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FOREWORD 

 

In this dissertation are three unique research chapters. I am the principal author of each of the 

chapters, however, all chapters were a collaboration with other scientists. All chapters have been 

published or will be published shortly. At the conclusion of each chapter co-authors and 

collaborators will be acknowledged. Chapter 2 has been published. Citation is: Wynne, T.T. and 

R.P. Stumpf.  2015. Spatial and temporal patterns in the seasonal distribution of toxic 

cyanobacteria in western Lake Erie from 2002-2014. Toxins.7:1649-1663. Chapter 3 has been 

submitted. Citation is: Wynne, T.T., R.P. Stumpf, R.W. Litaker, and R.R. Hood. 2020. 

Cyanobacterial bloom phenology in Saginaw Bay from MODIS and a comparative look with 

Lake Erie. Harmful Algae. Chapter 4 will be submitted shortly. 
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INTRODUCTION 

1.1 Overview 

Cyanobacteria are globally ubiquitous. They may be credited with being the oldest organism on 

Earth (Banack, et al., 2012) at 4.5 billion years. There is some evidence that cyanobacteria 

caused the formation of the early atmosphere of the Earth (Schirrmeister et al., 2015). Which has 

been supported by the work of Thomas et al. (2005) who have shown that common 

cyanobacteria of the genus Synechococcus and Anabaena (now called Dolichospermum) are able 

to grow in an atmosphere composed entirely of CO2. 

There are both marine and freshwater species of cyanobacteria. The marine species of 

cyanobacteria are responsible for a large percentage of the ocean’s primary productivity. 

Prochlorococcus and Synechococcus, two dominant species of cyanobacteria have been 

hypothesized to make up a significant portion of the world’s marine primary production, and will 

increase with a changing climate (Flomaum et al., 2013).  Some species of cyanobacteria are 

diazotrophs, which are capable of fixing atmospheric N2 (diazotrophs may be either freshwater or 

marine). This ability allows diazotrophic cyanobacteria to grow when fixed nitrogen 

concentrations in the water are depleted.  

This dissertation focuses on freshwater blooms of cyanobacteria. These blooms generally occur 

in eutrophic environments where anthropogenically derived nutrient sources empty into a 

shallow warm basin. There are numerous species of freshwater cyanobacteria, with some of the 

common genera being: Microcystis, Dolichospermum (formerly Anabaena), Planktothrix, 

Cylindrospermopsis, Nodularia, and Aphanizomenon. Of the most compelling reasons to study 

blooms of these ancient organisms is that they are capable of producing biotoxins collectively 
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referred to as Cyanotoxins. There are 3 separate types of toxins associated with cyanobacteria: 

neurotoxins, hepatotoxins and dermatoxins. Neurotoxins include saxitoxin and Anatoxin-a, that 

can cause paralysis and respiratory failure. Hepatotoxins include microcystin which affects the 

function of the liver and kidneys. The most common dermatoxin is lynbyatoxin, which is 

produced by the cyanobacterium Lyngbya, and can cause skin irritation and gastrointestinal 

distress (Chorus and Bartram, 1999). 

1.2 Causes of Cyanobacteria Blooms 

Cyanobacteria blooms are promoted by eutrophication. The main nutrients that are needed for 

primary production are Nitrogen (N) and Phosphorus (P). In marine systems N is generally the 

limiting nutrient, while P is generally the limiting nutrient in freshwater systems. Therefore, over 

enrichment of P will often cause cyanobacteria blooms in freshwater environments. Furthermore 

P comes in two general forms; dissolved and particulate. The most important type of dissolved P 

is the biologically available, Soluble Reactive Phosphorus (SRP) which is a dissolved inorganic 

form of phosphorus that is readily available to the algal community. The most commonly 

measured phosphorus, is Total Phosphorus, which is any form of phosphorus (including SRP), 

which can be inorganic, organic, dissolved or particulate. Generally total phosphorus is around 

10% SRP.  Other physical factors can also play roles in limiting, or sustaining cyanobacteria 

blooms. Temperature is one of the key drivers, as cyanobacteria have an affinity for warm water 

(Paerl and Huisman, 2008). They prefer a warm stable environment so well mixed areas are not 

prone to cyanobacteria blooms. Various methods have been demonstrated to be effective in 

controlling cyanobacteria, e.g., mixing devices can be installed in smaller lakes and ponds in an 

effort to limit cyanobacteria growth, but these are typically applied to smaller sized water bodies 

and are not appropriate for large catchments (see review by Lurling et al., 2016.) In natural 
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systems wind is usually the primary mixing force, although quickly flowing rivers can also 

supply turbulence needed to keep cyanobacterial blooms from forming. Additionally light 

availability is a factor as cyanobacteria have an affinity for high light environments. 

1.3 Economic Impacts 

Cyanobacteria are one of the most visible signs of an impaired aquatic ecosystem. Cyanobacteria 

can form surface scums which are aesthetically unappealing. Wind can often cause cyanobacteria 

to accumulate along shorelines and in harbors where they will most likely be seen by the public. 

The public tends to have a general perception of the water being polluted as a result (Ibelings et 

al., 2003).  Large persistent blooms of cyanobacteria can have adverse effects on property values 

(Steffenson, 2008). Cyanotoxins can cause further economic ramifications by killing livestock 

and other domestic animals as well as wildlife. Additional economic impacts can be felt through 

adverse effects in both the secondary production (Larson et al., 2017) as well as in fisheries 

(Ludsin et al., 2001).  

1.4 Public Health Impacts 

While not the most pressing public health concern, the most common public health complaint 

associated with cyanobacteria is through recreational exposure to dermatoxins which results in 

gastroenteritis and allergic reactions such as skin rashes, respiratory symptoms, and eye irritation 

(Graham et al., 2009). Health ramifications associated with Cyanotoxins vary with the 

concentration of toxins in the water. The world Health Organization has set up guidelines for 

public health exposure. These are listed in table 1. 

Table1: Public health exposure guidelines from the World Health Organization (Chorus and 

Bartram, 1999; Graham et al., 2009). 
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Probability of health 

impacts 

Chlorophyll-a 

concentrations (µ L-1) 

Cyanobacteria (cells 

ml -1) 

Microcystin (µ L-1) 

Low < 10 < 20,000 < 10 

Medium 10-50 20,000 – 100,000 10-20 

High 50-5,000 100,000 – 10,000,000 20-2,000 

Very High > 5000 > 10,000,000 > 2,000 

Perhaps the largest public health impact is also the largest economic impact, and that is the 

contamination of drinking water. These health effects come from the hepatotoxins: microcystin 

and cylindrospermopsin. These toxins are highly heat stable and will not be destroyed through 

the boiling process. Furthermore, they will not be removed from municipal water supplies 

through conventional filtering. There is a guideline of 1part per billion (ppb) in finished drinking 

water (Jetoo et al., 2015). If microcystin is present above 1 ppb, the water must be flushed out 

and treated with nanofiltration or other techniques (EPA, 2020). All known methods of removing 

intercellular or extracellular (dissolved) cyanotoxins are expensive and are not routinely done by 

municipal water suppliers. In August, 2014 the city of Toledo, Ohio issued a “Do Not Drink” 

proclamation on the water supply, when the drinking water reached a microcystin concentration 

exceeding 1 ppb (Jetoo et al., 2015). This left several hundred thousand people without drinkable 

municipal water for several days in the summer, which had vast economic and public health 

effects and altered public perception of the pollution levels of Lake Erie. This was not the only 

time there has been a large scale water outage in municipal water supplies. In September of 2013 

Carroll Township in Ohio issued a “do not drink” order to its 2,000 customers when microcystin 

concentrations exceeding 1 ppb were detected in the drinking water supply (NPR, 2017).  

1.5 Laurentian Great Lakes 



5 
 

Collectively, the Laurentian Great Lakes contain five of the world’s 15 largest lakes, and 

collectively have been estimated to contain 21% of the world’s fresh surface water (Table 2).  

The five Great Lakes were all pristine areas prior to European colonialism. Since then the Great 

Lakes have undergone various stages of degradation, with Lake Superior being the least 

impacted and Lake Erie being the most heavily impacted by anthropogenic activities. The 

western side of Lake Erie is the Maumee River watershed. The Maumee River is the largest 

input of nutrients into Lake Erie. Nearly the entire watershed, the largest watershed of Lake Erie, 

was once covered in a vast wetland referred to as the Great Black Swamp. The Great Black 

swamp was drained for agricultural activities in the mid nineteenth century. With much of the 

wetlands removed combined with the industrial revolution, western Lake Erie went through a 

period of eutrophication. Cyanobacteria blooms became common place and were associated with 

extremely high levels of chlorophyll which led to anoxic and hypoxic conditions (Scavia et al., 

2014).  

Perhaps the defining moment of western Lake Erie was when the Cuyahoga River caught fire in 

Cleveland, Ohio on June 22, 1969. This was generally thought to be the impetus of the Clean 

Water Act, which was passed three years later in 1972. After this point there was a series of 

measures that were undertaken to limit the eutrophication of Lake Erie, which were quite 

successful. Particularly relevant to removing cyanobacterial blooms were the wide scale 

phosphorus abatement strategies that were mandated by the Great Lakes Water Quality 

Agreement (GLWQA). These drastically decreased phosphorus loads into Lake Erie (as well as 

Saginaw Bay and Green Bay). The cyanobacterial blooms were essentially eradicated from the 

basins. However, since the mid-1990s Lake Erie has been going through a period of re-

eutrophication, which has brought back cyanobacteria blooms. The cause of this re-
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eutrophication has been potentially brought about by increases in Soluble Reactive Phosphorus 

(SRP) load, even while Total Phosphorus (TP) has been below the GLWQA goal of 11,000 

MTA (Scavia et al., 2014). It has also been suggested that the invasive mussels of the genus 

Dreissena have contributed to changes in water quality that has led to the reoccurrence of 

cyanobacteria blooms in the Great Lakes (Juhel et al., 2006; Budd et al., 2001). 

Table 2: 

Listed here are some statistics for the Great Lakes. Primary Production numbers come from 

Fahnenstiel et al., 2016. 

 

Lake Average 

depth (m) 

Dissolved 

Inorganic 

Carbon (µM) 

Dissolved 

Organic 

Carbon (µM) 

Primary 

Production 

(Tg/yr) 

Surface Area 

(km2) 

Superior 147 1 100 8.1 82,000 

Michigan 85 2.3 400 6.3 58,000 

Huron 59 1.7 400 5.3 60,000 

Erie 19 2.2 400  25,700 

Ontario 86 2.2 400  7,340 

Coastal 

Oceans 

~100 ~2 ~100   

 

 

1.6 Cyanobacteria in the Great Lakes 
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The three primary areas in the Laurentian Great Lakes that are routinely affected by Harmful 

Algal Blooms are: the western basin of Lake Erie, Saginaw Bay, and Green Bay.  All three 

basins share similarities. They are all fed by one principal river that supplies much of the 

phosphorus needed to drive cyanobacteria blooms within the system. They are all relatively 

shallow and warm basins which are anthropogenically impacted. However, each basin has very 

different bloom dynamics and phenology. My primary goal for this thesis is to compare and 

contrast the bloom phenology of the three basins.  

1.7 Aims and Objectives 

Chapter 1 

In this chapter investigate western Lake Erie, a well-studied body of water, especially pertaining 

to cyanobacteria blooms. The emphasis of this chapter is on the relationship of the cyanobacteria 

blooms with the water intake facilities that supply water to various municipalities. The frequency 

and average cyanobacterial biomass is estimated and the likelihood of each water facility 

encountering severe, mild or no bloom conditions will be calculated based on 10-day periods. 

This chapter was motivated by the city of Toledo, Ohio issuing a “do not drink” order for its 

municipal water supply in August of 2014 due to having microcystin concentrations (exceeding 

1 ppb) in finished drinking water. I calculated the frequency of severe bloom occurrence in six of 

the primary municipal water intake areas and made inferences on when, where and how often 

drinking water supplies would be effected by microcystin. 

 

Chapter 2 
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 I investigate the bloom phenology of Saginaw Bay.  Specifically, I examine when blooms occur, 

the severity of the blooms, and the interannual variability of blooms. Relationships between the 

blooms and river discharge are considered. The chapter concludes with a comparative look at 

Lake Erie blooms and how the two systems act differently. This is comparison is important. 

Until a wet climatological phase in 2008 the two basins had similarly sized blooms, with some 

years Saginaw Bay actually having higher biomasses than Lake Erie. However since the wet 

phase began in 2008 the blooms in western  Lake Erie have far surpassed Saginaw Bay, while 

the blooms in Saginaw Bay have remained approximately the same size. Determining differences 

in the two systems provides insights that can be used to help manage Saginaw Bay to avoid the 

fate of western Lake Erie where there are now massive annual cyanobacterial blooms. 

Conversely, these insights can potentially be used to more effectively manage the Lake Erie 

blooms. The two primary differences that can work to help reduce bloom impacts are a reduction 

in agriculture and restoration of wetland and riparian buffers. 

Chapter 3  

In chapter 3 I investigate the phenology of cyanobacterial blooms in Green Bay. Green Bay is 

fundamentally different from Saginaw Bay and western Lake Erie in that the summertime 

blooms are not monospecific Microcystis blooms, and instead co-occur with diatoms and green 

algae. Relationships between the blooms and a variety of different physical parameters is 

examined to determine which of them contribute to bloom formation.  The eutrophic Lake 

Winnebago drains into Green Bay and Lake Winnebago has much more cyanobacterial bloom 

mass than does Green Bay. I test the hypothesis that blooms in Green Bay originate in Lake 

Winnebago. The chapter concludes with and examination of differences between Green Bay, 

western Lake Erie, and Saginaw Bay. The motivation behind this chapter was to explore linkages 
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between Lake Winnebago and Green Bay and determine what physical parameters govern bloom 

dynamics in Green Bay. 
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Spatial and Temporal Patterns in the Seasonal Distribution of Toxic Cyanobacteria in 

Lake Erie  

2.1 Abstract 

Lake Erie, the world’s tenth largest freshwater lake, has had recurring blooms of toxic 

cyanobacteria for the past two decades. These blooms pose potential health risks for recreation, 

and impact the treatment of drinking water. Understanding the timing and distribution of the 

blooms may aid in planning by local communities and resources managers. Satellite data 

provides a means of examining spatial patterns of the blooms. Data sets from MERIS (2002-

2012) and MODIS (2012-2014) were analyzed to evaluate bloom patterns and frequencies. The 

blooms were identified using previously published algorithms to detect cyanobacteria, as well as 

a variation of these algorithms to account for the saturation of the MODIS ocean color bands. 

Images were binned into 10-day composites to reduce cloud and mixing artifacts. The 13 years 

of composites were used to determine frequency of presence of both detectable cyanobacteria 

and high risk (>100,000 cells mL-1) blooms through the bloom season (defined here as June 1 – 

October 31). Maps show the pattern of development and areas most commonly impacted. 

Frequencies during years with significant blooms were examined as well. With the annual 

forecasts of bloom severity, these frequency maps can provide public water suppliers and health 

departments with guidance on the timing of potential risk.  

2.2 Introduction 

Lake Erie (Figure 2.1) has experienced a recurrence of blooms with potentially toxic 

cyanobacteria this century (Stumpf et al., 2012), with six of the last seven years having 

significant blooms (NOAA, 2014). The dominant species of cyanobacteria in Lake Erie is 
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Microcystis aeruginosa (henceforth referred to as Microcystis). Microcystis typically forms 

dense monospecific (single species) blooms, although Anabaena spp. and other genuses of 

cyanobacteria may sometimes appear. These blooms have a variety of detrimental impacts, such 

as: taste and odor issues in municipal water supplies, potential human health issues, mortalities in 

domestic and wild animal populations, and adverse economic impacts in local communities 

(Backer, 2002; Davenport and Drake, 2011). Contamination of drinking water is a potential 

hazard, given the number of intakes around the western lake.  In September, 2013, Carroll 

Township, Ohio (Station 4 on Figure 2.2), which supplies water to several thousand people, shut 

down its municipal water supplies for two days (Henry, 2013) owing to microcystin, the toxin 

found in Microcystis, concentrations greater than the World Health Organization 

recommendation of 1 µg L-1 (Chorus and Bartram, 1990). In August, 2014 microcystins reached 

the same risk level in the processed water of the city of Toledo, resulting in a two-day “do not 

drink” statement from its municipal water suppliers (station 2 on Figure 2.2) to approximately 

half a million customers (Fitzsimmons, 2014).  

NOAA has routinely issued short-term (<1 week) forecasts in Lake Erie since 2009 (Wynne et 

al., 2013b; NOAA, 2014). The demand for these forecasts has been high. The subscriber list for 

the Lake Erie forecast has experienced an annual growth rate of approximately 250% from its 

inception in 2009. More recently, NCCOS has started issuing seasonal forecasts (NOAA, 2012; 

NOAA 2013; NOAA 2014) of cyanobacteria based on models presented by Stumpf et al. (2012). 

A determination of the frequency of blooms over the 13 years of satellite data will provide a 

better understanding of timing and distributions of these potentially toxic blooms.  

These frequencies may allow for spatial-temporal forecasts, which may be beneficial in both a 

micro and macroeconomic scale. The results could support planning by managers of public water 
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suppliers and parks. They may also ultimately aid the public in avoiding coming into contact 

with potentially toxic (and unaesthetic) cyanobacteria. 

2.3 Methods 

The delineation and detection of these blooms has been well-documented with satellite ocean 

color data (Wynne et al., 2008; 2010; 2011; 2013a; 2013b; Stumpf et al., 2012; NOAA, 2014). 

The Medium Resolution Imaging Spectrometer (MERIS) on board the Envisat-1 satellite 

provided data for the summers from 2002-2011. On April 8, 2012 Envisat failed, resulting in a 

cessation of MERIS data. The Moderate Resolution Imaging Spectroradiometer (MODIS) was 

used for 2012-2014. MERIS level 2 reflectance (R; with sr-1 units) data sets from the second 

reprocessing were obtained from the European Space Agency (ESA). MODIS was obtained as 

level 0 data from the National Aeronautics and Space Administration (NASA) and processed to 

Rayleigh corrected bi-directional reflectance (ρs; which is dimensionless) using NASA’s 

SeaDAS package, with the “rhos_s” option in SeaDAS l2gen. Products were processed in equal 

area Sinusoidal projection, with 1.1 km pixel scale through 2013, and were processed to Albers 

1.1 km equal area projection in 2014. All sinusoidal images were reprojected to the Albers equal 

area projection for all analysis (as all future analyses in our group will use the Albers projection).  

Both data sets were then processed with equivalent spectral shape (second derivative) 

algorithms, based around 680 nm (Wynne et al. 2008; 2013a). With MERIS bands the equation 

is: 

(1) 
)665709(
)665681()}665()709({)665()681()681(2d −

−
−−−= RRRRS  
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where R is the reflectance and the values are the band centers. For MODIS, Wynne et al., 2013a 

adjusted the MERIS algorithm to the MODIS Aqua sensor to yield:  

(2) 
)667748(
)667678()}667()748({)667()678()678( ssss2d −

−
−−−= ρρρρS  

where ρs is Rayleigh corrected bi-directional reflectance. 

For MERIS, the cyanobacterial index (CI) is found from (Wynne et al., 2008):  

(3) CI = -S2d(681) 

 

and for MODIS the conversion to match MERIS (Wynne et al., 2013a) is: 

  

 (4) 1.3)678(2d ×= -SCI  

Where the CI has units of sr-1.  

The timeseries shown here extends from 2002- 2014. The portion of the timeseries covering 

2002-2011 used MERIS imagery, and the portion covering 2012 – 2014 used MODIS imagery. 

MERIS produced superior results with less noise than MODIS and no saturation. MODIS 

saturates for bright pixels, which can result from glint, haze, and turbid water (Franz et al., 2007; 

Wang et al., 2007; Wang and Shi, 2007). These conditions can occur during severe algal blooms 

during the summer (Wynne et al., 2013b), resulting in failure of the CI calculation expressed in 

equation 4. While the time-series from 2012 showed a bloom, the imagery was not overly turbid 

and the MODIS bands used in equation 2 did not saturate in bloom areas, so the MODIS 

saturation was not an issue. However, the 2013 and 2014 blooms were more intense and highly 
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reflective, resulting in some saturation. A mechanism was needed to quantify the biomass under 

saturation. The “land” bands in MODIS are calibrated in such a way that they will not saturate 

even under the most turbid water conditions, and have been recommended for use when the nine 

bands commonly used for ocean color from MODIS (covering 412-869 nm) have saturated 

(Franz et al., 2006). Cyanobacterial blooms are detectable as bright water, which can provide an 

estimate of presence and quantity of biomass (Budd et al., 2002; Kahru et al, 1997). The near-

infrared (NIR) bands on the MODIS Aqua sensor were used to calculate a reflectance proxy for 

the CI for MODIS.  

 

 (5) CIsat = 0.5 * [ρw(859)]0.5 

with 

(6) ρw(859) = ρs(859) – ρs(1240) 

 

where the 1240 band is used as a nominal atmospheric correction (Wang and Shi, 2007). The 

derivation of equation 5 was empirically tuned with a simple root relationship to overlap the 

retrieved CI values around saturated pixels. Slight errors in the tuning of equation 5 are not 

important to the study, as it would apply when conditions are well above the “severe bloom” 

threshold discussed below. While scum or algae floating on the surface can produce saturation in 

the MODIS bands, saturation also occurs in areas without surface scums. As a result, using other 

metrics like the “floating algae index” (Hu, 2009) would still require yet another algorithm (like 

equation 5) to provide coverage of all saturated areas.  
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When saturation did not occur, the standard CI solution (equation 4) is used; for the conditions 

when saturation occurred within a bloom, the CIsat from equation 5 was applied. A tuning of 

reflectivity to biomass would probably vary between years, depending on the bloom 

characteristics, like cellular chlorophyll content. Resuspended sediment is uncommon during the 

summer in Lake Erie, and only the saturated pixels contained within blooms (areas of CI) were 

used.  In 2014, the scattering appeared slightly milder, so the correction of equation 6 was 

reduced proportionately.  

CI varies linearly with biomass, with a value of 10-3 sr-1 corresponding to 105 cells mL-1 (Stumpf 

et al., 2012), which is the World Health Organization’s (WHO) threshold of significantly 

increased risk for human health (Chorus and Bartram, 1999). The minimum detection of the CI is 

still being assessed, however, a CI of 2×10-4 sr-1 produces consistent retrievals of the bloom edge 

over multiple images for both sensors, indicating that the minimum detection is less than 20,000 

cells mL-1, which is also the recommended threshold for avoiding irritative effects (Chorus and 

Bartram, 1999).  

Clouds were masked and 10-day composites were made for each year during the bloom period 

using the maximum value of the CI at each pixel. There are several advantages to utilizing 

maximum value composites. The first advantage is that the composite reduces cloud interference, 

reducing the data to a systematic set of generally cloud-free images. The second key advantage is 

to estimate areal biomass. When winds are strong (> 7.7 m s-1, or stress of 0.1 Pa), the bloom is 

mixed through the water column, diluting the surface concentration (Hunter et al., 2008; Wynne 

et al., 2010). Under calm winds, however, Microcystis floats upward with dense accumulations 

visible on the lake (Aparicio-Medran et al. 2013). The surface concentration (CI) estimated from 

satellite during calm conditions then represents the Microcystis that is present in the water 
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column (Wynne et al., 2010), however, the concentration detected during high winds 

underestimates true biomass. Typically, during any 10-day period in the summer, there is a 

period of calm clear weather (Wynne et al., 2013b), allowing this estimate. The cells return to the 

surface within 24-48 hours after a wind event. The bands used for the algorithm quantify 

concentration within 1 m of the surface in the clearest water (Pope and Fry, 1997), less as 

turbidity increases (usually because of the bloom). Finally, using a 10-day composite makes 

biological sense as the doubling time for Microcystis is as low as 10 days in the Great Lake 

region (Fahnensteil et al. 2008). 

Blooms in Lake Erie generally occur in the summer when water temperatures exceed 15o C, 

although blooms can persist in cooler waters once established (Wynne et al., 2013b). As a result, 

the bloom season considered here is defined as 1 June through 31 October following conventions 

from Stumpf et al. (2012). Fifteen separate 10-day composites covering the bloom year (1 June 

to 31 October) were constructed from methods detailed in Stumpf et al. (2012). The final 10-day 

composite actually consists of 13 days to complete October (to October 31; See Table 1).  

 

Table 1: Shows how the 10-day composites were created. 

Composite Number Start Date End Date No. Days 

1 01 June 10 June 10 

2 11 June 20 June 10 

3 21 June 30 June 10 
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4 1 July 10 July 10 

5 11 July 20 July 10 

6 21 July 30 July 10 

7 31 July 9 August 10 

8 10 August 19 August 10 

9 20 August 29 August 10 

10 30 August 8 September 10 

11 9 September 18 September 10 

12 19 September 28 September 10 

13 29 September 8 October 10 

14 9 October 19 October 10 

15 19 October 31 October 13 

 

 

With the 10-day composites in hand, several climatological data sets were generated. The means 

for each of the 15 separate 10-day composites were made from the averages of all the years.  

Frequency maps were made across two sets of conditions: (1) all years or bloom years, and (2) 

all detectable (measurable CI) and CI>0.001. As noted previously, CI = 0.001 corresponds to the 
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WHO significantly increased risk threshold of 105 cells mL-1.  The lower threshold indicates 

presence of cyanobacteria at a level that poses some (but slight) risk.  Bloom years are those that 

had significant blooms.  Stumpf et al., (2012) detected negligible blooms in 2002 and 2005-2007 

(see also Bridgeman, 2013). While 2012 had a small bloom (NOAA, 2014), it was locally dense 

and nearly equivalent to the 2004 bloom, and is included. As a result, the frequency maps were 

calculated just for years containing defined blooms (2003, 2004, 2008-2014). These frequency 

maps were made based on all bloom types during just the bloom years.  

Spurious pixels due to satellite misnavigation, cloud edges, and mixed land-water pixels were 

removed from analysis. It should be noted that the two pixels adjacent to the coastline in the 

southern shore of Lake Erie had to be masked due to somewhat severe land interference issues. 

These were caused mostly by misnavigation, although in the case of MODIS, slow sensor 

response as the sensor scanned from land, where it always saturated, onto water was the cause. In 

individual MERIS scenes that do not have these issues, the nearshore, masked, pixels appear to 

have similar concentrations to the offshore pixels. Still, the concentration can vary nearshore, 

particularly with light winds moving surface scums.  

2.4 Results 

Frequency Maps 

The mean concentration over the 13 years (Figure 2.3) shows the pattern of high concentration 

through the season. (The color scale is logarithmic, so the orange-red colors have 10-fold greater 

concentration than cyan colors.) Sandusky Bay has the highest consistent concentration, with 

little change through the season. This is typically a bloom from the cyanobacterium, Planktothrix 

(Millie et al., 2008). The Maumee Bay and southwestern area of the western Lake Erie basin 
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(WLEB) have the next highest mean concentration, with rapid increase between July 21 and Aug 

09. In contrast, the northwest area, in the plume of the Detroit River, does not have a detectable 

concentration. Away from the Detroit River, low concentration may be present along the Ontario 

coast in early season, increasing somewhat into September.   

The central basin shows two events; presence of cyanobacteria in July (Jul 01-10) and in early 

October. The July mean was produced by blooms that occurred in 2012 and 2013. The October 

mean owes to the severe bloom of 2011 (see the frequency discussion below).  

Accumulating the biomass across lake, including Sandusky Bay (Figure 2.4), provides a measure 

of the timing of the bloom development. The minimum value on June 1 reflects the presence of a 

bloom in Sandusky Bay, which persists through the season. The variability above this value 

captures the average bloom growth in the lake proper. Early July shows the short-lived bloom in 

the central basin. In the WLEB, development starts by July 22 on average, and peaks in area and 

biomass between Aug 30 and Sep 18. Overall, the peak lasts for 40 days (i.e., four 10-day 

periods) before decreasing rapidly in October.  

The frequency distribution maps (Figures 2.5-2.8) capture key aspects of bloom development. 

Sandusky Bay has a bloom throughout the entire period practically, which is typically of the 

genus Planktothrix. Generally, the western basin blooms start in Maumee Bay, with high 

frequencies in the southwest corner of the WLEB at the beginning of July. The frequency is 

greatest in the west, with high frequency expanding eastward over the season. The greatest extent 

of cyanobacteria presence is from August 30 to Sep 18. The cyanobacteria then become slightly 

less prevalent during the next 30 day period, before experiencing a relatively sharp decline in 
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abundance during the 19 September – 28 September period. For all intents and purposes, 

cyanobacteria are gone over the entire western basin of Lake Erie after 18 October. 

In detail, the bloom is most common first along both the west (Michigan) and south (Ohio) 

shorelines. However, on the Michigan coast, blooms do not occur north of Monroe (Station 2 on 

Figure 2.2). This area is under the influence of the Detroit River, the large volume of water (57th 

largest in the world; Wikipedia, 2015) keeps the bloom back near the Maumee River.  

 

Eastward movement is not uniform. Detectable concentrations occur relatively early along the 

Ohio coast to Marblehead (early July). Later in the season, the pattern changes and the greatest 

frequency of detectable or intense blooms is near the islands in September. Ottawa County (Fig 

2, station 5) has about half the frequency of blooms as do the islands.  Generally, the chances of 

encountering cyanobacteria are less than 50% until August for the island region, while the peak 

frequency occurs between 9 September and 18 September for the western islands (i.e. Bass), and 

between 19 September and 28 September for the eastern islands (i.e. Pelee Island). 

Ontario Shoreline: 

The northern shoreline (Ontario) as a general rule is much less impacted relative to the southern 

shore (Ohio). The area east of Pelee Point is generally unaffected by cyanobacteria, with the only 

incident in the area occurring in the possibly unprecedented bloom of 2011 (Michalak et al., 

2013). The area between Pelee Point and the Detroit River Plume is more regularly affected and, 

like the Ohio shoreline, blooms are more likely to be encountered from 20 August though 28 

September. 



21 
 

Drinking Water Supplies: 

As most intakes are within 1 km of the shore, I examined the frequency patterns of CI > 0.001 at 

3 km offshore near several intakes. These water intake facilities covered a relatively large 

disparate area of western Lake Erie, with one station in Ontario, one in Michigan, and the 

remaining five in Ohio.  The timing of risk for water suppliers varies (Figure 2.9). Toledo has the 

highest frequency, with 60 days having 5-6 years of intense blooms. Monroe, in Michigan, is on 

the edge of the influence of the Detroit River plume. While Monroe has occasional blooms in 

July, like Toledo, they are less frequent. Moving eastward, there is a difference with the 

mainland when compared to the islands. Carroll and Ottawa County have early blooms, while 

Put-in Bay (in the Bass Islands) has less frequent blooms in early August, with a short peak of 

high frequency at the end of August.  

2.5 Discussion 

Creating two frequency maps based on bloom years and all years is based on the value of the 

seasonal predictions issued by NOAA (NOAA, 2012; NOAA, 2013; NOAA, 2014). In these 

seasonal predictions, NOAA predicts whether a bloom of cyanobacteria is to be expected in Lake 

Erie based on a statistical model using discharge of total phosphorus concentration from the 

Maumee River as outlined in Stumpf et al. (2012). If a bloom is to be expected, the frequency 

map using just the bloom years would be more likely to be an accurate assessment of the 

probability map of the bloom relative to the frequency map using all years.  

Distinguishing between bloom and non-bloom years allows for application of the annual 

forecasts (NOAA 2012, NOAA, 2013; NOAA, 2014b).  Stumpf et al. (2012) detailed a method 

to calculate summer peak Microcystis biomass using spring discharge from the Maumee River. 
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This has been used as the basis of a forecast issued annually by NOAA since 2012. The previous 

year’s forecast is validated prior to the new forecast being issued. Thus far the accuracy of the 

forecast has been well received (Dierkes, 2012), and the forecast will continue to be issued.  

The maps can help natural resource managers as they plan on mitigation for the blooms. The 

municipalities that use Lake Erie for drinking water can make plans to avoid intake issues during 

times and places that are likely to have a bloom, or to plan for supplies to treat water to mitigate 

the risk to drinking water. Sampling of parks and public beaches for toxins can be made more 

strategically, as well. Even the public can use the maps to plan recreational activities to gain 

maximum use of the lake, while reducing risk. This could have positive impacts to the local 

economy as it would encourage repeat visitors if negative experiences can be avoided. 

Furthermore, actual mitigation of blooms may become possible if it is known when and where 

they will occur. 

The distribution has provided insight into the patterns of the blooms. The contrast between the 

area near the Maumee River and the Detroit River is striking. Stumpf et al. (2012) showed that 

the phosphorus load from the Maumee River drives the plumes. The results here show that the 

plumes are located in most years in the area of the Maumee River. In contrast, the blooms do not 

occur near the Detroit River. The pattern in the center of the WLEB, which has relatively high 

frequency of blooms, likely results from the transport of the bloom around the Detroit River 

plume. The blooms do not make landfall on the northern Ontario coast until far east of the 

Detroit River. The large difference in nutrient concentration between the Detroit River and 

Maumee River explains this difference; the Detroit River has about 1/10 of the mean 

concentration of phosphorus as does the Maumee River (OEPA, 2010).  
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The forecast could also be useful for educational purposes by informing the public when and 

where blooms may occur and what causes them. The blooms have a tendency to congregate in 

harbors and on beaches where they are more likely to be encountered by the public (Ibelings et 

al., 2003). These areas would be easier for short term mitigation of the blooms relative to the 

large open areas of the Lake. Mitigating the inshore areas affected by blooms would partially 

alleviate the local economic impacts from the blooms. The public also perceives the Lake as 

being polluted when it encounters blooms of cyanobacteria, and by applying short term 

mitigation techniques it may be possible to raise the public perception of the Lake ecosystem. 

Ecologically speaking, these frequency maps serve another purpose. Cyanobacteria blooms are 

common in western Lake Erie. The analysis in Figure 2.4 shows that the maximum intensity 

(biomass) of the blooms occurs between 9 September and 18 September. These maps give a 

spatiotemporal timeframe on the initiation and senescence of the blooms, which was not 

previously available. Furthermore, it gives a likelihood of where the bloom will likely next 

spread once it is underway. For instance, it seems highly probable that the blooms start in 

Maumee Bay, and will spread from there. In nearly all years, the bloom was essentially gone by 

31 October, with the exception of Sandusky Bay.  

2.6 Conclusions 

The methods used here give an approximation of the spatiotemporal cyanobacterial 

quantification for western Lake Erie. The frequency maps can be updated as more years of data 

are available from MODIS. In 2015, the European Space Administration is planning on 

launching the replacement for MERIS, the Ocean Colour Land Imager (OLCI) sensor, on board 

the Sentinel-3 satellite. The accumulation of data will lead to increased statistical power of the 
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frequency maps and allow for evaluation of them as tools for predicting bloom position and 

timing.  
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2.8 Figures 

 

Figure 2.1. Study area and geographic features described in the text.  
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Figure 2.2. Location of Lake Erie municipal water intakes numbered as follows: 1.) Toledo 

PWS; 2.) Monroe; 3.) Carroll Water and Sewer; 4.) Ottawa County Regional; 5.) Put-In-Bay 

Village PWS; 6.) Marblehead Village PWS; 7.) Union 
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Figure 2.3. The 13-year average of the area and biomass in Lake Erie flagged by the satellite 

imagery. Area is shown in blue, average biomass is shown in black.  The biomass is the 

accumulated biomass across the entire lake following method of Stumpf et al. (2012).  1 CI is 

nominally 1020 cells. 
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Figure 2.4. Shown here is the area and the average Cyanobacterial Index concentration of the 13 

years (log scaled) for each 10-day period.  Cell concentration can be estimated from the CI by 

Cells (mL-1) = 108*CI (Wynne et al., 2010; Stumpf et al., 2012). CI > 0.001 exceeds the WHO 

(Chorus and Bartram, 1990) threshold of 105 cells mL-1.  
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Figure 2.5. The spatial pattern (by pixel) of percentage frequency of detectable cyanobacteria.  

Analysis for each 10-day period during all years from 2002-2014.  
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Figure 2.6.The spatial pattern of percentage frequency of severe cyanobacteria (> 105 cells mL-1, 

CI >0.001) for each 10-day period during all years from 2002--2014.  
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Figure 2.7. Same as Figure 2.5 for only years with blooms (percentage frequency of detectable 

cyanobacteria).  
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Figure 2.8. Same as Figure 2.6 for only years with blooms (percentage frequency of severe 

cyanobacteria.  
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Figure 2.9. Frequency of severe blooms during the 2002-2014 record at the approximate location 

of selected water treatment intakes from Figure 2. Except for Toledo station (station 1), the data 

from the other stations were taken 2 pixels (~2 km) into the center of the lake to obtain valid data 

without land contamination or masking.  
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Cyanobacterial Bloom Phenology in Saginaw Bay from MODIS and a comparative look 

with Lake Erie 

3.1 Abstract 

Saginaw Bay and western Lake Erie basin (WLEB) are eutrophic catchments in the Laurentian 

Great Lakes that experience annual, summer-time cyanobacterial blooms. Both basins share 

many features including similar size, shallow depths, and equivalent sized watersheds. They are 

geographically close and both basins derive a preponderance of their nutrient supply from a 

single river. Despite these similarities, the bloom phenology in each basin is quite different. The 

blooms in Saginaw Bay occur at the same time and place and at the same moderate severity level 

each year. The WLEB, in contrast, exhibits far greater inter annual variability in the timing, 

location, and severity of the bloom. Phosphorus inputs are the primary driver of blooms in both 

systems. The WLEB has greater and more variable P-inputs than does Saginaw Bay. Data from 

Saginaw Bay indicates that if inputs of P into the WLEB were reduced to between 450 and 500 

metric tons per year, which the most severe blooms would be abated.  Above 500 metric tons P 

input, blooms increase non-linearly indicating any reduction in P-input at the highest inputs 

levels currently occurring in the WLEB, particularly of dissolved reactive phosphorus, would 

yield disproportionately large reductions in cyanobacterial bloom intensity. Any future shifts in 

the Saginaw Bay watershed toward higher agriculture uses and additional loss of wetlands will 

substantially increase the risk of more intense cyanobacterial blooms than what are currently 

occurring.  

3.2 Introduction 
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Harmful Algal Blooms (HABs) are increasing worldwide (Smayda, 1990; Hallegraeff, 1993; 

Paerl and Paul, 2012; Ho et al., 2019). In freshwater systems these blooms are dominated by 

cyanobacteria, which adversely affect public health, water quality, and the normal food webs 

found in healthy aquatic ecosystems (Brooks et al., 2016). In the Great Lakes, cyanobacteria 

frequently produce potent hepatotoxins, such as microcystins (Watson et al., 2008; Brooks et al., 

2016). Additionally, they can make organic compounds, such as geosmin, that cause taste and 

odor issues in municipal water supplies. Residents that rely on Lake Erie (USA/Canada) for 

drinking water have sporadically suffered drinking water advisories due to cyanotoxins, most 

notably in 2014, when the metropolitan area of Toledo, Ohio went several days under a “Do not 

drink” order (Steffen et al., 2017). Cyanotoxins can also cause mortalities in domestic animals as 

well as wildlife, primarily through ingestion of cyanobacterial scums (Hilborn and Beasley, 

2015). The cyanobacterial blooms in the western basin of Lake Erie (WLEB) have been the 

focus of many studies in the primary literature (Wynne et al. 2008, 2010; Michalak et al., 2013; 

Obenour et al., 2014; Stumpf et al. 2016). In contrast, relatively few recent studies have focused 

on Saginaw Bay (Michigan, USA), especially from a remotely sensed perspective (Budd et al., 

2001; Sayers et al., 2016).   

Given this lack of information on bloom phenology in Saginaw Bay and the lower intensity 

blooms relative to the WLEB, whose watersheds share many morphological similarities, the 

current study was undertaken to address two primary objectives. The first was to detail the bloom 

phenology of Saginaw Bay using remotely sensed satellite data. The second was to compare the 

remotely sensed bloom phenology in Saginaw Bay with that of the more intensively studied 

WLEB to determine if the same or different environmental and anthropogenic factors govern the 

magnitude and timing of cyanobacterial blooms in both systems.  
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3.2.1. Saginaw Bay characteristics  

Saginaw Bay (Figure 3.1) is a large catchment in the southwestern portion of Lake Huron in the 

Laurentian Great Lakes encompassing approximately 2,650 km2. The Saginaw Bay watershed is 

primarily drained by the Saginaw River. This watershed is the largest in the U.S. state of 

Michigan and includes one of America’s most extensive contiguous freshwater wetland systems. 

Fifteen percent of the land in Michigan lies within the Saginaw Bay watershed, and is home to 

approximately 1.5 million people. The land use within the watershed consists of 45% agriculture, 

22% forest, 16% open water/wetland, 10% residential, 6% grassland, and 1% high density 

residential. Nearly the entire shoreline of the bay is lined with dense stands of three square 

bulrush, (Schoenoplectus pungens). The bathymetry of the bay is complicated (Figure 3.1), and 

makes for a complex circulation pattern. The water enters Saginaw Bay from Lake Huron on the 

western side of the basin and mixes with output from the Saginaw River before flowing along the 

eastern side of the bay and returning to Lake Huron. This predominant flow is reinforced by a 

small island located in the south central portion of the Bay that helps channel flow into and out 

of the Bay. The bottom substrate in Saginaw Bay consists primarily of limestone and dolomite 

bedrock and large cobble. The deeper outer portion of the bay, which mixes more completely 

with Lake Huron water, is more oligotrophic, clearer, and colder relative to the inner bay.  

Beginning in the early 1990s, Saginaw Bay was invaded by both zebra mussels (Dreissena 

polymorpha) and quagga mussels (Dreissena bugensis) (Pillsbury et al., 2002; Vanderploeg et 

al., 2001). Both species became well established and were a fundamental component of the food 

web during this study period (Heath et al., 1995; Pillsbury et al., 2002). Their presence is 

important because these species likely promote cyanobacterial blooms by differentially 

consuming diatoms and other competing organisms (Vanderploeg et al., 2001). Another factor 
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promoting cyanobacteria abundance is excess phosphorus (P) loading.  Like most lacustrine 

systems, P is the primary limiting nutrient in Saginaw Bay with current riverine inputs causing 

sufficient enrichment to favor cyanobacterial blooms (Jacoby et al., 2000). Because the system is 

so shallow, remineralization of P will likely reach the photic zone directly promoting 

cyanobacterial dominance. The feeding activity of the mussels also enhances internal 

remineralization of phosphorous, further increasing eutrophic conditions favorable for 

cyanobacterial dominance (Johengen et al., 1995; Arnott and Vanni, 1996; Gardner et al., 2001; 

Welch and Cooke, 1995).  

Nitrogen (N) may also limit primary production in general, and cyanobacteria bloom formation 

in particular, in certain lakes (Xu et al., 2009). Paerl and Otten (2013) have noted that the non-

nitrogen fixing cyanobacteria, Microcystis, is capable of producing dense blooms in areas of 

rapid N enrichment. This frequent co-dependence of blooms on both N and P is problematic 

because P is generally the only regulated nutrient allowing N build-up favoring intense non-

nitrogen fixing cyanobacteria blooms. Nitrogen fixation is metabolically expensive and will only 

be undertaken when conditions are favorable. The tradeoff for the energy invested in N-fixation 

is lower net growth. When sufficient N is present, faster growing non-fixing cyanobacteria 

species will have the competitive advantage and dominate. This is the situation typically 

prevailing in the WLEB and Saginaw Bay where N is generally not limiting and the 

cyanobacterial assemblage is dominated by non-nitrogen fixing species in the genus Microcystis 

(Conley et al., 2009). 

 3.2.2. Western Lake Erie basin characteristics  
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The WLEB, west of Pelee Point to Sandusky Bay ( Figure 3.1C), is located approximately 215 

kilometers south of Saginaw Bay (Figure 3.1). It occupies the westernmost portion of the 25,740 

km2 surface area of Lake Erie and encompasses the area where cyanobacterial blooms in the 

region develop. The WLEB has a surface area of 3,375 km2. It is relatively warm, shallow (mean 

depth of 7 m), and productive relative to the other Great Lakes. Approximately 12 million 

people, 1/3 of the population of the Great Lakes basin, reside within the Lake Erie watershed. In 

addition to supporting the largest fisheries stocks, it is the most anthropogenically-impacted 

portion of the Great Lakes. In the 1970s, the chlorophyll levels in the WLEB were often 

extremely high, exceeding the 50 µg L-1 range (EPA, 1984). The Maumee River is the main 

supply of phosphorus-enriched waters into the WLEB (Stumpf et al., 2012). The Detroit River, 

though having a much larger discharge (~35 times), has much lower phosphorus concentrations 

than the Maumee River and due to high dilution rates, cyanobacteria blooms do not develop in 

the Detroit River Plume (Wynne and Stumpf, 2015). The predominant land use in the watershed 

(78%) is agricultural, primarily row crops.  Nearly the entirety of the WLEB watershed was once 

home to the approximately 4000 km2, Great Black Swamp, which was drained for agriculture in 

the mid-19th century leaving the WLEB nearly devoid of wetlands (Mitsch, 2017).  

The primary role the Maumee River plays in regulating cyanobacterial bloom intensity in WLEB 

is through P delivery (Figure 3.1). Numerous studies have confirmed this linkage (Stumpf et al., 

2012; Stumpf et al., 2016; Bertani et al., 2016). Unlike Saginaw Bay, there is some evidence the 

WLEB can become nitrogen limited during a bloom during the time of this study period. In 

2010, after a large bloom of Microcystis senesced, a bloom of nitrogen fixing cyanobacteria in 

the genus Dolichospermum (formerly Anabaena) developed (Wynne et al., 2013a). It has been 

suggested by Michalak et al. (2013) that low ratio of bioavailable nitrogen-to-phosphorus in the 
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late summer in the WLEB will provide non-nitrogen fixing species, a competitive advantage 

over other phytoplankton (Smith, 1983). Though no nutrient data were available from the 

Dolichospermum bloom observed  by Wynne et al. (2013a), it is reasonable to hypothesize 

bloom succession was due to Dolichospermum‘s ability to overcome N-limitation through 

fixation of atmospheric N. This switch to N-limitation, however, appears to be a somewhat 

anomalous event as nitrogen is generally a non-limiting nutrient in this system (Stumpf et al., 

2012) and Microcystis dominates during most cyanobacteria bloom events.  

In summary, though Saginaw Bay and the WLEB are part of similar sized watersheds, receive a 

majority of their nutrients from a single river of equivalent size, are eutrophic, and relatively 

shallow, the cyanobacterial blooms are generally reported to be less severe in Saginaw Bay 

(Figure 3.1, Sayers et al., 2016). In this study, a 20-year time series of satellite derived 

cyanobacterial bloom estimates are calculated and used to characterize the bloom phenology in 

spatiotemporal detail.  The role of P-inputs, land use practices, water residence times, as well as 

other environmental factors in regulating the observed cyanobacterial bloom phenology were 

examined. The objective was to characterize what factors govern the variability, timing and 

intensity of cyanobacterial blooms in both Saginaw Bay and the WLEB and to determine if those 

governing dynamics were similar or different in each system. 

3.3. Materials and methods 

3.3.1. Satellite data 

Imagery from the Moderate-resolution imaging spectroradiometer (MODIS) was acquired from 

NASA. The MODIS sensor is onboard two separate spacecraft: Aqua and Terra. Imagery from 

both satellites was used in this study. The MODIS imagery was used to detect and quantify 
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cyanobacteria blooms by applying the Cyanobacterial Index (CI). This algorithm was originally 

derived for the MEdium Resolution Imaging Spectrometer (MERIS) (Wynne et al., 2008; Wynne 

et al., 2010; Wynne et al., 2013b), and is described in Equation 1. 

 (eq. 1)      CI = (- SS(678))*1.33 

Where SS is the spectral shape (or curvature; Stumpf and Werdell, 2010) and is determined as  

(eq. 2)   

Where Rho_s is the top of atmosphere reflectance corrected for Rayleigh radiance (NASA, 2019) 

and 1.33 in eq. 1 is a correction factor originating from Wynne et al. (2013b).  Rho_s allows 

potential data retrieval in conditions where the atmospheric correction might fail, such as areas 

of high glint or aerosols (Gower and King, 2007). The standard cloud flagging procedure was 

used to mask clouds (L2 flags; NASA, 2019, Wynne et al., 2018).  Wynne et al. (2013b) showed 

that the CI could be calculated from MODIS and that with proper corrections the MODIS CI is 

equivalent to the MERIS CI. A similar correction should be possible with the relatively newly 

launched Ocean Color Land Imager (OLCI). This will ensure data continuity to build a 

climatological time series of cyanobacteria blooms in the Great Lakes when MODIS, which is 

well beyond its mission life, fails.  The CI algorithm has been used extensively in disparate water 

bodies, including the WLEB (Wynne et al., 2010; Wynne and Stumpf, 2015; Wynne et al., 

2008), Saginaw Bay (Wynne et al., 2008); and various lakes in New England (Lunetta et al., 

2015) and Ohio and Florida lakes (Mishra et al., 2019). More recently the algorithm has been 

applied to lakes across the continental U.S. with successful results (Clark et al., 2017; Urquhart 

et al., 2017; Schaeffer et al., 2015, 2018).  
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The red bands used in this algorithm penetrate pure water only a little over one meter due to red 

light being strongly absorbed by water (Pope and Fry, 1997). The addition of material into the 

water column will lessen the depth penetration of the algorithm to under a meter (and shallower 

still in a cyanobacteria bloom). The spectral shape corrects for total albedo of shallow water, 

however, it may detect benthic cyanobacteria (“algal mats”).  Bottom effects were problematic in 

the very shallow waters in areas of emergent land in eastern Saginaw Bay, near the Wildfowl 

Bay State Wildlife Area. Whether due to actual interference or benthic cyanobacteria in this 

region the wildlife area was included as part of the land mask to avoid potential interference due 

to benthic cyanobacteria (Figure 3.1). Sediment does not typically cause false positives in the CI. 

Hawley et al. (2014) did an in-depth analysis on sediment resuspension in Saginaw Bay. A 

MODIS image with particularly high resuspension was used as an example in their manuscript. 

The same image showed no false positives with the algorithm employed in equation 1. The CI 

product has been used for years in Lake Erie without evidence of impact due to resuspended 

sediments (Wynne et al., 2012; Stumpf et al., 2016).  

To analyze the data set, I partitioned the composites at 10-day intervals starting June 1 and 

extending through October 31 (Table 3.1). This follows the convention used by Stumpf et al. (2012) 

and Wynne and Stumpf (2015) and is based on the assumptions that the cyanobacteria are slow 

growing (in Michigan ~0.295 day-1; Wilson et al., 2006) and that during at least one day within the 

10-day window, winds will be low and atmospheric conditions will be cloud free. Low winds allow 

cyanobacteria to accumulate at the surface, providing a better estimate of overall cyanobacteria 

concentrations within the water column. Wynne et al. (2010) showed that wind speeds where stress 

exceeds 0.1 Pascal (generated by winds > 7.7 m s-1) were enough to mix the bloom through the 

water column so that the majority of the bloom material was out of the detection limit of satellite 
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(roughly a depth of 0.5 meters in bloom conditions). Approximately 24 hours after the stress was 

removed cyanobacterial cells were able to redistribute to the surface of the water, where an accurate 

bloom biomass estimations from satellite could be made. Because cyanobacteria prefer warm water 

temperatures, and Saginaw Bay often freezes in the winter, the CI values were calculated only from 

satellite images obtained during the warmer months. For each 10-day period the maximum CI value 

at each pixel observed in any of the satellite images for that time were retained to form a final 

“composite” image of maximum CI values at each pixel. All subsequent references to CI will 

indicate a composite image containing these pixel-specific maximum CI values for each 10-day 

period (Stumpf et al., 2012). CI values are useful for showing the spatial distribution of maximum 

CI values for a given 10-day composite. Each month has three ten-day composites, so the third 10-

day composite of a 31-day month encompasses 11-days. For simplicity, these 11-day composites 

are also referred to as “10-day” composites (see Table 3.1 for details). In any CI data comparisons 

between Saginaw Bay and WLEB the same 10-day periods were used.  

Table 3.1: The 10-day composite numbering system used for each year in both Saginaw Bay and 

western Lake Erie basin.  

Composite Number Start Date End Date 

1 June 1 June 10 

2 June 11 June 20 

3 June 21 June 30 

4 July 1 July 10 

5 July 11 July 20 

6 July 21 July 31 
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7 August 1 August 10 

8 August 11 August 20 

9 August 21 August 31 

10 September 1 September 10 

11 September 11 September 20 

12 September 21 September 30 

13 October 1 October 10 

14 October 11 October 20 

15 October 21 October 31 

 

3.3.2. Interannual variability in bloom biomass  

To address interannual variability of cyanobacteria biomass in Saginaw Bay the following steps 

were taken.  The maximum pixel values for each available composite MODIS scene were 

summed to produce an “integrated CI” or maximum biomass value. This was done for all 15 

composites from June 1 - October 31 (Table 3.1), for each year from 2000 to 2019, for both 

Saginaw Bay and the WLEB. Cyanobacterial blooms in Saginaw Bay blooms were retained 

within the Bay, only the pixels covering the 2,650 km2 surface area were included in each scene. 

In contrast, blooms originating in the WLEB are sometimes transported into the central basin to 

the area near Avon Point (Figure 3.1C). To capture this transport, satellite surveillance of blooms 

was extended beyond WLEB proper to include the areas west of a line between Pelee Point and 

Avon Point. This region has a surface area of 4,983 km2. Hereafter, bloom in “the WLEB” will 

refer to cyanobacterial blooms that originated in the shallow basin proper plus biomass exported 



44 
 

out of the basin captured in the satellite imagery. The goal was to capture all the biomass 

originating within WLEB proper, but to exclude any blooms developing independently in the 

central basin of Lake Erie.     

3.3.3 Bloom maxima in Saginaw Bay and western Lake Erie Basin 

Given the similarities between Saginaw Bay and WLEB, a logical question to address is whether 

blooms in each develop and peak at the same or different times during the summer. To address 

this question, statistics (mean, standard deviation, mode, and median) describing the time period 

where the maximum CI value occurred were then determined for the integrated CI values for 

each 10-day period (e.g., June 1 to June 10) over all 20 years (Table 3.1).    

3.3.4 Role of total phosphorus (TP) in driving cyanobacterial blooms in Saginaw Bay and 

the western Lake Erie basin 

Because total phosphorus (TP) is known to be a driver of cyanobacterial blooms in the WLEB, I 

examined the relationship between TP-inputs and the magnitude of cyanobacterial blooms in 

both Saginaw Bay and WLEB. This analysis required determining river discharge rates for the 

Saginaw and Maumee Rivers, establishing which period of discharge most impacted 

cyanobacterial bloom development, obtaining flow weighted mean concentrations (FWMC) and 

P loading during the most relevant time periods, and comparing the estimated P-load with the 

magnitude of blooms (integrated CI values) in both systems. The FWMC used in any given 

analysis represented the summed P (TP or DRP) concentrations for a river across a specified 

time period divided by the volumetric discharge of the river during the corresponding time 

period. This average FWMC times flow for a given period of months/year was used to calculate 
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the various time specific TP loads. Details of how these various components of the analyses were 

developed and utilized are provided below.  

 River discharges 

The Saginaw River, and the Maumee River are the primary sources of P that drive cyanobacterial 

growth in both systems (Baker et al., 2014; Stumpf et al., 2012; Withers and Jarvie, 2008). 

Within the Saginaw Bay watershed, the Saginaw River is by far the largest source of water 

flowing into the bay contributing ~70% of the freshwater input (Stow et al., 2014) and 

contributing an estimated 90% of the nutrient load (Bierman et al., 1984). Likewise, the Maumee 

River is a key source of the nutrients entering WLEB, and along with the much smaller 

Cuyahoga and Sandusky Rivers contribute 50% of the P load into Lake Erie (Baker et al., 2014). 

Consequently, any differences in the magnitude in timing of water discharges from the Saginaw 

and Maumee Rivers can potentially affect timing and magnitude of cyanobacterial blooms. To 

document any differences in discharge patterns between the two rivers, Saginaw River flow 

measurements were obtained from the United States Geological Survey’s (USGS) gage station 

04157005 at Holland Avenue at Saginaw, MI, and those for the Maumee River from the USGS 

gage station 04193500 at Waterville, Ohio. The resulting data were utilized as described in the 

sections 2.4.2 and 2.4.3.  

 Estimating what period of river flow best correlated with the 10-day maximum CI value 

Research on cyanobacterial blooms in the WLEB demonstrated total P-input from March - June 

best correlated with maximum bloom biomass later in the summer (Stumpf et al. 2012).  How the 

timing of P inputs affected bloom formation in Saginaw Bay was unknown. To address this 

question, I examined three different integrated periods of river discharge (m3 x 109). These were: 
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(1) October - September, (2) March - June and (3) March - July. The October - September time 

period reflects the TP input starting from the termination of cyanobacterial blooms by early 

October of the previous year through the bloom maximum the next summer as well as the 

termination of the bloom in September. Outflow for these various time periods each year were 

compared to the corresponding highest integrated 10-day (Table 3.1) CI value that year, which 

was assumed to represent the maximum annual bloom biomass each summer. The comparison 

made it possible to estimate which input period best predicted maximum biomass development.   

Additionally, a direct comparison of the average river discharge patterns in Saginaw Bay and the 

WLEB was also undertaken. The objective was to establish how similar or different the pattern 

of monthly discharge was in Saginaw Bay compared to WLEB. This was accomplished by 

determining the mean monthly water discharge volume for both rivers from 2000-2019. The data 

were analyzed from October to September which corresponds with the annual bloom progression 

observed in Saginaw Bay and Lake Erie.  

Relationship between TP loading and maximum 10-day CI in Saginaw Bay and Western Lake 

Erie Basin 

As a means of investigating how P-inputs drive bloom phenology between Saginaw Bay and the 

WLEB I determined the relationship of TP input to maximum 10-day CI. Total phosphorus is 

generally used to set limits for eutrophication based on it being the form most commonly and 

readily measured. TP inputs for the Saginaw River and the Maumee River were estimated as 

follows. Initially, average TP and Dissolved Reactive Phosphorus (DRP) concentrations for the 

Saginaw and Maumee Rivers were determined. For Saginaw Bay, the only reliable estimate of 

TP-loading comes from the study by Cha et al. (2010). That study utilized known phosphorus 
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concentrations, river flow rates, and loading estimates directly measured by Michigan 

Department of Environmental Quality or obtained from other sources  from 1974 - 1991 and 

2001 - 2005 (MDEQWB, 2010). Those data allowed development of a Bayesian model 

predicting the TP loads from flow rates. This model, along with flow rates from the USGS 

allowed continuous estimation of loading from 1968-2008, despite the lack of measured nutrient 

concentration data in some years. The last 9 years of this data set overlap with the first 9 years of 

this study. As a result, it was only possible to obtain estimates of TP concentrations for the 

period 2000-2008. For the WLEB, TP is routinely measured in the watershed, including the 

Maumee River, by Heidelberg University’s National Center for Water Quality Research 

(NCWQR) (Heidelberg University, 2019).  Those values and those from Cha et al. (2010), along 

with the March to June river discharges from the USGS during the 2000-2008 study period, were 

used to calculate the FWMC for TP in both the Saginaw and Maumee Rivers.  

Cumulative TP loading for each year for the Saginaw River from 2000-2008 was then calculated 

using the following equation: 

(eq. 3)                                            𝑀𝑀 = ∑𝑛𝑛=𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽 30
𝑖𝑖=𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀ℎ (𝑥𝑥) 𝑓𝑓𝑖𝑖 

Where M is the annual total mass of TP in grams by riverine transport, x is the FWMC of TP 

(mg L-1) determined above, f is the river discharge per month for the Saginaw River calculated 

from sources described in section 2.4.1, and i is month (Sigleo and Frick, 2003). The resulting 

estimated annual P-inputs of TP and DRP (dissolved reactive phosphorus) were converted to 

metric tons. 

Finally, the annual March - June volumetric runoff estimates for the Saginaw and Maumee 

Rivers from 2000-2008 were compared to the maximal annual biomass estimate determined as 
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described in section 2.3. An equivalent comparison was constructed for annual March - June TP 

inputs versus the maximal annual biomass (CI) values.  

Historical versus current estimation of P-loading in Saginaw Bay to estimate efficacy of P 

abatement efforts  

In the 1970s phosphate abatement regulations were put in place and eutrophication declined only 

to emerge again in the 1990s in the WLEB (Scavia et al., 2014). Data on the annual volumetric 

discharge form the Saginaw River and annual TP loading from the periods 1974 - 1991 and 2001 

- 2005 were collated from different sources by the Michigan Department of Environmental 

Quality Water Board (MDEQWB, 2010; Figure 3.2). These data provide an estimation of the 

overall efficacy of TP abatement in the Saginaw River watershed and if the same trend of 

increased eutrophication as observed in the WLEB occurred. This analysis was done by 

performing a regression analysis of annual volumetric outputs from the Saginaw River versus the 

TP from each dataset and then comparing the slope of the regression lines. An increase in slope 

of the 2001 - 2005 data compared to that of the 1974 - 1991 data would indicate an actual 

increase in TP concentration relative to 1974-1991 and vice versa.  

3.3.5. Modeled maximum, cumulative 10-day CI predicted from total phosphorus (TP) and 

dissolved reactive phosphorus (DRP) inputs 

Another means of assessing the similarity or differences in response to P-inputs in Saginaw Bay 

and WLEB is to use models previously developed for western Lake Erie. Specifically, Stumpf et 

al. (2016) modeled the maximum, cumulative 10-day CI from both TP and DRP for the Maumee 

River - WLEB system.  Research in the WLEB (Baker et al., 2014), however suggests DRP, not 

TP, is the primary driver of Microcystis blooms. Similarly, Tarczyńska et al. (2001) reported that 
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DRP, in conjunction with temperature and water retention time, were the primary factors in 

promoting Microcystis blooms in the Sulejow Reservoir in Poland. By running the Stumpf et al. 

(2016) model using data available from both the Saginaw Bay and WLEB from 2000-2008 it 

was possible to determine how closely the modeled, integrated 10-day CI values matched the 

actual measured 10-day integrated CI values in both systems. An equivalent ability for TP and 

DRP to predict actual cyanobacterial biomass in both systems would indicate P-inputs are 

governing bloom dynamics in both systems in a similar fashion. Comparing the TP versus DRP 

results also allows insight into whether DRP was a better predictor of cyanobacterial biomass in 

Saginaw Bay as was found previously in WLEB.  

Most of the flow rate and nutrient concentration data needed to run the model were all readily 

available from USGS and the NCWQR database (Heidelberg University, 2019), respectively.  

DRP concentrations for the Saginaw River, which have not been measured, were the only 

exception. An indirect estimate of average DRP for the Saginaw River was obtained using the 

following approach. Average March-June TP and DRP concentrations in mg L-1 for the period 

from 2000-2019 were obtained for the nearby Cuyahoga, Sandusky, and Maumee Rivers 

(Heidelberg University, 2019; Baker et al. 2014).  Agriculture, primarily corn and soybean 

production, constitutes 83% of the land use in the Sandusky River watershed, 78% in the 

Maumee River watershed, 45% in the Saginaw watershed and 22% in the Cuyahoga watershed. 

The Sandusky River basin covers 4,735 km2 with 220,000 residents. The Maumee River 

watershed covers 21,538 km2 and has 278,000 residents. The Cuyahoga watershed covers 2,106 

square kilometers and is the most intensely urbanized. It receives runoff from the municipalities 

of much of metropolitan Cleveland, Akron, Kent, and Cuyahoga Falls and has a resident 

population of 1.8 million people. It receives substantial nutrient inputs from non-agricultural as 
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well as agricultural sources. The Saginaw River watershed is much larger, covering 22,261 km2, 

but still contains a more dispersed population of 1.4 million residents.  

The four month period from March-June was chosen because total volumetric discharge from the 

Saginaw River during this time, analyzed as detailed in 2.4.2, correlated best with the highest 

integrated CI values each summer. The average TP and DRP concentrations for all the March-

June periods between 2000-2019 ± 1 standard deviation were next determined and a regression 

equation fit to the data. The resulting regression equation, in conjunction with the average 

FWMC TP concentration for the Saginaw River obtained from the Cha et al. (2010) study for the 

period from 2000-2008, made it possible to estimate the FWMC for DRP in the Saginaw River. 

The corresponding March-June average DRP FWMC from the Maumee River were obtained 

from the NCWQR database as reported above (Heidelberg University, 2019). Once these data 

were assembled, the modeling studies were conducted as follows. 

Modeling Maximum CI from Total Phosphorus 

The modeled integrated CI (CIMERIS) equation for TP developed by Stumpf et al. (2016) using 

the existing MERIS and adjusted MODIS data is: 

(eq. 4)                                𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐵𝐵 × 10𝑎𝑎×𝑋𝑋 

Where CIMeris model = modeled CI value, a = 7.48x10-4, B = 0.57 and X = total phosphorus load in 

metric tons. As the MERIS sensor failed it was replaced by the MODIS sensor. This transition 

required recalibration of the MERIS algorithm from Stumpf et al. (2016) to fit the MODIS data 

used in this study because the MERIS composited imagery had CImax values slightly lower than 

the MODIS CImax values for overlapping scenes. This was particularly true of the 2011 bloom in 
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which the MODIS sensor experienced saturation of the sensor in the scum areas (Wynne et al., 

2013b). The algorithm that was used to estimate the CI in the scum arrears most likely 

overestimated the scum CI relative to MERIS, which does not have a saturation issue (Wynne et 

al., 2018).  Equation 4 above needed to be recalibrated to account for these differences. The CI 

MERIS from Stumpf et al. (2016) was plotted against with the CIMODIS in this study (Figure 3.3) 

and the resultant equation was 

(eq. 5)                                      𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 0.81 ×  𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 1.3  

Combining equations 4 and 5 yields the following equation for CIMODIS model  

(eq. 6)                                       𝐶𝐶𝐶𝐶𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝐵𝐵𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 × 10𝑎𝑎×𝑋𝑋 +1.6 

where a remains = 7.48x10-4 , BMODIS = 0.70, with X = total phosphorus load in metric tons. For 

Saginaw Bay and WLEB, it was possible to insert the March-June TP loading values previously 

determined in section 2.4.3 into eq. 6 to calculate  maximal 10-day CImodeled values for both 

Saginaw Bay and WLEB from 2000 - 2008.    

Modeling maximum CI from total dissolved reactive phosphorus (DRP) 

Equation 6 also models the relationship between DRP inputs and resulting maximal 10-day CI 

values where X= DRP load in metric tons, a = 3.87x10-3 (Stumpf et al., 2016), and BMODIS = 0.59 

determined from B=0.48 in Stumpf et al. (2016).  

The total March - June DRP inputs for the WLEB needed to predict the maximal 10-day CI 

values using eq. 5 were estimated using a mean DRP value for the Maumee River as described 

above.  The corresponding March - June DRP loading for the Saginaw River was calculated 

using eq. 3 and the mean flow-weighted DRP value obtained as by the method described  in 
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section 2.5. As before, the actual 10-day integrated CI values estimated from satellite data for 

both systems were compared to the modeled integrated CI values. 

 3.3.6. Effects of other forcing functions on bloom dynamics in Saginaw Bay 

Other forcing functions besides P-input can potentially modulate the intensity of blooms in the 

two systems. Potential factors for consideration were selected because they are likely to be 

associated with cyanobacteria growth or dominance. These include cloud cover, incoming 

shortwave irradiance (proxy for incoming photosynthetically active radiation), water 

temperature, and wind stress (intensity and direction). Differences in average light availability 

associated with latitude and cloud cover will potentially affect the growth of cyanobacteria that 

often prefer high light. Many cyanobacteria such as Microcystis vertically migrate in the water 

column to optimize photosynthesis. Surface temperature was chosen because cyanobacteria grow 

better at warmer waters associated with a stable thermocline that reduces mixing losses. Under 

these conditions, cyanobacteria often outcompete other co-occurring species (Paerl and Huisman, 

2008). Wind stress was chosen because it can affect the vertical distribution of cells and vertical 

migration directly affecting CI values that only come from the top meter or so of the water 

column (Reynolds et al., 1987; Wynne et al., 2010).  

For comparative purposes, the available June-October data listed above were downloaded as 

climatological monthly means from NASA’s Giovanni reanalysis dataset (Giovanni, 2020) for 

the years 2000 to 2019. The corresponding CI scenes were binned to create monthly composites 

instead of the 10-day integrated CI composites used elsewhere in this study. Once the June-

October monthly values were calculated they were averaged to provide an average value for each 
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year. Single parameter correlations were then performed between the factors listed above to 

identify the factors with significant correlations with the annual June-October CI values.  

 3.3.7 Bloom phenology in Saginaw Bay 

The following analysis was performed to provide a more detailed resolution regarding the 

temporal and spatial distribution of Saginaw Bay cyanobacterial blooms, which have been less 

well investigated than those in western Lake Erie. The analysis was conducted by segregating all 

the scenes 2000-2019 into 15 datasets each containing the scenes for the same 10-day period 

each year (Table 3.1).  Each of the 15 datasets was then analyzed separately. CI values from each 

corresponding pixel from all 20 scenes (2000-2019) was identified, averaged and plotted as a 

single composite image showing the average CI distribution across Saginaw Bay for that 10-day 

period. The resulting 15 composite plots of average CI values across Saginaw Bay for each 10-

day period were then presented in chronological order to show the seasonal bloom progression 

from the summertime initiation to the final demise in the fall. This analysis included any bloom 

where the CI is above the detection limit, i.e. > 0, which is estimated to be ~10,000 - 20,000 cells 

mL-1 (Davis et al., 2018).  

In addition, two frequency analyses previously used to investigate bloom severity in WLEB were 

performed (Wynne and Stumpf, 2015). The 2000-2019 MODIS imagery were used to illustrate 

the bloom phenology described above and were partitioned into the same 15 datasets containing 

the scenes for specific 10-day composite images from the first 17 years of the study. However, 

instead of using the data to calculate an average composite pixel CI value, the data for each year 

was examined to determine how many years during the time series the CI value for each pixel 

exceeded a defined threshold value. The number of years where the threshold exceeded the 
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prescribed threshold value was then divided by 17 and multiplied by 100 to provide a frequency 

estimate ranging from 0 to 100 percent. In the first frequency analysis, the threshold value was 

CI = 0 as defined above.  The resulting 15 frequency plots for each 10-day period were plotted in 

chronological order to show how frequently a bloom with CI>0 was present in each section from 

spring to early spring. The second analysis was performed in exactly the same manner, but used 

a threshold value CI ≥ 0.001, equivalent to a concentration of ~105 cells mL-1 (Stumpf et al., 

2012). This is the concentration recommended by the World Health Organization as the upper 

limit for recreational exposure to cyanobacteria (Chorus and Bartram, 1999) and represents the 

frequency of severe blooms throughout Saginaw Bay on average over the bloom season. By 

analyzing the frequency of severe blooms only, the noise in the data is reduced.  

3.3.8 Spatial distribution of blooms in Saginaw Bay relative to the prevailing circulation 

pattern 

Another understudied aspect of the cyanobacterial blooms in Saginaw Bay is their spatial 

distribution. The predominant flow in Saginaw Bay consists of water entering from Lake Huron 

along the western side of the Bay and exiting along the eastern shore. This flow is reinforced by 

an island located in the approximate center of the Bay that helps channel flow into and out of the 

Bay. To determine how this flow pattern might influence spatial difference in the bloom 

intensity, Saginaw Bay was divided into five different subregions. These included: (1) the area 

closest to the river mouth at the southern end of the Bay, (2) the inner and (3) outer regions on 

the eastern side of the Bay and (4) the inner and (5) outer regions along the western side. 

Previous studies have similarly partitioned the Bay into these same subregions as a means of 

documenting spatial differences in various biological measurements associated with differences 

in depth and circulation patterns (Bierman et al., 1984; Fishman et al., 2010). The integrated CI 
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for each subregion for each 10-day composite period (Table 3.1) were then determined from the 

MODIS data and shown as a separate time series from 2000-2017.  

To further quantify interannual variability in bloom intensity among the different subregions of 

Saginaw Bay, an integrated CI value for each year from 2000-2019 for each subregion was 

determined. The annual subregional, integrated CI values were then normalized to the surface 

area of each corresponding subregion (integrated CI km-2).  

3.4 Results 

3.4.1. Satellite-derived interannual variability 

Every year during the 2000-2019 study period Saginaw Bay experienced a cyanobacterial bloom 

(Figure 3.4). The magnitude of these blooms, as indicated by the largest integrated CI value 

(biomass) during a 10-day period, showed relatively little interannual variation. The largest 10-

day integrated biomass estimate for the entire Bay occurred from 1-10 September, 2017. The 

smallest bloom maximum occurred from 1-10 August, 2016. These maximum and minimum 

bloom biomasses indicated blooms varied by no more than 4.25-fold interannually. If the 2017 

maximum biomass value is excluded, the interannual variation drops to a 1.6-fold difference. In 

contrast, blooms in the WLEB exhibited a much higher degree of interannual variability during 

the same period. Maximal 10-day biomass estimates in this system ranged from an integrated CI 

of 1.5 in 2005 to CI of 40 in 2011, corresponding with a 27-fold interannual difference in bloom 

concentrations. If 2011is excluded, the interannual variation was still 15-fold. Figure 3.4B shows 

the maximum integrated CI values for the same 10-day composites in Saginaw Bay 

superimposed over the WLEB integrated CI. Blooms in WLEB during “non-bloom years” 

(2000-2002; 2005-2007) were of similar magnitude to those in Saginaw Bay. Starting in 2008 
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the two systems diverged. While the magnitude of the cyanobacterial blooms remained relatively 

stable in Saginaw Bay, much larger blooms began to develop in WLEB during the years 2008-

2009, 2011, 2013-2015 and 2017. This divergence corresponded to a shift from drier years 

(2000-2008) on average to wetter years on average (2009-20017, 2019; Figure 3.4).  

3.4.2. Timing of bloom maxima in Saginaw Bay and western Lake Erie Basin 

The mean, median, and mode of integrated CI values for each of the 10-day periods (Table 3.1) 

over the course of the times series were determined. The 10-day period having the highest mean, 

median, and mode values in Saginaw Bay and WLEB are shown in Table 3.2. The mean, 

median, and mode results all showed blooms peaked in Saginaw Bay 20 days before those in 

WLEB. Corresponding mean monthly water temperature estimates for 2002-2019 from the 

USGS discharge stations from the Maumee River and the Saginaw River indicate the warmest 

10-day in both rivers occurred in the 6th composite period, corresponding to 21 July - 31 July. 

The maximal temperatures, however, were slightly different between the two systems. Mean 

monthly water temperatures from MODIS nighttime 11-micron 4 km data for WLEB were 24.0 

°C in July, 24.2 °C in August and 21.6 in September, compared to 21.7 °C in July, 22.0 °C in 

August and 19.4 in September for Saginaw Bay.  

Table 3.2: The 10-day composite periods (in parentheses) exhibiting the highest mean, median, 

and mode integrated CI values during the 20-year MODIS time series. Details on how values 

were calculated are given in section 2.3. 

Statistic western Lake Erie Basin Saginaw Bay 

Mean ± SD 9.7 ± 2.4 (Sep 1 - Sep 10) 7.75± 1.7 (Aug 11 - Aug 20) 
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Median 10.0          (Sep 1 - Sep 10) 7.5         (Aug 11 - Aug 20) 

Mode 10.0          (Sep 1 - Sep 10) 9.0         (Aug 21 - Aug 31) 

 

3.4.3 Flow period best corresponding to maximum 10-day CI value   

The March to June and March to July volumetric output of the Saginaw River best correlated 

with the maximal 10-day integrated CI value later in August (Table 3.2). There was no 

significant difference between these two time periods with regard to their ability to predict 

maximal CI values (Figure 3.5). Consequently, in each of the following analyses, flow rate and 

associated nutrient loading were integrated over the March - June period which has produced the 

best correlation between river flow and the extent of blooms in WLEB (Stumpf et al., 2012). 

This also simplified comparisons of the mechanisms driving cyanobacterial blooms in both 

systems.  

The average annual discharge pattern for the Saginaw and Maumee Rivers were similar with 

peak flow occurring in April in the Saginaw River and March in the Maumee River (Figure 3.6). 

Though the pattern was similar, average discharge volumes from the Maumee River in March 

were substantially higher than from the Saginaw River. April and May discharges from both 

rivers were equivalent while those in June were again substantially higher from the Maumee 

River. As a result, on average the overall discharge volume from the Maumee River is higher 

than that from the Saginaw River. Another major difference between the two rivers was the 

larger interannual variation relative to mean flow in the Maumee River, particularly between 

March and July (Figure 3.6).  
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Table 3.3. Correlations between the discharge volumes from Saginaw and Maumee Rivers and 

the annual maximum 10-day integrated CI values.  

Water Body Time Period r2 

Saginaw Bay March - June 0.15 

Saginaw Bay March - July 0.16 

Saginaw Bay Water Year 0.2 

western Lake Erie Basin March - June 0.6 

western Lake Erie Basin  March - July 0.6 

western Lake Erie Basin  Water Year 0.07 

 

3.4.4 Efficacy of P-reduction effort in Saginaw River basin   

The relationship of annual output from the Saginaw River versus TP loading from 1974 - 1991 

had a slope of 2.7 versus 1.7 for the 2001 - 2005 period (MDEQWB, 2010) (Figure 3.2).  This 

difference in slope indicates a 37% drop in average TP concentrations in response to efforts to 

reduce loading as of 2005.  

3.4.5. Relationship between the estimated March-June TP loading versus subsequent 

maximal 10-day composite CI values  

The relationship between TP loading from the Saginaw and Maumee Rivers versus resultant 

maximal cyanobacterial biomass was calculated as detailed in section 2.5. The volumetric 

discharge of the Saginaw and Maumee Rivers during the drier period from 2000-2008, for which 

TP data for the Saginaw River, were similar. In contrast, the amount of cyanobacterial biomass 
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produced for the same amount of river discharge were not equivalent. As March - June outflow 

increased in the Saginaw Bay, the cyanobacterial biomass rose in a linear fashion. In contrast, as 

discharge exceeded about 2 x 109 m3 cyanobacterial biomass in WLEB increased in a non-linear 

fashion with the linear increases in flow producing progressively and disproportionately more 

intense blooms compared to Saginaw Bay (Figure 3.7A).  

The plot of March - June TP inputs versus maximal cyanobacterial biomass showed a different 

pattern than observed for river discharges (Figure 3.7B). TP inputs between 110 to 450 metric 

tons caused similar, linear increases in maximal bloom intensity in both Saginaw Bay and 

WLEB. TP input into Saginaw Bay for 8 of the 9 years examined fell below this cut off point. 

The remaining year received TP inputs of only 450 metric tons. TP inputs into WLEB exceeded 

400 metric tons for 7 of the 9 years with maximal loading exceeding 1,050 metric tons. As 

loading levels exceeded 450 metric tons TP in the WLEB, linear increases in TP produced a non-

linear response of progressively more intense cyanobacterial blooms (Figure 3.7B). 

3.4.6. Modeled CI as a function of TP and DRP  

The modeled cyanobacterial biomass based in March - June TP input fell along a 1:1 line for 

both Saginaw Bay and WLEB (Figure 3.8A). This is consistent with the model having been 

developed for WLEB, which takes into account the non-linear response with increased TP 

loading.  Because the Saginaw Bay loading values were low, they fell in the more linear portion 

of the model consistent with the observations in Figure 3.8B. The tight clustering of points in 

Saginaw Bay are also consistent with the low interannual variation in bloom intensity compared 

to the much larger dynamic range for WLEB. When interpreting these data, it should be noted 

that the Maumee River Basin entered a wet phase in 2008 (Figure 3.4) and that is the only wet 
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year included in this analysis. Even greater TP loading for 2009 - 2019 would be anticipated if 

the requisite TP concentration in the Saginaw River had been available to estimate the 

corresponding loading (Stumpf et al., 2016).  

CI modeled on DRP from the Maumee River again fell along the 1:1 line with slightly more 

scatter than was observed for TP. This scatter indicates that in the lower flow years from 2000-

2008, TP inputs did outperform DRP estimates in predicting cyanobacterial bloom biomass 

(Figure 3.8B). The CI values based on the lower DRP input from the Saginaw River deviated 

from the expected 1:1 line. These values again clustered together at the low end of the P-input to 

cyanobacterial output curve, but exhibited a much higher slope than expected based on the 

estimated DRP value used in the model (Figure 3.9). This higher slope is likely due to the actual 

DRP concentrations in the Saginaw River being even lower than estimated. 

3.4.7. Additional forcing functions effects on bloom dynamics in Saginaw Bay 

The single regression analyses of cloud cover, incoming shortwave irradiance, mean water and 

wind stress (intensity and direction) versus CI were conducted. Results revealed that no input 

parameter had an r2 > 0.05. 

3.4.8. Bloom phenology and intensity in Saginaw Bay 

The average CI patterns from each 10-day composite for the entire 20-year time series is shown 

in Figure 3.10 for Saginaw Bay. The blooms peak in August, and subside relatively quickly in 

early September. This differs from the WLEB, where a similar analysis showed peak 

concentrations in mid-September (Wynne and Stumpf, 2015). Blooms are primarily distributed 

along the shoreline every year forming a halo that does not fully extend into the center of the 

bay. Nguyen et al. (2014) showed the prevailing current field in Saginaw Bay has strong 
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divergent currents in the center portion of the bay that move water away from the center of the 

bay towards the shore, which prevents the cyanobacterial cells from accumulating there. These 

currents are particularly strong in July and August, when the blooms are at their peak. The 

frequency of all blooms (CI > 0) per 10-day composite are shown in Figure 3.11A, and the 

severe blooms (CI > 0.001) are shown in Figure 11B. These analyses also show the same pattern 

as observed in Figure 3.10 with nearshore areas clearly experiencing more blooms on average. In 

combination these results show blooms reliably initiating in July, reaching peak in mid-August, 

fully dissipated by October and disproportionately impacting areas adjacent to shore. 

3.4.9. Quantifying magnitude of cyanobacterial blooms in subsections of Saginaw Bay 

To examine differences in bloom intensity along various segments of the shoreline in Saginaw 

Bay, the integrated CI values were calculated for 5 different subregions of Saginaw Bay for the 

entire 20-year time series (Figure 3.12). The time series again revealed the same relatively 

invariant pattern of annual blooms across the entire study period (Figure 3.12A). The subsection 

where the Saginaw River enters Saginaw Bay exhibited the highest composite CI values and the 

inner Bay had generally higher CI values than the outer Bay. There was also an across Bay 

gradient in CI values with Regions 2 (inner Bay) and 4 (outer Bay) along the western shore 

exhibiting lower CI values than the corresponding subregions 3 (inner) and 5 (outer) along the 

eastern shore (Figure 3.12C). This general pattern in cyanobacterial bloom intensity is again 

corresponds with inflowing oligotrophic waters from Lake Huron preferentially diluting the 

cyanobacteria bloom along the western shore and outflowing currents differentially transporting 

bloom populations from near the mouth of the Saginaw River along the eastern shore. A minor 

portion of the observed CI differences may also be partially due to regions on the western side of 

the Bay having a lower percentage of coastal adjacent pixels relative to the two regions on the 
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eastern part of the bay. Pixels immediately along the shoreline can sometimes have bottom 

reflectance or other adjacency issues that cause overestimated CI values.  

3.5 Discussion 

3.5.1 Factors governing severity and variability of cyanobacterial blooms in Saginaw Bay 

and the western Lake Erie Basin (WLEB).  

The interannual differences in the variability and intensity of cyanobacterial blooms observed in 

the WLEB relative to Saginaw Bay were extreme given both watersheds are similarly sized and 

have a close geographic proximity. Saginaw Bay experienced relatively moderate, similarly 

sized, cyanobacterial blooms each year from 2000-2019. In contrast, blooms in the WLEB 

ranged from the intensities observed in Saginaw Bay to an order of magnitude higher (Figure 

3.4). Many of the larger WLEB blooms caused significant adverse impacts (Michalak et al., 

2013; Stumpf et al. 2016). The differences in bloom intensity were largely driven by two factors: 

the greater flow weighted mean concentrations (FWMC) of P in the Maumee River and the 

higher and more variable volumetric discharge from the Maumee River (Figure 3.6). The impact 

of the differences in FWMC of TP on cyanobacterial bloom formation was evident in comparing 

the influence of discharge and TP on the maximal summertime biomasses in Saginaw Bay and 

the WLEB (Figure 3.7). During this relatively dry 9-year period, the range in annual discharge 

volumes was equivalent for these two similarly sized watersheds. Yet the same volumetric 

discharge from the Maumee River produced more intense cyanobacterial blooms than equivalent 

discharges by the Saginaw River (Figure 3.7A). In contrast, when maximal biomasses in 

Saginaw Bay and the WLEB were plotted versus the total March-June TP loading for both the 

Saginaw and Maumee Rivers, comparable loading produced equivalent cyanobacterial biomass 
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in both systems (Figures 3.6 and 3.7). Blooms in Saginaw Bay clustered at the low end of the TP 

input range and were tightly grouped reflecting the small interannual variation in TP inputs and 

resulting blooms. The largest variation in cyanobacterial biomass occurred in the WLEB during 

the wetter period from 2009-2019, and was again driven by much greater variations in May-June 

phosphorus loads from the P-enriched Maumee River compared to the less enriched Saginaw 

River (Figure 3.4; Stumpf et al. 2016). 

The higher nutrient load in the Maumee River is due to approximately 78% of the land use being 

devoted to agriculture compared to 45% in the Saginaw Bay watershed (Ohio EPA, 2008). Most 

of the agriculture in both watersheds is devoted to cultivation of row crops of corn and soybeans. 

The soil types in both basins require drainage to make them agriculturally productive. As 

fertilizers became commonly utilized, excess P was released into streams and rivers connected to 

these drainage systems. Historically, efforts were undertaken in the 1970s and 1980s to reduce 

the total load of TP into Great Lakes watersheds as a means of reducing the intensity of 

cyanobacterial blooms. Significant progress was made toward meeting this goal during this 

period (Baker et al., 2014). Then, in the 1990s a major shift in agricultural practices occurred in 

the Maumee and Saginaw River watersheds with the widespread adoption of no-till farming with 

fertilizer being directly applied to the soil surface (Smith et al., 2015a; Jarvie et al., 2017). A 

major goal achieved using this approach was to stabilize or reduce export of particulate P to 

streams and lakes (Jarvie et al. 2017). Adoption of the no-till farming practices required large-

scale installation of tile drainage systems in the Saginaw and Maumee watersheds as a way to 

maintain more optimal soil moisture levels. A major unintended consequence documented the 

Maumee River was a doubling in DRP load from the 1990s to 2000s while particulate 

phosphorus (PP) remained relatively constant (Baker et al., 2014; King et al., 2015a; Smith et al., 



64 
 

2015a; Williams et al., 2016; Baker et al. 2017; Jarvie et al. 2017). Approximately 65% of the 

DRP load increase after 2002 was attributable to increased delivery of excess DRP (increased 

FWMC; Baker et al., 2014), with higher runoff volumes accounting for the remaining 35% 

(Jarvie, 2017). The DRP export from tile drainage systems accounted for >90% of all measured 

concentrations exceeding recommended levels for minimizing cyanobacterial blooms King et al. 

(2015b). This increased DRP input, which is immediately utilizable by phytoplankton for 

growth, more than any other factor resulted in a re-eutrophication of the WLEB and contributed 

greatly to increased cyanobacterial biomass in the WLEB (Young et al., 1985; Kane et al., 2014; 

Smith et al., 2015b; Verhamme et al., 2016).  

In contrast, measured TP levels in the Saginaw River Basin where forests and wetlands account 

for 22% and 16% of land cover, respectively, remain relatively low (Figure 3.7). Maintenance of 

relatively low P concentrations over time in the Saginaw River is further supported by the 37% 

drop in TP observed from the 1974-1991 period versus the 2001-2005 period (MDEQWB, 2010; 

Figure 3.2). While DRP was not measured directly in the Saginaw River, the modeling work 

done in this study indicates DRP concentrations for the Saginaw River are low in comparison to 

those in the Maumee River, consistent with the lower TP levels (Figure 3.7). The higher 

proportion of wetlands and forest also help buffer the flow from the Saginaw River. The 

combination of lower FWMC of P and less variable flow caused cyanobacterial blooms in 

Saginaw Bay to be more consistent from year to year. Though reduced, there is still sufficient P 

input to cause Saginaw Bay to be classified as eutrophic with blooms comparable to years with 

low loading in the WLEB (Figure 3.4).  

Another difference between the two systems is the extent of remaining wetland along their 

shorelines. Saginaw Bay is bordered by 18,000 acres of wetlands (~73 km2), the largest coastal 
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freshwater wetlands system in the USA (USFWS, 2019). An important component of this 

wetlands network is the wide swath of the three-square bulrush, Schoenoplectus pungens. This 

species is known to act as a nutrient sink preventing large pulses of phosphorus from reaching 

the open waters of the bay (Kohler et al., 2004). A review of 203 North American and European 

wetlands reported median removal rates of 93 g m-2 year-1 for total nitrogen and 1.2 g m-2 year-1 

of total phosphorus (Land et al., 2016). Assuming the median total phosphorus removal rates 

reported by Land et al. (2016), Saginaw Bay’s surrounding wetlands should remove 88 metric 

tons (29%) of total phosphorus per year, compared to the average spring input of 300 metric tons 

(IJC, 2019). This is sufficiently high to have a further ameliorating impact on reducing the 

severity of cyanobacterial blooms in Saginaw Bay. Approximately 5,100 acres (20.6 km2) of 

Lake Erie’s original wetlands remain in the WLEB. Using the same uptake assumptions, these 

marshes could remove 25 metric tons P which is a small amount (~2%) compared to the average 

1,126 metric tons discharged between March and June into the WLEB (Stumpf et al., 2016).   

3.5.2 Nonlinear response to phosphorus loading in western Lake Erie 

A critical feature of the response of TP loading in the WLEB that warrants consideration from a 

management perspective is the non-linear response of cyanobacterial bloom intensity versus TP 

input over 500 metric tons (Stumpf et al., 2012;  Obenour et al. 2014; Bertani et al. 2016; Stumpf 

et al., 2016; Verhamme et al., 2016; Ho et al. 2017). At TP loads less than 500 metric tons, 

Saginaw Bay and the WLEB experience similar sized blooms (Figures 3.4B; 3.7). In addition at 

these lower TP loading levels there is a linear response of bloom size to the amount of TP input 

(Figure 3.7B). This raises the question of why TP loading exceeding 500 metric tons causes 

maximal summertime cyanobacterial biomass to rise in a steep non-linear fashion (Figure 3.7B). 

The mechanism accounting for the non-linear response, however, has not been identified. A 
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logical hypothesis is that there is an internal cycling mechanism that causes the recent P inputs to 

be utilized more effectively as loading increases (Gächter and Mares, 1985). A likely possibility 

is that blooms of diatoms and other phytoplankton occurring in early summer are capable of 

effectively sequestering incoming nutrients even in high flow years (Stoermer and Theriot, 1985; 

Butts and Carrick, 2017; Reavie et al. 2018; O’Donnell et al., 2019). As water temperatures 

increase in these shallow systems, the water column stabilizes, nutrients taken up by the initial 

blooms can be remineralized directly via grazing or bacterial degradation as blooms senesce later 

in the season (Kreusad et al., 2015; Bartoli et al. 2018; Depew et al. 2018; Null et al., 2020). In 

essence, early blooms may provide a time release mechanism for initially capturing, then 

supplying, highly utilizable DRP to support more intense cyanobacterial blooms later in the 

season. This hypothesis is consistent with the cyanobacterial biomass pattern observed in WLEB 

for the wetter years in 2011, 2013, 2015, 2017, and 2019 (Figure 3.4B).  

3.5.3 Management implications for controlling cyanobacterial blooms in the WLEB  

From a management perspective, the Saginaw Bay watershed provides a realistic model for 

further cyanobacterial abatement efforts in the WLEB. The results show that TP inputs into the 

WLEB would have to drop below 500 metric tons to regularly produce cyanobacterial blooms 

with comparable intensity to those observed in Saginaw Bay. Particular attention should be paid 

to reducing TP and DRP inputs as reflected in the Great Lakes Water Quality Agreement 

Nutrients Annex (GLWQANAS, 2019). These TP and  DRP reductions may have to be even 

more drastic than the 40% recommended in the GLWQANAS to achieve the desired reduction in 

bloom intensity (Scavia et al. 2014, 2016; 2017; Iho et al., 2017; Smith et al. 2018; Wilson et al., 

2018; Baker et al., 2019). Numerous approaches for reducing P- inputs have been proposed, but 

are beyond the scope of this manuscript (e.g. Baker et al., 2017; King et al., 2018). The non-
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linear response observed with loading in the WLEB means that initial reductions in the highest 

P-loading rates will have the greatest benefit in terms of reducing bloom biomass (Figure 3.7B). 

The largest loading observed in Saginaw Bay is just below the threshold where nonlinear 

intensification of blooms would be expected to begin (Figure 3.7B). Accordingly, increases in 

agricultural land use or continued loss of wetlands in the Saginaw Bay watershed or surrounding 

the Bay will significantly increase potential for severe cyanobacterial blooms (Mitsch and Wang, 

2000; USFWS, 2019).  

3.5.4. Secondary influences on bloom intensity, retention time and water temperature  

 Cyanobacteria blooms are caused by a combination of factors. The best documented of these are 

temperature (Paerl and Huisman, 2009), residence (retention) times (Romo et al., 2013) and 

eutrophication (Paerl, 1998). Michalak et al. (2013) showed that the large bloom present in the 

WLEB in the summer of 2011 was partially a result of longer than usual residence times. 

Summer mean residence time in the WLEB is reported to be 51 days (Millie et al., 2009). This is 

a little less than half of the average summer residence time in Saginaw Bay, which is estimated 

to be about 115 days (Nguyen et al., 2014). Therefore, residence times would indicate that 

Saginaw Bay should have larger blooms relative to WLEB if all other factors were equal. This 

reinforces the importance of the relatively low TP and estimated DRP concentrations in 

producing consistently moderate annual blooms in Saginaw Bay where advective losses are 

lower. It also argues that any future increases in nutrient loading will cause a more rapid and 

intense eutrophication of Saginaw Bay than occurs in the WLEB.   

Temperatures in the two systems are similar to one another throughout the year and show little 

interannual variability (Sayers et al., 2016). Regression analysis failed to show a correlation 
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between temperature and maximum CI concentrations. Similarly, other climatic drivers such as 

wind stresses and light availability were not correlated with maximum CI values. Temperature 

may, however, have affected the timing of the bloom which peaks 20 days earlier in Saginaw 

Bay (Aug 11 - Aug 20) compared to the WLEB (Sep 1 - Sep 10) (Table 3.2). The average July 

temperatures for Saginaw Bay and the WLEB are 24.0 °C and 21.7 °C, respectively. These 

temperatures are high enough to support maximal growth rates of Microcystis aeruginosa in the 

WLEB (~0.69 d-1) and near optimal rates in Saginaw Bay (~0.60 d-1) (You et al., 2018). In 

August the temperatures in the WLEB were 24.2 °C and 22.0 °C in Saginaw Bay, corresponding 

to maximal growth rates of ~0.69 d-1 and ~0.63 d-1, respectively. In September temperature 

declined to 21.7 °C in the WLEB and 19.4 °C in Saginaw Bay, supporting maximum growth 

rates of ~0.62 d-1 and ~0.5 d-1, respectively. The continued warm temperatures in the WLEB 

support growth into September, explaining why blooms peak later in WLEB compared to 

Saginaw Bay.  

3.5.5 Temporal and geographic variation in bloom intensity in Saginaw Bay 

On average the cyanobacterial bloom initiates during June and begins intensifying along the 

southern and eastern shore in early July (Figure 3.12). The bloom fully develops mid-July though 

the end of August, begins to dissipate in early September and is gone by mid to late October. The 

prevailing currents cause the bloom to be most intense along the shoreline with the middle of the 

Bay relatively free of cyanobacteria. During the blooms, cyanobacterial concentrations are 

highest along the southern shore adjacent to where the Saginaw River enters the bay (Figure 

3.12C). Concentrations along the eastern shore are also higher than those along the western 

shore, consistent with the prevailing currents.  
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3.6 Conclusions 

The more intense and variable blooms in the WLEB relative to Saginaw Bay are driven by 

higher and more variable P-inputs from the Maumee relative to the Saginaw River. On a per 

metric ton of P input both systems produce equivalently intense blooms. The main difference 

observed between the two systems is the WLEB has loads above 500 metric tons. Above this 

loading level cyanobacterial blooms in the WLEB increase rapidly in a non-linear fashion 

(Figure 3.7B).  TP inputs into Saginaw Bay ranged from ~120-500 metric tons and overlapped 

levels observed in the WLEB in lower input years. Over this range equivalent phosphorus loads 

produce equivalent biomass blooms.   

From a management perspective, these results demonstrate that reductions in TP loading, 

particularly the DRP component, below the current maximal loading values in the WLEB will 

disproportionately reduce boom intensity (Figure 3.7B). If loading into the WLEB were reduced 

to approximately 500 metric tons, blooms would be expected to be equivalent to those observed 

in Saginaw Bay. Conversely, if P-inputs in Saginaw Bay are increased due to a shift toward more 

intense agricultural land use, or if destruction of wetlands is allowed to continue, the blooms are 

likely to intensify significantly. The highest P-inputs into Saginaw Bay are already at the 500 

metric tons P threshold and it is reasonable to predict loads above this threshold will begin to 

produce non-linear intensification of cyanobacterial blooms.  
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Figure 3.1 (A) Map showing the bathymetry and other relevant features of Saginaw Bay. (B) 

Map showing the geographic location of Saginaw Bay and the WLEB relative to one another. 

The Saginaw River, which supplies a majority of the nutrients to Saginaw Bay, and the Maumee 

River, which similarly supplies a majority of nutrients to the WLEB are also shown.  (C) Map 

showing the bathymetry and other relevant features of the WLEB. 
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Figure 3.2. (A) Regression analysis of the relationship between annual volume of water from the 

Saginaw River and total annual phosphorus load from the 1974- 1991 (MDEQWB, 2010) (B) 

Same as for (A) except for the 2001-2005 time period (MDEQWB, 2010). The slope of the 

regression line in (A) compared to that in (B) is consistent with phosphorus abatement strategies 

begun in the 1970s having successfully reduced TP loading into Saginaw Bay from the Saginaw 

River.   
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Figure 3.3. Regression analysis of the CI from the Stumpf et al. (2016) model on western Lake 

Erie against the CI from the MODIS data used in the current study. The slope (m) and the slope 

intercept (b) of the relationship shown here was used to adjust equation 6.   
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Figure 3.4. (A)The maximal cumulative cyanobacterial index (CI) values from every 10-day 

composite (see Table 3.1) available for Saginaw Bay for 2000-2019.  (B) The maximal 

commutative CI values for the WLEB (light bars) and Saginaw Bay (dark bars) allowing 

comparison of relative differences in the biomass of the cyanobacterial blooms in the two 

systems. The vertical black lines delimit the bloom season for each year, which starts on June 1 –

June 10 and ends October 20-October 31 (See Table 3.1). Each bloom year was divided into the 

same 15, 10-day composite periods.  
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Figure 3.5.  Relationship between the maximal annual CI value (*) and the total volume of water 

discharged from the Saginaw River per water year (October previous year to September of the 

current year - o; corresponds to period from demise bloom previous September to start of bloom 

decline in the current year), March – June (+) current year and March – July (x) current year. 
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Figure 3.6. (A) March - June discharge from the Saginaw and Maumee Rivers versus the 

corresponding maximal 10-day Cyanobacterial Index in Saginaw Bay (*) and the WLEB (o) 

respectively. (B) March - June total phosphate loading from the Saginaw and Maumee Rivers 

versus the corresponding maximal 10-day Cyanobacterial Index in Saginaw Bay (*) and the 

WLEB (o) respectively. 



77 
 

 

Figure 3.7. (A) Observed annual maximum 10-day, Cyanobacterial Index (CI) value vs modeled 

maximal CI based on total phosphorus (TP) input from the Maumee (o) and Saginaw (*) Rivers.  

(B) Observed annual maximum CI value vs modeled maximal CI value based on dissolved 

reactive phosphorus (DRP) input from the Maumee (o) and the Saginaw (*) Rivers. The models 

used for predicting CI from TP and DRP input were originally developed using data available for 

the WLEB (Stumpf et al. 2016). 
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Figure 3.8. (A) Observed annual maximum 10-day, Cyanobacterial Index (CI) value vs modeled 

maximal CI based on total phosphorus (TP) input from the Maumee (o) and Saginaw (*) Rivers.  

(B) Observed annual maximum CI value vs modeled maximal CI value based on dissolved 

reactive phosphorus (DRP) input from the Maumee (o) and the Saginaw (*) Rivers. The models 

used for predicting CI from TP and DRP input were originally developed using data available for 

the WLEB (Stumpf et al. 2016). 
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Figure 3.9. Relationship between the flow weighted mean concentrations of total phosphorus 

(TP) and dissolved reactive phosphorus (DRP) from the in situ dataset from the National Center 

for Water Quality Research for the Maumee, Sandusky, and Cuyahoga Rivers. The Saginaw 

River TP data was from the Cha et al (2010) dataset. These data were graphed and the linear 

equation was used to convert the TP values available from the Saginaw River into an estimated 

average flow weighted DRP concentration. 
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Figure 3.10. Time series showing maximal CI values for every pixel in Saginaw Bay for each of 

the 15, 10-day periods. The composited images for each 10-day period were arranged in 

chronological order to show development and decline of the bloom. Data for each image were 

determined by extracting the maximal CI values for the same pixel in every corresponding 10-

day period from all 20 years and then averaging those data to provide an average pixel value for 

a given 10-day period. The center of the bay has lower concentrations relative to the shoreward 

areas, due to prevailing circulation within the bay. The inner bay has higher concentration 

relative to the outer bay. Warmer colors indicate higher levels of cyanobacteria, while cooler 

colors indicate lower levels. 
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Figure 3.11. (A) The percent of time a pixel exceeds a Cyanobacterial Index (CI) exceeded 0 in 

each of the 15 10-day periods between 2000 and 2017 in Saginaw Bay. (A) CI=0 is estimated to 

be ~20,000 cells mL-1 (Stumpf et al., 2012). This provides a probability estimate of a 

cyanobacterial bloom being present in a given location in each of the 15 of the 10-day periods 

(Table 3.1) from June 1 to October 31. (B) Same as A except it is percent of time the CI value of 

a ≥ 0.001, which is equivalent to a concentration of 105 cells mL-1.  
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Figure 3.12. (A) Saginaw Bay was subdivided into 5 regions to examine geographic variation in 

bloom intensity.  The cumulative maximal CI values for each 10-day composites from each of 

these five regions was then plotted as time series from 2000 to 2019. (B) Map showing the 

different subregions of the Bay. (C) The average of the cumulative maximal CI values for each 

subregion over all 20 years of the study normalized to surface area.  Region 1, closest to the 

primary nutrient source, the Saginaw River, had the highest CI value. The inner bay (R2, R3), 

had a higher CI value than the outer bay subregions (R4, R5). Values for the eastern shore 

subregions (R3, R5) were higher than the corresponding ones on the eastern shore (R2, R4). 
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Cyanobacterial Bloom Phenology in Green Bay using MERIS Satellite Data and 

Comparisons with western Lake Erie and Saginaw Bay 

4.1 Abstract 

Cyanobacteria blooms have been reported to be increasing worldwide. In addition to potentially 

causing major economic and ecological damage, these blooms can present a potential hazard to 

human health. Furthermore, these blooms can be exacerbated by a warming climate. One 

approach to monitor and model cyanobacterial biomass is to use processed satellite imagery to 

obtain the long-term data sets. In this paper, an existing algorithm developed for MERIS for 

cyanobacterial biomass (cell counts and chlorophyll concentration) is validated for 

cyanobacterial biovolume estimates in Green Bay. The satellite data set is then used to determine 

the bloom phenology of the cyanobacterial biomass in Green Bay and adjoining Lake 

Winnebago from 2002-2011. The linkages between the bloom phenology from Lake Winnebago 

and Green Bay were noted and no evidence that the size or timing of the cyanobacteria blooms 

found in Green Bay could be explained by the bloom in Lake Winnebago. Heat flux, wind speed, 

backscatter, and absorption data from the NASA Giovanni dataset was used to separate the upper 

50% of bloom years and lower 50% of bloom years in Green Bay. The Giovanni dataset was 

then used to compare cyanobacterial blooms from two other cyanobacterial bloom hotspots in 

the Laurentian Great Lakes: western Lake Erie and Saginaw Bay. These data showed that 

separation was possible using as few as three variables (water temperature, river discharge, and 

water absorption) from ancillary datasets. 
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4.2. Introduction 

Green Bay, the world’s largest freshwater estuary (Wisconsin DNR, 2017), is a long (190 km), 

narrow (15-30 km) sub catchment of Lake Michigan that is bound by the Door Peninsula on the 

east and mainland Wisconsin on the west (Figure 4.1). The Bay constitutes 7% of the surface 

area and 1.4% of the volume of Lake Michigan (Klump et al., 2009). It has been estimated that 

approximately one third of the total nutrient input into Lake Michigan originates in Green Bay 

(Ditton and Goodale, 1973). The Green Bay watershed drains 48,468 km2, which is about 1/3 the 

total drainage of Lake Michigan (Harris et al., 2018). 

There is a long history water quality degradation, low oxygen levels and eutrophication (Harris 

et al., 2018) in Green Bay and much of this degradation is attributable to nutrient pollution via 

the northward flowing Fox River. The Fox River is the largest tributary into Lake Michigan and 

the third largest tributary into the Great Lakes, draining 16,000 km2 (Kraft, 2006). The lower Fox 

River extends a length of 66 km from the hyper eutrophic Lake Winnebago in the south to the 

southwestern portion of Green Bay in the north. The watershed is home to some 750,000 people, 

and 100,000 people rely on Green Bay surface waters for their drinking water (Kraft, 2006).  The 

Fox River has been heavily engineered since the 19th century. The river has a 51-meter elevation 

change between the head and the mouth, which is navigable through a system of 17 locks 

traversing 12 dams. The river has an average current velocity of 0.43 km/hour so it would take ~ 

6.4 days for the water to travel between Lake Winnebago and Green Bay. The Fox River has an 

annual discharge of 3.69 x 109 m3. Fox River provides 60% of the phosphorus (P) load into 

Green Bay and 30% of the P load into Lake Michigan (Dolan and Chopra, 2012). This is a 

similar situation to the Great Lakes other two major eutrophic catchments, Saginaw Bay and 
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western Lake Erie, where a substantial amount of the new nutrients are input by single river 

sources, the Saginaw River in the former and Maumee River in the latter. The Fox River has also 

experienced extensive industrial use.  In the 1920s there were 34 paper mills on the River.  By 

the 1990s there were still 13 mills, at that time the largest concentration of mills in the world 

(Kraft 2006). 

The eutrophic Fox River water entering the south and the oligotrophic Lake Michigan water 

entering from the north sets up a remarkable nutrient gradient. The northern portion Green Bay is 

influenced by the oligotrophic waters of Lake Michigan, and the southern portion of Green Bay 

is influenced by the eutrophic Fox River, which supplies large amounts of nutrients into the 

system. Secchi depths range from less than 1 meter near the mouth of the Fox River to 10 meters 

near Lake Michigan. The residence time of Green Bay is ~ 6 years, which is influenced by the 

large mouth of the Bay allowing for substantial exchange with the Lake Michigan (Gons et al., 

2008).  The average total P concentration in Green Bay was relatively constant from 1980 – 2012 

reported to range from 0.140 - 0.146 mg L-1. However the total P from the1970s was ~35% 

higher and reported to be 0.206 mg L-1 (Harris, 2018). Mean annual total P loading in the lower 

Fox River Basin is estimated to be 250 metric tons year-1. Lake Winnebago is estimated to 

contribute another 660 metric tons year-1.  67% of the annual P load from the Lower Fox River 

tributaries occurs in 14 days of loading (Grayczyk et al., 2012).  

Cyanobacterial blooms are a common visible sign of eutrophication in freshwater systems, and 

Green Bay is no exception (Sayers et al., 2016). The majority of the cyanobacteria blooms occur 

in the southernmost portion of Green Bay, which is most heavily influenced by the Fox River. As 

well as nutrients, it has been shown that Green Bay receives large amounts of algae and 
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cyanobacteria exported from hypereutrophic Lake Winnebago resulting in hypereutrophic to 

eutrophic conditions in the inner portion of Green Bay (Gons et al., 2008), where satellite 

derived chlorophyll concentrations exceeding 126 mg m-3 at the Fox River mouth have been 

observed (Gons et al., 2008). Phosphorus is typically the limiting nutrient in Green Bay.   The 

reported reductions in TSS concentrations may have helped to lower phosphorus concentration in 

Green Bay as P is a highly reactive nutrient that tends to attach to particulates (Lin et al., 2016). 

Like the rest of the Laurentian Great Lakes, invasive mussels of the genus, Dreissena, colonized 

Green Bay, with the first reported colonization happening in 1992-1993 (Harris, 2018; DeStasio 

et al., 2014). These mussels have dramatically affected the water quality and plankton 

communities in Green Bay. There is evidence that Dreissenid mussels have an ability to change 

the nutrient cycling in basins they have colonized, making biologically available nitrogen more 

available (Arnott and Vanni, 1996; Conroy et al., 2005), which could give a competitive 

advantage to cyanobacteria, such as Microcystis, that do not rely on the metabolically expensive 

process of nitrogen fixation. The average water column chlorophyll concentrations in southern 

Green Bay did not exceed 50 µg L-1 prior to mussel invasion (before 1997); however, since then 

the invasion, average chlorophyll concentrations have often approached 100 µg L-1.  Likewise, 

peak chlorophyll concentrations were below 100 µg L-1 prior to invasion but now can exceed 250 

µg L-1 after invasion (DeStasio et al., 2014). One of the main causes of the increased chlorophyll 

concentrations was the proliferation of cyanobacteria. The cyanobacteria was estimated to be less 

than 30% of the total pre-invasion phytoplankton community, and greater than 50% post 

invasion, with Microcystis sp. making up the majority of the cyanobacteria but with 

Aphanizomenon sp. and Anabaena sp. also present in abundances up to 15,000 cells mL-1 

(DeStasio et al., 2014).  
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Green Bay (Figure 4.1) is one of the three major hotspots for cyanobacterial blooms in the 

Laurentian Great Lakes (Sayers et al., 2016) and is identified as one of the International Joint 

Commission’s 43 Areas of Concern (AOCs) in the Laurentian Great Lakes (IJC, 2012). 

Cyanobacteria, which can produce a hepatotoxin, microcystin, potentially present a host of 

public health threats (Carmichael, 1992; Chorus and Bartram, 1999). The public impacts are the 

health risk to people through recreational exposure and the impact on treatment of public water 

supplies to avoid toxin contamination (such as what happened in Toledo, Ohio in the summer of 

2014 (Steffen et al., 2017)). The city of Marinette, WI (Figure 4.1) is the only municipality that 

withdraws municipal water supplies from Green Bay (Qualls, et al., 2013), and as such is the 

only location where this is a concern.  Recreational human exposure to the hepatotoxins can 

cause skin irritation and accidental ingestion can cause gastrointestinal stress (Chorus and 

Bartram, 1999). Cyanobacteria hepatotoxin also presents a risk to wild and domestic animals 

(Backer 2002). Finally, pervasive cyanobacteria blooms cause the public to perceive the water as 

“polluted” and can lower property values in affected areas (Dodds et al., 2009). 

 

High temporal resolution ocean color satellite imagery has been shown effective in monitoring 

cyanobacteria blooms (Vincent et al., 2004; Wynne et al., 2010; Sayers et al., 2016). This study 

utilizes remotely sensed imagery from the MEdium Resolution Imaging Spectrometer (MERIS) 

to quantify blooms of cyanobacteria in Green Bay.  Specifically, these data are used to quantify 

the interannual variability of the cyanobacteria blooms, and determine if there is a significant 

relationship between the cyanobacteria blooms and the discharge from the Fox River. The 

phenology of the blooms in Green Bay are quantified by determining the annual start day of the 
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bloom, the variability in the start date, where the blooms are most likely to start and the 

progression of the blooms within the inner Bay, and the export of bloom material to the outer 

Bay. Relationships between the blooms in Lake Winnebago and Green Bay are also examined 

focusing specifically on differences in the timing of the blooms and the potential for Lake 

Winnebago to provide seed populations of cyanobacteria to Green Bay. The paper concludes 

with a comparison of the phenology and causes of the cyanobacteria blooms in Green Bay with 

those in Saginaw Bay (Lake Huron) and the western Basin of Lake Erie. 

 

4.3. Methods:  

4.3.1. Satellite Imagery: 

Satellite imagery has long been shown useful for monitoring and describing the abundance of 

cyanobacteria blooms and is a key component of the data presented in this manuscript. The 

algorithm used in this study to estimate the cyanobacterial biomass is a derivation of the 

Cyanobacterial Index (CI), initially developed by Wynne et al. (2008, 2010) for use with MERIS 

imagery. Cyanobacteria have the majority of their chlorophyll in non-fluorescing photosystem I, 

whereas most phytoplankton have the majority of their chlorophyll in fluorescing photosystem II 

(Seppala et al., 2007).  If there is chlorophyll present but fluorescence is low (or absent), the CI 

will be positive. However, it is possible to have low fluorescence and high chlorophyll 

concentrations with no cyanobacteria present, which can occur with very small phytoplankton, 

such as chlorophytes. The CI is calculated following Equation 1. 
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Equation (1)   

 

  

Where CI is the dimensionless Cyanobacterial Index, the parenthetical is the MERIS wavelength 

expressed in nanometers, and where ρs is Rayleigh corrected bi-directional reflectance. 

This algorithm showed several areas with blooms where no bloom was reported. Many of these 

unreported blooms were considered false positives when applied to the Green Bay- Lake 

Winnebago system. Small celled phytoplankton, such as chlorophytes, will scatter more light 

than is fluoresced, thereby producing a positive CI value (Wynne et al., 2010). In an attempt to 

negate these false positives the CI was further investigated, and it was concluded that Green Bay 

often had a mixed bloom. A mixed bloom occurs when the plankton community has multiple 

functional plankton types (e.g., diatoms, green algae, cyanobacteria, and others).  This is in 

contrast to western Lake Erie, where monospecific blooms of Microcystis, make up the vast 

majority of the phytoplankton community when in bloom condition. 

Lunetta et al. (2015) investigated separating the CI into two component parts; The CI due to the 

cyanobacteria population (CIcyano) and the CI due to the biomass that is not comprised of 

cyanobacteria (CInoncyano). This separation was based on the second derivative around the 665 nm 

band according to equation 3.   
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    Equation 2:   

 

If the quantity of S2d(665) is positive, the CI from Equation 1 was used and the planktonic 

concentration of the representative satellite pixel was assumed to be cyanobacteria. When the 

quantity of S2d(665) was negative, the CI from Equation 1 was assumed to be zero, as the 

plankton in the representative satellite pixel was assumed to be dominated by a planktonic 

functional group other than cyanobacteria. The basis behind using S2d(665) is based on the 620 

nm band being near the absorption peak of phycocyanin, which is a key photosynthetic pigment 

unique to cyanobacteria (Simis et al., 2005). If there are high concentrations of phycocyanin the 

S2d will be positive, which would be indicative of cyanobacteria. If the S2d is negative that would 

indicate a population of low fluorescing non-cyanobacteria plankton. Matthews and Odermatt 

(2015) used the same algorithm for cyanobacteria discrimination in their biomass algorithm.   It 

should be noted that the separation using S2d(665) is not possible using ocean color sensors that 

lack the band at 620nm (such as MODIS or SeaWiFS). An example of this separation is seen in 

Figure 4.2. 

Clouds were masked and 10-day composites were made for each year during the bloom period 

using the maximum value of the CIcyano at each pixel. The CI algorithm was then used to create 

15 separate 10-day composites from the bloom season (Stumpf et al., 2012; Wynne and Stumpf, 

2015), which is defined here as the time period between June 1 and October 31. Each month has 

three 10-day composites, with the final composite of a 31-day month being an 11-day composite. 

When a metric of annual bloom intensity is needed the average of the maximum 3 sequential 10-

day composites was taken (Stumpf et al., 2012) and will be given as the “annual CI”. There are 
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several advantages to utilizing maximum value 10-day composites.  The first advantage is that 

the composite reduces cloud interference, and therefore, reduces the data to a systematic set of 

generally cloud-free images (Stumpf et al., 2012). The second key advantage is that the 

composites facilitate estimation of areal biomass. When winds are strong (>7.7 m s−1, or stress of 

0.1 Pa), the bloom is mixed through the water column, diluting the surface concentration (Wynne 

et al., 2010; Hunter et al., 2008). Under calm winds, however, Microcystis floats upward forming 

dense accumulations visible on the surface of the lake (Aparicio et al., 2013). The surface 

concentration (CI) estimated from satellite during calm conditions therefore represents the 

Microcystis that is present in the water column (Wynne et al., 2008), whereas the concentration 

detected during high winds underestimates the true biomass. Typically, during any 10-day period 

in the summer, there is a period of calm clear weather (Wynne et al., 2013b), which allows an 

estimate of total Microcystis biomass. The cells return to the surface within 24–48 hours after a 

wind event. The bands used for the algorithm quantify concentration within one meter of the 

surface in the clearest water (Pope and Fry, 1997), and less as turbidity increases (usually 

because of the bloom), therefore any material less than the optical depth will not be visible by 

satellite. Finally, using a 10-day composite makes biological sense, as the doubling time for 

Microcystis can be as low as 10 days in the Great Lakes region (Fahnenstiel et al., 2008). Wilson 

et al. (2006) reported growth rates of 0.13 to 0.46 day-1. 

Table 4.1: Shown here is the 10-day composite numbering system used for each year.  

Composite 

Number 

Start Date End Date Mean 

Date 
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1 June 1 June 10 June 5 

2 June 11 June 20 June 15 

3 June 21 June 30 June 20 

4 July 1 July 10 July 5 

5 July 11 July 20 July 15 

6 July 21 July 31 July 25 

7 August 1 August 10 August 5 

8 August 11 August 20 August 15 

9 August 21 August 31 August 25 

10 September 1 September 10 September 

5 

11 September 11 September 20 September 

15 

12 September 21 September 30 September 

25 

13 October 1 October 10 October 5 

14 October 11 October 20 October 
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15 

15 October 21 October 31 October 

25 

 

 

In the seemingly similar cyanobacterial rich waters of Saginaw Bay and western Lake Erie these 

false positives were not an issue. Figure 4.3 shows the relationship between the CI and the CIcyano 

for western Lake Erie, Saginaw Bay, and Green Bay derived from the 10 year MERIS timeseries 

of ten-day composites. Figure 4.3A shows that the relationship from western Lake Erie has the 

tightest fit, indicating that CI and CIcyano are very similar and that when cyanobacteria blooms, it 

typically dominates the biomass. Figure 4.3B shows that the relationship from Saginaw Bay is 

somewhat weaker, indicating that there are likely other planktonic functional groups present in 

the water column when the cyanobacteria bloom. Figure 4.3C shows the relationship in Green 

Bay. There are a number of points (circled) where the CI varies independently of the CIcyano, 

indicating that these are mixed blooms. The CI to CIcyano separation is not possible with the 

MODIS sensor, as it lacks the spectral resolution needed (i.e., there is no 620 nm band). The 

results show that unlike in Saginaw Bay or western Lake Erie, MODIS cannot be used 

effectively to estimate the cyanobacteria biomass in Green Bay. 

 

4.3.2 Field Data: 
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Biovolume enumeration: 

Green Bay was sampled during the summers of 2004, 2005, 2006, 2007, 2010 and 2011 at five 

locations established during previous studies along the trophic gradient from the mouth of the 

Fox River to just south of Sturgeon Bay (Figure 4.1; De Stasio et al. 2018). Phytoplankton 

Samples were collected approximately biweekly each year from June through August. Duplicate 

integrated samples were collected from the top 4 m of the water column using a submersible 

pump (or to just above the bottom at sites shallower than 4 m). Samples were transported in 

opaque bottles kept on ice in the dark until returned to the laboratory later the same day, and then 

preserved in 1% Lugol’s solution. In the laboratory replicate subsamples (15 – 50 mL, depending 

on sample concentration) for phytoplankton identification and enumeration were examined using 

settling chambers viewed on an inverted microscope or on permanent slides made by filtering 

subsamples onto membrane filters (0.45 µm pore size) under low vacuum. Filters were cleared 

with immersion oil, sealed with Permount and enumerated at 100 – 500 X magnification. Cell 

linear dimensions were determined with an ocular micrometer and used to estimate cell 

biovolume based on published relationships between linear dimensions and volume (Wetzel and 

Likens, 1991). Biovolume data were obtained for three classes of algae: Diatoms, green algae, 

and cyanobacteria, as well as the sum of the three classes, the total biovolume. The data were 

used to validate the algorithm described in section 2.1. The summer phytoplankton assemblage 

in Green Bay is different relative to western Lake Erie and Saginaw Bay as the cyanobacteria 

populations can covary with other classes of phytoplankton. The CIcyano algorithm would be a 

preferred detection technique relative to more traditional chlorophyll algorithms, which will be 

unable to discriminate one functional algal group from another. 
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Quantifying cyanobacterial chlorophyll with other functional groups  

The biovolume data was matched with satellite data that occurred +/- one day from the data of 

biovolume data acquisition. A 3x3 satellite pixel box around the biovolume sample point was 

extracted. The median of this 3x3 box was then calculated as long as n ≥ 1. Overall there were 69 

different samples that met this criteria. Of the 69 samples, 36 had a positive CIcyano relationship. 

Least squares regression was done with the samples that had a positive CIcyano against the 

cyanobacteria biovolume.  

4.3.3 Climatology 

A climatology was built using the 10-day composites over the 10-years of satellite data from 

both Green Bay and Lake Winnebago. The mean of the 10-years of the available CIcyano product 

were extracted from the 10-day composites to form a cyanobacterial climatological product and 

graphed into a timeseries. The bloom start date will be assumed when the cumulative CIcyano is 

above a cumulative CI of 0.5. The mean, median, and standard deviations of the annual 

maximum value of the CIcyano will be calculated and reported. By using the 10-day composite 

numbers in Table 4.1, different years may be compared to one another. Furthermore different 

regions, such as Saginaw Bay and wester Lake Erie could be compared with Green Bay and 

Lake Winnebago. 

4.3.4 Interactions with Lake Winnebago 

It has been suggested that Green Bay receives large amounts cyanobacteria exported from 

hypereutrophic Lake Winnebago resulting in hypereutrophic to eutrophic conditions in the inner 
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portion of Green Bay , which is supported that Lake Winnebago has both higher cyanobacteria 

biomass and high chlorophyll concentrations (Gons et al., 2008). The potential connection 

between cyanobacteria blooms in Lake Winnebago and Green Bay was examined first by 

plotting a timeseries of the extracted 10-day CIcyano composites from Green Bay and Lake 

Winnebago to see if any obvious connection exists. A second analysis was done using the ten-

day composites with various temporal lags to test the hypothesis that the cyanobacteria (or the 

needed nutrients and micronutrients) flow from Lake Winnebago to Green Bay. As was 

previously mentioned it takes slightly over 6 days for water to travel from the head of the Lower 

Fox River in Lake Winnebago to the mouth of the Lower Fox River in Green Bay, which makes 

the 10-day composites a reasonable time step for this analysis. For this analysis, Lake 

Winnebago was divided into equally-sized quadrants, as it is hypothesized that the north western 

quadrant of Lake Winnebago may correlate better than any of the other quadrants (or the whole 

of the lake) with Green Bay, as that is the location of the head of the Lower Fox River.  The data 

from the 10-day composites for both Lake Winnebago (and the 4-different quadrants) and Green 

Bay were extracted and used for the correlation analysis. The extracted data from the five 

different scenarios (each of the quadrants as well as the whole lake) were then correlated against 

the extracted data from Green Bay. These correlations were run at lags of 0 days, 10-days, 20-

days, and 30-days.  

4.3.5 Model Building 

Building empirical models that can predict cyanobacterial blooms in the Laurentian Great Lakes 

can have a number of positive benefits, which include the reduction of the detrimental economic 

and environmental impacts of the blooms. Furthermore, modeling the blooms can provide insight 
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into the factors that give rise to them and thus provide guidance on how to undertaken measures 

to reduce the severity of future bloom. Hence, an attempt is undertaken to build a model to 

predict the annual severity of cyanobacterial blooms using a dataset from NASA’s Giovanni 

program as well as river discharge data available from the USGS. 

River Discharge 

River discharge has been shown to correlate with P concentrations (Dolan et al., 1981; Baker et 

al., 2014) and P is the limiting nutrient in most lacustrine systems, including Green Bay. Sager 

and Wiersma (1975) reported that the Fox River was the main source of P for Green Bay and 

estimated the loading to be 2.2 million kg year-1 between 1970-1971. This situation, with a single 

eutrophic river delivering the majority of the P load into a basin, is similar to the conditions in 

western Lake Erie and Saginaw Bay, so it may be expected that all three of these systems behave 

similarly in terms of bloom response to P loading variability.  It is therefore hypothesized that 

the Fox River discharge will correlate strongly with cyanobacterial biomass in Green Bay. The 

river discharge for the Fox River was obtained from the United States Geological Survey 

(USGS) station 04084445 at Appleton, Wisconsin. The monthly option for the discharge 

statistics was selected and mean monthly flow rates calculated. Stumpf et al. (2012) found that 

mean monthly discharge rates from March-June from the Maumee River gave the best fit to 

annual CI concentrations in western Lake Erie. All plausible monthly combinations are 

examined for correlation between of annual CI concentrations and mean monthly flow rates. The 

annual CI concentration is the average of the three highest sequential 10-day composites in a 

given year.  

Ancillary Data from NASA Giovanni 
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Additional potential forcing factors will be considered to determine if a model can be formulated 

to predict the cyanobacterial biomass in Green Bay. Temperature has been proposed as a driver 

for cyanobacteria blooms (Paerl and Huisman, 2008). Wind stress and surface pressure can be 

used as a proxy for vertical mixing and turbulence. Vertical mixing and turbulence has been 

shown to have negative impacts of cyanobacteria bloom abundance and that blooms are more 

prevalent under low turbulence (Huisman et al., 2004; Paerl and Huisman, 2008; Paerl and 

Huisman, 2009). Both the northward wind stress component and the eastward wind stress 

component were therefore used as a proxy for wind mixing/turbulence. However, increased 

turbulence and wind stress is not necessarily detrimental to the formation of cyanobacteria 

blooms. In fact, it has been suggested that an increase in turbulence may actually promote 

cyanobacteria blooms (Liu et al., 2019).  This is due to the fact that under turbulent conditions 

Microcystis may form larger colonies which can counteract some of the turbulence effects on 

buoyancy. Furthermore it has been suggested that under high turbulence that Microcystis can 

produce an increase in toxin production which can negatively affect other algae thereby giving 

cyanobacteria a competitive advantage (Neilan et al., 2013). Precipitation data can be a proxy for 

atmospheric pressure, as well as a proxy for surface runoff, and river discharge, which can in 

turn be a proxy for P inputs. Latent Heat flux can be defined as the flux of heat from the surface 

of the Earth into the atmosphere that is associated with the evaporation of surface water and its 

subsequent condensation in the atmosphere (Giovanni, 2020). Sensible Heat flux is the process 

which causes heat to be transferred from the surface of the Earth into the atmosphere by 

convection and conduction. Three optical properties, the absorption of gelbstoff at 443 nm, 

absorption due to phytoplankton at 443 nm, and the particulate backscattering at 443 nm are also 

used in the effort to formulate an empirical model for predicting cyanobacteria blooms. These 
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three properties together describe the apparent optical properties of a body of water (Lee et al., 

1996). Albedo can be used as a proxy for the amount of light that is transferred over the 

atmosphere-water interface.  

These data were downloaded from the NASA Giovanni project (NASA, 2019) as an area 

averaged product calculated over the time span of one month.  The Giovanni data corresponding 

to the bloom year (defined here as June – October) were considered. The three absorption optical 

properties (gelbstoff absorption, particle absorption, and phytoplankton absorption) were only 

available in a 10-day data product and were averaged to create a monthly product. To create a 

direct temporal comparison with the CIcyano values the average of the three 10-day CIcyano 

composites from each month was used to represent monthly cyanobacterial biomass. In cases 

where only two 10-day composites were available for a given month the average was taken of 

the two 10-day composites that were available. The NASA Giovanni variables are summarized 

in Table 4.2. The monthly Giovanni data were correlated with the monthly CIcyano data product. 

The annual data were used in a Principal Components Analysis (PCA) in an effort to determine 

the factors that may lead to bloom formation. 

Table 4.2: shown here is the data downloaded by NASA’s Giovanni dataset that will be used for 

model development 

 

Parameter Giovanni Name  Unit Model Name 

Surface pressure 

[NLDAS Model] 

pressfc Pa NLDAS NOAH 
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Absorption of 

gelbstoff at 443 nm 

adg_443 m-1 MODIS IOP 

Absorption of 

phytoplankton at 443 

nm 

aph_443 m-1 MODIS IOP 

Particulate 

backscattering 

coefficient at 443 nm 

bbp_443 m-1 MODIS IOP 

Diffuse attenuation 

coefficient for 

downwelling 

irradiance at 490 nm 

KD m-1 MODIS KD 

Near surface wind 

speed [FLDAS 

model] 

wind_f m s-1 FLDAS NOAH 

Meridional wind 

speed 10 meters 

above surface [NLDS 

model] 

vgrd10m m s-1 NLDS FORA 

Zonal wind speed 10 ugrd10m m s-1 NLDS FORA 
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meters above surface 

[NLDS model] 

Albedo [NLDAS 

model] 

albdosfc % NLDS NOAH 

Sea Surface 

Temperature 11 µ 

night 

nsst Degrees C MODIS  SST 

Sensible heat flux 

[NLDAS model] 

shtflsfc W m-2 NLDS NOAH 

Latent heat flux 

[NLDAS model] 

lhtflsfc W m-2 NLDS NOAH 

Precipitation total 

[NLDAS model] 

apcpsfc Kg m-2 NLDS FORA 

[NLDAS model] 

Net Downward 

Shortwave Radiation 

Swnet W m-2 FLDAS NOAH 

 

4.3.6 Differences in Green Bay relative to western Lake Erie and Saginaw Bay 

The CI versus CIcyano plot in Figure 4.3 suggests that there are mixed blooms of phytoplankton in 

Green Bay, whereas in Saginaw Bay and western Lake Erie when cyanobacteria bloom it is 

generally a more monospecific bloom of Microcystis. This further suggests that there is 



101 

 

something fundamentally different in the physical and/or biogeochemical environment in Green 

Bay relative to western Lake Erie and Saginaw Bay. In an effort to examine and quantify 

potential differences in these environments a Principal Components Analysis (PCA) was 

performed using the ggplot2 package in R. The input variables in the PCA are those listed in 

Table 4.2 along with the river discharge from the USGS gage stations at the Maumee (USGS 

station 04193500), Saginaw (USGS station 04157005), and Fox (USGS station 04084445) 

Rivers. The Maumee River is the main source of P to the western basin of Lake Erie (Baker et 

al., 2014), while the Saginaw River is the main source of P to Saginaw Bay (Stow et al., 2014). 

Various means from the river discharge out of the Fox River were calculated, including: the 

mean from March – June, the mean from March – July, and the mean for the water year. 

4.3.7 Maximum CI Years vs Minimum CI Years 

Further PCAs will be run to determine if maximum CI years (bloom years) can be separated 

from minimum CI years (non-bloom years). The input data into the PCA was the river discharge 

and all the Giovanni parameters in Table 4.2. Two separate bloom scenarios were considered. 

The first one was achieved by considering two classes: bloom and non-bloom. The 5 years with 

the highest annual CIcyano values were considered bloom years, and the 5 years with the lowest 

CIcyano values were considered non-bloom years. These analysis will be run for Green Bay and 

then for comparison purposes they will be run for western Lake Erie and Saginaw Bay.  

 

4.4 Results: 

4.4.1 Satellite Imagery 
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All available satellite data from the MERIS Reduced Resolution timeseries was processed and 

used in this manuscript. 

4.4.2 Field Data Validation 

Separating cyanobacteria from the non-cyanobacteria   

All 69 samples with available satellite data are graphed along with the three different planktonic 

functional groups, as well as the total phytoplankton biovolume in Figure 4.4A. The median 

percent of the total biovolume from cyanobacterial origins was 31% for all the samples. A subset 

of Figure 4.4A showing just the 36 samples that had a positive CIcyano are shown in Figure 4.4B. 

The median percent of the biovolume from cyanobacterial origins increased to 48% when just 

samples with a positive CIcyano was used, indicating that the CIcyano is detecting elevated 

cyanobacteria concentrations. 

Comparisons with Chlorophyll Algorithms 

Figure 4.5 shows the correlation between the cyanobacteria biovolume and the CIcyano. The error 

bars are 30% error, which is the error estimated by Hawkins et al. (2005) on measuring 

cyanobacterial biovolume with Lugol’s solution.   

4.4.3 Climatological Analysis 

Lake Winnebago reaches its maximum CIcyano value earlier than does Green Bay, with its 

maximum value occurring during composite number 6 (July 21- July 31) (Figure 4.6). Green Bay 

reaches its maximum value some 20 days later, occurring during composite number 8 (August 

11-August 20).  Lake Winnebago has less interannual variation relative to Green Bay, but does 
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have higher CIcyano levels (Figure 4.7). 2009 and 2010 both showed very little signal from the 

CIcyano algorithm. The CIcyano is higher in every year in Lake Winnebago relative to Green Bay. 

The statistics on the maximum 10-day composite of the CIcyano from Green Bay are shown in 

Table 4.3. 

Table 4.3: The 10-day composite periods (dates in parentheses) exhibiting the highest mean, 

median, and mode integrated CI values during the 10-year MERIS time series. Details on how 

values were calculated are given in section 2.3. 

Year Green Bay Saginaw Bay Western Lake Erie 

Mean ± SD 6.8 ± 2.9 (Jul. 21 – 

Jul. 31) 

8.4 ± 2.1 (Aug. 11 – 

Aug. 20) 

10.3 ± 1.6 (Sep. 1 – 

Sep. 10) 

Median 7 (Aug. 1 – Aug. 10) 9 (Aug. 21 – Aug. 31) 10 (Sep. 1 – Sep. 10) 

Mode 3 (Jun. 21 –Jun. 30) 9 (Aug. 21 – Aug 31) 10 (Sep. 1 – Sep. 10) 

 

So generally blooms peak in late July to Early August in Green Bay. The blooms in Green Bay 

achieve peak biomass ~20 days before blooms in Saginaw Bay and ~30 days before peak bloom 

formation in western Lake Erie. The blooms in Green Bay also exhibit more variability relative 

to Saginaw Bay and western Lake Erie.  

4.4.4 Interactions between Green Bay and Lake Winnebago  

No noticeable trends indicating that the cyanobacteria blooms start first in Lake Winnebago are 

apparent in Figure 4.7.  As described in section 2.4, all data was extracted from the four 
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quadrants from Lake Winnebago and correlated against the extracted data from Green Bay. The 

entirety of Lake Winnebago produced a better correlation with the CIcyano in Green Bay than any 

single quadrant did. Therefore, in further analysis the sum of the four quadrants was used as a 

total for all of Lake Winnebago. Correlations between Green Bay (GB) and Lake Winnebago 

(LW) were run using a lag of 0 days (same ten day composite numbers), 10 days (GB against 

LW + 10 days), 20 days (GB against LW + 20 days), and 30 days (GB against LW + 30 days). 

The correlations with the various temporal lags are summarized in Table 4.4. 

Table 4.4: Shows the correlation statistics between the average CIcyano between Green Bay and 

Lake Winnebago. Four scenarios were considered, a lag of 0 days, 10days, 20 days and 30 days. 

The correlation decreased with each lag period indicating that the blooms from Green Bay co-

occur with blooms in Lake Winnebago as opposed to the blooms in Green Bay being transported 

from Lake Winnebago.  

Lag (number of days) r2 

0 0.34 

10 0.28 

20 0.12 

30 0.03 

 

The results of this analysis indicate that the blooms co-occur in Green Bay and Lake Winnebago 

and there is no discernable temporal lag using these methods. If the blooms started in Lake 
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Winnebago and the bloom material was transported into Green Bay the correlations should be 

tighter with a 10, 20, or 30 day lag or Lake Winnebago blooms should systematically start earlier 

than those in Green Bay. Lake Winnebago had an earlier maximum CIcyano concentration 6 out of 

the 10 years considered here, and Green Bay had the earlier CIcyano maximum concentration 4 out 

of the 10 years. While Lake Winnebago may supply nutrients and some cyanobacterial biomass 

into Green Bay, these analyses do not indicate that Lake Winnebago is seeding the blooms in 

Green Bay.  Rather, these analyses indicate that the blooms co-occur. 

4.4.5 Model Building 

There were two main challenges in the model building that hampered the formation of a 

predictive model. The first is a relative size of the bloom severity. The proportional range of the 

cyanobacteria blooms in Green Bay were high as two of the years, 2009 and 2010, had virtually 

no bloom at all. The other eight years in the MERIS timeseries recorded blooms in Green Bay 

that were small relative to the blooms found in small bloom or non-bloom years in western Lake 

Erie and Saginaw Bay.  In some years shown here, cyanobacteria blooms in Green Bay are only 

slightly above what may be considered to be background levels in the other basins. The second 

factor that hampered a development of a robust predictive model was a lack of data, with the 

MERIS mission providing only 10 years of cyanobacterial estimates. 

The monthly area averaged NASA Giovanni data was correlated to the average monthly CIcyano 

product. The best relationships were made with the gelbstoff absorption and sensible heat flux, 

which (both had an r2 =0.6) yielded the best relationship. Unfortunately, these two parameters 

are no easier to predict than the cyanobacterial blooms making the development of a predictive 

model challenging. The sensible heat flux is expected to increase with a changing climate 
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(Myhre et al., 2018), which may in turn lead to an increase in cyanobacterial blooms in Green 

Bay. 

The maximum CIcyano never occurred in June or October during the 10-year timeseries 

considered here. Rerunning the correlations with those two months taken out of the Giovanni 

dataset, so the only remaining months were July, August, and September, yielded no better 

results with the average monthly CIcyano for the entire bloom season (June- October). 

4.4.6 Comparisons with western Lake Erie and Saginaw Bay 

To compare the three different basins a PCA was run, the seasonal (March – June) averages were 

calculated using all the Giovanni parameters listed in Table 4.2 and were entered into a Principal 

Components Analysis (PCA), in hope of being able to separate Saginaw Bay, western Lake Erie, 

and Green Bay based on these data.  One additional variable that was considered was the sum of 

the gelbstoff absorption (adg) and the phytoplankton absorption (aph) which is called adg + aph. 

The first and second principal components accounted for 47% and 18.2% of the variance with all 

of the parameters (data not shown). The PCA was rerun reducing the number of variables to just 

what was needed to maintain reasonable separation between the three regions. It was determined 

that good separation was given using just three variables: river discharge, NSST, and, adg + aph. 

The first principal component was 52.4% of the explained variance, and the second principal 

component explained 29.9% of the explained variance (See Figure 4.8A). The river discharge 

explains much of the interannual variability of the western Lake Erie cyanobacterial bloom 

(Stumpf et al., 2012; Stumpf et al., 2016). However removing the river discharge are rerunning 

the PCA still resulted in satisfactory separation for the three different geographic areas, with a 

PCA just based on temperature and absorption (Figure 4.8B). The temperature is easily 
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explained by latitude, with Lake Erie being the warmest and the most southerly and Green Bay 

the coldest and the most northerly, and Saginaw Bay filling an intermediate role. The absorption 

is a bit more difficult to explain. 

The absorption of water is based on three main physical components: the absorption of: 

gelbstoff, phytoplankton and water itself. The absorption of water is known and increases with 

increasing wavelength (Pope and Fry, 1997). The absorption of gelbstoff and phytoplankton for 

the bloom season are presented in Figure 4.9. Green Bay generally has higher absorption in both 

of these constituents throughout the timeseries relative to Saginaw Bay and western Lake Erie, 

which have relatively similar absorption patterns. Saginaw Bay has slightly higher gelbstoff 

absorption relative to western Lake Erie (Figure 4.9A) and western Lake Erie has slightly higher 

phytoplankton absorption relative to Saginaw Bay (Figure 4.9B). Lower adg and aph would 

make the water in Green Bay less turbid relative to the water in western Lake Erie or Saginaw 

Bay, thus making it easy to differentiate Green Bay based on the absorption. 

 

4.4.7 Separating Bloom Years from Non-Bloom years 

An additional set of PCAs were run to illustrate the differences between the bloom years and 

non-bloom years in Green Bay and then the analysis will be repeated for comparison sake for 

western Lake Erie. Saginaw Bay was also considered but no combination of parameters led to a 

separation between bloom years and non-bloom years using the definition set here (5 largest CI 

is classified a bloom, and the lowest CI is classified as a non-bloom year). This is largely of a 

result of Saginaw Bay having very low variability in the annual cyanobacteria bloom. A PCA is 
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an effective tool in data reduction. As such the data were reduced as much as possible for this 

analysis, while still giving some measure of separation between the bloom years and the non-

bloom years. Two separate models were developed using 5 parameters or less that showed the 

best separation for Green Bay and another for western Lake Erie. The best model for Green Bay 

was then run in western Lake Erie for comparison purposes, and likewise the best model in 

Green Bay was also run in western Lake Erie. Figure 4.10A shows the best separation between 

the bloom and non-bloom classes for Green Bay with the first two components explaining 75% 

of the explained variance and Figure 4.10B shows the same model for western Lake Erie with 

the first two components responsible for 70.5% of the explained variability. Figure 4.11 shows 

the results of the best PCA separation between the bloom class and the non-bloom class for 

western Lake Erie (Panel A), with the first two components explaining 93.9% of the variability. 

Figure 4.11B shows the same four parameters applied for separation in Green Bay, with the first 

two components explaining 86.7% of the explained variance.  

The best western Lake Erie model uses just three parameters: river discharge, latent heat flux, 

and sensible heat flux. The best Green Bay model uses the wind speed, the latent heat flux, the 

sensible heat flux, the gelbstoff absorption, particulate backscatter, and the meridional wind 

component in the five parameter model used. Two thirds of the parameters that were used in the 

chosen western Lake Erie PCA were used in the Green Bay PCA, yet the overall results are 

drastically different. Suggesting that different physical properties govern bloom and non-bloom 

years between the two systems. 

The PCA was used in an attempt to answer why there were no blooms in Green Bay for 2009 

and 2010. Essentially this is just repeating the experiment above but selecting the bloom class as 
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being 2002-2008 and 2011, and the non-bloom class being just 2009 and 2010. The initial PCA 

just used the parameters that were previously used in the final PCA plots already used in the 

PCAs represented in Figures 4.8, 4.9, 4.10, and 4.11: river discharge, sensible heat flux, latent 

heat flux, meridional wind component, NSST, adg, bbp, and adg  + aph. The PCA with all eight 

previously used parameters is shown in Figure 4.12A. The number of parameters that were 

needed to separate the two non-bloom years from the bloom years was two: NSST and adg, 

shown in Figure 4.12B. It appears clear water with relatively low gelbstoff absorption and low 

water temperature produce essentially no bloom in Green Bay. 

 

One further analysis focusing on the interannual variability between Green Bay, Lake 

Winnebago, Saginaw By, and western Lake Erie was done to look at variability within each 

system. The maximum annual CI for each of the four regions was divided by the minimum 

annual CI from each of the regions to determine the interannual variability. The results from this 

analysis are shown in Table 4.5: 

Table 4.5: Shows the results of the Maximum annual CI and the Minimum annual CI between 

Green Bay, Lake Winnebago, western Lake Erie and Saginaw Bay. 

Region Max annual 

CI 

year Min annual 

CI 

year Variability 

(Max annual 

CI / Min 

annual CI) 
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Green Bay 5.4 2004 0.2 2010 27 

Lake 

Winnebago 

7.9 2008 2.5 2010 3.2 

Western Lake 

Erie 

25.6 2011 2.7 2002 9.5 

Saginaw Bay 7.2 2006 3.2 2008 2.3 

 

The interannual variability for Green Bay is much higher than for the other regions using these 

metrics. This is largely the result of the lack of bloom in 2009 and 2010. If the minimum annual 

CI from 2009 (annual CI = 0.4) is removed the variability drops significantly, to 12.9, which is 

on the order of the variability recorded in western Lake Erie. Neither 2009 nor 2010 should be 

classified as having a bloom and cyanobacteria concentrations are near the detection limit of the 

algorithm. The maximum 10-day cyanobacterial index from Green Bay, Lake Winnebago, 

western Lake Erie, and Saginaw Bay derived from the RR MERIS timeseries is seen in Figure 

4.13. Green Bay had a higher CI than western Lake Erie in 2 out of the first four years of the 

timeseries, after which the Green Bay cyanobacteria blooms diminished while the western Lake 

Erie blooms grew much larger. 2003 was the only year that Green Bay had a higher 

cyanobacteria biomass than did Saginaw Bay. The Green Bay bloom followed the same trends 

that Lake Winnebago did, but the CIcyano was much smaller, with Green Bay never eclipsing that 

of Lake Winnebago during the MERIS timeseries shown in Figure 4.13.  

4.5 Discussion 
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I have shown here that while the cyanobacteria blooms in Green Bay are relatively small in 

biomass, they show a high degree of interannual variability. However, there was considerable 

difficulty determining a useable model to predict annual cyanobacteria biomass from the suite of 

environmental parameters considered here. The three main issues preventing such a statistical 

model were: 1.) a lack of annual data as the MERIS sensor only provided a 10-year dataset, 2.) 

relatively small cyanobacterial biomasses, 3.) that cyanobacteria can co-occur with other 

phytoplankton functional groups.  

I have shown that Green Bay has lower cyanobacteria concentrations than does Saginaw Bay, 

which in turn has lower cyanobacteria concentrations than western Lake Erie. In spite of the very 

high variability of cyanobacterial blooms shown in Table 4.5, it has been noted that there is little 

interannual variability in respiration and gross primary productivity in Green Bay (LaBuhn and 

Klump, 2016). The average gross primary production of Green Bay is 288 mmol O2 m-2 day-1 

(LaBuhn and Klump, 2019). This is a factor of five higher than the gross primary production in 

Saginaw Bay of 40.6 – 65.1 reported by Fahnenstiel et al., (1995). While Saginaw Bay has 

higher cyanobacteria biomass relative to Green Bay, the primary production is higher in Green 

Bay further indicating the confounding issues of mixed phytoplankton assemblages present in 

Green Bay. Much of this variability in the cyanobacterial bloom is a result of having essentially 

no bloom at all in 2010 and particularly in 2009. Despite a lower standing stock of chlorophyll it 

is still possible that the primary production is similar rates in 2009 and 2010 than it is for the 

remaining years as the production was most likely based on increased concentrations of diatoms 

and green algae which are grazed more heavily than cyanobacteria (Davis et al., 2012). I 

hypothesize that the PCA shown in Figure 4.12B indicates that cooler and clearer invoked an 

ecological switch giving a competitive advantage to other functional types of phytoplankton over 
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cyanobacteria, and that the lower absorption was due to lower standing stock of phytoplankton 

and higher grazing rates. 

The cyanobacterial biomass is much lower in Green Bay relative to Saginaw Bay and western 

Lake Erie, despite all three basins being similarly sized (Figure 4.1). Cyanobacteria often co-

occurs with other classes of algae in Green Bay whereas cyanobacteria generally form 

monospecific blooms in western Lake Erie and Saginaw Bay. The biovolume data from Green 

Bay presented in Figure 4.4 show that cyanobacteria can co-occur with diatoms and green algae. 

Figure 4.3 shows that the CI often flags blooms of non-cyanobacteria in Green Bay whereas it 

does not in Saginaw Bay and western Lake Erie, further indicating that Saginaw Bay and western 

Lake Erie generally have monospecific blooms of cyanobacteria while Green Bay does not. 

Why there are mixed assemblages of phytoplankton when cyanobacteria is blooming in Green 

Bay and not in Saginaw Bay and western Lake Erie is an interesting question. The PCA analysis 

in Figure 4.8 shows that there are consistently higher temperatures in western Lake Erie and 

Saginaw Bay than there are in Green Bay. It has been well documented that cyanobacteria have 

an affinity for warm water. Downing et al. (2001) uses primarily just sea surface temperature to 

predict cyanobacterial dominance in lakes. The increased SST in western Lake Erie and Saginaw 

Bay relative to Green Bay is most likely a key contributor to the ability of other planktonic 

groups to successfully compete against cyanobacteria. Figure 4.14 shows the timeseries of the 

SST, Latent Heat Flux, and sensible heat flux from Green Bay, Saginaw Bay, and western Lake 

Erie from the monthly Giovanni dataset. Kahru et al. (1993) noted that the cyanobacteria blooms 

can warm the water surface up to 1.5o C, which may be resulting in a positive feedback in 
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Saginaw Bay and particularly in western Lake Erie giving cyanobacteria blooms a competitive 

advantage over other phytoplankton.  

The PCA analysis shows that Green Bay has a higher gelbstoff + phytoplankton absorption than 

do the other two basins, leading to higher light attenuation. Green Bay has higher gelbstoff 

absorption relative to western Lake Erie and Saginaw Bay and differences in phytoplankton 

community composition can be attributed to gelbstoff absorption (Houser, 2006). As 

cyanobacteria have an affinity for high light environments this may lead to an increase in 

competition with other phytoplankton functional groups. Furthermore it has  been suggested 

(Bowling, 1990; Houser, 2006) that colored lakes have a relatively low heat content, which 

means that clearer lakes (such as Saginaw Bay and western Lake Erie) should have a higher heat 

content, further providing warmer conditions for the proliferation of cyanobacteria blooms.  

The meridional wind is also higher in Green Bay than in the other catchments. The meridional 

wind was a significant contributor in Green Bay, which makes sense as the Bay is mostly 

oriented in a north-south direction. Increased wind speeds add turbulence and turbulence is 

generally beneficial to diatoms and a hindrance to the formation of cyanobacteria blooms 

(Margalef, 1978; Margalef et al., 1979). Alternately western Lake Erie generally has a higher 

surface atmospheric pressure which is indicative of more stable atmospheric conditions and less 

atmospheric induced water mixing leading to dominance of cyanobacteria blooms.  

4.6 Summary 

The cyanobacterial bloom dynamics in Green Bay are much different than they are in Saginaw 

Bay and western Lake Erie, which both behave similarly. The cyanobacterial dynamics in Green 



114 

 

Bay are heavily impacted by the absorption of gelbstoff and phytoplankton (adg + aph). When 

the adg + aph are low, I hypothesize that other functional groups of phytoplankton outcompete 

cyanobacteria. The standing stock of phytoplankton in 2009 and 2010 correspond to the lowest 

seasonal adg + aph (Figure 4.9). I hypothesize that the primary production was the same 

throughout the study (LaBuhn and Klump, 2016) and that diatoms and/or green algae classes 

outcompeted cyanobacteria in 2009 and 2010 and that grazing reduced the standing stock of 

chlorophyll.  Phytoplankton and gelbstoff absorption are not key drivers in the blooms in western 

Lake Erie or Saginaw Bay (Figure 4.8). Western Lake Erie is heavily influenced by the discharge 

of the Maumee River (Figure 4.11A), and its associated phosphorus loads (Stumpf et al., 2012; 

Stumpf et al., 2016). Saginaw Bay is also somewhat driven by the discharge of the Saginaw 

River but to a much lesser extent (Wynne et al., Chapter 2). The fact that the Saginaw Bay 

watershed is the more pristine, with more wetlands to take up excess nutrients and that its 

watershed is less agrarian leads to less soluble reactive phosphorus loads corresponds to Saginaw 

Bay having very low interannual variability in cyanobacteria blooms. 
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Figure 4.1. Map of the Study area showing locations mentioned in Chapter 4. 
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Figure 4.2. Illustration of how the CI is parsed out into two separate quantities based on Equation 

3 in the text. The CI is equal to the sum of the CIcyano and the CInoncyano. 
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Figure 4.3. Shows the relationship between the CI and the CIcyano. Each point is the integrated CI 

value from a 10-day period during the bloom season (June – October) from 2002-2011. Panel A 

shows the relationship in western Lake Erie. Panel B shows the relationship in Saginaw Bay and 

Panel C shows the relationship in Green Bay. The point circled show where the CI indicated that 

there should be a bloom but the CIcyano determined that there was no bloom present. 
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Figure 4.4. Panel A shows all 69 samples where there was at least one pixel in a 9x9 box around 

the sampling point. The median of the 9x9 block pixels was taken. Panel B shows the subset of 

Panel A where the CIcyano is positive.  
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Figure 4.5. Shows the linear regression between the cyanobacterial biovolume and the CIcyano.  
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Figure 4.6. Shown here is the climatology of the CIcyano. Each 10 day composite is the mean of 

the 10 of the MERIS data (2002-2011). 
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Figure 4.7. Shows the timeseries over the 10 years of the study for both Lake Winnebago (shown 

in blue) and Green Bay (shown in Green). There exists a high degree of interannual variability. 

The CIcyano values in Lake Winnebago nearly always exceeds Green Bay. 
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Figure 4.8. Panel A shows the results from the Principal Components Analysis (PCA) in using 

three parameters to discern Green Bay, western Lake Erie, and Saginaw Bay. The parameters 

used were the night sea surface temperature (nsst), the river discharge (river_Q) from three 

respective rivers (Maumee River, Saginaw River, and Fox River), and the combine gelbstoff 

absorption and phytoplankton absorption (adg + aph). Panel B shows the separation using just 

nsst and adg + aph. 
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Figure 4.9. Shows the monthly timeseries of the gelbstoff absorption (Panel A) for Green Bay 

(Green line), Saginaw Bay (Black line) and western Lake Erie (blue line). Each point represents 

a month. Panel B shows the phytoplankton absorption for the same regions over the same 

timeseries. 
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Figure 4.10. Panel A shows the separation between bloom years (gray) and non-bloom years 

(black) for Green Bay using a PCA. The five input parameters were particulate backscatter (bbp), 

gelbstoff absorption (adg), the meridional wind speed (vgrd), sensible heat flux (shtflsfc), and 

latent heat flux (lhtflsfc). Panel B shows the unsatisfactory separation of the bloom years form 

non-bloom years in western Lake Erie using the same five parameter PCA presented in Panel A. 
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Figure 4.11. Panel A shows the separation between bloom years (gray) and non-bloom years 

(black) for western Lake Erie using a PCA. The three input parameters were river discharge 

(river_Q), sensible heat flux (shtflsfc), and latent heat flux (lhtflsfc). 2004 had the sixth highest 

CI out of the timeseries and was classified as a bloom in earlier work (Stumpf et al., 2012). It 

was not in this context as operationally the top 5 CI years were classified as a bloom and the 

bloom 5 CI values were classified as non-bloom. Panel B shows the unsatisfactory separation of 

the bloom years form non-bloom years in Green Bay using the same three parameter PCA 

presented in Panel A. 
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Figure 4.12. Panel A uses the eight parameters used in other PCAs (Figures 4.9, 4.11, and 4.12) 

to separate 2009 and 2010 from the other years in Green Bay. 2009 and 2010 had virtually no 

bloom at all in Green Bay. Panel B shows the PCA when only two parameters are used. 

Acceptable separation is still achieved, and this illustrates that the adg + aph and temperature are 

the driving factors in determining when no bloom forms.  
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Figure 4.13. Shows the annual CIcyano from western Lake Erie, (WLE), Saginaw Bay (SB), Green 

Bay (GB), and Lake Winnebago (LW). The annual CIcyano was calculated by taking the mean of 

the highest three sequential 10 day composites of the CIcyano. 
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Figure 4.14. Panel A shows the night time sea surface temperature from the monthly NASA 

Giovanni Data from Green Bay (Green o), Saginaw Bay (blue +), and western Lake Erie (black 

*). Panel B shows the Latent Heat Flux from the monthly NASA Giovanni Data from Green Bay 

(Green o), Saginaw Bay (blue +), and western Lake Erie (black *). Panel C shows the Sensible 

Heat Flux from the monthly NASA Giovanni Data from Green Bay (Green o), Saginaw Bay 

(blue +), and western Lake Erie (black *). 
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Concluding Remarks 

In this dissertation I examined cyanobacterial blooms in three basins in the Laurentian Great 

Lakes. Each basin is unique in some ways, yet all share some commonalities as well. Each basin 

is an enclosed, warm, shallow section of its respective lake, yet each has a unique cyanobacterial 

bloom phenology. Examining the bloom phenology of the disparate waters in the Laurentian 

Great Lakes is important because these are economically and ecologically important waters and 

insights gained can help with management and restoration efforts.  

 

The five lakes of the Laurentian Great Lakes together comprise over 20% of the fresh surface 

water on the planet. These are also impaired waters, which have been effected to a large degree 

by anthropogenic processes. Including eutrophication and re-eutrophication, as well as the 

introduction of invasive species. Prior to the 1970s there were spectacular blooms of 

cyanobacteria in Lake Erie due, primarily, as a result of eutrophication. This period of 

eutrophication, pollution, and environmental degradation reached a peak on June 22, 1969 when 

the Cuyahoga River caught on fire. This led to the passage of the Clean Water Act in 1972 and 

the related Great Lakes Water Quality Agreement (GLWQA) that same year. From this point 

forwards the Great Lakes entered a period of restoration. The most critical action from the 

GLWQA pertaining to cyanobacterial blooms was the adoption of wide scale phosphorus 

abatement strategies. One of the most important adaptations pertaining to cyanobacterial bloom 

dynamics to come out of the GLWQA was the adaptation of target loads of total phosphorus, as 

each basin and lake of interest gained a target threshold to reach (e.g. Saginaw Bay was set to not 

exceed 440 tonnes of total phosphorus per year). Despite failing to meet these thresholds, the 

phosphorus abatement strategies were very successful in reducing and, ultimately, eliminating 
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cyanobacterial blooms in the Great Lakes. However, in the mid-1990s the Great Lakes went 

through a process of re-eutrophication (Scavia et al., 2014). What caused this period of re-

eutrophication most likely was a combination of the colonization of invasive mussels of the 

genus Dreissena (Vanderploeg et al.,  2011) and increasing concentrations of soluble reactive 

phosphorus (SRP) in river and runoff effluent (Baker et al., 2014). These cyanobacterial blooms 

started to reach massive proportions in western Lake Erie in 2008, when the lake went from a 

relatively dry climatological phase to a wet one. 

 

I have used remotely sensed imagery here from both the MODIS and MERIS sensors to estimate 

cyanobacterial biomass over seasonal and decadal time scales to derive bloom phenologies for 

western Lake Erie, Saginaw Bay, and Green Bay. Satellite remote sensing provides a synoptic 

view providing basin wide data on cyanobacteria blooms over a number of years. Furthermore, 

results from these three regions can be compared as the methods are transferable. The detection 

method used is the cyanobacteria index (CI) developed by Wynne et al. (2008). These methods 

have been widely used in the Great Lakes as well as other regions (Lunetta et al., 2015; 

Schaeffer et al., 2018). 

 

Each basin in this dissertation (western Lake Erie, Saginaw Bay, and Green Bay) has a 

significant source of nutrients that is delivered from a single river, yet the responses of the basins 

were are different. The Fox River provides 70% of the annual total load of Phosphorus into 

Green Bay (Klump et al., 1997) and the Saginaw River provides 90% of the nutrient load into 

Saginaw Bay (Bierman et al., 1984).  In contrast, while the Maumee River is a key source of the 
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nutrients entering western Lake Erie it does not make up the majority of incoming phosphorus. 

The Maumee along with the much smaller Cuyahoga and Sandusky Rivers contribute 50% of the 

P load into Lake Erie (Baker et al., 2014). Despite the fact that the Maumee River supplies less 

than ½ of the nutrients into its basin and the other two river supply over half to their respective 

basins, the Maumee River has the highest correlation between its seasonal discharge and the 

cyanobacterial biomass as measured from the remotely sensed Cyanobacterial Index. Green Bay 

had no significant correlation between the river discharge and the CI product. And Saginaw Bay 

is weakly correlated, with the annual discharge correlating just as well as the spring discharge. 

These relationships most likely have to do with the type of phosphorus being delivered. The 

Maumee River effluent has been increasing in Soluble Reactive Phosphorus (SRP), while the 

Total Phosphorus (TP) concentrations have been decreasing. SRP generally originates from 

fertilized row crops (Baker et al., 2014) and the Maumee River watershed has far more of these 

crops than the Fox or Saginaw River watersheds. 

 

The cyanobacterial blooms in western Lake Erie and Saginaw Bay are comprised of nearly 

monospecific blooms of Microcystis, but this is not the case in Green Bay. Instead cyanobacteria 

blooms in Green Bay can co-occur with diatoms and green algae. I have shown evidence in 

chapter 3 of this dissertation that this is related to the inherent optical properties of the water. The 

phytoplankton absorption (aph) and gelbstoff absorption (adg) are both higher relative to western 

Lake Erie or in Saginaw Bay, which seems to give competitive advantages to the other classes of 

phytoplankton in Green Bay.  This is likely due to a combination of factors. The first factor is 

that Microcystis have very high light requirements and with increased aph and adg it may be more 

difficult to meet these light requirements. Additionally Green Bay seems to have higher wind 
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stress relative to Saginaw Bay and western Lake Erie, which will cause caused increased mixing, 

that may reduce the average light levels experienced by Microcystis. Furthermore, well mixed 

water typically leads to diatoms having competitive advantages over other classes of 

phytoplankton (Margalef, 1978; Margalef et al., 1979). 

 

In conclusion, it appears that cyanobacteria blooms in the Great Lakes are in a state of flux. 

While these three basins are the primary “hot spots” for blooms they are not the only basins that 

have blooms. There have been a number of blooms in the central basin of Lake Erie (Scavia et 

al., 2014) and there have also been blooms in Lake St. Claire (Davis et al., 2014). Furthermore 

there are blooms in several smaller embayments throughout the Great Lakes. With careful 

remote monitoring and analysis, as carried out here for western Lake Erie, Saginaw Bay, and 

Green Bay, the unique phenology of these blooms can be characterized and the potential causes 

identified.  These insights can then be used to guide management and restoration efforts.  
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