IDO in brush-grafted soft nanochannels

unraveling fluid physics that can be instrumental for novel flow based applications

involving functionalized, soft nanochannels.
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uEOS 

uCOS Einduced 

∇n∞ > 0 

Figure 2.1: Schematic showing DOS transport in nanochannels grafted with end-

charged brushes. The DOS flow is a combination of the EOS (caused by the induced

electric field) and the COS flows, as illustrated in the schematic. The schematic shown

here corresponds to non-negative values of the dimensionless diffusivity difference β.
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2.2 Theory

We consider a nanochannel of half height h and length L grafted with end-

charged PE brushes (see Fig. 1). The nanochannel is connected to bulk microfluidic

reservoirs. We have previously studied the electrostatics, thermodynamics, ionic cur-

rent, and electrokinetic transport in such nanochannels [19, 49, 69]. The calculation

of the electrokinetic transport in these papers [49] is unique in the sense that it ac-

counts for the appropriate coupling of the brush configuration and the resulting EDL

electrostatics while computing the electrokinetic fluid flow. In the present paper, we

would use this information on the coupled brush configuration and the resulting EDL

electrostatics in order to quantify the ionic DOS transport. The IDO is triggered by

imposing a constant axial ionic concentration gradient of strength ∇n∞ = dn∞/dx,

such that L∇n∞/n∞(x = 0) (here n∞ is the bulk number density of the electrolyte

ions or the electrolyte ion concentration in the microfluidic reservoirs). We shall first

provide the coupled equilibrium description of the configuration of the end-charged

PE brush and the induced EDL electrostatics. This description has already been

provided in our previous paper [49] – we repeat it here for the sake of completion.

Next, we shall use this equilibrium description to quantify the electric field induced

due to the diffusioosmotic effect and the resulting nanofluidic velocity field (occurring

due to the combined influence of the induced EOS and the COS velocities).
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2.2.1 Equilibrium thermodynamics and electrostatics of the end-charged

brushes

The equilibrium behavior of the end-charged brushes is obtained by minimizing

the total free energy F of the brushes and the surrounding electrolyte:

F = FB,els + FB,EV + FB,elec + FEDL, (2.1)

where FB,els, FB,EV and FB,elec are the elastic, excluded volume, and electrostatic free

energies associated with the brushes and FEDL is the free energy associated with the

induced EDL. These individual free energies can be expressed as:

FB,els
kBT

=
3d2

2Npa2
k

, (2.2)

FB,EV
kBT

=
ωN2

pσ

d
, (2.3)

FB,elec =
ψsσch
σ

, (2.4)

FEDL =
1

σ

∫ 0

−h
fEDLdy. (2.5)

In the above equations, d is the brush height, Np is the polymer size (or the number

of monomers in the polymer chain), ak is the Kuhn’s length, ω = 1−2χ
2
a3
k (where χ is

the Flory exponent), ψs is the electrostatic potential at the non-grafted charged end

of the brushes, σch is the constant (pH-independent) charge density of the ends of the

PE brushes, σ is the grafting density, and kBT is the thermal energy. Finally, fEDL

is the density of the EDL energy and can be expressed as:

fEDL = −ε0εr
2
|dψ
dy
|2+eψ (n+ − n−)+kBT

[
n+

(
ln

(
n+

n∞

)
−1

)
+n−

(
ln

(
n−
n∞

)
−1

)]
,

(2.6)
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where ε0 is the permittivity of free space, εr is the relative permittivity of water, ψ

is the electrostatic potential, n± is the number density of the symmetric monovalent

electrolyte ions, and n∞ is the bulk number density of the ions.

The final free energy equation obtained by using eqs.(2-6) in eq.(1) is minimized to

obtain the equilibrium conditions. The minimization with respect to ψ yields the

Poisson equation:

d2ψ

dy2
= −e (n+ − n−)

ε0εr
. (2.7)

On the other hand, the minimization of this free energy equation with respect to n±

leads to the well-known Boltzmann distribution:

n± = n∞ exp

(
∓ eψ

kBT

)
. (2.8)

Finally the minimization of the free energy equation with respect to ψs yields the

boundary condition at the location of the brush tip (i.e., y = −h+d) for the nanochan-

nel bottom half (see Chen and Das [49] for detailed derivation):(
dψ

dy

)
y=(−h+d)+

−
(
dψ

dy

)
y=(−h+d)−

= − σch
ε0εr

, (2.9)

where d is the equilibrium brush height. The Poisson-Boltzmann equation, obtained

by using eq.(2.8) to replace n± in terms of ψ in eq.(2.7), is solved numerically in

presence of the boundary condition expressed in eq.(2.9) as well as the conditions

expressed below:(
dψ

dy

)
y=−h

= 0,

(
dψ

dy

)
y=0

= 0, (ψ)(y=−h+d)+ = (ψ)(y=−h+d)− . (2.10)

Once the equilibrium ψ and n± distribution have been obtained, we use it in eqs.(5,6)

to compute the equilibrium value of FEDL. Of course, this equilibrium FEDL will
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depend on the brush height d. This equilibrium FEDL is used in the overall free energy,

which is then minimized with respect to d numerically to obtain the equilibrium brush

height (i.e., equilibrium value of d). This is the same procedure that we have used in

our previous papers [19,49].

2.2.2 Diffusioosmotically Induced Electric Field

In order to obtain the diffusioosmotically induced electric field, we need to

equate the net current in the system to zero, which is identical to making the integral

of the difference between the cationic and anionic fluxes to zero, i.e.,

∫ h

−h
(J+ − J−) dy = 0, (2.11)

where the fluxes (J±) can be expressed as:

J± = −D±
[
∇n± ±

e

kBT
n± (∇ψ − E)

]
+ n±u. (2.12)

In the above equation, D± are the diffusivities of cations and anions, u is the in-

duced velocity field (a combination of the EOS and COS velocity fields) and E is the

induced electric field. Using eq.(3.2) in eq.(3.1), we shall eventually get the dimen-

sionless diffusioosmotically induced electric field (please see the Appendix for detailed

derivation):

Ē =
E

E0

=Pe

∫ 1

−1
4ū sinh (ψ̄)dȳ∫ 1

−1

[
(1 + β1) e−ψ̄ + (1− β1) eψ̄

]
dȳ

+

∫ 1

−1

{
n̄′1

[
(1 + β) e−ψ̄ − (1− β) eψ̄

]}
dȳ∫ 1

−1

{[
(1 + β) e−ψ̄ + (1− β) eψ̄

]}
dȳ

,

(2.13)
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where ȳ = y/h, E0 = kBT/(eL), ū = u/U∗ (where U∗ is the characteristic velocity

scale that defines the Peclet number: Pe = U∗L/(D+ + D−)), ψ̄ = eψ/(kBT ), β =

D+−D−
D++D−

, and n̄′1 = L∇n∞
n∞

.

2.2.3 Diffusioosmotic (DOS) Velocity Field

In order to obtain the DOS velocity field, we shall employ the Navier-Stokes

(NS) equation. The NS equation in y-direction yields the necessary pressure field,

i.e.,

∂p

∂y
+ 2e (n+ − n−)

dψ

dy
= 0

⇒ ∂p = 2kBTn∞ sinh (ψ̄)dψ̄ ⇒p = patm + 2kBTn∞
[
cosh (ψ̄)− 1

]
. (2.14)

Finally, the NS equation in the x-direction yields (considering only the nanochannel

bottom half):

η
d2u

dy2
=
∂p

∂x
+ η

u

kd
− e (n+ − n−) (E −∇ψ) for − h ≤ y ≤ −h+ d,

η
d2u

dy2
=
∂p

∂x
− e (n+ − n−) (E −∇ψ) for − h+ d ≤ y ≤ 0. (2.15)
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Eq.(3.6) can be expressed in dimensionless form as (see the Appendix for the detailed

derivation):

d2ū

dȳ2
= A

{
n̄′1
[
cosh (ψ̄)− 1

]}
+ α2ū+

A sinh (ψ̄)

Pe
∫ 1

−1
4ū sinh (ψ̄)dy∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

+

∫ 1

−1
n̄′1

[
(1 + β) e−ψ̄ − (1− β) eψ̄

]
dȳ∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ


for − 1 ≤ ȳ ≤ −1 + d̄,

d2ū

dȳ2
= A

{
n̄′1
[
cosh (ψ̄)− 1

]}
+

A sinh (ψ̄)

Pe
∫ 1

−1
4ū sinh (ψ̄)dy∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

+

∫ 1

−1
n̄′1

[
(1 + β) e−ψ̄ − (1− β) eψ̄

]
dȳ∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ


for − 1 + d̄ ≤ ȳ ≤ 0,

(2.16)

where d̄ = d/h, η is the dynamic viscosity, A = 2kBTn∞
L

h2

ηU∗
= Πosm

Πdrive
, and α = h2/kd

[where kd = a2
k

(
d

σa3kNpφ

)2

is the permeability, with φ being the monomer distribution

along the length of the PE brush]. It is obvious that we arrive at eq.(3.6) by using

the expression of E [see eq.(2.13)]. Eq.(3.6) is an integro-differential equation in ū,

which is solved numerically in presence of the boundary conditions expressed below.

(ū)ȳ=−1 = 0, (ū)ȳ=(−1+d̄)+ = (ū)ȳ=(−1+d̄)− ,

(
dū

dȳ

)
ȳ=(−1+d̄)+

=

(
dū

dȳ

)
ȳ=(−1+d̄)−

,

(
dū

dȳ

)
ȳ=0

= 0.

(2.17)

Subsequently, this ū is used to obtain the dimensionless electric field Ē [see eq.(2.13)].

Obviously, both the solution for ū and Ē will depend on ψ̄ – section IIA provides a

method to calculate ψ̄.
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2.3 Results and Discussions

2.3.1 Variation of the EDL electrostatic field ψ

Fig. 2 provides the variation of the dimesnionless EDL electrostatic field ψ for

nanochannels with and without the grafted PE brushes for different values of bulk

salt concentration. We ensure that the charge density of the non-grafted ends of the

end-charged brushes is identical to the charge density of the inner walls of the brush-

free nanochannels. In our previous paper, we have presented the results for the ψ

variation for nanochannels grafted with end-charged PE brushes [49]. We repeat them

here for the sake of continuity and for the better understanding of the diffusioosmotic

phenomena. For the nanochannel without the brushes the location for the |ψ̄|max

is at the nanochannel walls, given the fact that the nanochannel walls are charged

[see Fig. 2(a)]. This changes for the nanochannels grafted with the end-charged PE

brushes. For these brushes the charges are localized at their non-grafted ends and

as a consequence, one witnesses the attainment of |ψ̄|max at the location of these

ends, i.e., significantly away from the nanochannel walls. Smaller ` or larger grafting

density leads to a larger equilibrium brush height – as a consequence, we witness the

attainment of |ψ̄|max at a location that is further away from the nanochannel wall for

` = 22 nm [see Fig. 2(c)] as compared to ` = 80 nm [see Fig. 2(a)]. Furthermore,

regardless of the presence or the absence of the PE brush grafting, one witnesses a

larger |ψ̄| at any transverse location for a smaller salt concentration (c∞). Smaller

c∞ implies a larger value of the EDL thickness λ – therefore, given the fact that
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(a) (b) 

(c) 

Figure 2.2: Transverse variation of ψ̄ for (a) brush-free nanochannels, (b) nanochan-

nels grafted with PE brushes with large grafting density (with ` = 88 nm, Np = 2000),

and (c) nanochannels grafted with PE brushes with weak grafting density (with

` = 22 nm, Np = 2000). Results are shown for three different bulk salt concen-

trations, namely c∞ = 10−4 M, 10−3 M, 10−2 M for each of (a-c). Other parame-

ters are σch = −0.0008C/m2 (this charge density is the charge density for brush-free

nanochannel walls and the ends of the end-charged PE brushes for nanochannels with

PE brushes), h = 100nm, χ = 0.4, ak = 1nm, kB = 1.38 × 10−23 J/K, T = 300 K,

e = 1.6 × 10−19C, ε0 = 8.8 × 10−12F/m. These figures are adapted with permission

from Ref [49], Copyright (2017) American Chemical Society.
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(a) (b) 

(c) 

Figure 2.3: Variation of the diffusioosmotically induced electric field (expressed in

dimensionless form) with bulk salt concentrations for (a) brush-free nanochannels, (b)

nanochannels grafted with PE brushes with large grafting density (with ` = 88 nm,

Np = 2000), and (c) nanochannels grafted with PE brushes with weak grafting density

(with ` = 22 nm, Np = 2000).. Results are shown for three different values of β for

each of (a-c). We consider L∇n∞
n∞

= 0.1, while the other parameters are identical to

those used in Fig. 2.
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|ψ̄| ∝ λσch, one should witness a larger |ψ̄| for a given σch. These information on the

variation on ψ̄ will help us to better explain the different DOS behaviors.

2.3.2 Variation of the diffusioosmotically induced electric field

Fig. 3 shows the variation of the dimensionless diffusioosmotically induced

electric field for the nanochannels with and without the brushes as a function of

salt concentration and β. The electric field is a combination of the osmotic effects

(implying the electric field caused by the downstream advective migration of the

charge imbalance present within the EDL) (please see the first term on the right

hand side in eq. 13) and the imposed concentration gradient (CG) effect (please

see the second term on the right hand side in eq. 13). The osmotic contribution

is relatively weak in comparison to that due to the CG effect. The exact extent

of the relative contribution of this osmotic component, as will be discussed later,

depends on the presence (and the grafting density) of the brushes as well as the

salt concentration. On the other hand, the contribution of the imposed CG effect

on the induced electric field is contributed both by the diffusivity difference between

the cations and anions (dictated by the parameter β) and the very fact that there

is a charge imbalance induced by the EDL. For β = 0, 0.5,−0.5, this CG-imposed

contribution of the electric field can be obtained as (considering small |ψ̄| and therefore

using DH approximation in eq. 13, i.e., expressing e±ψ̄ = 1± ψ̄):

(
Ē
)
CG,β=0

= − n̄
′
1

2

∫ 1

−1

ψ̄dȳ,
(
Ē
)
CG,β=0.5

= n̄′1

∫ 1

−1
(1− ψ̄)dȳ∫ 1

−1
(2− ψ̄)dȳ

,

(
Ē
)
CG,β=−0.5

= −n̄′1

∫ 1

−1
(1 + 2ψ̄)dȳ∫ 1

−1
(2 + ψ̄)dȳ

. (2.18)
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ψ̄ is always negative and n̄′1 is always positive. Accordingly, from eq.(18), we can

easily identify why for β = 0 one witnesses a positive electric field for both brush-

free and brush-grafted nanochannels (see Fig. 3). On the other hand, for β > 0, a

negative ψ̄ would imply an even larger positive value of E for both brush-free and

brush-grafted nanochannels (see Fig. 3). This effect of β > 0 can be understood

by noting the fact that a larger mobility of the counterions (which corresponds to

a positive β) augments the effect associated with the charge difference of the EDL.

Smaller c∞ leads to a larger magnitude of |ψ̄|. Accordingly for both β = 0 and

β = 0.5, the positive value of E will be larger for smaller c∞ for both brush-free

and brush-grafted nanochannels (see Fig. 3). Completely contrary to these behaviors

is the case corresponding to β = −0.5. This refers to a situation where the coions

have higher mobilities, which in turn will nullify the effect associated with the EDL

electrostatic potential. Accordingly for weak enough value of |ψ̄| the electric field

can indeed be negative (see eq. 18) and this negative magnitude is enhanced for

weaker |ψ̄| values. This also justifies a weaker negative magnitude of ψ for smaller

c∞ that corresponds to a larger magnitude of |ψ̄|. This is true for both nanochannels

with and without grafted PE brushes. We next consider the influence of the osmotic

component of the electric field. For the same DH consideration, we can use eq.(13)

to show that this component is proportional to ūψ̄, i.e., proportional to the effects of

advection of the EDL charge density. For the case of very densely grafted PE brushes,

the significantly small velocity component (as evident in Fig. 6 later) would lead to a

very weak contribution of the osmotic effect and accordingly, as yielded by our analysis

(results not shown here) the DOS electric field is effectively the electric field due to the
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imposed CG. On the other hand, for cases of brush free nanochannels or nanochannels

grafted with PE brushes with weak grafting density, the velocity field is significantly

higher ensuring a finite (albeit less than 20%, as revealed by our analysis) variation of

the overall electric field. However, this finite osmotic contribution mostly occurs for

smaller salt concentration that yields a much larger value of ψ̄ (see Fig. 2). Finally,

for the situations where the osmotic component has insignificant contribution to the

overall electric field (namely for the case of nanochannels grafted with PE brushes

with large grafting density or nanochannels with or without brushes operating at

large salt concentration), we witness insignificant effect of the presence of brushes on

the overall value of E for a given β and c∞. For such cases where the effect of the

imposed CG dominates, the electric field is solely dictated by the integral of ψ̄ across

the channel height. This integral is proportional to the net surface charge density (at

either the walls of the brush-free nanochannels or the non-grafted ends of the end-

charged brushes decorating the nanochannel walls). This charge density being same

for both brush free and brush-grafted nanochannels, we witness this nearly same E

for a given c∞ and a given β for both brush-free and brush-grafted nanochannels.

2.3.3 Variation of the diffusioosmotic (DOS) velocity field

Case of brush-free nanochannels:

In Fig. 4, we show the variation of the diffusioosmotically induced velocity field. This

velocity field is a combination of the EOS velocity and the COS velocity fields. The
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Figure 2.4: Transverse variation of the dimensionless DOS velocity field (shown by

bold lines) and EOS velocity field (obtained by switching off the contribution of the

pressure gradient in eq. 15 and shown by dashed lines) for (a) β = 0, (b) β = 0.5, and

(c) β = −0.5. In the insets of (a) and (b) the EOS and the DOS velocity fields for

c∞ = 0.01 M are magnified. (d) Transverse variation (for the nanochannel bottom

half) of Ch = c∞
[
cosh (ψ̄)− 1

]
and Sh = c∞ sinh (ψ̄), both of which are independent

of β. The results are shown for the brush-free nanochannels and for two different salt

concentrations (c∞ = 0.0001 M, 0.01 M). Other parameters used in this study are

same as that in Fig. 3.
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(a) (b) 

(c) (d) 

Figure 2.5: Transverse variation of the dimensionless DOS velocity field (shown by

bold lines) and EOS velocity field (obtained by switching off the contribution of

the pressure gradient in eq. 15 and shown by dashed lines) for (a) β = 0, (b)

β = 0.5, and (c) β0.5. In the inset of (a) the EOS and the DOS velocity fields for

c∞ = 0.01 M are magnified. (d) Transverse variation (for the nanochannel bottom

half) of Ch = c∞
[
cosh (ψ̄)− 1

]
and Sh = c∞ sinh (ψ̄), both of which are independent

of β. The results are shown for the brush-grafted nanochannels (with Np = 2000

and ` = 80 nm) and for two different salt concentrations (c∞ = 0.0001 M, 0.01 M).

Other parameters used in this study are same as that in Fig. 3.
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(a) (b) 

(c) (d) 

Figure 2.6: Transverse variation of the dimensionless DOS velocity field (shown by

bold lines) and EOS velocity field (obtained by switching off the contribution of the

pressure gradient in eq. 15 and shown by dashed lines) for (a) β = 0, (b) β = 0.5,

and (c) β = −0.5. In the inset of (a) the EOS and the DOS velocity fields for

c∞ = 0.01 M are magnified. (d) Transverse variation (for the nanochannel bottom

half) of Ch = c∞
[
cosh (ψ̄)− 1

]
and Sh = c∞ sinh (ψ̄), both of which are independent

of β. The results are shown for the brush-grafted nanochannels (with Np = 2000

and ` = 22 nm) and for two different salt concentrations (c∞ = 0.0001 M, 0.01 M).

Other parameters used in this study are same as that in Fig. 3.
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COS velocity is triggered on account of the axial pressure gradient induced by the

imposition of the axial CG. In order to distinguish between the relative contributions

of the EOS and the COS velocity fields in deciding the overall DOS velocity field,

in Figs. 4-6 we plot both the overall DOS velocity field as well as only the EOS

velocity field (obtained by switching off the pressure gradient term in eq. 15). We

first consider the case of brush free nanochannels with β = 0 [see Fig. 4(a)]. For

this condition the induced DOS electric field (E) is positive for all values of c∞ [see

Fig. 3(a)] with E increasing drastically with a decrease in c∞. Consequently, the

EOS velocity field is invariably positive (i.e., occurs from left to right) and increases

significantly with a decrease in c∞. However, the overall DOS velocity field bears

the signature of the contribution of the COS component as well. Accordingly, there

is a significant reduction in the net velocity (i.e, the DOS velocity) as compared to

the pure EOS velocity stemming from the fact that the COS velocity being caused

by a positive pressure gradient is invariably negative (i.e., opposes the EOS flow

caused by a positive electric field). Dimensionless COS body force, for a given value

of imposed L∇n∞
n∞

, is proportional to Ch = c∞[cosh (ψ̄) − 1], arising from the fact

that from eq.(16) we get the dimensionless pressure gradient (or the dimensionless

per unit volume COS body force) as An̄′1[cosh (ψ̄) − 1] = 2kBT∇n∞h2
ηU∗

[cosh (ψ̄) − 1] =(
2kBTh

2

ηU∗L

)(
L∇n∞
n∞

)
n∞[cosh (ψ̄)−1] = 103NA

(
2kBTh

2

ηU∗L

)(
L∇n∞
n∞

)
c∞[cosh (ψ̄)−1] (where

c∞ is the concentration in M and NA is the Avogadro number). Fig. 4(d) provides

the transverse variation of Ch, which is independent of β, for two different values

of c∞ for the case of brush free nanochannels. Ch is present only within the EDL

and hence non-existent at locations even slightly away from the nanochannel wall for
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large salt concentrations. This justifies a much lesser retarding contribution of the

COS velocity field for larger c∞. Hence we witness the overall DOS velocity field

to be much smaller than the EOS velocity field for smaller c∞. However, the EOS

velocity field is very small for a larger c∞ owing to a significantly weaker electric field;

accordingly, we witness an actual inversion (i.e., a flow field from right to left) of the

entire DOS velocity field on account of the retarding influence of the COS velocity.

We next consider the case of β = 0.5 for the brush-free nanochannels [see Fig.

4(b)]. For such a positive value of β, the electric field is significantly enhanced [see Fig.

3(a)] causing a significantly larger induced EOS velocity field. Here too an increase in

salt concentration lowers this electric field [see Fig. 3(a)] and hence the EOS velocity

field and also lowers the retarding COS velocity component (as evident from the

lowering of the corresponding COS body force, see Fig. 4(d)] thereby reducing the

difference between the overall DOS velocity and the EOS velocity. Of course, for this

case the electric field and the EOS velocity is significantly larger and positive even for

large c∞ ensuring a net positive DOS velocity field for such c∞. It is worthwhile to

note here that the EOS body force, in addition to being proportional to the electric

field E, is also proportional to Sh = c∞ sinh (ψ̄) stemming from the fact that the

EOS body force varies as A sinh (ψ̄) = 2kBTh
2

LηU∗
n∞ sinh (ψ̄) = 103NA

2kBTh
2

LηU∗
c∞ sinh (ψ̄)

[see eq.(16)]. In Fig. 4(d), we also plot Sh, which being finite only within the EDL

will be non-existent at locations slightly away from the nanochannels wall for large

c∞. Therefore, for β = 0, 0.5, the electroosmotic flow is enhanced for a smaller salt

concentration due to a combined action of larger electric field [see Fig. 3(a)] and a

larger Sh.
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Finally, we consider the case of β = −0.5 for brush-free nanochannels [see Fig.

4(c)]. Here the electric field is negative [see Fig. 3(a)], and consequently the EOS

flow will also be negative, i.e., from right to left. However, as evident from Fig. 3(a),

for β = −0.5, the negative magnitude of the electric field is larger for larger c∞. De-

spite that, we witness a larger magnitude of the negative EOS velocity for weaker c∞,

stemming from the fact that the component Sh is significantly larger (particularly

at locations slightly away from the wall) for smaller c∞. Secondly, given the fact

that the EOS velocity field is negative, the negative COS velocity will augment the

net DOS flow rather than decreasing it. Obviously the COS velocity component is

larger in magnitude for smaller c∞, owing to a larger COS body force for smaller c∞

[see Fig. 4(d)]. Accordingly, one will witness a significantly larger (and significantly

augmented as compared to the pure EOS velocity field) DOS velocity field occurring

from right to left for such small c∞ values. In summary, therefore, we establish the

manner in which parameters such as β and c∞ interplay to dictate the relative con-

tribution of the EOS and the COS velocity fields to dictate the overall DOS velocity

field in the brush-free nanochannel.

Case of brush-grafted nanochannels (Np = 2000, ` = 80 nm):

For the brush-grafted nanochannels, we first consider the case of long, weakly grafted

brushes (quantified by Np = 2000, ` = 80 nm). We start with the case of β = 0 [see

Fig. 5(a)]. As evident from Fig. 3(b), very much like the case of brush-free nanochan-

nels, the electric field is positive and increases with a decrease in c∞. Therefore, there
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will be a positive EOS flow that increases significantly with a decrease in c∞. Also,

very much like the case of the brush-free nanochannels, the variable Ch dictating the

body force for the COS flow (which occurs from right to left) massively increases

for smaller c∞ particularly at locations slightly away from the location of the maxi-

mum charge density (i.e., the non-grafted charged end of the brushes) [see Fig. 5(d)].

Therefore, here too the DOS velocity will be significantly weaker than the EOS ve-

locity for smaller c∞. However, given that the EOS velocity itself is distinctly small

for a larger c∞, the retarding influence of the COS velocity will eventually lead to a

reversal in the direction of the overall DOS velocity for large c∞.

We next consider the case of β = 0.5 [see Fig. 5(b)]. The significantly large

positive electric field [see Fig. 3(b)] will lead to a significantly larger positive EOS

velocity that increases with a decrease in c∞. Of course, here too, the retarding

influence of the COS velocity reduces the flow strength and this reduction is much

more prominent for weaker c∞. It is worthwhile to compare the velocity profiles with

those of the brush-free nanochannels at this point. Despite the electric field values

being similar for both brush-free and brush-grafted nanochannels, we witness (i) a

distinctly higher magnitude of both the EOS and the DOS velocities for a given c∞

[compare Figs. 4(b) and 5(b)] and (ii) there is a much lesser difference between the

DOS velocities at different salt concentrations [compare Figs. 4(b) and 5(b)]. We

can ascribe both of these effects to the charge localization induced enhancement in

the EDL-induced EOS transport [49]. The EDL is invariably localized around the

charged ends of the PE brushes. The EOS body force is proportional to the charge

density difference within the EDL and therefore would be maximum around these
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charged ends of the PE brushes. These charged ends being significantly away from

the wall would imply the maximum drag force caused by the wall will be significantly

away from the location of the maximum driving body force. This would imply that

a same driving EOS body force would lead to a larger EOS velocity. Obviously

this enhancement is countered by the additional drag induced by the presence of the

brushes. This countering influence is overcome for the case of weak brush grafting

density and significantly large Np (e.g., the present case of Np = 2000 and ` =

80 nm), leading to the most non-intuitive scenario where the EOS flow strength is

actually enhanced by the presence of the brushes [49]. This justifies why one witnesses

a much larger EOS velocity (and hence a larger DOS velocity) for nearly similar

electric field (or similar combinations of β and c∞) for the brush-grafted nanochannels

(with Np = 2000 and ` = 80 nm) as compared to the brush-free nanochannels. Of

course, in Chen and Das [49], the EOS flow was triggered by an applied electric

field, while in the present case, it is induced due to diffusioosmosis. Secondly, this

localization of the EDL around the charged end of the end-charged PE brushes is more

prominent for larger salt concentration (which causes a smaller EDL). Accordingly,

this EDL localization induced localization of the driving EOS body force is more

prominent for larger c∞, leading to a larger enhancement of the EOS (and hence

DOS) velocity fields for larger c∞. This justifies the second observation that for

brush-grafted nanochannels the difference in the EOS (and hence DOS velocity fields)

between large and small salt concentration values are much less, despite the electric

field being much larger for smaller salt concentration (for β = 0, 0.5).

Finally, we consider the case of β = −0.5 [see Fig. 5(c)]. Here the electric field

32



is negative [see Fig. 3(b)] and the magnitude of the electric field increases with an

increase in salt concentration. Coupled with this effect is the fact that the effect of

EDL localization and the resulting enhancement in the EOS transport [49] is much

more enhanced for the case of larger c∞. These two effects overcome the effect of

a reduced Sh for larger concentration, eventually ensuring a much larger negative

magnitude of the EOS transport for larger c∞. Of course, as with the case of brush-

free nanochannels here the COS velocity, which is itself negative, will augment the

EOS flow strength leading to a DOS flow that is more enhanced than the EOS flow.

Comparing with the case of the brush-free nanocahnnels [see Fig. 4(c)], here we wit-

ness that the EOS body force localization effect associated with the EOS transport

in nanochannels grafted with end-charged brushes not only enhnaces the magnitude

of the EOS (and hence DOS) velocity fields, but also causes a reversal in the salt-

concentration-dependence of the velocity field.

Case of brush-grafted nanochannels (Np = 2000, ` = 22 nm):

We finally consider the case of brush-grafted nanochannels with large grafting den-

sity (` = 22 nm). A large grafting density will impart such a large drag force on

the flow that the effect of EDL (and hence the EOS body force) localization will be

nullified leading to a decrease in the overall velocity field. Obviously the decrease

is most stark at transverse locations deep within the brushes depicting a virtually

non-existent velocity. Also, very much like the case of brush-free nanochannels and

naochannels grafted with less dense brushes, we witness a negative DOS velocity for
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large c∞ and β = 0. On the other hand, the EDL charge density and EOS body force

localization effect ensures very little difference in the EOS (and hence DOS) veloci-

ties between the cases of large and small salt concentrations for β = 0.5. Finally for

β = −0.5, the negative electric field causes a negative EOS velocity field, which is

much larger for larger c∞ owing to the combined influence of enhanced magnitude of

the negative electric field [see Fig. 3(c)] and the flow enhancement due to a stronger

localization of the EOS body force away from the nanochannel walls. On the other

hand, the significantly larger value of Ch [and hence the COS velocity, see Fig. 6(d)]

for a smaller c∞ outweighs this enhanced EOS velocity and eventually ensures that

the magnitude of the overall DOS velocity is very much similar.

2.4 Conclusions

We develop theory to study the problem of IDO in end-charged brush-grafted

nanochannels. We show that the weird fluid physics of augmented EOS transport

in such systems, owing to the localization of the EDL charge density and the EOS

body force away from the nanochannel wall, can be successfully leveraged to develop

an extremely augmented DOS fluid transport in nanochannels grafted with long and

weakly dense brushes. This augmentation is with respect to brush-free nanochannels

and depend on the exact extent of the influence of the COS transport. Depending on

the relative magnitude of the counterion and coion diffusivities, this COS transport

may augment or retard the EOS tranpsort in deciding the overall DOS transport.

The effect of end-charge localization in augmenting the flow is found to be the most
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prominent for the case where the COS transport aids the EOS transport. We antici-

pate that this paper will bring to light a new mechanism of electrokinetic transport in

functionalized nanochannels that can be successfully used for a myriad of flow-field-

dependent and hitherto unconceived applications in such nanochannels.

Appendix

Derivation of eq. 2.13

Eq.(13) expresses the diffusioosmotically induced electric field obtained by mak-

ing the net current equal to zero, i.e.,
∫ h
−h (J+ − J−) dy = 0. The flux J± can be

expressed as (considering n± = n∞e
∓ψ̄ so that ∇n± = ∇n∞e∓ψ̄ ∓ n∞e∓ψ̄∇ψ̄):

J± = −D±
[
∇n± ±

e

kBT
n± (∇ψ − E)

]
+ n±u =

−D±
[
∇n∞e∓ψ̄ ∓

(
n∞e

∓ψ̄
)
∇ψ̄ ± e

kBT
n± (∇ψ − E)

]
+ n±u =

−D±
[
∇n∞e∓ψ̄ ∓

e

kBT
n±∇ψ ±

e

kBT
n± (∇ψ − E)

]
+ n±u =

D±

[
∇n∞e∓ψ̄ ∓

e

kBT
n±E

]
+ n±u (A1)

We can calculate the electric field by equating the net current to zero, i.e.,

∫ h

−h
(J+ − J−) dy = 0⇒

−D+

∫ h

−h

[
∇n∞e−ψ̄ −

e

kBT
n+E

]
dy +

∫ h

−h
n+udy = −D−

∫ h

−h

[
∇n∞eψ̄ +

e

kBT
n−E

]
dy

+

∫ h

−h
n−udy ⇒

e

kBT
E

∫ h

−h
(D+n+ +D−n−) dy =

∫ h

−h
u (n− − n+) dy +

∫ h

−h

(
D+∇n∞e−ψ̄ −D−∇n∞eψ̄

)
dy

(A2)
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Also, considering β = D+−D−
D++D−

, we can write:

D+ =
(1 + β) (D+ +D−)

2
, D− =

(1− β) (D+ +D−)

2
. (A3)

Using eqs.(A3), we can write:

D+n+ +D−n− =
D+ +D−

2
n∞

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
. (A4)

D+∇n∞e−ψ̄ −D−∇n∞eψ̄ =
D+ +D−

2

n̄′1n∞
L

[
(1 + β) e−ψ̄ − (1− β) eψ̄

]
, (A5)

where

n̄′1 =
L∇n∞
n∞

. (A6)

Finally we can write:

u (n− − n+) = 2n∞u sinh (ψ̄). (A7)

Using eqs.(A4,A5,A7), we can finally obtain from eq.(A2) as:

E =
kBT

e

∫ h
−h 4u sinh (ψ̄)dy

(D+ +D−)
∫ h
−h

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dy

+

kBT

eL

∫ h
−h n̄

′
1

[
(1 + β1) e−ψ̄ − (1− β1) eψ̄

]
dy∫ h

−h

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dy

⇒

Ē =
E

E0

= Pe

∫ 1

−1
4ū sinh (ψ̄)dy∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

+

∫ 1

−1
n̄′1

[
(1 + β) e−ψ̄ − (1− β) eψ̄

]
dȳ∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

,

where E0 = kBT
eL

, ū = u
U∗

, Pe = U∗L/ (D+ +D−).

Derivation of eq. 2.16

For the bottom half of the nanochannel, the Navier Stokes equation for the x-

momentum for the location within the PE brushes can be expressed as [using eq.(14)
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to express p so that ∂p
∂x

= 2kBT∇n∞
[
cosh (ψ̄)− 1

]
+ 2kBTn∞

[
sinh (ψ̄)∇ψ̄

]
]:

η
d2u

dy2
=
∂p

∂x
+ η

u

kd
− e (n+ − n−) (E −∇ψ) for − h ≤ y ≤ −h+ d⇒

η
d2u

dy2
= 2kBT∇n∞

[
cosh (ψ̄)− 1

]
+ 2kBTn∞

[
sinh (ψ̄)∇ψ̄

]
+

η
u

kd
+ 2en∞ sinh (ψ̄)E − 2kBTn∞

[
sinh (ψ̄)∇ψ̄

]
for − h ≤ y ≤ −h+ d⇒

ηU∗

h2

d2ū

dȳ2
= 2kBT

n∞
L

{(
L∇n∞
n∞

)[
cosh (ψ̄)− 1

]}
+
ηU∗

kd
ū+ 2eE0L

n∞
L

sinh (ψ̄)Ē

for − 1 ≤ ȳ ≤ −1 + d̄⇒

d2ū

dȳ2
= A

{
n̄′1
[
cosh (ψ̄)− 1

]}
+ α2ū+

A sinh (ψ̄)

Pe
∫ 1

−1
4ū sinh (ψ̄)dy∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

+

∫ 1

−1
n̄′1

[
(1 + β) e−ψ̄ − (1− β) eψ̄

]
dȳ∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ


for − 1 ≤ ȳ ≤ −1 + d̄.

Of course, by the same procedure as employed above, we can show:

η
d2u

dy2
=
∂p

∂x
+ η

u

kd
− e (n+ − n−) (E −∇ψ) for − h+ d ≤ y ≤ 0⇒

d2ū

dȳ2
= A

{
n̄′1
[
cosh (ψ̄)− 1

]}
+

A sinh (ψ̄)

Pe
∫ 1

−1
4ū sinh (ψ̄)dy∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

+

∫ 1

−1
n̄′1

[
(1 + β) e−ψ̄ − (1− β) eψ̄

]
dȳ∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ


for − 1 + d̄ ≤ ȳ ≤ 0.

(B1)
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Chapter 3: Seebeck Effect and Ionic Thermo-osmosis in Nanochan-

nels Grafted with End-charged Polyelectrolyte

Brushes

In this chapter1, we develop a theory to study the imposed axial temperature-

gradient-driven Seebeck effect and ionic thermoosmosis (ITO) in soft nanochannels or

nanochannels grafted with end-charged polyelectrolyte (PE) brushes. Our analysis first

quantifies the thermoosmotically induced electric field. This electric field results from

three effects: (a) advective separation of the EDL charge density, (b) Soret effect due

to the imposed temperature gradient caused by the differences in the thermophoretic

mobility of the ions, and (c) the EDL induced electrophoretic effect modified by the dif-

fusivity differences of the cations and counterions. This induced electric field triggers

an electroosmostic (EOS) transport, while the net thermoosmotic (TOS) transport re-

sults from a combination of this EOS transport and a combined thermo-chemioosmotic

(TCOS) transport arising from the pressure gradient induced by the applied temper-

ature gradient and the induced (in a direction opposite to the temperature gradient)

1Contents of this chapter have been submitted as R. S. Maheedhara, H. Jing, and S. Das, “Highly

enhanced liquid flows via thermoosmotic effects in soft and charged nanochannels,” Phys. Chem.

Chem. Phys (submitted)
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concentration gradient. Our results unravel that the TOS transport is massively en-

hanced in nanochannels grafted with PE brushes with weak grafting density stemming

from the significantly enhanced EOS transport caused by the localization of the EOS

body force away from the nanochannel walls. This augmentation is even stronger for

cases where the TCOS transport aids the EOS transport. On the other hand, the TOS

transport gets severely reduced in nanochannels grafted with dense PE brushes owing

to the severity of the brush-induced additional drag force. We anticipate that these

findings will help to unravel an entirely new understanding of induced electrokinetic

transport in soft nanochannels.

3.1 Introduction

Seebeck effect refers to the generation of an electric field in presence of a tem-

perature gradient [96, 97]. While Seebeck effect has been considered for different

materials and under different conditions [96–100], here we only focus on the Seebeck

effect in an ionic system (e.g., an electrolyte solution) in presence of an external ax-

ially imposed temperature gradient [101–106]. Classically, one obtains the Seebeck

coefficient quantifying the Seebeck effect, when this electric field is divided by this

temperature gradient. For a simple electrolyte system that is charge neutral at every

location and the ions are assumed to havese identical mobilities, this electric field (and

hence the Seebeck effect) is simply proportional to the axial temperature gradient and

the difference in the thermophoretic mobilities of the ions [106]. This electric field can

be considered as the Soret electric field as it depends on the thermophoretic mobility
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of the ions. Dietzel and Hardt [107] studied the same problem for the case where the

temperature gradient is employed across the charged nanochannel, i.e., where there

is a significant influence of the EDL. For such a case, this idea of charge neutrality no

longer holds within the EDL. As a consequence, this Soret electric field gets altered

and contains the contribution of the EDL electrostatic potential. In addition, the

presence of the EDL leads to another component of the electric field that depends on

the electrophoretic mobilities of the ions and can be termed as the Electrophoretic

electric field. Of course, Dietzel and Hardt considered identical diffusivities of the

ions. In a separate study, Dietzel and Hardt [108] did consider the thermoosmotic

flow field and provided a detailed mathematics to analyze the flow field in presence

of the unequal ionic mobilities. It is worthwhile to mention here that there have been

other studies that have attempted to exploit the EDL effects in a nanoconfinement

for the generation of Seebeck effect [109, 110]; however, the studies by Dietzel and

Hardt [107,108] can be considered to be the state of the art in theoretical understand-

ing of the problem of EDL regulated Seebeck effect and thermoosmotic transport in

charged nanochannels.

In our study, we probe the TOS flow and Seebeck effect in a soft, charged

nanochannel (i.e., a nanochannel grafted with end-charged PE brushes). For that

purpose we consider a reformulation of Ref. [107] by considering different diffusivities

of the ions as well as a finite contribution of the advective flux. Of course, Ref. [107]

includes these issues; however, we solve a simplistic system similar to Ref. [107] where

the EDL electrostatics and the ion distribution are decoupled from the flow field (i.e.,

not governed by the Nernst-Planck equation). Under this condition, there is a com-
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ponent of the electric field in addition to the Soret electric field and Electrophoretic

electric field: this component is the Advective electric field caused by the advective

transport of the ion imbalance within the EDL. Of course, the consideration of differ-

ent diffusivities of the ions would imply alteration in even the Soret electric field and

Electrophoretic electric field. Secondly, this velocity field u, which is used to quantify

the advective electric field, is not known apriori. Rather it has to be calculated using

the steady-state Stokes equation (Navier Stokes equation without the non-linear ad-

vection terms). The velocity field is a combination of two effects. Firstly, this induced

electric field (consisting of the three different contributions) drives an electroosmtic

(EOS) transport. Secondly, the presence of an axial temperature gradient and an

axial gradient in the bulk ion concentration (attributed to the axial temperature gra-

dient) leads to an axial pressure gradient, which drives a flow. This flow component,

therefore, can be termed as thermo-chemoosmotic (TCOS) transport. Hence the flow

field is a combination of the EOS and the TCOS transport. Obviously, this EOS

transport being dependent on the velocity field itself, we would effectively need to

first solve an integro-differential equation to obtain u. After that, this information

of u can be used to quantify the overall electric field. Given this elaborative frame-

work for probing the Seebeck effect and the TOS transport in charged nanochannels,

we focus on the calculations for a soft and charged nanochannel. The softness of the

nanochannel is attributed to the presence of end-charged brushes grafted on the inner

walls of the nanochannel. The presence of these brushes change the EDL electrostatic

potential distribution as well as imparts an additional drag force on the fluid flow.

These effects are appropriately accounted for in our model. The key significance is
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that under certain conditions of grafting and brush parameters, we can witness the

most remarkable situation where this EDL re-organization (or localization) induced

EOS body force can be so influential (since it is localized significantly away from the

location of the maximum drag, i.e., the nanochannel walls) that it can overcome the

effect of the additional drag imposed by the presence of the brushes. The result is

a TOS transport that is significantly augmented in brush-grafted nanochannels as

compared to the brush-free nanochannels.
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Figure 3.1: Schematic showing the TOS transport in nanochannels grafted with end-

charged brushes. The TOS flow is a combination of the EOS (caused by the induced

electric field) and the TCOS flows, as illustrated in the schematic.

3.2 Theory

We consider a nanochannel of half height h and length L grafted with end-

charged PE brushes (see Fig. 3.1). The nanochannel is connected to bulk microflu-

idic reservoirs. We have previously studied the electrostatics, thermodynamics, ionic

current, and electrokinetic transport in such nanochannels. The calculation of the

electrokinetic transport in these papers is unique in the sense that it accounts for the

appropriate coupling of the brush configuration and the resulting EDL electrostatics

while computing the electrokinetic fluid flow. In the present paper, we would use this
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information on the coupled brush configuration and the resulting EDL electrostatics

in order to quantify the ionic TOS transport. The TOS transport is triggered by

imposing a constant axial temperature gradient of strength ∇T = dT∞/dx, such that

L∇n∞/n∞(x = 0) � 1 (here ∇n∞
n∞

is the concentration gradient induced because of

the applied temperature gradient; n∞ is the bulk number density of the electrolyte

ions or the electrolyte ion concentration in the microfluidic reservoirs) as well as

L∇T∞/T∞(x = 0) � 1. The coupled equilibrium description of the configuration

of the end-charged PE brush and the induced EDL electrostatics has already been

provided in our previous paper [49] – we shall use this equilibrium description to

quantify the electric field induced due to the thermoosmotic effect and the resulting

nanofluidic velocity field (occurring due to the combined influence of the induced EOS

and the TCOS velocities).

3.2.1 Thermoosmotically Induced Electric Field

In order to obtain the thermoosmotically induced electric field, we need to

equate the net current in the system to zero, which is identical to making the integral

of the difference between the cationic and anionic fluxes to zero, i.e.,∫ h

−h
(J+ − J−) dy = 0, (3.1)

where the fluxes (J±) can be expressed as:

J± = −D±
[
∇n± ±

e

kBT
n± (∇ψ − E) +

Q±
kBT 2

n±∇T
]

+ n±u. (3.2)

In the above equation, D± are the diffusivities of cations and anions, u is the induced

velocity field (a combination of the EOS and TCOS velocity fields), Q± are the heats
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of transport of cations and anions, and E is the induced electric field. Using eq.(3.2) in

eq.(3.1), we shall eventually get the dimensionless thermoosmotically induced electric

field (please see the Appendix for detailed derivation):

Ē =
E

E0

=

∇T
T


−Π

{∫ 1

−1
Pe sinh (ψ̄)ūdȳ +

∫ 1

−1

[
(1 + β) e−ψ̄ − (1− β) eψ̄

]
dȳ

}
∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

+

∇T
T


Γ
∫ 1

−1

[
(1 + α) e−ψ̄ − (1− α) eψ̄

]
dȳ∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

 , (3.3)

where ȳ = y/h, E0 = kBT/(eL), ū = u/U∗ (where U∗ is the characteristic veloc-

ity scale that defines the Peclet number: Pe = U∗L/(D+ + D−)), ψ̄ = eψ/(kBT ),

β = D+−D−
D++D−

, α = Q+D+−Q−D−
Q+D++Q−D−

, Π = Q++Q−
2kBT

and Γ = 1
kBT

Q+D++Q−D−
D++D−

.

Finally, the Seebeck Coefficient, S is given by

S =
Ē(∇T
T

) . (3.4)

3.2.2 Thermoosmotic (TOS) Velocity Field

In order to obtain the TOS velocity field, we shall employ the Navier-Stokes

(NS) equation. The NS equation in y-direction yields the necessary pressure field,

i.e.,

∂p

∂y
+ 2e (n+ − n−)

dψ

dy
= 0⇒ p = patm + 2kBTn∞

[
cosh (ψ̄)− 1

]
. (3.5)

45



Finally, the NS equation in the x-direction yields (considering only the nanochannel

bottom half):

η
d2u

dy2
=
∂p

∂x
+ η

u

kd
− e (n+ − n−) (E −∇ψ) for − h ≤ y ≤ −h+ d,

η
d2u

dy2
=
∂p

∂x
− e (n+ − n−) (E −∇ψ) for − h+ d ≤ y ≤ 0. (3.6)

Eq.(3.6) can be expressed in dimensionless form as (see the Appendix for the detailed

derivation):

d2ū

dȳ2
=

(
κ̄2 − 1

Π

)[
cosh ψ̄ − 1

]
+ α2

0ū−

κ̄2 sinh ψ̄


∫ 1

−1
Pe sinh ψ̄ūdȳ +

∫ 1

−1

[
(1 + β) e−ψ̄ − (1− β) eψ̄

]
dȳ∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

−
κ̄2 sinh ψ̄


Γ
Π

∫ 1

−1

[
(1 + α) e−ψ̄ − (1− α) eψ̄

]
dȳ∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

 for − 1 ≤ ȳ ≤ −1 + d̄,

d2ū

dȳ2
=

(
κ̄2 − 1

Π

)[
cosh ψ̄ − 1

]
−

κ̄2 sinh ψ̄


∫ 1

−1
Pe sinh ψ̄ūdȳ +

∫ 1

−1

[
(1 + β) e−ψ̄ − (1− β) eψ̄

]
dȳ∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

−
κ̄2 sinh ψ̄


Γ
Π

∫ 1

−1

[
(1 + α) e−ψ̄ − (1− α) eψ̄

]
dȳ∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

 for − 1 + d̄ ≤ ȳ ≤ 0,

(3.7)

where d̄ = d/h, η is the dynamic viscosity, and α0 = h2/kd [where kd = a2
k

(
d

σa3kNpφ

)2

is the permeability, with φ being the monomer distribution along the length of the

PE brush]. It is obvious that we arrive at eq.(3.7) by using the expression of E [see

eq.(A7)]. Eq.(3.7) is an integro-differential equation in ū, which is solved numerically
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in presence of the boundary conditions expressed below.

(ū)ȳ=−1 = 0, (ū)ȳ=(−1+d̄)+ = (ū)ȳ=(−1+d̄)− ,(
dū

dȳ

)
ȳ=(−1+d̄)+

=

(
dū

dȳ

)
ȳ=(−1+d̄)−

,

(
dū

dȳ

)
ȳ=0

= 0. (3.8)

Subsequently, this ū is used to obtain the dimensionless electric field Ē [see eq.(A7)].

Obviously, both the solution for ū and Ē will depend on ψ̄ – section IIA provides a

method to calculate ψ̄.

3.3 Results and Discussion

3.3.1 Variation of the EDL electrostatic field ψ̄

The EDL electrostatic field is dependent only on the charge density of the

brushes/walls, and thus this remains unchanged from Fig 2.2. in chapter 2.

3.3.2 Variation of the thermo-osmotically induced electric field and

the resulting Seebeck coefficient

Figure 3.2 shows the variation of the Seebeck coefficient (which is proportional

to the electric field, see eq. 3.4) with respect to α, β and c∞ for the nanochannels

with and without the brushes. Any effect that creates an axial separation between

the counterions and coions will contribute to the electric field. In this light, there

are three effects that contribute to the electric field: (a) the advective migration of

the unbalanced charges (or the net charge density) within the EDL, (b) the Soret

effect caused by the difference in the thermoophoretic mobilities of the coions and the
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counterions (the presence of the unequal number of coions and counterions within the

EDL as well as the difference in the diffusivities contribute to this component of the

electric field) and (c) the gradient in the number density (in a direction opposite to

the temperature gradient) caused by the temperature gradient (this component of the

electric field only manifests when there is a difference in the diffusivities of the ions

and/or the presence of the EDL leads to an imbalance in the number of coions and

counterions). As with the DOS transport, the advective migration of the EDL charge

density gradient has less influence on the overall electric field (or Seebeck coefficient);

as a consequence there is insignificant difference between the cases of nanochannels

with and without the PE brushes for a given c∞, α, and β.

On the other hand, E (or the Seebeck coefficient) varies significantly with c∞, α,

and β. Positive α implies a positive value of the diffusivity modified thermophoretic

mobilities, which for the present case of negatively charged wall or brushes, would

signify a larger effective thermophoretic mobility of the counterions. As a result,

the imposed temperature gradient would lead to a more enhanced axial separation

between the counterions and coions leading to a larger positive (or less negative)

magnitude of the electric field for a given c∞ and β. It is for the same reason that a

negative α would signify a larger negative (or less positive) magnitude of the electric

field for a given c∞ and β. This is very much evident if we compare the figures for

the variation of the Seebeck coefficient (or the electric field) for different α values (see

Fig. 3.2).

We next compare the effect of variation of β, which refers to the contribution of

the difference in the diffusivities of the coions and counterions and is modified due to
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the development of the EDL. The presence of the positive axial temperature gradient

(i.e., ∇T = dT∞/dx > 0) would induce a negative axial concentration gradient (i.e.,

∇n∞ = dn∞/dx < 0). As a consequence β > 0, which signifies a larger counterion

mobility, would imply that the counterions and coions separate axially in a direction

opposite to which the positive temperature gradient separates the coions and counte-

rions. As a result, β > 0 would have the same influence as α < 0, while β < 0 would

have the same effect as α > 0. Hence for β < 0, we always witness a larger positive

(or less negative) magnitude of the electric field for a given c∞ and α, while for β < 0

we encounter a larger negative (or less positive) magnitude of the electric field for a

given c∞ and α.

We finally analyze the effect of the concentration c∞ (please note that c∞ and

n∞ are related as n∞ = 103NAc∞, where n∞ has the units of 1/m3, c∞ has the units

of M , and NA is the Avogadro number). Weaker c∞ leads to a larger magnitude of

the electrostatic potential (see Fig. 2.2) and hence a larger difference between the

coions and counterions. Therefore, the cases of positive electric field (caused by such

a separation of counterions and coions where the counterions are in excess at the

location of a larger T , e.g., for α > 0 and β < 0) are enhnaced for smaller c∞. On

the other hand, the cases of negative electric field (caused by such a separation of

counterions and coions where the counterions are in excess at the location of a smaller

T , e.g., for α < 0 and β > 0) are enhanced (in magnitude) for larger c∞. This latter

effect signifies a situation where the electric field magnitude is enhanced when the

difference between the counterion and coion concentrations is nullified, and such a

situation occurs for a larger c∞ (see Fig. 2.2).
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3.3.3 Variation of the TOS velocity field

The TOS velocity field is a combination of the induced electric field (described

above) EOS velocity field and the TCOS velocity field resulting from the induced axial

pressure gradient. This induced pressure gradient is always positive, as indicated by

the fact that it is proportional to the
(
κ̄2 − 1

Π

) [
cosh ψ̄ − 1

]
and for the present case

κ̄2 � 1/Π. This positive pressure gradient would trigger a flow in the direction

opposite to that of the direction of the axial temperature gradient (i.e., from the left

to right). Or equivalently, this induced pressure-gradient driven TCOS transport will

oppose (or favor) the EOS transport generated by the induced positive (negative)

electric field (see Fig. 3.2).

Under these generic conditions, we investigate the TOS flows for both brush-

grafted and brush-free nanochannels. We start with the case of c∞ = 0.0001 M ,

α = 0, β = 0. For these parameter values, the electric field for both brush-free and

brush-grafted nanochannels is very weak (see Fig. 3.2). As a consequence the induced

EOS transport is very weak (see Fig. 3.3), and the overall TOS transport is dictated

by the TCOS transport, making the TOS velocity field significantly negative. More

importantly, the EDL localization effect for the end-charged brushes is witnessed here

too, given that the induced pressure gradient is proportional to
(
κ̄2 − 1

Π

) [
cosh ψ̄ − 1

]
,

i.e., depends on the EDL electrostatic potential ψ̄. This localization effect would imply

that the effect of the pressure gradient, which is localized at the non-grafted end of the

brushes (i.e., away from the nanochannel walls), would be more severe as compared

to the brush-free nanochannels. On the other hand, the brush-grafted nanochannels
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encounter a larger drag force due to the presence of the brushes. These two factors

compete with each other. For the weakly grafted brushes, the effect of the localization

of the induced pressure-gradient overweighs the enhanced drag; as a consequence, the

magnitude of the negative velocity is much larger for the brush-grafted nanochannels

as compared to the brush-free nanochannels [compare Fig. 3.3(a) and 3.3(c)]. On

the other hand, for the densely grafted brushes the drag force is so large that it

outweighs the localization effect leading to a weaker velocity field for the brush-grafted

nanochannels [compare Fig. 3.3(b) and 3.3(c)].

We next consider the case for a larger c∞, i.e., c∞ = 0.01 M , α = 0, β = 0

(see Fig. 3.4). Here the effect of the TCOS is significantly reduced, implying that for

both the brush-free and brush-grafted nanochannels, the TOS transport is very close

to the EOS transport. Most importantly, here the localization effect gets severely

magnified for the end-charged brushes. A thinner EDL would imply that the EDL

cloud extends to much lesser distance around the non-grafted charged end leading to

a much stronger localization of the EDL as compared to that for c∞ = 0.0001 M .

On the other hand, a larger c∞ implies a smaller value of ψ. These two mutually

opposing effects interplay with each other to decide the exact extent of the EDL

localization effect, which in turn competes with the augmented drag force imparted

by the brushes. These factors eventually ensure (a) the magnitude of the velocity for

both brush-free and brush-grafted nanochannels is much lower as compared to the

cases for c∞ = 0.0001 M (see Fig. 3.3), (b) for the nanochannels with the weakly-

grafted end charged brushes, the TOS transport is more than one order of magnitude

larger than the transport in brush-free nanochannels, and (c) the TOS transport even
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for nanochannels with the densely-grafted end charged brushes is larger than that in

the brush-free nanochannels.

We next consider the case for a finite, positive α, which leads to a significantly

large electric field (or Seebeck coefficient) (see Fig. 3.5). As a result, the EOS flow is

large and positive, and hence the TCOS velocity component opposes the EOS trans-

port ensuring a net TOS velocity field whose magnitude is lesser than the EOS flow.

This is true for the both the brush-free and the brush-grafted nanochannels. Here

both the EOS transport as well as the induced pressure-gradient (and the resultant

TCOS transport that opposes the EOS transport) get enhanced for the weakly grafted

end-charged brushes. This is evident from the fact that the EOS velocity as well as

the extent of decrease in the overall TOC velocity (due to the TCOS velocity) is more

for the nanochannels with the weakly-grafted end-charged brushes as compared to the

brush-free nanochannels. Of course, the final TOS velocity for the nanochannels with

the end-charged brushes remain larger as compared to the brush-free nanochannels.

On the other hand, for densely grafted end-charged brushes, the EOS transport as

well as the overall TOS transport are distinctly smaller as compared to the brush-free

nanochannels.

In Fig. 3.6, we report the same velocity profiles as Fig. 3.5, but for a larger salt

concentration (c∞ = 0.01 M), which ensure (a) the magnitude of the velocity for both

brush-free and brush-grafted nanochannels is much lower as compared to the cases

for c∞ = 0.0001 M (see Fig. 3.5), (b) for the nanochannels with the weakly-grafted

end charged brushes, the TOS transport is more than one order of magnitude larger

than the transport in brush-free nanochannels, and (c) the TOS transport even for
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nanochannels with the densely-grafted end charged brushes is larger than that in the

brush-free nanochannels.

In Fig. 3.7, we report the velocity profiles for a negative α, which led to a

negative electric field (see Fig. 3.2) and hence a negative EOS velocity. Therefore, the

TCOS transport augments the magnitude (negative) of the velocity field. Everything

else is very much similar to Fig. 3.5: the EDL localization induced enhancement of

the velocity field in nanochannels with less densely grafted brushes leads to a larger

magnitude of TOS transport as compared to the brush free nanochannels, while the

nanochannels with densely grafted brushes show a weaker velocity (as compared to

the brsuh-free nanochannels) due to an augmented drag force.

In Fig. 3.8, we report the same velocity profiles as Fig. 3.7, but for a larger c∞

(c∞ = 0.01 M). Exactly the same effect as Fig. 3.6 is witnessed here – the increase

of the extent of the EDL localization as well as weaker ψ leads to (a) the magnitude

of the velocity for both brush-free and brush-grafted nanochannels is much lower as

compared to the cases for c∞ = 0.0001 M (see Fig. 3.7), (b) for the nanochannels

with the weakly-grafted end charged brushes, the TOS transport is more than one

order of magnitude larger than the transport in brush-free nanochannels, and (c) the

TOS transport even for nanochannels with the densely-grafted end charged brushes

is larger than that in the brush-free nanochannels.

In Fig. 3.9, we consider the case of β > 0. It has the same influence as that

for α < 0, i.e., it leads to a large negative electric field. As a result, we witness

that (a) the EOS flow is negative, (b) the magnitude of the overall TOS transport

increases with the contribution of the TCOS transport, and (c) the nanochannels
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with less (more) densely grafted brushes show an increase (decrease) in the overall

TOS transport as compared to the brush-free nanochannels.

In Fig. 3.10, we report the same velocity profiles as Fig. 3.9, but for a larger

c∞ (c∞ = 0.01 M). Exactly the same effect as Fig. 3.8 is witnessed here – (a)

the magnitude of the velocity for both brush-free and brush-grafted nanochannels is

much lower as compared to the cases for c∞ = 0.0001 M (see Fig. 3.9), (b) for the

nanochannels with the weakly-grafted end charged brushes, the TOS transport is more

than one order of magnitude larger than the transport in brush-free nanochannels, and

(c) the TOS transport even for nanochannels with the densely-grafted end charged

brushes is larger than that in the brush-free nanochannels.

In Fig. 3.11, we report the velocity profile for β > 0 and α > 0. These two

effects counter each other leading to small electric field. Therefore, the result is

very similar to that reported in Fig. 3.3: (a) the EOS flow strength is very weak,

(b) the TOS transport is dominated by the TCOS transport making the TOS flow

profiles negative, (c) the EDL localization affects the pressure gradient making the

nanochannels with less densely grafted brushes demonstrate a larger magnitude of the

TOS velocity as compared to the brush-free nanochannels, and (d) the drag force in

nanochannels with densely grafted brushes ensure that the TOS transport is weaker

as compared to that in the brush-free nanochannels.

We next consider the case for a larger c∞, i.e., c∞ = 0.01 M , α = 0.5, β = 0.5

(see Fig. 3.12). We witness that (a) the magnitude of the velocity for both brush-

free and brush-grafted nanochannels is much lower as compared to the cases for

c∞ = 0.0001 M (see Fig. 3.11), (b) for the nanochannels with the weakly-grafted
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end charged brushes, the TOS transport is more than one order of magnitude larger

than the transport in brush-free nanochannels, and (c) the TOS transport even for

nanochannels with the densely-grafted end charged brushes is larger than that in the

brush-free nanochannels.

In Fig. 3.13, we report the velocity profile for β > 0 and α < 0. Both these

factors contribute to make the electric field negative (see Fig. 3.2). Hence we witness

a large negative EOS transport, which is augmented further by the TCOS transport

to ensure an even larger negative TOS transport. The EDL localization affects makes

the nanochannels with less densely grafted brushes demonstrate a larger magnitude of

the TOS velocity as compared to the brush-free nanochannels, while the overwhelming

influence of the drag force in nanochannels with densely grafted brushes ensure that

the TOS transport is weaker as compared to that in the brush-free nanochannels.

In Fig. 3.14, we repeat the same velocity profiles as Fig. 3.13 but for c∞ = 0.01.

Enhanced localization as well as reduced ψ̄ is ensured for thinner EDLs (or larger

c∞) ensuring (a) the magnitude of the velocity for both brush-free and brush-grafted

nanochannels is much lower as compared to the cases for c∞ = 0.0001 M (see Fig.

3.13), (b) for the nanochannels with the weakly-grafted end charged brushes, the TOS

transport is more than one order of magnitude larger than the transport in brush-free

nanochannels, and (c) the TOS transport even for nanochannels with the densely-

grafted end charged brushes is larger than that in the brush-free nanochannels.

In Fig. 3.15, we consider the case of β < 0. This leads to a positive electric

field (see Fig. 3.2) causing a large positive EOS transport, which is retarded by the

opposing TCOS transport. This is true for the both the brush-free and the brush-
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grafted nanochannels. Here both the EOS transport as well as the induced pressure-

gradient (and the resultant TCOS transport that opposes the EOS transport) get

enhanced for the weakly grafted end-charged brushes due to the dominating influence

of the EDL localization. This is evident from the fact that the EOS velocity as well as

the extent of decrease in the overall TOC velocity (due to the TCOS velocity) is more

for the nanochannels with the weakly-grafted end-charged brushes as compared to the

brush-free nanochannels. Of course, the final TOS velocity for the nanochannels with

the end-charged brushes remain larger as compared to the brush-free nanochannels.

On the other hand, for densely grafted end-charged brushes, the EOS transport as

well as the overall TOS transport are distinctly smaller as compared to the brush-free

nanochannels.

In Fig. 3.16, we repeat the same velocity profiles as Fig. 3.15 but for c∞ = 0.01.

Enhanced localization is ensured for thinner EDLs (or larger c∞). This along with a

reduced ψ̄ ensures (a) the magnitude of the velocity for both brush-free and brush-

grafted nanochannels is much lower as compared to the cases for c∞ = 0.0001 M (see

Fig. 3.15), (b) for the nanochannels with the weakly-grafted end charged brushes, the

TOS transport is more than one order of magnitude larger than the transport in brush-

free nanochannels, and (c) the TOS transport even for nanochannels with the densely-

grafted end charged brushes is larger than that in the brush-free nanochannels.

In Fig. 3.17, we consider the TOS velocity profiles for α > 0 and β < 0. These

two conditions together ensure a large electric field (see Fig. 3.2) causing a very large

positive EOS transport, which is retarded by the TCOS transport making the overall

TOS transport weaker than the EOS transport. Here too the nanochannel grafted
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with loosely grafted end-charged PE brushes will demonstrate an enhancement of the

EOS transport in comparison to the brush-free nanochannels.

In Fig. 3.18, we repeat the same plot as Fig. 3.17 but with a significantly

larger c∞ (c∞ = 0.01 M) ensuring (a) the magnitude of the velocity for both brush-

free and brush-grafted nanochannels is much lower as compared to the cases for

c∞ = 0.0001 M (see Fig. 3.17), (b) for the nanochannels with the weakly-grafted

end charged brushes, the TOS transport is more than one order of magnitude larger

than the transport in brush-free nanochannels, and (c) the TOS transport even for

nanochannels with the densely-grafted end charged brushes is larger than that in the

brush-free nanochannels.

In Fig. 3.19, we report the velocity profile for β < 0 and α < 0. These two

effects counter each other leading to small electric field. Therefore, the result is

very similar to that reported in Fig. 3.3: (a) the EOS flow strength is very weak,

(b) the TOS transport is dominated by the TCOS transport making the TOS flow

profiles negative, (c) the EDL localization affects the pressure gradient making the

nanochannels with less densely grafted brushes demonstrate a larger magnitude of

the TOS velocity as compared to the brush-free nanochannels, and (d) the dominant

influence of the drag force in nanochannels with densely grafted brushes ensure that

the TOS transport is weaker as compared to that in the brush-free nanochannels.

Finally in Fig. 3.20, we repeat the same plot as Fig. 3.19 but with a significantly

larger c∞ (c∞ = 0.01 M) ensuring (a) the magnitude of the velocity for both brush-

free and brush-grafted nanochannels is much lower as compared to the cases for

c∞ = 0.0001 M (see Fig. 3.19), (b) for the nanochannels with the weakly-grafted
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end charged brushes, the TOS transport is more than one order of magnitude larger

than the transport in brush-free nanochannels, and (c) the TOS transport even for

nanochannels with the densely-grafted end charged brushes is larger than that in the

brush-free nanochannels.

3.4 Conclusions

In this chapter, we provide a detailed analysis of the Seebeck effect and the

resultant TOS transport in brush0grafted and brush-free nanochannels in presence

of an externally imposed axial positive temperature gradient. Most remarkably we

witness that while the Seebeck coefficient (or the thermoosmotically induced electric

field) shows very little change due to brush functionalization, the overall strength

of the TOS transport can be augmented by more than one order of magnitude for

the brush-grafted nanochannels. Such an augmentation occurs for relatively loosely

grafted brushes for both positive and negative TOS velocity fields. Such massive

extent of augmentation typically occurs at large salt concentration where the effect

localization of the EDL away form the nanochannel wall is most severe. In fact for

such salt concentrations, the effect of EDL localization can be so influential that the

velocity magnitudes even for nanochannels with densely grafted brushes can be more

than that in nanochannels without the brushes. Of course, the large concentration

would mean a weaker electrostatic potential causing a wekaer magnitude of velocity

for both brush-free and brush-grafted nanochannels. Therefore, our study also pro-

vides a unique design option of choosing between situations that afford either a more
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magnified velocity or a more magnified difference between velocities in brush-grafted

and brush-free nanochannels.
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No 
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Figure 3.2: Variation of Induced electric field with concentration, β and α for

nanochannels with and without brushes. We consider L∇T∞
T∞

= 0.067, Π
T

=5×10−3K−1.

Other parameters are σch = −0.0008C/m2 (this charge density is the charge den-

sity for brush-free nanochannel walls and the ends of the end-charged PE brushes

for nanochannels with PE brushes), h = 100nm, χ = 0.4, ak = 1nm, kB =

1.38× 10−23 J/K, T = 300 K, e = 1.6× 10−19C, ε0 = 8.8× 10−12F/m.
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(a) (b)

(c)

Figure 3.3: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity (dashed

lines) profiles for the case of C∞ = 10−4M ,α = 0 , β = 0 in (a) Nanochannels grafted

with long weakly grafted brushes, (b) Nanochannels grafted with short densely grafted

brushes and (c) Nanochannels without brushes. Other parameters are same as those

in Fig 2.
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(a) (b)

(c)

Figure 3.4: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity (dashed

lines) profiles for the case of C∞ = 10−2M ,α = 0 , β = 0 in (a) Nanochannels grafted

with long weakly grafted brushes, (b) Nanochannels grafted with short densely grafted

brushes and (c) Nanochannels without brushes. Other parameters are same as those

in Fig 2.
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(a) (b)

(c)

Figure 3.5: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity (dashed

lines) profiles for the case of C∞ = 10−4M ,α = 0.5 , β = 0 in (a) Nanochannels

grafted with long weakly grafted brushes, (b) Nanochannels grafted with short densely

grafted brushes and (c) Nanochannels without brushes. Other parameters are same

as those in Fig 2.

63



(a) (b)

(c)

Figure 3.6: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity (dashed

lines) profiles for the case of C∞ = 10−2M ,α = 0.5 , β = 0 in (a) Nanochannels

grafted with long weakly grafted brushes, (b) Nanochannels grafted with short densely

grafted brushes and (c) Nanochannels without brushes. Other parameters are same

as those in Fig 2.
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(a) (b)

(c)

Figure 3.7: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity (dashed

lines) profiles for the case of C∞ = 10−4M ,α = −0.5 , β = 0 in (a) Nanochannels

grafted with long weakly grafted brushes, (b) Nanochannels grafted with short densely

grafted brushes and (c) Nanochannels without brushes. Other parameters are same

as those in Fig 2.
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(a) (b)

(c)

Figure 3.8: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity (dashed

lines) profiles for the case of C∞ = 10−2M ,α = −0.5 , β = 0 in (a) Nanochannels

grafted with long weakly grafted brushes, (b) Nanochannels grafted with short densely

grafted brushes and (c) Nanochannels without brushes. Other parameters are same

as those in Fig 2.
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(a) (b)

(c)

Figure 3.9: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity (dashed

lines) profiles for the case of C∞ = 10−4M ,α = 0 , β = 0.5 in (a) Nanochannels

grafted with long weakly grafted brushes, (b) Nanochannels grafted with short densely

grafted brushes and (c) Nanochannels without brushes. Other parameters are same

as those in Fig 2.

67



(a) (b)

(c)

Figure 3.10: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity

(dashed lines) profiles for the case of C∞ = 10−2M ,α = 0 , β = 0.5 in (a) Nanochan-

nels grafted with long weakly grafted brushes, (b) Nanochannels grafted with short

densely grafted brushes and (c) Nanochannels without brushes.
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(a) (b)

(c)

Figure 3.11: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity

(dashed lines) profiles for the case of C∞ = 10−4M ,α = 0.5 , β = 0.5 in (a) Nanochan-

nels grafted with long weakly grafted brushes, (b) Nanochannels grafted with short

densely grafted brushes and (c) Nanochannels without brushes.
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(a) (b)

(c)

Figure 3.12: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity

(dashed lines) profiles for the case of C∞ = 10−2M ,α = 0.5 , β = 0.5 in (a) Nanochan-

nels grafted with long weakly grafted brushes, (b) Nanochannels grafted with short

densely grafted brushes and (c) Nanochannels without brushes. Other parameters

are same as those in Fig 2.
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(a) (b)

(c)

Figure 3.13: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity

(dashed lines) profiles for the case of C∞ = 10−4M ,α = −0.5 , β = 0.5 in (a)

Nanochannels grafted with long weakly grafted brushes, (b) Nanochannels grafted

with short densely grafted brushes and (c) Nanochannels without brushes. Other

parameters are same as those in Fig 2.
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(a) (b)

(c)

Figure 3.14: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity

(dashed lines) profiles for the case of C∞ = 10−2M ,α = −0.5 , β = 0.5 in (a)

Nanochannels grafted with long weakly grafted brushes, (b) Nanochannels grafted

with short densely grafted brushes and (c) Nanochannels without brushes. Other

parameters are same as those in Fig 2.
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(a) (b)

(c)

Figure 3.15: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity

(dashed lines) profiles for the case of C∞ = 10−4M ,α = 0 , β = −0.5 in (a) Nanochan-

nels grafted with long weakly grafted brushes, (b) Nanochannels grafted with short

densely grafted brushes and (c) Nanochannels without brushes. Other parameters

are same as those in Fig 2.
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(a) (b)

(c)

Figure 3.16: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity

(dashed lines) profiles for the case of C∞ = 10−2M ,α = 0 , β = −0.5 in (a) Nanochan-

nels grafted with long weakly grafted brushes, (b) Nanochannels grafted with short

densely grafted brushes and (c) Nanochannels without brushes. Other parameters

are same as those in Fig 2.
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(a) (b) (c)

Figure 3.17: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity

(dashed lines) profiles for the case of C∞ = 10−4M ,α = 0.5 , β = −0.5 in (a)

Nanochannels grafted with long weakly grafted brushes, (b) Nanochannels grafted

with short densely grafted brushes and (c) Nanochannels without brushes. Other

parameters are same as those in Fig 2.
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(a) (b)

(c)

Figure 3.18: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity

(dashed lines) profiles for the case of C∞ = 10−2M ,α = 0.5 , β = −0.5 in (a)

Nanochannels grafted with long weakly grafted brushes, (b) Nanochannels grafted

with short densely grafted brushes and (c) Nanochannels without brushes. Other

parameters are same as those in Fig 2.
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(a) (b)

(c)

Figure 3.19: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity

(dashed lines) profiles for the case of C∞ = 10−4M ,α = −0.5 , β = −0.5 in (a)

Nanochannels grafted with long weakly grafted brushes, (b) Nanochannels grafted

with short densely grafted brushes and (c) Nanochannels without brushes. Other

parameters are same as those in Fig 2..
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(a) (b)

(c)

Figure 3.20: Thermo-osmotic velocity (bold lines) and Electro-osmotic velocity

(dashed lines) profiles for the case of C∞ = 10−2M ,α = −0.5 , β = −0.5 in (a)

Nanochannels grafted with long weakly grafted brushes, (b) Nanochannels grafted

with short densely grafted brushes and (c) Nanochannels without brushes Other pa-

rameters are same as those in Fig 2.

Appendix

Derivation of eq. 3.7:

The electric field E is obtained by making the net current equal to zero, i.e.,

I =

∫ h

−h
(J+ − J−). (A1)
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Here, J± are the cationic and anionic ion fluxes that can be expressed as

J± = −D±
[
∇n± ±

e

kBT
n±(∆ψ − E) +

Q±
kBT 2

n±∆T

]
. (A2)

We use the condition,

n± = n∞e
∓ψ̄ ⇒ ∇n± = ∇n∞e∓ψ ∓ n∞e∓ψ̄∇ψ̄ = ∇n∞e∓ψ̄ ∓ n±

e

kBT
∇ψ,

(where ψ̄ =
eψ

kBT
). (A3)

Therefore,

J± = −D±
[
∇n∞e∓ψ̄ ∓

e

kBT
n∞e

∓ψ̄E +
Q±
kBT 2

n∞e
∓ψ̄∇T

]
+ n±u. (A4)

Using eq.(A4) in eq.(A1) as well as expressing β = D+−D−
D++D−

and α = Q+D+−Q−D−
Q+D+−Q−D− [ so

that we can write D+ = (1
2
)(D++D−)(1+β) and D− = (1

2
)(D++D−)(1−β),Q+D+ =

(1
2
)(Q+D+ +Q−D−)(1+α) and Q−D− = (1

2
)(Q+D+ +Q−D−)(1−α)], we can obtain:

n∞
2kBT

(D+ +D−)(E)

∫ h

−h

[
(1 + β)e−ψ̄ + (1− β)eψ̄

]
dy =∫ h

−h
2un∞sinh(ψ̄)dy +

∇n∞
2

(D+ +D−)

∫ h

−h

[
(1 + β)e−ψ̄ − (1− β)eψ̄

]
dy +

n∞∇T
2kBT 2

(Q+D+ +Q−D−)

∫ h

−h

[
(1 + α)e−ψ̄ + (1− α)eψ̄

]
dy (A5)

=⇒

E =
4kBT

e(D+ +D−)

∫ h
−h usinh(ψ̄)dy∫ h

−h

[
(1 + β)e−ψ̄ + (1− β)eψ̄

]
dy

+

kBT

e

∇n∞
n∞

∫ h
−h

[
(1 + β)e−ψ̄ + (1− β)eψ̄

]
dy∫ h

−h

[
(1 + β)e−ψ̄ − (1− β)eψ̄

]
dy

+

∇T
eT

Q+D+ +Q−D−
D+ −D−

∫ h
−h

[
(1 + α)e−ψ̄ − (1− α)eψ̄

]
dy∫ h

−h

[
(1 + α)e−ψ̄ + (1− α)eψ̄

]
dy

(A6)
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=⇒

Ē =
E

E0

=

∇T
T


−Π

{∫ 1

−1
Pe sinh (ψ̄)ūdȳ +

∫ 1

−1

[
(1 + β) e−ψ̄ − (1− β) eψ̄

]
dȳ

}
∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

+

∇T
T


Γ
∫ 1

−1

[
(1 + α) e−ψ̄ − (1− α) eψ̄

]
dȳ∫ 1

−1

[
(1 + β) e−ψ̄ + (1− β) eψ̄

]
dȳ

 , (A7)

where ∇n∞
n∞

= −Γ∇T
T

and the other different dimensionless groups are expressed in

the main text.

Calculation of u:

The velocity field can be obtained by solving the Navier Stokes under hte con-

ditions that the flow is steady, fully developed and hence uni-directional (in the axial

direction):

∂p

∂y
+ e(n+ − n−)

∂ψ

∂y
= 0, (B1)

η
d2u

dy2
=
∂p

∂x
− e(n+ − n−)

(
E − ∂ψ

∂x

)
, (B2)

where η is the dynamic viscosity and κ is the inverse of the screening length. Using

n± = n∞e
∓ψ̄, we can re-write the equation as:

∂p

∂y
= 2en∞sinh(ψ̄)

∂ψ

∂y
= 2n∞kBTsinh(ψ̄)

∂ψ̄

∂y
. (B3)
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Integration the equation with respect to y under the condition that when p = patm

(without any applied pressure gradient) and ψ̄ = 0, we can write:

p = patm + 2n∞kBT [cosh(ψ̄)− 1]. (B4)

Of course from eq.(B4), we can obtain (here ∇ implies ∂
∂x

):

∂p

∂x
= 2[cosh(ψ̄)− 1][(∇n∞)kBT + n∞kBT∇T ] + 2n∞kBTsinh(ψ̄)∇ψ̄. (B5)

Consequently, we can reduce eq.(B2) to:

η
d2u

dy2
= 2[(∇n∞)kBT + n∞kB∇T ] + 2n∞kBTsinh(ψ̄)∇ψ̄. (B6)

Considering ū = u
U∗

and ȳ = y
h
, we can write:

η
d2u

dy2
= η

d

dy

(
du

dȳ

dȳ

dy

)
= η

d

dȳ

(
U?dū

dȳ

dȳ

dy

)
dȳ

dy
=
ηU?κ2

κ̄2

d2ū

dȳ2
=

2kBT (∇n∞)

κ̄2

d2ū

dȳ2
,

(B7)

where κ̄ = κh = 1
λ̄

= h
λ

[where λ =
√

ε0εrkBT
2n2
∞e

2 ]

Using eq.(B7) in eq.(B6), we can write

d2ū

dȳ2
=

(
κ̄2 +

∇T
T

n∞
∇n∞

)
[cosh (ψ̄)− 1] +

n∞
∇n∞

e

kBT
sinh(ψ̄)E. (B8)

Using eq (3.3) to replace E, we can finally obtain the velocity field within the brushes

[1st equation of eq.(3.7)].
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Chapter 4: Conclusions and Scope of the Work

4.1 Conclusions

In this work, we have studied the influence of the presence of polyelectrolyte

brushes in diffusio-osmotic flow and thermo-osmotic flow. We began with examining

the importance and uniqueness of functionalizing nanochannels, which enables fine-

tuning of the surface and flow characteristics in the nanochannels. To understand the

influence of polyelectrolyte brushes, we first modeled the brush thermodynamics fol-

lowing past approaches towards brush-brush steric interactions, brush-brush electro-

static interactions and finally, brush-EDL electrostatic interactions. We then modeled

the physics of the interaction of the brushes with the surrounding electrolyte, taking,

among other things, into account the charge de-neutralizing effect of the electrostatic

double layer (EDL) that plays a crucial role in nano-scale flows. The difference in

diffusivities of the cations and the anions, and in addition, the difference in their heats

of transport in the case of thermo-osmosis, results in the induction of an electric field

that is partly influenced by the EDL potential. This electric field in turn induces an

electro-osmotic (EOS) flow, thus leading to a two-way coupled state of electric field

and flow. In addition to electro-osmotic flow, because of the gradient in the number

concentrations of the cations and anions, either by way of an applied concentration
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gradient (diffusio-osmosis) or an applied temperature gradient (thermo-osmosis) that

leads to a Soret-like equilibrium, a pressure gradient results, which then leads to a

chemio-osmotic (COS) flow in diffusio-osmosis, and thermochemio-osmotic (TCOS)

flow in thermo-osmosis.

We found that in both cases, viz., diffusio-osmosis and thermo-osmosis in nanochan-

nels grafted with polyelectrolyte brushes, the presence of long weakly-grafted brushes

typically massively enhances the flow, while the presence of short brushes often has

a retarding influence. This comparison is with respect to the flow in ungrafted

nanochannels. This is in contradiction with the widely-held view that the presence of

the brushes always leads to a reduction in a flow due to brush-drag. It is important to

note here that the extent to which the functionalization affects the flow is dependent

on whether the chemio-osmotic transport aids or dampens the electro-osmotic flow,

with the former leading to a massive enhancement. We hope that this study will bring

to light a new mechanism of electrokinetic transport in functionalized nanochannels

that can be applied widely in flow-field dependent applications.

4.2 Scope of Work

The present study represents the first attempt to quantify in a thermodynami-

cally self-consistent framework two new mechanisms of induced electrokinetic trans-

port (namely, ionic diffusioosmosis and ionic thermoosmosis) in soft (or PE brush

grafted nanochannels). From a pure academic perspective, the work can be extended

to include PE brush design that is commonly encountered, namely brushes with
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charges along their entire backbone. There have been previous efforts in quanti-

fying electrokinetic transport in such systems (see [33, 42–48]); however, none has

considered ionic diffusioosmosis and ionic thermoosmosis. Equally importantly, all

these studies never consider a thermodynamic description of the brushes; rather they

simply assume a constant, salt-concentration-independent brush height that while

calculating the EOS transport. On the other in Chapters 2 and 3 of this thesis,

we quantified the EOS transport in a framework that accounts for the brush height

in a thermodynamic self-consistent fashion. This same principle of thermodynamic

self-constancy with an emphasis of describing the backbone-charged brushes through

a rigorous Strong-Stretching-Theory model (see Refs. [9–11, 14, 15]) will allow a de-

scription of the induced EOS transport in form of DOS and TOS transport in soft

nanochannels in a manner hitherto unknown in the literature. The second important

and more long-term scope of this work would be to solve the problem in a framework

enriched by the information of the atomistic simulations. Such atomistic simulations

would provide a more accurate prediction of parameters such as drag coefficient, heats

of transports, etc., under different conditions of imposed concentration and temper-

ature gradients, which in turn can be used in the continuum model describing the

induced electrokinetic transport.
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