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Abstract

This paper introduces scalable data parallel algorithms for image processing. Focus-
ing on Gibbs and Markov Random Field model representation for textures, we present
parallel algorithms for texture synthesis, compression, and maximum likelihood pa-
rameter estimation, currently implemented on Thinking Machines CM-2 and CM-5.
Use of fine-grained, data parallel processing techniques yields real-time algorithms for
texture synthesis and compression that are substantially faster than the previously
known sequential implementations. Although current implementations are on Connec-
tion Machines, the methodology presented here enables machine independent scalable
algorithms for a number of problems in image processing and analysis.

Permission to publish this abstract separately is granted.

Keywords: Gibbs Sampler, Gaussian Markov Random Fields, Image Processing, Tex-

ture Synthesis, Texture Compression, Scalable Parallel Processing, Data Parallel Algorithms.

*The support by NASA Graduate Student Researcher Fellowship No. NGT-50951 is gratefully
acknowledged.

TSupported in part by NSF Engineering Research Center Program NSFD CDR 8803012 and NSF grant
No. CCR-9103135. Also, affiliated with the Institute for Systems Research.

tSupported in part by Air Force grant No. F49620-92-J0130.



1 Introduction

Random Fields have been successfully used to sample and synthesize textured images ([14],
[10], [24], [21], [17], [32], [12], [11], [15], [18], [9], [37], [6], [7], [8]). Texture analysis has appli-
cations in image segmentation and classification, biomedical image analysis, and automatic
detection of surface defects. Of particular interest are the models that specify the statistical
dependence of the gray level at a pixel on those of its neighborhood. There are several well-
known algorithms describing the sampling process for generating synthetic textured images,
and algorithms that yield an estimate of the parameters of the assumed random process
given a textured image. Impressive results related to real-world imagery have appeared in
the literature ([14], [17], [12], [18], [37], [6], [7], [8]). However, all these algorithms are quite
computationally demanding because they typically require on the order of G n? arithmetic
operations per iteration for an image of size n X n with & gray levels. The implementations
known to the authors are slow and operate on images of size 128 x 128 or smaller. Recently, a
parallel implementation has been developed on a DAP 510 computer [21]. However, the DAP
requires the structure of the algorithms to match its topology, and hence the corresponding
algorithms are not as machine-independent as the algorithms described in this paper. In
addition, we show that our algorithms are scalable in machine size and problem size.

In this paper, we develop scalable data parallel algorithms for implementing the most im-
portant texture sampling and synthesis algorithms. The data parallel model is an architecture-
independent programming model that allows an arbitrary number of virtual processors
to operate on large amounts of data in parallel. This model has been shown to be effi-
ciently implementable on both SIMD (Single Instruction stream, Multiple Data stream) or
MIMD (Multiple Instruction stream, Multiple Data stream) machines, shared-memory or
distributed-memory architectures, and is currently supported by several programming lan-
guages including C*, data-parallel C, Fortran 90, Fortran D, and CM Fortran. All our
algorithms are scalable in terms of the number of processors and the size of the problem.
All the algorithms described in this paper have been implemented and thoroughly tested on
a Connection Machine CM-2 and a Connection Machine CM-5.

The Thinking Machines CM-2 is an SIMD machine with 64K bit-serial processing ele-
ments (maximal configuration). This machine has 32 1-bit processors grouped into a Sprint
node to accelerate floating-point computations, and 21 Sprint nodes are configured as an
11-dimensional hypercube. See Figure 1 for the organization of a Sprint node.

The Thinking Machines CM-5 is a massively parallel computer with configurations con-

taining 16 to 16,384 sparc processing nodes, each of which has four vector units, and the
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Figure 1: The organization of a CM-2 Sprint node

nodes are connected via a fat-tree communications network. The CM-5 is an MIMD ma-
chine which can run in Single Program Multiple Data (SPMD) mode to simulate SIMD
operation. An in-depth look at the network architecture of this machine is described in
[29]. The nodes operate in parallel and are interconnected by a fat-tree data network. The
fat-tree resembles a quad-tree, with each processing node (PN) as a leaf and data routers at
all internal connections. In addition, the bandwidth of the fat-tree increases as you move up
the levels of the tree towards the root. Leiserson ([28]) discusses the benefits of the fat-tree
routing network, and Greenberg and Leiserson ([19]) bound the time for communications by
randomized routing on the fat-tree. In this paper, we assume the Single Program Multiple
Data (SPMD) model of the CM-5, using the data parallel language C*. In the SPMD model,
each processing node executes a portion of the same program, but local memory and machine
state can vary across the processors. The SPMD model efficiently simulates the data parallel
SIMD model normally associated with massively parallel programming. References [40] and
[34] provide an overview for the CM-5, and both [43] and [45] contain detailed descriptions
of the data parallel platform. Note that a CM-5 machine with vector units has four vector
units per node, and the analysis given here will remain the same. See Figure 2 for the general
organization of the CM-5 with vector units.

This paper addresses a simple image processing problem of texture synthesis and com-
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Figure 2: The organization of the CM-5

pression using a Gibbs sampler as an example to show that these algorithms are indeed
scalable and fast on parallel machines. Gibbs sampler and its variants are useful primitives
for larger applications such as image compression ([8], [27]), image estimation ([18], [21], [37]),
and texture segmentation ([32], [15], [12], [16], [13]).

Section 2 presents our model for data parallel algorithm analysis on both the CM-2 and
the CM-5. In Section 3, we develop parallel algorithms for texture synthesis using Gibbs
and Gaussian Markov Random Fields. Parameter estimation for Gaussian Markov Random
Field textures, using least squares, as well as maximum likelihood techniques, are given
in Section 4. Section 5 shows fast parallel algorithms for texture compression using the

maximum likelihood estimate of parameters. Conclusions are given in Section 6.

2 Parallel Algorithm Analysis

A data parallel algorithm can be viewed as a sequence of parallel synchronous steps in which
each parallel step consists of an arbitrary number of concurrent primitive data operations.
The complexity of a data parallel algorithm can be expressed in terms of two architecture-
independent parameters, the parallel time, i.e., the number of parallel steps, and the work,
i.e., the total number of operations used by the algorithm [20]. However we concentrate
here on evaluating the scalability of our algorithms on two distinct architectures, namely the

Connection Machines CM-2 and CM-5. In this case we express the complexity of a parallel



algorithm with respect to two measures: the computation complexity T omp(n,p) which is
the time spent by a processor on local computations, and the communication complexity
Tomm(n, p) which is the time spent on interprocessor communication of the overall algorithm.
We use the standard sequential model for estimating 1o, (1, p). However an estimate of the
term Tomm(n, p) depends in general on the data layout and the architecture of the machine
under consideration. Our goal is to split the overall computation almost equally among the

processors in such a way that Tepmm(n, p) is minimum. We discuss these issues next.

2.1 Parallel Communications Model

The model we present assumes that processors pass messages to each other via a commu-
nications network. In this model, a processor sending a message incurs overhead costs for
startup such as preparing a message for transmission, alerting the destination processor that
it will receive this message, and handling the destination’s acknowledgment. We call this
time 7(p).

The sending processor partitions the outgoing message into sections of length 3 bits,
determined by hardware constraints. Each packet, with routing information prepended and
an integrity check field using a cyclic redundancy code appended, is sent through the data
network. The destination processor then reassembles the complete message from the received
packets.

The communications time to send a message with this model is

Teomm(n,p) = 7(p) +1(n,p)y (1)

where [(n,p) is the message length, and ~ is the transmission rate of the source into the
network measured in seconds per packet.

Fortunately, all the algorithms described in this paper use regular communication pat-
terns whose complexities can be easily estimated on the two architectures of the CM-2 and
of the CM-5. Each such communication pattern can be expressed as a constant number of
block permutations, where given blocks of contiguous data, By, B, ..., B;, ..., B,, residing
in processors Py, Pa,..., P, ..., P,, and a permutation II;{1,2,...,p}, block B; has to be
sent from processor P to Py, where each block is of the same size, say |B;| = > As we
illustrate next, on both the CM-2 and the CM-5, the communication complexity of a regular

block permutation can be expressed as follows:

Tepnn(n,p) =O(r(p) +27) (2)



where 7 is the start-up cost and ~ is the packet transmission rate. We next address
how to estimate the communication complexity for operations on /n X y/n images and their

relationship to block permutations.

2.2 CM-5 Communications Model

As described in Subsection 2.1, we use (1) as the general model for CM-5 communications. As
stated above, a common communications pattern on parallel machinesis a block permutation,
where given blocks of contiguous data Bj, Bs,...,B,, and a permutation 11,{1,2,...,p},

and |B;| = I(n,p), block B; has to be moved from P; to Pyg). If each block has length
|Bi| = l(n,p), we claim that the CM-5 time complexity of this operation is the following:

Teomm(nsp) = O(7(p) + l(n,p)7). (3)

Each node in the CM-5 connects to the fat-tree via a 20 Mb/sec network interface link
[34]. The fat-tree network provides sufficient bandwidth to allow every node to perform
sustained data transfers at a rate of 20 Mb/sec if all communications is contained in groups
of four nodes (i.e. the nodes differ only in the last two bits of their logical address), 10
Mb/sec for transfers within groups of 16 nodes (i.e. the nodes differ in only the last four
bits), and 5 Mb/sec for all other communication paths in the system [34].

A regular grid shift is an example of a block permutation pattern of data movement as
shown in Subsection 2.2.2. For the corresponding regular block communications, the CM-5
can achieve bandwidths of 15 megabytes/sec per processor to put messages into and take
messages out of the data network [29]. The runtime system (RTS) of the CM-5 will choose
a data section for a message of between 1 and 5 words in length. If we assume that the data

section of a message, (3, is four 4-byte words, and the header and trailer are an additional

4 bytes, then v = 28t ~ 1.27us/packet.

15%220 7

To support these claims, we give the following empirical results. Using the message
passing library of the CM-5, CMMD version 3.0 [41], each processing node swaps a packet
with another node of fixed distance away. Figure 3 confirms that there is a linear relationship
between message length and total transmission time on the CM-5. We find that when the
regular block permutation consists of only local communications, i.e. messages are contained
in each cluster of four leaf nodes, I11(:) = {0 < 1,2 < 3,4 < 5,...,p—2 < p—1} =i®1, the
lower bound on time is obtained. A least squares analysis of this data finds 7(p = 32) = 120us
and v ~ 199% * 20% = 3.82us/packet. This is equivalent to a sustained transfer rate
of 5.03 Mb/sec.



Other regular block permutations are shown in Figure 3 such as
() ={0 = 4,1 526378« 1l,...} =id4,
s5() ={0 <~ 8,1 9,2 10,3 < 11,...} =i$ §,and
H4(2) ={0 < 16,1 < 17,2 < 18,3 < 19,...} =i & 16.

Both 1I; and Il3 use two levels of the fat-tree, while II; needs three levels. Our results

show that all non-local regular permutations routed through the fat-tree have similar time

complexities, with 7(p = 32) = 129us and v ~ 220% * 20% = 4.20ps/packet. This

corresponds to a sustained transfer rate of 4.55 Mb/sec.

2.2.1 (C”* Layout of parallel arrays

This subsection describes the compiler generated data layout of a \/n x y/n parallel array

using €. A major grid of size v X w, where
VX w=p= 2k

is placed over the data array, with the constraints that both v and w are powers of two, and
the lengths v and w are chosen such that the physical grid is as close to the original aspect

ratio of the parallel data array as possible:

Axis 0 is divided equally among v nodes, and similarly, Axis 1 among w nodes. Each
node thus receives an \/TE X % subgrid, or tile, of the original data array. In each node, the
data is laid out in row-major order form, that is, elements in each row of the subgrid are

Vn

contiguous, while elements adjacent in a column have a stride in memory by ** positions

[43].

2.2.2 Simple and Regular Grid Shift

A typical operation in our image processing algorithms requires that each pixel be updated
based on the pixel values of a small neighborhood. Such an operation amounts to a regular
grid shift of a \/n X \/n element parallel variable data array.

Two phases occur in the regular grid shift:

6



CM-5/32 CMMD_swap between PE 0 <--> PE x

Total Time [sec]

100 K G

0.95 - ‘//' 0<>8

0.90 iy 0<>16
0.80 4// .
A0
0.75 3 :",//
0.70 LA

0.65 i

0.60 A /
1 -’

0.55 /'," /
/

o5 N A

. ‘/ F'/

0.45 -

0.40 =2
0.35 L 'f/”

N

o il
0.30 5‘\,//,

R |
0.25 W /
0.20 K' o

»”* Y
0.15 ,l: Y
0.10 ' ]
0.05 A4
0.00
Message Length [MB]
0.00 0.50 1.00 1.50 2.00

Figure 3: Sending Time of a Regular Block Permutation



Computation Time T.,,,(n,p) = Each node accesses its own local memory to shift up its

own subgrid;

Communication Time T,,,n(n,p) = Each node sends and receives the elements lying

along the shifted subgrid border.

For p = v x w processors, Teom,(n, p) takes O(ﬁ * \/TE) = O(%) time.

v

Next we make some observations about the communication phase:

o All communications are regular:
P; sends to Pi—w)modp

P; receives from P yw)modp;

e This regular permutation is known a priori;

This communication pattern is a block permutation, and the time complexity for this
operation is given in (3). Note that each node must send a constant number of upper rows

N

of its subgrid to its north adjacent node in the major grid. There are = elements along this

N

border. Thus, I(n,p) = O(T)? and the communications time is as follows:

Teomm(n,p) = O(T(p) + \/% ’y) time. (4)

Therefore, a regular grid shift of a \/n x y/n data array on p nodes connected by a CM-5

fat-tree has the following time and communication complexity:

{Twmp[sw(n,p) = 0(2);

Tcomm[shift](n7p) = O(T(p) + \/g ’}/). (5)

2.3 CM-2 Communications Model

The CM-2 contains from 2% to 2!' Sprint nodes interconnected by a binary hypercube net-
work. Each Sprint node consists of two chips of processors, each with 16 bit-serial processing
elements. Thus, the CM-2 has configurations ranging between 8 K" and 64K, inclusive, bit-
serial processors. In this analysis, we view each Sprint node as a single 32-bit processing
node.

The CM-2 programming model of C* uses a canonical data layout similar to that on

the CM-5 described in Section 2.2.1 ([39], [38], [44], [4]). The only difference on the CM-2

and CM-5 is that the Sprint node, or major grid, portion of each data element address is in



reflected binary gray code, insuring that nearest neighbor communications are at most one
hop away in the hypercube interconnection network.

We now analyze the complexity for a regular grid shift on the CM-2. Each node holds a
contiguous subgrid of " data elements. During a grid shift, O(%) elements remain local to
each Sprint node, giving

Tcomp[shift](nvp) = O(%) (6)

Each Sprint node will send border elements to their destination node. By the canonical
layout, we are assured that this destination is an adjacent node in the hypercube. Every
Sprint node will send and receive elements along unique paths of the network. In this model,
we neglect 7(p) since we are using direct hardware links which do not incur the overhead
associated with packet routing analyses. Thus, each Sprint node will need to send and receive

O (ﬁ) elements, yielding a communications complexity of

Tromm(1:7) = O(ﬁ 7)7 (1)

where 7 is the CM-2 transmission rate into the network.
Therefore, on a CM-2 with p Sprint nodes, a regular grid shift of a \/n x \/n data array

has the following time complexity analyses:

TCOmp[Shift] (n7 p) - O (%) ’ (8)
TCOmm[Shift] (n7 p) = O ( % 7) )

As shown, a regular grid shift on the CM-2 is scalable for the array size and the machine

size.

2.4 Complexity of Some Basic Operations

A two-dimensional Fast Fourier Transform (FFT) is a commonly used technique in digital
image processing, and several algorithms in this paper make use of it. The FFT is well-
suited for parallel applications because it is efficient and inherently parallel ([20], [1], [22],
[23], [42]). With an image size of n elements, O(nlogn) operations are needed for an FFT.
On a parallel machine with p processors, O(% log n) computational steps are required. The
communications needed for an FFT are determined by the FFT algorithm implemented on
a particular parallel machine. The CM-2 pipelines computations using successive butterfly

stages [42]. Its total time complexity is given by:

{Twmp[fn](nvp) = O(%logn),
Teommpg(n:p) = O(% 7).



On the CM-5, however, this algorithm would not be efficient. Instead, a communications

efficient algorithm described in [42] is used, and has complexity:

{ TCOmp[ﬂ‘t](n7p) = O(%log n)’
Teommpgy (2 p) = O(T(P) t5 7)'
for p < \/n.

Another extensively used and highly parallel primitive operation is the Scan operation.
Given an array A with n elements, {A(1), A(2),..., A(n)}, its scan will result in array C,
where C'(1) = C(1) *x C(2) % ... C(i) and * is any associative binary operation on the set,
such as addition, multiplication, minimum, and maximum, for real numbers. A scan in the
forward direction yields the parallel-prefix operation, while a reverse scan is a parallel-suffix.
We can extend this operation to segmented scans, where we also input an n element array B
of bits, such that for each ¢, 1 <7 < n, the element C'(¢) equals A(j)* A(j + 1) x...* A(7),
where j is the largest index of segment array B with 7 <7 and B(j) = 1.

A scan operation on a sequential machine obviously takes O(n) operations. An effi-
cient parallel algorithm uses a binary tree to compute the scan in O(logn) time with O(n)

operations [20]. On the CM-2, the complexity for a scan is given by: [5]

{ Tcomp[scan](n7p) = O(%),
Teommpenny (7, 0) = 0(%7)-

The CM-5 efficiently supports scans in hardware [29] and has complexity:

{ Tcomp[scan](n7p) = O %)7
Tesmmgeny(n:0) = O(7(p) + (logp)y).

As the above complexities show, these algorithms efficiently scale for problem and ma-
chine size.

The data parallel programming paradigm is ideally suited for image processing since
a typical task consists of updating each pixel value based on the pixel values in a small
neighborhood. Assuming the existence of sufficiently many virtual processors, this processing
task can be completed in time proportional to the neighborhood size. There are several
powerful techniques for developing data parallel algorithms including scan (prefix sums)
operations, divide-and-conquer, partitioning (data and function), and pipelining. We use
several of these techniques in our implementations of texture synthesis and compression

algorithms.

10



3 Texture Synthesis

3.1 A Parallel Gibbs Sampler

A discrete Gibbs random field (GRF) is specified by a probability mass function of the image

as follows:
Pr(X =2)= e , (9)

where U(x) is the energy function, and Z = 3 U(x) , over all G" images; i being the number
of gray levels, and the image is of size \/n x \/n. Except in very special circumstances, it is
not feasible to compute Z. A relaxation-type algorithm described in [14] simulates a Markov
chain through an iterative procedure that re-adjusts the gray levels at pixel locations during
each iteration. This algorithm sequentially initializes the value of each pixel using a uniform
distribution. Then a single pixel location is selected at random, and using the conditional
distribution that describes the Markov chain, the new gray level at that location is selected,
dependent only upon the gray levels of the pixels in its local neighborhood. The sequential

algorithm terminates after a given number of iterations.

X
X
X X X X X X X X
X X X X X X X X
X O X X X X X O X X X X
X X X X X X X X
X X X X X X X X
X
X

Figure 4: (A) Fourth Order Neighborhood (B) Higher Order Neighborhood

The sequential algorithm to generate a Gibbs random field described in [14] and [17] are
used as a basis for our parallel algorithm. We introduce some terminology before presenting
the parallel algorithm.

The neighborhood model N of a pixel is shown in Figure 4. For all the algorithms
given in this paper, we use a symmetric neighborhood N; which is half the size of N. This
implies that if the vector (¢,7) € N, then (—i,—)) € N, but only one of {(z,3),(—2,—2)}
is in N;. Each element of array © is taken to represent the parameter associated with its
corresponding element in N;. We use the notation y, to represent the gray level of the image
at pixel location o.

Our Gibbs random field is generated using a simulated annealing type process. For an

image with G gray levels, the probability Pr (X = k | neighbors) is binomial with parameter

11



6kT
14eT

(T, k) =

for a first-order model:

and number of trials G —1. The array {T} is given in the following equation

T=a-+ 0(170)(3;04_(1,0) + yg—(1,0)) + 9(0,1)(ya+(0,1) + ya—(o,l)) (10)

and is a weighted sum of neighboring pixels at each pixel location. Additional examples of
{T} for higher order models may be found in [14].

This algorithm is ideal for parallelization. The calculation of {T} requires uniform com-
munications between local processing elements, and all other operations needed in the al-
gorithm are data independent, uniform at each pixel location, scalable, and simple. The

parallel algorithm is as follows:

Algorithm 1 Gibbs Sampler

Generate a Gibbs Random Field texture from parameters, assuming toroidal wrap-around for
an I x J rectangular image.
Input:
{ a } « the parameter used to bias {T} in order to give the sampled texture a non-zero
mean gray level.
{ © } « the array of parameters for each element in the model.
{ G } is the number of gray levels.
begin
1. Initialize image in parallel to uniformly distributed colors between 0 and G-1, inclusive.
2. Tterate for a given number of times, for all pixels in parallel do:
2.1 Calculate T using parameters { a } and array { O }.
2.2 Calculate p[0] = —2

1+eT

2.3 For all gray levels {¢g} from [1..G-1] do:

2.3.1 (T, g) = ==

14+e”

2.3.2 plg] = (G; 1) U9(1 — W)“~1=¢  (The Binomial Distribution)

2.4 Generate a random number in the interval [0,1] at each pixel location and use
this to select the new gray level {¢} from plg].

end

An example of a binary synthetic texture generated by the Gibbs Sampler is given in

Figure 5.

12



Figure 5: Isotropic Inhibition Texture using Gibbs Sampler (Texture 9b from [14]).

With p < I x J processing elements, and within each iteration, step 2.1 can be executed
in O( |N5|Tcomp[shm](n,p) ) computational steps and O( |N5|Tcomm[shm](n,p) ) communication
complexity, and steps 2.3 and 2.4 in O(G (%)) computational time, yielding a computation

complexity of

Teomp(n,p) = O( HEEIND)

P
and communication complexity of

Teomm(n,p) = O( | V| \/g’y), on the CM-2;
O( |N5|(T(p) + \/% ’y)), on the CM-5,

Teomm(n, p)

per iteration for a problem size of n =1 x J.

Table 1 shows the timings of a binary Gibbs sampler for model orders 1, 2, and 4, on
the CM-2, and Table 2 shows the corresponding timings for the CM-5. Table 3 presents the
timings on the CM-2 for a Gibbs sampler with fixed model order 4, but varies the number
of gray levels, G. Table 4 gives the corresponding timings on the CM-5.

3.2 Gaussian Markov Random Field Sampler

In this section, we consider the class of 2-D non-causal models called the Gaussian Markov
random field (GMRF) models described in [6], [12], [21], and [46]. Pixel gray levels have joint
Gaussian distributions and correlations controlled by a number of parameters representing
the statistical dependence of a pixel value on the pixel values in a symmetric neighborhood.
There are two basic schemes for generating a GMRF image model, both of which are discussed

in [6].

13



Image Order = 1 Order = 2 Order = 4
Size | 8k CM-2 | 16k CM-2 8k CM-2 | 16k CM-2 8k CM-2 | 16k CM-2
8k 0.00507 0.00692 0.01270
16k 0.00964 0.00507 0.01280 0.00692 0.02293 0.01270
32k 0.01849 0.00962 0.02395 0.01274 0.04214 0.02275
64k 0.03619 0.01846 0.04605 0.02386 0.07836 0.04182
128Kk 0.07108 0.03615 0.08872 0.04592 0.14520 0.07789
256k 0.14102 0.07108 0.17481 0.08872 0.28131 0.14520
512k 0.14093 0.17455 0.28036

Table 1: Gibbs Sampler timings for a binary (G = 2) image (execution time in seconds per
iteration on a CM-2 running at 7.00 MHz)

Image Order = 1 Order = 2 Order = 4
Size || 16/vu CM-5 | 32/vu CM-5 || 16/vu CM-5 | 32/vu CM-5 || 16/vu CM-5 | 32/vu CM-5
8k 0.046053 0.024740 0.051566 0.027646 0.068486 0.038239
16k 0.089822 0.046824 0.099175 0.052411 0.130501 0.068630
32k 0.176997 0.089811 0.199399 0.099493 0.252421 0.132646
64k 0.351123 0.178046 0.398430 0.194271 0.560224 0.257647
128k 0.698873 0.351517 0.759017 0.383425 0.943183 0.582303
256k 1.394882 0.700164 1.526422 0.759747 1.874973 0.962165
512k 2.789113 1.394216 3.047335 1.520437 3.744542 1.892460
M 5.577659 2.782333 6.009608 3.063054 7.428823 3.785890

Table 2: Gibbs Sampler timings for a binary (G = 2) image (execution time in seconds per

iteration on a CM-5 with vector units)

3.2.1 Iterative Gaussian Markov Random Field Sampler

The Iterative Gaussian Markov Random Field Sampler is similar to the Gibbs Sampler,
but instead of the binomial distribution, as shown in step 3.2 of Algorithm 1, we use the
continuous Gaussian Distribution as the probability function. For a neighborhood model NV,
the conditional probability function for a GMRF is:

2
1 —% (yc_ Z ®Tycr—|—7°)
(&

reN

: (11)

p(ycr|ycr+rvr € N) =
2Ty

where { ©, } is the set of parameters specifying the model, and v is the variance of a zero
mean noise sequence.
An efficient parallel implementation is straightforward and similar to that of the Gibbs

Sampler (Algorithm 1). Also, its analysis is identical to that provided for Gibbs Sampler.
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| Image Size | G =16 |G =32 | G =64 | G =128 | G = 256 |

16k 0.03943 | 0.06976 | 0.13029 | 0.25157 | 0.49415
32k 0.07011 | 0.12383 | 0.23101 | 0.44586 | 0.87557
64k 0.12966 | 0.22927 | 0.42797 | 0.82639 | 1.62323
128k 0.24767 | 0.44017 | 0.82414 | 1.59418

256k 0.47832 | 0.85602 | 1.60931

512k 0.93884 | 1.68543

Table 3: Gibbs Sampler timings using the 4th order model and varying G (execution time

in seconds per iteration on a 16k CM-2 running at 7.00 MHz)

H Image Size H Gz]ﬁ‘ Gzé’?‘

G=6/] G=128] G =256

8k 0.072073 | 0.109722 | 0.186440 | 0.338833 | 0.644660
16k 0.123117 | 0.184224 | 0.308448 | 0.554801 | 1.047374
32k 0.238610 | 0.340773 | 0.557644 | 1.005135| 1.883579
64k 0.450731 | 0.648609 | 1.093775 | 1.947461 | 3.660135
128k 0.845078 | 1.250694 | 2.127231 | 3.754634 | 7.077714
256k 1.654748 | 2.462672 | 4.149417 | 7.404596 | 13.958026
512k 3.296162 | 4.943185 | 8.190262 | 14.713778 | 27.740006
1M 6.566956 | 9.753557 | 16.169061 | 29.217335

Table 4: Gibbs Sampler timings using the 4th order model and varying G (execution time
in seconds per iteration on a 32 node CM-5 with vector units)

3.2.2 Direct Gaussian Markov Random Field Sampler

The previous section outlined an algorithm for sampling GMRF textured images using an
iterative method. Unfortunately, this algorithm may have to perform hundreds or even
thousands of iterations before a stable texture is realized. Next we present a scheme which
makes use of two-dimensional Fourier transforms and does not need to iterate. The Direct
GMRF Sampler algorithm is realized from [6] as follows. We use the following scheme to

reconstruct a texture from its parameters © and a neighborhood Nj:

1 Ty

y=1m2F — (12)

M? og€eQ Ho
where y is the resulting M? array of the texture image, and
LTy = f:t n,
1y = (1 -2079,) Vo € Q (13)
B, = Collcos =otr.r € N,] (14)

» = Col[cos —a'r,r s]-
M
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The sampling process is as follows. We begin with 1, a Gaussian zero mean noise vector
with identity covariance matrix. We generate its the Fourier series, via the Fast Fourier

Transform from Subsection 2.4, using f,, the Fourier vector defined below:

fo= Col[l,A, , A2t ... ,AM=1 ¢ ] is an M? vector, (15)

t, = Col[L,A, A2 ,... A~

J

Y], is an M-vector, and (16)

A, = exp<\/—_12—]\7;), (17)

and finally apply (12).

Algorithm 2 Direct Gaussian MRF Sampler

Reconstruct a GMRF texture from parameters, assuming toroidal wrap-around and an M?*
tmage size
Input:
© «— the set of parameters for the given model.
{ G } is the number of gray levels.
image « a parallel variable for the image. (Complex)
{®,} a parallel variable with serial elements for each parameter in the model.
begin
1. Initialize the real part of the image in parallel to Gaussian noise with mean = 0 and
standard deviation = 1.
2. Initialize the imaginary part of the image in parallel to 0.
3. Divide the image by /v .
4. Perform a parallel, in-place FFT on the noise.
5. For all pixels o in parallel do:
5.1 For each r € N,, ®, = cos 2Mﬁafr

5.2 Calculate g, from Equation (13).
5.3 Divide the image by /g, .

6. Perform a parallel, in-place, inverse FF'T on the image.
7. Scale the result to gray levels in the interval [0..G-1].
end

Steps 1, 2, 3, 5.2, 5.3, and 7 all run in O( ) parallel steps, where n = M? and p is

P
the number of processors available. As stated in Subsection 2.4, an n-point FFT, used
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in steps 4 and 6, computed on p processors takes Tcomp[m](n,p) computation time and
Tommpg, (7, p) communications. Step 5.1 takes O( | Ns| (%)) parallel steps.

The Direct Gaussian MRF Sampler algorithm thus has a computation complexity of

Teomp(n,p) = O mlN:llozn))

p

and communication complexity of

Teomm(n,p) = O(% ’y), on the CM-2;
Tcomm(nap) — O(T(p) + % ’}/), on the Cl\/[—57

using p < M processors.

Note that the number of gray levels, (G, is only used in the last step of the algorithm as
a scaling constant. Hence this algorithm scales with image size n and number of processors
p, independent of the number of gray levels G used. Notice also that the communication
complexity is higher than that of the Gibbs sampler; this is due to the fact that the FFT
is a global operation on the image. Our experimental data collected by implementing this

algorithm on the CM-2 and the CM-5 confirm our analysis.

4 Parameter Estimation for Gaussian Markov Ran-
dom Field Textures

Given a real textured image, we wish to determine the parameters of a GMRF model which
could be used to reconstruct the original texture through the samplers given in the previous
section.

This section develops parallel algorithms for estimating the parameters of a GMRF tex-
ture. The methods of least squares (LLSE) and of maximum likelihood (MLE), both described
in [6], are used. We present efficient parallel algorithms to implement both methods. The
MLE performs better than the LSE. This can be seen visually by comparing the textures
synthesized from the LSE and MSE parameters, or by noting that the asymptotic variance
of the MLE is lower than the LSE ([3], [25]).

4.1 Least Squares Estimate of Parameters

The least squares estimate detailed in [6] assumes that the observations of the GMRF image
{y,} obey the model

Yo = Z ®T[ycr—|—7° —I' ycr—r] —I' €o, \V/O- € Q7 (18)

rEN,
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where {e,} is a zero mean correlated noise sequence with variance v and correlation with

the following structure:

E(e,e,)=—=0,_,v, (0 —r)€EN

= 0, otherwise.

The conditional distribution is given in (11). Then, for g, = Col[ysqr + Yo—rr, 7’ € N;], the
LSE are:

o=[gos] (yos) o

vi= Y (v - 07, )’ (21)
Q

where € is the complete set of M? pixels, and toroidal wrap-around is assumed.

Algorithm 3 Least Squares Estimator for GMRF

Using the method of Least Squares, estimate the parameters of image Y. Assume toroidal
wrap-around, an M? image size, and a given neighborhood.
Input:
{Y} < the image.
© « the scalar array of parameter estimates for each neighborhood element.
begin
1. For all pixels in parallel do:
1.1 For each r € N, do
111 go[r] = Yourr + Yoor
1.2 For 2 from 1 to | V| do
1.2.1 For ) from 1 to |N| do
1.2.1.1 Calculate gcross,[i, 7] = go[t] X g,[7]-
2. For @ from 1 to |Ny| do
2.1 For j from 1 to |N,| do

2.1.1 Compute in parallel the sum gmatrize, )] = > geross,[z, ).
og€eQ
3. For all pixels o in parallel do:

3.1 For each r ¢ N, do
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3.1.1 Calculate gv,[r] = g.[r] X y,

4. For eachr € N, do

4.1 Compute in parallel the sum gvec[r] = > gv,[r]
c€eN
5. Solve the | N;| x |Ns| linear system of equations:

[gmatriz] v v X [O ] ivxa = [gvec] v

6. Calculate v* = # Z(yg — ®*tgg)2
geN
end

For an image of size n = M?, step 1.1 has a computational complexity of O( |N5|Tcomp[shm] (n,p) )
parallel steps and a communication complexity of O( | No| Teommppiq (75 P) ) Step 1.2 runs in

O( (| Ns])? (%)) parallel steps. Step 3 takes O( | V| (%)) parallel steps. Steps 2 and 4 contain
a reduction over the entire array, specifically, finding the sum of the elements in a given par-
allel variable. As this is a scan operation, we refer the reader to Subsection 2.4 for algorithm
analysis. Thus, step 2 runs is O( (|NS|)2Tcomp[scan](nvp) ) computational parallel steps with
O( (|N5|)2Tcomm[scan](n,p) ) communications, and steps 4 and 6 run in O( |N5|Tcomp[scan] (n,p) )
parallel steps with O(|N5|Tcomm[scan](n,p)) communications. Solving the linear system of
equations in step 5 takes O( (|N5|)3) computational steps.

The computational complexity of the Least Squares Estimator for an image of size n =

M? is
Teomp(n,p) = O( L 4 (1,))?)
compnap P s

and the communication complexity is

Teomm(n,p) = O(nl]'$|2 ’y), on the CM-2;
Teomm(n,p) = O( |Ns|* 7(p) + (|N5|\/%—|— |N5|210gp)7), on the CM-5,

using p < M processors.

4.2 Maximum Likelihood Estimate of Parameters

We introduce the following approach as an improved method for estimating GMRF param-
eters of textured images. The method of maximum likelihood gives a better estimate of the
texture parameters, since the asymptotic variance of the MLE is lower than that of the LSE.
We also show a much faster algorithm for optimizing the joint probability density function

which is an extension of the Newton-Raphson method and is also highly parallelizable.
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Assuming a toroidal lattice representation for the image {y,} and Gaussian structure for

noise sequence {¢,}, the joint probability density function is the following:

_;_ch(o) -y (@n C(m ))

p(@/l&l/)I%JH(l_Q > (0,0, (0 )) ¢

27v) oEQ n €N,

In (22), C(7, ) is the sample correlation estimate at lag 7, . As described in [3] and
[6], the log-likelihood function can be maximized: (Note that F(0O,v) = logp(y|©,v)).

FO,r) = - M7210g27r1/ + 2Z:(log(l—Q Z ((971(1)71 ))))

geN 7. ENg
1
— > (or —vto) & (0 (slotr) +u(e 1)) (23)
o€l T, €Ng
For a square image, ®,, is given as follows:
e (o) (24)
o) = cos|—
. 7 "

This non-linear function F is maximized by using an extension of the Newton-Raphson

method. This new method first generates a search direction 9* by solving the system

[VZF(Qk)](rH)x(rH) wk](r+1)x1 = _[VF((ak)](rH)xl- (25)

Note that this method works well when V?F(0;) is a symmetric, positive-definite Hessian
matrix. We then mazimize the step in the search direction, yielding an approximation to Ay
which attains the local maximum of F'(©;+Ad) and also satisfies the constraints that each of
the M? values in the logarithm term for F is positive. Finally, an optimality test is performed.
We set O = O + A, and if Oy, is sufficiently close to Oy, the procedure terminates.
We give the first and second derivatives of F with respect to O and v in Appendix B.

For a rapid convergence of the Newton-Raphson method, it must be initialized with a
good estimate of parameters close to the global maximum. We use the least squares estimate

given in Subsection 4.1 as Oy, the starting value of the parameters.

Algorithm 4 Mazimum Likelihood Estimate
Note that Oy = (01,04, ...,0,,v).

Also, this algorithm assumes toroidal wrap-around of the image.
Note that in Step 5, f < 1.0, and we use 3 =0.8 .
Input:

20



{Y} < the image.

begin
1. Find Initial Guess Qg using LSE Algorithm 3.
_ /OF OF OF AF
2. Compute VF(0,) = <8€1 N R 5
T 92F 92F 92F 52F T
56,2 56,06, "' 06,06, 06,0v
92F 92F 92F 9°F
56, 96, 86,2 " 90,00, 90,00
3. Compute V*F'(0,) = : : - : :
92F 92F 92F 9°F
56,06, 96,06, "' 00,2 56,0
92F 92F 92F 9°F
L 86,06, 96,96, " 96,090, av?
4. Solve the following linear system of equations for vector v

[sz(®k)](r+1)><(r+1) [19](7"+1)><1 = —[VF(Qk)](T+1)X1
5. Determine the largest A from {1,/, 3% 3°, ...} such that
)1—2 > (@n o, ( )) > 0 ; (note that these represent M? constraints)

7, €ENg

6. Set ®k+1 = ®k + A
7. If |F(Or41) — F(Ok)] > € then go to Step 2.
end

The time complexities per iteration of the MLE algorithm are similar to that of the LSE
algorithm analysis given in Subsection 4.1.

In Figures 6 - 8, we show the synthesis using least squares and maximum likelihood
estimates for wool weave, wood grain, and tree bark, respectively, obtained from standard
textures library. Tables 5, 6, and 7 show the respective parameters for both the LSE and
MLE and give their log-likelihood function values. Each example shows that the maximum
likelihood estimate improves the parameterization. In addition, CM-5 timings for these
estimates varying machine size, image size, and neighborhood models can be found in Ta-
bles 8,9, 10, and 11, for a 4th order model on this selection of real world textured images, and
in Tables 12, 13, 14, and 15, for a higher order model on the same set of images. Similarly,
CM-2 timings for these estimates can be found in [2]. Tables 8 - 15 are given in Appendix C.
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5 Texture Compression

We implement an algorithm for compressing an image of a GMRF texture to approximately
1 bit/pixel from the original 8 bits/pixel image. The procedure is to find the MLE of the
given image, (e.g. this results in a total of eleven 32-bit floating point numbers for the 4th
order model). We then use a Max Quantizer, with characteristics given in [33], to quantize
the residual to 1-bit. The quantized structure has a total of M? bits. To reconstruct the
image from its texture parameters and 1-bit Max quantization, we use an algorithm similar
to Algorithm 2. Instead of synthesizing a texture from Gaussian noise, we begin with the 1-
bit quantized array. Compressed textures for a 4th order model are shown in Figures 6 and 7.
A result using the higher order model is shown in Figure 8.
The noise sequence 1 is generated as follows:
" =p X Fevi (26)

where

LTy = f:t y (27)

and the p, is given in (13). We estimate the residual as:

* _ 28
n= (28)
and 1* is the sequence which is Max quantized.

The image reconstruction from parameters and quantization * is as follows:

1 Ty
y=-52f — (29)
M2 geN V Heo
where
Ty = f:t n* (30)

and i, is given in (13); @, is given in (14).

The texture compression algorithm has the same time complexity and scalability charac-
teristics as Algorithm 4. The image reconstruction algorithm has the same complexities as
Algorithm 2. Hence these algorithms scale with image size n and number of processors p.

This algorithm could be used to compress the textures regions in natural images as part
of segmentation based compression schemes discussed in [27]. Compression factors of 35
have been obtained for the standard Lena and F-16 images, with no visible degradations.
Compression factors of 80 have been shown to be feasible when small degradations are

permitted in image reconstruction.
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6 Conclusions

We have presented efficient data parallel algorithms for texture analysis and synthesis based
on Gibbs or Markov random field models. A complete software package running on the
Connection Machine model CM-2 and the Connection Machine model CM-5 implementing
these algorithms is available for distribution to interested parties. The experimental data
strongly support the analysis concerning the scalability of our algorithms. The same type of
algorithms can be used to handle other image processing algorithms such as image estimation
([18], [21], [37]), texture segmentation ([12], [17], [32]), and integration of early vision modules

([35]). We are currently examining several of these extensions.
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A Example Texture Figures

Figure 6: Wool Weave Texture: (clockwise from top left) original image, reconstructed from
the LSE, MLE, and Compressed image. A fourth order model was used.

H Parameter H LSE MLE H
(1,0) 0.428761 [ 0.416797
(0,1) 0.203167 | 0.203608
(1,1) 0.021416 |  0.024372
(-1,1) -0.080882 | -0.082881
(0,2) 0.037685 | 0.050928
(2,0) -0.080724 | -0.061254
(-2,1) 0.027723 [ 0.026702
(1,2) -0.016667 | -0.026285
(1,2) -0.033902 | -0.042835
(2,1) -0.008665 [ -0.010334

v 23397.04 128.41
| F(©) [ -264609.19 | -264538.63 ||

Table 5: O Parameters for Wool Weave

The parameters for the 256 x 256 image of wool weave in Figure 6 are given in Table 5.
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Figure 7: Wood Texture: (clockwise from top left) original image, reconstructed from the
LSE, MLE, and Compressed image. A fourth order model was used.

H Parameter H LSE MLE H
(1,0) 0.549585 | 0.526548
(0,1) 0.267898 |  0.273241
(1,1) -0.143215 | -0.142542
(-1,1) -0.135686 | -0.134676
(0,2) 0.001617 | -0.006949
(2,0) -0.051519 | -0.027342
(-2,1) 0.006736 |  0.003234
(1,-2) -0.002829 | 0.000907
(1,2) 0.000248 | 0.005702
(2,1) 0.006504 | 0.001766

v 33337.88 12.84
| F(©) [ -204742.39 | -202840.50 ||

Table 6: © Parameters for Wood Texture

The parameters for the 256 x 256 image of wood texture in Figure 7 are given in Table 6.
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Figure 8: Tree Bark Texture: (clockwise from top left) original image, reconstructed from
the LSE, MLE, and Compressed image. A model whose parameters are listed below was

used.

H Parameter H LSE MLE
(1,0) 0.590927 | 0.568643
(0,1) 0.498257 | 0.497814
(1,1) -0.281546 | -0.272283
(-1,1) -0.225011 | -0.219671
(0,2) -0.125950 | -0.128427
(2,0) -0.203024 | -0.162452
(2,2) -0.014322 | -0.017466
(2,-2) -0.002711 | -0.007541
(3,0) 0.060477 | 0.034623

H Parameter H LSE MLE H
(0,3) 0.024942 | 0.015561
(4,0) -0.019122 | -0.006186
(0,4) -0.009040 | -0.003748
(-2,1) 0.045105 [ 0.036778
(1,2) 0.031217 |  0.040860
(1,2) 0.061537 | 0.067912
(2,1) 0.067865 | 0.055445

v 22205.84 65.45
| F(O) [ -266147.34 | -264245.13 |

Table 7: O Parameters for Tree Bark Texture

The parameters for the 256 x 256 image of tree bark texture in Figure 8 are given in

Table 7.
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B Equations used for the Computation of the Maxi-

mum Likelihood Estimate

a—F _ B (I)ﬂ (U)
o, %}2 (1 -2 Y (o, 9, () )

or M?
v 2w

+ % Q(y(U)Q—y(@ Z;V (0 (y(o +7)+yle—r)))
OF (I)ﬂ (O')q)q— (U)

= =2 Z : 2

do, d(9] oEQ (1 2 Z (@n b, (U)))
d(ngl/ - _217069(34(0)(9(0—"“)—I_y(g_rl)))
’r - M?
v R

B %§(y<a>2—y<a> 2 (0. (s(o+r)+ulr=r)))

For an initial value for v, we use the value for which % = 0. Thus,
1
Vo= 55 (y(g)2_y(a) Z (@n (y(a—l—rz)—l—y(a—rl)))) )

o€l T, €Ng
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C Timings for parallel image processing techniques

C.1 Tables for CM-5 with 4th order model

Image LSE MLE Maz Quant. Reconstruction

CM | Real CM | Real CM | Real CM | Real
Grass 0.18871 | 0.21552 || 0.64907 | 0.68889 || 0.15110 | 0.15649 || 0.15320 | 0.15889
Tree Bark 0.18902 | 0.21701 || 0.77848 | 0.79900 || 0.15102 | 0.15676 || 0.15298 | 0.15826
Hay 0.18919 | 0.21593 || 0.78369 | 0.79954 || 0.15120 | 0.15681 || 0.15245 | 0.15806
Material Weave || 0.18977 | 0.21694 || 0.44053 | 0.46859 || 0.15148 | 0.15703 || 0.15311 | 0.15915
Wool 0.18888 | 0.21550 || 0.35270 | 0.37245 || 0.15172 | 0.15734 || 0.15252 | 0.15804
Calf Leather 0.18942 | 0.21629 || 0.52948 | 0.56461 || 0.15102 | 0.15675 || 0.15359 | 0.15906
Sand 0.18965 | 0.21640 || 0.53487 | 0.56807 || 0.15122 | 0.15689 || 0.15292 | 0.15846
Water 0.18878 | 0.21687 || 0.74409 | 0.75874 || 0.15075 | 0.15608 || 0.15262 | 0.15834
Wood 0.18888 | 0.21597 || 1.12768 | 1.18931 || 0.15112 | 0.15639 || 0.15332 | 0.15874
Raffia 0.18905 | 0.21600 || 0.66650 | 0.70604 || 0.15257 | 0.15810 || 0.15331 | 0.15884
Pigskin 0.19014 | 0.21731 || 0.53278 | 0.56823 || 0.15284 | 0.15840 || 0.15493 | 0.16046
Brick 0.18942 | 0.21598 || 0.50737 | 0.54052 || 0.15355 | 0.15905 || 0.15537 | 0.16080
Plastic Bubbles || 0.19000 | 0.21671 || 0.78290 | 0.80600 || 0.15407 | 0.15934 || 0.15566 | 0.16356

Table 8: Timings for 32 node CM-5

model (in seconds)

with vector units and a 256 x 256 image using 4th order

Image LSE MLE Maz Quant. Reconstruction

CM | Real CM | Real CM | Real CM | Real
Grass 0.35025 | 0.40559 || 1.09579 | 1.73474 || 0.42910 | 0.60252 || 0.41336 | 0.50837
Tree Bark 0.35098 | 0.41215 || 2.12047 | 3.09966 || 0.38376 | 0.58190 || 0.47184 | 0.57506
Hay 0.35028 | 0.48535 || 1.80150 | 2.90682 || 0.32341 | 0.51846 || 0.45188 | 0.53853
Material Weave || 0.35056 | 0.39201 || 0.79223 | 1.49892 || 0.36427 | 0.46717 || 0.47648 | 0.58006
Wool 0.35086 | 0.58025 || 0.59332 | 1.18285 || 0.39188 | 0.42692 || 0.50216 | 0.60554
Calf Leather 0.35067 | 0.43579 || 1.06463 | 1.81233 || 0.30748 | 0.48003 || 0.29210 | 0.53882
Sand 0.35042 | 0.47085 || 1.13418 | 1.97015 || 0.42911 | 0.57422 || 0.52275 | 0.52931
Water 0.35074 | 0.44033 || 1.90515 | 2.81341 || 0.42568 | 0.60710 || 0.32805 | 0.47829
Wood 0.35024 | 0.42933 || 2.27675 | 3.58605 || 0.44118 | 0.53959 || 0.40582 | 0.50857
Raffia 0.35034 | 0.67003 || 1.22650 | 2.29592 || 0.45805 | 0.58671 || 0.39621 | 0.49888
Pigskin 0.35502 | 0.58772 || 1.09873 | 1.76496 || 0.33998 | 0.44263 || 0.36714 | 0.53695
Brick 0.35868 | 0.65987 || 1.15683 | 1.46099 || 0.85711 | 0.99022 || 0.96830 | 1.31532
Plastic Bubbles || 0.49915 | 0.78976 || 1.74521 | 2.50664 || 1.67132 | 1.84861 || 0.72001 | 0.99533

Table 9: Timings for 16 node CM-5 with vector units and a 256 x 256 image using 4th order

model (in seconds)

28




Image LSE MLE Maz Quant. Reconstruction

CM | Real CM | Real CM | Real CM | Real
Grass 0.66347 | 0.70880 || 2.81060 | 2.85450 || 0.53827 | 0.57128 || 0.54347 | 0.58556
Tree Bark 0.66375 | 0.70965 || 2.76704 | 2.80584 || 0.54770 | 0.59848 || 0.59314 | 0.66343
Hay 0.66224 | 0.70761 || 2.55092 | 2.58401 || 0.53867 | 0.58000 || 0.54400 | 0.58604
Material Weave || 0.66283 | 0.70950 || 1.48790 | 1.53534 || 0.53892 | 0.58143 || 0.54315 | 0.58493
Wool 0.66304 | 0.70949 || 2.05468 | 2.11505 || 0.55202 | 0.67596 || 0.55666 | 0.59950
Calf Leather 0.66837 | 0.71377 || 1.98576 | 2.03600 || 0.55320 | 0.59496 || 0.55737 | 0.59935
Sand 0.67016 | 0.71544 || 2.05744 | 2.10879 || 0.55260 | 0.58614 || 0.55671 | 0.59901
Water 0.66997 | 0.71546 || 2.91214 | 2.95684 || 0.55021 | 0.59293 || 0.55578 | 0.59912
Wood 0.67039 | 0.71839 || 2.93610 | 2.98055 || 0.55189 | 0.58427 || 0.55838 | 0.59988
Raffia 0.66970 | 0.71477 || 2.95711 | 2.98426 || 0.55262 | 0.58515 || 0.55707 | 0.59886
Pigskin 0.66819 | 0.71437 || 2.93399 | 2.97085 || 0.55329 | 0.58616 || 0.55650 | 0.59834
Brick 0.66917 | 0.71468 || 1.82636 | 1.87932 || 0.55172 | 0.59385 || 0.55780 | 0.60021
Plastic Bubbles || 0.66994 | 0.72098 || 2.80696 | 2.85616 || 0.53656 | 0.56927 || 0.54462 | 0.58690

Table 10: Timings for 32 node CM-5 with vector units and a 512 x 512 image using 4th
order model (in seconds)

Image LSE MLE Maz Quant. Reconstruction

CM | Real CM | Real CM | Real CM | Real
Grass 1.36603 | 1.90141 || 6.64328 | 11.46509 || 1.03455 | 1.89646 || 1.28558 | 1.94048
Tree Bark 1.26896 | 1.66841 || 6.60849 | 11.06427 || 1.15230 | 1.88849 | 1.32597 | 1.94607
Hay 1.28100 | 1.89287 || 6.02011 | 10.46863 || 1.03698 | 1.93140 || 1.14502 | 1.80366
Material Weave || 1.29521 | 1.80298 || 2.74713 | 6.20137 || 1.11419 | 1.82659 || 1.04486 | 1.92548
Wool 1.30032 | 1.78571 || 3.90378 | 8.48179 || 1.04720 | 1.76455 || 1.31172 | 1.94375
Calf Leather 1.26903 | 1.73373 || 3.72970 | 8.43098 || 1.20791 | 1.87151 || 1.24595 | 2.03756
Sand 1.40796 | 1.93989 || 3.83804 | 8.78400 || 1.20834 | 1.85583 | 1.16566 | 1.90384
Water 1.33629 | 1.79228 || 6.74821 | 11.16951 || 1.25288 | 2.05764 || 1.21235 | 1.75456
Wood 1.46343 | 2.19338 || 6.55124 | 11.45757 || 1.20506 | 1.92589 || 1.08904 | 1.82530
Raffia 1.27830 | 1.66010 || 6.46234 | 11.43468 || 1.20810 | 1.85213 || 1.32857 | 1.76140
Pigskin 1.27817 | 1.80461 || 6.77205 | 11.45332 || 1.09704 | 1.80778 | 1.04815 | 2.00044
Brick 1.27798 | 1.77087 || 3.83952 | 7.91782 || 1.16428 | 2.18315 || 1.14691 | 1.83908
Plastic Bubbles || 1.27235 | 1.66958 || 6.69361 | 11.55942 || 1.14468 | 1.85555 || 1.08797 | 1.90316

Table 11: Timings for 16 node CM-5 with vector units and a 512 x 512 image using 4th
order model (in seconds)
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C.2 Tables for CM-5 with higher order model

Image LSE MLE Maz Quant. Reconstruction

CM | Real CM | Real CM | Real CM | Real
Grass 0.40322 | 0.44213 || 0.94195 | 1.00667 || 0.17641 | 0.18229 || 0.17872 | 0.19094
Tree Bark 0.40361 | 0.44326 || 1.22845 | 1.31758 || 0.17751 | 0.18381 || 0.18091 | 0.18858
Hay 0.40472 | 0.44332 || 1.92117 | 2.04819 || 0.17725 | 0.18302 || 0.17958 | 0.19137
Material Weave || 0.40492 | 0.44825 || 1.12377 | 1.20635 || 0.17674 | 0.18247 || 0.17868 | 0.19115
Wool 0.40493 | 0.44367 || 0.75545 | 0.80905 || 0.17639 | 0.18282 || 0.17899 | 0.19111
Calf Leather 0.40621 | 0.44538 || 0.93570 | 1.00897 || 0.17675 | 0.18344 || 0.17901 | 0.18472
Sand 0.40669 | 0.45053 || 0.94703 | 1.00784 || 0.17720 | 0.18295 || 0.18141 | 0.18772
Water 0.40630 | 0.44502 || 1.35860 | 1.45406 || 0.17695 | 0.18348 || 0.17911 | 0.19145
Wood 0.40698 | 0.44554 || 1.11477 | 1.15080 || 0.17640 | 0.18218 || 0.18030 | 0.18918
Raffia 0.40710 | 0.45160 || 1.16616 | 1.24794 || 0.17733 | 0.18322 || 0.18057 | 0.18744
Pigskin 0.40718 | 0.44659 || 0.77520 | 0.82944 || 0.17683 | 0.18264 || 0.18502 | 0.19097
Brick 0.40558 | 0.44437 || 1.22903 | 1.31398 || 0.17247 | 0.17809 || 0.17442 | 0.18630
Plastic Bubbles || 0.40208 | 0.44171 || 0.96939 | 1.04141 || 0.17213 | 0.17792 || 0.17583 | 0.18346

Table 12: Timings for 32 node CM-5 with vector units and a 256 x 256 image using higher
order model (in seconds)

Image LSE MLE Maz Quant. Reconstruction

CM | Real CM | Real CM | Real CM | Real
Grass 0.75510 | 0.94495 || 1.64171 | 2.95562 || 0.49920 | 0.69683 || 0.43896 | 0.62601
Tree Bark 0.75529 | 0.91401 || 2.43371 | 4.09217 || 0.45063 | 0.73213 || 0.39573 | 0.56178
Hay 0.75485 | 0.83668 || 3.54220 | 6.08994 || 0.42932 | 0.66296 || 0.54377 | 0.64749
Material Weave || 0.75359 | 0.83831 || 1.87242 | 3.11225 || 0.37618 | 0.47948 || 0.52253 | 0.60530
Wool 0.75227 | 0.92176 || 1.33899 | 2.53465 || 0.43754 | 0.60825 || 0.43503 | 0.63146
Calf Leather 0.75169 | 0.82723 || 1.87598 | 3.45899 || 0.38286 | 0.57002 || 0.50191 | 0.60552
Sand 0.75243 | 0.82902 || 1.53868 | 3.10369 || 0.37218 | 0.88758 || 0.53837 | 0.64540
Water 0.75445 | 1.01632 || 2.57627 | 4.19290 || 0.40781 | 0.59671 || 0.52076 | 0.61641
Wood 0.75831 | 0.91263 || 2.46256 | 4.07550 || 0.49943 | 0.60110 || 0.46189 | 0.66130
Raffia 0.75254 | 0.92399 || 1.95853 | 3.80243 || 0.36174 | 0.55886 || 0.69533 | 0.70182
Pigskin 0.75442 | 0.94364 || 1.26406 | 2.47400 || 0.52605 | 0.62853 || 0.50666 | 0.61040
Brick 0.75446 | 0.94785 || 2.59574 | 4.15548 || 0.46582 | 0.60754 || 0.50111 | 0.60480
Plastic Bubbles || 0.75327 | 0.88082 || 1.80579 | 3.51673 || 0.41855 | 0.51143 || 0.50508 | 0.70250

Table 13: Timings for 16 node CM-5 with vector units and a 256 x 256 image using higher
order model (in seconds)
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Image LSE MLE Maz Quant. Reconstruction

CM | Real CM | Real CM | Real CM | Real
Grass 1.43952 | 1.51679 || 3.24504 | 3.35994 || 0.61829 | 0.67558 || 0.62485 | 0.69582
Tree Bark 1.45144 | 1.53228 || 3.68973 | 3.83764 || 0.63826 | 0.70764 || 0.64226 | 0.69931
Hay 1.44959 | 1.52739 || 4.84103 | 5.06278 || 0.63773 | 0.70791 || 0.64222 | 0.71177
Material Weave || 1.44452 | 1.52227 || 2.78452 | 2.88677 || 0.63801 | 0.70782 || 0.64310 | 0.71258
Wool 1.44829 | 1.52647 || 3.98331 | 4.12007 || 0.63837 | 0.70870 || 0.64326 | 0.71323
Calf Leather 1.44067 | 1.51911 || 3.32404 | 3.47150 || 0.63729 | 0.69418 || 0.64260 | 0.71259
Sand 1.44085 | 1.52947 || 2.84737 | 2.96683 || 0.63784 | 0.80315 || 0.64293 | 0.71302
Water 1.44850 | 1.52666 || 4.29537 | 4.38623 || 0.63576 | 0.69311 || 0.64040 | 0.69771
Wood 1.48000 | 1.61215 || 4.68701 | 5.22864 || 0.64783 | 0.75573 || 0.64589 | 0.76560
Raffia 1.44559 | 1.55839 || 4.29394 | 4.38290 || 0.63736 | 0.69405 || 0.64188 | 0.69950
Pigskin 1.44618 | 1.53312 || 4.25180 | 4.33038 || 0.63918 | 0.70899 || 0.64235 | 0.71475
Brick 1.46964 | 1.69157 || 4.77538 | 5.42371 || 0.63805 | 0.72941 || 0.64650 | 0.74760
Plastic Bubbles || 1.44442 | 1.52329 || 5.07613 | 5.29358 || 0.63747 | 0.70774 || 0.64290 | 0.71350

Table 14: Timings for 32 node CM-5 with vector units and a 512 x 512 image using higher
order model (in seconds)

Image LSE MLE Maz Quant. Reconstruction

CM | Real CM | Real CM | Real CM | Real
Grass 3.12318 | 4.72546 || 6.99671 | 17.82032 || 1.49828 | 2.40623 || 1.31636 | 2.26554
Tree Bark 3.32219 | 4.63255 7.29536 | 17.69756 || 1.20850 | 2.28685 || 1.21490 | 2.23169
Hay 2.96341 | 4.49642 || 9.58966 | 23.73069 || 1.33654 | 2.23659 || 1.32477 | 2.25426
Material Weave || 2.98736 | 4.79122 || 5.38949 | 13.77429 || 1.37614 | 2.37668 || 1.21506 | 2.20862
Wool 3.01502 | 4.70060 7.63265 | 19.54811 || 1.29214 | 2.39451 || 1.30015 | 2.37301
Calf Leather 3.01284 | 4.85013 7.68454 | 18.58360 || 1.19652 | 2.20188 || 1.20436 | 2.05411
Sand 3.00917 | 4.64956 || 5.31515 | 13.95840 || 1.29127 | 2.27837 || 1.41723 | 2.45459
Water 3.15670 | 4.72244 || 9.62219 | 17.74029 || 1.30545 | 2.20439 || 1.56962 | 2.38058
Wood 3.30382 | 4.83820 || 10.27261 | 17.35976 || 1.40333 | 2.12686 || 1.32172 | 2.32923
Raffia 3.17638 | 4.61360 || 10.02692 | 17.54273 || 1.37101 | 2.40834 || 1.21189 | 2.59668
Pigskin 3.14083 | 4.68527 || 11.85554 | 17.45039 || 1.22261 | 2.34884 || 1.33543 | 2.23909
Brick 3.26359 | 4.63380 || 9.81605 | 16.98878 || 1.24787 | 2.20357 || 1.49057 | 2.37116
Plastic Bubbles || 2.94002 | 4.73853 || 10.88062 | 26.16783 || 1.39433 | 2.32359 || 1.24875 | 2.18659

Table 15: Timings for 16 node CM-5 with vector units and a 512 x 512 image using higher
order model (in seconds)
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