
Scalable Data Parallel Algorithms for TextureSynthesis and Compression using Gibbs RandomFieldsDavid A. Bader�dbader@eng.umd.edu Joseph J�aJ�ayjoseph@src.umd.eduRama Chellappazchella@eng.umd.eduDepartment of Electrical Engineering, andInstitute for Advanced Computer Studies,University of Maryland, College Park, MD 20742October 4, 1993AbstractThis paper introduces scalable data parallel algorithms for image processing. Focus-ing on Gibbs and Markov Random Field model representation for textures, we presentparallel algorithms for texture synthesis, compression, and maximum likelihood pa-rameter estimation, currently implemented on Thinking Machines CM-2 and CM-5.Use of �ne-grained, data parallel processing techniques yields real-time algorithms fortexture synthesis and compression that are substantially faster than the previouslyknown sequential implementations. Although current implementations are on Connec-tion Machines, the methodology presented here enables machine independent scalablealgorithms for a number of problems in image processing and analysis.Permission to publish this abstract separately is granted.Keywords: Gibbs Sampler, Gaussian Markov Random Fields, Image Processing, Tex-ture Synthesis, Texture Compression, Scalable Parallel Processing, Data Parallel Algorithms.�The support by NASA Graduate Student Researcher Fellowship No. NGT-50951 is gratefullyacknowledged.ySupported in part by NSF Engineering Research Center Program NSFD CDR 8803012 and NSF grantNo. CCR-9103135. Also, a�liated with the Institute for Systems Research.zSupported in part by Air Force grant No. F49620-92-J0130.i



1 IntroductionRandom Fields have been successfully used to sample and synthesize textured images ([14],[10], [24], [21], [17], [32], [12], [11], [15], [18], [9], [37], [6], [7], [8]). Texture analysis has appli-cations in image segmentation and classi�cation, biomedical image analysis, and automaticdetection of surface defects. Of particular interest are the models that specify the statisticaldependence of the gray level at a pixel on those of its neighborhood. There are several well-known algorithms describing the sampling process for generating synthetic textured images,and algorithms that yield an estimate of the parameters of the assumed random processgiven a textured image. Impressive results related to real-world imagery have appeared inthe literature ([14], [17], [12], [18], [37], [6], [7], [8]). However, all these algorithms are quitecomputationally demanding because they typically require on the order of G n2 arithmeticoperations per iteration for an image of size n� n with G gray levels. The implementationsknown to the authors are slow and operate on images of size 128�128 or smaller. Recently, aparallel implementation has been developed on a DAP 510 computer [21]. However, the DAPrequires the structure of the algorithms to match its topology, and hence the correspondingalgorithms are not as machine-independent as the algorithms described in this paper. Inaddition, we show that our algorithms are scalable in machine size and problem size.In this paper, we develop scalable data parallel algorithms for implementing the most im-portant texture sampling and synthesis algorithms. The data parallel model is an architecture-independent programming model that allows an arbitrary number of virtual processorsto operate on large amounts of data in parallel. This model has been shown to be e�-ciently implementable on both SIMD (Single Instruction stream, Multiple Data stream) orMIMD (Multiple Instruction stream, Multiple Data stream) machines, shared-memory ordistributed-memory architectures, and is currently supported by several programming lan-guages including C?, data-parallel C, Fortran 90, Fortran D, and CM Fortran. All ouralgorithms are scalable in terms of the number of processors and the size of the problem.All the algorithms described in this paper have been implemented and thoroughly tested ona Connection Machine CM-2 and a Connection Machine CM-5.The Thinking Machines CM-2 is an SIMD machine with 64K bit-serial processing ele-ments (maximal con�guration). This machine has 32 1-bit processors grouped into a Sprintnode to accelerate 
oating-point computations, and 211 Sprint nodes are con�gured as an11-dimensional hypercube. See Figure 1 for the organization of a Sprint node.The Thinking Machines CM-5 is a massively parallel computer with con�gurations con-taining 16 to 16,384 sparc processing nodes, each of which has four vector units, and the1



16 1-bit ALU'sRouter 16 1-bit ALU'sRouterMemorySprint ChipFloating Point ProcessorFigure 1: The organization of a CM-2 Sprint nodenodes are connected via a fat-tree communications network. The CM-5 is an MIMD ma-chine which can run in Single Program Multiple Data (SPMD) mode to simulate SIMDoperation. An in-depth look at the network architecture of this machine is described in[29]. The nodes operate in parallel and are interconnected by a fat-tree data network. Thefat-tree resembles a quad-tree, with each processing node (PN) as a leaf and data routers atall internal connections. In addition, the bandwidth of the fat-tree increases as you move upthe levels of the tree towards the root. Leiserson ([28]) discusses the bene�ts of the fat-treerouting network, and Greenberg and Leiserson ([19]) bound the time for communications byrandomized routing on the fat-tree. In this paper, we assume the Single Program MultipleData (SPMD) model of the CM-5, using the data parallel language C?. In the SPMD model,each processing node executes a portion of the same program, but local memory and machinestate can vary across the processors. The SPMD model e�ciently simulates the data parallelSIMD model normally associated with massively parallel programming. References [40] and[34] provide an overview for the CM-5, and both [43] and [45] contain detailed descriptionsof the data parallel platform. Note that a CM-5 machine with vector units has four vectorunits per node, and the analysis given here will remain the same. See Figure 2 for the generalorganization of the CM-5 with vector units.This paper addresses a simple image processing problem of texture synthesis and com-2



Fat-TreeCM-5 Communications Network
VU VU VU VU VU VU VU VU VU VU VU VU VU VU VU VU VU VU VU VU0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15PN1 PN2 PN3 PNP - 1PN0 Figure 2: The organization of the CM-5pression using a Gibbs sampler as an example to show that these algorithms are indeedscalable and fast on parallel machines. Gibbs sampler and its variants are useful primitivesfor larger applications such as image compression ([8], [27]), image estimation ([18], [21], [37]),and texture segmentation ([32], [15], [12], [16], [13]).Section 2 presents our model for data parallel algorithm analysis on both the CM-2 andthe CM-5. In Section 3, we develop parallel algorithms for texture synthesis using Gibbsand Gaussian Markov Random Fields. Parameter estimation for Gaussian Markov RandomField textures, using least squares, as well as maximum likelihood techniques, are givenin Section 4. Section 5 shows fast parallel algorithms for texture compression using themaximum likelihood estimate of parameters. Conclusions are given in Section 6.2 Parallel Algorithm AnalysisA data parallel algorithm can be viewed as a sequence of parallel synchronous steps in whicheach parallel step consists of an arbitrary number of concurrent primitive data operations.The complexity of a data parallel algorithm can be expressed in terms of two architecture-independent parameters, the parallel time, i.e., the number of parallel steps, and the work,i.e., the total number of operations used by the algorithm [20]. However we concentratehere on evaluating the scalability of our algorithms on two distinct architectures, namely theConnection Machines CM-2 and CM-5. In this case we express the complexity of a parallel3



algorithm with respect to two measures: the computation complexity Tcomp(n; p) which isthe time spent by a processor on local computations, and the communication complexityTcomm(n; p) which is the time spent on interprocessor communication of the overall algorithm.We use the standard sequential model for estimating Tcomp(n; p). However an estimate of theterm Tcomm(n; p) depends in general on the data layout and the architecture of the machineunder consideration. Our goal is to split the overall computation almost equally among theprocessors in such a way that Tcomm(n; p) is minimum. We discuss these issues next.2.1 Parallel Communications ModelThe model we present assumes that processors pass messages to each other via a commu-nications network. In this model, a processor sending a message incurs overhead costs forstartup such as preparing a message for transmission, alerting the destination processor thatit will receive this message, and handling the destination's acknowledgment. We call thistime � (p).The sending processor partitions the outgoing message into sections of length � bits,determined by hardware constraints. Each packet, with routing information prepended andan integrity check �eld using a cyclic redundancy code appended, is sent through the datanetwork. The destination processor then reassembles the complete message from the receivedpackets.The communications time to send a message with this model isTcomm(n; p) = � (p) + l(n; p)
 (1)where l(n; p) is the message length, and 
 is the transmission rate of the source into thenetwork measured in seconds per packet.Fortunately, all the algorithms described in this paper use regular communication pat-terns whose complexities can be easily estimated on the two architectures of the CM-2 andof the CM-5. Each such communication pattern can be expressed as a constant number ofblock permutations, where given blocks of contiguous data, B1; B2; : : : ; Bi; : : : ; Bp, residingin processors P1; P2; : : : ; Pi; : : : ; Pp, and a permutation �if1; 2; : : : ; pg, block Bi has to besent from processor Pi to P�(i), where each block is of the same size, say jBij = np . As weillustrate next, on both the CM-2 and the CM-5, the communication complexity of a regularblock permutation can be expressed as follows:Tcomm(n; p) = O(� (p) + np 
) ; (2)4



where � is the start-up cost and 
 is the packet transmission rate. We next addresshow to estimate the communication complexity for operations on pn�pn images and theirrelationship to block permutations.2.2 CM-5 Communications ModelAs described in Subsection 2.1, we use (1) as the general model for CM-5 communications. Asstated above, a common communications pattern on parallel machines is a block permutation,where given blocks of contiguous data B1; B2; : : : ; Bp, and a permutation �if1; 2; : : : ; pg,and jBij = l(n; p), block Bi has to be moved from Pi to P�(i). If each block has lengthjBij = l(n; p), we claim that the CM-5 time complexity of this operation is the following:Tcomm(n; p) = O(� (p) + l(n; p)
): (3)Each node in the CM-5 connects to the fat-tree via a 20 Mb/sec network interface link[34]. The fat-tree network provides su�cient bandwidth to allow every node to performsustained data transfers at a rate of 20 Mb/sec if all communications is contained in groupsof four nodes (i.e. the nodes di�er only in the last two bits of their logical address), 10Mb/sec for transfers within groups of 16 nodes (i.e. the nodes di�er in only the last fourbits), and 5 Mb/sec for all other communication paths in the system [34].A regular grid shift is an example of a block permutation pattern of data movement asshown in Subsection 2.2.2. For the corresponding regular block communications, the CM-5can achieve bandwidths of 15 megabytes/sec per processor to put messages into and takemessages out of the data network [29]. The runtime system (RTS) of the CM-5 will choosea data section for a message of between 1 and 5 words in length. If we assume that the datasection of a message, �, is four 4-byte words, and the header and trailer are an additional4 bytes, then 
 = 16+415�220 � 1:27�s/packet.To support these claims, we give the following empirical results. Using the messagepassing library of the CM-5, CMMD version 3.0 [41], each processing node swaps a packetwith another node of �xed distance away. Figure 3 con�rms that there is a linear relationshipbetween message length and total transmission time on the CM-5. We �nd that when theregular block permutation consists of only local communications, i.e. messages are containedin each cluster of four leaf nodes, �1(i) = f0 $ 1; 2 $ 3; 4 $ 5; : : : ; p�2$ p�1g = i�1, thelower bound on time is obtained. A least squares analysis of this data �nds � (p = 32) = 120�sand 
 � 199 msMb � 20 bytespacket = 3:82�s/packet. This is equivalent to a sustained transfer rateof 5.03 Mb/sec. 5



Other regular block permutations are shown in Figure 3 such as�2(i) = f0 $ 4; 1 $ 5; 2 $ 6; 3 $ 7; 8$ 11; : : :g = i� 4;�3(i) = f0 $ 8; 1 $ 9; 2 $ 10; 3 $ 11; : : :g = i� 8; and�4(i) = f0 $ 16; 1 $ 17; 2 $ 18; 3 $ 19; : : :g = i� 16:Both �2 and �3 use two levels of the fat-tree, while �4 needs three levels. Our resultsshow that all non-local regular permutations routed through the fat-tree have similar timecomplexities, with � (p = 32) = 129�s and 
 � 220 msMb � 20 bytespacket = 4:20�s/packet. Thiscorresponds to a sustained transfer rate of 4.55 Mb/sec.2.2.1 C? Layout of parallel arraysThis subsection describes the compiler generated data layout of a pn � pn parallel arrayusing C?. A major grid of size v � w, wherev � w = p = 2kis placed over the data array, with the constraints that both v and w are powers of two, andthe lengths v and w are chosen such that the physical grid is as close to the original aspectratio of the parallel data array as possible:v = 2b k2cw = 2d k2eAxis 0 is divided equally among v nodes, and similarly, Axis 1 among w nodes. Eachnode thus receives an pnv � pnw subgrid, or tile, of the original data array. In each node, thedata is laid out in row-major order form, that is, elements in each row of the subgrid arecontiguous, while elements adjacent in a column have a stride in memory by pnw positions[43].2.2.2 Simple and Regular Grid ShiftA typical operation in our image processing algorithms requires that each pixel be updatedbased on the pixel values of a small neighborhood. Such an operation amounts to a regulargrid shift of a pn�pn element parallel variable data array.Two phases occur in the regular grid shift:6



CM-5/32 CMMD_swap between PE 0 <--> PE x

0 <--> 1

0 <--> 4

0 <--> 8

0 <--> 16

Total Time [sec]

Message Length [MB]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.00 0.50 1.00 1.50 2.00Figure 3: Sending Time of a Regular Block Permutation7



Computation Time Tcomp(n; p) = Each node accesses its own local memory to shift up itsown subgrid;Communication Time Tcomm(n; p) = Each node sends and receives the elements lyingalong the shifted subgrid border.For p = v � w processors, Tcomp(n; p) takes O�pnv � pnw � = O�np� time.Next we make some observations about the communication phase:� All communications are regular:Pi sends to P(i�w)modp,Pi receives from P(i+w)modp;� This regular permutation is known a priori;This communication pattern is a block permutation, and the time complexity for thisoperation is given in (3). Note that each node must send a constant number of upper rowsof its subgrid to its north adjacent node in the major grid. There are pnw elements along thisborder. Thus, l(n; p) = O�pnw �, and the communications time is as follows:Tcomm(n; p) = O(� (p) +qnp 
) time. (4)Therefore, a regular grid shift of a pn�pn data array on p nodes connected by a CM-5fat-tree has the following time and communication complexity:8<: Tcomp[shift](n; p) = O�np�;Tcomm[shift](n; p) = O(� (p) +qnp 
): (5)2.3 CM-2 Communications ModelThe CM-2 contains from 28 to 211 Sprint nodes interconnected by a binary hypercube net-work. Each Sprint node consists of two chips of processors, each with 16 bit-serial processingelements. Thus, the CM-2 has con�gurations ranging between 8K and 64K, inclusive, bit-serial processors. In this analysis, we view each Sprint node as a single 32-bit processingnode.The CM-2 programming model of C? uses a canonical data layout similar to that onthe CM-5 described in Section 2.2.1 ([39], [38], [44], [4]). The only di�erence on the CM-2and CM-5 is that the Sprint node, or major grid, portion of each data element address is in8



re
ected binary gray code, insuring that nearest neighbor communications are at most onehop away in the hypercube interconnection network.We now analyze the complexity for a regular grid shift on the CM-2. Each node holds acontiguous subgrid of np data elements. During a grid shift, O�np� elements remain local toeach Sprint node, givingTcomp[shift](n; p) = O�np�: (6)Each Sprint node will send border elements to their destination node. By the canonicallayout, we are assured that this destination is an adjacent node in the hypercube. EverySprint node will send and receive elements along unique paths of the network. In this model,we neglect � (p) since we are using direct hardware links which do not incur the overheadassociated with packet routing analyses. Thus, each Sprint node will need to send and receiveO�qnp� elements, yielding a communications complexity ofTcomm[shift](n; p) = O�qnp 
�; (7)where 
 is the CM-2 transmission rate into the network.Therefore, on a CM-2 with p Sprint nodes, a regular grid shift of a pn�pn data arrayhas the following time complexity analyses:8><>: Tcomp[shift](n; p) = O�np�;Tcomm[shift](n; p) = O�qnp 
�: (8)As shown, a regular grid shift on the CM-2 is scalable for the array size and the machinesize.2.4 Complexity of Some Basic OperationsA two-dimensional Fast Fourier Transform (FFT) is a commonly used technique in digitalimage processing, and several algorithms in this paper make use of it. The FFT is well-suited for parallel applications because it is e�cient and inherently parallel ([20], [1], [22],[23], [42]). With an image size of n elements, O(n log n) operations are needed for an FFT.On a parallel machine with p processors, O�np log n� computational steps are required. Thecommunications needed for an FFT are determined by the FFT algorithm implemented ona particular parallel machine. The CM-2 pipelines computations using successive butter
ystages [42]. Its total time complexity is given by:8<: Tcomp[�t](n; p) = O�np log n�;Tcomm[�t](n; p) = O( np 
): 9



On the CM-5, however, this algorithm would not be e�cient. Instead, a communicationse�cient algorithm described in [42] is used, and has complexity:8<: Tcomp[�t](n; p) = O�np log n�;Tcomm[�t](n; p) = O(� (p) + np 
):for p � pn.Another extensively used and highly parallel primitive operation is the Scan operation.Given an array A with n elements, fA(1); A(2); : : : ; A(n)g, its scan will result in array C,where C(i) = C(1) ? C(2) ? : : : ? C(i) and ? is any associative binary operation on the set,such as addition, multiplication, minimum, and maximum, for real numbers. A scan in theforward direction yields the parallel-pre�x operation, while a reverse scan is a parallel-su�x.We can extend this operation to segmented scans, where we also input an n element array Bof bits, such that for each i, 1 � i � n, the element C(i) equals A(j) ? A(j + 1) ? : : : ? A(i),where j is the largest index of segment array B with j � i and B(j) = 1.A scan operation on a sequential machine obviously takes O(n) operations. An e�-cient parallel algorithm uses a binary tree to compute the scan in O(log n) time with O(n)operations [20]. On the CM-2, the complexity for a scan is given by: [5]8<: Tcomp[scan](n; p) = O�np�;Tcomm[scan](n; p) = O( np 
):The CM-5 e�ciently supports scans in hardware [29] and has complexity:8<: Tcomp[scan](n; p) = O�np�;Tcomm[scan](n; p) = O(� (p) + ( log p)
):As the above complexities show, these algorithms e�ciently scale for problem and ma-chine size.The data parallel programming paradigm is ideally suited for image processing sincea typical task consists of updating each pixel value based on the pixel values in a smallneighborhood. Assuming the existence of su�cientlymany virtual processors, this processingtask can be completed in time proportional to the neighborhood size. There are severalpowerful techniques for developing data parallel algorithms including scan (pre�x sums)operations, divide-and-conquer, partitioning (data and function), and pipelining. We useseveral of these techniques in our implementations of texture synthesis and compressionalgorithms. 10



3 Texture Synthesis3.1 A Parallel Gibbs SamplerA discrete Gibbs random �eld (GRF) is speci�ed by a probability mass function of the imageas follows:Pr (X = x) = e�U(x)Z ; (9)where U(x) is the energy function, and Z = PU(x) , over allGn images; G being the numberof gray levels, and the image is of size pn�pn. Except in very special circumstances, it isnot feasible to compute Z. A relaxation-type algorithm described in [14] simulates a Markovchain through an iterative procedure that re-adjusts the gray levels at pixel locations duringeach iteration. This algorithm sequentially initializes the value of each pixel using a uniformdistribution. Then a single pixel location is selected at random, and using the conditionaldistribution that describes the Markov chain, the new gray level at that location is selected,dependent only upon the gray levels of the pixels in its local neighborhood. The sequentialalgorithm terminates after a given number of iterations.O X XXX XXXX XXXX XXXXXX X X O X XXX XXXX XXXX XXXXXX X X XX XX XX XX XX XXFigure 4: (A) Fourth Order Neighborhood (B) Higher Order NeighborhoodThe sequential algorithm to generate a Gibbs random �eld described in [14] and [17] areused as a basis for our parallel algorithm. We introduce some terminology before presentingthe parallel algorithm.The neighborhood model N of a pixel is shown in Figure 4. For all the algorithmsgiven in this paper, we use a symmetric neighborhood Ns which is half the size of N . Thisimplies that if the vector ({; |) 2 N , then (�{;�|) 2 N , but only one of f({; |); (�{;�|)gis in Ns. Each element of array � is taken to represent the parameter associated with itscorresponding element in Ns. We use the notation y� to represent the gray level of the imageat pixel location �.Our Gibbs random �eld is generated using a simulated annealing type process. For animage with G gray levels, the probability Pr (X = k j neighbors) is binomial with parameter11



	(T; k) = ekT1+eT , and number of trials G�1. The array fTg is given in the following equationfor a �rst-order model:T = �+ �(1;0)(y�+(1;0) + y��(1;0)) + �(0;1)(y�+(0;1) + y��(0;1)) (10)and is a weighted sum of neighboring pixels at each pixel location. Additional examples offTg for higher order models may be found in [14].This algorithm is ideal for parallelization. The calculation of fTg requires uniform com-munications between local processing elements, and all other operations needed in the al-gorithm are data independent, uniform at each pixel location, scalable, and simple. Theparallel algorithm is as follows:Algorithm 1 Gibbs SamplerGenerate a Gibbs Random Field texture from parameters, assuming toroidal wrap-around foran I � J rectangular image.Input:f � g  the parameter used to bias fTg in order to give the sampled texture a non-zeromean gray level.f � g  the array of parameters for each element in the model.f G g is the number of gray levels.begin1. Initialize image in parallel to uniformly distributed colors between 0 and G-1, inclusive.2. Iterate for a given number of times, for all pixels in parallel do:2.1 Calculate T using parameters f � g and array f � g.2.2 Calculate p[0] = 11+eT2.3 For all gray levels fgg from [1..G-1] do:2.3.1 	(T; g) = egT1+eT2.3.2 p[g] =  G � 1g !	g(1 �	)G�1�g (The Binomial Distribution)2.4 Generate a random number in the interval [0,1] at each pixel location and usethis to select the new gray level fgg from p[g].endAn example of a binary synthetic texture generated by the Gibbs Sampler is given inFigure 5. 12



Figure 5: Isotropic Inhibition Texture using Gibbs Sampler (Texture 9b from [14]).With p � I � J processing elements, and within each iteration, step 2.1 can be executedin O( jNsjTcomp[shift](n; p) ) computational steps and O( jNsjTcomm[shift](n; p) ) communicationcomplexity, and steps 2.3 and 2.4 in O(G �np�) computational time, yielding a computationcomplexity ofTcomp(n; p) = O( n (G+jNs j)p )and communication complexity of8><>: Tcomm(n; p) = O( jNsj qnp 
), on the CM-2;Tcomm(n; p) = O( jNsj(� (p) +qnp 
)), on the CM-5,per iteration for a problem size of n = I � J .Table 1 shows the timings of a binary Gibbs sampler for model orders 1, 2, and 4, onthe CM-2, and Table 2 shows the corresponding timings for the CM-5. Table 3 presents thetimings on the CM-2 for a Gibbs sampler with �xed model order 4, but varies the numberof gray levels, G. Table 4 gives the corresponding timings on the CM-5.3.2 Gaussian Markov Random Field SamplerIn this section, we consider the class of 2-D non-causal models called the Gaussian Markovrandom �eld (GMRF) models described in [6], [12], [21], and [46]. Pixel gray levels have jointGaussian distributions and correlations controlled by a number of parameters representingthe statistical dependence of a pixel value on the pixel values in a symmetric neighborhood.There are two basic schemes for generating a GMRF imagemodel, both of which are discussedin [6]. 13



Image Order = 1 Order = 2 Order = 4Size 8k CM-2 16k CM-2 8k CM-2 16k CM-2 8k CM-2 16k CM-28k 0.00507 0.00692 0.0127016k 0.00964 0.00507 0.01280 0.00692 0.02293 0.0127032k 0.01849 0.00962 0.02395 0.01274 0.04214 0.0227564k 0.03619 0.01846 0.04605 0.02386 0.07836 0.04182128k 0.07108 0.03615 0.08872 0.04592 0.14520 0.07789256k 0.14102 0.07108 0.17481 0.08872 0.28131 0.14520512k 0.14093 0.17455 0.28036Table 1: Gibbs Sampler timings for a binary (G = 2) image (execution time in seconds periteration on a CM-2 running at 7.00 MHz)Image Order = 1 Order = 2 Order = 4Size 16/vu CM-5 32/vu CM-5 16/vu CM-5 32/vu CM-5 16/vu CM-5 32/vu CM-58k 0.046053 0.024740 0.051566 0.027646 0.068486 0.03823916k 0.089822 0.046824 0.099175 0.052411 0.130501 0.06863032k 0.176997 0.089811 0.199399 0.099493 0.252421 0.13264664k 0.351123 0.178046 0.398430 0.194271 0.560224 0.257647128k 0.698873 0.351517 0.759017 0.383425 0.943183 0.582303256k 1.394882 0.700164 1.526422 0.759747 1.874973 0.962165512k 2.789113 1.394216 3.047335 1.520437 3.744542 1.8924601M 5.577659 2.782333 6.009608 3.063054 7.428823 3.785890Table 2: Gibbs Sampler timings for a binary (G = 2) image (execution time in seconds periteration on a CM-5 with vector units)3.2.1 Iterative Gaussian Markov Random Field SamplerThe Iterative Gaussian Markov Random Field Sampler is similar to the Gibbs Sampler,but instead of the binomial distribution, as shown in step 3.2 of Algorithm 1, we use thecontinuous Gaussian Distribution as the probability function. For a neighborhood model N ,the conditional probability function for a GMRF is:p(y�jy�+r; r 2 N) = 1p2�� e� 12� y�� Xr2N �ry�+r!2 ; (11)where f �r g is the set of parameters specifying the model, and � is the variance of a zeromean noise sequence.An e�cient parallel implementation is straightforward and similar to that of the GibbsSampler (Algorithm 1). Also, its analysis is identical to that provided for Gibbs Sampler.14



Image Size G = 16 G = 32 G = 64 G = 128 G = 25616k 0.03943 0.06976 0.13029 0.25157 0.4941532k 0.07011 0.12383 0.23101 0.44586 0.8755764k 0.12966 0.22927 0.42797 0.82639 1.62323128k 0.24767 0.44017 0.82414 1.59418256k 0.47832 0.85602 1.60931512k 0.93884 1.68543Table 3: Gibbs Sampler timings using the 4th order model and varying G (execution timein seconds per iteration on a 16k CM-2 running at 7.00 MHz)Image Size G = 16 G = 32 G = 64 G = 128 G = 2568k 0.072073 0.109722 0.186440 0.338833 0.64466016k 0.123117 0.184224 0.308448 0.554801 1.04737432k 0.238610 0.340773 0.557644 1.005135 1.88357964k 0.450731 0.648609 1.093775 1.947461 3.660135128k 0.845078 1.250694 2.127231 3.754634 7.077714256k 1.654748 2.462672 4.149417 7.404596 13.958026512k 3.296162 4.943185 8.190262 14.713778 27.7400061M 6.566956 9.753557 16.169061 29.217335Table 4: Gibbs Sampler timings using the 4th order model and varying G (execution timein seconds per iteration on a 32 node CM-5 with vector units)3.2.2 Direct Gaussian Markov Random Field SamplerThe previous section outlined an algorithm for sampling GMRF textured images using aniterative method. Unfortunately, this algorithm may have to perform hundreds or eventhousands of iterations before a stable texture is realized. Next we present a scheme whichmakes use of two-dimensional Fourier transforms and does not need to iterate. The DirectGMRF Sampler algorithm is realized from [6] as follows. We use the following scheme toreconstruct a texture from its parameters � and a neighborhood Ns:y = 1M2 X�2
 f� x�p�� (12)where y is the resulting M2 array of the texture image, andx� = f �t� � ;�� = (1 � 2�T��);8� 2 
 (13)�� = Col[cos 2�M �tr; r 2 Ns]: (14)15



The sampling process is as follows. We begin with �, a Gaussian zero mean noise vectorwith identity covariance matrix. We generate its the Fourier series, via the Fast FourierTransform from Subsection 2.4, using f�, the Fourier vector de�ned below:f� = Col[1; �{ ; �2{ t| ; : : : ; �M�1{ t| ], is an M2 vector, (15)t| = Col[1; �| ; �2| ; : : : ; �M�1| ], is an M -vector, and (16)�{ = exp�p�12�{M �; (17)and �nally apply (12).Algorithm 2 Direct Gaussian MRF SamplerReconstruct a GMRF texture from parameters, assuming toroidal wrap-around and an M2image sizeInput:�  the set of parameters for the given model.f G g is the number of gray levels.image a parallel variable for the image. (Complex)f�rg a parallel variable with serial elements for each parameter in the model.begin1. Initialize the real part of the image in parallel to Gaussian noise with mean = 0 andstandard deviation = 1.2. Initialize the imaginary part of the image in parallel to 0.3. Divide the image by p� .4. Perform a parallel, in-place FFT on the noise.5. For all pixels � in parallel do:5.1 For each r 2 Ns, �r = cos 2�M �tr5.2 Calculate �� from Equation (13).5.3 Divide the image by p�� .6. Perform a parallel, in-place, inverse FFT on the image.7. Scale the result to gray levels in the interval [0..G-1].endSteps 1, 2, 3, 5.2, 5.3, and 7 all run in O�np� parallel steps, where n = M2 and p isthe number of processors available. As stated in Subsection 2.4, an n-point FFT, used16



in steps 4 and 6, computed on p processors takes Tcomp[�t](n; p) computation time andTcomm[�t](n; p) communications. Step 5.1 takes O( jNsj �np�) parallel steps.The Direct Gaussian MRF Sampler algorithm thus has a computation complexity ofTcomp(n; p) = O( n (jNsj+logn)p )and communication complexity of8<: Tcomm(n; p) = O( np 
), on the CM-2;Tcomm(n; p) = O(� (p) + np 
), on the CM-5,using p �M processors.Note that the number of gray levels, G, is only used in the last step of the algorithm asa scaling constant. Hence this algorithm scales with image size n and number of processorsp, independent of the number of gray levels G used. Notice also that the communicationcomplexity is higher than that of the Gibbs sampler; this is due to the fact that the FFTis a global operation on the image. Our experimental data collected by implementing thisalgorithm on the CM-2 and the CM-5 con�rm our analysis.4 Parameter Estimation for Gaussian Markov Ran-dom Field TexturesGiven a real textured image, we wish to determine the parameters of a GMRF model whichcould be used to reconstruct the original texture through the samplers given in the previoussection.This section develops parallel algorithms for estimating the parameters of a GMRF tex-ture. The methods of least squares (LSE) and of maximum likelihood (MLE), both describedin [6], are used. We present e�cient parallel algorithms to implement both methods. TheMLE performs better than the LSE. This can be seen visually by comparing the texturessynthesized from the LSE and MSE parameters, or by noting that the asymptotic varianceof the MLE is lower than the LSE ([3], [25]).4.1 Least Squares Estimate of ParametersThe least squares estimate detailed in [6] assumes that the observations of the GMRF imagefy�g obey the modely� = Xr2Ns�r[y�+r + y��r] + e�; 8� 2 
; (18)17



where fe�g is a zero mean correlated noise sequence with variance � and correlation withthe following structure:E(e�er) = ����r�; (� � r) 2 N= �; � = r (19)= 0; otherwise:The conditional distribution is given in (11). Then, for g� = Col[y�+r0 +y��r0 ; r0 2 Ns], theLSE are:�? = "X
 g� gt�#�1  X
 g� y�! (20)�? = 1M2 X
 �y� ��?tg� �2 (21)where 
 is the complete set of M2 pixels, and toroidal wrap-around is assumed.Algorithm 3 Least Squares Estimator for GMRFUsing the method of Least Squares, estimate the parameters of image Y. Assume toroidalwrap-around, an M2 image size, and a given neighborhood.Input:fYg  the image.�  the scalar array of parameter estimates for each neighborhood element.begin1. For all pixels in parallel do:1.1 For each r 2 Ns do1.1.1 g�[r] = y�+r + y��r1.2 For { from 1 to jNsj do1.2.1 For | from 1 to jNsj do1.2.1.1 Calculate gcross�[{; |] = g�[{]� g�[|].2. For { from 1 to jNsj do2.1 For | from 1 to jNsj do2.1.1 Compute in parallel the sum gmatrix[{; |] = X�2
 gcross�[{; |].3. For all pixels � in parallel do:3.1 For each r 2 Ns do 18



3.1.1 Calculate gv�[r] = g�[r]� y�4. For each r 2 Ns do4.1 Compute in parallel the sum gvec[r] = X�2
 gv�[r]5. Solve the jNsj � jNsj linear system of equations:[gmatrix]jNsj�jNs j � [�?]jNsj�1 = [gvec]jNsj�16. Calculate �? = 1M2 X�2
(y� ��?tg�)2endFor an image of size n = M2, step 1.1 has a computational complexity of O( jNsjTcomp[shift](n; p) )parallel steps and a communication complexity of O( jNsjTcomm[shift](n; p) ). Step 1.2 runs inO((jNsj)2 �np�) parallel steps. Step 3 takes O( jNsj �np�) parallel steps. Steps 2 and 4 containa reduction over the entire array, speci�cally, �nding the sum of the elements in a given par-allel variable. As this is a scan operation, we refer the reader to Subsection 2.4 for algorithmanalysis. Thus, step 2 runs is O( (jNsj)2Tcomp[scan](n; p)) computational parallel steps withO((jNsj)2Tcomm[scan](n; p) ) communications, and steps 4 and 6 run in O( jNsjTcomp[scan](n; p) )parallel steps with O( jNsjTcomm[scan](n; p) ) communications. Solving the linear system ofequations in step 5 takes O((jNsj)3) computational steps.The computational complexity of the Least Squares Estimator for an image of size n =M2 isTcomp(n; p) = O( n jNsj2p + (jNsj)3)and the communication complexity is8<: Tcomm(n; p) = O( n jNsj2p 
), on the CM-2;Tcomm(n; p) = O( jNsj2 � (p) + ( jNsjqnp + jNsj2 log p)
), on the CM-5,using p �M processors.4.2 Maximum Likelihood Estimate of ParametersWe introduce the following approach as an improved method for estimating GMRF param-eters of textured images. The method of maximum likelihood gives a better estimate of thetexture parameters, since the asymptotic variance of the MLE is lower than that of the LSE.We also show a much faster algorithm for optimizing the joint probability density functionwhich is an extension of the Newton-Raphson method and is also highly parallelizable.19



Assuming a toroidal lattice representation for the image fy�g and Gaussian structure fornoise sequence fe�g, the joint probability density function is the following:p(yj�; �) = 1(2��)M22 vuutY�2
(1� 2 X�{ 2Ns (��{ ��{ (�))) e� 12�"C(0) � X�{ 2N (��{ C(�{ ))# (22)In (22), C(�{ ) is the sample correlation estimate at lag �{ . As described in [3] and[6], the log-likelihood function can be maximized: (Note that F (�; �) = log p(yj�; �)).F (�; �) = � M22 log 2�� + 12 X�2
( log (1� 2 X�{ 2Ns (��{ ��{ (�)) ))� 12� X�2
(y(�)2 � y(�) X�{ 2Ns (��{ (y(� + r{) + y(� � r{)) )) (23)For a square image, ��{ is given as follows:��{ (�) = cos�2�M �Tr{� (24)This non-linear function F is maximized by using an extension of the Newton-Raphsonmethod. This new method �rst generates a search direction #k by solving the system[r2F (�k)](r+1)�(r+1) [#k](r+1)�1 = �[rF (�k)](r+1)�1: (25)Note that this method works well when r2F (�k) is a symmetric, positive-de�nite Hessianmatrix. We then maximize the step in the search direction, yielding an approximation to �kwhich attains the local maximum of F (�k+�#) and also satis�es the constraints that each oftheM2 values in the logarithm term for F is positive. Finally, an optimality test is performed.We set �k+1 = �k + �#, and if �k+1 is su�ciently close to �k, the procedure terminates.We give the �rst and second derivatives of F with respect to �k and � in Appendix B.For a rapid convergence of the Newton-Raphson method, it must be initialized with agood estimate of parameters close to the global maximum. We use the least squares estimategiven in Subsection 4.1 as �0, the starting value of the parameters.Algorithm 4 Maximum Likelihood EstimateNote that �k � h�1; �2; : : : ; �r; �i:Also, this algorithm assumes toroidal wrap-around of the image.Note that in Step 5, � < 1:0 , and we use � = 0:8 .Input: 20



fYg  the image.begin1. Find Initial Guess �0 using LSE Algorithm 3.2. Compute rF (�k) � h @F@�1 ; @F@�2 ; : : : ; @F@�r ; @F@� i.3. Compute r2F (�k) � 266666666666664 @2F@�12 @2F@�1 @�2 : : : @2F@�1 @�r @2F@�1@�@2F@�2 @�1 @2F@�22 : : : @2F@�2 @�r @2F@�2@�... ... . . . ... ...@2F@�r @�1 @2F@�r @�2 : : : @2F@�r2 @2F@�r@�@2F@�v @�1 @2F@�v @�2 : : : @2F@�v @�r @2F@�2 377777777777775.4. Solve the following linear system of equations for vector #[r2F (�k)](r+1)�(r+1) [#](r+1)�1 = �[rF (�k)](r+1)�15. Determine the largest � from f1; �; �2; �3; : : :g such that(4a.) 1 � 2 X�{ 2Ns (��{ ��{ (�)) > 0 ; (note that these represent M2 constraints)(4b.) F (�k + �#) > F (�k)6. Set �k+1 = �k + �#7. If jF (�k+1)� F (�k)j > � then go to Step 2.endThe time complexities per iteration of the MLE algorithm are similar to that of the LSEalgorithm analysis given in Subsection 4.1.In Figures 6 - 8, we show the synthesis using least squares and maximum likelihoodestimates for wool weave, wood grain, and tree bark, respectively, obtained from standardtextures library. Tables 5, 6, and 7 show the respective parameters for both the LSE andMLE and give their log-likelihood function values. Each example shows that the maximumlikelihood estimate improves the parameterization. In addition, CM-5 timings for theseestimates varying machine size, image size, and neighborhood models can be found in Ta-bles 8, 9, 10, and 11, for a 4th order model on this selection of real world textured images, andin Tables 12, 13, 14, and 15, for a higher order model on the same set of images. Similarly,CM-2 timings for these estimates can be found in [2]. Tables 8 - 15 are given in Appendix C.21



5 Texture CompressionWe implement an algorithm for compressing an image of a GMRF texture to approximately1 bit/pixel from the original 8 bits/pixel image. The procedure is to �nd the MLE of thegiven image, (e.g. this results in a total of eleven 32-bit 
oating point numbers for the 4thorder model). We then use a Max Quantizer, with characteristics given in [33], to quantizethe residual to 1-bit. The quantized structure has a total of M2 bits. To reconstruct theimage from its texture parameters and 1-bit Max quantization, we use an algorithm similarto Algorithm 2. Instead of synthesizing a texture from Gaussian noise, we begin with the 1-bit quantized array. Compressed textures for a 4th order model are shown in Figures 6 and 7.A result using the higher order model is shown in Figure 8.The noise sequence � is generated as follows:� = 1M2 X�2
 f� x�p�� (26)wherex� = f �t� y (27)and the �� is given in (13). We estimate the residual as:�? = 1p�? � (28)and �? is the sequence which is Max quantized.The image reconstruction from parameters and quantization �? is as follows:y = 1M2 X�2
 f� x�p�� (29)wherex� = f �t� �? (30)and �� is given in (13); �� is given in (14).The texture compression algorithm has the same time complexity and scalability charac-teristics as Algorithm 4. The image reconstruction algorithm has the same complexities asAlgorithm 2. Hence these algorithms scale with image size n and number of processors p.This algorithm could be used to compress the textures regions in natural images as partof segmentation based compression schemes discussed in [27]. Compression factors of 35have been obtained for the standard Lena and F-16 images, with no visible degradations.Compression factors of 80 have been shown to be feasible when small degradations arepermitted in image reconstruction. 22



6 ConclusionsWe have presented e�cient data parallel algorithms for texture analysis and synthesis basedon Gibbs or Markov random �eld models. A complete software package running on theConnection Machine model CM-2 and the Connection Machine model CM-5 implementingthese algorithms is available for distribution to interested parties. The experimental datastrongly support the analysis concerning the scalability of our algorithms. The same type ofalgorithms can be used to handle other image processing algorithms such as image estimation([18], [21], [37]), texture segmentation ([12], [17], [32]), and integration of early vision modules([35]). We are currently examining several of these extensions.

23



A Example Texture Figures

Figure 6: Wool Weave Texture: (clockwise from top left) original image, reconstructed fromthe LSE, MLE, and Compressed image. A fourth order model was used.Parameter LSE MLE(1,0) 0.428761 0.416797(0,1) 0.203167 0.203608(1,1) 0.021416 0.024372(-1,1) -0.080882 -0.082881(0,2) 0.037685 0.050928(2,0) -0.080724 -0.061254(-2,1) 0.027723 0.026702(1,-2) -0.016667 -0.026285(1,2) -0.033902 -0.042835(2,1) -0.008665 -0.010334� 23397.04 128.41F (�) -264609.19 -264538.63Table 5: � Parameters for Wool WeaveThe parameters for the 256 � 256 image of wool weave in Figure 6 are given in Table 5.24



Figure 7: Wood Texture: (clockwise from top left) original image, reconstructed from theLSE, MLE, and Compressed image. A fourth order model was used.Parameter LSE MLE(1,0) 0.549585 0.526548(0,1) 0.267898 0.273241(1,1) -0.143215 -0.142542(-1,1) -0.135686 -0.134676(0,2) 0.001617 -0.006949(2,0) -0.051519 -0.027342(-2,1) 0.006736 0.003234(1,-2) -0.002829 0.000907(1,2) 0.000248 0.005702(2,1) 0.006504 0.001766� 33337.88 12.84F (�) -204742.39 -202840.50Table 6: � Parameters for Wood TextureThe parameters for the 256�256 image of wood texture in Figure 7 are given in Table 6.25



Figure 8: Tree Bark Texture: (clockwise from top left) original image, reconstructed fromthe LSE, MLE, and Compressed image. A model whose parameters are listed below wasused. Parameter LSE MLE(1,0) 0.590927 0.568643(0,1) 0.498257 0.497814(1,1) -0.281546 -0.272283(-1,1) -0.225011 -0.219671(0,2) -0.125950 -0.128427(2,0) -0.203024 -0.162452(2,2) -0.014322 -0.017466(2,-2) -0.002711 -0.007541(3,0) 0.060477 0.034623
Parameter LSE MLE(0,3) 0.024942 0.015561(4,0) -0.019122 -0.006186(0,4) -0.009040 -0.003748(-2,1) 0.045105 0.036778(1,-2) 0.031217 0.040860(1,2) 0.061537 0.067912(2,1) 0.067865 0.055445� 22205.84 65.45F (�) -266147.34 -264245.13Table 7: � Parameters for Tree Bark TextureThe parameters for the 256 � 256 image of tree bark texture in Figure 8 are given inTable 7. 26



B Equations used for the Computation of the Maxi-mum Likelihood Estimate@Fd�{ = �X�2
0BBB@ ��{ (�)1� 2 X�{ 2Ns (��{ ��{ (�)) 1CCCA+ 12� X�2
(y(�)(y(� + r{) + y(� � r{))) (31)@Fd� = � M22�+ 12�2 X�2
(y(�)2 � y(�) X�{ 2Ns (��{ (y(� + r{) + y(� � r{)) )) (32)@2Fd�{ d�| = �2X�2
0BBBBB@ ��{ (�)��| (�)(1 � 2 X�{ 2Ns (��{ ��{ (�)))21CCCCCA (33)@2Fd�{ d� = � 12�2 X�2
(y(�)(y(� + r{) + y(� � r{))) (34)@2Fd�2 = M22�2� 1�3 X�2
(y(�)2 � y(�) X�{ 2Ns (��{ (y(� + r{) + y(� � r{)) )) (35)For an initial value for �, we use the value for which @Fd� = 0. Thus,� = 1M2 X�2
(y(�)2 � y(�) X�{ 2Ns (��{ (y(� + r{) + y(� � r{)) )) : (36)
27



C Timings for parallel image processing techniquesC.1 Tables for CM-5 with 4th order modelImage LSE MLE Max Quant. ReconstructionCM Real CM Real CM Real CM RealGrass 0.18871 0.21552 0.64907 0.68889 0.15110 0.15649 0.15320 0.15889Tree Bark 0.18902 0.21701 0.77848 0.79900 0.15102 0.15676 0.15298 0.15826Hay 0.18919 0.21593 0.78369 0.79954 0.15120 0.15681 0.15245 0.15806Material Weave 0.18977 0.21694 0.44053 0.46859 0.15148 0.15703 0.15311 0.15915Wool 0.18888 0.21550 0.35270 0.37245 0.15172 0.15734 0.15252 0.15804Calf Leather 0.18942 0.21629 0.52948 0.56461 0.15102 0.15675 0.15359 0.15906Sand 0.18965 0.21640 0.53487 0.56807 0.15122 0.15689 0.15292 0.15846Water 0.18878 0.21687 0.74409 0.75874 0.15075 0.15608 0.15262 0.15834Wood 0.18888 0.21597 1.12768 1.18931 0.15112 0.15639 0.15332 0.15874Ra�a 0.18905 0.21600 0.66650 0.70604 0.15257 0.15810 0.15331 0.15884Pigskin 0.19014 0.21731 0.53278 0.56823 0.15284 0.15840 0.15493 0.16046Brick 0.18942 0.21598 0.50737 0.54052 0.15355 0.15905 0.15537 0.16080Plastic Bubbles 0.19000 0.21671 0.78290 0.80600 0.15407 0.15934 0.15566 0.16356Table 8: Timings for 32 node CM-5 with vector units and a 256� 256 image using 4th ordermodel (in seconds)Image LSE MLE Max Quant. ReconstructionCM Real CM Real CM Real CM RealGrass 0.35025 0.40559 1.09579 1.73474 0.42910 0.60252 0.41336 0.50837Tree Bark 0.35098 0.41215 2.12047 3.09966 0.38376 0.58190 0.47184 0.57506Hay 0.35028 0.48535 1.80150 2.90682 0.32341 0.51846 0.45188 0.53853Material Weave 0.35056 0.39201 0.79223 1.49892 0.36427 0.46717 0.47648 0.58006Wool 0.35086 0.58025 0.59332 1.18285 0.39188 0.42692 0.50216 0.60554Calf Leather 0.35067 0.43579 1.06463 1.81233 0.30748 0.48003 0.29210 0.53882Sand 0.35042 0.47085 1.13418 1.97015 0.42911 0.57422 0.52275 0.52931Water 0.35074 0.44033 1.90515 2.81341 0.42568 0.60710 0.32805 0.47829Wood 0.35024 0.42933 2.27675 3.58605 0.44118 0.53959 0.40582 0.50857Ra�a 0.35034 0.67003 1.22650 2.29592 0.45805 0.58671 0.39621 0.49888Pigskin 0.35502 0.58772 1.09873 1.76496 0.33998 0.44263 0.36714 0.53695Brick 0.35868 0.65987 1.15683 1.46099 0.85711 0.99022 0.96830 1.31532Plastic Bubbles 0.49915 0.78976 1.74521 2.50664 1.67132 1.84861 0.72001 0.99533Table 9: Timings for 16 node CM-5 with vector units and a 256� 256 image using 4th ordermodel (in seconds) 28



Image LSE MLE Max Quant. ReconstructionCM Real CM Real CM Real CM RealGrass 0.66347 0.70880 2.81060 2.85450 0.53827 0.57128 0.54347 0.58556Tree Bark 0.66375 0.70965 2.76704 2.80584 0.54770 0.59848 0.59314 0.66343Hay 0.66224 0.70761 2.55092 2.58401 0.53867 0.58000 0.54400 0.58604Material Weave 0.66283 0.70950 1.48790 1.53534 0.53892 0.58143 0.54315 0.58493Wool 0.66304 0.70949 2.05468 2.11505 0.55202 0.67596 0.55666 0.59950Calf Leather 0.66837 0.71377 1.98576 2.03600 0.55320 0.59496 0.55737 0.59935Sand 0.67016 0.71544 2.05744 2.10879 0.55260 0.58614 0.55671 0.59901Water 0.66997 0.71546 2.91214 2.95684 0.55021 0.59293 0.55578 0.59912Wood 0.67039 0.71839 2.93610 2.98055 0.55189 0.58427 0.55838 0.59988Ra�a 0.66970 0.71477 2.95711 2.98426 0.55262 0.58515 0.55707 0.59886Pigskin 0.66819 0.71437 2.93399 2.97085 0.55329 0.58616 0.55650 0.59834Brick 0.66917 0.71468 1.82636 1.87932 0.55172 0.59385 0.55780 0.60021Plastic Bubbles 0.66994 0.72098 2.80696 2.85616 0.53656 0.56927 0.54462 0.58690Table 10: Timings for 32 node CM-5 with vector units and a 512 � 512 image using 4thorder model (in seconds)Image LSE MLE Max Quant. ReconstructionCM Real CM Real CM Real CM RealGrass 1.36603 1.90141 6.64328 11.46509 1.03455 1.89646 1.28558 1.94048Tree Bark 1.26896 1.66841 6.60849 11.06427 1.15230 1.88849 1.32597 1.94607Hay 1.28100 1.89287 6.02011 10.46863 1.03698 1.93140 1.14502 1.80366Material Weave 1.29521 1.80298 2.74713 6.20137 1.11419 1.82659 1.04486 1.92548Wool 1.30032 1.78571 3.90378 8.48179 1.04720 1.76455 1.31172 1.94375Calf Leather 1.26903 1.73373 3.72970 8.43098 1.20791 1.87151 1.24595 2.03756Sand 1.40796 1.93989 3.83804 8.78400 1.20834 1.85583 1.16566 1.90384Water 1.33629 1.79228 6.74821 11.16951 1.25288 2.05764 1.21235 1.75456Wood 1.46343 2.19338 6.55124 11.45757 1.20506 1.92589 1.08904 1.82530Ra�a 1.27830 1.66010 6.46234 11.43468 1.20810 1.85213 1.32857 1.76140Pigskin 1.27817 1.80461 6.77205 11.45332 1.09704 1.80778 1.04815 2.00044Brick 1.27798 1.77087 3.83952 7.91782 1.16428 2.18315 1.14691 1.83908Plastic Bubbles 1.27235 1.66958 6.69361 11.55942 1.14468 1.85555 1.08797 1.90316Table 11: Timings for 16 node CM-5 with vector units and a 512 � 512 image using 4thorder model (in seconds)
29



C.2 Tables for CM-5 with higher order modelImage LSE MLE Max Quant. ReconstructionCM Real CM Real CM Real CM RealGrass 0.40322 0.44213 0.94195 1.00667 0.17641 0.18229 0.17872 0.19094Tree Bark 0.40361 0.44326 1.22845 1.31758 0.17751 0.18381 0.18091 0.18858Hay 0.40472 0.44332 1.92117 2.04819 0.17725 0.18302 0.17958 0.19137Material Weave 0.40492 0.44825 1.12377 1.20635 0.17674 0.18247 0.17868 0.19115Wool 0.40493 0.44367 0.75545 0.80905 0.17639 0.18282 0.17899 0.19111Calf Leather 0.40621 0.44538 0.93570 1.00897 0.17675 0.18344 0.17901 0.18472Sand 0.40669 0.45053 0.94703 1.00784 0.17720 0.18295 0.18141 0.18772Water 0.40630 0.44502 1.35860 1.45406 0.17695 0.18348 0.17911 0.19145Wood 0.40698 0.44554 1.11477 1.15080 0.17640 0.18218 0.18030 0.18918Ra�a 0.40710 0.45160 1.16616 1.24794 0.17733 0.18322 0.18057 0.18744Pigskin 0.40718 0.44659 0.77520 0.82944 0.17683 0.18264 0.18502 0.19097Brick 0.40558 0.44437 1.22903 1.31398 0.17247 0.17809 0.17442 0.18630Plastic Bubbles 0.40208 0.44171 0.96939 1.04141 0.17213 0.17792 0.17583 0.18346Table 12: Timings for 32 node CM-5 with vector units and a 256 � 256 image using higherorder model (in seconds)Image LSE MLE Max Quant. ReconstructionCM Real CM Real CM Real CM RealGrass 0.75510 0.94495 1.64171 2.95562 0.49920 0.69683 0.43896 0.62601Tree Bark 0.75529 0.91401 2.43371 4.09217 0.45063 0.73213 0.39573 0.56178Hay 0.75485 0.83668 3.54220 6.08994 0.42932 0.66296 0.54377 0.64749Material Weave 0.75359 0.83831 1.87242 3.11225 0.37618 0.47948 0.52253 0.60530Wool 0.75227 0.92176 1.33899 2.53465 0.43754 0.60825 0.43503 0.63146Calf Leather 0.75169 0.82723 1.87598 3.45899 0.38286 0.57002 0.50191 0.60552Sand 0.75243 0.82902 1.53868 3.10369 0.37218 0.88758 0.53837 0.64540Water 0.75445 1.01632 2.57627 4.19290 0.40781 0.59671 0.52076 0.61641Wood 0.75831 0.91263 2.46256 4.07550 0.49943 0.60110 0.46189 0.66130Ra�a 0.75254 0.92399 1.95853 3.80243 0.36174 0.55886 0.69533 0.70182Pigskin 0.75442 0.94364 1.26406 2.47400 0.52605 0.62853 0.50666 0.61040Brick 0.75446 0.94785 2.59574 4.15548 0.46582 0.60754 0.50111 0.60480Plastic Bubbles 0.75327 0.88082 1.80579 3.51673 0.41855 0.51143 0.50508 0.70250Table 13: Timings for 16 node CM-5 with vector units and a 256 � 256 image using higherorder model (in seconds) 30



Image LSE MLE Max Quant. ReconstructionCM Real CM Real CM Real CM RealGrass 1.43952 1.51679 3.24504 3.35994 0.61829 0.67558 0.62485 0.69582Tree Bark 1.45144 1.53228 3.68973 3.83764 0.63826 0.70764 0.64226 0.69931Hay 1.44959 1.52739 4.84103 5.06278 0.63773 0.70791 0.64222 0.71177Material Weave 1.44452 1.52227 2.78452 2.88677 0.63801 0.70782 0.64310 0.71258Wool 1.44829 1.52647 3.98331 4.12007 0.63837 0.70870 0.64326 0.71323Calf Leather 1.44067 1.51911 3.32404 3.47150 0.63729 0.69418 0.64260 0.71259Sand 1.44085 1.52947 2.84737 2.96683 0.63784 0.80315 0.64293 0.71302Water 1.44850 1.52666 4.29537 4.38623 0.63576 0.69311 0.64040 0.69771Wood 1.48000 1.61215 4.68701 5.22864 0.64783 0.75573 0.64589 0.76560Ra�a 1.44559 1.55839 4.29394 4.38290 0.63736 0.69405 0.64188 0.69950Pigskin 1.44618 1.53312 4.25180 4.33038 0.63918 0.70899 0.64235 0.71475Brick 1.46964 1.69157 4.77538 5.42371 0.63805 0.72941 0.64650 0.74760Plastic Bubbles 1.44442 1.52329 5.07613 5.29358 0.63747 0.70774 0.64290 0.71350Table 14: Timings for 32 node CM-5 with vector units and a 512 � 512 image using higherorder model (in seconds)Image LSE MLE Max Quant. ReconstructionCM Real CM Real CM Real CM RealGrass 3.12318 4.72546 6.99671 17.82032 1.49828 2.40623 1.31636 2.26554Tree Bark 3.32219 4.63255 7.29536 17.69756 1.20850 2.28685 1.21490 2.23169Hay 2.96341 4.49642 9.58966 23.73069 1.33654 2.23659 1.32477 2.25426Material Weave 2.98736 4.79122 5.38949 13.77429 1.37614 2.37668 1.21506 2.20862Wool 3.01502 4.70060 7.63265 19.54811 1.29214 2.39451 1.30015 2.37301Calf Leather 3.01284 4.85013 7.68454 18.58360 1.19652 2.20188 1.20436 2.05411Sand 3.00917 4.64956 5.31515 13.95840 1.29127 2.27837 1.41723 2.45459Water 3.15670 4.72244 9.62219 17.74029 1.30545 2.20439 1.56962 2.38058Wood 3.30382 4.83820 10.27261 17.35976 1.40333 2.12686 1.32172 2.32923Ra�a 3.17638 4.61360 10.02692 17.54273 1.37101 2.40834 1.21189 2.59668Pigskin 3.14083 4.68527 11.85554 17.45039 1.22261 2.34884 1.33543 2.23909Brick 3.26359 4.63380 9.81605 16.98878 1.24787 2.20357 1.49057 2.37116Plastic Bubbles 2.94002 4.73853 10.88062 26.16783 1.39433 2.32359 1.24875 2.18659Table 15: Timings for 16 node CM-5 with vector units and a 512 � 512 image using higherorder model (in seconds)
31



References[1] S. G. Akl. The Design and Analysis of Parallel Algorithms. Prentice-Hall, EnglewoodCli�s, NJ, 1989.[2] D. A. Bader, J. J�aJ�a, and R. Chellappa. Scalable Data Parallel Algorithms for TextureSynthesis and Compression Using Gibbs Random Fields. Technical Report CS-TR-3123and UMIACS-TR-93-80, UMIACS and Electrical Engineering, University of Maryland,College Park, MD, August 1993.[3] J. E. Besag and P. A. P. Moran. On the Estimation and Testing of Spacial Interactionin Gaussian Lattice Processes. Biometrika, 62:555{562, 1975.[4] G. E. Blelloch. C? data layout for the CM-2. Personal Communications, August 17,1993.[5] G. E. Blelloch, C. E. Leiserson, B. M. Maggs, C. G. Plaxton, S. J. Smith, and M. Zagha.A Comparison of Sorting Algorithms for the Connection Machine CM-2. In Proceedingsof the ACM Symposium on Parallel Algorithms and Architectures, pages 3{16, July1991.[6] R. Chellappa. Two-Dimensional Discrete Gaussian Markov Random Field Models forImage Processing. In L. N. Kanal and A. Rosenfeld, editors, Progress in Pattern Recog-nition, volume 2, pages 79{112. Elsevier Science Publishers B. V., 1985.[7] R. Chellappa and S. Chatterjee. Classi�cation of Textures Using Gaussian Markov Ran-dom Fields. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33:959{963, August 1985.[8] R. Chellappa, S. Chatterjee, and R. Bagdazian. Texture Synthesis and CompressionUsing Gaussian-Markov Random Field Models. IEEE Transactions on Systems, Man,and Cybernetics, 15:298{303, March 1985.[9] R. Chellappa, Y. H. Hu, and S. Y. Kung. On Two-Dimensional Markov Spectral Estima-tion. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-31:836{841,August 1983.[10] R. Chellappa and R. L. Kashyap. Synthetic Generation and Estimation in RandomField Models of Images. In IEEE Comp. Soc. Comf. on Pattern Recog. and ImageProcessing, pages 577{582, Dallas, TX, August 1981.[11] R. Chellappa and R. L. Kashyap. Texture Synthesis Using 2-D Noncausal AutoregressiveModels. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-33:194{203, February 1985.[12] F. S. Cohen. Markov Random Fields for Image Modelling & Analysis. In U. Desai,editor, Modelling and Applications of Stochastic Processes, chapter 10, pages 243{272.Kluwer Academic Press, Boston, MA, 1986.32



[13] F. S. Cohen and D. B. Cooper. Simple Parallel hierarchical and relaxation algorithmsfor segmenting noncausal Markovian �elds. IEEE Transactions on Pattern Analysis andMachine Intelligence, PAMI-9:195{219, March 1987.[14] G. R. Cross and A. K. Jain. Markov Random Field Texture Models. IEEE Transactionson Pattern Analysis and Machine Intelligence, PAMI-5:25{39, January 1983.[15] H. Derin. The Use of Gibbs Distributions In Image Processing. In Blake and H. V.Poor, editors, Communications and Networks, chapter 11, pages 266{298. Springer-Verlag, New York, 1986.[16] H. Derin and H. Elliott. Modeling and segmentation of noisy and textured images usingGibbs random �elds. IEEE Transactions on Pattern Analysis and Machine Intelligence,PAMI-9:39{55, January 1987.[17] R. C. Dubes and A. K. Jain. Random Field Models in Image Analysis. Journal ofApplied Statistics, 16:131{164, 1989.[18] S. Geman and D. Geman. Stochastic Relaxation, Gibbs Distributions, and the BayesianRestoration of Images. IEEE Transactions on Pattern Analysis and Machine Intelli-gence, PAMI-6:721{741, November 1984.[19] R. I. Greenberg and C. E. Leiserson. Randomized Routing on Fat-Trees. Advances inComputing Research, 5:345{374, 1989.[20] J. J�aJ�a. An Introduction to Parallel Algorithms. Addison-Wesley Publishing Company,New York, 1992.[21] F. C. Jeng, J. W. Woods, and S. Rastogi. Compound Gauss-Markov Random Fields forParallel Image Processing. In R. Chellappa and A. K. Jain, editors, Markov RandomFields: Theory and Application, chapter 2, pages 11{38. Academic Press, Boston, MA,1993. Bell Communications Research and ECSE Department, Renssalaer PolytechnicInstitute.[22] S. L. Johnsson, M. Jacquemin, and R. L. Krawitz. Communications E�cient Multi-Processor FFT. Journal of Computational Physics, 102:381{397, 1992.[23] S. L. Johnsson and R. L. Krawitz. Cooley - Tukey FFT on the Connection Machine.Parallel Computing, 18:1201{1221, 1992.[24] R. L. Kashyap. Univariate and Multivariate Random FieldModels for Images. ComputerGraphics and Image Processing, 12:257{270, 1980.[25] R. L. Kashyap and R. Chellappa. Estimation and Choice of Neighbors in Spacial In-teraction Models of Images. IEEE Transactions on Information Theory, IT-29:60{72,January 1983.[26] H. K�unsch. Thermodynamics and Statistical Analysis of Gaussian Random Fields.Zeitschrift f�ur Wahrscheinlichkeitstheorie verwandte Gebiete, 58:407{421, November1981. 33



[27] O. J. Kwon and R. Chellappa. Segmentation-based image compression. Optical Engi-neering, 32:1581{1587, July 1993. (Invited Paper).[28] C. E. Leiserson. Fat-Trees: Universal Networks for Hardware-E�cient Supercomputing.IEEE Transactions on Computers, C-34:892{901, October 1985.[29] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Ganmukhi,J. V. Hill, W. D. Hillis, B. C. Kuszmaul, M. A. St. Pierre, D. S. Wells, M. C. Wong,S. W. Yang, and R. Zak. The Network Architecture of the Connection Machine CM-5.(Extended Abstract), July 28, 1992.[30] M. Lin, R. Tsang, D. H. C. Du, A. E. Klietz, and S. Saro�. Performance Evaluationof the CM-5 Interconnection Network. Technical Report AHPCRC Preprint 92-111,University of Minnesota AHPCRC, October 1992.[31] F. A. Lootsma and K. M. Ragsdell. State-of-the-art in Parallel Nonlinear Optimization.Parallel Computing, 6:133{155, 1988.[32] B. S. Manjunath, T. Simchony, and R. Chellappa. Stochastic and Deterministic Net-works for Texture Segmentation. IEEE Transactions on Acoustics, Speech, and SignalProcessing, ASSP-38:1039{1049, June 1990.[33] J. Max. Quantizing for MinimumDistortion. IRE Transactions on Information Theory,IT-16:7{12, March 1960.[34] J. Palmer and G. L. Steele Jr. Connection Machine Model CM-5 System Overview.In The Fourth Symposium on the Frontiers of Massively Parallel Computation, pages474{483, Los Alamitos, CA, October 1992. IEEE Computer Society Press.[35] T. Poggio and D. Weinschall. The MIT Vision Machine: Progress in the Integrationof Vision Models. In R. Chellappa and A. K. Jain, editors, Markov Random Fields:Theory and Application. Academic Press, Boston, MA, 1993.[36] B. T. Polyak. Introduction to Optimization. Optimization Software, Inc., New York,1987.[37] T. Simchony, R. Chellappa, and Z. Lichtenstein. Relaxation Algorithms for MAP Esti-mation of Gray-Level Images with Multiplicative Noise. IEEE Transactions on Infor-mation Theory, IT-36:608{613, May 1990.[38] Thinking Machines Corporation, Cambridge, MA. C? Programming Guide, Version6.0.2 edition, June 1991.[39] Thinking Machines Corporation, Cambridge, MA. Paris Reference Manual, Version 6.0edition, June 1991.[40] Thinking Machines Corporation, Cambridge, MA. The Connection Machine CM-5Technical Summary, January 1992. 34



[41] Thinking Machines Corporation, Cambridge, MA. CMMD Reference Manual, 3.0 edi-tion, May 1993.[42] Thinking Machines Corporation, Cambridge, MA. CMSSL for CM Fortran, CM-5Edition, Version 3.1 edition, June 1993.[43] Thinking Machines Corporation, Cambridge, MA. C? Programming Guide, May 1993.[44] R. Whaley. C? data layout for the CM-2. Personal Communications, August 17, 1993.[45] R. Whaley. C? data layout for the CM-5. Personal Communications, June 8, 1993.[46] J. W.Woods. Two-Dimensional Discrete Markovian Random Fields. IEEE Transactionson Information Theory, IT-18:232{240, March 1972.

35


