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Burning coal for electricity produces solid coal combustion residue (CCR), 

which is rich in potentially toxic trace elements, and is frequently discharged into 

natural and man-made aquatic systems as a method of disposal.  Lethal and sublethal 

effects of CCR on the estuarine grass shrimp, Palaemonetes pugio, were assessed.  

Grass shrimp were exposed in the laboratory to CCR-enriched sediments and food 

over a full life cycle.  Grass shrimp exposed to CCR significantly accumulated 

selenium and cadmium.  Chronic CCR-exposure caused significantly decreased larval 

survival, increased time to metamorphosis, and increased DNA strand breaks in 

shrimp compared to non-exposed conditions. Stage-classified matrix population 

models were constructed to assess the population-level effects of CCR on grass 

shrimp.  The population models suggested that CCR-exposed grass shrimp would 

experience a decreased population growth rate, altered stable stage structure, stage-



  

specific reproductive value, and elasticity patterns relative to shrimp in reference 

conditions.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 
 
 
 
 
 
 
 
 
 

INDIVIDUAL AND POPULATION-LEVEL EFFECTS OF SOLID COAL 
COMBUSTION RESIDUE ON THE ESTUARINE GRASS SHRIMP 

(PALAEMONETES PUGIO) 
 
 
 

By 
 
 

Danika M. Kuzmick 
 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Master of Science 

2006 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Dr. Christopher Rowe, Chair 
Dr. Thomas Miller 
Dr. Carys Mitchelmore 
 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
Danika M. Kuzmick 

2006 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 ii 
 

Acknowledgements 

I thank my advisor, Dr. Christopher Rowe, for his guidance, knowledge, and 

support throughout my master’s education.  I also thank my committee members, Dr. 

Carys Mitchelmore, and Dr. Thomas Miller, for their expertise and advice throughout my 

experiments and thesis writing.  I am indebted to Kathy Heil and Jeri Pharis for their 

assistance with literature research.  I thank the members of the Rowe lab group past and 

present, as well as Laurie Bauer, Sarah Greene, Eileen Beard, and Rae Benedict for their 

assistance in the lab and with data collection.  I also thank Dr. William Hopkins for 

conducting trace element analyses.  Finally, I would like to acknowledge that this study 

was funded by The United States Environmental Protection Agency through a STAR 

Wildlife Risk Assessment Program Grant (R-82908701) awarded to C. Rowe and W. 

Hopkins. 

 



 

 iii 
 

Table of Contents 
 
 
Acknowledgements............................................................................................................. ii 
Table of Contents............................................................................................................... iii 
List of Tables ..................................................................................................................... iv 
List of Figures .................................................................................................................... vi 
Chapter 1: Introduction ....................................................................................................... 1 
Chapter 2: Sublethal effects of solid coal combustion residue on grass shrimp 
(Palaemonetes pugio Holthius)........................................................................................... 9 

Abstract ........................................................................................................................... 9 
Introduction................................................................................................................... 10 
Materials and Methods.................................................................................................. 16 
Results........................................................................................................................... 24 
Discussion..................................................................................................................... 31 

Chapter 3: Effects of solid coal combustion residue on population dynamics of grass 
shrimp (Palaemonetes pugio Holthius) ............................................................................ 36 

Abstract ......................................................................................................................... 36 
Introduction................................................................................................................... 37 
Materials and Methods.................................................................................................. 44 
Results........................................................................................................................... 51 
Discussion..................................................................................................................... 55 

Chapter 4: Synopsis .......................................................................................................... 64 
Bibliography ..................................................................................................................... 76 
 
 
 
 
 
 



 

 iv 
 

 

List of Tables 
 
Chapter 1 

Table 1.1.  The average range of concentrations (ppm dry mass) of common trace 

elements in CCR measured in sediments in several contaminated sites…………………..2 

Table 1.2.  Concentrations of select trace elements measured in abiotic and biotic 

matrices in the primary CCR settling basin at the D-Area Power Facility, SC….………..7 

 

Chapter 2 

Table 2.1.  The average range of concentrations (ppm dry mass) of common trace 

elements in CCR measured in sediments in several contaminated sites.………………...11 

Table 2.2.  Whole body trace element concentrations (ppm dry mass) of P. pugio from 

coal combustion residue (CCR) and reference treatments……………………………….25 

Table 2.3.  Trace element concentrations (ppm dry mass) in food, sediment, and water in 

CCR and reference treatments…………………………………………………………...26 

 

Chapter 3 

Table 3.1.  Concentrations of select trace elements measured in abiotic and biotic 

matrices in the primary CCR settling basin at the D-Area Power Facility, SC.….……...39 

Table 3.2.  Survival probability of specific life stages of P. pugio and average number of 

larvae hatched in reference and CCR treatments ………………………………………..52 

Table 3.3.  Transition probabilities and fecundities of P. pugio ………………………...53 

Table 3.4.  Life history parameters from the analysis of the transition matrix.………….53 



 

 v 
 

Table 3.5.  Reproductive value and stable stage structure for reference and CCR-exposed 

grass shrimp populations ………………………………………………………………..54 

Table 3.6.  Elasticities of model parameters.…………….……………………..………..55 



 

 vi 
 

List of Figures 

Chapter 2 

Figure 2.1.  An example of an undamaged and damaged cell, and illustrates the head and 

tail region parameters..………………………………………………………….……….22 

Figure 2.2.  Effect of 0µM, 25µM, 50µM, and 100µM in vitro (30 minutes) hydrogen 

peroxide exposures on percent tail DNA (a), DNA tail moment (b), and tail length (c) in 

isolated P. pugio hepatopancreas cells..……………………………………………...….28 

Figure 2.3.  Effect of 156 day coal combustion residue exposure and hydrogen peroxide, 

50µM, (positive control) on percent tail DNA (a), DNA tail moment (b), and tail length 

(c) of P. pugio hepatopancreas tissue…………………………………...……………....29 

Figure 2.4.  Effect of 156 day coal combustion residue exposure on the total antioxidant 

potential of P. pugio tail tissue……………………………………………….…...……..30 

 

Chapter 3 

Figure 3.1. Life history diagram of P. pugio………………………….……..…………..48 

Figure 23.2. Time to metamorphosis of P. pugio larvae in reference and CCR 

conditions.……………………………………………………………………..…….…..51 

Figure 3.3.  Projected population size after ten generations……………..……………...53 
 
 
 
 
 
 
 
 
 
 



 

 1 
 

Chapter 1: Introduction 
 

In recent decades there has been an increase in global reliance on coal for 

electrical energy production.  Trace element-enriched coal combustion residue (CCR) is 

formed when coal is burned for large-scale energy production.  As of 1998 the United 

States produced 57 million tons of CCR annually (ACAA 1998).  Production of such a 

large volume of waste presents a challenge for disposal.  A primary disposal method, 

accounting for approximately one-third of the annual disposal in the U.S. (EPRI 1997), 

involves the pumping of a water-based CCR slurry into natural or man-made basins in an 

effort to allow settling of solids.   The receiving waters from CCR-disposal systems often 

support unique ecosystems that may be negatively affected by trace elements contained in 

the CCR, and as they are often connected to a local waterway this allows for a potential 

release of CCR into nearby natural systems.  

Environmental release of CCR is of concern primarily due to potentially toxic 

effects of trace elements, although in relatively static systems, smothering of sedentary 

benthic organisms may sometimes occur (Bamber 1984).  A summary of the most 

common trace elements present in CCR and their concentrations at specific sites is 

provided in Table 1.1 (summarized from Rowe et al. 2002).  CCRs can have long-lasting 

effects due to its persistence in sediments, chronically exposing and affecting organisms 

even decades after input into the system has ceased (Lemly 2002).   

Coal combustion residue has been shown to cause a variety of sublethal effects in 

numerous species (Rowe et al. 2002).  Chronic exposure to CCR has been linked to 

increased metabolic costs in aquatic invertebrates and vertebrates (Rowe et al. 1998a, 

2001a).  Chronic exposure to CCR has been shown to result in developmental, 
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Table 1.1.  The average range of concentrations (ppm dry mass) of common trace elements in CCR measured in sediments in several 

contaminated sites.   

  Trace Elements 
Site Cr Cu As Se Cd Pb 
D Area Power Facility, SC 
     Primary Settling Basin 

NR 71.8 70.8 6.21 0.57 45.2 

Belews Lake, NC 
 

NR NR 31.2 – 59.8 6.08 – 8.93 
 

NR NR 

Hyco Reservoir, NC, 
     Cooling Reservoir 

24 – 197 15 – 104 1.8 – 13.3 0.68 – 5.50 NR NR 

Stingy Run, OH 45.4 – 132 40.6 – 57 27.6 – 58 5 - 20 1 – 1.9 19.8 – 30 

 

(NR=not reported) 

Data compiled from Rowe et al. (2002) 
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histopathological, teratogenic, and reproductive effects in fish and amphibians (Sorensen 

et al. 1984; Rowe et al. 1998b, 2001a; Lemly 2002).  Specifically, exopthalmus, anemia, 

swollen and vacuolated gill lamellae, decreased hematocrit, inflammatory cell-filled 

pericardial spaces, and necrotic and ruptured egg follicles in fish (Sorensen et al. 1984; 

Lemly 2002), and malformed oral structures and spinal flexures in larval amphibians 

(Rowe et al. 1998b, 2001b) have been observed.   

 Because of the potential for CCR to exert effects both at the individual- and 

population-levels, my research examined the potential effects of CCR on grass shrimp 

(Palaemonetes pugio Holthius) from two distinct perspectives.  First, I examined the 

sublethal effects of CCR on molecular and cellular functions of individuals to determine 

whether chronic exposure to CCR resulted in significant biological changes.  Second, I 

examined the potential for chronic exposure to CCR to influence population dynamics as 

a result of the cumulative impact of individual responses.   

CCR exposure is often not directly lethal to adults but can lead to reproductive 

failure or developmental defects in offspring, in some cases resulting in population 

declines (Lemly 2002).   Reductions in species diversity resulting from population-level 

effects of CCR certainly suggest that CCR can have ecological effects (Lemly 2002).  

Yet, from a remediation and pro-active management perspective, it is desirable to identify 

potential effects prior to their emergence at the ecosystem level.  The use of biomarkers 

as "early warning signals" for potential ecological effects of contaminants can provide 

evidence that a system may be in jeopardy prior to ecosystem changes being observed 

(van der Oost 2003) and allows the mechanisms of toxicity involved to be examined.  

Thus, by identifying molecular, biochemical, and cellular alterations in contaminant-
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exposed organisms, it is possible to detect sublethal effects of CCR potentially before 

population-level effects are observed.   

While measures of sublethal effects of contaminants are useful for identifying 

potential responses by individuals, environmental managers are generally concerned with 

population-level effects.  Thus, the endpoints for ecological risk assessments of chemical 

contaminants should not necessarily be based upon effects on individuals, but rather on 

changes to populations (Lin et al. 2005).  Population models are commonly employed to 

project the population-level effects of contaminants and other environmental variables.  

Using population models allows an integration of the multiple effects of chemicals on all 

life-stages (Munns et al. 1997).  By using models to assess the potential population-level 

effects of contaminants, regulators may be able to develop risk assessments to determine 

whether specific contaminants require regulatory actions to prevent ecological damage.  

Matrix-based population models (Caswell 2001) have been of particular utility in 

quantifying the impacts of contaminant exposure on populations (Munns et al. 1997, 

Levin et al. 1996).  An advantage of matrix models is their relative simplicity.  The 

models capture processes occurring in discrete time units, and they can easily incorporate 

demographic data from laboratory toxicity bioassays.  Additionally, modern computing 

languages make computations very simple (Usher 1972). 

The use of stage-classified matrix models is valuable when the study organism 

has clearly discernable life-stages.  Stage-classified models have ecological applications 

when the age of individuals in populations are poorly known or cannot be determined by 

inspection (Lefkovitch 1965).  Stage-classified matrix models have been used to assess 

the population-level effects of dioxins and PCBs on the estuarine fish Fundulus 
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heteroclitus (Munns et al. 1997), to examine the effects of chemical contaminants 

(including hydrocarbons) associated with urban areas of Puget Sound on flatfish 

populations (Johnson et al. 1998), and to assess the effects of cadmium on gastropod 

population growth rate (Jensen et al. 2001, Salice and Miller 2003).  Spencer and McGee 

(2001) also applied stage-based matrix models to assess natural fluctuations in 

populations of Leptocheirus plumulosus, a species commonly used in sediment toxicity 

tests.  

Elasticity analyses and stage-based matrix models are useful for quantifying the 

population-level responses of organisms to toxicants, and as a tool for the basis of 

management decisions.  It has been suggested that the demographic parameters with the 

largest elasticities are where management efforts should be focused because they would 

have the most influence on the population growth rate (Crouse et al. 1987, Doak et al. 

1994, de Kroon et al. 2000, Vonesh and De la Cruz 2002).  However, caution must be 

taken before undertaking any management strategy.  Elasticity analysis may not 

necessarily lead to the best management choice if used alone (Caswell 2001, de Kroon et 

al. 2000, Ehrlén and van Groenendael 1998), and uncritically accepting the highest 

elasticity value to designate the focus of management strategies will be unlikely to fulfill 

management aims (Benton and Grant 1999).  Elasticity does not take into consideration 

whether it is possible for a particular transition variable to be influenced by management 

(de Kroon et al. 2000), and not all transitions vary equally (Pfister 1998).  Knowledge of 

biological constraints, actual transition values, and management options should all 

accompany evaluations of elasticity for conservation purposes (de Kroon et al. 2000).  
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The D-Area Power Facility site near Aiken, South Carolina is well characterized 

as a CCR-disposal location and thus was chosen as a model site for this study (Rowe et 

al. 2002).  Slurried coal combustion residue is pumped into settling basins, which then 

flows into a drainage swamp and into the Savannah River.  Invertebrates, reptiles, and 

amphibians living in this site have elevated body burdens of many trace elements, 

including selenium (Se), arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), and 

copper (Cu) (Rowe et al. 2002, summarized in Table 1.2).  Associated with accumulation 

of trace elements in the D-Area site, vertebrates and invertebrates have experienced 

sublethal effects on morphology, metabolism, and behavior (Rowe 1998, Rowe et al. 

1998 a and b, Hopkins et al. 2000). 

Coal combustion residue is disposed of into estuarine and marine systems as well 

as freshwater systems.  However, effects of CCR in the former systems have received 

relatively little attention (Rowe et al. 2002).  The grass shrimp, Palaemonetes pugio 

(Holthius), was chosen as a study organism because it is widely used as a model test 

organism for estuarine systems.  Palaemonetes pugio ranges from Texas to Maine and is 

an ecologically important species in estuaries and tidal marshes, in salinities ranging from 

0 to 35‰ (Knowlton and Kirby 1984).  Grass shrimp are epibenthic omnivores and spend 

most of their lives associated with the sediments (Gregg and Fleeger 1998), and 

frequently ingest sediments during normal feeding activities.  As a result, P. pugio may 

act as an important vector of CCR-derived contaminants to higher trophic levels.     
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Table 1.2.  Concentrations of select trace elements measured in abiotic and biotic matrices in the primary CCR settling basin at the D-

Area Power Facility, SC.  Values for sediment and tissues are ppm (dry mass); values for water are ppb.    

  Trace Elements 
Primary Settling Basin Cr Cu As Se Cd Pb 
Sediment  NR 71.8 70.8 6.21 0.57 45.2 
Water  0.44 2.53 17.17 7.0 0.11 0.08 
Crayfish, whole body 2.46 158.52 8.71 14.92 2.78 NR 
Mosquitofish, whole body 1.56 4.97 2.89 14.28 0.32 NR 
Bullfrog, recent metamorph, whole body 1.58 13.79 15.55 26.85 0.8 NR 

 

NR = not reported 

Data compiled from Rowe et al. (2002) 
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To date most studies looking at the effects of coal combustion residue have been 

based on individual endpoints such as growth and mortality, and few studies have 

quantified the effects of CCR on populations or higher levels of organization.  Therefore, 

I examined CCR-induced effects on both individual traits and population dynamics using 

a life-cycle experiment in which P. pugio were exposed to CCR through diet and 

sediment to address both individual- and population-level responses.  I examined the 

sublethal effects of CCR on individuals through the use of subindividual-level 

biomarkers, which have shown to be responsive to some of the individual contaminants 

known to be present in CCR (see chapter 2).  Specifically, I conducted the Comet (single-

cell gel electrophoresis) assay to measure the extent of DNA strand breaks in shrimp 

hepatopancreas caused by genotoxicants present in CCR.  I also measured total 

antioxidant potential as an indicator of oxidative stress.  The extent of heavy metal 

bioaccumulation by the test organisms was also quantified for comparison with the 

biological endpoints. The exposure experiment also provided the parameter estimates for 

stage-classified matrix models, which were used to assess the impact of CCR on P. pugio 

over a full life cycle.  I analyzed the models to assess the intrinsic rate of population 

increase (population growth rate), stable stage structure, and reproductive value, under 

both treatment conditions.  I also conducted an elasticity analysis of the models to 

determine the life-history stage that is likely to have the largest effect on the population 

growth rate, as well as to examine any changes in elasticity among treatments.   
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Chapter 2: Sublethal effects of solid coal combustion residue on 

grass shrimp (Palaemonetes pugio Holthius) 

Abstract 
Burning coal for electricity produces solid coal combustion residue (CCR), which 

is rich in trace elements including Se, Cd, Cu, As, Pb, and Cr, that have the potential to 

induce sublethal effects including DNA single strand breaks (SSB) and oxidative stress.  

Coal combustion residue is frequently disposed of into natural and man-made aquatic 

systems.  As the effects of CCR have received relatively little attention in estuarine 

systems, the estuarine grass shrimp, Palaemonetes pugio, was chosen for this study.  In 

the laboratory grass shrimp were exposed to CCR-enriched sediments and food over a 

full life cycle.  The Comet assay, a general but sensitive assay for genotoxicity, was used 

to quantify DNA SSB. Total antioxidant potential was examined to assess the overall 

antioxidant scavenging capacity of CCR-exposed and non-exposed grass shrimp.  Grass 

shrimp exposed to CCR significantly (p<0.05) accumulated Se and Cd compared to 

unexposed shrimp.  Chronic CCR exposure caused DNA SSB in hepatopancreas tissue, 

as evidenced by the significantly (p<0.05) increased percent tail DNA, tail moment, and 

tail length as compared to reference shrimp.  However, no significant difference (p>0.05) 

was observed in total antioxidant potential.  It is important to quantify the sublethal 

effects of CCR as they have the potential to give insights into the mechanisms of toxicity 

as well as aid in an overall biomonitoring regime by providing ‘early warning signals’ of 

potentially higher-order impacts.    
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Introduction 
Burning coal for electricity produces solid coal combustion residue (CCR), which 

is enriched in a variety of elements. These residues have been found to contain 

potentially toxic concentrations of trace elements, such as, selenium, cadmium, and 

copper, (see Table 2.1, compiled from Rowe et al. 2002).  In addition, CCR may also 

contain trace concentrations of organic compounds depending upon facility-specific 

waste comanagement practices (EPRI 1997) and combustion conditions.  Of forty-five 

organic compounds measured in water from CCR disposal sites at 21 facilities in the U. 

S., only two compounds (bis(2-ethylhexyl)phthalate Di-n-octylphthalate) were found in 

concentrations above detection limits (EPRI 1987).   

A common disposal method for CCR is to pump it as a slurry into settling basins, 

which are designed to capture solids prior to discharge of the water into local systems.  

However, often these basins do not retain all of the particulate and dissolved materials 

from CCR.  Therefore, there may be serious environmental implications regarding the 

release of CCR derived contaminants into local waterways.  The trace elements in which 

CCR is typically enriched can potentially have detrimental effects on the organisms that 

live in these systems (for a review see Rowe et al. 2002).  For example, negative effects 

of CCR, including increased standard metabolic rate, were observed in a freshwater 

shrimp, Palaemonetes paludosus (a congener of the species studied here), when exposed 

chronically through diet and sediment (Rowe 1998).  Lemly (2002) demonstrated that 

chronic exposure to CCR-enriched sediment caused developmental, histopathological, 

and teratogenic effects in numerous fish species, and associated population declines in 19 

out of 20 species studied.  Increased metabolic costs have been observed in crayfish 

(Procambarus acutus) (Rowe et al. 2001a) following exposure to CCR-enriched
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Table 2.1.    The average range of concentrations (ppm dry mass) of common trace elements in CCR measured in sediments in several 

contaminated sites.   

  Trace Elements 
Site Cr Cu As Se Cd Pb 
D Area Power Facility, 
     Primary Settling Basin 

NR 71.8 70.8 6.21 0.57 45.2 

Belews Lake 
 

NR NR 31.2 – 59.8 6.08 – 8.93 
 

NR NR 

Hyco Reservoir, NC, 
     Cooling Reservoir 

24 – 197 15 – 104 1.8 – 13.3 0.68 – 5.50 NR NR 

Stingy Run, OH 45.4 – 132 40.6 – 57 27.6 – 58 5 - 20 1 – 1.9 19.8 – 30 

 

(NR=not reported) 

Data compiled from (Rowe et al. 2002)
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sediment.  Although population declines and sometimes extirpation of organisms exposed 

to CCR clearly demonstrates its detrimental effects, from a pro-active management 

perspective, quantifying biomarker (sublethal) responses in resident organisms is 

preferred (van der Oost 2003).  Through the use of molecular, biochemical, and cellular 

biomarkers in addition to investigating mechanisms of toxicity, it is potentially possible 

to detect sublethal effects of CCR in exposed organisms, before serious population-level 

effects are observed.  Currently, there is a need to develop and apply suitable biomarkers 

as ‘early warning signals’ of exposure to and/or effect of CCR in resident organisms.  

Biomarkers of exposure and/or effect have been developed for many of the trace 

elemental components of CCR and not only have potential for use as ‘early-warning’ 

signals but have given insights into the mechanisms resulting in CCR toxicity (for a 

review of biomarkers see van der Oost 2003).  For example, copper has multiple 

pathways of toxicity including the generation of reactive oxygen species (ROS; Correia et 

al. 2002), and results in conditions of oxidative stress (Doyette et al. 1997).  The 

production of reactive oxygen species is a natural consequence of aerobic life (Arun et al. 

1999), and transition metals, including Cu, Cr, Fe, Ni, V, and Co, are able to redox cycle 

electrons and thus initiate the production of ROS (Prahalad et al. 2000).  The 

contaminants associated with CCR can, therefore, be an anthropogenically-related source 

of ROS and pro-oxidant, free-radical production (Livingstone 2001).  Reactive oxygen 

species can impair nucleotides, proteins, lipids, and carbohydrates, which are all 

important cellular constituents (Yu 1994). To overcome endogenous and anthropogenic 

elevations of ROS, organisms have developed effective antioxidant systems. Exposure to 
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oxidative stressors, may decrease cellular pools of antioxidant scavengers; however, this 

may simply mean that the oxidative defense systems have functioned normally, and 

oxidative damage has not necessarily occurred (Doyette et al. 1997, Diaz et al. 2004). For 

example, Viarengo et al. (1990) found that exposure of mussels (Mytilus 

galloprovincialis) to copper resulted in lipid peroxidation and a concurrent significant 

decrease in glutathione concentrations, an important antioxidant defense mechanism 

against oxidative damage to cellular components, after one day of exposure.  Exposure to 

cadmium and zinc did not increase lipid peroxidation (oxidative injury) nor show 

significant variations in glutathione concentrations (Viarengo et al. 1990), however, 

Shaikh et al. (1999) found glutathione to be important in protecting rat cells against 

cadmium toxicity, and Downs et al. (2001) found increased oxidative stress in P. pugio 

exposed to cadmium as exhibited by increased concentrations of glutathione compared to 

non-exposed shrimp. 

Many biomarkers have been employed routinely to assess the status of an 

organism’s oxidative stress or antioxidant capacity (see Van der Oost, 2003, Livingstone 

2001). The measurement of total antioxidant potential (total oxidant radical scavenging 

capacity) is a recent approach (Winston et al., 1998, Regoli and Winston, 1998, 1999).  

The total antioxidant potential (AOP) test covers a wide array of antioxidants collectively 

as opposed to individually, and is advantageous because it is an integrative approach and 

gives a good overall picture of the organism’s free radical scavenging capacity.  

However, this can be disadvantageous if the toxicant has a very specific response, such as 

the induction or depletion of glutathione, which can be masked amongst the overall 

effect.   



 

 14 
 

Besides evidence that the elemental constituents of CCR may result in conditions 

of oxidative stress, Smith-Sonneborn et al. (1981), Kubitscheck and Ventra (1979), Li et 

al. (1983) and others have shown CCR to be mutagenic to a variety of organisms 

(including Paramecium tetraurelia, Salmonella typhimurium, and Chinese hamster ovary 

cells).  In addition, in vitro exposure of calf thymus DNA to CCR has been shown to 

cause oxidative DNA damage (8-hydroxydeoxyguanosine (8-oxo-dG)) formation; 

Prahalad 2000).  However, there is limited information regarding oxidative stress and 

genotoxicity endpoints in organisms exposed in vivo to CCR.  

Many trace elements characteristic of CCR may be genotoxic and result in DNA 

damage. Genotoxic compounds can alter the chemical structure of DNA, causing various 

perturbations (e.g. strand breaks or DNA adducts) that may affect efficient DNA repair 

and ultimately lead to various disease states including teratogenesis and cancer 

(Mitchelmore and Chipman, 1998).  Toxic compounds may be direct-acting 

genotoxicants (e.g. UV light, hydrogen peroxide) or indirect-acting in that they require 

metabolism to exert their effects.  For example, indirect-acting genotoxicants can result in 

damage to DNA by their metabolism / oxidation reactions leading to the formation of 

ROS that are highly damaging to DNA (Livingstone 2001).  Heavy metals can alter DNA 

directly or initiate the production of ROS.   

DNA single strand breaks (SSB) can be used as a rapid and relatively sensitive 

indicator of genotoxicant exposure (Mitchelmore and Chipman, 1998, Steinert et al. 

1998).  DNA SSB are formed as a result of direct genotoxic insult or following failed 

DNA adduct repair. The detection of SSB has been classified as a non-specific and 

general biomarker for exposure to genotoxicants and is our reasoning for using it in this 
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experiment (Mitchelmore and Chipman, 1998).  Many assays for detecting SSB have 

been employed, although I have focused on a simple and reproducible assay, the Comet 

assay (Mitchelmore et al. 1998).  Previously, the Comet assay has been used to assess the 

presence of DNA SSB and has been demonstrated to be a sensitive marker of DNA 

damage caused by benzo[a]pyrene, chromium VI, hydrogen peroxide, or UV damage in 

P. pugio (Kim et al 2000, Lee et al. 2000, Hook and Lee 2004).  An advantage of the 

Comet assay is that it can be used on small samples of cells (Steinert et al. 1998), and 

may also be used for non-destructive and/or repeated sampling of the same individual 

(Nacci et al. 1992), which could be used to monitor effects over time in a biomonitoring 

program.   

Palaemonetes pugio, is a species ubiquitous to estuarine and coastal systems from 

Maine to Texas (Knowlton and Kirby 1984) where it serves as important prey for 

estuarine fish (Wood 1967, Poole 1988).  Individuals mature at approximately 3 months 

of age (Wood 1967), produce four to six broods per year of up to 400 eggs per brood 

(dependent on body size; Alon and Stancyk 1982), achieve a maximum weight of 3 

grams, and live approximately 2 years (Poole 1988).  Grass shrimp are epibenthic 

omnivores, and have the potential to accumulate and uptake trace elements from the 

sediment (Poole 1988), transferring them to higher trophic levels.  This species is a model 

organism (APHA 1985) in many toxicological studies and preliminary data suggest that it 

(and its congener P. paludosus) may be chronically affected by CCR-contaminated 

sediment (Rowe 1998, Rowe and Hopkins, unpublished).  The hepatopancreas was 

chosen for assessment of DNA damage because it is homologous to the mammalian liver 

and pancreas and it is responsible for the major metabolic events in crustaceans, 
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including uptake and storage of inorganic nutrients, synthesis and secretion of digestive 

enzymes, lipid and carbohydrate metabolism, and molting (Gibson and Barker, 1979).      

A full life-cycle experiment in which P. pugio was exposed to CCR through diet 

and sediment was conducted to examine the chronic and sublethal effects of CCR on 

individuals.  Specifically, the Comet assay (single-cell gel electrophoresis) was used to 

measure the extent of DNA SSB in shrimp hepatopancreas, and the total antioxidant 

potential of shrimp tail tissue was used as an indicator of oxidative stress. These results 

were analyzed in combination and interpreted with respect to concentrations of 

accumulated trace elements following exposure.  

 

 

Materials and Methods 
CCR Exposure 

This study involved a full life cycle laboratory exposure of P. pugio in order to 

examine potential sublethal (biomarker) responses under CCR-exposed and non-exposed 

conditions.  Stage-specific lethal effects were also quantified for use in population 

models (Chapter 3).  There were two treatments (four replicates per treatment); one with 

CCR sediment and CCR-contaminated food, and a reference treatment in which black 

sand served as the sediment and food was uncontaminated.  The black sand was used to 

mimic the color of CCR.  Contaminated sediment was derived from CCR dredge piles 

surrounding a drainage basin at the D-Area Power Facility on the U. S. Department of 

Energy operated Savannah River Site, SC.  Contaminated food for juvenile and adult 

shrimp (crayfish tissue; see below) was collected from the drainage basins and swamp at 
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the D-Area site.  Reference food for juveniles and adults was commercially purchased.  

Food provided to larval grass shrimp was newly hatched brine shrimp (Artemia spp.), 

which were hatched over contaminated sediment or in the absence of sediment.    

 Experiments were initiated with larval shrimp from stock cultures of gravid adults 

collected from the Patuxent River, MD (salinity ~ 9 – 15 ‰).  Gravid P. pugio were 

suspended in mesh baskets in individual glass jars containing 400 ml of aerated, filtered 

water from the Patuxent River (adjusted to 20‰ salinity with Instant Ocean) and placed 

in a 24ºC incubator until hatching and release of larvae from the egg clutch.  The chelae 

of the females were clipped to prevent the females from cannibalizing the egg mass 

(Little 1968), as sometimes occurs in laboratory conditions.  Daily, newly-hatched larvae 

were removed and placed in a shallow glass dish and the larvae were allowed to mix 

fully.  

  Three days prior to the predicted peak of hatching, eight 1500 ml beakers were 

set up with 200 cm3 of sediment and filtered, Patuxent River water to be used in larval 

exposures.   Two hundred larvae were placed in each beaker on the day that they hatched 

(Day 1). In an effort to provide genetic diversity, all replicates had a mixture of larvae 

from three to fourteen females.  The initial salinity in each beaker was 20‰ (optimal for 

larval survival; Knowlton and Kirby, 1984) and the salinity was gradually decreased to 

the ambient salinity of Patuxent river water (approximately 10‰) throughout the duration 

of the larval stage.  Salinity, temperature (22.52 ± 0.91°C), and dissolved oxygen (7.02 ± 

0.72 mg/L) were measured every three days prior to a fifty percent water change.  Larvae 

were fed newly hatched Artemia spp. (see above).  The duration of the larval stage was 
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estimated based upon the number of larvae metamorphosing in each replicate on each 

day. 

 Thirty-nine newly metamorphosed shrimp from each replicate were used to start 

the juvenile stage of the experiment, with the same replicates carried over from the larval 

stage.  I chose to use 39 juveniles because this represented the minimum number per 

replicate that survived the larval exposures.  During the transition to the juvenile stage 

one of the CCR replicates was lost due to unusually low survival.  Juvenile exposures 

were conducted in 57-L, flow-through tanks (with mesh netting over the outflow to 

prevent loss of shrimp) containing ambient salinity filtered (20µm) Patuxent River water, 

and 1000 cm3 of sediment (approximately 3 mm depth).  Salinity, temperature, and 

dissolved oxygen were monitored weekly.  Juveniles were fed ground crayfish ad libitum.   

Reference crayfish were obtained commercially; crayfish for the contaminated treatment 

were collected in the D-Area site.  Crayfish were prepared by separating the tissue from 

the exoskeleton, drying, and grinding the soft tissue (I rarely observed sediment in the gut 

contents) and was stored at 4°C.  Juvenile exposures lasted for 60 days based on the stage 

duration reported by Wood (1967), at the end of which (Day 96 overall) shrimp were 

surveyed for survival and maturation (defined as having attained a total length of 16 mm, 

Alon and Stancyk 1982).  Total length was defined as the distance from the base of the 

rostrum to the posterior tip of the telson.  

The adult phase of the experiment took place in the same flow-through system as 

the juvenile phase, and lasted for 77 days.  The feeding regime for the adult exposure was 

the same as in the juvenile exposure.  As adult females became gravid they were removed 

and suspended in mesh baskets in individual glass jars containing 800 ml of aerated, 
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filtered water from their replicate tank, and their chelae were clipped to prevent them 

from eating the egg mass, however, sediment was not placed in the jars.  The number of 

larvae that hatched from each female was counted.  Survival, growth, and reproduction 

were measured, and are reported elsewhere (see Chapter 3). 

 

Trace Element Analysis 

Tissue samples (ten pooled shrimp) were collected from each replicate at the 

termination of the experiment (Day 156).  Two initial samples of each sediment type 

(reference and CCR) were taken at the beginning of the experiment.  At the conclusion of 

the experiment a single sediment sample was taken from each replicate.  Samples of the 

Artemia spp. and crayfish food sources were also collected for trace element analyses.  

Tissue and food samples (Artemia spp. and crayfish) were freeze-dried and ground with a 

mortar and pestle.  Sediment samples were oven-dried at 60º C for approximately 24 hr. 

Water samples were collected from each replicate at the end of the larval stage 

prior to a water change, and at the conclusion of the experiment from the flow-through 

tanks.  Water samples were filtered through a 0.45µm filter and acidified with ten percent 

ultrex nitric acid (Sigma Chemicals).   

 Trace elements of primary interest in this study were Se, Cd, Cu, Pb, As, and Cr 

as these elements are the most often elevated in environmental matrices in most sites 

characterized to date (Rowe et al. 2002).  Samples were acid digested following EPA 

Method 200.3.  After digestion, trace element analysis was conducted by ICP-MS at the 

Savannah River Ecology Lab, SC.  Calibration standards were prepared daily by serial 

dilution ranging from 1-500 µg/L from National Institute for Standards and Technology 
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traceable primary standards.  For quality control purposes blanks and certified reference 

material (Tort 2 and Mess 3; Canadian National Research Counsil, Ottawa, Canada) were 

included in the digestion and analysis procedures.  Average percent recoveries for trace 

elements ranged from 97.27% to 117% (with the exceptions of Cr and Se, 159% and 

142% respectively).  Average variability of percent recovery of certified reference 

materials in digestion sets ranged from 0.0003 to 0.0059.  

 

 Comet Assay Protocol 

 All chemicals were purchased from Fisher Scientific (Pittsburg, PA), Sigma 

Chemical Company (St. Louis, MO), or Gibco (Grand Island, NY). The procedures for 

the Comet assay were modified from those described by Mitchelmore et al. (1998), 

Steinert et al. (1998), and Hook and Lee (2004). Glass microscope slides were coated 

with 1% normal melting-point (NMA) agarose in Dulbecco’s phosphate buffered saline 

solution (Gibco) (1x, pH 7.5) and dried and stored in an oven.   Shrimp were held unfed 

overnight to allow for the emptying of gut contents to reduce the potential for 

contamination with food.  Shrimp were sacrificed by severing the tail from the base of the 

carapace with a razor blade.  The hepatopancreas was dissected out using forceps, and the 

tail was frozen and stored in liquid nitrogen for total antioxidant potential analysis (see 

below).  For each sample, the hepatopancreas was ground in a glass homogenizer with 

750ml of Hank’s Buffered Salt Solution (HBSS; Ca2+ and Mg2+ free, pH 7.8) at 4ºC, 

passed through a 70µm filter and placed in a microcentrifuge tube on ice.  A positive 

control was run with each set of samples, in which the filtered cell homogenate was 

centrifuged at 700xg for 2 minutes, and the pellet resuspended in 100µL of 50µM 
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hydrogen peroxide in HBSS and incubated for thirty minutes in the dark on ice (this dose 

was determined as follows).  A positive control experiment was also conducted (n=3), in 

which the hepatopancreas’ from six shrimp were pooled and prepared in the same manner 

as the hydrogen peroxide sample above, except the pellet was resuspended in 800µL total 

of HBSS.  One hundred microliters of this cell suspension was then incubated for 30 

minutes in the dark on ice in one of four concentrations of H2O2 (0µM, 25µM, 50µM, 

100µM), with duplicate incubations for each concentration.  All samples were 

centrifuged at 700xg for 2 minutes, and the resulting cell pellets resuspended in 20µl of 

HBSS, the aliquot was tested for cell viability via the trypan blue method (>90%).  Ten 

microliters of this cell suspension was added to 100µl of 0.65% low melting-point 

agarose (LMPA) in HBSS and placed onto a prepared NMA agarose-coated slide.  A 

cover slip was added and the gel allowed to solidify (10 minutes at 4ºC).  Two replicate 

slides were prepared for each sample.  The cover slip was then removed and 100µl of 

LMPA was added and covered with a cover slip.  After solidification the cover slip was 

removed and the slides placed in a coplin jar with fresh lysing solution (2.5M NaCl, 0.1M 

EDTA, 0.01 M Tris-HCl, 10% dimethyl sulfoxide, 1% Triton X-100, pH  10) for at least 

2 hours at 4 ºC.  Slides were placed on a wire rack and gently rinsed twice with ice-cold 

distilled water.  Slides were transferred into an electrophoresis chamber (Thermo EC 

Maxicell Primo EC340) filled with electrophoresis buffer (0.1M NaOH, 1mM EDTA, pH 

>12) to unwind for fifteen minutes.  Electrophoresis was conducted at 25V, 300mA for 

fifteen minutes.  Slides were then placed on a wire rack and rinsed 3 times for two 

minutes with neutralization buffer (0.4M Tris, pH 7.5).  Slides were placed on a paper 

towel and stained with 50µl of ethidium bromide (2 µg/ml).   
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 The extent of DNA damage was analyzed using an Olympus BX50 microscope 

(x200 magnification).  A Q Imaging Retiga 1300 camera and a computerized imaging 

system (Komet 5.5, Kinetic Imaging) was used to analyze percent tail DNA (the amount 

of DNA in the tail), tail moment (the amount of DNA in the tail x tail length), and tail 

length which are expressed as means ± SEM.  Figure 2.1 represents an example of an 

undamaged and damaged cell, and illustrates the head and tail region parameters.  Fifty 

randomly chosen cells per slide were used for analysis.  The coefficients of variation 

(100*stdev/mean) was calculated for each treatment for each of the Comet parameters. 

 

 

 

 

 

 

Figure 2.1.  An example of an undamaged and damaged cell, and illustrates the head and 

tail region parameters. 

 

 

Assessment of Total Antioxidant Potential 

 Total antioxidant potential was measured using the Bioxytech AOP-490 biotech 

kit from Oxis Research (Portland, OR).  Grass shrimp tail tissue was homogenized in a 

1:4 volume of HBSS (containing a 100µM solution of the protease inhibitor 

phenylmethanesulfonyl fluoride (PMSF)).  Twenty microliters was reserved to analyze 

Head Tail Nucleoid 

Undamaged Cell Damaged Cell 
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for protein content (see below) and was tested for cell viability via the trypan blue 

method (>90%).  Samples were then centrifuged for ten minutes at 10,000xg (4ºC) and 

the supernatant removed for use in the assay.  Samples and standards were then diluted in 

1:40 R1 buffer, mixed, and 200 µl placed into wells, on a 96 well plate.  All samples and 

standards were run in triplicate.  An HBSS buffer blank was also run.  Fifty microliters of 

R2 solution was added to each well, mixed, and incubated for three minutes at room 

temperature.  Fifty microliters of stop solution was then added to each well and mixed.  

The plate was then read on a Spectramax Plus 384 plate reader at 490nm.  A buffer blank 

and set of standards was run on each plate and a standard curve was made.  The uric acid 

equivalent concentration of each sample was determined using the standard curve.  The 

reserved samples from the AOP analysis were diluted 1:20 and then analyzed using a 

BCA Protein Assay Kit (Pierce, Rockford, IL) using the microplate technique as per 

manufacture’s instructions.  All samples and standards were run in triplicate.  The plates 

were read on a Spectramax Plus 384 (Molecular Devices, Sunnyvale, CA) plate reader at 

562 nm.  A buffer blank and set of standards was run on each plate and a standard curve 

constructed.  The protein concentration of each sample was determined using the 

standard curve generated using bovine serum albumin (BSA).  The total antioxidant 

potential was determined by normalizing the uric acid equivalent to the protein content of 

each sample, and is expressed as means ± SEM.   

  

Statistical Analysis 

 Due to non-normal data distributions (but equal variances), a Kruskal-Wallis test 

was used to test for treatment effects on tail DNA, tail moment, and tail.  Total 
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antioxidant potential data were tested for normality and then analyzed using a one-way 

ANOVA (α=0.05).  A directional t-test was used to test for differences in trace element 

concentrations between reference and CCR treatments, because prior analysis of CCR 

had shown higher concentrations of trace elements.  All statistical tests were conducted 

using Minitab software for windows, version 13 (Minitab, State College, PA). 

 

 

Results 
Trace element analysis 

 Trace element concentrations in grass shrimp tissues are shown in Table 2.2. 

Palaemonetes pugio exposed to CCR significantly accumulated selenium and cadmium. 

Table 2.3 shows the trace element concentrations of the food, sediment, and water to 

which the shrimp were exposed.  Artemia spp. did not differ in trace element 

concentrations between treatments.  Crayfish from the CCR contaminated site had higher 

concentrations of all trace elements than reference crayfish.    

 Sediment samples from CCR treatments had higher concentrations of all trace 

elements of interest than the reference sediments (Table 2.3; small sample sizes of the 

initial sediment samples precluded statistical analysis of these samples).  Neither the 

initial nor the final water samples differed significantly in the concentration of trace 

elements of interest, concurrent with previous studies of CCR-exposed systems (Rowe et 

al. 2002).   
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Table 2.2.  Whole body trace element concentrations (ppm dry mass) of P. pugio from coal combustion residue (CCR) and reference 

treatments.  

    Trace Elements 
Shrimp Tissue Samples n= Cr Cu As Se Cd Pb 

Reference 4 28.50 ± 11.80 135.60 ± 9.31 7.33 ± 0.73 2.97  ± 0.29 0.24 ± 0.14 0.51 ± 0.04 
CCR 3 13.93 ± 5.96 151.78 ± 0.40 8.64 ± 1.15 11.91 ± 0.11 2.08 ± 0.26 6.12  ± 5.80

p value  p=0.815 p=0.101 p=0.178 P<0.001 p=0.001 p=0.949 
T value   T5=0.98 T5=1.47 T5=1.02 T5=24.76 T5=6.80 T4=2.12 

 

Results are expressed as means ± standard error 
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Table 2.3.    Trace element concentrations (ppm dry mass) in food, sediment, and water in CCR and reference treatments. 
 
       Trace Elements 

Exposure Type   n= Cr Cu As Se Cd Pb 
Food          
 Artemia         
  Reference 2 6.42 – 7.42 9.27 – 12.72 23.31 – 28.39 3.59 – 4.28 BDL 152.10 – 176.28
  CCR 2 5.48 – 8.46 10.74 – 16.40 29.43 – 42.72 4.46 – 5.20 0.02 – 0.04 46.29 – 47.39 
 Crayfish         
  Reference 2 2.39 – 2.86 62.86 – 67.71 2.21 – 2.39 2.17 – 2.18 0.38 – 0.41 0.79 – 0.84 
  CCR 2 2.60 – 2.68 275.64 – 2.77.31 8.62 – 8.66 20.34 – 20.57 17.14 – 20.46 6.73 – 9.01 
Sediment          
 Initial         
  Reference 2 0.36 – 0.37 0.57 – 0.75 0.15 – 0.17 BDL 0.00 – 0.01 0.87 – 1.23 
  CCR 2 26.33 – 30.94 46.90 – 47.68 181.20 – 218.61 8.98 – 9.15 0.64 – 0.75 35.75 – 39.29 
          
 Final         
  Reference 4 0.42 ± 0.03 1.06 ± 0.08 0.21 ± 0.05 BDL 0.01 ± 0.00 0.41 ± 0.03 
  CCR 3 29.60 ± 0.62 48.31 ± 1.72 154.50 ± 7.70 4.38 ± 0.32 0.58 ± 0.03 34.12 ± 0.63 
  p value  p=0.00 p=0.00 p=0.00 p=0.00 p=0.00 p=0.00 
  T value  T5=56.15 T5=32.69 T5=23.95 T5=9.08 T5=22.16 T5=63.37 
Water           
 Larval         
  Reference 4 3.27 ± 0.21 58.52 ± 7.84 75.99 ± 14.11 434.41 ± 79.15 0.76 ± 0.17 4.32 ± 1.47 
  CCR 4 2.58 ± 0.69 42.48 ± 13.11 185.79 ± 76.40 253.21 ± 100.57 1.28 ± 0.32 4.90 ± 2.54 
  p value  p=0.82 p=0.83 p=0.10 p=0.90 p=0.10 p=0.83 
  T value  T6=0.97 T6=1.05 T6=1.41 T6=1.42 T6=1.45 T5=1.05 
 Final         
  Reference 4 1.06 ± 0.13 16.03 ± 2.02 15.24 ± 2.05 48.98 ± 7.36 0.10 ± 0.03 0.28 ± 0.55 
  CCR 3 1.08 ± 0.10 17.56 ± 3.38 14.92 ± 3.47 44.74 ± 10.59 0.09 ± 0.02 1.31 ± 0.13 
  p value  p=0.45 p=0.36 p=0.53 p=0.62 p=0.59 p=0.09 
    T value   T5=0.13 T5=0.38 T5=0.08 T5=0.32 T5=0.24 T5=1.57 
 
Results are expressed as means ± standard error.  The food and initial sediment results are expressed as the range of the two measured values.
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Single cell gel electrophoresis (Comet assay) 

 The results from the hydrogen peroxide positive control experiment are presented 

in Figure 2.2.  Grass shrimp hepatopancreas showed a dose-dependant response in DNA 

damage to hydrogen peroxide.  The average percent tail DNA was 6.7, 16.7, 20.6, and 

23.3% for 0, 25, 50, and 100µM respectively (Figure 2.2a), and was significantly 

different (p ≤ 0.016) in all doses from the control dose.  The average DNA tail moment 

and average tail length followed a similar response as the percent tail DNA and are 

presented in Figures 2.2b and 2.2c respectively.  For a positive control 50µM hydrogen 

peroxide was chosen for use in the subsequent CCR-exposure study.   

Grass shrimp exposed to CCR showed significantly (p<0.05) greater DNA 

damage, using all parameters measured, than non-exposed shrimp (Figure 2.3).  The 

average percent of DNA in the Comet tail (Figure 2.3a) in reference treatments was 10.66 

± 0.83%.  In CCR treatments the average percent tail DNA was significantly increased 

(p=0.034) to 45.35 ± 3.79%.  The coefficients of variation (CV) for percent tail DNA for 

non-exposed and CCR-exposed grass shrimp were 42.3 and 39.3 respectively.  The 

average DNA tail moment and average tail length followed a similar response as the 

percent tail DNA and are presented in Figures 2.3b and 2.3c respectively.   A consistent 

increase in the percent tail DNA (58.1±23.9%, CV=41.1) in the hydrogen peroxide 

positive control was observed for each Comet assay undertaken.   
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Figure 2.2.  Effect of 0µM, 25µM, 50µM, and 100µM in vitro (30 minutes) hydrogen 

peroxide exposures on percent tail DNA (a), DNA tail moment (b), and tail length (c) in 

isolated P. pugio hepatopancreas cells.  Data was compiled from 100 cells total from two 

replicate slides per treatment (n=3) results were considered significant if p ≤  0.05. 
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Figure 2.3.  Effect of 156 day coal combustion residue exposure and hydrogen peroxide, 

50µM, (positive control) on percent tail DNA (a), DNA tail moment (b), and tail length 

(c) of P. pugio hepatopancreas tissue.  Data was compiled from 100 cells total from two 

replicate slides per treatment (reference n=4, CCR n=3, replicates n=3-4), results were 

considered significant if p ≤  0.05. 
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Total antioxidant potential 

 There was no significant difference (p=0.53) in total antioxidant potential 

between CCR-exposed and non-exposed grass shrimp (Figure 2.4).  Average total 

antioxidant potential in reference treatments was 0.12 ± 0.008 Uric Acid Equivalents 

(UAE)/mg protein.  In CCR exposed treatments the average total antioxidant potential 

was 0.10±0.008UAE/mg protein.   

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.   Effect of 156 day coal combustion residue exposure on the total antioxidant 

potential of P. pugio tail tissue.  All samples were run in triplicate (reference n=4, CCR 

n=3, replicates n=3-4), results were not significantly different (p>0.05) amongst 

treatments. 
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Discussion 
 Samples from the D-Area settling basin were elevated in Cr, Cu, Se, Pb, Cd, and 

As compared to reference sediment (refer to Table 2.3).  The two main exposure routes 

for juvenile and adult grass shrimp in this experiment were via sediment and/or the food.  

Water-borne trace elements appeared to present negligible exposure as dissolved 

concentrations were very low relative to concentrations in sediment.  There was little 

variation in sediment trace element concentrations between initial and final samples, 

suggesting little mobilization of trace elements from sediment to water.  I also used a 

flow-through system to mimic the dynamics of aquatic CCR disposal systems, which 

typically have low water-borne trace element concentrations (Rowe et al. 2002). 

Cadmium and selenium (respectively) had the lowest concentrations of the trace 

elements of interest in the sediment (refer to Table 2.3).  However, both of these 

element’s concentrations were greatly elevated in the crayfish food source.  As there was 

significant accumulation of Se and Cd by shrimp, and their concentrations were relatively 

low in the sediment, shrimp most likely accumulated these elements primarily from their 

food.  Both selenium and cadmium have been shown to be accumulated into aquatic 

organisms (Chen and Chen 1999, Besser et al. 1996, Goodyear and McNeill 1999, 

Lemly, 2002, Sorensen et al. 1982, Thomas et al. 1999).  Thomas et al. (1999) found that 

the corixid Trichocorixa reticulata accumulated selenium through food, but not through 

water-borne exposure, and May et al. (2001) suggest that in the Republican River Basin, 

in the mid-western U.S., Se is likely to be accumulated through the food chain but not the 

sediment.  Note that, although highly concentrated in sediment, As was not significantly 

accumulated shrimp.  
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The persistence of CCR impact is likely due to the uptake of contaminants from 

the sediment, trophic transfer, and the bioaccumulative properties of selenium.  The 

toxicity of selenium is caused by the enzyme system’s inability to distinguish the 

molecular structure of selenium from sulfur (Garrett and Inman 1984), which can cause 

the malformation of proteins during synthesis.  Effects of selenium on aquatic organisms 

include teratogenesis (which suggests DNA damage), exopthalmus, anemia, and 

reproductive failure in fish (Lemly 2002).  Sorensen et al. (1984) reported swollen and 

vacuolated gill lamellae, decreased hematocrit, swollen and inflammatory cell-filled 

pericardial spaces, necrotic and ruptured egg follicles in ovaries in green sunfish 

(Lepomis cyanellus) from two study sites in Belews Lake, NC.  Female bluegills 

(Lepomis macrochirus) with high body burdens of selenium produced larvae with edema, 

which did not survive to the swim-up stage (Gillespie and Baumann 1986).  Selenium has 

been shown to cause oxidative stress and altered glutathione metabolism in aquatic birds 

(Hoffman 2002, Hoffman et al. 2002, Spallholz and Hoffman, 2002). 

Grass shrimp significantly accumulated cadmium.  However, Kamiyama et al. 

(1995) saw minimal effects in liver function tests and infiltration of inflammatory cells in 

parenchyma and degeneration of proximal tubules of kidneys of rats chronically exposed 

(one year) to cadmium.  Bagchi et al. (1997) found an increase in lipid peroxidation in the 

liver of rat chronically exposed to cadmium and chromium.  Shaikh et al. (1999) found in 

a twenty-two week study significant cadmium induced increases in both liver and renal 

cortex lipid peroxidation in rats.  These studies show evidence of cadmium causing ROS 

generation, however I did not see any difference in the overall antioxidant potential.  
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Perhaps if I had measured glutathione alone I may have seen a difference amongst 

treatments. 

The highest concentration of any element in the crayfish food source was copper.  

However, as there was no significant accumulation of copper by shrimp, it may be that 

the copper was not in a bioavailable form.  This is possible because the total copper 

concentration was measured and it does not reflect the speciation of the copper.  It is also 

possible that the shrimp are metabolizing and excreting the copper (Variego et al. 1990), 

thereby still causing DNA damage, yet not being accumulated in the tissues.  Borgmann 

et al. (1995) found that the freshwater Hyalella azteca accumulated copper in short-term 

experiments, but were able to regulate it in long-term experiments. The digestive gland of 

mussels can excrete metals bound to lipid peroxidation products and therefore may 

provide a mechanism for the exocytosis of the residual copper bodies, accounting for its 

short half-life (6-8 days) in mussels compared to cadmium (6 months) (Viarengo et al. 

1990).  

Oxidative stress is a very dynamic process and must be alleviated quickly.  

Doyette et al. (1997) found decreases in glutathione reductase, selenium-dependent 

glutathione peroxidase, and reduced glutathione concentrations in bivalves (Unio 

tumidus) within seven days of exposure to cokery effluents contaminated with PCBs and 

PAHs.  Correia et al. (2002) found that amphipods (Gammarus locusta) had increasing 

malondialdehyde (MDA) concentrations (indicative of increased lipid peroxidation) with 

exposure to increasing doses of copper, with concentrations peaking at exposure day four 

and returning to control concentrations by day ten.    Because mine is a long-term 

experiment and indicative of chronic exposure, any oxidative stress would most likely be 
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compensated for early in the exposure period, which may be why I did not see any 

difference in total antioxidant potential. 

Prahalad et al. (2000) suggested that the availability and not the concentration of 

metals in CCR discharges are critical in controlling DNA base damage. They also suggest 

the importance of the availability of a catalytically active form, or of chelators, in the 

making of ROS and subsequent DNA damage.  All metal species examined (Ni, V, Fe) in 

a sample of CCR induced DNA damage (hydroxylation of dG to 8-oxo-dG) (Prahalad et 

al.  2000). The Comet assay was used in this study to assess the DNA damage in grass 

shrimp caused by chronic in vivo exposure to CCR. I found significantly increased 

percent tail DNA, tail moment, and tail length in CCR exposed compared to reference 

animals.    Although no studies have specifically investigated the extent of DNA SB in 

organisms exposed to CCR, previous studies have demonstrated an increase in DNA SB 

following exposure to metals that were shown to be accumulated by the shrimp in this 

study. For example, Forrester et al. (2000) found that both cadmium and selenium 

administered individually to rats caused DNA single strand breaks.  Steinert et al. (1998) 

found increased DNA SB in Mytilus edulis exposed to sediments contaminated with 

PAHs and trace metals including Cu, Hg, Zn, and Pb.  

I demonstrated that grass shrimp hepatopancreas had a dose-dependant response 

in DNA damage to hydrogen peroxide, a known inducer of DNA SSB.  The coefficients 

of variation in the hydrogen peroxide positive control (41.1) was higher than previously 

reported for other invertebrate species (see Mitchelmore and Chipman, 1998) and quite 

likely reflects inter-animal variability. Ideally a repeated sampling from a single organism 

is preferred for a positive control.   
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In a concurrent study (see Chapter 3) there was significantly decreased survival in 

CCR-exposed larval shrimp.  Hook and Lee (2004) found that early embryonic stages of 

P. pugio are more likely to have developmental effects from genotoxicant exposure, and 

when exposed to the same concentration of genotoxicant they had lower hatching rates 

than later stage embryos.  My results demonstrating DNA damage in adults following 

chronic exposure agree with those of Steinert et al. (1998), who reported a reduction in 

DNA repair capacity in Mytilus edulis with increasing duration of exposure to genotoxic 

agents.  Although I found that there was very low mortality in juveniles and adults, CCR-

exposed adults exhibit significantly higher DNA SSB than non-exposed adults.  

Genotoxicity often persists in aquatic organisms as DNA repair is slow in comparison to 

mammalian cells (Mitchelmore and Chipman 1998). 

Release of CCR into aquatic systems can have detrimental effects on resident 

organisms.  By using molecular biomarkers such as the Comet assay and antioxidant 

potential as biomarkers of effect, I may be able to determine if these systems are being 

adversely affected before there is permanent damage to the system.  Repercussions of 

genotoxicity can be manifested at the population-level through impacts on DNA integrity 

and ultimate physiological processes (teratogenesis, mutagenicity, lethality) or through 

the increased metabolic cost of repair.  Thus employing a biomarker-based monitoring 

program in combination with exposure and accumulation indices can provide the basis 

for pro-active management of systems receiving CCR. 
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Chapter 3: Effects of solid coal combustion residue on population 

dynamics of grass shrimp (Palaemonetes pugio Holthius) 

Abstract 
 Burning coal for electricity produces solid coal combustion residue (CCR), which 

is rich in potentially toxic trace elements, and is frequently discharged into natural and 

man-made aquatic systems as a method of disposal.   CCR is known to induce lethal and 

sublethal effects in aquatic and semi-aquatic organisms.  However, the potential for CCR 

to elicit population-level effects has received relatively little attention in freshwater 

systems and has not been examined in contaminated estuarine or marine systems.  I thus 

chose to study population-level responses of the estuarine grass shrimp, Palaemonetes 

pugio, which may result from exposure to CCR in sediment and food over the full life 

cycle of the shrimp.  I exposed grass shrimp in the laboratory to CCR-enriched sediments 

and food derived from a coal-fired power plant in South Carolina.  Exposure to CCR 

decreased larval survival and increased time to metamorphosis, but embryonic and adult 

survival and fecundity appeared unaffected.  I constructed stage-classified matrix 

population models that reflected life stage-specific responses measured during the 

exposures.  The population models suggested that CCR-exposed grass shrimp would 

experience a decreased population growth rate and altered stable stage structure and 

stage-specific reproductive value relative to shrimp in reference conditions.  Elasticity 

analysis indicated that the survival of juvenile and gravid adult females would have the 

largest effects on population growth rate.  Changes in population structure, as indicated 

by the models, could have ecosystem-wide consequences due to the trophic importance 

of grass shrimp in many estuarine systems.  As many CCR disposal basins are not 
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isolated bodies of water, but integral components of larger aquatic systems, my results 

suggest that actions to regulate aquatic disposal of CCR could serve to protect the 

integrity of aquatic ecosystems local to CCR disposal sites.   

 

 

Introduction  
Traditionally toxicity tests have focused on acute mortality as a primary endpoint.  

However, because chronic low-level exposure from contaminated sediments can have 

subtle and sublethal effects on reproduction and growth in exposed organisms, an 

understanding of these effects at the population level is required to assess potential 

ecological risks (Spencer and McGee 2001).  For example, Hummon and Hummon 

(1975) pointed out that analyses based upon life table information are more applicable to 

ecological systems than are traditional, acute toxicity tests, and Lin et al. (2005) argued 

that endpoints for ecological risk assessments should not be focused at the individual-

level, but rather at the population-level (Lin et al. 2005).  

A widespread source of contaminants known to cause sublethal stresses on 

aquatic organisms, and having potential to elicit population-level effects, is trace-element 

rich coal combustion residue (CCR).  Large quantities of CCR are produced when coal is 

burned to generate electrical power.  A common disposal method for CCR is to pump 

slurried ash into settling basins that are meant to retain solids prior to discharge of the 

water into local systems (Rowe et al. 2002).  However, the basins rarely retain all of the 

suspended solids, and thus the release of CCR into downstream receiving waters is not 

uncommon.  Because contaminants present in CCR are persistent and bioaccumulative, 
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there is growing concern about CCR disposal into aquatic basins and downstream 

systems where aquatic communities may be chronically exposed (Rowe et al. 2002). 

The D-Area Power Facility site near Aiken, SC was chosen as a source of CCR 

for this study because it has been well characterized (Hopkins et al. 2000, Rowe 1998, 

Rowe et al. 1998b, 2002).  At the D-Area site, coal combustion residue is pumped into 

settling basins, which then flows into a drainage swamp and creek.  Invertebrates, 

reptiles, and amphibians living in this site display elevated body burdens of many trace 

elements, including Se, As, Cd, Cr, Pb, and Cu (Rowe et al. 2002, summarized in Table 

3.1).  In the D-Area site, sublethal effects of CCR on physiological, morphological, and 

behavioral processes have been reported in numerous vertebrates and invertebrates.  For 

example, dietary and sediment-borne exposure of CCR to freshwater grass shrimp 

(Palaemonetes paludosus) and crayfish  (Procambarus acutus) resulted in elevated 

standard metabolic rate and reduced growth rates compared to unexposed individuals 

(Rowe 1998, Rowe et al. 2001a).  Elevated metabolic rates were observed in larval 

bullfrogs (Rana catesbeiana) (Rowe et al. 1998a), which also displayed oral deformities 

(Rowe et al. 1998b), spinal flexures (Hopkins et al. 2000), and behavioral anomalies that 

affected predator avoidance (Raimondo et al., 1998).  Studies from other locations 

provide similar evidence for negative impacts of CCR.  Lemly (2002) found that chronic 

exposure to CCR caused developmental, histopathological, and teratogenic effects, 

including exopthalmus and anemia, in numerous fish species inhabiting a CCR-

contaminated lake (Belews Lake, NC).  Sorensen et al. (1984) reported that green sunfish 

(Lepomis cyanellus) from two study sites in Belews Lake, NC contaminated with CCR
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Table 3.1.  Concentrations of select trace elements measured in abiotic and biotic matrices in the primary CCR settling basin at the D-

Area Power Facility, SC.  Values for sediment and tissues are ppm (dry mass); values for water are ppb.      

  Trace Elements 
Primary Settling Basin Cr Cu As Se Cd Pb 
Sediment  NR 71.8 70.8 6.21 0.57 45.2 
Water  0.44 2.53 17.17 7.0 0.11 0.08 
Crayfish, whole body  2.46 158.52 8.71 14.92 2.78 NR 
Mosquitofish, whole body 1.56 4.97 2.89 14.28 0.32 NR 
Bullfrog, recent metamorph, whole body 1.58 13.79 15.55 26.85 0.8 NR 

 

NR = not recorded 

Data compiled from Rowe et al. 2002.
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exhibited swollen and vacuolated gill lamellae, decreased hematocrit, swollen, 

inflammatory cell-filled, pericardial spaces, and necrotic and ruptured egg follicles.  

Palaemonetes pugio, hereafter "grass shrimp", is a species ubiquitous to estuarine 

and coastal systems from Maine to Texas (Knowlton and Kirby 1984) where it serves as 

important prey for estuarine fish (Wood 1967, Poole 1988).  Individuals mature at 

approximately 3 months of age (Wood 1967), produce four to six broods per year of up to 

400 eggs per brood (dependent on body size; Alon and Stancyk 1982), achieve a 

maximum weight of 3 grams, and live approximately 2 years (Poole 1988).  Grass shrimp 

are benthic omnivores, and have the potential to accumulate and uptake trace elements 

from the sediment (Poole 1988).  This species is a model organism (APHA 1985) in 

many toxicological studies and preliminary data suggest it may be chronically affected by 

CCR-contaminated sediment (Rowe and Hopkins, unpublished).  Observations of 

sublethal effects of CCR on a congeneric freshwater shrimp (P. paludosus; Rowe 1998) 

further suggest that P. pugio may be sensitive to CCR and thus provide a model for 

studying effects of CCR in estuarine systems.  

To assess potential population-level effects of contaminants, population models 

can be employed to examine the integrative effects on specific life stages (Munns et al. 

1997; Salice and Miller 2003).  Often sensitivity to contaminants is life-stage specific, 

and thus demographic population models allow for an evaluation of the overall effects of 

contaminants on the ecology of individual organisms and population growth rates 

(Caswell 1996b).  

There are many types of population models, all of which can be used to determine 

the consequences of sublethal effects of contamination on the population growth rate.  
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Individual-based models (Kooijman and Metz 1984, Power et al. 1994), life table 

response experiments (Bridges et al. 1994, Caswell 1996a, 1996b, Levin et al. 1996), and 

age- and stage- classified matrix models (Caswell 2001, Munns et al. 1997, Salice and 

Miller 2003) have all been employed to examine population responses to contaminants.  

A feature common to all of these models is the use of demographic-specific bioassays to 

attain a set of vital rates, which are used in the model to forecast the integrated 

population-level responses of stage-specific toxicant effects on population growth rate 

(Caswell 1996b).   

Individual-based models have been used to explore sublethal effects in several 

systems.  For example, Power et al. (1994) used an individual-based model to examine 

the effects of copper, derived from laboratory data, on Atlantic salmon, and Kooijman 

and Metz (1984) used an individual-based population model to study the effects of 

chemical contaminants on the population growth rate of Daphnia.  An individual-based 

model was used to examine the effects of a nonpolar narcotic on populations of Daphnia 

magna (Koh et al. 1997).  Jaworska et al. (1997) used an individual-based population 

model to simulate the effects of polychlorinated biphenyls (PCBs) on young-of-the-year 

largemouth bass (Micropterus salmoides). 

Life table response experiments (LTREs) integrate population modeling with life-

history data to allow the quantification of effects of environmental factors on populations 

(Caswell 1996a, 1996b).  LTREs allow the effects of treatments on vital rates (survival, 

growth, and reproduction) to be measured directly, and integrated into a model to assess 

the projected population-level effects of treatments, particularly the population rate of 

increase, λ.  Life-history tables have been used to model population recovery of herring 
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gulls and common terns following oil spills (Samuels and Ladino 1984), to examine the 

effect of dichlorodiphenyltrichloroethane (DDT) on a freshwater gastrotrich (Hummon 

and Hummon 1975), to model the impacts of exposure of polychaetes to oil pollution 

(Levin et al. 1996, Bridges et al. 1994), and to assess the toxicity of Kepone on copepods 

(Allan and Daniels 1982).   

Matrix-based approaches to population modeling (Caswell 2001) have been of 

particular utility in quantifying the impacts of contaminant exposure on populations 

(Munns et al. 1997, Landahl et al. 1997).  Advantages of matrix models are that they 

directly incorporate specific life stages, and that their processes are assumed to take place 

in discrete time units, which is reminiscent of biological processes (Usher 1972).  These 

features allow demographic characteristics and test endpoints from laboratory bioassays 

to be incorporated directly into matrix population models (Kuhn et al. 2001).  Both age- 

and stage-based models have been developed to assess the importance of sublethal 

effects.  Schaaf et al. (1987) used an age-classified matrix model to estimate potential 

pollution effects on estuarine fish populations, and Rose et al. (2003) used a matrix model 

to examine the effects of PCBs on Atlantic croaker (Micropogonias undulatus) 

population dynamics.  

Stage-classified matrix models have been used to assess the population-level 

effects of dioxin and PCBs to the estuarine fish Fundulus heteroclitus (Munns et al. 

1997), to examine the effects of chemical contaminants (including hydrocarbons) 

associated with urban areas of Puget Sound on flatfish populations (Johnson et al. 1998), 

and to assess the effects on cadmium on gastropod population growth rate (Jensen et al. 

2001, Salice and Miller 2003).  Stage-based matrix models were also used to assess 
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natural populations of Leptocheirus plumulosus, which are used in sediment toxicity tests 

(Spencer and McGee 2001). 

Application of age- and stage-based projection models provides several insights 

into the impact of sublethal levels of contamination.  Lefkovitch (1965) suggested the use 

of two matrices to examine the differences between reference populations and 

populations affected by a contaminant directly.  More sophisticated analysis of the eigen 

structure of the projection matrix provides information on the population growth rate as 

well as the stable age/stage distribution and relative reproductive values of the life-history 

stages.  Furthermore, elasticity analysis allows for the sensitivity of population growth 

rate on a proportional scale, to changes in any of the vital rates, such as survival and 

fecundity (de Kroon et al. 1986).  By combining demographic elasticity analysis with 

more traditional toxicological studies on survival, growth, and reproduction it is possible 

to quantify the relative contributions of different life-stages and the organism’s 

physiology in determining its susceptibility to toxicant exposure (Forbes and Callow 

2002).   

I conducted a series of exposure studies to determine effects of CCR exposure on 

P. pugio over a complete life cycle to provide parameter estimates for a stage-based 

matrix model.  Experiments were conducted using CCR-contaminated sediments from 

the D-Area Power facility.  Vital rates were estimated from these experimental results.  I 

developed and analyzed models to compare the intrinsic rate of population increase 

(population growth rate), stable stage structure, and reproductive value in CCR-exposed 

and unexposed cohorts.  I conducted an elasticity analysis of the models to determine the 
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life stages that have the largest effects on the population growth rate, as well as to 

examine any changes in elasticity between treatments. 

 

Materials and Methods 
Experimental Design 

The study involved laboratory experimentation to provide estimates of vital rates 

(survival and stage duration for larval, juvenile, and adult stages) of P. pugio populations 

under reference conditions and when exposed to CCR.  There were two treatments (four 

replicates per treatment); one with CCR sediment and CCR-contaminated food, and a 

reference treatment in which black sand served as the sediment and food was 

uncontaminated.  The black sand was used to mimic the color of CCR.  Contaminated 

sediment was derived from CCR dredge piles surrounding a drainage basin at the D-Area 

Power Facility on the U. S. Department of Energy operated Savannah River Site, SC.  

Contaminated food for juvenile and adult shrimp (crayfish tissue; below) was collected 

from the drainage basins and swamp at the D-Area site.  Reference food for juveniles and 

adults was purchased commercially.  Food provided to larval grass shrimp was newly 

hatched brine shrimp (Artemia spp.), which were hatched over contaminated sediment or 

in the absence of sediment.    

 Experiments were initiated with larval shrimp from stock cultures of gravid adults 

collected from the Patuxent River, MD (salinity ~ 9 – 15 ‰).  Gravid P. pugio were 

suspended in mesh baskets in individual glass jars containing 400 ml of aerated, filtered 

water from the Patuxent River (adjusted to 20‰ salinity with Instant Ocean) and placed 

in a 24ºC incubator until hatching and release of larvae from the egg clutch.  The chelae 



 

 45 
 

of the females were clipped to prevent the females from cannibalizing the egg mass 

(Little 1968), as sometimes occurs in laboratory conditions.  Newly hatched larvae were 

removed daily and placed in a shallow glass dish and the larvae were allowed to mix 

fully.  

  Three days prior to the predicted day of peak hatching, eight 1500 ml beakers 

were set up with 200 cm3 of sediment and filtered, Patuxent River water to be used in 

larval exposures.   Two hundred larvae were placed in each beaker on the day that they 

hatched (Day 1). In an effort to provide genetic diversity, all replicates had a mixture of 

larvae from three to fourteen females.  The initial salinity in each beaker was 20‰ 

(optimal for larval survival; Knowlton and Kirby, 1984) and the salinity was gradually 

decreased to the ambient salinity of Patuxent River water (approximately 10‰) 

throughout the duration of the larval stage.  Salinity, temperature (22.52 ± 0.91°C), and 

dissolved oxygen (7.02 ± 0.72 mg/L) were measured every three days prior to a 50% 

water change.  Larvae were fed newly hatched Artemia spp. (above).   

 Thirty-nine newly metamorphosed shrimp from each replicate were used to start 

the juvenile stage of the experiment, with the same replicates carried over from the larval 

stage.  I chose to use 39 juveniles because this represented the minimum number per 

replicate that survived the larval exposures.  During the transition to the juvenile stage 

one of the CCR replicates was lost due to unusually low survival.  Juvenile exposures 

were conducted in 57-L, flow-through tanks (with mesh netting over the outflow to 

prevent loss of shrimp) containing ambient salinity, filtered (20µm), Patuxent River water 

at ambient salinity (~10‰), and 1000 cm3 of sediment (approximately 3 mm depth).  

Salinity, temperature, and dissolved oxygen were monitored weekly.  Juveniles were fed 
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ground crayfish ad libitum.  Reference crayfish were obtained commercially, and crayfish 

for the contaminated treatment were collected in the D-Area site.  Crayfish were prepared 

by separating the tissue from the exoskeleton, drying, and grinding the soft tissue, the 

guts generally contained very little sediment as the crayfish had been maintained in traps 

for 24-96 hours prior to freezing.  Thus crayfish likely fed only on other organisms that 

had become trapped.  Juvenile exposures lasted for 60 days based on the stage duration 

reported by Wood (1967), at the end of which (Day 96 overall) shrimp were surveyed for 

survival and maturation defined as having attained a total length of 16 mm (Alon and 

Stancyk 1982).  Total length was defined as the distance from the base of the rostrum to 

the posterior tip of the telson.  

The adult phase of the experiment took place in the same flow-through system as 

the juvenile phase, and lasted for 77 days.  The feeding regime for the adult exposure was 

the same as in the juvenile exposure.  As adult females became gravid they were removed 

and suspended in mesh baskets in individual glass jars containing 800 ml of aerated, 

filtered water from their replicate tank, and their chelae were clipped to prevent them 

from eating the egg mass, however, sediment was not placed in the jars.  The number of 

larvae that hatched from each female was counted.  The average number of larvae 

hatched for each treatment was adjusted for a 50:50 sex ratio and used to estimate fertility 

in the model.  

Survival and hatching success data were tested for normality and equivalence of 

variance and analyzed using one-way ANOVA.  Time to metamorphosis data were log 

transformed prior to analysis by one-way ANOVA.  All statistical tests were conducted 

using Minitab software for Windows, version 13 (Minitab, State College, PA). 
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Trace Element concentrations in shrimp tissues, food, sediment, and water were 

analyzed using ICP-MS.  Detailed methods and results for trace element analyses are 

provided in Chapter 2.   

 

Model Development 

 I used a stage-based matrix model to examine population responses to 

contaminant exposure.  The model was based on a pre-reproductive census, which 

characterized the life cycle as being composed of larvae, juveniles, gravid females, and 

non-gravid females.  Gravid and non-gravid adults were considered to represent separate 

stages, as changes in the survival of gravid shrimp will have a different effect on the 

population growth rate than changes in the survival of non-gravid shrimp, and individual 

females may spend an unequal amount of time in each of these stages.   

The life cycle graph of P. pugio, that formed the basis of the model, is shown in 

Figure 3.1 and was used to develop the projection matrix: 
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The model had a time step of one day.  A pre-breeding census was used to estimate 

fecundity, represented by Fi, and adjusted for a 50:50 sex ratio.  In the projection matrix 

Pi represents the probability of surviving and remaining in the same stage over one time 

step, Gi represents the probability of surviving and growing to the next stage over one 

time step.  Pi and Gi represent the overall probability of surviving for each stage i, and is 

by definition ≤ 1.  The transition probabilities Pi and Gi are calculated from estimates of  
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Figure 3.1.  Life history diagram of P. pugio.  Pi represents the probability of surviving 

and remaining in the same stage.  Gi represents the probability of surviving and growing 

to the next stage and Fi represents fertility. 

 

 

the probability of an individual of stage i surviving during a single time step σi, and the 

probability that an individual of stage i grows to the next stage, γi.  The probability of 

surviving a stage and growing to the next stage was calculated with Equation 1.  

Equation 1:             Gi =   σi γi      

The probability of surviving a particular stage and not growing to the next stage was 

calculated using Equation 2. 

Equation 2:         Pi = σi (1- γi) 

The probability of surviving a stage, σi, was calculated with Equation 3, 

Equation 3:          σi = 1
ln

−iT
is

e  
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where si is the stage survival probability derived from the experiments (see below), and Ti 

is the number of daily time steps in stage i. The estimates of γi were obtained using 

Caswell’s (2001) method (Equation 4) of assuming fixed stage duration, and assuming 

that all individuals in a stage have the same probability of surviving, 

Equation 4:           
( ) ( )

( ) 1

1

/
//
−

−−
=

i

ii

T
initi

T
initi

T
initi

i λσ
λσλσ

γ  

where λ is the dominant eigenvector of the transition matrix A and represents the finite 

rate of population increase.  I started with an initial value of λinit=1, and iterated λ until 

the value of λ given by eigenanalysis of the transition matrix A equaled the value of λinit 

used in equation 4.   

Separate models were developed for P. pugio populations that were either 

exposed or unexposed to CCR contamination.  The models were run in Excel, and 

analyzed using the PopTools add-in (http://sunsite.univie.ac.at/Spreadsite/poptools/). 

PopTools was used to calculate the discrete rate of population growth λ, given by the 

dominant eigenvalue of the projection matrix.  Values of λ > 1 indicate positive 

population growth, λ=1 indicates no population growth, and values of λ < 1 indicate 

population declines.  The calculated λ was transformed to the more common intrinsic rate 

of population increase, r, as r = eλ.  The left and right eigenvectors associated with the 

dominant eigenvector were examined to quantify the stable stage structure and 

reproductive values of each life history stage.  I also calculated the elasticity matrix for 

each population.  Elasticities can be defined for all possible life history transitions and 

represent the proportional change in λ to equal proportional changes in the probability of 

the transition.  The elasticities were calculated using Equation 5. 
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Equation 5:  
ij

ij
ij a

a
e

∂
∂

=
λ

λ
 

 

Parameter estimation 

Stage durations (Ti) were estimated from laboratory observations.  The larval 

stage duration was 21 days and was estimated from the laboratory estimates of peak 

metamorphosis (Figure 3.2).  The juvenile stage duration was defined as 77 days; the end 

of the juvenile exposure (Day 96) minus the larval stage duration (21days).  The adult 

gravid stage duration was defined as 18 days, and the adult non-gravid stage duration was 

7 days, which were estimated from laboratory observations. 

The proportion of individuals that survived each life stage was used as the 

survival probability parameter, si.  The proportion of individuals in each stage that had 

grown to the next life-stage by the final day of that exposure was used to calculate the 

initial value of the growth probability parameter, γi, which was then, iterated using the 

method described above to estimate the probability of growing to the next stage for a 

single time step.  Fecundity, Fi, was estimated by counting the total number of larvae 

hatched per female and averaging over each of the two treatments, and adjusting for 

gravid female stage duration and a 50:50 sex ratio. 
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Figure 3.2. Time to metamorphosis of P. pugio larvae in reference and CCR conditions 

 

 
 
 

Results 
 Survival of larvae differed significantly (p=0.007) between the reference and 

CCR treatments (Table 3.2).  Survival ranged from 31% to 90% and 7.5% to 22% in the 

reference and CCR treatments respectively.  Successful metamorphosis occurred in both 

treatments, however time to metamorphosis was significantly delayed (p=0.018) in the 

CCR treatment (Figure 3.2).  In the reference treatment most larvae metamorphosed on 

day 21, whereas in the CCR treatment most larvae metamorphosed on day 27.  In contrast 

to the larval stage, there was no significant difference in juvenile or adult survival 

between treatments (Table 3.2).  Nor were there significant differences between 

treatments in the number of larvae hatched (Table 3.2). 
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Table 3.2.  Survival probability of specific life stages of P. pugio and average number of 

larvae hatched in reference and CCR treatments.   

  Survival Probability 
Treatment   Larval Juvenile Adult Total Hatch 
Reference Mean  0.70 0.58 0.99 86.43 
 St. Dev  0.26 0.24 0.01 37.96 
CCR Mean  0.15 0.68 0.99 72.54 
 St. Dev  0.07 0.17 0.02 40.34 
p   0.01 0.57 0.73 0.46 
 

 

 

Survival and hatch data were used to estimate the transition probabilities and 

fecundities shown in Table 3.3.  The main difference in Pi was in the larval stage with 

probabilities of 0.95 and 0.90 in the reference and CCR treatments respectively.  Larvae 

in the reference treatment had a slightly higher probability of surviving and growing to 

the next stage than did larvae in the CCR treatment (Gi = 0.03 and 0.01 respectively).  

Reference females had higher fecundity (2.32) than CCR-exposed females (1.91), though 

this was not statistically significant.  Analysis of the resultant projection matrices 

indicated that populations in both treatments had positive population growth rates; 

however the CCR-exposed shrimp population growth rate was reduced relative to the 

reference population (1.02 and 1.03 respectively) (Table 3.4).  After ten simulated 

generations the CCR grass shrimp populations were projected to be six orders of 

magnitude reduced relative to reference populations (Figure 3.3).  The model indicates an 

increase in generation time in CCR exposed grass shrimp populations, as well as a 

decrease in the average age at maturity and the expected number of replacements (Table 

3.4).   
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Table 3.3.  Transition probabilities and fecundities of P. pugio 

  Reference CCR 
Stage Pi Gi Fi Pi Gi Fi 
Larvae 0.95 0.03 0.00 0.90 0.01 0.00 
Juvenile 0.99 0.00 0.00 0.99 0.00 0.00 
Non Gravid 0.85 0.15 0.00 0.84 0.16 0.00 
Gravid 0.95 0.04 2.32 0.95 0.05 1.91 
 

Pi = probability of surviving and remaining in the same stage over one time step, Gi = 

probability of surviving and growing to the next stage over one time step, and Fi = 

fertility, estimated with a pre-breeding census 

  

Table 3.4.  Life history parameters from the analysis of the transition matrix.   

Parameter Reference CCR 
Intrinsic rate of increase 0.03 0.02 
Population growth rate (λ) 1.03 1.02 
Generation time (days) 196.72 226.17 
Average age at maturity (days) 1842.22 1098.84 
Expected number of replacements 460.25 78.83 

 

 

 

 

 

 

 

 

 

Figure 3.3.  Projected population size after ten generations 
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The model was used to examine the reproductive value of shrimp life stages and 

the stable stage structure for reference and CCR populations (Table 3.5).  In CCR 

populations there was a decrease in reproductive value for gravid adults and a subsequent 

increase in reproductive value for juveniles compared to reference populations.  There 

was a shift in the stable stage structure of CCR exposed shrimp populations compared to 

reference populations, with a decreased proportion of the shrimp population in the 

juvenile stage, and a subsequent increase in the proportion of the population in the larval 

stage.   

 

Table 3.5.  Reproductive value and stable stage structure for reference and CCR-exposed 

grass shrimp populations 

  Reproductive Value Stable stage structure 
Stage Reference CCR Reference CCR 
Larvae 0.9% 0.7% 56.7% 66.2% 
Juvenile 2.5% 6.8% 40.4% 27.6% 
Non Gravid 43.6% 43.3% 1.0% 1.9% 
Gravid 53.0% 49.2% 1.9% 4.3% 

 

 

 Elasticity values of model parameters are presented in Table 3.6.  In reference 

populations the parameters with the highest elasticities were survival of juveniles (0.322) 

and survival of gravid adults (0.320).  In the CCR population model the parameters with 

the highest elasticities were survival of gravid adults (0.373) and survival of juveniles 

(0.348).  The largest changes in elasticity between reference and CCR populations was an 

increase in the elasticity values of the survival of larvae and the survival of gravid adults, 

which increased to a greater degree.   
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Table 3.6.  Elasticities of model parameters (Pi = probability of surviving and remaining 

in the same stage over one time step, Gi = probability of surviving and growing to the 

next stage over one time step, and Fi = fertility, estimated with a pre-breeding census) 

  Reference CCR 
Stage Pi Gi Fi Pi Gi Fi 
Larvae 0.16 0.01 0.00 0.07 0.01 0.00 
Juvenile 0.32 0.01 0.00 0.35 0.01 0.00 
Non Gravid 0.12 0.03 0.00 0.13 0.03 0.00 
Gravid 0.32 0.01 0.01 0.37 0.02 0.01 

 

 

 

Discussion 
 

Population growth rate is considered a better measure of fitness than individual-

level effects (Forbes and Callow 2002), and thus I used a matrix population model to 

examine the effects of CCR induced changes of individual life-history traits on the 

population growth rate.  The matrix population models for CCR-exposed and reference 

grass shrimp populations suggested decreased population growth rates in the CCR-

exposed populations.  The effect of CCR on projected population growth rates was 

primarily due to a decrease in larval survival in these populations.  Allan and Daniels 

(1982) found a similar decrease in population growth rate in copepods exposed to 

Kepone.  Copepods in this study exhibited lowered survivorship, reduced fecundity, and 

delayed the onset of reproduction.  Population growth rate (λ) was also shown to be 

reduced by hydrocarbon exposure in a polychaete, Streblospio benedicti, due to reduced 

fertility combined with excessively delayed maturation (Levin et al. 1996). 
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A principal advantage of the approach taken here is the decomposition of 

population growth into its constituent parts so that the contribution of sublethal effects on 

different life stages can be understood.  Coal combustion residue has a detrimental effect 

on the survival of larval grass shrimp, and caused a delay in the time to metamorphosis.  

However, no significant differences were found in either juvenile or adult survival, or in 

hatch success.  In a concurrent study (Chapter 2), I found that CCR-exposed grass shrimp 

significantly accumulated selenium and cadmium, as well as had significantly increased 

DNA strand breaks.  Exposure to CCR, and specifically the accumulation of selenium, 

has been shown to reduce early life stage survival in numerous organisms including 

amphibians (Rowe et al. 2001b) and by causing developmental defects in fish (Lemly 

2002, Gillespie and Baumann 1986).  Increased DNA damage from CCR-exposure may 

have also contributed to the decrease in larval survival (Chapter 2).  Lee et al. (2000) and 

Hook and Lee (2004) found that DNA damage in early stage larval P. pugio affected 

development, and subsequently survival, after exposure to genotoxicants.  Delays in 

metamorphosis are also a common response of organisms to contaminants.  Exposure to 

toxicants, including herbicides, atrazine, and perfluorooctanesulfonate have been shown 

to increase the time to metamorphosis in amphibians (Howe et al. 2004, Ankley et al. 

2004, Sullivan and Spence 2003).  

Changes in fecundity are also a likely significant component of the change in 

population growth rates.  Salice and Miller (2003) found altered fecundity in two strains 

of gastropods exposed to cadmium.  Spurgeon et al. (2003) observed a decrease in the 

number of offspring produced in earthworms exposed to cadmium and copper.  As grass 
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shrimp in the CCR experiments accumulated cadmium as well as selenium (See Chapter 

2) it may be that this contributed to the decrease in fecundity seen in this study. 

Coal combustion residue-exposed populations were projected to produce 5.8 

times fewer replacements than reference populations, which would contribute to the 

decrease in population size and population growth rate indicated by the model.  Model 

projections suggest that, under the conditions tested, after ten generations CCR-exposed 

populations would be three million times smaller than reference populations.  The model 

also indicated an increase in generation time in CCR-exposed populations, which 

suggests that a population that has been exposed to CCR will require longer to replace 

itself.  The model indicates a decrease in the average age at maturity.  This decrease is 

likely an artifact of the model due to the small decrease in reference juvenile shrimp 

survival compared to CCR-exposed shrimp, and which was not significantly different.  

Increased generation times and smaller population sizes may mean that CCR-exposed 

grass shrimp populations are more vulnerable than reference populations to natural 

environmental fluctuations, competition, or predation.  

Many studies have used population growth rate as an index of toxic effects on 

populations; however Barnthouse et al. (1987) argue that reproductive potential is the 

simplest index to integrate the effects on contaminants on all life stages for toxic risk 

assessment.  In CCR-exposed grass shrimp there was a shift in reproductive value, with a 

decrease in the reproductive value of gravid adults leading to a subsequent increase in the 

reproductive value of juveniles.  This shift is likely due to the decreased probability of a 

CCR-exposed individual reaching adulthood.  This indicates that environmental factors 

that may change the growth or survival of juvenile shrimp, such as predation, could 
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further effect the population as the individuals nearing sexual maturity are likely to make 

the greatest contributions to the population in terms of overall reproductive potential.  In 

contrast to our study Gentile et al. (1982) found that the exposure of mysid shrimp to 

nickel and mercury shifted the reproductive value to older age classes due to delays in 

sexual maturity.     

In CCR-exposed grass shrimp populations there was a shift in the stable stage 

structure to a smaller proportion of juveniles and a subsequent increase in the number of 

larvae and gravid adults, as compared with reference populations.  Most likely this was 

caused by the decrease in larval survival and fewer individuals reaching the juvenile 

stage.  Levin et al. (1996) found that in polychaete (Stebelspio sp.) populations with 

higher population growth rates (λ) displayed a stable age distribution biased toward 

younger stages.  The same appears to be the case for both populations of grass shrimp in 

our study, since both had the highest proportions of their populations in the early life 

stages.  However, the CCR-exposed population had a higher proportion of individuals in 

the earliest life stage compared to the reference population. 

Exposure to toxicants can cause changes in the population growth rate and 

elasticity patterns (Hansen et al. 1999).  Elasticity analysis has become a popular tool in 

ecological risk assessment and conservation biology (de Kroon et al. 2000).  Thus, an 

elasticity analysis was conducted on our models to examine how individual parameters 

can affect population growth rate.  In general, parameters with the largest elasticities have 

the highest impact on population growth rate; and thus anything that further affects these 

parameters will most likely have a larger impact on population growth rate.  It must be 



 

 59 
 

kept in mind that elasticities of matrix elements are not independent of each other, as they 

sum to one, and negative correlations may arise between them (Shea et al. 1994). 

In the reference grass shrimp population, survival of juveniles and survival of 

gravid adults had the highest elasticities, with each having near equal weight.  Larval 

survival had the next highest elasticity, emphasizing the importance of this parameter.  

There was a shift in the elasticity pattern of CCR-exposed grass shrimp in which there 

was a general increase in the elasticity values of older life stages.  In CCR-exposed 

populations gravid adults had the highest elasticity value, with the next highest being 

juvenile survival; however, both of these values are larger than their counterparts in the 

reference model.  This indicates that further changes in these life-history parameters in 

CCR-exposed populations will have a larger effect on the population growth rate than 

changes in these same parameters in reference populations.  Factors that change 

demographic parameters, such as toxicants or fishing pressure, have been shown to 

change the elasticity patterns of many organisms (for example Salice and Miller 2003, 

Frisk et al 2002, Heppell et al. 1996).   

Elasticities are relative contributions and thus when there is a change in one 

parameter, the others must shift to compensate. The largest change in elasticity was the 

decrease in the elasticity of larval survival in the CCR-exposed shrimp.  Hansen et al. 

(1999) found that when the probability of juvenile survival is low, then the elasticity of λ 

to further toxicant induced changes in juvenile survival is reduced.  Similarly, Heppell et 

al. (1996) found that in loggerhead sea turtles adult survival elasticity decreased as the 

survival rate of adults decreased.  However, they suggested that this was not an indication 

of reduced adult value, but rather that sub-adults become relatively more valuable as the 
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population reached a steady state.  This may be the case in the current study; reduced 

larval survival may have brought about a concomitant decrease in elasticity in this 

parameter, which may indicate that further changes in larval survival will not have as 

great of an effect on the population growth rate.  However, this may also indicate that 

because of decreased larval survival, juvenile and gravid adult survival has become 

relatively more influential on population growth rate. 

The results of this study are similar to other studies of CCR-impacted systems.  

Decreases in early life-stage survival are common in CCR contaminated systems (Lemly 

2002, Sorensen et al. 1984).  In this study CCR affected grass shrimp vital rates including 

larval survival and fecundity, and the model indicated decreases in population growth 

rate and shifts in the reproductive value and elasticity.  However, contaminants do not 

always have the same effect on every species.  Levin et al. (1996) found that polychaete 

population growth rate was decreased because of excessively delayed maturation and 

reduced fertility due to hydrocarbon exposure.  Salice and Roesijadi (2002) found a 

decrease in time to death as well as percent hatch due to cadmium exposure in a parasite-

resistant strand of gastropod in comparison to a parasite-susceptible strand, which 

indicated that sensitivity to cadmium was a cost of being resistant to parasitic infection.  

Salice and Miller (2003) found that cadmium exposure to gastropods also caused a 

significant affect on the population growth rate which was caused by changes in percent 

hatch, juvenile and adult survival in both strains, and by changes in fecundity and time to 

maturity in the parasite-susceptible strain.  Vonesh and De la Cruz (2002) found that 

amphibian population growth rate was more sensitive to changes in juvenile survival than 

egg mortality.  The population growth rate can be affected by changes in any of the vital 
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rates and thus it is important for toxicity tests to look at all life-history parameters in 

order to determine which vitals rates are causing contaminant-induced changes in the 

population growth rate or other model parameters.    

The effects of contaminants may be influenced by the trophic status of a 

community or the stability of the ecosystem (Clements and Kiffney 1994).  Grass shrimp 

are an important prey item in estuarine systems (Poole 1988).  Elasticity analysis 

indicates that CCR-exposed grass shrimp populations may be more sensitive than non-

exposed populations to predation or other factors that may decrease adult survival.  Thus 

predation or other processes influencing adult survival may exacerbate contaminant 

effects, ultimately affecting the availability of these prey items to the predators.  The 

potential interaction of predation and contaminant effects as suggested in this study 

supports the argument by Clements and Kiffney (1994) that assessing effects of 

contaminants on populations can be complicated by competitive and predatory 

interactions. 

Although toxicants exhibit initial effects on individuals at the molecular level, 

severe enough effects can modify higher-order, ecological processes (Caswell 1996b).  

Interactions with potential competitors and predators, the physical environment, and the 

life-history characteristics of a species may all contribute to changes in the population 

growth rate and consequently have important effects on population stability, and 

ultimately on the ecosystem (Gentile et al. 1982).  Because populations function as 

individual entities within ecosystems, if their size or structure is changed by chemical 

toxicity, there may be functional and structural ecosystem-wide consequences (Lin et al. 
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2005).  Thus, decreased population sizes, such as those indicated by our model, can have 

effects on the larger community.   

Disposal of coal combustion residue is largely unregulated and many of the 

aquatic-disposal settling basins are connected to local waterways, and thus the effects of 

CCR exposure can also occur down-stream.  Nearby terrestrial systems can also be 

affected by CCR through contamination of soil and groundwater, and by reduced fitness 

of terrestrial or semi-terrestrial organisms that use the contaminated aquatic sites for 

feeding or reproducing (such as amphibians and some reptiles).  Therefore, effective 

management must incorporate both toxicity and bioavailability data into assessments of 

the localized sources and less directly affected habitats (Kuhn et al. 2002).   

For effective management, laboratory toxicity studies must be made predictive 

and representative of contaminant impact at the population-level (Gentile et al. 1982).  

By identifying important stages in an organism’s life history, population models can 

provide environmental managers with a place to focus their efforts and set protection 

limits based on these relatively sensitive life stages (Kuhn et al. 2002).  However, the 

life-history stage that shows the most sensitivity to a toxicant may not be the most 

important in terms of population growth rate, and thus may not be the best place to focus 

management efforts as has been previously done.  Also, it may not be feasible to manage 

the life-history stage that is most sensitive to toxicants.  This must all be taken into 

account for management strategies to be effective. 

The findings of this study not only have implications for grass shrimp, but also for 

some other species that inhabit environments local to CCR disposal facilities.  More 

studies are needed to assess the potential population-level effects that other species might 
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experience in CCR-contaminated systems.  For toxicity test endpoints to be ecologically 

relevant, they must be applicable to population, community, and ecosystem traits (Kuhn 

et al. 2001).  Population models are powerful tools that managers can utilize to link 

traditional toxicity tests to higher order consequences.  Population-level risk assessments 

should be a vital part of any management strategy for CCR affected systems.  As these 

CCR disposal basins are not isolated bodies of water, but integral components of larger 

aquatic systems, management efforts based upon population-level assessments are 

required to minimize the impacts of CCR on these ecosystems. 
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Chapter 4: Synopsis 

Overview:  properties of coal combustion residues and toxicological effects:   

Coal combustion residue (CCR) is a solid waste product derived from large-scale 

coal burning facilities such as coal-fired power plants.  Coal combustion residue contains 

a complex mixture of trace elements concentrated from the parent coal as a result of 

combustion.  The high volume of CCR produced in the USA creates challenges for its 

disposal, as of 1998 57 million tons annually (ACAA 1998).  A primary disposal method 

is to pump CCR as a slurry into aquatic basins in an effort to allow the settling of solids.  

The aquatic settling basins often support unique ecosystems that may be negatively 

affected by the trace elements contained in the CCR.  These settling basins are often 

connected to a local waterway, providing the potential for release of CCR into nearby 

systems.   

There can be serious environmental effects of CCR disposal into aquatic basins 

and downstream habitats.  The trace elements characteristic of CCR can have negative 

effects on organisms that inhabit the contaminated aquatic systems and nearby terrestrial 

habitats (Rowe et al. 2002).  Lemly (2002) found that chronic exposure to CCR caused 

developmental, histopathological, and teratogenic effects in numerous fish species.  

Increased metabolic costs have been observed in crayfish (Rowe et al. 2001a), grass 

shrimp (Rowe 1998), and larval bullfrogs (Rowe et al. 1998a) exposed to CCR.  The 

latter also displayed oral deformities (Rowe et al. 1998b), spinal flexures (Hopkins et al. 

2000), and behavioral anomalies that affected predator avoidance (Raimondo et al. 1998).   

Although such freshwater organisms have received considerable attention with respect to 
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CCR exposure, very little research has addressed organisms inhabiting estuarine systems 

receiving CCR effluent (Rowe 2003).   

Selenium (Se) is perhaps the contaminant of greatest concern with respect to the 

toxicity of CCR (Lemly 1997, 2002).  Selenium is persistent in CCR-contaminated 

sediments, is highly bioaccumulative, and has been linked to toxicological and ecological 

effects in numerous CCR-impacted systems (Besser et al. 1996, Lemly 2002, Sorensen et 

al. 1984).  The toxicity of Se is likely related to its chemical similarities with sulfur (S) 

and its substitution for S in cysteine-rich proteins/enzymes (Garrett and Inman 1984).  

Substitution of S with Se can lead to abnormal tertiary structures during protein synthesis, 

and has been linked to effects including teratogenesis, exopthalmus, anemia, and 

reproductive failure in fish (Lemly 2002).  Also, selenium has been shown to cause 

oxidative stress and altered glutathione metabolism in aquatic birds (Hoffman 2002, 

Hoffman et al. 2002, Spallholz and Hoffman 2002).   

 

CCR exposure in the current studies 

Because of the dearth of information regarding CCR effects on estuarine systems 

(Rowe 2003), I conducted full life cycle exposures to CCR on the estuarine grass shrimp 

(Palaemonetes pugio Holthius) to quantify lethal and/or sublethal effects (see Chapters 2 

and 3).  Grass shrimp were exposed to either CCR or reference sediment and food for 156 

days, with larval-stage exposure taking place in 1500mL beakers, and juvenile- and adult-

stage exposure taking place in 57-L flow through tanks.  Sediments consisted of solid 

CCR derived from the D-Area settling basin on the Savannah River Site, SC or black 

sand as a reference (to mimic the color of CCR).  Food for larval grass shrimp consisted 
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of brine shrimp (Artemia spp.) hatched over CCR or reference sediment; juvenile and 

adult grass shrimp were fed ground, dry tissues of crayfish collected from the site in 

which CCR was derived, or from uncontaminated sites.   

At the end of the exposure the sublethal effects of CCR were examined through 

the use of molecular biomarkers; specifically, I conducted the Comet assay (single-cell 

gel electrophoresis) to measure the extent of DNA damage in shrimp hepatopancreas, and 

the total antioxidant potential of shrimp tail tissue as an indicator of oxidative stress.  The 

exposure experiment also provided the parameter estimates for stage-classified matrix 

models.  The models were analyzed to assess the population growth rate, stable stage 

structure, and reproductive value, and an elasticity analysis was conducted under both 

treatment conditions.   

 

Contaminant concentrations in sediments and food used in exposures 

Sediment and crayfish were enriched in Cr, Cu, Se, Pb, Cd, and As compared to 

the reference sediment and crayfish.  The primary exposure routes for grass shrimp in the 

experiments were through the sediment and the food provided to juvenile and adult life 

stages (consisting of tissues from crayfish captured in the study sites).  Dissolved 

concentrations of trace elements did not differ significantly between CCR and reference 

treatments, suggesting that water-borne exposure was negligible.  Cadmium and Se 

(respectively) were the least concentrated of the potentially toxic trace elements detected 

in the sediment.  However, both of these elements concentrations were significantly 

elevated in the food source.  The shrimp significantly accumulated Cd and Se, suggesting 

that the primary exposure route was most likely their food.    
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Sublethal effects of CCR on grass shrimp – measurement of DNA damage and oxidative 

stress 

Adult grass shrimp were assessed for DNA single strand breaks (SSB) at the end 

of the exposure experiment.  Damage to DNA, if not repaired prior to transcription, can 

alter protein translation and, in some cases, result in mutagenesis.  I chose to use DNA 

damage as a biomarker because contaminants associated with CCR have been shown to 

be mutagenic in a variety of organisms (Smith-Sonneborn et al. 1981, Kubitscheck and 

Ventra 1979, Li et al. 1983).  I specifically examined DNA SSB because they have been 

shown to be a rapid and relatively sensitive indicator of genotoxicant exposure and 

combines many DNA damage endpoints (Mitchelmore and Chipman 1998, Steinert et al. 

1998).  Therefore, the Comet assay was used to assess the extent of DNA SSB in grass 

shrimp. 

At the end of the exposure experiment adult grass shrimp were also examined for 

changes in total antioxidant potential.  The measurement of total antioxidant potential 

(total oxidant radical scavenging capacity) has recently been applied to aquatic organisms 

(Winston et al., 1998, Regoli and Winston, 1998, 1999), and is advantageous because it is 

a combined approach and provides an overall indication of the organism’s free radical 

scavenging capacity.  Reactive oxygen species can impair nucleotides, proteins, lipids, 

and carbohydrates, (Yu 1994), and may ultimately lead to tissue damage (Diaz et al. 

2004).  I included antioxidant potential in my biomarker assessments of sublethal effects 

because transition elements, including Cu, Cr, Fe, Ni, V, and Co, can initiate the 

production of reactive oxygen species (ROS) (Prahalad et al. 2000), and selenium 
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specifically has been shown to cause oxidative stress and altered glutathione metabolism 

in aquatic birds (Hoffman 2002, Hoffman et al. 2002, Spallholz and Hoffman 2002).   

Significant increases in percent tail DNA, tail moment, and tail length in CCR-

exposed shrimp compared to reference shrimp suggested that chronic exposure to CCR 

caused DNA damage to adult grass shrimp which was not repaired.  Prahalad et al. 

(2000) found that Ni, V, and Fe induced DNA damage (hydroxylation of dG to 8-oxo-

dG), and that the availability rather than total exposure of metals was critical in inducing 

DNA base damage.  Additionally, both cadmium and selenium administered individually 

to rats (Forrester et al. 2000) and water-borne exposure of mussels to a combination of 

PAHs and metals (Steinert et al. 1998) displayed DNA SSB.  Thus, the occurrence of 

DNA SSB that I observed in CCR-exposed grass shrimp is consistent with observations 

of DNA damage in other species exposed to several constituents of CCR.    

There was no significant difference in total antioxidant potential between 

reference and CCR-exposed grass shrimp.  Because of the chronic exposure period in my 

experiment, it is possible that oxidative stress was compensated for early in the exposure 

period.  However, Shaikh et al. (1999) found that chronic cadmium toxicity caused 

increased hepatic and renal cortex glutathione concentrations in rats, indicative of ROS 

generation.  It is possible that, had I measured glutathione alone, I may have seen a 

difference; because the total antioxidant potential test covers a wide array of antioxidants 

as a collective as opposed to individually, which can be disadvantageous if the toxicant 

has a very specific response, as it may be masked amongst the overall effect.   
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Chronic, population level effects 

In addition to sublethal effects, CCR caused significant changes in larval survival 

and time to metamorphosis, which have the potential to exert population-level effects.  

CCR exposure is often not directly lethal, but can lead to reproductive failure or 

developmental defects in offspring, in some cases resulting in population declines (Lemly 

2002).  As the population growth rate is considered a better measure of fitness than 

individual-level effects (Forbes and Callow 2002) I modeled population growth rates to 

examine the potential for CCR-exposure to affect on grass shrimp population dynamics.   

I employed matrix population models to examine the effects on population growth 

rates of CCR-exposure to specific life-stages.  I used stage-classified matrix models 

because grass shrimp have clearly discernable life-history stages.  Separate models were 

constructed for reference and CCR-exposed grass shrimp.  Responses to CCR among all 

life stages (survival, growth, and fecundity) were measured in the laboratory exposure 

and used to calculate the parameters for the models.  Population growth rate has often 

been used as an index of toxic effects on populations, although Barnthouse et al. (1987) 

argued that reproductive potential is the simplest index to integrate effects of 

contaminants on all life stages.  Thus, I measured both population growth rate and 

reproductive potential.  I also conducted an elasticity analysis on the models to examine 

how individual parameters could affect the population growth rate, as exposure to 

toxicants can cause changes in elasticity patterns (Hansen et al. 1999), and as elasticity 

analyses have become an important tool in ecological risk assessment and conservation 

biology (de Kroon et al. 2000). 
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The models indicate a decreased population growth rate in CCR-exposed grass 

shrimp populations compared to reference populations, (1.02 and 1.03 respectively).  

This is due to the changes in the transition probabilities, mainly in decreases in the larval 

stages (probability of surviving and remaining in stage i, Pi = 0.95 and 0.90; and the 

probability of surviving and growing to stage i+1, Gi = 0.03 and 0.01, in the reference 

and CCR treatments respectively).  Also reference females had a higher fecundity (2.32) 

than CCR exposed females (1.91), though this was not statistically significant.  Similar 

projected declines in population growth rate were seen in copepods exposed to Kepone 

(Allan and Daniels 1982), and in polychaetes exposed to hydrocarbons (Levin et al. 

1996). 

The model results primarily reflect a reduction in larval survival and delayed time 

to metamorphosis in CCR-exposed shrimp relative to reference shrimp.  I found no 

effects of CCR on juvenile and adult survival and as a result, these vital rates were 

relatively unimportant in explaining differences in projected population growth rates.  

Effects of CCR on projected population sizes resulting from altered larval traits were 

striking.  Model projections suggest that, under the conditions tested, after ten 

generations CCR-exposed populations would be three million times smaller than 

reference populations, and that they would produce 5.8 times fewer replacements.  The 

model also indicates an increase in generation time in CCR exposed populations, which 

indicates that a population that has been exposed to CCR will require longer to replace 

itself.  The model also indicated a decrease in the average age at maturity, which was an 

artifact of the decrease in reference shrimp juvenile survival (which was not significantly 

different from CCR-exposed juvenile shrimp survival).  
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In CCR-exposed grass shrimp there was a shift in reproductive value, with a 

decrease in the value of gravid adults and a subsequent increase in the reproductive value 

of juveniles, which was likely due to the decreased probability of a CCR-exposed 

individual reaching adulthood.  In CCR-exposed grass shrimp populations there is a shift 

in the stable stage structure to a smaller proportion of juveniles and a subsequent increase 

in the number of larvae and gravid adults, as compared with reference populations.  This 

is most likely caused by the decrease in larval survival and fewer individuals entering the 

juvenile stage.   

In general, parameters with the largest elasticities have the greatest influences on 

population growth rates.  Thus anything that further affects these parameters, such as 

toxicants or fishing pressure, will most likely have a larger impact on population growth 

rate.  However, it must be kept in mind that elasticities are not independent of each other, 

and negative correlations may arise between them (Shea et al. 1994).  In reference grass 

shrimp populations survival of juveniles and survival of gravid adults had the highest 

elasticities, each having near equal weight, and the survival of larvae had the next highest 

elasticity, emphasizing the importance of this parameter.  The elasticity analysis indicated 

a shift in the elasticity pattern of CCR-exposed grass shrimp, with gravid adults having 

the highest elasticity value, and juvenile survival having the next highest, and both of 

these values were larger than their reference model counterparts.  This suggests that 

further changes in these life-history parameters in CCR-exposed populations will have a 

larger effect on the population growth rate than changes in these same parameters in 

reference populations.  Altered elasticity patterns in response to contaminant exposure 

have been reported in other studies, including cadmium-induced changes in two strains of 
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gastropod (Salice and Miller 2003), and changes in skate populations experiencing heavy 

fishing exploitation (Frisk et al. 2002). 

   The largest change in elasticity was the decrease in the elasticity of larval 

survival in the CCR-exposed shrimp.  Similarly, Hansen et al. (1999) found that when the 

probability of juvenile survival was low, the elasticity of juvenile survival was reduced.  

Heppell et al. (1996) found that elasticity in adult survival for loggerhead sea turtles 

decreased as the survival rate of adults decreased.  Such decreases in elasticity do not 

mean that these life-history stages are unimportant to population dynamics, but rather that 

another life-history stage has greater influence.  Because elasticities are not independent 

of each other and must sum to one, a change in one parameter requires a compensatory 

change in other parameters.  This may be the case in this study, where decreased larval 

survival, and a subsequent decrease in elasticity of this term, resulted in the survival of 

other life-stages becoming relatively more important to the population growth rate.  

Elasticity analysis indicated that the CCR-exposed grass shrimp populations may 

be more sensitive than non-exposed populations to factors other than contaminants that 

may decrease adult survival.  Factors such as predation and competition, which may 

regulate survival of adults in some systems, could intensify projected contaminant effects 

on population growth.  Because adult grass shrimp are important to the trophic dynamics 

in many estuarine systems, combined influences of contaminants and natural factors on 

adult survival (and thus population growth) could have overall implications for 

community or ecosystem health.   
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Summary 

This study approached the effects of coal combustion residue on grass shrimp 

from two distinct perspectives.  CCR-exposed grass shrimp displayed increased DNA 

SSB, which may have contributed to the observed decrease in larval survival, and the 

subsequent projected population-level effects.  Lee et al. (2000) and Hook and Lee 

(2004) found that DNA damage in early stage larval P. pugio affected development, and 

subsequently survival, after exposure to genotoxicants.  Other studies have found that 

CCR exposure caused decreased survival in the early life stages of several species.   

Gillespie and Baumann (1986) found that female bluegills (Lepomis macrochirus) with 

high body burdens of selenium, from a CCR contaminated reservoir, produced larvae 

with edema that did not survive to the swim-up stage.  At Belews Lake, North Carolina 

CCR exposure resulted in extensive reproductive failure in 19 out of 20 fish species, 

reflecting embryonic and larval mortality, and deformities in vertebrae, head, mouth, and 

fins of larvae and juveniles (Lemly 2002).   

Although toxicants exhibit initial effects on individuals at the cellular level, 

severe enough effects can modify higher-order, ecological systems  (Caswell 1996b).  My 

study suggests that a combination of measured and unmeasured effects of CCR on 

specific life stages have the potential to exhibit population-level effects, as indicated by 

the models.  Because populations function as individual entities within ecosystems, 

alteration of their size or structure by chemical toxicity may have functional and 

structural ecosystem-wide consequences (Lin et al. 2005).  Thus, decreased population 

sizes such as those projected in my models could have effects on the larger community.   
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The disposal of coal combustion residue is largely unregulated.  Many aquatic-

disposal basins are connected to local waterways, and thus the effects of CCR exposure 

can also emerge down-stream.  Nearby terrestrial systems can also be affected by CCR 

through contamination of soil and groundwater, and by reduced fitness of terrestrial or 

semi-terrestrial organisms that use the contaminated aquatic sites for feeding or 

reproducing (such as amphibians and some reptiles).  Therefore, effective management of 

these disposal sites must include assessments of the localized sources and less directly 

affected habitats (e.g., Kuhn et al. 2002).  Further studies of sublethal endpoints, as well 

as studies to assess the potential population-level effects of CCR exposure to other 

species are necessary for regulation of CCR disposal strategies. 

 

Future directions 

The results of this work pose interesting questions for future studies.  Induction of 

oxidative stress may be examined more closely by measuring oxidative parameters, such 

as glutathione, individually as opposed to the total antioxidant potential test conducted 

here.  As many of the contaminants in CCR are metals, it may be useful to examine if 

chronic CCR exposure would lead to any changes in metallothionein.  The Comet assay 

may also be used to dissect out the pathways of DNA damage, i.e. how much of the 

damage was oxidative.  

It would be interesting to determine if there is a difference in biomarker 

expression based upon duration of exposure to CCR.  For example, determining whether 

DNA damage occurs during the larval stage may provide insights into the mechanisms 

behind the decrease in larval survival and metamorphosis.  A factorial laboratory 
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exposure design would also be useful in further determining which exposure routes are 

likely causing the trace element accumulation seen in grass shrimp.  As well, multi-

generational studies would provide insights into maternal transfer of contaminants (Roe 

et al. 2004) and potentially heritable DNA alterations, either of which may affect 

reproductive fitness.    

A next step would be to examine the chronic effects of CCR through a dose-

dependent exposure.  Changing the proportion of CCR in sediments would allow the 

dose-dependent effects on grass shrimp vital rates to be examined.  These changes could 

be further examined by running additional matrix population models.  This may allow for 

recommendations to be made for the management of CCR.   
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