
A Study of Permutations Permissible by LIFOService Disciplines �Simon Hawkin Ashok AgrawalaInstitute for Advanced Computer Studiesand Department of Computer ScienceUniversity of MarylandCollege Park, MD 20742fcema,agrawalag@cs.umd.eduNovember 11, 1998AbstractWe study permutations of the job order performed by various LIFO servicedisciplines. The sets of such permutations are shown to be equivalent to setsof string permutations with simple characteristics. In particular, it is easy totest whether a given permutation belongs to these sets. Several algorithms thate�ciently perform such tests are presented.
�This work is supported in part by DARPA/Army ARO under contract DABT 6396C0075 and MississippiState University under contract 96144601 to the Computer Science Department at the University of Maryland.The views, opinions, and/or �ndings contained in this report are those of the authors and should not be interpretedas representing the o�cial policies, either expressed or implied, of DARPA or MSU.1



1 IntroductionMeasuring the network dynamics [1, 2] has been an ongoing e�ort in the Department of ComputerScience in the University of Maryland, and similar projects have been under way in many otherresearch laboratories[3, 4]. In the study of the Internet, as other complex systems, internal detailsoften cannot be examined directly. Instead, their characteristics have to be deduced based onthe (external) observation of their behavior. This paper presents a technique that makes a stepin that direction.The tra�c in a packet-switched network like the Internet is shaped by the servers on thepath between the end-points of every connection. Each server takes time to process a packet,and therefore needs a bu�er to store packets that await their turn. This bu�er is naturallyconsidered a queue of packets. While the �rst-in-�rst-out (FIFO) queue organization is common,sometimes the order of packets is not maintained. The simplest service discipline that maychange the order of serviced jobs is the last-in-�rst-out (LIFO) discipline that employs a stackorganization of the queue. A study of various LIFO service disciplines can therefore give usinsight into the lower bounds on the complexity of the observed server.2 Setup and Basic De�nitionsWe consider a server with a LIFO (last-in-f irst-out) discipline, or simply, a LIFO server. Itcontains one service point and a queue which is organized as a stack. One job may be processedat a time. When a job arrives, but the server is busy with another job, the contention is resolvedby sending one of the con
icting jobs to the queue. If the job that was executing remains active,the server is non-preemptive. Otherwise, the server is preemptive. After a preempted job comesback from the queue to the service point, it either resumes execution from the last point it wasactive or starts it all over again. We call the former case partial preemption and the latter,complete preemption. We also assume that the service discipline does not change during the lifetime of the server. Finally, the server can be either work-conserving or non-work-conserving . Inthe former case, whenever there is a job available for execution (either arriving from the arrivalstream or the job on top of the stack) and the service point is available, the appropriate jobstarts service. In the latter case, the server may sit idle even when there are jobs available forexecution.The arrival stream naturally de�nes a total order on the set of job numbers. For convenienceof presentation, we will use the job number as its \name", that is, refer to a job with arrivalnumber X simply as job X . Similarly, we sometimes call the job with the maximal index amaximal job, and so on.Note that two jobs can arrive simultaneously. If jobs A and B > A arrive at the same time,the job B is considered arriving later than A, consistent with the job enumeration. When the2



arrival times are important, it is more precise to say that the job B becomes available after job A.Also, observe that no two jobs have the same departure time, since no two jobs can be servicedsimultaneously.An outside observer can monitor the arrival and departure streams of jobs. Each job i hasthe following parameters: arrival time ai, service time si, departure time di. When the exacttimes are not known, the arrival and departure streams become strings , or sequences. We canstudy both �nite strings s1 : : : sM , produced by �nite \bunches" of jobs, as well as in�nite stringss1 : : :. In both �nite and in�nite cases, a contiguous piece of a string sisi+1 : : :si+k is called asubstring . A non-contiguous sequence of elements that preserves their original order si1 ; si2 ; : : :(i1 < i2 < : : :) is called a subsequence. At every valid position k, a string1 s = fsigMi=1 is split inthe tail and trunk . The former is the substring of s that starts at position k, that is, fsigMi=k ; thelatter is the substring of s that ends at position k, that is, fsigki=1. As usual, the �rst element s1of a string is called a head ; the rest fsigMi=2 is simply the tail of the string. Similarly, the partfsigM�1i=1 of the string that does not include only the last element may be called the trunk of thestring.A LIFO server turns an arrival string into a departure string, e�ectively performing a permu-tation. We will call such permutation a LIFO permutation, and a departure string after a LIFOserver, a LIFO string. For example, BAC is a LIFO permutation of ABC, when the server ispreemptive, job B arrives before job A has completed its execution, and job C arrives after bothA and B departed. Not all permutations are LIFO; for example, the departure string ZXY can-not be produced from the arrival string XY Z by a LIFO server with any service discipline. Theproof will be presented in theorem 1. This turns out to be rather general: whenever an arrivalstring has a subsequence XYZ turned ZXY in the departure string, the server is not LIFO. Wecall such subsequence a ZXY (sub)sequence, and the string that has it as a subsequence, a ZXYstring2. The main result of this paper is that the reverse is also true for preemptive servers: thatis, the string is LIFO if and only if it is non-ZXY . With a slight modi�cation, this result holdsfor non-preemptive servers as well.The paper presents the main result which ties LIFO strings to non-ZXY strings and thusprovides a simple way to deduce whether the server under observation can be a LIFO server. Thisis followed by several algorithms that e�ciently perform such tests, for both �nite and in�nitestreams of jobs.1Here we assume M =1 if the string is in�nite.2Pronounced [ZEE-ksi ]. 3



3 LIFO And Non-ZXY Strings: Same Thing (Almost)The main question we are looking to answer is: which permutations can occur at a LIFO server?Notice that the exact arrival, service and departure times are assumed unknown. Thus, thequestion can be reformulated: we want to know which permutations can be performed by aLIFO server for some values of faig, fsig and fdig, 1 � i � M . This is similar to problem 5 insection 2.2.1 of volume I in [5] which however considers only the queue (stack) without a servicepoint, and therefore does not apply to various service disciplines we study here.In this section, we show the equivalence between LIFO permutations and a class of non-ZXYpermutations.3.1 LIFO Strings Are Non-ZXYThis subsection will prove one part of the equivalence: that a ZXY string cannot be a LIFOstring. The proof evolves through the following lemmas.Lemma 1 If at some point of execution job X is below job Y in stack, then whenever X and Yare both in stack, X is below Y .Proof: The order does not change until Y is on top of stack. After that, either some otherjobs arrive and new jobs are pushed on stack (above Y ), leaving the order intact; or the serverbecomes available and Y leaves the stack to start or continue its execution. The following canhappen after this. Case 1 . Y completes execution and departs. Therefore, it is not in stack.Case 2 . Another job arrives and preempts Y . Y is pushed on top of stack and is therefore stillabove X . Case 3 . Another job arrives and does not preempt Y . Therefore, Y is not in stack.In all these cases, whenever X and Y are together in stack, X remains below Y .Q.E.D.Lemma 2 If job X is pushed in stack while job Y executes, job Y departs before job X departs.Proof: Suppose X is pushed on top of stack. The 3 cases mentioned in the proof of the previouslemma can happen after that. In case 1, Y departs before X departs. In case 2, Y is pushed instack above X . By the previous lemma, it remains above X while in stack. X can only leavestack when it is on top; at that moment, Y is not in stack (or it would be below X) and isnot executing (or X would not leave stack). Therefore, when X leaves stack, Y has completedits execution and departed. Therefore, X departs after X . Finally, case 3 does not change thepositions of jobs X and Y . Q.E.D.Lemma 3 If job X is in stack when job Y arrives, job Y departs before job X departs.4



Proof: If job Y is pushed in stack when it arrives, we have the conditions of lemma 2. If jobY executes, it can either be pushed in stack by con
icting arriving jobs, or complete executionand depart. In the �rst case, we again have the conditions of lemma 2; in the second case, job Ydeparts before job X departs.Q.E.D.Now we can prove this importantTheorem 1 A ZXY permutation cannot be a LIFO permutation.Proof: Suppose a ZXY permutation was created by a LIFO server.Case 1 : a preemptive server. Since each job X and Y arrived before but departed after Z,both X and Y were in stack when Z executed. The moment Y arrived, either X was in stackand departed after Y by lemma 3 or X was executing and preempted by Y and departed afterY by lemma 2. Neither creates a ZXY permutation.Case 2 : a non-preemptive server. The job Y completed execution after jobX . At the momentof Y 's arrival, X was not in stack, since otherwise Y would have departed before X . Therefore,Y arrived after X started (and maybe completed) execution. Since the moment Z arrived3 wasafter Y arrived, X has already started its execution by this time. If it had completed, it wouldhave departed before Z. Otherwise, Z would be pushed in stack and depart after X by lemma2. Neither case creates a ZXY permutation.Q.E.D.The result of theorem 1 holds for both preemptive and non-preemptive LIFO servers.As an aside note, suppose the server chooses arbitrarily between the preemptive and non-preemptive discipline. The following scenario will produce a ZXY permutation. Job X arrivesand starts execution. Job Y arrives and is pushed in stack. Job Z arrives and starts execution,preempting X . Z departs; X is popped o� stack. X departs; Y is popped o� stack. Y departs.This leads us to anObservation 1 The non-LIFO property of a ZXY string is not only a function of the queueorganization, but also of the consistency of the service discipline.3.2 Non-ZXY Strings Are LIFO: Preemptive ServersThe other part of the equivalence between LIFO strings and a class of non-ZXY strings will beproved separately for di�erent service disciplines. This subsection concentrates on preemptiveLIFO servers. The results are modi�ed for non-preemptive disciplines in the next subsection.3More precisely: became available. 5



Lemma 4 Consider a bunch of M jobs whose execution by a LIFO server produced a departurestring s = c1 : : : cHMb1 : : : bF . Delete job M from the bunch and execute by the same server. Thiswill produce a departure string c1 : : : cHb1 : : : bF , that is, just like s with M deleted.Proof: Every job c has departed before M arrived, so the trunk of the departure string does notchange. Every job b has arrived before M has arrived and was in stack while M was executing.The following cases are possible.The job J that was executing when M arrived was pushed on stack. M started executionand continued without interruption, then departed. After this, J resumed execution. The stackremained unchanged as compared with the momentM arrived. Therefore, the order of executionand departure of the jobs in the tail was maintained. The complete departure string is thusc1 : : : cHb1 : : : bF .Q.E.D.Corollary 1 Deleting job M from a LIFO string of lengthM leaves a LIFO string of lengthM �1.Lemma 4 and the corollary tell us how to proceed to a shorter LIFO string. The followinglemmas show how we can build a longer string.Lemma 5 Consider a LIFO string s of M jobs with job M at position k. Add job M + 1 to thebunch. In the new departure string s0, job M + 1 may only occur at a position i � k.Proof: If job M + 1 occurs at a position i � M in s0 and job M at a position p > i, thenp = i+ 1, or else the jobs at positions i, i+ 1, and p would form a ZXY subsequence. Supposei < k. By pigeonholing, there is a job J at position j < k in s with position j 0 > i+ 1 in s0.Execution of jobs 1; : : :M was not a�ected by job M + 1 until it arrived. The following casesare possible.Case 1 . If J had departed before M + 1 arrived, according to s, it would have departedbefore job M + 1 arrived (and departed) in s0 as well, which did not happen.Case 2 . If J was executing and preempted when M +1 arrived, it would be pushed on stackabove job M (which was in stack because it did not depart before M + 1). Then J would havedeparted before M in s0, which did not happen.Case 3 . Suppose J was in stack when M + 1 arrived. According to s0, M had not departedby that time, but either was in stack below J or was executing. Had M + 1 not arrived, job Mwould still have departed before J , which did not happen, according to s.Q.E.D.Lemma 6 Under the assumptions of lemma 5, job M + 1 can occur at any position i � k.6



Proof: by inductive construction. Consider a bunch of length M . Cases M = 1; 2 trivially formthe base of induction. Now, suppose the lemma has been proved for bunches of length up to M .Taking one such bunch (with job M at position k) and any i > k, we will construct a bunch oflength M + 1 such that job M + 1 will be inserted at position i.Construction. Consider the tail of the given bunch starting at k: Mb1 : : : bF , where bj isthe departure position of some job fj . We will also de�ne b0 = M . Of course, 0 � j � F and0 � F < M . To construct a bunch, we should provide all ai and si, for all i. In this construction,we set sM+1 = 1 and keep ai and si, 0 � i � M , intact. We will also denote �si the remainingpart of execution of job i at a particular moment4. If job i has not completed execution, thevalue of �si is positive whether the preemptive discipline is partial or complete.To insert job M + 1 at position k in the new string, let aM+1 = aM + ��sM and set � to anyvalue between 0 and 1. Indeed, no job arrives between aM and aM+1, and at the moment aM+1job M has not completed and is preempted by M + 1. Job M + 1 executes without preemption(no other job arrives) and leaves the server. After this, M resumes execution, and the stack isthe same as it was before M + 1 arrived. No other jobs arrive. Therefore, only jobs from thestack are selected for execution, and their order of execution is de�ned by their order in stack.Thus, the tail of the new string is the same as the tail of the given string. Note that the trunk ofthe string is trivially not a�ected either. We inserted job M +1 in the given string at position k.To set job M + 1 at position k + 1, let aM+1 = aM + �sM + ��sb1 and set � to any valuebetween 0 and 1. In general, to set job M + 1 at position k + i (0 < i � M � k) let aM+1 =aM + �sb0 + : : :+ �sbi�1 + ��sbi , and set � to any value between 0 and 1.. Indeed, job M + 1 startsafter bi�1 has completed, but before bi starts. Note that no new jobs arrive after job M + 1 hasarrived, so only jobs from the stack (bi; : : :bF ) are selected for execution. Since their relativepositions in the stack do not change, neither does their order of execution, so they depart in theoriginal order. Thus, we inserted job M +1 in the given string at position k+ i(1 � i �M � k).Finally, to set job M + 1 at position M + 1, let aM+1 = aM +PFi=0 �si + �, and set � to anypositive value. Job M +1 starts after all other jobs have completed, and therefore does not a�ecttheir execution. This completes the construction.Q.E.D.Now, we can prove the importantLemma 7 An arbitrary non-ZXY permutation can be produced by a preemptive LIFO server.Proof: by induction. The lemma is obviously true for non-ZXY strings of length 1 and 2.Assume the lemma proved for strings of length up to M . Consider a non-ZXY string s of lengthM + 1 and a string s0 which is string s with job M + 1 deleted. String s0 is of length M and isa LIFO by inductive assumption. String s can be produced from s0 by inserting M + 1 and istherefore a LIFO string by lemma 6.4That is, if job i was preempted and resumes execution at this moment, it will take �si time to complete.7



Q.E.D.The main result for preemptive LIFO servers follows.Theorem 2 A departure string is LIFO if and only if it is non-ZXY .Proof: Follows directly from theorem 1 and lemma 7. Q.E.D.3.3 Non-ZXY Strings That Are LIFO: Non-Preemptive ServersThe previous subsection established an equivalence relation between the non-ZXY strings andvalid departure strings of LIFO servers with preemptive disciplines. This subsection studies non-preemptive LIFO servers. While a ZXY string is not LIFO in case of non-preemptive as wellas preemptive LIFO servers (theorem 1), not all non-ZXY strings are valid LIFO strings in thenon-preemptive case. However, an equivalence will be shown between a large class of non-ZXYstrings and LIFO strings.More concretely, consider permutations that maintain the �rst element. So, the head of thearrival string is also the head of the departure string. Call such departure string headed . We willshow the equivalence between headed non-ZXY strings and departure strings of non-preemptiveLIFO servers.One part of the equivalence is easy, as shows the followingLemma 8 A departure string from a non-preemptive LIFO server is a headed non-ZXY string.Proof: The �rst job to become available for execution starts execution and is never preempted.Therefore, it is the �rst job to complete execution and depart. Thus, the departure string isheaded.Also, from theorem 1, the departure string is non-ZXY .Q.E.D.Our proof of the other part of the equivalence will follow the scheme of the proof for preemptiveLIFO servers.First, we will prove lemma 4 for the non-preemptive case.Lemma 9 Consider a bunch of M jobs whose execution by a LIFO server produced a departurestring s = c1 : : : cHMb1 : : : bF . Delete job M from the bunch and execute by the same server. Thiswill produce a departure string c1 : : : cHb1 : : : bF , that is, just like s with M deleted.Proof: When job M arrived, it was pushed on top of stack and did not a�ect the job J thatwas executing at the time. After J departed, M started (and completed) its execution, thendeparted. While M was executing, the stack was the same as before it arrived. Therefore, the8



order of execution and departure of the jobs in the tail was maintained. The complete departurestring is thus c1 : : : cHb1 : : : bF .Q.E.D.Corollary 1 also holds.The following is an analogue of lemma 5.Lemma 10 Consider a LIFO string s of M jobs with job M at position k. Add job M + 1 to thebunch. In the new departure string s0, job M + 1 may only occur at a position i � k.Proof: Suppose job M + 1 is inserted at position i < k. Then, job M is at position p � i + 1.Execution of jobs 1 : : :M was not a�ected by job M + 1 until it arrived. By pigeonholing, thereis a job J at position j < k in s and position j 0 > i+1 in s0. Job J was on top of stack when jobM + 1 arrived; another job E was executing. Job E departed before J in s, so E 6= M . SinceM has not departed before J in s, it was in stack below J . The stack did not change after jobM + 1 arrived, executed, and departed. Therefore, job M was still below J and would departafter it. This contradicts s0.Q.E.D.The next construction is similar to that in lemma 6.Lemma 11 Under the assumptions of lemma 10, job M + 1 can occur at any position i � k.Proof: CasesM = 1; 2 trivially serve as a base of induction. Assume the lemma has been provedfor strings of length up to M . We will take a bunch with departure string s of length M , insertjob M + 1 at a given position i � k, and show that it is still a valid LIFO string.Consider the tail of s: Mb1 : : : bF , 0 � F < M . We will call job M also b0. Then, job bi is atposition k + i, 0 � i �M .As in the construction for lemma 6, the new string retains the arrival, service, and departuretimes of all jobs in the old string. It will manipulate the value of aM+1 as well as aM . The values�si are de�ned as in lemma 6.Case 1 : i = k. Notice that k > 1, since the string is headed. Let J be the job at positionk � 1. If aM < dj , there was a period of time before J departed when J was executing and Mwas the only job in stack. If am � dj , there was a period of time starting at some � when Jwas executing and the stack was empty. In the latter case, set aM to � + �(dj � aM) for any �between 0 and 1, to force the former case. Notice that this does not change the departure string.Now, set aM+1 to aM +�(dj�aM ) for any � between 0 and 1. This makes M +1 arrive while Mis on top of stack. After J departs, job M +1 executes and departs, then M and the rest of jobsin stack. Because all fj ; j � 1 were in stack when job M arrived, all fj ; j � 0 are in stack whilejob M + 1 executes. Thus, the order of execution and departure of these jobs does not change.Case 2 : i = k + j; i < M + 1. For j = 1, set aM+1 = aM + ��sM , for any � between 0 and 1.In general, set aM+1 = aM + �sM + : : :+ �sfj�2 + ��sfj�1 . This forces job M + 1 to arrive after job9



fj�1 started execution and job fj was on top of stack. It will therefore execute and depart afterjob fj�1 and before job fjCase 3 : i = M + 1. To append job M + 1, simply set aM+1 = dbF + �, for any positive valueof �.Q.E.D.Finally, an analogue of lemma 7 is proved literally in the same way:Lemma 12 An arbitrary headed non-ZXY permutation can be produced by a non-preemptive LIFOserver.Proof: The lemma is obviously true for headed non-ZXY strings of length 1 and 2. Assumethe lemma proved for strings of length up to M . Consider a headed non-ZXY string s of lengthM + 1 and a string s0 which is string s with job M + 1 deleted. String s0 is of length M and isa LIFO by inductive assumption. String s can be produced from s0 by inserting M + 1 and istherefore a LIFO string by lemma 11.Q.E.D.The main result for LIFO servers with partial preemption follows directly from theorem 8and lemma 12:Theorem 3 A departure string is LIFO if and only if it is a headed non-ZXY string.3.4 Non-Work-Conserving ServersSo far, the text tacitly assumed work-conserving servers. This section shows how to extend theresults to non-work-conserving servers.A non-work-conserving server may have idle time even when there are jobs available. Theconstruction in lemmas 6 and 11 may introduce such idle periods. Suppose we have set aM+1 toaM +Pi�1i=0 �sbj + ��sbi , and there is an idle period of length � . Recall that sM and therefore �sMhad an arbitrary value. Increase it by � . This will ensure that the server will be available at themoment job M + 1 is available. The order of jobs in stack is not a�ected. Notice that no otherjob (besides M + 1) will dictate the value of sM . Thus, we get rid of idle periods, and thereforeexecution of a non-work-conserving LIFO server is exactly the same as that of a work-conservingLIFO server with an otherwise identical service discipline.Observation 2 Using a non-work-conserving server has the same e�ect as changing job servicetimes with a work-conserving server, as far as the order of execution is concerned.Therefore, we only consider work-conserving service disciplines in the rest of the text.10



4 LIFO Detection AlgorithmsThis section presents e�cient algorithms that actually test whether a given permutation couldbe produced by a LIFO server. For conciseness, we consider non-ZXY strings, that is, test thepreemptive service discipline. For a non-preemptive server, one can easily test whether the �rstjob to arrive is also the �rst job to depart. This test could be done in constant time once thehead of the departure string has been observed.4.1 Finite StreamsWe �rst study �nite strings. The results will be used in the next subsection which presentsalgorithms for in�nite streams.Lemma 13 The tail of a LIFO string of length M starting at M is a decreasing substring.Proof: Suppose the tail is not decreasing. So, it has at least two jobs, A and B, in the original(increasing) order. Then, jobs M , A and B form a ZXY subsequence of the tail and the wholestring, which contradicts the assumption that the string is LIFO.Q.E.D.The following algorithm tests whether a given string is a LIFO string.Algorithm 1 (\Peeling"). Consider a departure string of a bunch of size M . If M � 2, stopsuccessfully. If the tail after M is not decreasing, stop with failure. Otherwise, delete job M fromthe string and apply peeling recursively.Note: if M > 2, the above algorithm may not succeed in less than M � 1 recursions.Lemma 14 If the departure string is ZXY , peeling fails.Proof: Consider a string with a ZXY subsequence Z X Y . If peeling stopped before iterationM�Z, it failed. Suppose it did not stop. At iteration M�Z, Z is the job with the largest index,so the tail starting at Z is considered. Since it contains X < Y before Y , it is not decreasing,and peeling fails.Q.E.D.Lemma 15 If peeling fails, then the departure string is ZXY .Proof: Consider the recursion at which peeling fails. Set Z to the maximal job index. Sincethe tail is not decreasing, it contains jobs X and Y > X in that order. Z, X , Y form a ZXYsubsequence of the departure string.Q.E.D.The following theorem is applicable to preemptive LIFO servers.11



Theorem 4 Peeling succeeds if and only if the string is LIFO.Proof: Follows directly from lemmas 14 and 15. Q.E.D.As has been noted above, peeling is easily extended to non-preemptive servers by prependingthe constant-time test of heads of the arrival and departure strings.Theorem 5 The complexity of peeling is upper-bounded by the sorting complexity.Proof: We will show that, putting the sorting aside, peeling of a string of length M can be donein O (M) time and O (1) space in addition to the string storage. Sorting is only required to �ndthe position of the current maximal job.Suppose we know that the tail starting at position t = tM (with job Jt) is decreasing. Letp = pM be the position of job M . If p � t, the peeling test will succeed, so it can immediatelyproceed to the recursion step. If p < t, the tail sM starting at M is a concatenation of twosubstrings: sp = Jp : : : Jt�1 and the tail st starting at position t. It is easy to see that sMdecreases if and only if both sp and st decrease and Jt�1 > Jt. Testing that sp is decreasing takesO (t � p) time; testing that Jt�1 > Jt takes constant time; hence, testing that sM is decreasingtakes O (t� p) time. Assuming the test is successful, we set t = tM�1 to pM and proceed to therecursive step.At the start of peeling, tM = M . At iteration i, the cost is O (ti � pi). The total peeling costis O �PMi=2 C(ti � pi)� for a su�ciently large C. The sum reduces toC(tM � pM ) +M�1Xi=2 C(pi+1 � pi)= CtM � Cp2 � C(tM � 1) < CMQ.E.D.4.2 In�nite StreamsConsider an in�nite (to the right) stream of jobs, observed from the start. Can the observeddeparture string be produced from the arrival string by a LIFO server? To answer this, wewill split the stream of jobs into disjoint �nite contiguous bunches in such manner that ensuresjobs from di�erent bunches would be executed independently by a LIFO server. Independentexecution means that, while one job is executed, the other does not wait for its completion (i.e.is not in stack). In our algorithms, we monitor the departure stream and keep track of stackproperties. Whenever we detect the stack becoming empty, we split the stream: one bunch iscompleted, another starts getting accumulated.12



In general, there is no algorithm that would always detect whether an in�nite departure stringcould be produced by a LIFO server. For example, if job X is kept in the queue longer that theobservation period, it is not possible to deduce whether a ZXY sequence appears in the sequel.However, whenever a bunch is completed, such detection is possible for the appropriate �nitesubstring. Also, sometimes a negative answer (that the server is not LIFO) is possible in themiddle of the bunch processing.Consider the following algorithm that splits a (possibly in�nite) string into bunches by imi-tating a LIFO server.Algorithm 2 Assume the server is LIFO. Keep track of the maximal encountered job M in thedeparture stream (initially set to the value of the �rst index in the departure stream) and the stacksize s (initially set to the same value less one). Consider the current job d in the departure stream.The following cases are possible.Case 1 . If d < M , the job came from the stack, so we decrease s. If now s = 0, we split thestream.Case 2 . If d > M , job d came with another pack of d�M new jobs, indexed M + 1; : : :d. Thelast job d is executed, while all other jobs are pushed in stack. Thus, stack size s is increased byd�M � 1. We also update M to d.The time complexity of the algorithm 2 is obviously constant per job and linear in the numberof jobs observed. Note that only a constant amount of space is required.If the server is not LIFO, can we detect that using this algorithm? One way is to detect astack under
ow (s < 0). Another, after a bunch has been split o�, test it with peeling. (For non-preemptive LIFO servers, prepend it with the test of heads.) However, if the stack never becomesempty, a non-LIFO string may be missed; that is, it may not be detected in any pre-determined�nite time.The following algorithm performs on-the-
y LIFO detection by imitating the (logical) execu-tion of a LIFO server based on the observed arrival and departure strings.Algorithm 3 (\On-the-
y LIFO detection"). Keep the stack (initially empty), with its top elementand size available with constant-time queries. Maintain also indices i and j of the arrival and departurestreams, respectively (initially both set to 1). Consider ai and dj . The following cases are possible.Case 1 . If ai = dj , the job ai was executed as it arrived. It did not change the stack. Accordingly,increment i and j and proceed.Case 2 . If ai > dj , the job dj would be taken from the top of stack by a LIFO server. If thecurrent top is not dj , the server is not LIFO. Otherwise, pop dj from the stack and increment j.Now, if stack becomes empty, a bunch can be split o� the departure string.Case 3 . If ai < dj , this means job ai was preempted, so we push ai on stack and increment i.13



The algorithm will also work in the �nite case of the arrival and departure strings of lengthM with the following slight modi�cation:Modi�cation 1 Pretend that all arriving jobs afterM are equal to1 and dropped in the departurestring.Explanation: Until the end of one of the strings is reached, the execution is independent ofthe string length. If the end of only the departure (but not the arrival) string is reached, thismeans some jobs have been dropped, and the server is not LIFO. If the end of both strings isreached simultaneously, this means that case 1 holds, and the server is LIFO if and only if thestack is empty. Finally, consider the case when the end of the arrival string is reached but notof the departure string. If the strings were in�nite, and the server is LIFO, the next arrived jobwould be greater than all previous encountered jobs, and case 2 would hold. It would 
ush thestack together with the departure string (as long as they are consistent). Our modi�cation ofthe algorithm forces this to happen in the �nite case as well.Observation 3 Algorithms 2 and 3 split the same bunches.Indeed, bunches are de�ned under the assumption of a LIFO server, which both algorithmsimitate.Theorem 6 Consider a bunch split o� the departure stream by algorithm 3. The correspondingdeparture string could be produced by a LIFO server from the arrival string if and only if the algorithmdid not detect it was non-LIFO.Proof: By construction, as long as the algorithm executes successfully, the corresponding trunksof the arrival and departure strings correspond to a valid execution of a LIFO server. When abunch is started, the stack is empty; thus, the jobs from the bunch do not interfere with previousjob of the arrival stream. Similarly, because the stack is empty when the bunch is completed, alljobs from the bunch have been processed by this point.Q.E.D.5 Open QuestionsThis paper classi�ed permutations that can be performed by a LIFO server with various servicedisciplines. The setup can be modi�ed in several ways.1. More advanced strategies can be considered. One natural extension is adding priorities tothe jobs, thereby splitting the stack into several stacks. How will this a�ect the possiblepermutations? 14



2. Suppose the values of arrival times ai, service times si, or both, are known. How will thisabet the analysis?3. The most interesting extension of this work would be an analysis of several LIFO serversworking in team. Consider, for example, a sequence of several LIFO servers. What per-mutations of length M can they produce? What is the minimal number of LIFO serversrequired to produce an arbitrary permutation of length M? Such a team would be ableto imitate any service discipline, for a given arrival string. Because LIFO is the simplestservice discipline that changes the order of jobs, this would provide an insight into the lowerbound of complexity required of any server to perform this permutation.6 ConclusionThis paper studied permutations of job orders performed by various LIFO service disciplines.The set of such permutations was shown to be equivalent to a set of string permutations withsimple characteristics. In particular, it is easy to test whether a given permutation belongs to theset. Finally, the paper presented several algorithms that e�ciently perform such test on �niteand in�nite streams.References[1] D. Sanghi, O. Gudmundsson, A. Agrawala. Study of Network Dynamics . Computer Networksand ISDN Systems, v.26, no.3, 1993, pp 371{378.[2] J. Pointek, F. Shull, R. Tesoriero, A. Agrawala. NetDyn Revisited: A Replicated Study ofNetwork Dynamics . Computer Networks and ISDN Systems, v.29, no.7, 1997, pp 831{840.[3] V. Paxson, J. Mahdavi, A. Adams, M. Mathis. An Architecture for Large-Scale InternetMeasurement . IEEE Communications, v.36, no.8, August 1998, pp 48-54.[4] The Internet Performance and Analysis Project .http://www.merit.edu/ipma/docs/team.html[5] D. Knuth. The Art of Computer Programming. Volume 1: Fundamental Algorithms . Addison-Wesley, Reading, MA. Second ed., 1973.
15


