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analysis of data, continuous or discrete, that are assumed to be clustered or corre-

lated. Assessing model fit is important for valid inference. We therefore propose a
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(LMMs) and logistic mixed models. For LMMs, we further derive the analytical

power of the test under contiguous local alternatives and compare it with simulated

empirical power. Three examples are used to illustrate the proposed test.
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Chapter 1

Introduction

1.1 Background

The linear mixed model (LMM) (McCulloch and Searle, 2001) extends the

standard linear regression model by including random effects in addition to the usual

fixed effects in the linear predictors. LMMs can be expressed as Y = Xβ+Zα+ ϵ,

where Y is a vector of observations, X is a matrix of known covariates, β is a vector

of unknown fixed regression coefficients which are called fixed effects, Z is a known

matrix, α is a vector of unknown random effects and ϵ is a vector of unobservable

random errors. By incorporating random effects, LMMs can accommodate clus-

tered or correlated or longitudinal data. For example, in medical studies, various

measurements are often collected from the same individual over time. It is then

reasonable to assume that the observations for the same individual are correlated.

Examples of applying LMM to longitudinal data can be found for example in Laird

and Ware (1982), Weiss (2005, Chapter 9) and Lee et al. (2006). Generalized linear

mixed models (GLMMs) further extend the LMM family to discrete or categorical

exponential family data. Examples include logistic mixed models for binomial data

and Poisson mixed models for count data. Data examples of GLMMs are given

in McCullagh and Nelder (1989, Section 14.5) and GLMMs have numerous appli-

cations in medical research and the survey area. Jiang and Lahiri (2006) gave a
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very good general literature review of prediction based on GLMMs, with particular

application to small-area estimation.

There are various methods of estimating GLMM parameters. The method of

maximum likelihood is widely used. A full maximum likelihood analysis requires

numerical integration techniques to calculate the log-likelihood function and thus

the distribution of the random effects needs to be known. Jiang (1998b) proposed

estimating equations that apply to GLMMs not necessarily having a block-diagonal

covariance matrix structure. Jiang (1999) proposed a method of inference which

in many ways resembles the method of least squares in linear models and relies on

weak distributional assumptions about random effects. In this thesis, we focus on

the maximum likelihood method for parameter estimation in GLMMs.

Developments in model fitting algorithms and their implementations in statis-

tical packages have greatly facilitated the applications of LMMs and GLMMs. The

commonly used functions for mixed modeling in the statistical software package

SAS, version 9.2, are PROC MIXED, PROC NLMIXED and PROC GLIMMIX.

The commonly used functions for mixed modeling in R, version 2.11.1, are

• linear mixed models: aov(), lme() in library(nlme), lmer() in library(lme4);

• generalized linear mixed models: glmmPQL() in library(MASS), glmer() in

library(lme4), MCMCglmm() in library(MCMCglmm).

Two important steps in modeling are selecting a model and checking its fit. Fre-

quently, model selection is done by comparing nested models, via likelihood ratio,

wald or score tests, as part of model building and there are approaches for com-
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paring non-nested models (Cox, 1961; Godfrey, 1988). AIC (Akaike’s information

criterion), BIC (Bayesian information criterion) and other model selection principles

(Rao and Wu, 1989; Shao, 1997) focus on selection of covariates. Rao, Wu et al.

(2001) gave a concise review on the subject of the statistical model selection.

These methods select the best statistical model from a set of potential models

chosen by the researcher, given the observed data. Even though the finally selected

model may be the best in the class of potential models, it might still not provide a

good fit to the data. Thus once a model is selected, its fit should be assessed. This is

often done by checking residuals and formal goodness of fit tests. There are various

diagnostics and graphical techniques in assessing goodness of fit of models. Lin, Wei

and Ying (2002) developed objective and informative model-checking techniques

for a variety of statistical models and data structures, including generalized linear

models with independent or dependent observations, by taking the cumulative sums

of residuals over certain coordinates. Lange and Ryan (1989) described a graphical

method for checking distributional assumptions about the random effects in random

effects models. Park and Lee (2004) proposed residual plots to investigate the

goodness of fit for repeated measure data, where they mainly focus on the mean

model diagnostics. Jacqmin-Gadda et al. (2007) discussed the fit of a linear mixed

model through Cholesky residuals and conditional residuals. Pan and Lin (2005)

developed graphical and numerical methods for checking the adequacy of generalized

linear mixed models, by comparing the cumulative sums of residuals with certain

Gaussian processes. Regarding formal tests for the model adequacy, goodness of

fit tests for generalized linear models for fixed effects can be found in Chapter 4

3



in Agresti (2002). However, the literature for formally assessing the overall fit for

GLMMs is limited. Some procedures to assess model misspecification have been

proposed. Testing for the presence of random effects in LMMs has been discussed

by Self and Liang (1987) and by Crainiceanu and Ruppert (2004). Jiang (2001)

and Ritz (2004) assessed the distributional assumptions for the random effects in

LMMs. Claeskens and Hart (2009) proposed formal tests for testing the normality

of random effects and/or error terms in LMMs. Khuri, Mathew and Sinha (1998)

presented derivations of both exact and optimal tests regarding variance component

models, as well as guidance on using such tests for hypothesis testing for the fixed

effect part. These are separate tools for checking fixed-effect specification or for

separately checking the residuals or forms of the random effect specification.

Testing the overall adequacy of a proposed model has been discussed in the

literature for several types of models with fixed effects. Tsiatis (1980) proposed a

goodness-of-fit test to test the overall fit of a logistic regression model. The test

is originally established based on the efficient scores test and after simplification,

it is reduced to a quadratic form of observed counts minus the expected counts in

regions of the covariate space. However, for logistic mixed models, with the presence

of random effects, this efficient scores test can not be simplified as a quadratic form

of observed counts minus the expected counts because of the integrals involved in

the likelihood function. For survival data, Schoenfeld (1980) presented a class of

omnibus chi-squared goodness of fit tests for the proportional hazards regression

model. Slud and Kedem (1994) adapted the idea of Schoenfeld to generalized linear

time series models and discussed fixed effects binary-response models with time-

4



dependent covariates. Kedem and Fokianos (2002) extended this approach to various

other goodness of fit tests based on categorical time series residuals. In this thesis,

we adopt the idea of Schoenfeld (1980) and develop a class of goodness of fit tests

for GLMMs by comparing the observed and expected values computed from the

model within cells of a partition of the covariate space. This class of goodness of fit

tests primarily assesses the adequacy of fit of the fixed effects part in the presence

of random effects.

1.2 Overview of thesis

In Chapter 2, we present the linear mixed models (LMMs). We adopt the

idea of Schoenfeld (1980) and propose a class of goodness of fit tests for testing

the statistical adequacy of the selected LMM. We study two classes of LMMs, the

general LMM with additive random effects Y = Xβ +
∑R

r=1 Zrαr + ε, where the

random effects αr, r = 1, . . . , R are normally distributed and in a moderate to large

sample setting, the two-level LMM yij = xTijβ + αi + ϵij, that is, the LMM with

one random intercept, where no distributional assumption is made on the random

effect αi or the error term ϵij. For this two-level LMM, i = 1, . . . , m, m denotes

the number of clusters, and j = 1, . . . , ni, ni denotes the size of cluster i. To

deal with technical issues, the covariate matrix X is is assumed in different settings

to be a matrix either of fixed constants or of random variables. We propose a

test statistic based on differences between observations and their expected values

computed under the model aggregated over cells of a partition of the covariate space.

5



We first discuss assumptions needed, and then derive the asymptotic properties of

this test statistic as the total number of observations N tends to infinity under

the null hypothesis and under local alternatives. For the two-level LMM, N =∑m
i=1 ni = (

∑m
i=1 ni/m)m. Under the assumption of the existence of

∑m
i=1 ni/m, N

tending to infinity is equivalent to m tending to infinity. For the general LMM with

additive normal random effects, we estimate parameters using maximum likelihood

estimators (MLEs) and assume that the covariate matrix X is fixed and nonrandom.

For the two-level LMM with no distributional assumptions made on the random

effect or the error term, we assume that (xi, ni), where i is the cluster index, are

i.i.d random vectors and estimate the parameters using least squares and method

of moments. In Chapter 2, we also check the theoretical power in simulations, and

study the impact of choice of cell partitions on the test as well as the robustness of

the test with respect to the error distribution. We illustrate this test in three real

datasets.

In Chapter 3, we extend the test to random intercept generalized linear mixed

models (GLMMs) and derive its theoretical power. To do that, we also prove the

MLE consistency of GLMMs under certain assumptions. The covariate matrix X in

this Chapter is considered to be random variables. Again, we conduct simulations

to assess factors with an impact on the power of the test in GLMMs.

In Chapter 4, we discuss the applicability of the results and point to future

research directions.

There is a separate technical appendix at the end of each chapter. Appendix

A contains three lemmas cited in this thesis.

6



Chapter 2

Goodness of fit tests for linear mixed models

2.1 Linear mixed models (LMMs)

A linear mixed model (LMM) has the form

Y = Xβ + Zu + ε, (2.1)

where YN×1 is the vector of observations; XN×p is the design matrix for the fixed

effects part of the model; β is a p×1 vector of unknown fixed effects parameters; u is

a vector of random effects and ε is a vector of errors. Typically u and ε are assumed

to be independent of each other and each independently normally distributed with

mean 0 and unknown variances.

In this thesis, we only consider the LMM (2.1) with Zα =
∑R

r=1 Zrαr, i.e.

Y = Xβ +
R∑
r=1

Zrαr + ε. (2.2)

Here Zr, an N ×mr matrix of constants, is the design matrix for the random effect

αr, r = 1, . . . , R. The quantity αr is an mr × 1 random vector, r = 1, . . . , R. Also,

components of αr are i.i.d. within the vector, α1, . . . ,αR are independent and

are also independent of ε. In this thesis, α1, . . . ,αR are always assumed normal

7



except for the 2-level LMM case discussed in Section 2.2.2 where no distributional

assumptions are made on either the random effect or the error term. Let ψ =

(σ2
ϵ , σ

2
1, . . . , σ

2
R), the parameter vector of all variance components and let θ = (β,ψ).

Let Gr = ZrZ
T
r , r = 1, . . . , R and G0 = IN . The X matrix can be fixed or random.

To deal with technical issues, X is considered to be fixed in Section 2.2.1 and to be

random in Section 2.2.2.

As an important case of model (2.2), we now introduce the linear mixed model

with a single random effect:

yij = xTijβ + αi + ϵij, i = 1, . . . ,m, j = 1, . . . , ni, (2.3)

where the 1× p vector xTij = (1, xij1, . . . , xij(p−1)) denotes covariates for fixed effects

for the jth observation within the ith cluster. The cluster specific random effects

αi ∼ N(0, σ2
a) are assumed to be independent of the error terms ϵij, ϵij ∼ N(0, σ2

ϵ ).

To accommodate an intercept term in the model, the first entry in xij is 1. We write

N =
∑m

i=1 ni and yi = (yi1, . . . , yini
) denotes the vector of observations for the ith

cluster.

Under these assumptions, Y ∼ N(Xβ,V), with a block diagonal covariance

matrix V, where each of the m ni × ni blocks has the structure

Vi =


σ2
a + σ2

ϵ · · · σ2
a

...
. . .

...

σ2
a · · · σ2

a + σ2
ϵ


ni×ni

. (2.4)

8



For asymptotic analysis of the LMM model (2.3), we always assume that m goes to

infinity, thus N also goes to infinity.

The following assumptions are made on model (2.2) throughout Chapter 2.

Assumption 2.1 The true parameter point θ0 = (β0,ψ0) is an interior point of

Θ = (Rp, (R+)R+1). For the 2-level LMM (2.3), R = 1.

Assumption 2.2 The covariate matrix X can be either fixed or random. If X is

assumed to be fixed, then it is assumed to have full rank p. If X is assumed to be

a matrix of random variables which is the 2-level LMM (2.3) discussed in Section

2.2.2, then (xi, ni) are assumed i.i.d. with ∥E(x
⊗

2
i )∥ < ∞ and E(n2

i ) < ∞.

Assumption 2.3 When the covariate matrix X is considered to be fixed, we al-

ways assume that, with E1, . . . , El being a cell partition of the covariate space, for

l = 1, . . . , L, N−1
∑N

k=1 I{xk∈El}x
T
k exists.

Remark 2.1 For the 2-level LMM with fixed covariate matrix X, Assumption 2.3 is

equivalent to the existence of N−1
∑m

i=1

∑ni

j=1 I{xij∈El}x
T
ij. When the covariate matrix

X is considered to be random, the existence of N−1
∑N

k=1 I{xk∈El}x
T
k is ensured by

Assumption 2.2. 2
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2.2 Goodness of fit test statistic

2.2.1 Test statistic and its asymptotic properties for LMMs when

parameters are estimated by maximum likelihood

2.2.1.1 LMM with a single random effect

In this Section, we discuss the 2-level LMM (2.3) with normality assumptions

on both the random effect and the error term. The covariate matrix X is considered

to be fixed. We derive our test statistic for the setting where the model parameters

θ = (β,ψ) = (β, σ2
a, σ

2
ϵ ) are estimated by the maximum likelihood. Since we assume

normality both for the random intercept term αi and for the error term ϵij, we can

use the result of Miller (1977) to show the consistency and asymptotic normality of

the maximum likelihood estimator (MLE) θ̂. The following assumptions are made

for the two-level LMM.

Assumption 2.4 Jββ = limN→∞ XTV−1X/N exists and is positive definite;

Here the positive definiteness assumption for Jββ is equivalent to the assumption

that X has full rank.

Assumption 2.5 The 2 × 2 matrix M with elements defined below exists and is

positive definite;

[M]st =
1

2
lim
N→∞

(
trV−1GsV

−1Gt

)
/N, s, t = 0, 1,

where G0 = I is the N × N identity matrix and G1 = 1
⊗

2 is the N × N matrix of

10



all 1s.

Under Assumptions 2.1 – 2.5, based on Miller (1977), the maximum likelihood

estimators (MLEs) for model (2.3) exist and are consistent.

To test the goodness of fit of the LMM (2.3), we first divide the covariate space

into L disjoint regions E1, . . . , EL. We compute the observed and expected sums

in each region El as

fl =
m∑
i=1

ni∑
j=1

I{xij∈El}yij, (2.5)

el(β) =
m∑
i=1

ni∑
j=1

I{xij∈El}E(yij) =
m∑
i=1

ni∑
j=1

I{xij∈El}x
T
ijβ, (2.6)

where I denotes the indicator function.

Remark 2.2 The cell partition can also be based on covariates not included in

model (2.3). In this case, if we let xij denote the vector of all available covariates

and x∗
ij only includes covariates used in the regression, then we would define el(β

∗) =∑m
i=1

∑ni

j=1 I{xij∈El}(x
∗
ij)

Tβ∗, where β∗ corresponds to the coefficients of x∗
ij. But no

matter which kind of cell partition we choose, we employ the expressions in (2.5)

and (2.6) in the whole thesis for notational simplicity. 2

With the notation f = (f1, . . . , fL) and e(β) = (e1, . . . , eL), the observed minus

the expected vector is

f − e(β0) =


∑m

i=1

∑ni

j=1 I{xij∈E1}(yij − xTijβ0)

...∑m
i=1

∑ni

j=1 I{xij∈EL}(yij − xTijβ0)

 . (2.7)
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Since the true parameter vector β0 is unknown, we replace β0 in (2.7) by its MLE β̂

for Theorem 2.3. The proof of this Theorem is given in Section 2.6.1. The following

assumption is made to ensure the existence of components of the variance covariance

matrix for the test statistic.

Assumption 2.6 limK→∞ lim supm→∞
1
m

∑m
i=1 I{n2

i≥K} n2
i → 0.

Theorem 2.3 For model (2.3), let E1, . . . , EL constitute a disjoint partition of the

covariate space generated by X. Under Assumptions 2.1 – 2.6, as N → ∞,

√
N

 (f − e(β0))/N

β̂ − β0

 D→ N(0,DVDT ),

where with the (L + p) × N matrix D given in equation (2.29),

DVDT =

 H ΛJ−1
ββ

J−1
ββΛ

T J−1
ββ


(L+p)×(L+p)

. (2.8)

The entries of H, Λ and Jββ are given below

Hlk = σ2
a lim
N→∞

1

N

m∑
i=1

[(
ni∑
j=1

I{xij∈Ek}

)(
ni∑
j=1

I{xij∈El}

)]
, (2.9)

Hll = σ2
ϵ lim
N→∞

1

N

m∑
i=1

ni∑
j=1

I{xij∈El} + σ2
a

1

N

m∑
i=1

(
ni∑
j=1

I{xij∈El}

)2

, (2.10)

Λl = lim
N→∞

1

N

m∑
i=1

ni∑
j=1

I{xij∈El}x
T
ij, (2.11)

Jββ = lim
N→∞

XTV−1X/N. (2.12)

12



Consistent estimators for these quantities are given in Corollary 2.5 below.

Remark 2.4 Assumption 2.3 ensures the existence of Λ in (2.8). Assumptions

2.6 and 2.4 ensure the existence of H, the limiting variance covariance matrix for

(f− e(β0))/N , and Jββ in (2.8). 2

Corollary 2.5 Consistent estimators for elements in the block matrix DVDT in

Theorem 2.3 are:

Ĥlk = σ̂2
a

1

N

m∑
i=1

[(
ni∑
j=1

I{xij∈Ek}

)(
ni∑
j=1

I{xij∈El}

)]
,

Ĥll = σ̂2
ϵ

1

N

m∑
i=1

ni∑
j=1

I{xij∈El} + σ̂2
a

1

N

m∑
i=1

(
ni∑
j=1

I{xij∈El}

)2

,

Λ̂l =
1

N

m∑
i=1

ni∑
j=1

I{xij∈El}x
T
ij, Îββ = XT V̂

−1
X/N,

where Ĥlk, Ĥll are estimators for off-diagonal and diagonal elements of H, and Λ̂l

estimates the l-th row of Λ.

Remark 2.6 If X is random, under the more restrictive assumption that xij, i =

1, . . . , m; j = 1, . . . , ni are i.i.d. and are independent of ni, the diagonal and off-

diagonal elements of H given in (2.9) and (2.10) are

Hlk = σ2
a ·

E(n2
1 − n1)

E(n1)
P (x11 ∈ El) P (x11 ∈ Ek) , ∀ l ̸= k

and

Hll = (σ2
ϵ + σ2

a)P (x11 ∈ El) + σ2
a

E(n2
1 − n1)

E(n1)
[P (x11 ∈ El)]

2 .

13



In this case, another way of estimating the diagonal and off-diagonal elements of H

is to use

Ĥlk = σ̂2
a

Ê(n2
1) − Ê(n1)

Ê(n1)
P̂ (x11 ∈ El)P̂ (x11 ∈ Ek)

and

Ĥll = (σ̂2
ϵ + σ̂2

a)P̂ (x11 ∈ El) + σ̂2
a

Ê(n2
1 − n1)

Ê(n1)

[
P̂ (x11 ∈ El)

]2
,

where Ê(n2
1) =

∑m
i=1 n2

i /m, Ê(n1) =
∑m

i=1 ni/m and

P̂ (x11 ∈ El) =
∑m

i=1

∑ni

j=1 I{xij∈El}/N . In the R code for simulations and data anal-

ysis below, we use the estimators in Corollary 2.5 to estimate H and in calculating

the theoretical power in the analytical power study Section, the estimators in this

Remark are applied. 2

Corollary 2.7 Under Assumptions 2.1 – 2.6, (f − e(β̂))/
√

N
D→ N(0,Σ), where

Σ = H−ΛJ−1
ββΛ

T is an L×L matrix and can be replaced by its consistent estimator

Σ̂0 = Ĥ− Λ̂Ĵ
−1

ββΛ̂
T

based on Corollay 2.5.

We compute Singular Value Decomposition for Σ̂
0
. For each eigenvalue of Σ̂

0
,

we compare it with a small preset threshold, such as 10−4 ζ. For any eigenvalue

less than ζ, we instead set this eigenvalue to be 0 and reconstruct the Σ̂
0

matrix

using the non-zero eigenvalues and their corresponding eigenvectors. We denote

this reconstructed matrix as Σ̂. Based on Corollary 5.3 given in the Appendix,

P (rank (Σ̂) = rank (Σ)) → 1.
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Our goodness of fit test statistic is then given by the following quadratic form

T =
1

N
(f − e(β̂))T Σ̂

−1
(f − e(β̂)), (2.13)

where Σ̂
−1

denotes the Moore-Penrose pseudoinverse of Σ̂. Under the null hypoth-

esis, T has an asymptotic central χ2
k distribution, where k = rank(Σ̂) = rank(Σ)

for large N , based on Corollary 5.3.

2.2.1.2 LMM with additive random effects

We consider next the LMM with additive random effects (2.2), that is,

Y = Xβ +
R∑
r=1

Zrαr + ε. (2.14)

The covariate matrix X is considered to be fixed numbers in this Section. This is

model (1) in Miller (1977). We first state and comment on the assumptions Miller

(1977) made to ensure consistency and asymptotic normality of the MLE for θ in

(2.2).

Assumption 2.7 A.1 The partitioned matrix [X : Zr] has rank greater than p,

r = 1, . . . , R.

A.2 The matrices G0,G1, . . . ,GR are linearly independent; that is,
∑R

r=0 τrGr = 0

implies τr = 0, r = 0, 1, . . . , R.

A.3 N and each mr, r = 1, . . . , R, tend to infinity.

A.4 Let m0 = N . Then for each s, t = 0, 1, . . . , R, either limN→∞ ms/mt = ρst or

15



limN→∞ mt/ms = ρts exists. If ρst = 0, then let ρts = ∞ for notational convenience.

Without loss of generality, let Zr be labeled so that for s < t, ρst > 0; i.e.,

the mr are in decreasing order of magnitude. Generate a partition of the integers

0, 1, . . . , R, S0,S1, . . . ,Sc, so that for indices r in the same set Ss, the associated

mr’s have the same order of magnitude. Such a partition is generated as follows:

i) r0 = 0; S0 = {0}; r1 = 1.

ii) For s = 1, 2, . . ., it is true that rs ∈ Ss. Then for r = rs+1, rs+2, . . . , include r in

Ss until ρrs,r = ∞; call the first value of r where this occurs rs+1; then rs+1 ∈ Ss+1.

iii) Continue as in step ii until R has been placed in a set. Call this set Sc.

There are then c + 1 sets in partitions, S0,S1, . . . ,Sc, and Ss = {rs, . . . , rs+1 − 1}.

For each r = 1, 2, . . . , R, r ∈ Ss for some s = 1, 2, . . . , c. Define sequences Kr

(depending on N) as follows:

Kr = rank[Zrs : Zrs+1 : · · · : ZR] − rank[Zrs : · · · : Zr−1 : Zr+1 : · · · : ZR],

r = 1, 2, . . . , R,

K0 = N − rank[Z1, . . . ,ZR].

(The Kr so defined are closely related to the degrees of freedom of sums of squares

in the analysis of variance.)

A.5 Each of the limN→ Kr/mr, r = 1, . . . , R exists and is positive.

Let V0 =
∑R

r=1 σ2
rZr be the true covariance matrix.

A.6 There exists a sequence KR+1 (depending on N) increasing to infinity such that

the p× p matrix C0 defined by C0 = limN→∞[X
′
V−1

0 X]/KR+1 exists and is positive

definite.
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Define the (R + 1) × (R + 1) matrix C1 by

[C1]st =
1

2
lim
N→∞

[trV−1
0 GsV

−1
0 Gt]/K

1
2
s K

1
2
t , s, t = 0, 1, . . . , R.

A.7 Each of the limits used in defining [C1]st exists, s, t = 0, 1, . . . , R. The matrix

C1 is positive definite.

Remark 2.8 Assumption A.1 requires that the fixed effects not be confounded with

any of the random effects. A.2 requires that the random effects not be confounded

with each other. For the LMM (2.3) or hierarchical linear mixed models with nested

blocks such as (2.18), the matrices Zr, r = 1, . . . , R, consist only of 0’s or 1’s and

satisfy A.1 − A.2. Assumptions A.1 − A.2 are sufficient to guarantee identifiability

of the MLE θ̂. Assumptions A.3 − A.7, which correspond to Assumptions 3.1 − 3.5

in Miller (1977), are used to ensure the consistency of the MLE. Assumption A.3 is

natural and necessary for the consistency property of MLE estimators of both β and

the variance components σ2
ϵ and σ2

r , r = 1, . . . , R, because the sample size used to

estimate β and σ2
ϵ is N and the sample size used to estimate σ2

r is mr. Assumptions

A.6−A.7 are used to establish the existence and positive definiteness of the limiting

variance-covariance matrix of the MLE θ̂. 2

In addition to Assumption 2.7, taken from Miller (1977), we also require the following

Assumption to ensure the existence of components in the variance covariance matrix

for the test statistic.
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Assumption 2.8 H = limN→∞ FVF
′
exists and is positive definite, with F given

in (2.16).

Remark 2.9 Assumption 2.3 ensures the existence of Λ in (2.17). Assumption

2.8 ensures the existence and positive definiteness of H in Σ. H is the limiting

variance covariance matrix for (f− e(β0))/N , which involves empirical moments of

the covariates and empirical moments of cluster sizes at different levels. At the end

of this Section, we give specific forms of H and ways of estimating H for the special

case of 3-level LMM (2.18). 2

We next state our goodness of fit test for model (2.2) in Theorem 2.10 below.

The details of the proof are given in Section 2.6.3. The covariate space is divided

into L disjoint regions E1, . . . , EL. This partition can also be based on covariates not

included in model (2.2). As discussed in Remark 2.2 in Section 2.2.1.1, for notational

simplicity, the following notation applies whether or not the cell partition is based

only on covariates in the model.

For l = 1, 2, . . . , L, define

fl =
N∑
k=1

I{xk∈El}yk,

el(β) =
N∑
k=1

I{xk∈El}E(yk) =
N∑
k=1

I{xk∈El}x
T
kβ.

Let f = (f1, . . . , fL), e(β) = (e1(β), . . . , eL(β)).

Theorem 2.10 For model (2.2), let E1, . . . , EL constitute a disjoint partition of the
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covariate space generated by X. Under Assumptions 2.1 , 2.2 and 2.7 – 2.8,

(f− e(β̂))T Σ̂
−1

(f− e(β̂))/
√

N
D→ χ2

k, (2.15)

where β̂ is the MLE, Σ̂ is the reconstructed matrix by applying Singular Value De-

composition on a consistent estimator of Σ = H−ΛJ−1
ββΛ

T , Σ̂
−1

denotes the Moore-

Penrose pseudoinverse of Σ̂, k = rank(Σ̂) = rank(Σ). Here

Jββ = limN→∞ XTV−1X/N , H = limN→∞ FVFT , with

F =
1√
N


I{x1∈E1} · · · I{xN∈E1}

...

I{x1∈EL} · · · I{xN∈EL}

 (2.16)

and

Λ =


ΛT

1

...

ΛT
L


L×p

= lim
N→∞


1
N

∑N
k=1 I{xk∈E1}x

T
k

...

1
N

∑N
k=1 I{xk∈EL}x

T
k

 . (2.17)

Remark 2.11 The detailed steps used in deriving the matrix Σ̂ with small-eigenvalue

eigenspaces project to 0 are exactly analogous to those described after Corollary 2.7

in Section 2.2.1.1. For the special case of a 2-level LMM (2.3), an explicit form

of H, which also follows from (2.16), and two consistent estimators were provided

in Section 2.2.1.1 under the more restrictive assumption that xij, i = 1, . . . , m; j =

1, . . . , ni are i.i.d. random variables and are independent of ni. The explicit form
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of H is also given for the 3-level LMM (2.18) in this Remark. Even if the alternate

forms of the estimators for H and Λ are used, we still need to do the small-eigenvalue

thresholding in defining Σ̂.

For the 3-level hierarchical block nested LMM

yijt = xTijtβ + ui + vij + ϵijt, i = 1, . . . , m; j = 1, . . . , ni; t = 1, . . . , nij, (2.18)

the matrix V has the structure

V =




a · · · b

...
. . .

...

b · · · a


ni1×ni1

· · ·


σ2

1 · · · σ2
1

...
. . .

...

σ2
1 · · · σ2

1


ni1×ni,ni1

. . .
σ2

1 · · · σ2
1

...
. . .

...

σ2
1 · · · σ2

1


ni1×ni,ni1

· · ·


a · · · b

...
. . .

...

b · · · a


ni,ni1

×ni,ni1



,

where σ2
1 = Var(ui), σ

2
2 = Var(vij), σ

2
0 = Var(ϵijt), a = σ2

0 + σ2
1 + σ2

2, b = σ2
1 + σ2

2. In

this case, ∀ l ̸= k, the off-diagonal elements of H are

Hlk = σ2
1 lim
N→∞

1

N

m∑
i=1

[(
ni∑
j=1

nij∑
h=1

I{xijh∈El}

)(
ni∑
j=1

nij∑
h=1

I{xijh∈Ek}

)]

+ σ2
2 lim
N→∞

1

N

m∑
i=1

ni∑
j=1

(
nij∑
h=1

I{xijh∈El}

)(
nij∑
h=1

I{xijh∈Ek}

)
.
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For l = 1, · · · , L, the diagonal elements of H are

Hll = σ2
0 lim
N→∞

1

N

m∑
i=1

ni∑
j=1

nij∑
k=1

I{xijk∈El} + σ2
1 lim
N→∞

1

N

m∑
i=1

(
ni∑
j=1

nij∑
k=1

I{xijk∈El}

)2

+ σ2
2 lim
N→∞

1

N

m∑
i=1

ni∑
j=1

(
nij∑
k=1

I{xijk∈El}

)2

.

Similar to the 2-level LMM, under the assumption that the covariate vectors are i.i.d.

random variables and the cluster sizes are independent of the covariate vectors, the

Hlk and Hll here can be expressed as functions of moments of n1, n11 and x111.

This can be done by applying Law of Large Numbers theory and by taking iterated

conditional expectations first conditioning on {n1, n11}, which is similar to what was

done in (2.9), (2.10). Because of the complexity of these functions in the 3-level

LMM model (2.18), we recommend directly estimating Hlk as

Ĥlk = σ̂2
1

1

N

m∑
i=1

[(
ni∑
j=1

nij∑
k=1

I{xijk∈El}

)(
ni∑
j=1

nij∑
k=1

I{xijk∈Ek}

)]

+ σ̂2
2

1

N

m∑
i=1

ni∑
j=1

(
nij∑
k=1

I{xijk∈El}

)(
nij∑
k=1

I{xijk∈Ek}

)
.

This also applies to estimating Hll.

2
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2.2.2 Test statistic and its asymptotic properties for two-level LMM

with parameters estimated by least squares and method of mo-

ments

We consider the LMM (2.3), but now only require that E(αi) = E(ϵij) =

0, V ar(αi) = σ2
a, V ar(ϵij) = σ2

ϵ , instead of assuming normality of αi and ϵij. The

covariate vectors xij are considered to be random variables in this Section and

(xi, ni) are assumed to be i.i.d. This model, also called Nested Error Regression

Model, is widely used and studied in small area estimation (Prasad and Rao, 1990).

We estimate β by the generalized least squares estimator

β̃ = (XT Ṽ
−1

X)−1(XT Ṽ
−1

Y)

= (XTV−1X)−1(XTV−1Y) + op(1), as N → ∞,

where V is a function of the variance components ψ = (σ2
a, σ

2
ϵ ), which are estimated

by the method of moments by equating the right-hand sides of

E

[
m∑
i=1

ni∑
j=1

(yij − ȳi.)
2

]
=

m∑
i=1

ni∑
j=1

(
xTijβ − x̄Ti.β

)2
+ (N − m)σ2

ϵ (2.19)

E

[
m∑
i=1

ni∑
j=1

(ȳi. − ȳ..)
2

]
=

m∑
i=1

ni
(
x̄Ti.β − x̄T..β

)2
+

(
N − 1

N

m∑
i=1

n2
i

)
σ2
a + (m − 1)σ2

ϵ

(2.20)
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respectively to their estimates

SSW =
m∑
i=1

ni∑
j=1

(yij − ȳi.)
2

and

SSB =
m∑
i=1

ni∑
j=1

(ȳi. − ȳ..)
2 =

m∑
i=1

niȳ
2
i. − Nȳ2

..

respectively, where SSW is the Sum of Squares Within groups and SSB is the Sum of

Squares Between groups in the analysis of variance. Because different clusters (over

index i) are independent and the three quantities
∑ni

j=1(yij− ȳi.)
2, niȳ

2
i. and

∑ni

j=1 yij

have finite second moments, SSW/m and SSB/m satisfy Laws of Large Numbers.

Equations (2.19), (2.19) and (2.20) are estimating equations for the parameter vector

θ = (β, σ2
a, σ

2
ϵ ), which can be solved iteratively. The solutions of equations (2.19),

(2.19) and (2.20) θ̃, is consistent.

We first divide the covariate space into L disjoint regions E1, . . . , EL and

compute the observed and expected values in each cell El as given in (2.5) and

(2.6). We then state our goodness of fit test in Theorem 2.12 below with details of

the proof in Section 2.6.4.

Theorem 2.12 For the LMM (2.3) with finite second moments for both αi and ϵij,

under Assumptions 2.1 and 2.2, (f−e(β̃))/
√

N
D→ N(0,Σ), where Σ = H−ΛJ−1

ββΛ
′
.

Thus (f − e(β̃))
′
Σ̂

−1
(f − e(β̃))/N

D→ χ2
k, where Σ̂ is the reconstructed matrix by

applying Singular Value Decomposition on a consistent estimator of Σ and k =

rank(Σ̂).
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Based on Corollary 5.3, k = rank(Σ̂) = rank(Σ) for large N . Detailed steps used

in defining a reconstructed matrix Σ̂ with all eigenvalues lower-bounded away from

0 are exactly analogous to those following Corollary 2.7 in Section 2.2.1.1. The

matrices Jββ, Λ and H are the same as for the two-level LMM (2.3) where normality

was assumed for both αi and ϵij and MLEs are used, with formulas given in (2.9),

(2.10), (2.11) and (2.12).

2.2.3 Power of the test

For the multi-level LMM (2.2), we derive the theoretical power under local, and

more specifically under contiguous alternatives for the test in (2.13) in the situation

where some covariates that influence the outcome y have been omitted from model

(2.2). Let X be the true N × p covariate matrix and X∗ be a submatrix of X of

dimension N × p∗ used in model (2.2), with p∗ < p. Let the null hypothesis be

H0 : θN = θ0. We assess the power of T under the alternative

H1 : θN = θ0 +
a√
N

, (2.21)

with θ0 = (β0,ψ0), where several components of β0 are 0. We use the vector β∗
0

to denote the non-zero components of β0. The indexing of β∗
0 as a sub-vector of β0

corresponds to the same index subset as the columns of X∗ within X.

Based on the derivation for Theorem 2.10, we have that under H0,

1√
N

(f − e(β̂
∗
))

H0→ N(0,Σ∗),
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where Σ∗ is the limiting variance covariance matrix of (f−e(β̂
∗
))/

√
N . By checking

the condition (2.14) in Le Cam’s third lemma in Section 2.6.5, we find that under

the alternative hypothesis H1 in (2.21),

1√
N

(f − e(β̂
∗
))

H1→ N(τ ,Σ∗),

where

τ = lim
N→∞

{Λ − Λ∗[(X∗)TV −1X∗]−1[(X∗)TV −1X]}a, (2.22)

with Λ given by expression (2.17) and Λ∗ corresponds to the same expression, but

computed using X∗ and β∗.

Thus under H1, T ∗ has a limiting noncentral χ2 distribution

T ∗ =
1

N
[f − e(β̂

∗
)]T (Σ∗)−1[f − e(β̂

∗
)]

H1→ χ2
k(δ), (2.23)

where k = rank(Σ∗) and the non centrality parameter is δ = τ T (Σ∗)−1τ . For

a given type I error level α, the power is thus P (T ∗ > χ2
k,α), where χ2

k,α is the

1 − α quantile of the central χ2
k distribution and P denotes the non central χ2

k(δ)

distribution. We then substitute all parameter values in Σ∗ with their MLEs and

reconstruct this consistent estimator of Σ by applying Singular Value Decomposition

as explained in the context after Corollary 2.7 in Section 2.2.1.1. With Σ̂
∗

denoting

the reconstructed matrix,

T̂ ∗ =
1

N
[f − e(β̂

∗
)]T (Σ̂

∗
)−1[f − e(β̂

∗
)]

H1→ χ2
k(δ̂), (2.24)
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where k = rank(Σ̂) = rank(Σ) for large N , based on Corollary 5.3.

We now compute τ and Σ∗ explicitly for two-level LMMs for the setting of

three covariates xij = (xij1, xij2, xij3) that are from a multivariate normal distribu-

tion (2.25) (as studied in the simulation Section 2.3.1), where xij, i = 1, . . . , m; j =

1, . . . , ni are i.i.d., and xij and ni are independent. We assume Y ∼ N(XTβ,V),

where X = (1,x1,x2,x3) and V is given in (2.4), but then omit x3 in fitting the

model, leading to X∗ = (1,x1,x2). Here a in τ is equal to (0, 0, 0, β3). With

derivation details given in Sections 2.6.5.1 and 2.6.5.2,

Σ∗ = lim
N→∞

1

N
(X∗)TV−1X∗

=
1

σ2
ϵ


1 Ex1 Ex2

Ex1 Ex2
1 E(x1x2)

Ex2 E(x1x2) Ex2
2

− 1

E(n)

σ2
a

σ2
ϵ


c1 c1Ex1 c1Ex2

c1Ex1 h1 h2

c1Ex2 h2 h3

 ,

where c1 = En

[
n2/(σ2

ϵ + nσ2
a)
]
, c2 = En

[
n/(σ2

ϵ + nσ2
a)
]
, c3 = c1 − c2, h1 = c2Ex2

1 +

c3(Ex1)
2, h2 = c2E(x1x2) + c3Ex1Ex2 and h3 = c2Ex2

2 + c3(Ex2)
2 .
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And the component (X∗)TV−1X in τ satisfies

1

N
(X∗)TV−1X

P→ 1

σ2
ϵ


1 Ex1 Ex2 Ex3

Ex1 Ex2
1 E(x1x2) E(x1x3)

Ex2 E(x1x2) Ex2
2 E(x2x3)



− 1

E(n)

σ2
a

σ2
ϵ


c1 c1Ex1 c1Ex2 c1Ex3

c1Ex1 h1 h2 h4

c1Ex2 h2 h3 h5

 ,

where h4 = c2E(x1x3) + c3Ex1Ex3 and h5 = c2E(x2x3) + c3Ex2Ex3.

When the cell partition E1, . . . , El is based on the omitted covariate x3, the

elements of Λ in τ are

1

N

m∑
i=1

ni∑
j=1

I{xij,3∈El}
P−→
∫
El

f3(x3)dx3

1

N

m∑
i=1

ni∑
j=1

I{xij,3∈El}xij,1
P−→
∫
x1

∫
El

x1f(x1,x3)(x1, x3)dx3dx1

1

N

m∑
i=1

ni∑
j=1

I{xij,3∈El}xij,3
P−→
∫
El

x3f3(x3)dx3.

With (x1,x2,x3) jointly normal, which is the Scenario I in Section 2.3.1, F3(x3) and

f(x1,x3)(x1, x3) are the corresponding normal and bivariate normal densities.

Based on the above quantities, we next study the impact of the magnitude

of the variance components σ2
a and σ2

ϵ and the correlations ρ13 and ρ23 in (2.25)

between the omitted covariate x3 and the covariates in the model (x1 and x2) on
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the theoretical power when the cell partition is based on quantiles of the omitted

covariate x3 with L = 8 cells. For ρ13 = .5 and ρ23 = .6, Figure 2.1 plots the

theoretical power against β3/(σ
2
a + σ2

ϵ ) for three choices of (σ2
a, σ

2
ϵ ) and varying β3

on the x-axis. For any fixed pair of (σ2
a, σ

2
ϵ ), the power of the test not surprisingly

increases as a function of β3, the coefficient of the omitted covariate x3. This ob-

servation can be made by a Taylor Expansion to the theoretical power formula. Let

G(x, δ) = Pχ2
k, δ

([χ2
k, α,∞)) be the theoretical power, then by a Taylor Expansion

to G(x, δ) around δ = 0, we get

G(x, δ) ≈ G(x, δ) +
∂

∂δ
G(x, δ) δ.

Thus the theoretical power G(x, δ) for δ close to zero is approximately a linear

function of δ = τ T (Σ∗)−1τ , which is a function of β2
3 .

For any fixed β3, the power increases when the random effect σ2
a decreases

compared to the error term σ2
ϵ . Figure 2.2 plots the power for fixed σ2

a = 1, σ2
ϵ = .25

and different choices of (ρ13, ρ23). It shows that the power of test increases as ρ2
13+ρ2

23

decreases. When we set ρ13 = 0 and ρ23 = 0, that is, when x3 is correlated with

neither x1 nor x2, we can see from Figure 2.3 that the power is not affected by the

individual values of σ2
a and σ2

ϵ , as long as σ2
a + σ2

ϵ is fixed.
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2.3 Simulations

2.3.1 Normally distributed covariates (Scenario I)

We simulate data from the following setting. For m = 500, we first generate

cluster sizes ni ∼ uniform on {2, 3, 4, 5} and compute N =
∑m

i=1 ni. Thus the total

number of observations in each repetition is always around N = 1750. We then

draw N covariates xij = (x1ij, x2ij, x3ij), fixed in the sense that they are simulated

only once for the entire simulation of K = 1000 repetitions, independently from a

multivariate normal distribution,


x1

x2

x3

 ∼ N




0

0

0

 ,


1 0 ρ13

0 1 ρ23

ρ13 ρ23 1



 . (2.25)
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Given X = (1,x1,x2,x3) and parameters β, σa and σϵ, we generate Y from a

multivariate normal distribution Y ∼ N(X
′
β,V), where V is given in (2.4).

We first do simulations to show that our goodness of fit test statistic (2.13)

indeed has asymptotic χ2 distribution. We choose ρ13 = ρ23 = 0 and set true

parameter values σa = 1, σϵ = .5, β = (β0, β1, β2, β3) = (1, 1, 1, .25). We then

fit model (2.3) with all covariates that influence the response y. The number of

cells L in the computation of T is twelve based on empirical quantiles of x1 and

x2. With the number of iterations being 1000, we then have 1000 test statistic

values N−1(f − e(β̂))
′
Σ̂

−1
(f − e(β̂)). Figure 2.4 gives the histogram of these 1000

independently calculated test statistics which turns out to be close to χ2
12, with p

value from the Kolmogorov-Smirnov test being around .5 and p value from Pearson’s

chi-square goodness of fit test being around .27. The simulation result coincides with

the theory we claim for (2.13).

Let α be the level of significance. We show in Table 2.1 the empirical size of

the test, which is the proportion of iterations that have p values less than or equal

to α. For example, the first row of Table 2.1 says that 4.7% of the 1000 simulations

have p-values less than or equal to .05. The third column is the standard deviation of

the corresponding empirical size (ES), which is calculated as
√

ES(1 − ES)/1000.

We also check the size of the test under various choices of cell partition based on

X. We choose ρ13 = ρ23 = 0 in (2.25) and let σa = 1, σϵ = .5, β = (β0, β1, β2, β3) =

(1, 1, 1, 1), and fit model (2.3) with all covariates X in the model. Cell partitions

in the computation of T are always based on empirical quantiles of each generated

covariate matrix in each repetition. For example, the first row in Table 2.2 means
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Table 2.1: Empirical size of the test under different α levels (LMM)
m = 500, E(N) = 1750, β3 = .25, ρ13 = ρ23 = 0,K = 1000.

significance level α Empirical Size(ES) Standard Deviation of ES

0.05 0.047 0.0067
0.1 0.097 0.0094
0.2 0.189 0.0124
0.3 0.279 0.0142
0.4 0.385 0.0154
0.5 0.505 0.0158
0.6 0.604 0.0155
0.7 0.703 0.0144
0.8 0.797 0.0127

that in each of K = 1000 repetitions, the cell partition is based on the each generated

x1 with number of cells being 8. The second row in Table 2.2 means that in each of

K = 1000 repetitions, the cell partition is based on both the generated x1 and x2

using cross tabulation. Table 2.2 shows empirical sizes (Emp. Size) were all close

to the nominal α levels of 0.05 and 0.1 for all choices of cell partitions.
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Table 2.2: Empirical size of the test under different cell partitions (LMM).
m = 500, E(N) = 1750, β3 = 1, ρ13 = ρ23 = 0,K = 1000.

L α Emp. Size α Emp. Size

8 (x1) 0.05 0.056 0.1 0.097
3×4 (x1, x2) 0.05 0.058 0.1 0.109
5×4 (x1, x3) 0.05 0.048 0.1 0.088
6×7 (x2, x3) 0.05 0.050 0.1 0.097

To assess the power of the test, we fit model (2.3) to the data without includ-

ing x3 among the covariates. We then use a cell partition based on the empirical

quantiles of the omitted x3 with L = 8 cells when the number of clusters m = 500

or 50. For m = 20, we use fixed cell boundaries, based on theoretical quantiles of

the distribution of x3, to divide x3 into L = 8 cells. We set (ρ13, ρ23) = (.5, .6),

σa = 1, σϵ = .5, β = (β0, β1, β2, β3) = (1, 1, 1, .25). For a given design matrix

X, we compute the theoretical power (Theo.Pow.), the mean estimated theoretical

power (Theo.Pow.hat), and the mean empirical power (Empi.Pow.n) for K = 1000

iterations. We compute the theoretical power of T ∗ in (2.23) based on the asymp-

totic χ2 distribution with the true values of the variance components and empirical

moments for X used in the calculation of the non-centrality parameter (2.22). We

compare these values to the estimated theoretical power, that is computed based

on the asymptotic χ2 distribution with estimated variance components and empir-

ical moments for X in (2.22). We repeat the power computations for D = 500

randomly generated matrices X. Table 2.3 shows means and variances of the 500

distinct power estimates (each based on K=1000 iterations) varying over the design

matrices for m = 500, 50 and m = 20 clusters. The theoretical power, the empirical

power and the estimated theoretical power agree very well, even when m is small.
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Table 2.3: Power and robustness study for Scenario I (LMM).
L = 8, K = 1000, D = 500, (ρ13, ρ23) = (.5, .6), σa = 1, σϵ = .5.

Power m = 500, EN = 1750 m = 50, EN = 175 m = 20, EN = 70

β3 = .25 mean stan.dev. mean stan.dev. mean stan.dev.

Theo.Pow. .798 .0392 .122 .0236 .084 .0175
Theo.Pow.hat .796 .0383 .127 .0241 .089 .0184
Empi.Pow.n .796 .0388 .113 .0227 .062 .0181
Empi.Pow.t3 .797 .0383 .113 .0234 .061 .0184
Empi.Pow.t5 .797 .0375 .113 .0237 .061 .0180

Power m = 500, EN = 1750 m = 50, EN = 175 m = 20, EN = 70

β3 = .8 mean stan.dev. mean stan.dev. mean stan.dev.

Theo.Pow. 1 0 .853 .0967 .533 .1842
Theo.Pow.hat 1 0 .827 .0895 .506 .1443
Empi.Pow.n 1 0 .827 .0954 .439 .1586
Empi.Pow.t3 1 0 .828 .0942 .443 .1629
Empi.Pow.t5 1 .0001 .827 .0941 .440 .1591

However, only for m = 500 was there adequate power to detect lack of fit when

β3 = 0.25, which was substantially smaller than the coefficients β1 = β2 = 1 of

x1, and x2, the covariates included in the model. When the effect of the omitted

covariate was larger, β3 = 0.8, the test statistic had approximately 80% power even

for m = 50 clusters.

2.3.1.1 Impact of choice of the cell partition on power

As is true for Pearson’s chi-square test, the choice of cell partition plays an

important role for our goodness-of-fit test. We now illustrate the impact of the cell

partition on the power of our test.

We let ρ13 = .5 and ρ23 = 0 and set β = (β0, β1, β2, β3) = (1, 1, 1, .15), σa = 1

and σϵ = .5, for different choices of cell partitions. Again, we generate y from

a model whose proper specification includes x1, x2 and x3 but then analyze the
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Table 2.4: Impact of cell partition on empirical power for Scenario I (LMM).
m = 500, β3 = .15, σa = 1, σϵ = .5, K = 1000.

Parti ρ13 = 0, ρ23 = 0 ρ13 = 0.2, ρ23 = 0.3 ρ13 = 0.4, ρ23 = 0.5

L = 12 L = 42 L = 12 L = 42 L = 12 L = 42

x1 0.059 0.044 0.055 0.055 0.058 0.051
x2 0.052 0.044 0.044 0.046 0.041 0.053
x3 0.991 0.871 0.907 0.708 0.539 0.292

x1, x2 0.041 0.044 0.053 0.047 0.060 0.053
x1, x3 0.962 0.860 0.922 0.737 0.566 0.360
x2, x3 0.961 0.871 0.889 0.723 0.569 0.368

results of omitting x3 in the subsequent model fitting. We choose six different cell

partitions: partitions based on only x1, only x2, only x3, both x1 and x2, both x1

and x3, or both x2 and x3. For all cell partitions, we use empirical quartiles based

on data to divide the covariates. The number of replications in our simulation study

is K = 1000. The results in Table 2.4 show that a lack of fit is detecTable by our

test statistic only when the cell partition involves the omitted covariate, x3. Similar

results are observed when x3 is independent of x1 and x2.

2.3.1.2 Robustness of T with respect to error distribution

In Table 2.3 we also assessed the impact of misspecification of the error dis-

tribution on the power of the test statistic. Using the same setting as in the power

calculations given above, we generated ϵ from a t distribution with k = 3 or 5 de-

gree of freedom instead of from a N(0, σ2
ϵ ). We rescaled the variance of ϵ so that

V ar(σϵtk
√

k − 2/
√

k) = σ2
ϵ to ensure that the noise had the same variance as in the

normal case. The power of the test under a t-distribution is virtually the same as

the power of the test with a normal error distribution. For example, for m = 50
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the power was 0.83 for the normal error distribution and for t-distributions with 3

and 5 degrees of freedom (Table 2.3). Thus, by comparing the last three rows of

Table 2.3, we can see that our test is very robust with respect to symmetric error

distributions.

2.3.1.3 A summary parameter related to the power

The power of a statistical test is the probability that the test will reject the

null hypothesis when the null hypothesis is not true. The rejection ratio in Table

1, which is defined as total number of iterations with p value < .05 over the total

number of simulation iterations, can be considered as an estimator of the power for

our goodness-of-fit test. We performed many simulations to show that the rejection

ratio is closely related to a summary parameter ∆ which is defined as the ratio of

two variances. Suppose the true model is yij = h(x1ij, x2ij, x3ij) + αi + ϵij, where

the true covariates that impact y are x1, x2 and x3. But we fit the data only using

covariates x1 and x2. Then the summary parameter

∆ =
V ar[h(x1, x2, x3) −

∏
x1,x2

h(x1, x2, x3)]

V ar(αi + ϵij)
, (2.26)

where
∏

x1,x2
h(x1, x2, x3) = Ê(h(X1, X2, X3)|X1, X2) is the linear projection.

One simulation scenario we considered is similar to the one we already ex-

plained in Section 2.3.1, where both the random effect αi and the error term ϵij are

generated from the normal distribution. The true model is defined to have covariate
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vector generated from the multivariate normal distribution:


x1

x2

x3

 ∼ N




12

2

24

 ,


1 0 .5

0 .5 .8

.5 .8 2



 .

Under this joint distribution, one verifies that x3|x1, x2 ∼ N (.5x1+1.6x2+14.8, 0.47).

But we fit the data only using x1 and x2, omitting x3. Then the summary parameter

(2.26) is simplified to be β2
3V ar(x3|x1, x2)/V ar(ϵ) = .47β2

3/(σ
2
a + σ2

ϵ ). With the

covariate set x fixed for each iteration, we change the magnitude of the coefficient

vector β and the two variance components σ2
a and σ2

ϵ . For each set of parameters

{β, σ2
a, σ

2
ϵ}, there is a corresponding summary parameter ∆, which we plotted on

the x-axis. We then ran simulations with 1000 iterations to get the corresponding

rejection ratio, which we plotted on the y-axis. The simulation results in Figure 2.5

indicate that the empirical power of the test increases as the summary parameter

∆ increases and this is true for three different cell partitions. As we can see from

the graph, there is a nearly linear relationship between the estimated power and the

defined summary parameter ∆ and we can get the slope from the Taylor expansion

of the theoretical power around 0.

We then compared what we found here with what we saw by using the analytic

power formula for the special case when (x1, x2, x3) comes from a multivariate normal

(2.25), the simulation scenario we carefully studied in Section 2.3.1. In this case,

the numerator of ∆ in (2.26) becomes V ar(x3|x1, x2) = 1 − (ρ2
13 + ρ2

23). Thus,
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Figure 2.5: Empirical power vs summary parameter ∆

∆ = (1 − (ρ2
13 + ρ2

23))/(σ
2
a + σ2

ϵ ). This agrees with what we found from Figure 2.2,

i.e. the power of test increases as ρ2
13 + ρ2

23 decreases. However, this ∆ doesn’t

include other information we got in Section 2.3.1, such as the way that the power

increases as β3 increase and the relationship of the power to the relative magnitude

of σ2
a and σ2

ϵ , given fixed σ2
a + σ2

ϵ .

2.3.2 Normally distributed interacting covariates (Scenario II)

We again generate y from a linear model that depends on three covariates x1, x2

and x3. However, we now let x1 and x2 arise from a bivariate normal distribution

with mean (1, 0.5), with variances σ2
1 = σ2

2 = 1 and covariance ρ12 = 0, and define

x3 as their product, i.e. x3 = x1x2. Again, we choose m = 500 and generate the

cluster size ni from a uniform distribution on {2, 3, 4, 5}. We let σa = 1, σϵ = .5,
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β = (β0, β1, β2, β3) = (1, 1, 1, .2) and use empirical quantiles of the covariates to

define the cell partition. First, we fit model (2.3) with all covariates (x1,x2,x3)

that influence the response y and check the size of the test. Again, the empirical

sizes were all close to the nominal α level under different choices of cell partitions,

as shown in Table 2.5. We then fit model (2.3) without x3 and study the power of

Table 2.5: Empirical size of the test for Scenario II under different cell partitions with
standard deviations in brackets (LMM).

m = 500, E(N) = 1750, β3 = .2, σa = 1, σϵ = .5, ρ12 = 0,K = 1000.
L α Emp. Size α Emp. Size

8(x1) 0.05 0.048 (0.0068) 0.1 0.102 (0.0096)
3×4(x1, x2) 0.05 0.045 (0.0066) 0.1 0.085 (0.0088)
5×4(x1, x3) 0.05 0.060 (0.0075) 0.1 0.098 (0.0094)
6×7(x2, x3) 0.05 0.051 (0.0070) 0.1 0.100 (0.0095)

the test using different cell partitions. Results in Table 2.6 indicate that the test

has adequate power only when the cell partition is based on x1 and x2, or on the

omitted interaction term x3 = x1x2, but not if the cell partition is based on either

x1 or x2 alone, for ρ12 = 0 and ρ12 = .3.

We next study the impact of the magnitude of the variance components σ2
a and

σ2
ϵ on the theoretical power when the cell partition is based on the omitted covariate

Table 2.6: Impact of cell partition on empirical power for Scenario II (LMM).
m = 500, E(N) = 1750, β3 = .2, σa = 1, σϵ = .5,K = 1000.

Partition ρ12 = 0 ρ12 = 0.3

L = 12 L = 42 L = 12 L = 42

x1 0.049 0.049 0.256 0.182
x2 0.038 0.041 0.273 0.173
x3 0.893 0.771 0.859 0.749

x1, x2 0.991 0.966 0.989 0.975
x1, x3 0.843 0.938 0.885 0.939
x2, x3 0.936 0.912 0.956 0.928

39



0.05 0.10 0.15 0.20

0.
2

0.
4

0.
6

0.
8

1.
0

Analytic Power Plot (Scenario II)

x

A
na

ly
tic

 P
ow

er

Case 1
Case 2
Case 3

Figure 2.6: The impact of (σ2
a, σ

2
ϵ ) on analytical power, ρ12 = 0, x-axis is

β3/(σ
2
a + σ2

ϵ ). Case 1: σ2
a = .25, σ2

ϵ = 1; Case 2: σ2
a = .625, σ2

ϵ = .625; Case 3:
σ2
a = 1, σ2

ϵ = .25.

x3 with L = 8 cells using fixed cell boundaries. For ρ12 = 0, Figure 2.6 plots the

theoretical power against β3/(σ
2
a +σ2

ϵ ) for three choice of (σ2
a, σ

2
ϵ ) and varying β3 on

the x-axis. Our conclusions are consistent with what we saw in Section 2.3.1. For

any fixed pair of (σ2
a, σ

2
ϵ ), the power of the test increases as a function of β3, the

coefficient of the omitted covariate x3. For any fixed β3, the power increases when

the random effect σ2
a decreases compared to the error term σ2

ϵ .

2.4 Data examples

2.4.1 Birth weight data

These data were obtained from the book [19] and consist of fetal birth weights

of 432 boys from 108 families of size 4, and BMI of the mother, age of the mother,
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Figure 2.7: Normality assumption checking for birth weight data.

birth order, gestation time and a family indicator. Lee et al. [19] analyzed this data

set using a linear mixed model with only an intercept term. To use all covariates,

we excluded individuals who had missing covariates and modified possible recording

errors on the covariate order. The complete data set consists of 104 families with

370 individuals. Family sizes differed for different families, but all family sizes were

four or less. We repeated the graphical analysis in Chapter 5 of [19] on the modified

data and got similar results. There is a strong familial effect of birth weight and

the within-family variation is normally distributed. We conclude that the weight

data satisfy assumptions for (2.3). We tried various covariate combinations for the

fixed part in (2.3), including interactions. Based on the significance of the covariates

and BIC (or AIC) criteria, the best model is the LMM with 3 covariates: intercept,

mom.age and gestation. Residual plots further confirm the normality assumptions

in our LMM. We then apply the goodness of fit test to our model. We use the cell

partition based on the covariate order, which is not in our final model, and obtain
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Figure 2.8: Normality checking for residuals of final model for birth weight data

the following number of observations in the cells: 61, 74, 79, 80, 31, 45. The value

of the test statistic is T = 2.44, which corresponds to a p value of .87 for a chi-

square distribution with 6 degrees of freedom. However, when we tested the fit of

the intercept only model in [19] using the same cell partition, we also found that

it had adequate fit to the data with T = 4.97. Thus both of these two models are

judged adequate by our test.

2.4.2 Alcohol data

These data come from a Women’s Alcohol Study [8], where 53 healthy, non-

smoking postmenopausal women completed a random-order, three-period (8-week

treatment for each period) study with a crossover design in which each woman re-

ceived 0, 15 or 30 g of alcohol per day. Participants were not told the amount

of alcohol they were consuming and each controlled feeding period was preceded

by a two to five week washout period during which time the participant consumed

no alcohol. During the controlled feeding period, all food and beverages for the

42



−2 −1 0 1 2

4.
0

4.
5

5.
0

5.
5

6.
0

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

QQ plot for log(TG)

Figure 2.9: Normality checking for log(TG) for Alcohol data.

participants were supplied by the study investigators.

For each woman in the data set, three blood measurements for the three pe-

riods are recorded, corresponding to the three randomized alcohol intake periods.

We assessed the association of Plasma Triglycerides level (TG) with alcohol in-

take. Other relevant covariates were race, age, height, weight and BMI (Body Mass

Index). A log transformation of TG met the normality assumption by a formal

goodness of fit check on the response variable. We then tried all possible covariate

combinations for the fixed-effect terms of (2.3), including interactions. Assessed

by the significance of the covariates and BIC (or AIC) criteria, our final model in-

cluded an intercept, age, BMI and alcohol. The residual plots further confirmed the

normality assumptions in (2.3). To apply our goodness of fit test on this model,

we use the cell partition based on the covariates height and weight, which are not

in our final model, and obtain the following number of observations in the cells:

19, 19, 13, 17, 15, 11, 13, 15, 14, 22. The value of the test statistic is T = 8.98, which

corresponds to a p values of .53 for a chi-square distribution with 10 degrees of
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Figure 2.10: Normality checking for residuals of the final model for Alcohol data

freedom. Thus our final model fitted well and we concluded, not surprisingly, that

alcohol intake affects Plasma Triglycerides levels.

2.4.3 Factors impacting thyroglobulin levels in an iodine deficient

population

On April 26, 1986, an accident at the Chernobyl power plant located in north-

western Ukraine, close to the border with Belarus, released large amounts of radioac-

tive materials including iodine-131 (I-131) into the atmosphere from the destroyed

reactor. Deposition of these radioactive materials resulted in serious contamination

of the territory and exposed its residents. Because the thyroid gland concentrates

iodine, the doses to the thyroid due to consumption of I-131 contaminated milk were

much greater than those to any other organs. The National Cancer Institute, NIH

is involved in a cohort study in Belarusian individuals exposed to the accident [34].

While the main objective of the study is to evaluate the relationship between I-131
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doses and risk of thyroid cancer, investigators were also interested in describing the

levels of iodine in this population, as historical data suggest that the study area

could be mildly iodine deficient and iodine deficiency impacts absorption of I-131.

We therefore evaluated the relationship between levels of serum thyroglobulin

(TG), a sensitive marker of iodine deficiency, and patients’ characteristics including

age, sex, thyroid volume and other demographic and clinical variables that might

reflect or influence the intake of dietary iodine and were identified in a initial screen

of variables.

We restrict our example to men from four of the five study regions, who had

complete information on the covariates. After excluding observations with TG > 80,

log(TG) was normally distributed. The final dataset was comprised of m = 933

individuals, of whom 404 had a single TG measurement, 484 had two, 42 three

and 3 four TG measurements during follow-up, resulting in a total of N = 1510

observations.

An initial screening of the variables, one at a time by simple linear regres-

sion, indicated that age at time of exam, age at time of the accident, rural or

urban residence, smoking status, urinary iodine levels, serum thyroid-stimulating

hormone (TSH) levels, serum anti-thyroglobulin antibody (ATG) levels, thyroid

volume, presence of thyroid nodules, presence of goiter and presence of any thyroid

abnormality may impact TG levels.

We fit various of the LMM (2.3) model, including combinations of those co-

variates and their interaction terms using PROC GLIMMIX (SAS 9.2). A model

(Model 1) that included all the variables mentioned above, with the exception of
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presence of nodules, and in addition included an interaction term of ATG levels

with presence of any thyroid abnormality that was marginally significant (Wald p-

value p = 0.054), had a log-likelihood value of 1625.2. The random effect variance

estimate for Model 1 was σ2
a = 0.29 and the error variance estimate was σ2

ϵ = 0.25.

A second model (Model 2) that had no interaction term, but included presence of

nodules, resulted in a log-likelihood of 1621.3. The variance component estimates

were similar to model 1, σ2
a = 0.29 and σ2

ϵ = 0.27. However, as models 1 and 2 are

not nested, we could not compare them using a likelihood ratio test.

To assess the fit of Models 1 and 2, we formed the cell partition for the test

based on L = 8 cells defined by quantiles of ATG and presence of any thyroid

abnormality. Based on a chi-squared test statistic with eight degrees of freedom,

there was no indication of lack of fit for either model, with corresponding p-values

p = 0.32 and p = 0.40 for Models 1 and 2 respectively. We repeated the calculation

of the test statistic for a second cell partition based on presence of nodules and

presence of goiter, resulting in L = 4 cells, with corresponding p-values p = 0.19

and p = 0.70 for Models 1 and 2 respectively. These results suggested that both

models provided an adequate fit to the data.

When we checked a third model, that included neither presence of nodules

not the interaction term (log-likelihood 1621.5), there was also no evidence of lack

of fit based on eight (p = 0.39) or 4 degrees of freedom chi square tests (p = .21).

However, with a model that included all the covariates, the interaction term of ATG

levels with presence of any thyroid abnormality but excluded presence of goiter, we

did detect a lack of fit in the cell partition defined by presence of nodules and goiter,
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with p = 0.006, while there was no evidence of lack of fit based on the L = 8 cell

partition (p = 0.28). This highlights the importance of presence of any thyroid

abnormality in the model. However, omitting the interaction term of this variable

with ATG levels does not affect fit to the data.

2.5 Discussion

Schoenfeld (1980) presented a class of chi-squared goodness of fit tests for the

proportional hazards regression model. We adapted this idea and proposed a class

of goodness of fit tests for testing the statistical adequacy of a linear mixed model.

We described the asymptotic properties of the test when parameters were estimated

and developed its theoretical power under the local, or contiguous, alternative. We

assessed factors that impact the power, the impact of choice of cell partitions on

the test as well as the robustness of the test with respect to symmetric error distri-

bution in simulations. We found that when a specific covariate that is associated

with outcome is omitted, especially interaction terms or a covariate correlated with

covariates already in the model, cell partitions based on the omitted covariate result

in adequate power of the test. However, if the cell partition is based only on covari-

ates already in the model, this test has no power to detect any lack of model fit.

We also found that the estimated theoretical power calculated using Le Cam’s third

lemma was reliable at least when the number of clusters m is above 50. However,

when m is very small, it may be advisable to rely on the empirical power computed

through simulations. Our test was also very robust to violations of the normality
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assumption of the error distribution.

This goodness of fit test can be used to test the statistical adequacy of the

finally selected LMM in real application. The test statistic is very easy to implement,

as all that is needed in order to apply the test are the final model parameter estimates

and their variance covariance matrix, which are standard outputs from any statistical

software. As a note of caution, in applying the test one needs to check the rank of

the estimated variance covariance matrix Σ̂ in (2.13) to ensure the correct degrees

of freedom for the test statistic.

In Chapter 3, we extend this test statistic to assess the fit of generalized linear

mixed models.

2.6 Technical details for Chapter 2

2.6.1 Proof of Theorem 2.3

Proof: Let J be the limit of the sample information matrix per observation,

J = lim
N→∞

1

N

 − ∂2l
∂βi∂βj

− ∂2l
∂βi∂ψj

− ∂2l
∂βi∂ψj

− ∂2l
∂ψi∂ψj

 =

 Jββ Jβψ

JTβψ Jψψ

 . (2.27)

The MLE θ̂ in model (2.3) is consistent as follows from results by Miller (1977). By

Taylor series expansion of the score function S(θ̂), we obtain

√
N(θ̂ − θ0) ≈

(
− 1

N

∂S(θ0)

∂θ

)−1
1√
N

S(θ0) ≈ J−1 1√
N

S(θ0). (2.28)

48



Under model (2.3), Jβψ = 0 in (2.27) (Wand 2007). The Fisher information is

therefore a block diagonal matrix and J−1 =

 J−1
ββ 0

0 J−1
ψψ

. As Y−Xβ ∼ N(0,V),

the score function for β, which is the first p components of S(θ), is

Sβ(θ) = (∂/∂β)l(θ) = XTV−1(Y − Xβ).

By extracting the first p components of (2.28), we have

√
N(β̂ − β0) ≈ J−1

ββ

1√
N

Sβ(θ0) = J−1
ββX

TV−1(Y − Xβ0)/
√

N.

Thus,

√
N

 (f − e(β0))/N

β̂ − β0

 ≈



N−1/2
[
I{x11∈E1} · · · I{xmnm∈E1}

]
...

N−1/2
[
I{x11∈EL} · · · I{xmnm∈EL}

]
N−1/2 J−1

ββX
TV−1


(Y − Xβ0)

= D(L+p)×N(Y − Xβ0), (2.29)

which is a linear combination of Gaussian random variables.

Therefore, as N → ∞,

√
N

 (f − e(β0))/N

β̂ − β0

 D→ N(0,DVDT ),
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where

DVDT =

 H ΛJ−1
ββ

J−1
ββΛ

T J−1
ββ

 ,

with

Λ =


ΛT

1

...

ΛT
L


L×p

= lim
N→∞


N−1

∑m
i=1

∑ni

j=1 I{xij∈E1}x
T
ij

...

N−1
∑m

i=1

∑ni

j=1 I{xij∈EL}x
T
ij

 , (2.30)

and H is a symmetric matrix of dimension L × L. For l = 1, · · · , L − 1; k =

l + 1, · · · , L, the off-diagonal elements of H are

Hlk = σ2
a lim
N→∞

1

N

m∑
i=1

[(
ni∑
j=1

I{xij∈El}

)(
ni∑
j=1

I{xij∈Ek}

)]
(2.31)

Similarly, for l = 1, · · · , L, the diagonal elements of H are

Hll = σ2
ϵ lim
N→∞

1

N

m∑
i=1

ni∑
j=1

I{xij∈El} + σ2
a lim
N→∞

1

N

m∑
i=1

(
ni∑
j=1

I{xij∈El}

)2

. (2.32)

Remark 2.13 If xij are random variables, under Assumption 2.2,
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Λl = E{x1,n1}(
∑n1

j=1 I{x1j∈El}x1j)/E(n1), and

Hlk = σ2
a · lim

m→∞

1

(
∑m

i=1 ni) /m
· 1

m

m∑
i=1

[(
ni∑
s=1

I{xis∈El}

)(
ni∑
t=1

I{xit∈Ek}

)]

=
σ2
a

E(n1)
· E(x1,n1)

[(
n1∑
s=1

I{x1s∈El}

)(
n1∑
t=1

I{x1t∈Ek}

)]

=
σ2
a

E(n1)
· En1

{
Ex1

[(
n1∑
s=1

I{x1s∈El}

)(
n1∑
t=1

I{x1t∈Ek}

)∣∣∣n1

]}
.

The expressions of Hlk and Hll depend on the joint distribution of xi and ni. Under

the more restrictive assumption that xij, i = 1, . . . , m; j = 1, . . . , ni are i.i.d. and

are independent of ni, then Hlk and Hll can be further simplified as

Hlk =
σ2
a

E(n1)
· En1

{
n1Ex11

(
I{x11∈El}I{x11∈Ek}

)
+ (n2

1 − n1)E
(
I{x11∈El}

)
E
(
I{x11∈Ek}

)}
= σ2

a ·
E(n2

1 − n1)

E(n1)
P
(
I{x11∈El}

)
P
(
I{x11∈Ek}

)
and

Hll = (σ2
ϵ + σ2

a)E
(
I{x11∈El}

)
+ σ2

a

E(n2
1 − n1)

E(n1)

[
P (I{x11∈El})

]2
.

2
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2.6.2 Proof of Corollary 2.7

Proof: Under the asymptotic normality of
√

N(β̂−β0), with A ≈ B denot-

ing A − B
P→ 0,

1√
N

(
f − e(β̂)

)
=

1√
N

(f − e(β0)) +
1√
N

(
e(β0) − e(β̂)

)
≈ 1√

N
(f − e(β0)) −

1√
N
∇e(β0)

(
β̂ − β0

)
≈ 1√

N
(f − e(β0)) − Λ

√
N
(
β̂ − β0

)

= (I | − Λ)
√

N

 (f − e(β0))/N

β̂ − β0

 .

Since N−1/2
(
f − e(β̂)

)
is a linear combination of components in

√
N

 (f − e(β0))/N

β̂ − β0

, thus

1√
N

(
f − e(β̂)

)
D→ N(0,Σ), (2.33)

with Σ = H − ΛJ−1
ββΛ

T .

2.6.3 Proof of Theorem 2.10

Since the 2-level LMM model (2.3) is a special case of the LMM model (2.2)

under normality assumptions for both random effects and the error term, the proof

of Theorem 2.10 for model (2.2) is quite similar to the proof of Theorem 2.3 for

model (2.3) as stated in Section 2.6.1. Two results that we need to use for the proof
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of Theorem 2.10 are, again, the MLE consistency (Miller, 1977) and the fact that

the off-diagonal matrix Jβψ of J, the limit of the sample information matrix per

observation, is 0 (Wand 2007, equation (3)). Key steps of the proof are first to do a

Taylor expansion to the MLE θ̂, and then to use the fact that the response vector

Y is normally distributed to show the asymptotic normality of the observed minus

estimated expected vector. In this case, H = limN→∞ FVFT is a symmetric L × L

matrix, with

F =
1√
N


I{x1∈E1} · · · I{xN∈E1}

...

I{x1∈EL} · · · I{xN∈EL}

 . (2.34)

and

Λ =


ΛT

1

...

ΛT
L


L×p

= lim
N→∞


1
N

∑N
k=1 I{xk∈E1}x

T
k

...

1
N

∑N
k=1 I{xk∈EL}x

T
k

 . (2.35)

2.6.4 Proof of Theorem 2.12

We use the multivariate Central Limit Theorem to prove Theorem 2.12.

Proof: Let the ni × p covariate matrix for the i-th cluster be

xi =


1 xi1,1 · · · xi1,p−1

...
...

...

1 xini,1 · · · xini,p−1

 ,
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then with Vi given in (2.4),

√
N(β̃ − β0) =

√
N(XT Ṽ

−1
X)−1XT Ṽ

−1
(Y − Xβ0)

≈
(

XTV−1X

N

)−1
1√
N

m∑
i=1

xTi V
−1
i (yi − xiβ0).

Let zil =
∑ni

j=1 I{xij∈El}(yij − E(yij)) =
∑ni

j=1 I{xij∈El}(yij − xijβ0),

i = 1, . . . , m; l = 1, . . . , L. Then

f − e(β0) =


∑m

i=1 zi1

...∑m
i=1 ziL

 ,

and our test statistic is based on a quadratic form in

(f − e(β̃))/
√

N

= (f − e(β0))/
√

N +
(
e(β0) − e(β̃)

)
/
√

N

≈ (f − e(β0))/
√

N −∇e(β0)(β̃ − β0)/
√

N

≈ 1√
N


∑m

i=1 zi1

...∑m
i=1 ziL

− 1√
N

▽e(β0)

N

(
XTV−1X

N

)−1 m∑
i=1

xTi V
−1
i (yi − xiβ0)

=
m∑
i=1

1√
N




zi1

...

ziL

− ▽e(β0)

N

(
XTV−1X

N

)−1

xTi V
−1
i (yi − xiβ0)

 .
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Let Λ̃ = N−1∇e(β0), J̃ββ = N−1XTV−1X. Then under Assumption 2.4, J̃ββ
P→

Jββ, and under Assumption 2.2, Λ̃
P→ Λ (Remark 2.1), with Λ given in (2.30).

We next show that (f−e(β̃))/
√

N has a limiting Gaussian distribution by using

the multivariate Central Limit Theorem. For any constant vector C = (C1, . . . , CL),

since the inverse of Vi given in equation (2.4) is

Vi = Ini
/σ2

ϵ − σ2
a/(σ

2
ϵ (σ

2
ϵ + niσ

2
a))1

⊗
2,

we have

CTN−1/2
(
f − e(β̃)

)
≈

m∑
i=1

1√
N

[
L∑
l=1

Clzil − CT Λ̃Ĩ
−1

ββx
T
i V

−1
i (yi − xiβ0)

]

=
m∑
i=1

1√
N

[ L∑
l=1

Cl

ni∑
j=1

I{xij∈El}(yij − xijβ0) −

CT Λ̃Ĩ
−1

ββx
T
i

(
1

σ2
ϵ

Ini
− σ2

a

σ2
ϵ (σ

2
ϵ + niσ2

a)
1
⊗

2

)
(yi − xiβ0)

]
=

m∑
i=1

1√
N

{ ni∑
j=1

[
L∑
l=1

ClI{xij∈El}

]
(αi + ϵij) −

CT Λ̃Ĩ
−1

ββ

ni∑
j=1

[
1

σ2
ϵ

xij −
niσ

2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
x̄i.

]
(αi + ϵij)

}
=

m∑
i=1

{
1√
N

ni∑
j=1

[
L∑
l=1

ClI{xij∈El} − CT Λ̃Ĩ
−1

ββ

(
1

σ2
ϵ

xij −
niσ

2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
x̄i.

)]}
αi

+
m∑
i=1

ni∑
j=1

1√
N

[
L∑
l=1

ClI{xij∈El} − CT Λ̃Ĩ
−1

ββ

(
1

σ2
ϵ

xij −
niσ

2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
x̄i.

)]
ϵij

=
m∑
i=1

ci,ni
αi +

N∑
s=1

wsϵs,
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where the double index (i, j) is placed in one-to-one correspondence with the single

index s. Because {αi}mi=1 are i.i.d and {ϵs}Ns=1 are i.i.d, we can show both of the above

sums have limiting normal distributions as m → ∞, by checking the conditions (a)

and (b) of Lemma 5.1 in the Appendix. First we bound

|ci,ni
|

=
1√
N

∣∣∣∣∣
ni∑
j=1

{
L∑
l=1

ClI[xij∈El] − CT Λ̃Ĩ
−1

ββ

(
1

σ2
ϵ

xij −
niσ

2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
x̄i.

)}∣∣∣∣∣
=

1√
N

∣∣∣∣∣
ni∑
j=1

L∑
l=1

ClI[xij∈El] − CT Λ̃Ĩ
−1

ββ

(
1

σ2
ϵ

nix̄i. −
niσ

2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
nix̄i.

)∣∣∣∣∣
=

1√∑m
i=1 ni/m

1√
m

∣∣∣∣∣
L∑
l=1

Cl

ni∑
j=1

I{xij∈El} − CT Λ̃Ĩ
−1

ββ

niσ
2
a

σ2
ϵ + niσ2

a

1

σ2
a

x̄i.

∣∣∣∣∣
≤ 1√∑m

i=1 ni/m

1√
m

(
ni

∣∣∣∣∣
L∑
l=1

Cl

∣∣∣∣∣+
∣∣∣∣CT Λ̃Ĩ

−1

ββ

1

σ2
a

x̄i.

∣∣∣∣
)

→ 1√
E(n)

· 0 ∀i = 1, . . . , m

Next,

m∑
i=1

c2
i,ni

=
1∑m

i=1 ni/m

1

m

m∑
i=1

{
L∑
l=1

Cl

ni∑
j=1

I{xij∈El} − CT Λ̃Ĩ
−1

ββ

niσ
2
a

σ2
ϵ + niσ2

a

1

σ2
a

x̄i.

}2

≤ 1∑m
i=1 ni/m

1

m

m∑
i=1

2


(

L∑
l=1

Cl

)2

n2
i +

(
1

σ2
a

)2

CT Λ̃Ĩ
−1

ββ x̄i.x̄
T
i. Ĩ

−1

ββ Λ̃
T
C


P→ 2

E(n)


(

L∑
l=1

Cl

)2

En2 +
1

σ4
a

CT Λ̃Ĩ
−1

ββ

[
lim
m→∞

1

m

m∑
i=1

x̄i.x̄
T
i.

]
Ĩ
−1

ββ Λ̃
T
C


= a finite constant. (2.36)
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Thus condition (a) in Lemma 5.1 holds, i.e.

max
1≤i≤m

|ci,ni
| P→ 0, as m → ∞.

Since (xi, ni) are assumed i.i.d., and based on (2.36), the c2
i,ni

terms can be

written as g(xi, ni)/m after removing the factor m/(
∑m

i=1 ni). This function g is the

same across i, with E(g(xi, ni)) < ∞. Thus the Law of Large Numbers Theorem

holds for (xi, ni), condition (b) in Lemma 5.1 holds, i.e.

m∑
i=1

c2
i,ni

P→ a finite constant.

Then
∑m

i=1 ci,ni
αi is asymptotically normally distributed since both conditions (a)

and (b) in Lemma 5.1 are satisfied.

We do the same checking for
∑N

s=1 wsϵs.

|ws| =
1√
N

∣∣∣∣∣
L∑
l=1

ClI{xij∈El} − C
′
Λ̃Ĩ

−1

ββ

(
1

σ2
ϵ

xij −
niσ

2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
x̄i.

)∣∣∣∣∣
≤ 1√

N

[∣∣∣∣∣
L∑
l=1

ClI{xij∈El}

∣∣∣∣∣+
∣∣∣∣C′

Λ̃Ĩ
−1

ββ

1

σ2
ϵ

xij

∣∣∣∣+ ∣∣∣∣C′
Λ̃Ĩ

−1

ββ

niσ
2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
x̄i.

∣∣∣∣
]

≤ 1√
N

[
L∑
l=1

|Cl| +
1

σ2
ϵ

∣∣∣C′
Λ̃Ĩ

−1

ββxij

∣∣∣+ ∣∣∣C′
Λ̃Ĩ

−1

ββ x̄i.

∣∣∣]
P→ 0 ∀s = 1, . . . , N. (2.37)
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Based on (2.37) and the fact that (x + y + z)2 ≤ 3(x2 + y2 + z2), we have

N∑
s=1

w2
s =

1

N

N∑
s=1

[
L∑
l=1

ClI{xij∈El} − C
′
Λ̃J̃

−1

ββ

(
1

σ2
ϵ

xij −
niσ

2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
x̄i.

)]2

≤ 1

N

N∑
s=1

[
L∑
l=1

|Cl| +
1

σ2
ϵ

∣∣∣C′
Λ̃J̃

−1

ββxij

∣∣∣+ 1

σ2
ϵ

∣∣∣C′
Λ̃J̃

−1

ββ x̄i.

∣∣∣]2

≤ 1

N

N∑
s=1

3

( L∑
l=1

|Cl|

)2

+

(
1

σ2
ϵ

)2 ∣∣∣C′
Λ̃J̃

−1

ββxij

∣∣∣2 +

(
1

σ2
ϵ

)2 ∣∣∣C′
Λ̃J̃

−1

ββ x̄i.

∣∣∣2


P→ 3

(
L∑
l=1

|Cl|

)2

+ 3

(
1

σ2
a

)2
∣∣∣∣∣C′

Λ̃J̃
−1

ββ

(
lim
N→∞

1

N

m∑
i=1

ni∑
j=1

xijx
′

ij

)
J̃
−1

ββ Λ̃
′

C

∣∣∣∣∣
+ 3

(
1

σ2
a

)2
∣∣∣∣∣C′

Λ̃J̃
−1

ββ

(
lim
N→∞

1

N

m∑
i=1

nix̄i.x̄
′

i.

)
J̃
−1

ββΛ̃
′

C

∣∣∣∣∣
= a finite constant.

Therefore, we have

max
1≤s≤N

|ws|
P→ 0, as N → ∞.

With the same argument that we did on
∑m

i=1 ci,ni
αi, we get the asymptotic nor-

mality of
∑N

s=1 wsϵs by checking conditions (a) and (b) of Lemma 5.1.

We have shown above that both
∑m

i=1 ci,ni
αi and

∑N
s=1 wsϵs are asymptotically

normal. Because αi and ϵij are independent, the sums
∑m

i=1 ci,ni
αi and

∑N
s=1 wsϵs

are conditionally independent given (xi, ni). These two sums are jointly normal and

asymptotically uncorrelated. Therefore they are asymptotically independent. Thus

the limiting distribution of C
′
N−1/2(f − e(β̃)), which is asymptotically the sum of

these two quantities, is normal. Moreover, for any constant vector C, its limiting
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variance is of the form CTΣC with the same fixed Σ,

Σ = lim
N→∞

1

N

m∑
i=1

V ar


∑ni

j=1 I{xij∈E1}(yij − xijβ0)

...∑ni

j=1 I{xij∈EL}(yij − xijβ0)

−

lim
N→∞

[
▽e(β0)

N

] [
XTV−1X

N

]−1 [▽e(β0)

N

]T
= H − ΛJ−1

ββΛ
T .

Therefore, N−1/2(f − e(β̃))
D→ N(0,Σ), and (f − e(β̃))TΣ−1(f − e(β̃))/N

D→ χ2
k,

where k = rank(Σ). We replace Σ with Σ̂, the reconstructed matrix by applying

Singular Value Decomposition on a consistent estimator of Σ. One such consistent

estimator of Σ is to replace all parameters in Σ with their MLEs. Based on Lemma

5.3, rank (Σ̂) = rank (Σ) for large N . Thus

(f − e(β̃))T Σ̂
−1

(f − e(β̃))/N
D→ χ2

k.

2.6.5 Derivation of the power of T

We derive the power of the test for multi level LMM (2.1) under contiguous

alternatives, based on Le Cam’s third lemma (Van der Vaart, 2000), as stated below.

Lemma 2.14 (Le Cam’s third lemma) Let Pm and Qm be two measures on a

measurable space, corresponding to a null distribution under investigation, and an
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alternative hypothesis respectively. If

(Wm, log
dQm

dPm
)
Pm→NL+1


 µ

−σ2
ϵ/2

 ,

 Σ τ

τT σ2
ϵ


 , (2.38)

then Wm
Qm→ NL(µ + τ, Σ). 2

Let

H0 : θN = θ0,

H1 : θN = θ0 +
a√
N

,

where a is a constant vector, a/
√

N → 0, as N → ∞. Thus θN → θ0, as N → ∞.

By Taylor expansion, under Theorem 5.21 in Van der Vaart (2000),

log
dQN

dPN
= log

Likelihood(θN ;Y,X)

Likelihood(θ0;Y,X)

△
= log

L(θN)

L(θ0)

≈ (∇ log(L(θ0)))
T a√

N
+

1

2

aT√
N

(
∇
⊗

2 log(L(θ0))
) a√

N

≈ (SN(θ0))
T a√

N
− 1

2
aTJ(θ0)a,
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where

SN(θ0) = ∇ log(L(θ0))

=


XTV−1(Y − Xβ0)

−1
2
tr(V−1 ∂V

∂σ2
a
) + 1

2
(Y − Xβ0)

TV−1 ∂V
∂σ2

a
V−1(Y − Xβ0)

−1
2
tr(V−1) + 1

2
(Y − Xβ0)

TV−1V−1(Y − Xβ0)


(2.39)

is the score function for all observations (Chapter 6, McCulloch and Searle, 2001).

Under Assumptions 2.4 and 2.5, we get the existence of

J(θ0) = lim
N→∞

−∇
⊗

2 log(L(θ0))/N,

the limit of the sample Fisher information per observation and

lim
N→∞

V ar(SN(θ0)/
√

N) = J(θ0).

Thus

log
dQN

dPN

PN→ N(−1

2
aTJ(θ0)a, aTJ(θ0)a).

For the special case when we fit a reduced model to the data, using X∗
N×p∗ instead

of XN×p with p∗ < p, we only estimate the coefficient β∗ corresponding to X∗. The

e(·) function in (2.7)

el(β) =
m∑
i=1

ni∑
j=1

I{xij∈El}E(yij) =
m∑
i=1

ni∑
j=1

I{xij∈El}x
T
ijβ
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has Rp as its domain. Let function e∗(·) have the same meaning of function e(·),

but with Rp∗ as its domain.

e∗l (β
∗) =

m∑
i=1

ni∑
j=1

I{xij∈El}E
∗(yij) =

m∑
i=1

ni∑
j=1

I{xij∈El}(x
∗
ij)

Tβ∗.

Let WN = (f− e∗(β̂
∗
))/

√
N be the first vector component of (2.38). Under the null

hypothesis PN , WN is asymptotically normal, WN→N(0,Σ∗), based on Corollary

2.7.

Next, we compute the variance-covariance matrix Σ in (2.38), which is equiv-

alent to the variance-covariance matrix of aTSN(θ0)/
√

N and (f − e∗(β̂
∗
))/

√
N .

1√
N

(f − e∗(β̂
∗
)) ≈ 1√

N
(f − e∗(β∗

0)) −
1√
N
∇e∗(β∗

0)(β̂
∗ − β∗

0)

≈ 1√
N

(f − e∗(β∗
0)) − Λ∗

√
N(β̂∗ − β∗

0)

≈ 1√
N

(f − e∗(β∗
0)) − Λ∗(J∗

ββ)
−1(X∗)TV−1(Y − X∗β∗

0)/
√

N

=
1√
N

(A − B) · (Y − X∗β∗
0),

where J∗
ββ denotes the information matrix when the second derivative for the log-

likelihood function is taken with respect to β∗, and

A =


I{x11∈E1} · · · I{xmnm∈E1}

...

I{x11∈EL} · · · I{xmnm∈EL}

 , B = Λ∗(J∗
ββ)

−1(X∗)TV−1.

62



Thus,

Cov(
f − e∗(β̂

∗
)√

N
, log

dQn

dPn
)

= Cov(
f − e∗(β̂

∗
)√

N
,
aTSN(θ0)√

N
)

=
1

N
Cov(f − e∗(β̂

∗
), aT1 Sβ + a2Sσ2

a
+ a3Sσ2

ϵ
). (2.40)

Under equation (2.39), since both tr(V−1(∂V/∂σ2
a)) and tr(V−1) are constants, we

have

Cov
(
f − e∗(β̂

∗
),Sσ2

a

)
= Cov

(
(A − B) × (Y − X∗β∗

0),
1

2
(Y − Xβ0)

TV−1 ∂V

∂σ2
a

V−1(Y − Xβ0)

)
= (A − B) Cov

(
Y − X∗β∗

0,
1

2
(Y − X∗β∗

0)
TV−1 ∂V

∂σ2
a

V−1(Y − X∗β∗
0)

)
= 0,

because Cov(Y − X∗β∗
0,

1
2
(Y − X∗β∗

0)
TV−1 ∂V

∂σ2
a
V−1(Y − X∗β∗

0)) = 0.

Similarly, we get

Cov(f − e∗(β̂
∗
),Sσ2

ϵ
) = 0.
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Therefore (2.40) becomes

Cov(
f − e∗(β̂

∗
)√

N
, log

dQn

dPn
)

=
1

N
Cov

(
f − e∗(β̂

∗
), aT1 Sβ

)
=

1

N
Cov

(
(A − B) × (Y − X∗β∗

0), a
T
1 XTV−1(Y − X∗β∗

0)
)

=
1

N
(A − B) V ar(Y) V−1Xa1

=
1

N
(A − B)Xa1

=

{
Λ − 1

N
Λ∗(J∗

ββ)
−1
[
(X∗)TV−1X

]}
a1

=
{
Λ − Λ∗ [(X∗)TV−1(X∗)

]−1 [
(X∗)TV−1X

]}
a1. (2.41)

Since both f − e∗(β̂
∗
) and aT1 Sβ can be written as a matrix multiply by the same

normal vector Y − Xβ0 = Y − X∗β∗
0, we easily get the asymptotic joint normality

of f − e∗(β̂
∗
) and aT1 Sβ. Because f − e∗(β̂

∗
) is asymptotically uncorrelated with

both Sσ2
a

and Sσ2
ϵ

as shown in the above context, we also get the asymptotic jointly

normality of f − e∗(β̂
∗
) and aTSN(θ0). 2

We next calculate the limits of the terms in

Cov
(
N−1/2(f − e∗(β̂

∗
)), log(dQn/dPn)

)
in Section 2.6.5.1 and 2.6.5.2.

2.6.5.1 Limit of (X∗)TV−1X and (X∗)TV−1(X∗) in (2.22)

The analytical expressions in (2.41) calculated in this subsection as well as in

Subsection 2.6.5.2 are used to get the theoretical powers in the settings discussed in

the simulation Section 2.3, where xij, i = 1, . . . , m; j = 1, . . . , ni are i.i.d., and xij
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and ni are independently generated.

Note that (X∗)TV−1(X∗) is a submatrix of (X∗)TV−1X. To get the limit of

(X∗)TV−1X/N for the setting in the simulation Section, we assume X = (1, x1, x2, x3)

and X∗ = (1, x1, x2). The ith block matrix (2.4) can then be written as σ2
ϵ Ini

+σ2
a1

⊗2
ni

,

with its inverse matrix being Ini
/σ2

ϵ − σ2
a/(σ

2
ϵ (σ

2
ϵ + niσ

2
a))1

⊗2
ni

. Thus
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1

N
(X∗)TV−1X

=
1

N



...

1 xi1,1 xi1,2

...

1 xini,1 xini,2

...



T

[
diag(σ2

ϵ Ini
+ σ2

a1
⊗2
ni

)
]−1



...

1 xi1,1 xi1,2 xi1,3

...

1 xini,1 xini,2 xini,3

...



=
1

N

m∑
i=1


1 · · · 1

xi1,1 · · · xini,1

xi1,2 · · · xini,2


[

1

σ2
ϵ

Ini
− σ2

a

σ2
ϵ (σ

2
ϵ + niσ2

a)
1⊗2
ni

]

×


1 xi1,1 xi1,2 xi1,3

...

1 xini,1 xini,2 xini,3



=
1

σ2
ϵ

1

N

m∑
i=1


1 · · · 1

xi1,1 · · · xini,1

xi1,2 · · · xini,2




1 xi1,1 xi1,2 xi1,3

...

1 xini,1 xini,2 xini,3

−

1

N

m∑
i=1

σ2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)


1 · · · 1

xi1,1 · · · xini,1

xi1,2 · · · xini,2

1⊗2
ni


1 xi1,1 xi1,2 xi1,3

...

1 xini,1 xini,2 xini,3

 .
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Here the first sum is

1

σ2
ϵ

1

N

m∑
i=1


1 · · · 1

xi1,1 · · · xini,1

xi1,2 · · · xini,2




1 xi1,1 xi1,2 xi1,3

...

1 xini,1 xini,2 xini,3



=
1

σ2
ϵ

1

N

m∑
i=1

ni∑
j=1


1 xij,1 xij,2 xij,3

xij,1 x2
ij,1 xij,1xij,2 xij,1xij,3

xij,2 xij,1xij,2 x2
ij,2 xij,2xij,3

 .

As N → ∞, its limit is

1

σ2
ϵ


1 Ex1 Ex2 Ex3

Ex1 Ex2
1 E(x1x2) E(x1x3)

Ex2 E(x1x2) Ex2
2 E(x2x3)

 .

The second sum is

1

N

m∑
i=1

σ2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)


1 · · · 1

xi1,1 · · · xini,1

xi1,2 · · · xini,2

1⊗2
ni


1 xi1,1 xi1,2 xi1,3

...

1 xini,1 xini,2 xini,3


=

1

N

m∑
i=1

σ2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
×

n2
i ni

∑ni

j=1 xij,1 ni
∑ni

j=1 xij,2 ni
∑ni

j=1 xij,3

ni
∑ni

j=1 xij,1 (
∑ni

j=1 xij,1)
2 d1 d2

ni
∑ni

j=1 xij,2 d1 (
∑ni

j=1 xij,2)
2 d3
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where d1 = (
∑ni

j=1 xij,1)(
∑ni

j=1 xij,2), d2 = (
∑ni

j=1 xij,1)(
∑ni

j=1 xij,3),

d3 = (
∑ni

j=1 xij,2)(
∑ni

j=1 xij,3) and

1

N

m∑
i=1

σ2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
n2
i =

1

(
∑m

i=1 ni)/m
· 1

m

m∑
i=1

σ2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
n2
i

P→ 1

E(n)
· E
[ σ2

a

σ2
ϵ (σ

2
ϵ + nσ2

a)
· n2
]

=
1

E(n)
· σ2

a

σ2
ϵ

· c1,

where c1 = E(n2/(σ2
ϵ + nσ2

a)).

1

N

m∑
i=1

σ2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
ni

ni∑
j=1

xij,1 =
1

(
∑m

i=1 ni/m)
· 1

m

m∑
i=1

niσ
2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)

(
ni∑
j=1

xij,1

)
P→ 1

E(n)
· E(x,n)

[
nσ2

a

σ2
ϵ (σ

2
ϵ + nσ2

a)

(
n∑
j=1

xj,1

)]

=
1

E(n)
· En

{
Ex

[
nσ2

a

σ2
ϵ (σ

2
ϵ + nσ2

a)

(
n∑
j=1

xj,1

)∣∣∣n]}

=
1

E(n)
· En

{
n2σ2

a

σ2
ϵ (σ

2
ϵ + nσ2

a)
· EX1

}
=

EX1

E(n)
· σ2

a

σ2
ϵ

· c1.
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1

N

m∑
i=1

σ2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)

(
ni∑
j=1

xij,1

)(
ni∑
j=1

xij,2

)

=
1

(
∑m

i=1 ni)/m
· 1

m

m∑
i=1

σ2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)

(
ni∑
j=1

xij,1

)(
ni∑
j=1

xij,2

)
P→ 1

E(n)
· E(x,n)

{
σ2
a

σ2
ϵ (σ

2
ϵ + nσ2

a)

(
n∑
j=1

xj,1

)(
n∑
j=1

xj,2

)}

=
1

E(n)
· En

{
Ex

[
σ2
a

σ2
ϵ (σ

2
ϵ + nσ2

a)

(
n∑
j=1

xj,1

)(
n∑
j=1

xj,2

)∣∣∣n]}

=
1

E(n)
· En

{
σ2
a

σ2
ϵ (σ

2
ϵ + nσ2

a)

[
nE(x1x2) + (n2 − n) · Ex1 · Ex2

]}
=

1

E(n)
· σ2

a

σ2
ϵ

{
En

(
n

σ2
ϵ + nσ2

a

)
· E (x1x2) + En

(
n2 − n

σ2
ϵ + nσ2

a

)
· Ex1Ex2

}
.

Let c2 = En [n/(σ2
ϵ + nσ2

a)], then the above limit is

1

E(n)
· σ2

a

σ2
ϵ

{c2 · E(x1x2) + c3 · Ex1Ex2} ,

where c3 = c1 − c2.

Combining the above expressions, we have the limit for the second component of

1
N

(X∗)TV−1X:

1

E(n)
· σ2

a

σ2
ϵ


c1 c1Ex1 c1Ex2 c1Ex3

c1Ex1 h1 h2 h4

c1Ex2 h2 h3 h5

 ,

with h1 = c2Ex2
1 + c3(Ex1)

2, h2 = c2E(x1x2) + c3Ex1Ex2, h3 = c2Ex2
2 + c3(Ex2)

2,

h4 = c2E(x1x3) + c3Ex1Ex3 and h5 = c2E(x2x3) + c3Ex2Ex3.
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Finally,

1

N
(X∗)TV−1X =

1

σ2
ϵ

1

N

m∑
i=1

(X∗
i )
TXi −

1

N

m∑
i=1

σ2
a

σ2
ϵ (σ

2
ϵ + niσ2

a)
(X∗

i )
T1⊗2

ni
Xi

P→ 1

σ2
ϵ


1 Ex1 Ex2 Ex3

Ex1 Ex2
1 E(x1x2) E(x1x3)

Ex2 E(x1x2) Ex2
2 E(x2x3)



− 1

E(n)

σ2
a

σ2
ϵ


c1 c1Ex1 c1Ex2 c1Ex3

c1Ex1 h1 h2 h4

c1Ex2 h2 h3 h5

 ,

where c1 = En

[
n2/(σ2

ϵ + nσ2
a)
]
, c2 = En

[
n/(σ2

ϵ + nσ2
a)
]

and c3 = c1 − c2, h4 =

c2E(x1x3) + c3Ex1Ex3 and h5 = c2E(x2x3) + c3Ex2Ex3.

Since (X∗)TV−1X∗ is a submatrix of (X∗)TV−1X,

Σ∗ = lim
N→∞

1

N
(X∗)TV−1X∗

=
1

σ2
ϵ


1 Ex1 Ex2

Ex1 Ex2
1 E(x1x2)

Ex2 E(x1x2) Ex2
2

− 1

E(n)

σ2
a

σ2
ϵ


c1 c1Ex1 c1Ex2

c1Ex1 h1 h2

c1Ex2 h2 h3

 .

2.6.5.2 Limit of Λ in (2.22)

We discuss the case when the cell partition is based on x3. Again, the results

got from this Section is used to calculate the theoretical power in the scenarios of

Section 2.3.
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Let El be the lth cell of the cell partition, l = 1, . . . , L, then the elements of

Λ are:

1

N

m∑
i=1

ni∑
j=1

I{xij,3∈El}
P−→
∫
El

f3(x3)dx3

1

N

m∑
i=1

ni∑
j=1

I{xij,3∈El}xij,1
P−→
∫
x1

∫
El

x1f(x1,x3)(x1, x3)dx3dx1

1

N

m∑
i=1

ni∑
j=1

I{xij,3∈El}xij,3
P−→
∫
El

x3f3(x3)dx3.

When (x1,x2,x3) are jointly normal, which is the Scenario I in Section 2.3.1, F3(x3)

and f(x1,x3)(x1, x3) are the corresponding normal and bivariate normal densities.

When x3 = x1x2 and x1 and x2 independent, i.e. ρ12 = 0, which is the Scenario

II in Section 2.3.2, we can calculate F3(x3) and f(x1,x3)(x1, x3) as follows:

F3(z) = P (x1x2 ≤ z)

= P (x1x2 ≤ z, x1 > 0) + P (x1x2 ≤ z, x1 < 0)

=

∫ ∫
{x2<z/x1,x1>0}

f(x1x2)(x1, x2)dx1dx2 +

∫ ∫
{x2>z/x1,x1<0}

f(x1x2)(x1, x2)dx1dx2

=

∫ ∞

x1=0

∫ z
x1

x2=−∞
fx1(x1)fx2(x2)dx1dx2 +

∫ 0

x1=−∞

∫ ∞

x2= z
x1

fx1(x1)fx2(x2)dx1dx2

=

∫ ∞

0

F2

(
z

x1

)
f1(x1)dx1 +

∫ 0

−∞

[
1 − F2

(
z

x1

)]
f1(x1)dx1

f3(z) =
dF3(z)

dz
=

∫ ∞

0

f2

(
z

x1

)
1

x1

f1(x1)dx1 −
∫ 0

−∞
f2

(
z

x1

)
1

x1

f1(x1)dx1.

To get the joint distribution of (x1, x3) = (x1, x1x2),
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let


y1 = x1

y2 = x1x2

, then equivalently,


x1 = y1

x2 = y2
y1

.

So the Jacobian matrix J =

∣∣∣∣∣∣∣∣
∂x1

∂y1

∂x1

∂y2

∂x2

∂y1

∂x2

∂y2

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0

− y2
y21

1
y1

∣∣∣∣∣∣∣∣ = 1
|y1|

Thus

f(y1,y2)(y1, y2) = f(x1,x2)

(
y1,

y2

y1

)
· J

= fx1(y1) · fx2

(
y2

y1

)
· 1

|y1|

Similarly, the joint distribution of (x2, x3) is

f(x2,x3)(x2, x3) = f(x1,x2)

(
x3

x2

, x2

)
· 1

|x2|

= fx1

(
x3

x2

)
fx2(x2) ·

1

|x2|

Remark 2.15 The limiting terms calculated in Section 2.6.5.1 and 2.6.5.2 are used

to calculate the theoretical power in Section 2.2.3. Figure 2.1, 2.2 and 2.3 are plotted

by making use of these limit expressions. 2
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Chapter 3

Goodness of fit tests for generalized linear mixed models

3.1 Generalized linear mixed models (GLMMs)

For i = 1, . . . , m, and j = 1, . . . , ni, let xij (with the first component be-

ing 1) and yij be the covariate and outcome value for the jth subject in cluster

i respectively, and let yi = (yi1, . . . , yini
). The GLMM has the following form:

E(yij|ui) = g(xTijβ + wT
ijui), where g(.) is a known strictly monotonic and differen-

tiable function, the i.i.d. cluster random effects ui are assumed to be from a known

probability distribution, fu(ui), with unknown parameter vector ν = (σ2
1, . . . , σ

2
s),

and wij are covariates for the random effects. We assume that the conditional dis-

tribution of yij given λij = xTijβ+wT
ijui and ϕ, follows a distribution from the expo-

nential family with density function fy|λ(y|λ, ϕ) = exp{[yQ(λ)−b(λ)]a(ϕ)+c(y, ϕ)},

where ϕ is generally an unknown parameter related to V ar(yij). In this Chapter,

we restrict the exponential family to the canonical form, that is Q(λ) = λ. One can

always define a transformed parameter to convert an exponential family to canonical

form. The response variables yij are conditionally independent given the random

effect ui. The covariates xij are usually treated as fixed in practice. However, to

deal with technical issues arising when we prove the consistency of the maximum

likelihood estimators and the asymptotic properties of the test statistic, we assume

throughout this chapter that (xi, ni) are i.i.d.
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The likelihood function for θ = (β,ν, ϕ) is

L(θ) =
m∏
i=1

∫ ni∏
j=1

fy|λ(yij|λij)dF (λij).

The maximum likelihood estimator (MLE) of θ, denoted by θ̂, is the solution to

S(θ) = 0, where the S denotes the score function

S(θ) =
∂logL(θ)

∂θ
=

m∑
i=1

Si(θ).

In what follows, we will focus on GLMMs with a single random intercept,

given by

E(yij|αi) = g(xTijβ + αi), αi ∼ N(0, σ2). (3.1)

In this case, the parameter vector ν for variance components reduces to a single

parameter σ2.

The linear mixed model, which is an important case of GLMMs, has been

carefully studied in Chapter 2. We now describe another two special cases of the

GLMMs with random intercept.

3.1.1 Mixed-effects logistic models

For mixed-effects logistic models with a cluster specific random intercept,

yij given pij, where pij = P (yij = 1), comes from a binomial distribution: yij ∼
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Binom(1, pij) and logit(pij) = log(pij/(1− pij)) = xTijβ+ αi, where the i.i.d. cluster

random effects αi are assumed to be N(0, σ2). The response variables yij are condi-

tionally independent given αi. The unknown parameter vector is now θ = (β, σ2).

The marginal probability of the response for the ith cluster, conditionally given

(xij, ni), under the random intercept logistic mixed model

yij ∼ Binom(1, pij), logit(pij) = xTijβ + αi, αi ∼ N(0, σ2) (3.2)

is

P (Yij = yij) =

∫ ni∏
j=1

p
yij

ij q
1−yij

ij dF (αi),

where qij = 1 − pij.

The means and variance-covariances for yij, i = 1, . . . ,m; j = 1, . . . , ni, ,

conditionally given (xij, ni), are

E(yij) = E(E(yij|αi)) = E(pij) =

∫
pij dF (αi),

V ar(yij) = E[V ar(yij|αi)] + V ar[E(yij|αi)]

= E[pij(1 − pij)] + V ar(pij) = E(pij) − [E(pij)]
2,

Cov(yis, yit) =

∫
pispit dF (αi) − E(pis)E(pit), ∀s ̸= t.
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3.1.2 Mixed-effects Poisson models

For the mixed-effects Poisson regression model with a cluster specific random

effect, responses yij given µij, i = 1, . . . ,m, j = 1, . . . , ni, follow Poisson distribu-

tions with means µij and g−1(µij) = xTijβ + αi, where the i.i.d. cluster random

effects αi are assumed N(0, σ2) and g is a known monotonic and differentiable link

function. When g−1 is the log function, this link function is canonical, transforming

the mean µij to the natural exponential parameter. The response variables yij are

conditionally independent given the random effects αi. The unknown parameter

vector in this case is θ = (β, σ2).

The marginal probability of the response for the ith cluster, conditionally given

(xij, ni), under the mixed-effect Poisson regression model is

P (Yij = yij) =

∫ ni∏
j=1

µ
yij

ij exp (−µij)

yij!
dF (αi).

When the link function is canonical, as we assume from now on, the means

and variance-covariances for the response variables yij, i = 1, . . . , m; j = 1, . . . , ni,

conditionally given (xij, ni), are

E(yij) = E[E(yij|µij)] = E(µij) = exp (xTijβ + σ2/2),

V ar(yij) = E[V ar(yij|µij)] + V ar[E(yij|µij)]

= exp (xTijβ + σ2/2) + exp (2xTijβ + 2σ2) − exp (2xTijβ + σ2),
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Cov(yis, yit) = [exp (2σ2) − exp (σ2)] exp (xTisβ + xTitβ), ∀ s ̸= t.

3.2 Proof of the consistency of MLE for GLMMs

Let f(yi;θ) be the likelihood function for the ith cluster, i = 1, . . . , m. The

log likelihood function for the whole set of observations is
∑m

i=1 log f(yi;θ). The

normalized score function is

Sm(θ) =
1

m

m∑
i=1

∇ log f(yi;θ) =
1

m

m∑
i=1

(∂/∂θ) log f(yi;θ).

The maximum likelihood estimator (MLE) θ̂ solves Sm(θ) = 0. We always assume

natural and canonical parameterization. With probability 1 as m gets large, the

MLE exists and is unique (Bickel and Doksum 2006).

Let Bϵ(θ0) = {θ : d(θ,θ0) ≤ ϵ} be the ϵ-neighborhood of the true parameter

vector θ0, which is an open convex Borel set in Rp. Let

M̃m(θ) =
1

m

m∑
i=1

log f(yi;θ), M̃(θ) = E[log f(yi;θ)]

and

J(θ;θ0) = −Eθ0
[∇

⊗
2 log f(y1,x1, n1;θ)].

The following set of assumptions (Assumption 3.1) are used for the consistency proof

of the MLE θ̂ as well as for the asymptotic properties of the test statistic that will

be discussed in the Section following. We comment on this set of Assumptions in

Remark 3.1 below.

77



Assumption 3.1 B.0 (xi, ni) are i.i.d.

B.1 M̃(θ) and J(θ;θ0) exist for all θ;

B.2 J(θ0;θ0) is positive definite;

B.3 J(θ;θ0) is continuous at θ0 as a function of θ;

B.4 (∂/∂θ)∇⊗2 log f(y1,x1, n1;θ) exists and is integrable .

B.5 Derivatives and expectations are interchangeable for log f(y1,x1, n1;θ)

up to the third derivative;

B.6 The true parameter point θ0 = (β0, σ
2
0) is an interior point of Θ =

(Rp,R+);

Remark 3.1 B.1 in Assumption 3.1 ensures that we can apply the Law of Large

Numbers (LLN) to (m−1)
∑m

i=1 log f(yi,xi, ni;θ) and

−(m−1)
∑m

i=1 ∇⊗2 log f(yi,xi, ni;θ). In order for B.1 – B.5 to hold, assumptions

are needed on (xi, ni). We provide sufficient assumptions on (xi, ni) and check B.2

for the random intercept logistic mixed model stated as Lemma 3.8 in Section 3.6.1.

To check B.3 and B.5 in Assumption 3.1 , based on the Dominated Convergence

Theorem, it suffices to show that ∀ θ ∈ Θ, there exists Bϵ(θ), such that

−Eθ0
[ sup
θ′

∈Bϵ(θ)

∇⊗2 log f(y1,x1, n1;θ
′)] < ∞. (3.3)

We refer to condition (3.3) as the dominatedness condition. We provide sufficient

assumptions on (xi, ni) and check (3.3) for both the random intercept logistic mixed

model (stated as Lemma 3.9 in Section 3.6.2 ) and the random intercept Poisson

mixed model (stated as Lemma 3.10 in Section 3.6.3). 2
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Lemma 3.2 Under Assumption 3.1 within model (3.1), there exists an open neigh-

borhood U of θ0, such that

P (M̃m(θ) is a concave function of θ on U) → 1, as m → +∞. (3.4)

Proof: Based on the existence of M̃(θ) and J(θ;θ0) as stated in B.1 of Assumption

3.1, by the Law of Large Numbers on log f(yi,xi, ni;θ) and ∇⊗2 log f(yi,xi, ni;θ),

pointwise for each θ ∈ Θ,

M̃m(θ)
P→ M̃(θ), (3.5)

and

− 1

m

m∑
i=1

∇⊗2 log f(yi,xi, ni;θ) → J(θ;θ0), as m → +∞. (3.6)

By B.2 – B.3 of Assumption 3.1, there exists U = Bϵ(θ0) such that ∀ θ ∈ U ,

J(θ;θ0) is positive definite. By B.1 together with B.4 of Assumption 3.1, the

uniform LLN holds for (m−1)
∑m

i=1 ∇⊗2 log f(yi,xi, ni;θ) (van der Vaart, 2000, page

271, Example 19.7), i.e.

sup
θ∈U

∥ − 1

m

m∑
i=1

∇⊗2 log f(yi,xi, ni;θ) − J(θ;θ0)∥ → 0, as m → +∞.

Then it follows that M̃(θ) = (m−1)
∑m

i=1 log f(yi,xi, ni;θ) is a concave function of

θ ∈ U with probability approaching 1. 2

To show consistency of the MLE, we use two theorems from Andersen and

Gill (1982) and van der Vaart (2000) which are stated here before we summarize

our result as a theorem.
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Theorem 3.3 (Theorem II.1 in Appendix II of Andersen and Gill (1982))

Let E be an open convex subset of Rp and let M1,M2, . . . , be a sequence of random

concave functions on E such that ∀ θ ∈ E, Mm(θ)
P→ M(θ), as m→∞, where M is

some real function on E. Then M is also concave and for all compact A ⊂ E,

sup
θ∈A

|Mm(θ) − M(θ)| P→ 0, as m→∞. (3.7)

Theorem 3.4 (van der Vaart 2000, p.45) Let Mm be random functions and let

M be a fixed function of θ such that for every ϵ > 0,

sup
θ∈Θ

|Mm(θ) − M(θ)| P→ 0,

sup
θ:d(θ,θ0)≥ϵ

M(θ) < M(θ0).

Then any sequence of estimators θ̂m with Mm(θ̂m) ≥ Mm(θ0) − op(1) converges in

probability to θ0.

Theorem 3.5 Under Assumption 3.1, the MLE θ̂ of the GLMM (3.1) is consistent.

Proof: Let Mm(θ) = M̃m(θ)I{M̃m concave on U}. By Lemma 3.2, the MLE θ̂ is also

the solution to ∇Mm(θ) = 0, with probability approaching 1. Together with (3.5),

based on Theorem 3.3, we get (3.7), which is the uniform convergence of Mm(θ).

Based on Theorem 3.4, the MLE θ̂ is consistent. 2

Remark 3.6 Whether or not the natural parameterization is used, with probability
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approaching 1 for large m, the MLE θ̂ is unique in Bϵ(θ0) and is the unique solution

of the likelihood score equation in that neighborhood. 2

3.3 Goodness of fit test for GLMMs

To test the goodness of fit for a proposed GLMM with random intercept,

first we partition the covariate space into non-overlapping cells E1, . . . , EL. For

l = 1, . . . , L, define

fl =
m∑
i=1

ni∑
j=1

I{xij∈El}yij, el(θ) =
m∑
i=1

ni∑
j=1

I{xij∈El}E(yij). (3.8)

Let f = (f1, . . . , fL), e(θ) = (e1(θ), . . . , eL(θ)). For simplicity, we denote

Eθ(yij)|θ=
ˆθ

= Ê(yij). The test statistic is based on the observed minus the expected

counts,

f − e(θ̂) =


∑m

i=1

∑ni

j=1 I{xij∈E1}(yij − Ê(yij))

...∑m
i=1

∑ni

j=1 I{xij∈EL}(yij − Ê(yij))

 ,

a vector of length L.

Theorem 3.7 For GLMM with random intercept (3.1), let E1, . . . , EL constitute a

partition of the covariate space generated by X into disjoint sets such that

E(
∑ni

j=1 I{xij∈El}) > 0 for all l = 1, . . . , L. Under Assumption 3.1 in Section 3.2, as

m → ∞,

(f− e(θ̂))
′
Σ̂

−1

svd(f− e(θ̂))/m
D→ χ2

k,
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where Σ̂svd is the reconstructed L × L square matrix by applying Singular Value

Decomposition on a consistent estimator Σ̂, given in (3.11), of Σ = Var(ξi) in

(3.10). k = rank (Σ) = rank (Σ̂svd) for large m. Σ̂
−1

svd is the Moore – Penrose

pseudoinverse.

Proof: The notation A ≈ B is used to indicate A − B
P→ 0. Since the MLE θ̂ is

consistent (Section 3.2), by a first order Taylor series expansion of the score function

S(θ̂) around θ0, we obtain the approximation up to terms asymptotically negligible

in probability,

θ̂ − θ0 ≈ (− 1

m

∂S(θ0)

∂θ
)−1 1

m
S(θ0)) = J̃−1

0

1

m

m∑
i=1

Si(θ0),

where Si(θ0) is the score function for the ith cluster and the conditional sample

fisher information J̃0 = −m−1∂/∂θ0S(θ0)|(xi, ni)
P→ J(θ0;θ0). The existence of

J(θ0;θ0) is ensured by B.1 in Assumption 3.1, and its invertibility by B.2. For the

rest of this proof, we use J0 to denote J(θ0;θ0).

With E(yij) = Eαi
[g(xTijβ + αi)], differentiation under the integral sign by

virtue of B.5 implies that

∂E(yij)

∂β
= Eαi

[g
′
(xTijβ + αi)] · xij =

∫
αi

g
′
(xTijβ + αi)fαi

dαi · xij,

and

∂E(yij)

∂σ2
=

∫
αi

g(xTijβ + αi)
∂fαi

∂σ2
dαi.
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By applying the LLN to the summands over i defining el(θ0), as N → ∞,

Λ̃ =
1

m
▽ e(θ0) =


m−1

∑m
i=1

∑ni

j=1 I{xij∈E1}
∂

∂θ0
E(yij)

...

m−1
∑m

i=1

∑ni

j=1 I{xij∈EL}
∂

∂θ0
E(yij)


P→


ΛT

1

...

ΛT
L

 = Λ.

For l = 1, . . . , L,

ΛT
l = E(xi,ni)

(
ni∑
j=1

I{xij∈El}
∂Eαi

(g(xij
Tβ + αi))

∂θ0

)
.

Let zil =
∑ni

j=1 I{xij∈El}(yij − E(yij)), i = 1, . . . , m; l = 1, . . . , L. Then

f − e(θ) =

(
m∑
i=1

zi1, . . . ,
m∑
i=1

ziL

)T

and our test statistic is based on a quadratic form in the vector

(f − e(θ̂))/
√

m = (f − e(θ0))/
√

m + (e(θ0) − e(θ̂))/
√

m

≈ (f − e(θ0))/
√

m −∇e(θ0)(θ̂ − θ0)/
√

m

≈ 1√
m

(
m∑
i=1

zi1, . . . ,

m∑
i=1

ziL

)T

− 1√
m
∇e(θ0)J̃

−1
0

1

m

m∑
i=1

Si(θ0)

=
1√
m

m∑
i=1

[
(zi1, . . . , ziL)T − Λ̃J̃−1

0 Si(θ0)
]

=
1√
m

m∑
i=1

ξi. (3.9)

Under the assumption that (xi, ni) are i.i.d. for i = 1, . . . , m, also the variables

ξi = ξi(yi,xi, ni;θ) are i.i.d. with mean 0. Under B.1 – B.3 in Assumption 3.1,
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V ar(ξi) = Σ exists. By multivariate Central Limit Theorem,

(f − e(θ̂))/
√

m
D→ N(0,Σ). (3.10)

Therefore

1

m
(f − e(θ̂))

′
Σ−1(f − e(θ̂))

D→ χ2
k,

where k = rank(Σ). We estimate Σ using

Σ̂ =
1

m

m∑
i=1

ˆV ar(ξi|xi, ni), (3.11)

where ˆV ar(ξi|xi, ni) means that the MLE θ̂ is substituted for θ in V ar(ξi|xi, ni).

Σ̂ is a consistent estimator of Σ and its simplified form is given in Section

3.6.4. Then by Slutsky’s theorem, the test statistic

T =
1

m
(f − e(θ̂))

′
Σ̂

−1
(f − e(θ̂))

D→ χ2
k, (3.12)

We then compute Singular Value Decomposition for Σ̂. For each eigenvalue of Σ̂,

we compare it with a preset upper bound ζ. For any eigenvalue less than ζ, we

instead set this eigenvalue to be 0 and reconstruct the Σ̂ matrix using the non-zero

eigenvalues and their corresponding eigenvectors. We denote this reconstructed

matrix as Σ̂svd. Based on Corollary 5.3 given in the Appendix, P (rank (Σ̂svd) =
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rank (Σ)) → 1. The test statistic to be used is

1

m
(f − e(θ̂))

′
Σ̂

−1

svd(f − e(θ̂))
D→ χ2

k. (3.13)

3.3.1 Derivation of the power of T

We derive the power of the test for the 2-level GLMM under contiguous alter-

natives, based on Le Cam’s third lemma (Lemma 2.14).

For a fixed constant vector a, let

H0 : θm = θ0,

H1 : θm = θ0 +
a√
m

,

where one or more components of β0 in θ0 are 0s. Denote the non-zero components

of θ0 as θ∗0, which is a sub-vector of θ0. Note that θm → θ0, as m → ∞. By Taylor

expansion, using Theorem 5.21 in Van der Vaart (2000),

log
dQm

dPm
= log

Likelihood(θm;Y,X)

Likelihood(θ0;Y,X)

△
= log

L(θm)

L(θ0)

≈ (∇ log(L(θ0)))
T a√

m
+

1

2

aT√
m

(∇
⊗

2 log(L(θ0)))
a√
m

≈ (Sm(θ0))
T a√

m
− 1

2
aTJ0a,

Based on the LLN on −m−1
∑m

i=1 ∇⊗2 log f(yi,xi, ni;θ) (3.6), with J0 =
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J(θ0;θ0),

lim
m→∞

V ar(Sm(θ0)/
√

m) = J0.

Thus

log
dQm

dPm

Pm→ N(−1

2
aTJ0a, aTJ0a).

Since several components of θ0 are 0s, under H0, we fit a reduced model to the

data, using X∗
N×p∗ instead of XN×p with p∗ < p. We only estimate the coefficient

β∗ corresponding to X∗. The e(·) function in (3.8)

el(θ) =
m∑
i=1

ni∑
j=1

I{xij∈El}E(yij) =
m∑
i=1

ni∑
j=1

I{xij∈El}

∫
g(xTijβ + αi)ϕ(αi)dαi

has Rp × R+ as its domain, where p is the dimension of β and R+ is the domain

for σ2, the variance component for the random effect αi. Let function e∗(·) be the

same meaning of function e(·), but has Rp∗ ×R+ as its domain

e∗l (θ) =
m∑
i=1

ni∑
j=1

I{xij∈El}E
∗(yij) =

m∑
i=1

ni∑
j=1

I{xij∈El}

∫
g
(
(x∗

ij)
Tβ∗ + αi

)
ϕ(αi)dαi.

Let Wm = (f − e∗(θ̂
∗
))/

√
m. Under the null hypothesis H0, Wm is asymptot-

ically normal, Wm→N(0,Σ∗), by (3.10). The joint distribution of log(dQm/dPm)

and (f− e∗(θ̂
∗
))/

√
m is asymptotically equal in probability to the joint distribution

of aTSm(θ0)/
√

m and (f−e∗(θ̂
∗
))/

√
m. We next show the jointly normality of these

two quantities.
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By the same sequence of steps as in (3.9),

1√
m

(f − e∗(θ̂
∗
)) ≈ 1√

m

m∑
i=1

[
(z∗i1, . . . , z

∗
iL)T − Λ̃∗(J̃∗

0)
−1S∗

i (θ
∗
0)
]
,

where the ∗ in z∗il and Λ̃∗ means that the X and θ in zil and Λ̃ are replaced with

X∗ and θ∗. J̃∗
0 and S∗

i (θ
∗
0) denote the information matrix and the score when first

and second derivatives for the log-likelihood function are taken with respect to θ∗.

Thus for all constant (L + 1)-vectors C, with C{1:L} denoting the first L

components of C,

CT


(
f − e∗(θ̂

∗
)
)

/
√

m

aTSm(θ0)/
√

m


=

1√
m

m∑
i=1

[
L∑
l=1

Clz
∗
il − CT

{1:L}Λ̃
∗(J̃∗

0)
−1S∗

i (θ
∗
0) + CL+1a

TSi(θ0)

]
.

This quantity has a limiting Gaussian distribution under Assumption 3.1. Let

τ in (2.38) be the variance-covariance matrix between aTSm(θ0)/
√

m and (f −

e∗(θ̂
∗
))/

√
m. Then by Le Cam’s third lemma (Lemma 2.14), under the contigu-

ous alternative H1, (
f − e∗(θ̂

∗
)
)

/
√

m → N(τ ,Σ∗).

Thus under H1, with δ = τ T (Σ∗)−1τ ,

1

m

(
f − e∗(θ̂

∗
)
)T

(Σ∗)−1
(
f − e∗(θ̂

∗
)
)
H1→ χ2

k(δ),
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and

1

m

(
f − e∗(θ̂

∗
)
)T (

Σ̂
∗
svd

)−1 (
f − e∗(θ̂

∗
)
)
H1→ χ2

k(δ̂),

where Σ̂
∗
svd is the reconstructed matrix by applying Singular Value Decomposition

on a consistent estimators of Σ∗, τ̂ is a consistent estimators of τ , k = rank(Σ̂
∗
svd) =

rank(Σ∗) (Corollary 2.7) and the non-centrality parameter is δ̂ = τ̂ T (Σ̂
∗
svd)

−1τ̂ . For

GLMMs, it is difficult to get the explicit form of τ , thus τ̂ , a consistent estimator of

τ , can be taken as the empirical variance -covariance matrix between aTSm(θ0)/
√

m

and (f − e∗(θ̂
∗
))/

√
m, which is

1

m

m∑
i=1

(z∗i1, . . . , z
∗
iL)T (S∗

i (θ
∗
0))

T a − Λ̃∗(J̃∗
0)

−1 1

m

m∑
i=1

Si(θ0) (S∗
i (θ

∗
0))

T a,

with MLE θ̂ substituted for parameters in the above expression.

For a given type I error level α, the approximate limiting power is thus P (T ∗ >

χ2
k,α), where χ2

k,α is the 1 − α quantile of the central χ2
k distribution and P denotes

the non central χ2
k(δ̂) distribution.

3.4 Simulations for logistic mixed models

In this Section, we implement the goodness of fit test for the 2-level logistic

mixed models in R and study its performance in simulation. The two stages of the

model are:

yij|pij ∼ Binom(1, pij), i = 1, . . . , m, j = 1, . . . , ni (3.14)

88



logit(pij) = xTijβ + αi, αi ∼ N(0, σ2).

Data are simulated from the following setting. We choose m = 500 clusters and let

ni = 5 for all i = 1, . . . , m. Thus the total number of observation N =
∑m

i=1 ni =

2500. Then N fixed covariates xij = (x1ij, x2ij, x3ij), were independently drew from

a multivariate normal distribution,


x1

x2

x3

 ∼ N




0

0

0

 ,


1 0 ρ13

0 1 ρ23

ρ13 ρ23 1



 . (3.15)

Given the variance component parameter σ2, for m = 500, we generate αi, i =

1, . . . , m independently from N(0, σ2). Given β and the generated xij, pij, i =

1, . . . , m, j = 1, . . . , ni are calculated from the equation logit(pij) = xTijβ + αi.

The last step of generating data is to independently generate yij from (3.14).

3.4.1 Computational issues and code checking

Implementing the goodness of fit test for logistic mixed models is more com-

plicated than for linear mixed models because each E(yij) and also the variance and

covariance terms involve numerical integration. We used the Gaussian quadrature

numerical integration method with 60 quadrature points to calculate those integrals,

which are used to calculate the Σ̂ in our test statistic. The numerical errors intro-

duced by approximating so many integrals through the Gaussian quadrature rule

may result in instability when we invert the Σ̂ matrix. It may even destroy the

89



invertibility of the matrix, which is used to calculate the test statistics. Thus we

computed a Singular Value Decomposition for each estimated Σ̂. For each eigen-

value of Σ̂, we compare it with a preset upper bound ι (e.g. ι = .0005). For any

eigenvalue less than ι, we instead set this eigenvalue to be 0 and reconstruct the Σ̂

matrix using the non-zero eigenvalues and their corresponding eigenvectors.

We then did the following checks to make sure that our R code works.

• We compared the empirical variance covariance matrix of (f− ê(θ̂))/
√

m with

Σ̂ in equation (3.11);

• Letting L(θ) denote the likelihood function, and f and e be defined in equation

(3.8), we compared the empirical variance covariance matrix of

f−e(θ0) and ∇θlogL(θ)|θ=θ0
, computed based on 30, 000 simulated data sets,

with its estimated analytical variance, which involves terms in Σ̂ in equation

(3.11);

• We checked in simulations that the goodness of fit test statistic (3.12) indeed

has an asymptotic χ2 distribution. We choose ρ13 = ρ23 = 0 and set the true

parameter values σ2 = .5, β = (β0, β1, β2, β3) = (.1, .5,−.5, .5). We then fit

the logistic mixed model with all covariates that influence the response y. We

select L = 12 cells in the computation of T in (3.12) based on x1 and x2 by

using fixed cell boundaries. With the number of iterations K being 5000, we

then have 5000 test statistics (f − e(θ̂))
′
Σ̂

−1
(f − e(θ̂))/m. Figure 3.1 gives

the histogram of these 5000 independently calculated test statistics, which is

close to χ2
11, with p value from the Kolmogorov-Smirnov test being .9294 and
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Figure 3.1: Histogram of 1000 test statistics for logistic mixed model

p value from Pearson’s chi-square goodness of fit test .40 when the number of

cells used is 20. The simulation result agrees with the theory.

3.4.2 Checking the size of the test in simulations

We checked the size of the test under various choices of cell partitions based

on X. We chose ρ13 = ρ23 = 0 in (3.15) and let σ2 = .5, β = (β0, β1, β2, β3) =

(.1, .5,−.5, .5), and fit the logistic mixed model with all covariates X in the model.

All cell partitions in the computation of T in (3.12) were based on fixed cut offs.

Table 3.2 shows that the empirical size estimates (Emp. Size) were close to the

nominal α levels of 0.05 and 0.1 for all choices of cell partitions. This closeness was

observed with greater consistency when K = 5000. Table 3.1 gives the empirical

sizes of the test under different nominal α levels when the cell partition is based on
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x1 and the number of cells is L = 8. They were all very close. The third column is

the standard deviation of the corresponding empirical size (ES), which is calculated

as
√

ES(1 − ES)/K.

Table 3.1: Empirical size of the test under different α levels (logistic mixed model).
m = 500, ni = 5,β = (.1, .5,−.5, .5), σ2 = .5, ρ13 = ρ23 = 0, L = 12,K = 5000.

significance level α Empirical Size(ES) Standard Deviation of ES

0.05 0.049 0.0031
0.1 0.099 0.0042
0.2 0.199 0.0056
0.3 0.297 0.0065
0.4 0.406 0.0069
0.5 0.505 0.0071
0.6 0.605 0.0069
0.7 0.702 0.0065
0.8 0.801 0.0056

Table 3.2: Empirical size of the test under different cell partitions (logistic mixed model).
m = 500, ni = 5,β = (.1, .5,−.5, .5), σ2 = .5, ρ13 = ρ23 = 0.

L α
Empirical Size

α
Empirical Size

K=1000 K=5000 K=1000 K=5000

8 (x1) 0.05 0.054 0.0508 0.1 0.1080 0.1034
3×4 (x1, x2) 0.05 0.048 0.0492 0.1 0.0950 0.0994
5×4 (x1, x3) 0.05 0.044 0.0494 0.1 0.0940 0.0986
6×7 (x2, x3) 0.05 0.056 0.0490 0.1 0.1090 0.1012

3.4.3 Simulations to assess empirical power of the test

To assess the power of the test, we fit the logistic mixed model to the data

without including x3 among the covariates. We then tried six different cell partitions

based on subsets of the design matrix X with L = 12 and 42 cells. We used fixed

cutoffs to do the cell partitions. We set σ2 = .5 and (β0, β1, β2) = (0, .8,−.8) for all
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Table 3.3: Impact of cell partition on empirical power I (logistic mixed model).
m = 500, ρ13 = ρ23 = 0, (β0, β1, β2) = (0, .8,−.8),K = 1000.

Parti β3 = .2 β3 = .3 β3 = .4

L = 12 L = 42 L = 12 L = 42 L = 12 L = 42

x1 0.048 0.050 0.047 0.049 0.046 .056
x2 0.055 0.061 0.051 0.067 0.052 .071
x3 0.787 0.497 0.997 0.939 1 .999

x1, x2 0.053 0.054 0.048 0.047 0.047 .051
x1, x3 0.724 0.478 0.989 0.918 1 1
x2, x3 0.729 0.468 0.992 0.917 1 .999

simulations in this power study Section.

We set (ρ13, ρ23) = (0, 0) and study the impact of the magnitude of β3 on power.

For a given design matrix X, we simulated K = 1000 sets of Y and computed the

empirical power of the test over K = 1000 iterations for β3 = .2, .3 or .4 separately.

Table 3.3 shows that with all other settings being the same, the power of the test

increases as the magnitude of β3 increases except with those choices of partition (the

first second and fourth) where power is effectively constant at 0.05. To study the

impact of (ρ13, ρ23) on power, we then fix β3 = .3 and choose three different pairs of

(ρ13, ρ23). For each pair of (ρ13, ρ23), we simulated a set of design matrix X. We then

simulated K = 5000 sets of Y based on this X and computed the empirical power of

the test over these K iterations. Table 3.4 shows that with all other settings being

the same, the power of the test decreases as the correlation between the x3 and x1,

x2 increases, where x3 is the omitted covariate.

From Tables 3.3 and 3.4 we can also see that the choice of cell partition strongly

affects the power. When a covariate that should be in the model is omitted, cell

partitions based on that omitted covariate result in adequate power of the test.
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Table 3.4: Impact of cell partition on empirical power II (logistic mixed model).
m = 500,β3 = (0, .8,−.8, .3), σ2 = .5,K = 5000.

Parti ρ13 = 0, ρ23 = 0 ρ13 = 0.2, ρ23 = 0.3 ρ13 = 0.4, ρ23 = 0.5

L = 12 L = 42 L = 12 L = 42 L = 12 L = 42

x1 0.047 0.049 0.046 0.054 0.054 0.058
x2 0.051 0.067 0.05 0.053 0.047 0.047
x3 0.997 0.939 0.988 0.883 0.902 0.657

x1, x2 0.048 0.047 0.047 0.046 0.046 0.061
x1, x3 0.989 0.918 0.974 0.862 0.831 0.630
x2, x3 0.992 0.917 0.975 0.850 0.818 0.557

However, if the cell partition is based only on covariates already in the model, this

test has low power to detect any lack of model fit. All the above findings and

conclusions in the logistic mixed model agree with what we saw earlier in the linear

mixed models.

3.5 Discussion

In this Chapter, we extended the goodness of fit tests developed for Linear

Mixed Models (LMMs) in Chapter 2 to Generalized Linear Random Intercept Mod-

els (GLMMs). We described the asymptotic properties of the tests when parameters

were estimated through maximum likelihood. We assessed factors that impact the

power and the impact of choice of cell partitions on the test in simulations for lo-

gistic mixed models. We obtained conclusions consistent with those found for the

LMMs in Chapter 2, that when a specific covariate that is associated with outcome

is omitted, cell partitions based on the omitted covariate result in adequate power

of the test. However, if the cell partition is based only on covariates already in the

model, this test has low power to detect any lack of model fit.
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This type of goodness of fit test can be used to test the statistical adequacy

of the finally selected GLMM in real applications. All that is needed in order

to implement the test are the final model parameter estimates and their variance

covariance matrix as well as the estimated means for the outcome y under the model.

Implementing logistic mixed models is more complicated that implementing LMMs,

as all the means and variances of the outcome y involve integrals. The covariance

matrix between the estimated fixed effect parameters and the estimated variance

components is not available in R, but is available in PROC nlmixed in SAS. As a

note of caution, in applying the test in GLMMs, one needs to check the eigenvalues

of the estimated variance covariance matrix Σ̂ in (3.11) and eliminate the tiny

eigenvalues to make sure its inverse does not blow up. This also helps to get the

correct rank of the estimated variance covariance matrix Σ̂ in (3.11) to ensure the

correct degrees of freedom for the test statistic.

3.6 Technical details for Chapter 3

3.6.1 Checking B.2 in Assumption 3.1 for logistic mixed model

Lemma 3.8 Let E be the event that
∑m

i=1

∑ni

j=1 x
⊗2
ij has full rank, then the condi-

tional distribution of (b′, c)∇β,σ2logf(yi|{xij}j, ni) given {(xij, ni)} on the event E

is non-degenerate at θ0.

Proof: In order to show that J(θ0;θ0) is positive definite for the random intercept

logistic mixed model, we just need to show that ∀ (b′, c) non-trival, where b is

any p × 1 constant vector and c is any constant, (b′, c)∇β,σ2 log fi(β0, σ
2
0) is non-
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degenerate. We show this in the random intercept logistic model (3.2), where pij,0 =

1/(1 + e−(x′
ijβ0+σ0ai)) and {xij}j = {xij, j = 1, . . . , ni}. Then with ai ∼ N(0, 1)

(b′, c)∇β,σ2 log f(yi|{xij}j, ni, ai)

= b′ ∂

∂β
log f(yi|{xij}j, ni, ai) + c

∂

∂σ2
log f(yi|{xij}j, ni, ai)

= b′
ni∑
j=1

(yij − pij,0)xij + c
1

2σ0

ni∑
j=1

(yij − pij,0)ai

=

ni∑
j=1

(yij − pij,0)(b
′xij + c

ai
2σ0

).

Let g1(x
T
ijβ0, σ0) =

∫
ai

pij,0 ϕ(ai)dai, and g2(x
T
ijβ0, σ0) =

∫
ai

pij,0αiϕ(ai)dai, integrat-

ing out ai then gives

(bT , c)∇β,σ2 log f(yi|{xij}j, ni)

=

∫
ai

ni∑
j=1

(yij − pij,0)(b
Txij + c

ai
2σ0

)ϕ(ai)dai

=

ni∑
j=1

[
yijb

Txij + yij
c

2σ0

Eαi −
∫
ai

pij,0 ϕ(ai)dai bTxij −
c

2σ0

∫
ai

pij,0αiϕ(ai)dai

]

=

ni∑
j=1

(
yij − g1(x

T
ijβ0, σ0)

)
xTijb − c

2σ0

ni∑
j=1

g2(x
T
ijβ0, σ0), (3.16)

where
∑ni

j=1 g2(x
T
ijβ0, σ0) is free of yij. With the fact that conditional on

{(xij, ni), s.t. P (
m∑
i=1

ni∑
j=1

x⊗2
ij has full rank) > 0},

every yi ∈ {0, 1}ni has positive probability, (3.16) equals 0 only when both b = 0

and c = 0.
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3.6.2 Checking B.3 in Assumption 3.1 for Logistic mixed model

Lemma 3.9 For the random intercept logistic mixed model (3.2), the dominatedness

condition (3.3) holds under the assumption that
∑ni

j=1 ∥x
⊗2
ij ∥ is bounded.

Proof: With ai ∼ N(0, 1), the conditional likelihood for the ith cluster, condition-

ing on ({xij}j, ni, ai), is

log f (yi|{xij}j, ni, ai) =
∑
j

(
xTijβ + σai

)
yij −

∑
j

log
(
1 + exT

ijβ+σai

)
.

The first derivatives of the conditional likelihood are

∂log f(yi|{xij}j, ni, ai)
∂β

=
∑
j

(
yij −

1

1 + e−(xT
ijβ+σai)

)
xij;

∂log f(yi|{xij}j, ni, ai)
∂σ2

=
1

2σ

∂log f(yi|{xij}j, ni, ai)
∂σ

=
1

2σ

∑
j

(
yij −

1

1 + e−(xT
ijβ+σai)

)
ai.

The second derivatives of the conditional likelihood are

−∂2log f(yi|{xij}j, ni, ai)
∂(β)2

=
∑
j

exT
ijβ+σai

(1 + exT
ijβ+σai)2

xijx
T
ij;

−∂2log f(yi|{xij}j, ni, ai)
∂β∂σ2

=
1

2σ

∑
j

exT
ijβ+σai

(1 + exT
ijβ+σai)2

aixij;
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−∂2log f(yi|{xij}j, ni, ai)
∂(σ2)2

= − 1

2σ

∂

∂σ

[
1

2σ

∑
j

(
yij −

1

1 + e−(xT
ijβ+σai)

)
ai

]

=
1

4σ3

∑
j

[
ai

(
yij −

1

1 + e−(xT
ijβ+σai)

+ σai
ex′

ijβ+σai

(1 + exT
ijβ+σai)2

)]
.

We first take expectations with respect to yij, conditionally given all other,

that is, {xij}j, ni, ai, to integrate out yij.

Eθ0

[
− ∂2

∂β2
log f(yi|{xij}j, ni, ai)

]
=
∑
j

exT
ijβ+σai

(1 + exT
ijβ+σai)2

xijx
T
ij, (3.17)

Eθ0

[
− ∂2

∂β∂σ2
log f(yi|{xij}j, ni, ai)

]
=

1

2σ

∑
j

exT
ijβ+σai

(1 + exT
ijβ+σai)2

aixij. (3.18)

Eθ0

[
− ∂2

∂(σ2)2
log f (yi|{xij}j, ni, ai)

]
=

1

4σ3

∑
j

[
ai

(
1

1 + e−(xT
ijβ0+σ0ai)

− 1

1 + e−(xT
ijβ+σai)

+ σai
exT

ijβ+σai

(1 + ex′
ijβ+σai)2

)]
.

The two expectations in (3.17) and (3.18) have exactly the same forms as without

taking the expectations since there is no term involving yij. We next integrate out

ai and with pij = 1/(1 + e−(xT
ijβ+σai)), get

Eθ0

[
− ∂2

∂β2
log f(yi|{xij}j, ni)

]
=
∑
j

∫
ai

pij(1 − pij)dF (ai)xijx
′
ij,
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Eθ0

[
− ∂2

∂β∂σ2
log f(yi|{xij}j, ni)

]
=

1

2σ

∑
j

(∫
ai

pij(1 − pij)aidF (ai)

)
xij.

Eθ0

[
− ∂2

∂(σ2)2
log f(yi|{xij}j, ni)

]
=

1

4σ3

∑
j

(∫
ai

1

1 + e−(xT
ijβ0+σ0ai)

aidF (ai) −
∫
ai

pijaidF (ai) + σ

∫
ai

pij(1 − pij)a
2
i dF (ai)

)
.

Since pij is bounded, the dominatedness condition (3.3) will hold by inspection

if
∑ni

j=1 ∥x
⊗2
ij ∥ is bounded.

3.6.3 Checking B.3 in Assumption 3.1 for Poisson mixed model

Lemma 3.10 For the random intercept Poisson mixed model, the dominatedness

condition (3.3) holds under the assumption that E(
∑

j ec
∑

k |xijk|) < ∞, ∀ c ≤

maxk |βk| + ϵ.

Proof: With ai ∼ N(0, 1), the conditional likelihood for the ith cluster, condi-

tioned on ({xij}j, ni, ai), is

log f(yi|{xij}j, ni, ai) =
∑
j

[(
xTijβ + σai

)
yij − ex′

ijβ+σai − log(yij!)
]
.

The first derivatives of the conditional likelihood are

∂log f(yi|{xij}j, ni, ai)
∂β

=
∑
j

(
yij − ex′

ijβ+σai

)
xij;

99



∂log f(yi|{xij}j, ni, ai)
∂σ2

=
1

2σ

∂log f(yi|{xij}j, ni, ai)
∂σ

=
1

2σ

∑
j

(
yij − ex′

ijβ+σai

)
ai.

The second derivatives of the conditional likelihood are

−∂2log f(yi|{xij}j, ni, ai)
∂(β)2

=
∑
j

ex′
ijβ+σaixijx

′
ij;

−∂2log f(yi|{xij}j, ni, ai)
∂β∂σ2

=
1

2σ

∑
j

ex′
ijβ+σaiaixij;

−∂2log f(yi|{xij}j, ni, ai)
∂(σ2)2

= − 1

2σ

∂

∂σ

[
1

2σ

∑
j

(
yij − ex′

ijβ+σai

)
ai

]

=
1

4σ3

∑
j

[
ai

(
yij − ex′

ijβ+σai

)
+ σa2

i e
x′

ijβ+σai

]
.

We first take expectations with respect to yij, conditionally given {xij}j, ni, ai, to

integrate out yij.

Eθ0

[
− ∂2

∂β2
log f(yi|{xij}j, ni, ai)

]
=
∑
j

ex′
ijβ+σaixijx

′
ij, (3.19)

Eθ0

[
− ∂2

∂β∂σ2
log f(yi|{xij}j, ni, ai)

]
=

1

2σ

∑
j

ex′
ijβ+σaiaixij. (3.20)
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Eθ0

[
− ∂2

∂(σ2)2
log f(yi|{xij}j, ni, ai)

]
=

1

4σ2

∑
j

a2
i e

x′
ijβ+σai +

1

4σ3

∑
j

[
ai

(
ex′

ijβ0+σ0ai − ex′
ijβ+σai

)]
.

The two expectations in (3.19) and (3.20) have exactly the same forms as without

taking the expectations since there is no term involving yij. We next integrate out

ai. By making use of the three equations E(eσai) = eσ
2/2, Eai

(a2
i e
σai) = (1+σ2) eσ

2/2

and Eai
(aie

σai) = σeσ
2/2, we get

Eθ0

[
− ∂2

∂β2
log f(yi|{xij}j, ni)

]
=

(∑
j

ex′
ijβxijx

′
ij

)
eσ

2/2.

Eθ0

[
− ∂2

∂β∂σ2
log f(yi|{xij}j, ni)

]
=

1

2
eσ

2/2

(∑
j

ex′
ijβxij

)
.

Eθ0

[
− ∂2

∂(σ2)2
log f(yi|{xij}j, ni)

]
=

1

4σ2

(∑
j

ex′
ijβ

)
E
(
a2
i e
σai
)

+

1

4σ3

[(∑
j

ex′
ijβ0

)
E (aie

σ0ai) −

(∑
j

ex′
ijβ

)
E (aie

σai)

]

=
1

4σ2

(∑
j

ex′
ijβ

)
eσ

2/2 (1 + σ2) +

1

4σ3

[(∑
j

ex′
ijβ0

)
σ0e

σ2
0/2 −

(∑
j

ex′
ijβ

)
σeσ

2/2

]

=
1

4
eσ

2/2

(∑
j

ex′
ijβ

)
+

σ0

4σ3
eσ

2
0/2

(∑
j

ex′
ijβ0

)
.

(3.3) will hold by inspection if assumptions are imposed ensuring that

supβ∈Bϵ
(
∑

j ex′
ijβ(1 + x′

ijxij)) is integrable. The following condition,
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E(
∑

j ec
∑

k |xijk|) < ∞, ∀ c ≤ maxk |βk| + ϵ, is sufficient to ensure that.

3.6.4 Simplification of Σ̂ in equation (3.11)

In this section, we manipulate the expression for the estimated asymptotic

variance Σ̂ in equation (3.11). The notations V arC , CovC , EC mean the corre-

sponding quantities involve integrals over yi alone, conditionally given {xi, ni}i =

{(xi, ni), i = 1, . . . , m}. Because J̃0 and Λ̃ are functions of only {xi, ni}i, condi-

tionally given {xi, ni}i,

V arC(ξi) = V ar(ξi|{xi, ni}i)

= V arC (zi1, . . . , ziL)T + V arC(Λ̃J̃−1
0 Si(θ0)) −

2CovC
[
(zi1, . . . , ziL)T , Λ̃J̃−1

0 Si(θ0)
]

= V arC (zi1, . . . , ziL)T + Λ̃J̃−1
0 V arC(Si(θ0))J̃

−1
0 Λ̃T −

2
(
CovC

(
zi1, Λ̃J̃−1

0 Si(θ0)
)

, . . . , CovC
(
ziL, Λ̃J̃−1

0 Si(θ0)
))T

,

where CovC
(
zil, Λ̃J̃−1

0 Si(θ0)
)

= EC
yi

(
zilS

T
i (θ0)

)
J̃−1

0 Λ̃T . We next simplify

EC
yi

(
zilS

T
i (θ0)

)
, with notation fCyi

meaning the conditional density of fyi
given

{xi, ni}i,

EC
yi

(zilS
T
i (θ0)) =

∫
yi

(
zil

∇fCyi

fCyi

)
fCyi

dyi =

∫
yi

zil

(
∇fCyi

)
dyi

= ∇
∫

yi

zil fCyi
dyi −

∫
yi

(∇zil) fCyi
dyi,
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and the first of these last two integrals is 0 because of the identity:

∫
yi

zil fCyi
dyi = EC

yi
(zil) = 0.

Thus

EC
yi

(
zilS

T
i (θ0)

)
= −

∫
yi

(∇zil)f
C
yi

dyi

=

∫
yi

(
ni∑
j=1

I{xij∈El}∇ECyij

)
fCyi

dyi =

ni∑
j=1

I{xij∈El}∇ECyij.

The last equality holds because ∇ECyij is not a function of yi and
∫
yi

fCyi
dyi = 1.

By the preceding calculations, an by definition of e(θ0),


∑m

i=1 EC
[
zi1S

T
i (θ0)

]
...∑m

i=1 EC
[
ziLS

T
i (θ0)

]

 = ∇ e(θ0). (3.21)

Let Σ̃ =
∑m

i=1 V ar (ξi | {xi, ni}i) /m and Σ = limm→∞ Σ̃. Then
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Σ̃ =
1

m

m∑
i=1

V ar(ξi | {xi, ni}i)

=
1

m

m∑
i=1

V arC (zi1, . . . , ziL)T +
1

m

m∑
i=1

Λ̃J̃−1
0 V arC(Si(θ0))J̃

−1
0 Λ̃T −

1

m

m∑
i=1

2
(
CovC

(
zi1, Λ̃J̃−1

0 Si(θ0)
)

, . . . , CovC
(
ziL, Λ̃J̃−1

0 Si(θ0)
))T

=
1

m

m∑
i=1

V arC (zi1, . . . , ziL)T + Λ̃J̃−1
0 Λ̃T − 2Λ̃J̃−1

0 Λ̃T

=
1

m

m∑
i=1

V arC (zi1, . . . , ziL)T − Λ̃J̃−1
0 Λ̃T ,

The existence of m−1
∑m

i=1 V ar (zi1, . . . , ziL)T is ensured by Assumption 3.1.

Under the assumption that (xi, ni) are i.i.d, Σ̃ converge in probability to Σ,

the limiting variance covariance matrix of (f− e(θ̂))/
√

m. With θ in Σ̃ replaced by

its MLE θ̂, Σ̂ = 1
m

∑m
i=1

ˆV ar(ξi|xi, ni) is a consistent estimator of Σ.
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Chapter 4

Discussion and further research

4.1 Discussion

Schoenfeld (1980) presented a class of omnibus chi-squared goodness of fit

tests for the proportional hazards regression model. We adapted this idea and

proposed a class of goodness of fit tests for testing the statistical adequacy of a 2-level

generalized linear mixed model (GLMM). We described the asymptotic properties

of the test when parameters were estimated through maximum likelihood. For a

special case of linear mixed models (LMMs), we extended this test to 2-level LMMs

with no distributional assumptions for either the random effect αi or the error term

ϵij. We also extended the test to multi-level LMMs.

We assessed factors that impact the power and the impact of choice of cell

partitions on the test in simulations for both linear mixed models (LMMs) and lo-

gistic mixed models. We found that when a specific covariate that is associated with

outcome is omitted, cell partitions based on the omitted covariate result in adequate

power of the test. However, if the cell partition is based only on covariates already

in the model, this test has low power to detect any lack of model fit. For LMMs, we

also conducted simulations to show that our test was very robust to violations of the

normality assumption of the error distribution when we use symmetric distributions.

For LMMs, we developed the theoretical power of the test under the local
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alternative. We then checked this theoretical power, obtained from Le Cam’s third

lemma, with simulations. We found that the estimated theoretical power calculated

using Le Cam’s third lemma was reliable at least when the number of clusters m

is above 50. However, when m is very small, it may be advisable to rely on the

empirical power computed through simulations. For LMMs, we also proposed a

criteria parameter ∆ that is closely related to the power.

This goodness of fit test can be used to test the statistical adequacy of the

finally selected GLMM in real applications. All that is needed in order to implement

the test are the final model parameter estimates and their variance covariance matrix

as well as the estimated means for the outcome y under the model. It is easy to

implement the test in LMMs as these are standard outputs from any statistical

software. Implementing logistic mixed models is relatively more complicated, as all

the means and variances of the outcome y involve integrals. Also, the covariance

matrix between the estimated fixed effect parameters and the estimated variance

components is not available in R, but is available in PROC nlmixed in SAS. As a

note of caution, in applying the test in GLMMs, one needs to check the eigenvalues

of the estimated variance covariance matrix Σ̂ in (3.12) and eliminate the tiny

eigenvalues to make sure its inverse won’t blow up. This also helps to get the

correct rank of the estimated variance covariance matrix Σ̂ in (2.13) to ensure the

correct degrees of freedom for the test statistic.
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4.2 Further research

In this thesis, I applied the Schoenfeld’s residual approach [30] to test the

goodness of fit of classical generalized linear mixed models, via quadratic goodness of

fit statistics. I then applied this test to three biomedical data, testing the goodness of

fit of two-level linear mixed models. One of the further research will be applying this

test to multilevel and longitudinal data once we have these kinds of data. Another

aspect of further research will be comparing our proposed goodness of fit test with

the existing bootstrap and Bayesian approaches.
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Chapter 5

Appendix: Three general lemmas

The following three Lemmas are used in several places in the text.

Lemma 5.1 Suppose that {uin : n ≥ 1, 1 ≤ i ≤ n} is a triangular array of

independent identically distributed random variables within each row (i.e., across i)

with mean 0 and finite variance σ2
u, and that these variables are independent

of the random array {cin : n ≥ 1, 1 ≤ i ≤ n} which satisfies the additional

properties that as n → ∞

(a) max
1≤i≤n

|cin| → 0 and (b)
n∑
i=1

c2
in → κ

in probability, where κ ∈ (0,∞). Then
∑n

i=1 cin uin
D→ N (0, κ) as n → ∞.

Proof. {
∑k

i=1 cin uin}nk=1 is a martingale with respect to the filtration Fkn =

σ( {cin, .uin : 1 ≤ i ≤ k} ). The Lemma is an immediate consequence of the

Martingale Central Limit Theorem (D. McLeish 1974; P. Hall and C. Heyde 1981).

A direct proof from the standard Lindeberg Central Limit Theorem (applied condi-

tionally given {cin}ni=1) is also not difficult. 2

Lemma 5.2 Let Σ be a q × q covariance matrix of rank k with smallest non-zero
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eigenvalue λ, and let ζ ∈ (0, λ) be arbitrary. Let Σ̂N be a sequence of random q × q

covariance matrices such that with probability approaching 1 as N → ∞, the smallest

positive eigenvalue of Σ̂N is greater than ζ. If Σ̂N
P→ Σ, then P

(
rank (Σ̂N) = k

)
→

1, as N → ∞.

Proof. Let V and V⊥ be the range and null space of Σ respectively, and

dim(V) = rank(Σ) = k. Because Σ̂N
P→ Σ, we have that ∀ w ∈ V⊥ with w ̸= 0,

∥Σ̂Nw∥ P→ 0, thus

P (∥Σ̂Nw∥ ≤ ζ∥w∥) → 1.

By the hypothesis on Σ̂N stated in the Lemma,

P
(
[ ∥Σ̂Nw∥ ≤ ζ∥w∥ ]

∩
[ w ̸= 0 ]

)
→ 0.

Thus

P (w ∈ {null space of Σ̂N}) → 1, ∀ w ∈ V⊥,

where V⊥ is the null space of Σ. Similarly, ∀ v ∈ V with v ̸= 0, Σ̂Nv
P→ Σv. Thus

∥Σ̂Nv∥ P→ ∥Σv∥ ≥ λ∥v∥ > ζ∥v∥,

which leads to P (Σ̂Nv ̸= 0) → 1. Overall, ∀ w ∈ V⊥ with w ̸= 0 and ∀ v ∈ V with

v ̸= 0,

P (w ∈ null space of Σ̂N , v ∈ range of Σ̂N) → 1.

Therefore, P
(
rank (Σ̂N) = k

)
→ 1, as N → ∞. 2
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Corollary 5.3 Let the symmetric matrix Σ̂
0

N be a consistent estimator sequence

for a q × q covariance matrix Σ whose smallest non-zero eigenvalue is λ. Let ζ

be an arbitrary number, where 0 < ζ < λ. If we represent Σ̂
0

N in terms of an

orthonormal eigenbasis by Σ̂
0

N =
∑q

k=1 ckvkNvTkN and define the random matrix

Σ̂N =
∑q

k=1 ck I[ck>ζ] vkNvTkN , then P (rank (Σ̂N) = rank (Σ)) → 1.

Proof. Let V and V⊥ be the range and null space of Σ respectively. Because

Σ̂
0

N
P→ Σ, we have that ∀ w ∈ V⊥ with w ̸= 0 and ∀ v ∈ V with v ̸= 0,

Σ̂
0

Nw → 0, (Σ̂
0

N − Σ)v
P→ 0.

By definition of the matrix Σ̂N ,

{
w : ∥Σ̂

0

Nw∥ ≤ ζ∥w∥
}

⊂
{
w : Σ̂Nw = 0

}
, and ∥Σ̂Nv∥ > ζ∥v∥.

Thus P (Σ̂Nw = 0) → 1 and P (Σ̂Nv ̸= 0) → 1. Overall, ∀ w ∈ V⊥ with w ̸= 0 and

∀ v ∈ V with v ̸= 0,

P (w ∈ range of Σ̂N , v ∈ null space of Σ̂N) → 1.

Therefore, P
(
rank (Σ̂N) = rank (Σ)

)
→ 1, as N → ∞. 2
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