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Throughout history, handwriting has been the primary means of recording

information that is persevered across both time and space. With the coming of

the electronic document era, we are challenged with making an enormous amount

of handwritten documents available for electronic access. Though many handwrit-

ten documents contain only handwriting, now, more are mixed with printed text,

noise, and background patterns. The mixture of handwriting with other components

presents a great challenge for making an original document electronically accessible.

Many handwritten documents come together with a special background pat-

tern, rule lines, which are printed on the paper to guide writing. After digitization,

rule lines will touch text and cause problems for further document image analysis if

they are not detected and removed. In this dissertation, we present a rule line de-

tection algorithm based on hidden Markov model (HMM) decoding, achieving both

high detection accuracy and a low false alarm rate. After detection, line removal is

performed by line width thresholding.

Handwriting often mixes with printed text, such as signatures and annotations



on a business letter. Handwriting in a printed document often indicates corrections,

additions, or other supplemental information that should be treated differently from

the main content. The data set we are processing is noisy, which makes the problem

more challenging. In this dissertation, we first segment the document at a suitable

level, and then classify each segmented block as machine printed text, handwriting,

or noise. Markov random field (MRF) based post-processing is exploited to refine

the classification results.

The identified handwriting may be further analyzed. In this dissertation, we

propose a novel point-pattern based handwriting matching technique and apply it

for handwriting synthesis and retrieval. We formulate point matching as an opti-

mization problem trying to preserve the local neighborhood structures. After estab-

lishing the correspondence between two handwriting samples, we warp one sample

toward the other using the thin plate spline (TPS) deformation model to synthesize

new handwriting samples. We also apply our matching algorithm for handwriting

retrieval since it is much easier to define robust features based on the matching

results.
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Chapter 1

Introduction

Handwriting was developed as a means to expand human memory and to facilitate

communication. It has changed tremendously over time when new writing tools are

invented. The latest change is, that with the acceptance of new technologies such as

personal digital assistants (PDAs) and cellular phones, handwriting can be collected

on-line without losing temporal information, which opens a great opportunity for the

analysis of handwriting, such as handwriting recognition and signature verification.

New technologies also challenge the persistence of handwriting. For example, the

oldest books are hand-copied. However, the printing press and typewriters opened

up the world of formatted documents and made scriptoria obsolete. Almost all

books in the past several centuries have been machine printed. Recently, computer

and communication technologies such as word processors, fax machines, and e-mails

provide new ways to expand human memory as well as facilitate communication. In

this perspective, one may ask: Will handwriting be threatened with extinction?

All these inventions have led to the fine-tuning and reinterpreting of handwrit-

ing. With the increase of literacy, more and more people learn to read and write. As

a general rule, as the length of the handwritten message decreases, the number of

people using handwriting increases [4]. Widespread acceptance of digital computers

seemingly challenges the future of handwriting. However in numerous situations,

1



pen and paper provides more convenience than a keyboard. For example, most stu-

dents still do not type lecture notes on a notebook computer. They record language,

equations, and graphs with a pen. Many people still prefer to keep a hard copy of

documents, even when electronic versions are available. They make annotations on

a document when they are reading. Also, handwriting is demanded by law such as

signatures on legal documents. This brings a new challenge to process such docu-

ments where handwritten annotations mix with machine printed contents. Since the

segmentation and recognition techniques for machine printed text and handwriting

are very different, different contents should be identified before further processing.

Documents are the result of a set of physical processes and conditions, and

the resulting document can be viewed as consisting of layers, such as handwriting,

machine printed text, background pattern, figures, tables, and/or noise. Fig. 1.1a

shows how several layers combine to generate a document. Not all layers are present

in a single document. The dashed arrows in the figure mean that the corresponding

components are missed in this example. Document analysis reverses these processes

to segment a document into layers with different physical and semantic properties.

This procedure is shown in Fig. 1.1b. Since the 1960s, much research on document

processing has been done based on optical character recognition (OCR). A more

general study of document analysis, such as page (or zone) segmentation, zone clas-

sification, and table detection, began in early 1980s. After more than two decades

of research, automatic machine printed text segmentation and recognition for clean

documents can be viewed as a solved problem with commercial products on the

market. However, much work needs to be done for handwriting, such as separating
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(a)

(b)

Figure 1.1: (a) A document generation model. (b) A document image analysis

model.
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handwriting from machine printed text, segmentation and recognition of handwrit-

ing.

The study of handwriting covers a broad field, dealing with numerous aspects

of this complex task. It involves research concepts from several disciplines: exper-

imental psychology [5], computer science [6], education [7], and forensic document

examination [8]. For computer processing of handwriting there are several types of

analysis, recognition, and interpretation associated with it. Handwriting recogni-

tion transforms the spatial form of graphical marks into symbolic representation.

Signature identification determines the author of a sample from a set of individuals.

Signature verification determines whether the signature belongs to a given person.

This dissertation presents our approach to identifying the handwriting layer

in a document image from other layers such as background patterns, noise, and

machine printed text. After handwriting identification, we propose an approach to

handwriting matching that can be applied for handwriting synthesis and retrieval.

1.1 Rule Line Detection

Many handwritten documents come together with a special background pattern: rule

lines. These rule lines are printed on the paper to guide writing. After digitization

they will, however, touch text and cause problems for further document analysis such

as segmentation and recognition. These lines must be detected and removed before

the text is fed to an optical character recognition (OCR) engine. These rule lines

may appear severely broken since they are thin and printed with a light color. Many
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line detection algorithms have been proposed in the literature [9, 10, 11, 12, 13, 1].

They work well on relatively clean documents with solid or mildly broken lines, but

performance will significantly deteriorates if lines are severely broken because of low

image quality or if they mix, touch, and overlap with text. It is difficult, if not

impossible, to reliably detect these lines individually. Another challenge involves

character strokes, which may lie on the same line, causing a high false alarm rate.

If the false alarm lines are removed, character strokes may be removed erroneously.

A line detection algorithm with both a high accuracy and a low false alarm rate

should be developed for severely broken rule lines.

To handle these problems, the context is often required to refine the initial

detection. For example, in form processing most form cells are rectangular. In

known form processing the number of lines and the gaps among these lines can be

used as a priori knowledge and stored as references in form templates. These ideas

have been presented in previous work to improve detection accuracy and reduce false

alarms [14, 1, 15, 16]. But the usage of a priori knowledge in the above applications

is ad hoc and lacks a systematic representation.

In this dissertation, we present a rule line detection algorithm based on hidden

Markov model (HMM) decoding. After skew estimation and correction, we perform

a horizontal projection. An HMM model is used to model the projection profile,

and the positions of all rule lines are detected simultaneously after HMM decoding

with the Viterbi algorithm. Experiments on a real data set show that our algorithm

achieves both a high detection accuracy and a low false alarm rate. After detection,

lines are removed by line width thresholding.
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1.2 Handwriting Identification in Noisy Documents

Handwriting often mixes with machine printed text. Handwriting in a machine

printed document often indicates corrections, additions, or other supplemental in-

formation that should be treated differently from the main content. The segmenta-

tion and recognition techniques required for machine printed and handwritten text

differ significantly. Therefore, identification of handwriting from machine printed

text is crucial for the following document image analysis.

The data set we are processing is noisy, which makes the problem more

challenging. Large (e.g., marginal black strips) and small noise components (e.g.,

pepper-and-salt noise) can be removed reliably with some simple rules [17, 18]. It is,

however, hard to discriminate noise from compatible sized text. In this dissertation,

we treat noise as a distinguished class. We first segment the document at a suitable

level, and each segmented block is classified into machine printed text, handwriting,

or noise.

Some work has been done on handwriting/machine printed text identification.

The classification is typically performed at the text line [19, 20, 21, 22], word [23],

or character level [24, 25]. Special consideration must be given to the size of the

region being segmented before we can perform any classification. The smallest

unit used for classification is called the pattern unit. If the unit is too small, the

information contained in it may not be sufficient for classification; if it is too large,

however, different types of components may be mixed in the same region due to

segmentation errors. In previous work, we conducted a performance evaluation
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for the accuracy of machine printed text/handwriting distinguish at the character,

word, and zone levels, and showed that a reliable classification can be achieved at the

word level [25]. Several features, such as Gabor filter features, run-length histogram

features, crossing counts histogram features, and texture features, are extracted to

identify each segmented block into machine printed text, handwriting, or noise.

Several classifiers, such as the Fisher linear discriminant classifier, the k-

nearest neighbor (k-NN) classifier, and the support vector machine (SVM) classifier,

are tested in our comparison experiments. They have similar performance with rea-

sonable accuracy. If the machine printed text block is too small (such as words

with less than 3 characters), it is likely to be classified as noise. Some noise blocks

are classified as handwriting due to the overlapping in the feature space of these

two classes. Machine printed text, handwriting, and noise exhibit different patterns

of geometric relationships. For example, printed words often form horizontal (or

vertical) text lines, while noise blocks tend to overlap each other. Markov random

field (MRF) is used to model such geometric relationships to refine the classification

results. Experiments show MRF is effective in modeling the geometric dependency

of neighboring components, about half of the mis-classifications are corrected af-

ter post-processing. After identification, noise can be removed from the document,

which enhances a degraded document. Machine printed text can be sent for zone

segmentation or recognition with any off-the-shelf OCR package. Identified hand-

writing can be sent for further analysis, such as recognition, retrieval, signature

verification or identification.
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1.3 Handwriting Matching, Synthesis, and Retrieval

The identified handwriting may be sent for further analysis. In this dissertation,

we propose a novel handwriting matching technique and apply it for handwriting

synthesis and retrieval. We study handwriting matching in a broader context of non-

rigid shape matching using a set of points uniformly sampled from the handwriting

skeleton. For nonrigid shapes, most neighboring points cannot move independently

under deformation due to physical constraints. Therefore, though the absolute dis-

tance between two points may change significantly, the neighborhood of a point is

well preserved in general. Based on this observation, we formulate point match-

ing as an optimization problem to preserve local neighborhood structures during

matching. Our formulation has a simple graph matching interpretation, where each

point is a node in the graph, and two nodes are connected by an edge if they are

neighbors. The optimal match between two graphs is the one that maximizes the

number of matched edges (i.e., the number of neighborhood relations). The shape

context distance is used to initialize the graph matching, followed by relaxation la-

beling for refinement. Experiments demonstrate the effectiveness of our approach:

it outperforms the shape context [26] and TPS-RPM [2] algorithms under nonrigid

deformation and noise on a public data set.

The performance of a statistical pattern recognition system depends heavily

on the size and quality of the training set. Although it is easy to prepare samples of

machine printed text, doing so is expensive for handwriting. Synthesized data can be

used as a supplement. The key problem of handwriting synthesis is generating sam-
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ples that look natural. Otherwise, arbitrarily synthesized samples cannot improve

(if not deteriorate) the performance of the system trained on them. Although hand-

writing samples vary greatly in respect to size, rotation, and stroke width, shape

is generally used to categorize them into different classes. Since nonrigid deforma-

tion of handwriting is large, we argue that a synthesis algorithm should learn the

shape deformation characteristics from real handwriting samples. It is reasonable to

assume that the shape space of handwriting with the same content (e.g., the hand-

writing samples of the letter ‘a’) is continuous. For characters with several different

writing glyphs, such as number ‘7,’ we may need to do clustering analysis to segment

the shape space into multiple continuous sub-space. Given two handwriting samples

close in the shape space, an interpolation between them is likely to lie inside the

shape space too (this is guaranteed if the shape space is convex). That means, given

two real similar handwriting samples, it is reasonable to assume some person may

write with a shape between them (i.e., with similar but less degree of deformation).

In this dissertation, we propose an example-based handwriting synthesis approach

using two training samples. We use our handwriting matching algorithm to establish

the correspondence between two handwriting samples. After handwriting matching,

we warp one sample toward the other using the thin plate spline (TPS) deformation

model. By adjusting the regularization parameter of the TPS deformation model,

we can control the amount of nonrigid deformation in synthesis.

Another application of handwriting matching is handwriting retrieval. Re-

cently, shape context [26] was proposed as an effective tool for shape recognition

and retrieval. In this approach, the point correspondence is estimated, and simi-
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larity measures are defined based on the matching result for shape retrieval. By

replacing the original shape matching method with our more robust approach, we

achieve moderate improvement. To further improve the accuracy, we propose new

similarity measures, such as a measure based on the affine transformation, registra-

tion residual errors, and outlier ratio estimated by the matching algorithm. Using

more similarity measures will significantly improve the retrieval accuracy. A more

effective way to improve accuracy is to use multiple query samples. We propose

a simple but effective way to combine the retrieval results using multiple query

instances.

1.4 Organization of the Dissertation

This dissertation is organized as following: Rule line detection and removal is de-

scribed in detail in the next chapter. Our model-based line detection algorithm is

not limited to handwriting document analysis. In Chapter 3, we apply it for known

form processing. In Chapter 4, we present our approach to identify handwriting

and machine printed text in noisy document images. Our handwriting matching

approach is described in Chapter 5. We discuss the application of handwriting

matching to handwriting synthesis and handwriting retrieval in Chapters 6 and 7,

respectively. This dissertation concludes with a brief summary of our contributions,

and some discussions of the remaining problems.
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Chapter 2

Rule Line Detection

2.1 Introduction

Many handwritten documents come with a special background pattern, rule lines, as

shown in Fig. 2.1a. It is important that these lines are detected and removed before

the text goes to an optical character recognition (OCR) engine. In this chapter, we

focus on rule line detection.

Many line detection algorithms have been proposed in the literature [9, 10, 11,

12, 13, 1]. They work well on relatively clean documents with solid or mildly broken

lines, but the performance will deteriorate significantly if lines are severely broken

due to the low image quality, or if they mix, touch, and overlap with text. Fig. 2.1b

shows the line detection results for a rule-lined document using the directional singly-

connected chain (DSCC) method [1]. We can see only a few lines are partially

detected due to severe brokenness. It is very difficult, if not impossible, to reliably

detect these lines individually.

In this dissertation, we propose a model-based method which incorporates

context to detect parallel lines optimally and systematically. Under the model,

lines are detected by a hidden Markov model (HMM) decoding process, which can

determine the positions of all lines simultaneously. Rather than detecting lines

directly on original images [10, 13, 1], we use a DSCC-based scheme to filter text
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as a preprocessing step so the interference with text can be minimized. We then

use a coarse-to-fine approach to estimate the skew angle of the document. After

deskewing the document, we perform horizontal vertical projection. Rather than

treating the peaks in the projection profile as the positions [10, 13], we model the

projection profile with an HMM model so the context among these lines can be

incorporated. The Viterbi algorithm is then used to search the optimal positions

of these lines simultaneously from the projection profile. The experimental results

show our method is robust. It can detect lines with a high accuracy and a low

false alarm rate in degraded documents. Fig. 2.1c shows the line detection result

using the proposed model-based approach. Compared to Fig. 2.1b, our detection

result is much better. Our model-based parallel line detection algorithm is flexible;

therefore, it can be easily adapted for different applications. We will demonstrate it

on two applications: rule line detection and known form processing. In this chapter

we focus on rule line detection, and the application on known form processing will

be discussed in the next chapter.

After line detection, we would like to remove the detected lines without de-

teriorating the text. Many line removal algorithms have been developed in the

literature, and can be classified into two categories. One kind of approach tries to

remove lines completely, then uses local property of overlapping areas, such as stroke

direction and connection, to restore the missing parts of strokes [27, 11, 28, 29]. One

problem of these approaches is that, after line removal, a large quantity of useful

information is lost, making stroke recovery difficult. The other kind of approach an-

alyzes character-line overlapping areas, then removes pixels only belonging to lines,
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(a) (b) (c) (d)

Figure 2.1: Rule line detection and removal. (a) A rule-lined document; (b) Line

detection results using the DSCC method [1]; (c) Line detection results using our

model based approach; (d) Cleaned image after line removal (the black marginal

strips are removed too).

while preserving those belonging to characters [30, 31, 32, 33]. During my graduate

work at Tsinghua University in China, I proposed a line width thresholding based

approach [34, 35]. The line width is preserved well if no character-line touching

happens, but increases noticeably in overlapping areas. This property is used for

line removal. We first decompose a line to an array of run-lengths of black pixels,

predicated to the running direction of the line. If a run-length is shorter than a

threshold, it is removed; otherwise, it is preserved. An adaptive scheme is used to

set a small threshold for the area close to text, and a large one for the area far apart

from text. Fig. 2.1d shows the line removal result. As we can see, this approach

works well for most character-line touching cases. In this chapter, we focus on rule

line detection, please refer to our publication [34] for details of our line removal

approach.

The remainder of this chapter is organized as follows. In Section 2.2, we

briefly review previous work on line detection with emphasis on the usage of prior
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knowledge. Since text may touch or overlap with lines, removing text before line

detection will significantly increase the robustness of our line detection algorithm. In

Section 2.3, we present our text filtering method. Our general model-based parallel

line detection algorithm is described in detail in Section 2.4, which can be tailored

for rule line detection (Section 2.5) or known form processing (discussed in the

next chapter). We demonstrate the robustness of our approach with experiments

in Section 2.6, and the chapter concludes in Section 2.7 with a discussion of future

work.

2.2 Related Work on Line Detection

Line detection is widely used in form detection and interpretation [13, 11, 1], engi-

neering graph interpretation [36], bank check/invoice processing [16, 15], and optical

music recognition (OMR) [37]. Among many algorithms proposed in the literature,

the Hough transform method and its variations are widely used [38, 9]. The Hough

transform method converts the global pattern detection problem in an image space

to a local pattern (ideally a point) detection problem in a transformed parame-

ter space. To detect a straight line, each black pixel (x, y) in an image space is

transformed into a sinusoidal curve in the Hough parameter space

ρ = xcosθ + ysinθ. (2.1)

After transformation, collinear points (xi, yi) in the image space intersect at a point

(ρ, θ) in the Hough parameter space. Therefore, a peak in the transformed space

provides strong evidence that a corresponding straight line exists in the image. The
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Hough transform method can detect dashed and mildly broken lines. However, it

is very time consuming. To reduce computational costs, a projection method was

proposed [10] to detect form frame lines by limiting the search orientations since

only horizontal and/or vertical lines usually exist in form documents. The method

deskews the document first, then detects the peaks on the horizontal and vertical

projection profiles as lines. It can be viewed as a special case of the Hough transform

method by searching θ only around 0o and 90o. The method will fail if the projection

of a line does not form a peak on the profile when it mixes with text, the estimated

skew angle is not accurate enough, or the lines are too short or severely broken.

Chen and Lee [13] proposed the strip projection method to alleviate this problem

since lines are more likely to form peaks on the projection profile in a small region.

For horizontal line detection, they first divided an image into several vertical strips

of equal width, and then performed horizontal projection in each strip. The detected

collinear line segments in each strip are linked to form the line.

Thinning is another common method to extract lines. It uses an iterative

boundary erosion process to remove outer pixels until only a skeleton of pixel chains

remains [39]. It can maintain connectivity, but also tends to create noisy junctions at

corners, intersections, and branches. Medial line methods, on the other hand, extract

image contours first. The mid-points of two parallel contour lines then form a medial

line [40]. The methods may miss pairs of contour lines at branches, requiring post-

processing to reduce this distortion [41]. The result of either thinning or medial line

method is a chain of pixels, and a line segment can be detected by approximating

the pixel chain. The sparse pixel vectorization (SPV) algorithm, proposed by Dori
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et al. [12], does not use contours to get medial lines. It traces the medial points

of consecutive horizontal or vertical pixel runs until constraints are violated. Each

continuous trace represents a bar or an arc. SPV often achieves better results than

other medial line methods, but the medial point tracking procedure is complicated,

and often needs post-processing to refine the results.

Run-lengths are often used as an image component to detect lines. Yu and

Jain [11] proposed a data structure, called block adjacency graph (BAG), to repre-

sent an image. BAG is defined as G(N,E), where N is a set of block nodes and E

is a set of edges indicating the connection between two nodes. Each node is a block

which contains either one or several horizontal run-lengths adjacently connected in

the vertical direction and aligned on both left and right sides within a given toler-

ance. A line is detected by searching a connected sub-graph in the BAG with large

aspect ratio. Chhabar et al. [42] presented another run-length-based approach for

horizontal line detection. Since the method is composed of four steps: filter, assem-

ble, silhouette, and threshold, they named it the FAST algorithm. The algorithm

works directly on run-length encoded images and is very fast. It was later extended

to detect lines with any orientation after implementing an efficient rotation oper-

ation on run-length coded images [43]. Recently, the directional singly-connected

chain (DSCC) method was proposed [1]. A DSCC is a chain of run-lengths which

are singly connected. A basic characteristic of a line is that it runs in only one direc-

tion. Run-lengths perpendicular to the direction of a line are merged into a DSCC.

When a junction is encountered, the merging process stops and a new DSCC gener-

ates. Each DSCC represents a line segment, and multiple collinear DSCCs may be
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merged into a line, based on pre-defined rules. In the above approaches, the group-

ing of run-length into line segments is rule-based. A model-based method, using

the Kalman filter, was proposed [44]. Assuming that a run-length (perpendicular

to the line’s running direction) of constant length moves along a straight line, the

Kalman filtering technique is used to track the run-length. If the tracking error is

larger than a threshold, it is stopped, and a new tracking begins.

In some applications, horizontal and vertical lines always intersect each other.

This property can be used to develop an efficient algorithm by detecting intersec-

tions of horizontal and vertical lines first. The verification of line segments between

intersections complete the algorithm [45, 43].

In most of the above approaches, domain specific knowledge is used implicitly

or explicitly. For example, parameters of a line detection algorithm may be tuned

to a specified application. In engineering drawing interpretation, knowing the line

type (such as solid, dotted, or dashed) helps to develop a robust line detection

algorithm [46]. In some forms, most cells are rectangular. This knowledge can

be used to improve detection accuracy and reduce false alarms [1]. In [47], Roach

and Tatem demonstrated the effectiveness of domain specific knowledge in a highly

structured domain: handwritten music score recognition. But the use of the prior

knowledge in above applications is ad hoc and lacks systematic representation.
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2.3 Preprocessing

Preprocessing has two purposes: first, we deskew the document so the parallel lines

are oriented horizontally or vertically; second, we filter text strokes to diminish

their intervention in line detection. The skew of a document can be estimated

using the text [48], or using the extracted line segments if lines are available on the

document [49]. In our approach, we use a coarse-to-fine line based skew estimation

method, which is similar to [49]. Since skew estimation is a mature technique in

document image analysis, we will not discuss the details in this section. After skew

estimation, we can easily rotate the document to correct the skew. In this section,

we focus on text filtering, which is one of our contributions. We extract directional

singly-connected chains (DSCC) first, then remove DSCCs unlikely to be generated

by a line segment because of their shapes.

2.3.1 Definition of DSCC

We define two types of DSCCs: horizontal and vertical, as described in [1]. Take

the horizontal DSCC for example. A horizontal DSCC, Ch, consists of a black pixel

run-length array R1R2 · · ·Rm, where Ri is a vertical run-length with one pixel width

Ri(xi, ysi, yei) =


(x, y)

∣∣∣∣∣∣∣∣
p(x, y) = 1, for x = xi, y ∈ [ysi, yei]

and p(xi, ysi − 1) = p(xi, yei + 1) = 0


 , (2.2)

where p(x, y) is the value of pixel (x, y) with 1 representing black pixels, and 0

representing white pixels; xi, ysi, and yei designate x, starting y, and ending y

coordinates of Ri, respectively. Two neighboring run-lengths Ri and Ri+1 are merged

18



(a) (b)

Figure 2.2: Definition and extraction of horizontal DSCCs. (a) Illustration of hor-

izontal DSCCs. (b) Extracted DSCCs (represented in gray) where a text stroke

crosses a line.

into a DSCC if they are singly connected in the horizontal direction. As shown in

Fig. 2.2a, the single connection means that at each side of Ri(1 < i < m), there is

one and only one connected run-length. In this example, R1R2 · · ·R7, R11R12R13,

R8, R9, R10, R14 and R15 are extracted as DSCCs. The definition of the vertical

singly-connected chain, Cv, is similar.

The most important property of a line is the single connection along its run-

ning direction. An ideal line consists of only one DSCC. A real line often consists

of multiple collinear DSCCs. Fig. 2.2b shows an example of extracted DSCCs (rep-

resented in gray) of a text stroke crossing a line. We can see the line breaks into

several line segments (DSCCs) on the touching area. If the image quality is reason-

able, then a line can be detected by merging DSCCs with similar orientation [1]. In

our case, we use it to remove text and preserve line segments.
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2.3.2 Text Filtering

As shown in Fig. 2.2b, a DSCC can be a text stroke or a line segment. We observed

that a line segment often has a smaller variation from the desired orientation and

larger aspect ratio. We use an ellipse to model the shape of a DSCC, and calculate

the orientation θ, the first and second axes a and b of each DSCC as follows:

µmn =
∑

x

∑
y

(x − x̄)m(y − ȳ)np(x, y) (2.3)

θ = 0.5tan−1

(
2µ11

µ20 − µ02

)
(2.4)

a =

√
2[µ20 + µ02 +

√
(µ20 − µ02)2 + 4µ2

11]

µ00

(2.5)

b =

√
2[µ20 + µ02 −

√
(µ20 − µ02)2 + 4µ2

11]

µ00

(2.6)

where p(x, y) represents a pixel in the DSCC, x̄ and ȳ are the means of x and y

coordinates, and umn is a central moment. For horizontal line detection, we only

preserve those DSCCs with either very small sizes (max{a, b} < T1) or large aspect

ratios within a specified orientation (a/b > T2 and θ ∈ [−45o, 45o]). T1 and T2 are

thresholds determined experimentally. The first condition preserves small DSCCs,

which may be parts of a broken line or the touching areas of lines and text; and

the second preserves large DSCCs, which are likely to be horizontal line segments.

For rule line detection, we need to perform text filtering only in the horizontal

direction. Our approach can be extended for vertical line detection, as discussed

in the next chapter on known form processing. For vertical line detection, similar

filtering conditions exist except for the orientation. Fig. 2.3 shows examples of text

filtering. We can see that most text strokes are filtered and the line segments are
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(a) (b)

(c) (d) (e)

Figure 2.3: DSCC-based text filtering. (a) and (b) A document image with rule

lines and the corresponding result of text filtering in the horizontal direction. (c)

A form document image. (d) and (e) Results of text filtering in the horizontal and

vertical directions of (c), respectively.

preserved.

2.4 HMM-Based Parallel Line Detection

In the following description, we use horizontal line detection as an example to illus-

trate the proposed method. The extension to vertical line detection is straightfor-

ward. After skew correction and text filtering, we perform a horizontal projection

and detect lines on the projection profile. A stochastic model, M(y1, y2, . . . , yN),

is proposed for a group of parallel lines, where N is the number of lines, and

yi, i = 1, 2, . . . , N , is the vertical position of the ith line on the projection profile.
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The line gap gi between two neighboring lines i and i + 1 is defined as

gi = yi+1 − yi. (2.7)

A global image registration method (such as affine transformation or projective

transformation) cannot compensate for local distortions introduced in photocopying

and scanning. Such local distortions will introduce variations to the vertical line

positions yi’s on the horizontal projection profile. Kanungo and Haralick [50] found

that the variation of the position of a point is as large as four pixels after removing

the global projective deformation. Therefore, the variation of the distance between

two points will be within the range [-8, +8] pixels, if the variations of two points

are independent. Considering the case that documents may be bent, folded and un-

folded, or they may be stored in various environmental conditions (e.g., hot, cold,

dry or humid) for years, the local distortions in scanned images may be larger. In

our experiments, we found the maximum variation of gi from its mean value can

reach up to 11 pixels. It is hard to model the dependency among the variations

of gi’s. As a simplification, in our approach, we do not consider such dependency.

Then, it is easy to show that the line positions yi’s form a Markov chain under

this simplified assumption. As they are not observable directly, an HMM is more

suitable for modeling the projection profile. The line positions can be detected by

decoding the HMM.
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2.4.1 Hidden Markov Model

The Markov property of a sequence of events is well studied in the literature [51].

Consider a system that stays at one of a set of N distinct states, S1, S2, . . . , SN , at

any sampling time t. The system undergoes a change of state according to a set

of probabilities associated with the state during the period between two successive

sampling times. For a Markov chain (the first order), the probability distribution

of qt only depends on the value of the previous state qt−1

P [qt = Skt|qt−1 = Skt−1 , qt−2 = Skt−2 , . . . , q1 = Sk1 ] = P [qt = Skt |qt−1 = Skt−1 ] (2.8)

If the state transition probability is independent of time t, then the Markov chain

is said to be homogeneous

P [qt = Sj|qt−1 = Si] = aij 1 ≤ i, j ≤ N (2.9)

We can show that line positions {Yi, i = 1, 2, . . . , N} form a Markov chain, if

the variations in line gaps are independent. We use uppercase characters to represent

random variables (e.g., Yi) and lowercase characters to represent the value of the

random variables (e.g., yi).

Theorem 1: Let Yi, i = 1, 2, . . . , N be line positions, and Gi = Yi+1 − Yi, i =

1, . . . , N − 1 be line gaps. If {Gi} are independent, then {Yi} form a Markov chain.

P (Yi|Y1, Y2, . . . , Yi−1) = P (Yi|Yi−1) (2.10)

Proof:

P (Yi|Y1, Y2, . . . , Yi−1) = P (Gi−1 + Yi−1|Y1, Y2, . . . , Yi−1)
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= P (Gi−1|Y1, Y2, . . . , Yi−1)

= P (Gi−1|G1, G2, . . . , Gi−2, Yi−1) (2.11)

Since, {Gi} are independent, we have

P (Yi|Y1, Y2, . . . , Yi−1) = P (Gi−1|Yi−1)

= P (Gi−1 + Yi−1|Yi−1)

= P (Yi|Yi−1) (2.12)

Therefore, {Yi} form a Markov chain.

In the literature of random process [52], {Yi} is called an independent in-

crement process, which includes several well-known random processes, such as the

Brownian motion process and the Poisson process.

In many applications, the actual state sequence is not observable. The result-

ing model (which is called a hidden Markov model) is a doubly embedded stochastic

process with an underlying stochastic process that is not observable, but can be

inferred only through another stochastic process that produces the sequence of ob-

servations. The elements of a standard discrete HMM are

1) N , the number of the states in the model.

2) M , the number of distinct observation symbols per state.

3) A = {aij}, the state transition probability matrix.

4) B = {bij}, the probability distribution matrix of the observation symbols.

5) π, the initial state distribution.

HMMs can model some 1-D signals well, and have achieved great success in speech [51]

and handwriting recognition [6].
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In our application, we can observe only the projection profile hk

P (Hk = hk|Y1 = y1, . . . , YN = yN) =




P (Hk = hk|∃i, k = yi) A line is on k

P (Hk = hk|∀i, k �= yi) No lines are on k

(2.13)

Therefore, the projection profile can be modeled with an HMM. A standard HMM

is shown in Fig. 2.4a, where ST and SB are the states representing top and bottom

image borders, SL,i, i = 1, 2, . . . , N , represents lines, and SG,i, i = 1, 2, . . . , N − 1,

represents the gaps between lines i and i + 1.

One weakness of conventional HMMs is modeling of the state duration. The

inherent duration probability distribution pi(d), d = 1, 2, . . . , associated with state

SGi
is

pi(d) = (aii)
d−1(1 − aii) (2.14)

where aii is a self transition probability. The exponential state duration distribu-

tion is inappropriate for our applications. Instead we explicitly model the duration

distributions. The model with explicit state duration is shown in Fig. 2.4b 1, where

the stochastic property of the model is incorporated into the state duration distri-

butions PT (d), PB(d), Pi(d), i = 1, 2, . . . , N − 1. For some applications, the quality

of the modeling is significantly improved when explicit state duration distributions

are used [53].

1It only exactly models lines with one pixel width. To make the model more accurate, alterna-

tively, one can introduce probability of durations to line states. Fortunately, line width does not

vary too much in most applications. Experiments shows that such inaccuracy in modeling does

not deteriorate its performance noticeably.
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(a)

(b)

Figure 2.4: HMMs for a projection profile. (a) A standard HMM. (b) An HMM

with explicit state duration.

2.4.2 HMM Parameter Estimation

The major drawback of an explicit duration HMM is that it significantly increases

computational costs for model training. With a traditional forward-backward train-

ing algorithm (a type of EM algorithm), the re-estimation problem for a variable

duration HMM is more difficult than that for a standard HMM [51]. Fortunately, in

our case, we can directly derive the HMM parameters from ground-truth since the

states explicitly correspond to image components. Therefore, the forward-backward

training algorithm is not needed. We set duration probabilities of states ST and

SB to uniform distribution within a range. The duration probabilities of states

SG,i, i = 1, 2, . . . , N − 1, is estimated directly from the ground-truth.

The observation comes from the projection profile hk. The large number of

observation symbols would prevent us from estimating the model parameters reliably
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with limited training samples. There are two methods to reduce the number of

parameters of the model. One involves modeling the distribution of the observation

as a Gaussian distribution [51], so only the mean and variance of the Gaussian

distribution need to be estimated. For known form processing (discussed in the next

chapter), we find the projections of a line over multiple form instances can be well

modeled as a Gaussian distribution. Another method quantizes the projection profile

into several levels. For rule line detection, the image quality varies significantly

among different images. The distribution of the observations does not follow a Gauss

distribution. Therefore, we quantize hk into K levels (K = 5 in our experiments for

rule line detection). The probability of each level is estimated from the ground-truth.

The HMM parameters estimated directly from the ground-truthed data set are

not optimal due to the sparseness of the training data. For example, some entries

of the line gap distribution do not appear or appear only a few times. Parameter

sharing, a technique used in neural networks to train the parameters with limited

training samples [54, 55], is used in our approach. For example, we let non-line

states ST , SB, SG,1, . . . , SG,N−1 share the same observation probability distributions

since the observations of these states are the same: the projections of noise and

remaining text strokes after filtering. For rule line detection, we further combine all

line states into one state, and all non-line states into another state, significantly re-

ducing the parameters of the model. For line gap distribution estimation, we assume

the distribution is symmetric around the mean value. Therefore, data smoothing
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techniques, originally proposed in natural language processing [56], can be used

C ′(ḡi + k) = C ′(ḡi − k) =
C(ḡi + k) + C(ḡi − k)

2
k = 1, 2, . . . (2.15)

where ḡi is the mean value of line gap Gi, C(k) is the number of instances of Gi

with value k in the training set, and C ′(k) is the smoothed result after imposing

symmetric regularization. Finally, we set the empty entries to the minimal value of

all non-zero entries. Suppose the maximal variation of the line gap Gi is K. For

k ∈ [−K,K], the final smoothed result is

C ′′(ḡi + k) =




C ′(ḡi + k) if C ′(ḡi + k) �= 0

mini∈[−K,K],C′(ḡi+i) �=0 C ′(ḡi + i) if C ′(ḡi + k) = 0

(2.16)

C ′′(k) can be converted to probability by normalization.

The ultimate goal of training is to search the optimal HMM parameters to

minimize the line detection error. The estimated parameters from the training

data can produce reasonable results, but they do not minimize the pre-defined line

detection error rate. Generally, the error criterion is a complex function of the model

parameters without a closed-form representation. A direct searching algorithm can

be used to solve such optimization problems. In our case, the simplex search method

proposed by Nelder and Mead [57] is used to minimize the detection error.

2.4.3 HMM Decoding

Given the observation sequence O = hk, k = 1, 2, . . . , T , and the HMM λ, we want

to search an optimal state sequence Q = q1q2 . . . qT to maximize P (Q|O, λ), which

is equivalent to maximizing P (Q,O|λ). Normally, the Viterbi algorithm, a dynamic
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programming method, is used to decode HMMs. A matrix v with dimension T ×

(N + 1) is defined and updated in the Viterbi algorithm, and

v(t, n) = max
q1,q2,...,qt−1

P [q1, q2, . . . , qt = SL,n, h1, h2, . . . , ht|λ] (2.17)

is the best decoding score at time t, which accounts for the first t observations and

ends in state SL,n. The sequence q1, q2, . . . , qt−1 maximizing the probability in Eq.

(2.17) is the best decoding result until time t if we decode state qt as the nth line.

Suppose the minimal and maximal state durations of states SG,n are δn− and

δn+, and the durations of ST and SB are uniformly distributed in [0, δT ] and [0, δB],

respectively. The complete procedure of decoding is stated as follows

1. Clear all entries of matrix v.

2. For 1 ≤ i ≤ δT , decode the first i−1 observations as ST (the top image border)

and observation i as SL,1

v(i, 1) =
1

δT + 1
P (hi|qi = SL,1)

i−1∏
j=1

P (hj|qj = ST ), (2.18)

where P (hi|qi = SL,1) is the probability of observing hi if the system enters

state SL,1 at time i;
∏i−1

j=1 P (hj|qj = ST ) is the probability of observing the

first i − 1 observations if the system stays at state ST during the time period

from 1 to i−1; and 1
δT +1

is the probability of the model staying at ST for i−1

consecutive periods.

3. Set t = 1.
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4. For n = 1 to N

For j = δn− to δn+

v′(t + j, n) = v(t, n)Pn(j)P (ht+j|qt+j = SL,n+1)

t+j−1∏
k=t+1

P (hk|qk = SG,n)(2.19)

v(t + j, n) = max{v(t + j, n), v′(t + j, n)} (2.20)

End loop of j

End loop of n

Here Pn(j) is the probability of staying at state SG,n with j consecutive times;

P (ht+j|qt+j = SL,n+1) is the probability of observing observation ht+j if the

system enters SL,n+1 at time t + j, which corresponds to a new line; and

∏t+j−1
k=t+1 P (hk|qk = SG,n) is the probability of observing sequence ht+1 to ht+j−1

if the system stays at state SG,n during this time period, which corresponds

to a line gap. Eq. (2.20) updates the optimal partial detection result.

5. If t > T − δB, decode the following sequence as the bottom image border.

v′(T,N + 1) = v(t, N)
1

δB + 1

T∏
k=t+1

P (hk|qk = SB) (2.21)

v(T,N + 1) = max{v(T,N + 1), v′(T,N + 1)} (2.22)

6. If t < T , then t = t + 1, and go to step 4.

For each t, the algorithm remembers the best decoding path until time t. After

decoding,

v(T,N + 1) = max
Q

P (Q,O|λ) (2.23)
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is the probability of detecting lines given the model, which can be regarded as

detection confidence. The sequence q1, q2, . . . , qT which achieves v(T,N + 1) is the

optimal decoding result.

2.4.4 Polyline Representation

After identifying the vertical position of a line, we then need to detect the left and

right end points by grouping the broken line segments together. For each detected

line, those DSCCs within 10 pixels distance to the detected line are merged [1].

An ideal straight line can be represented with two parameters a and b as

y = a×x+b. Practically, a real line is represented with points (xi, yi), i = 1, 2, . . . , n.

The parameters a and b can be estimated based on the minimum mean squared error

criterion (MMSE)

x̄ =
n∑

i=1

xi/n,

ȳ =
n∑

i=1

yi/n,

a =

∑n
i=1(x − x̄)(y − ȳ)∑n

i=1(x − x̄)2
,

b = ȳ − a × x̄. (2.24)

For most straight lines, this approximation is good enough. However, due to

the distortions introduced by photocopying and scanning, some lines are cursive and

cannot be well represented by two end points. In this case, a polyline representation

is used as follows:
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1. Calculate the average approximation error of a line

δyi = |yi − a × xi − b|, (2.25)

e =
n∑

i=1

δyi/n. (2.26)

2. If e is smaller than the average line width (often two to four pixels), keep it

with two end points representation and exit.

3. Otherwise, split the whole line into two segments from the middle and estimate

the line parameters a and b for each segment respectively, as described in Eq.

(2.24).

4. For each segment, go to step 1 and repeat.

A polyline is described as a sequence of vertices (P1, P2, . . . , Pm). Two or three

segments are sufficient to represent most lines in our following experiments.

2.5 Application to Rule Line Detection

In this section we use the proposed method to detect severely broken rule lines. In

this application, the number of lines is unknown, and the vertical line gaps may vary

in different images due to the different styles used by rule-lined paper or different

scanning resolutions. However, the length of lines and the vertical line gaps are

roughly consistent in the same document image.
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Figure 2.5: Vertical line gap estimation for rule line detection, based on the auto-

correlation of the projection profile.

2.5.1 Vertical Line Gap Estimation

We need to estimate the average vertical line gap from the input image. Since the

line gaps between neighboring lines are roughly the same, the horizontal projection

of rule lines is a periodic signal (the period is the average vertical line gap ḡ). We

use an auto-correlation-based approach to estimating the period of the projection.

The auto-correlation of a signal x, with n samples x(1), x(2), · · · , x(n), is defined as

R(l) =
n−l∑
i=1

x(i)x(i + l) l = 0, 1, . . . , n − 1 (2.27)

The distance between the first two peaks of the auto-correlation is taken as the

vertical line gap, as shown in Fig. 2.5.

2.5.2 A Simplified Model

In order to reduce the complexity of the model (the number of states and parame-

ters), we further simplify it by considering the special properties of rule lines. Since

the vertical line gaps and the lengths of rule lines are roughly consistent in the same

document image, we can merge states SG,i, i = 1, 2, . . . , N − 1, into one state SG,

and SL,i, i = 1, 2, . . . , N , into another state SL. Fig. 2.6 shows the simplified model.
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Figure 2.6: A simplified HMM for rule line detection.

State merging reduces the number of parameters significantly. Another advantage

of such simplification is that we do not need to know explicitly the number of lines

on a document.

2.5.3 Parameter Estimation

In our data set, the quality of different images varies significantly as does the quality

of rule lines on the same image. Therefore, we cannot use the Gaussian distribution

to model the projections of rule lines (the Gaussian mixture distributions may be a

good approximation). Instead, we quantize the observation into several levels and

estimate the probability of each quantized level directly from the ground-truthed

data set. Peaks on the projection profile have particular significance for line de-

tection. Therefore, we first set all non-peaks on the profile to zero, then quantize

the peaks on the projection profile into four levels using the following quantization

thresholds: w/16, w/8, and w/4, where w is the image width. The observation

probability distribution matrix B, estimated from the training set containing 100

documents, is listed in Table 2.1. We let states ST , SB, and SG, whose observations

are the projection of text or noise, share the same observation distribution. We ob-
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Table 2.1: Observation probability distribution matrix B estimated from the train-

ing set containing 100 documents
0

Non-peak
1

(0, w
16

]
2

( w
16

, w
8

]
3

(w
8

, w
4

]
4

(w
4

, w]

SL 106 (4.7%) 246 (10.8%) 378 (16.6%) 1,051 (46.2%) 493 (21.7%)

ST , SB , SG 191,086 (98.8%) 2,052 (1.1%) 170 (0.1%) 58 (0.03%) 15 (0.008%)

served that (1) due to the severe brokenness, the horizontal projections of about 80%

of rule lines are less than 1/4 of the image width; (2) 4.7% of rule lines do not form

peaks; and (3) the peaks with small heights are more likely formed by text strokes

or noise (2,052 instances) rather than by rule lines (246 instances). Therefore, we

need to use high level contextual information to achieve reasonable detection results

for these severely broken lines.

We set duration probability of states ST and SB to the uniform distribution on

[0, ḡ−1]. The duration probability of state SG is estimated directly from the ground-

truth with the approach described in Section 2.4.2. With all these settings, the rule

line detection accuracy on the training set is about 95.6%. For comparison, the

accuracy is only 91.7% if we use the Gaussian distribution for approximation. Since

the parameters estimated from the training data are not optimal for the ultimate

detection error criterion, the simplex method proposed by Nelder and Mead [57]

is used to search the optimal parameter set which minimizes the detection error.

Among the parameters of our model, we optimize only the observation probability

matrix B. Experiments show the detection accuracy increases to 97.3% on the

training set after optimization.
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2.5.4 Examples

HMM decoding may detect extra lines on the top or bottom image borders. To

reduce the false alarm rate, we remove lines with less than 50 black pixels. Fig. 2.1c

shows the model-based line detection result for a rule-lined document. Compared

with Fig. 2.1b, we can see that, with contextual information, the result is signifi-

cantly improved. Our model-based method is robust even when the input images do

not follow the model exactly. Fig. 2.7a shows an example: two pages are overlapped

during scanning. Our algorithm still detects all rule lines correctly. In Fig. 2.7c,

we remove 35 rows of the image (about half of the average vertical line gap of this

document). The variation of the line gap is out of the range allowed by the model.

The corresponding detection result is shown in Fig. 2.7d, with only one line missed

due to the anomalous vertical line gap.

2.6 Experiments

In this section, we present our evaluation metrics, quantitatively evaluate the robust-

ness of our line detection algorithm, and compare it with several non-model-based

algorithms.

2.6.1 Line Detection Evaluation Protocol

Line detection accuracy can be evaluated at the pixel and line levels [58]. At the

pixel level we compare the difference of the pixels between ground-truth and detected

lines. It is straightforward and objective, but ground-truthing at the pixel level is
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(a) (b) (c) (d)

Figure 2.7: Robust test for rule line detection. The image in (a) has enormous

observations on the projection profile (several lines missed because two pages are

overlapped during scanning). (c) shows a document with enormous line gaps (35

image rows removed manually in the middle). (b) and (d) show the corresponding

line detection results.

extremely expensive when lines are broken, distorted, and overlapped with text.

Therefore, we evaluate the algorithm at the line level. Our evaluation metric is

based on the Hausdorff distance. The Hausdorff distance between two point sets is

H(A,B) = max{h(A,B), h(B,A)} (2.28)

where

h(A,B) = max
a∈A

min
b∈B

||a − b|| (2.29)

and ||.|| is an underlying norm (e.g., the L2 or Euclidean distance). The function

h(A,B) is called the directed Hausdorff distance from A to B. It identifies the point

a ∈ A that is the farthest from any point of B and measures the distance from a

to its nearest neighbor in B [59]. The direct computation method for the Hausdorff

distance is time consuming, but, for polyline representation, the Hausdorff distance
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can be easily calculated. Suppose polylines A and B are represented as a sequence

of vertices (A1, A2, . . . , Am) and (B1, B2, . . . , Bn) respectively, then the Hausdorff

distance is simplified as

H(A,B) = max{H ′(A,B), e(A,B)} (2.30)

where

H ′(A,B) = max{DA1, DA2, . . . , DAm, DB1, DB2, . . . , DBn} (2.31)

e(A,B) = max{||A1 − B1||, ||Am − Bn||} (2.32)

DAi is the perpendicular distance from Ai to polyline B, and DBi is the perpendicular

distance from Bi to polyline A, as shown in Fig. 2.8. H ′(A,B) in Eq. (2.31) is the

perpendicular distance between two polylines A and B, which evaluates the accuracy

in determining the vertical location of a horizontal line and the horizontal location

of a vertical line. ||Ai − Bj|| is the Euclidean distance between points Ai and Bj.

Suppose the vertices of a polyline are sorted from left to right for a horizontal line,

and top to bottom for a vertical line. Then ||A1 −B1|| and ||Am −Bn|| are the end

point determination errors. Hausdorff distance H(A,B) in Eq. (2.30) combines the

perpendicular distance and end point determination errors into one metric.

For severely broken lines, however, it is hard to define the end points exactly.

Therefore, we prefer to use two separate metrics: the perpendicular distance and end

point determination error for evaluation, instead of a combined Hausdorff distance.

The end point determination error is an absolute value. As a supplemental
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Figure 2.8: Hausdorff distance between two polylines.

metric, the overlap rate of polylines A and B

o(A,B) =
min{Am, Bn} − max{A1, B1}
max{Am, Bn} − min{A1, B1}

(2.33)

is defined to evaluate the relative end point determination error.

As suggested in [60], if a detected line is within no more than five pixels to a

ground-truthed line in the perpendicular direction, it is said to be correctly detected.

If the perpendicular distance is larger than five pixels and no more than ten pixels,

it is said to be partially correct. Splitting and merging errors are all assigned as

partially correct too.

2.6.2 Quantitative Evaluation for Rule Line Detection

We obtained 168 Arabic document images with a total of 3,870 ground-truthed

rule lines, most of which are severely broken. We use 100 images to train the

HMM, and the remaining 68 images as the test set. The detection results on the

test set are shown in the last row of Table 2.2. On the test set, 96.8% of lines

are detected correctly, with only two lines missed. The false alarm rate is 2.3%.

Most of the false alarms are caused by the inconsistency between the detector and

the subjective judgment of the ground-truther when lines are severely broken. For

correctly detected lines, we evaluate the end point determination accuracy using
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the end point determination error and overlap rate defined in Eq. (2.32) and (2.33)

respectively. The average end point determination error is six pixels and the overlap

rate is 99.1%.

We compared our model-based line detection algorithm with other non-model-

based line detection algorithms: the Hough transform method [9], the projection

method [10], and the DSCC method [1]. Table 2.2 shows the line detection results

on the test set with different algorithms. The results of the Hough transform and

projection methods listed in the table are tested on the images after text filtering.

The projections of lines often fail to form peaks on the projection profile, if lines

overlap with text or they are severely broken. Text filtering helps lines to form

peaks on the projection profile, therefore increases the detection rate. On this data

set, under roughly the same false alarm rate, the detection accuracy increases from

73% on raw images to 82% on text-filtered images. For either projection or Hough

transform methods, only those peaks with values larger than a threshold are picked

as line positions. With a small threshold, we can detect more lines, but the false

alarm rate is high. Increasing the threshold will reduce the false alarm rate, but

increase the mis-detection rate. We selected the threshold to make the false alarm

rate roughly equal the mis-detection rate. To reduce the false alarm rate of the

Hough transform method further, we restrict the search range of θ to [−1o, 1o] after

skew correction. For the DSCC method, we restrict the merging direction to the

horizontal direction. As expected, our model-based method achieved much better

results in both accuracy and false alarm rate, due to the use of high level constraints

between neighboring lines.
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Table 2.2: Comparison of our model-based method with other methods on the test

set for rule line detection (there are a total of 1,596 ground-truthed lines).

Detected Correct Partial Correct Missed False Alarm

Hough Transform 1,588 1,299 (81.4%) 60 (3.8%) 237 (14.9%) 229 (14.4%)

Projection Method 1,577 1,310 (82.1%) 112 (7.0%) 174 (10.9%) 155 (9.7%)

DSCC 2,162 1,398 (87.6%) 118 (7.4%) 80 (5.0%) 646 (40.5%)

Our Model-
Based Method 1,631 1,545 (96.8%) 49 (3.0%) 2 (0.1%) 37 (2.3%)

2.7 Summary and Future Work

We present a novel approach to detect severely broken rule lines in documents. Our

method is based on a stochastic model to incorporate high level constraints into a

general line detection algorithm. Instead of detecting lines individually, we use the

Viterbi algorithm to detect all parallel lines simultaneously. Our method can detect

96.8% of the severely broken rule lines in the Arabic database we collected. Some

challenging examples demonstrated the robustness of our approach.

After detection, rule lines must be removed before further document process-

ing. Fig. 2.1d shows the document image after rule line removal. The result is

reasonable; when text strokes overlap with lines, some parts of text strokes may be

removed erroneously. A more robust method should be developed to improve the

line removal results.
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Chapter 3

Known Form Processing

3.1 Introduction

Millions of form documents, such as tax return forms, health insurance forms, air-

line vouchers, checks, and bank slips, are processed everyday [15, 16, 61, 62, 63, 19].

Processing of such documents can be categorized as unknown and known form pro-

cessing [16]. Unknown form processing assumes no a priori knowledge from the

input forms, and extracts all information based on low level image analysis. Errors

are expected and user assistance is required. Known form processing, on the other

hand, is designed to process a pre-defined set of forms, where a priori information

can be stored as templates in the database to guide later processing. It is widely

used in banks, post offices, and tax offices where the types of forms are most often

pre-defined. For an input form, the system first selects the template that it matches

best (form identification), then extracts anchors (such as specific marks and form

frame lines) for registration to compensate for variations produced by scanning (e.g.,

rotation, translation, scaling, and local nonlinear distortions) 1. Finally, the identi-

fied template is used to guide the system to recognize fields of interest on the form

1If preprinted content (fixed part) dominates user-filled information (variant part), general

image registration methods (e.g., correlation-based methods) can be used for form registration

without detecting any lines or landmarks.
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(a) (b)

Figure 3.1: (a) An example deposit form of the Industrial and Commercial Bank of

China. There are two groups for parallel lines on this form, one horizontal and the

other vertical. (b) Line detection result using our model-based approach.

(different OCR engines may be used for different fields), and output the recognition

results to a database. Although special anchors may be available to facilitate form

identification and registration for specially designed forms, more general approaches

use features related explicitly or implicitly to frame lines, such as the frame lines

themselves [15, 16, 61, 62], form cells [63], and intersections of frame lines [19]. Ro-

bust detection of frame lines is crucial to these approaches. In the previous chapter,

we proposed a model-based parallel line detection algorithm using hidden Markov

models (HMM). In this chapter, we apply it for known form processing. As shown

in Fig. 3.1a, generally there are two groups of parallel lines (one horizontal and the

other vertical) on a form, so we use two HMMs to detect the horizontal and vertical

lines separately. The detected lines can be used for registration. Our algorithm can

be extended for form identification too, so in our approach, a unified framework

solves both important tasks in known form processing.

For known form processing, we need to not only detect lines reliably, but also

find the correspondence between the detected lines and those stored in the form
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template [15, 16]. The method proposed by Tang et al. [15] assumes there is only

one anchor line in a pre-defined region, which can be distinguished easily from other

lines. The application of this method is restricted. Considering false alarms and mis-

detections, the correspondence problem is not trivial. Cesarini et al. [16] proposed a

hypothesis and verification paradigm as a solution. For a detected line in a pre-define

region, several hypotheses are generated about correspondence between the line and

those in the template. Under each hypothesis, the rough positions of other lines can

be determined, then the system searches the expected lines to verify the hypothesis.

The output of the verification module is binary: success or failure. All lines used for

registration should be detected to achieve a consistent solution, so it is not robust

to line degradations. Both methods need an initial region to detect the first anchor

line, and only a subset of lines are used for registration. In our approach, we use all

lines for registration, but we do not perform binary assertion during HMM decoding.

Instead, we measure the probability of a projection to be generated by a line. The

optimal detection results are achieved by the Viterbi algorithm. The degradation of

a few lines may not deteriorate the performance. Another advantage of our approach

is that the detection and correspondence problems are solved simultaneously. After

HMM decoding, the correspondence between the detected lines and those in the

form template (or the model) is achieved automatically.

The remainder of this chapter is organized as following. In Section 3.2, we ap-

ply our general model-based line detection algorithm for form frame line detection.

The quantitative evaluation of the robustness of our approach is presented in Sec-

tion 3.3. Our approach can be extended for form identification, which is described
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in Section 3.4. This chapter ends with a brief summary in Section 3.5.

3.2 Form Frame Line Detection

The application of the algorithm to known form processing is straightforward. Gen-

erally, a collection of horizontal and vertical parallel lines exists on a form, so we

use two HMMs to detect the horizontal and vertical lines separately. To apply the

algorithm, we need to estimate two sets of parameters: (1) The distribution of ob-

servation symbols of each state; and (2) The state duration probabilities of each gap

state.

3.2.1 Estimation of the Distributions of Observation Symbols

In our case, the observation symbols are the projection profile, which has the range

of [0, w] for a horizontal projection (where w is the width of the image). As we

stated previously, a large number of observation symbols would cause difficulties

in reliably estimating the distributions with limited training samples. With some

assumptions, we can show that using a Gaussian distribution to model projections

of a line over multiple form instances is appropriate. In a widely used stochastic

document image degradation model [64], a white (black) pixel is randomly selected

and flipped to black (white). The projection is the summation of all black pixels on

the line

h =
M∑
i=1

ai (3.1)
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(a) (b) (c) (d)

(e) (f) (g)

Figure 3.2: The distributions of the observation symbols (horizontal projections) for

100 scanned instances of a bank deposit form. One example of the form is shown in

Fig. 3.1a. There are six horizontal lines on the form. (a) to (f) The histograms of the

projections of six horizontal lines respectively. (g) The histogram of the projections

of the non-line states.
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where

ai =




1 if black pixel i is preserved

0 if black pixel i is flipped to white during degradation

(3.2)

Under white Gaussian noise (a widely used model for degradation), ai follows a

Bernoulli distribution: ai ∼ Bernoulli(ρ), where ρ is the probability for a black

pixel to be lost. Consequently, h follows a binomial distribution Bin(ρ,M)

P (h) =

(
M

h

)
ρM−h(1 − ρ)h. (3.3)

According to the central limit law, if M is large enough (or if the line is long enough),

then the distribution of random variable h converges to a Gaussian distribution [52]

lim
M→∞

h − E[h]√
Mρ(1 − ρ)

−→ N (0, 1) in distribution. (3.4)

In known form processing, a set of forms are captured with similar imaging

conditions. Therefore, ρ is roughly constant for each form in the set. A Gaussian

distribution is a good approximation for the projections of a line over multiple form

instances. The mean and variance of the Gaussian distribution can be estimated

from the ground-truth. Figs. 3.2a to 3.2f show the distributions of the projections

of all six horizontal lines on a set of bank deposit forms with one instance shown

in Fig. 3.1a. The histogram is generated over 100 form samples. We can see that

the Gaussian distribution is a good approximation. For non-line states, the ap-

proximation is not good enough, since a projection is always no less than zero (an

exponential distribution may be more suitable), as shown in Fig. 3.2g. We found in

the experiments that the effect of this approximation error is negligible for the final

line detection result.
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Table 3.1: The distribution of the line gap between the first and second horizontal

lines on a bank deposit form. The average is 94 pixels. The row of distance lists the

difference to the average value.
Distance -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

Raw Occurrence 1 0 2 0 0 3 5 12 18 24 16 6 8 4 0 1 0 0 0

Symmetric

Regularization
.5 0 1 .5 0 3.5 6.5 9 17 24 17 9 6.5 3.5 0 .5 1 0 .5

Zero-Occurrence
Smoothing

.5 .5 1 .5 .5 3.5 6.5 9 17 24 17 9 6.5 3.5 .5 .5 1 .5 .5

3.2.2 Estimation of the State Durations

The state duration of SG,i, i = 1, 2, . . . , N − 1, represents the line gap between lines

i and i + 1, which can be estimated from the ground-truth. Table 3.1 shows the

distribution of the gap between the first and second horizontal lines on the bank

deposit form in our database of 100 samples. The average value of the gap is 94

pixels. The row of distance lists the difference to the average value. The row of raw

occurrence shows the number of occurrences in which the gap takes a specific value.

We can see that the variation is from -9 pixels to 6 pixels, and the distribution

is roughly symmetric around the average value. Due to the sparse-data problem,

some entries within the range of [-9, 6] are not observed in the training set, which

will deteriorate the performance. Therefore, data smoothing is used. The row of

symmetric regularization is the result after we impose the symmetry. Lastly, we set

the zero entries to the minimal value of all non-zero entries, as shown in the row

of zero-occurrence smoothing. After data smoothing, the distribution P1(d) can be

estimated by normalization. Similarly, we can get the distributions of other line

gaps.
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3.2.3 Decoding

After estimating parameters, we use the Viterbi algorithm to decode the observation.

Fig. 3.3 shows the decoding results of the Viterbi algorithm on the horizontal and

vertical projection profiles of the bank deposit form (Fig. 3.1a). The locations found

by the Viterbi algorithm are labeled with squares. We can see that instead of picking

the highest peaks as detected lines in the projection methods [10, 13], our approach

outputs the line positions most compatible with the model.

After detecting the horizontal and vertical lines, the method described in the

previous chapter can be used to determine the end points of the lines. However, if a

line is severely degraded, the end points cannot be determined accurately. For many

forms, the intersections of horizontal and vertical lines can be used to determine the

end points. Sometimes, several lines may lie on the same line, for example, three

dashed lines in the middle of the form as shown in Fig. 3.1a. Our HMM-based

method can handle this special case without difficulty. In this example, the vertical

line gaps between dashed lines are zero. They share the same horizontal projection.

The Viterbi algorithm gives the vertical position of these lines. The left and right end

points are determined using their position relative to the intersections of horizontal

and vertical lines. In this case, horizontal and vertical lines should be extended to

get the intersection points. Fig. 3.1b shows the model-based line detection result.

We can see our method can detect the short lines which may not form peaks on

the projection profile (especially for the two shortest vertical lines), which are most

likely missed by other methods such as the Hough transform or projection methods.
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(a) (b)

Figure 3.3: The lines detected after decoding the HMMs using the Viterbi algorithm

on the horizontal (a) and vertical (b) projection profiles of the bank deposit form.

The original form is shown in Fig. 3.1a. The locations picked up by the Viterbi

algorithm are labeled with squares.

Our method outputs the exact number of lines indicated by the model without false

alarms. Fig. 3.4 shows two more examples of an export registration form used by

the Customs Bureau of China and a portion of a US income tax form.

3.3 Experiments for Form Frame Line Detection

To evaluate the algorithm for known form processing, we collected 100 bank deposit

forms. In this experiment, we did not evaluate the accuracy of form registration

directly. The accuracy of form registration depends on which deformation model

(global affine transformation or more flexible local deformation) is used to transform

the input form to the prototype form. Since the detected lines are used for both

form identification (discussed in the next section) and registration, we evaluate the
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(a) (b)

(c) (d)

Figure 3.4: Some examples for model-based form frame line detection. (a) and

(b) An export registration form used by the Customs Bureau of China and the

corresponding line detection result. (c) and (d) A portion of a US income tax form

and the corresponding line detection result. The detected lines are shown in black

and overlay with the original documents.
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line detection accuracy.

The experiment demonstrated that one training sample can achieve reasonable

results if image quality is good. We selected the first image for training. The real

value of the projection of a line in this training sample is taken as the mean of

the observation random variable of the corresponding line state. The variance of

the observation random variable of a line state is set as 20% of its mean. The

distribution of line gaps is set within the range of [-10, 10] pixels around its real

value in this sample. We tested it on the remaining 99 form images. The last row

in Table 3.2 shows the result, using the evaluation metrics defined in the previous

chapter. All lines are detected without any false alarms. Only four lines are detected

with large location errors. For comparison, Table 3.2 shows the detection results of

other algorithms. Both Hough transform and projection methods need a threshold,

the minimum pixels on a line, to reduce the false alarm rate. To avoid using an

arbitrarily threshold, we selected the first six longest horizontal lines and 14 longest

vertical lines as the detection results for both the Hough transform and projection

methods. Our algorithm clearly outperforms all three general line detection methods

in both mis-detection and false alarm rates.

In the following experiments, we tested the robustness of our method under

different scanning resolutions, scanning binarization thresholds, and synthesized im-

age degradations. Generally, the more severe the degradation, the more accurate

the model should be in order to detect lines correctly. Therefore, in the following

experiments, we increased the number of training samples. We randomly selected

50 forms for training, and used the remaining 50 forms for testing. Fig. 3.5a shows
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Table 3.2: Comparison of our model-based method with other methods for known

form processing (there are a total of 1,980 ground-truthed lines).

Detected Correct Partial Correct Missed False Alarm

Hough Transform 1,980 1,675 (84.6%) 8 (0.4%) 297 (15.0%) 297 (15.0%)

Projection Method 1,980 1,745 (88.1%) 15 (0.8%) 223 (11.3%) 220 (11.1%)

DSCC 2,032 1,803 (91.1%) 125 (6.3%) 175 (8.8%) 104 (5.3%)

Our Model-
Based Method 1,980 1,976 (99.8%) 4 (0.2%) 0 (0.0%) 0 (0.0%)

the line detection accuracy under different scanning resolutions. As we can see, the

performance of the algorithm stays consistently high under a wide range of scanning

resolutions from 75 dpi to 600 dpi. The line width varies from about one pixel under

75 dpi resolution to 10 pixels under 600 dpi. Though our model does not include

the duration of line states, this inaccuracy in modeling has a negligible effect on its

performance.

In the next experiment, we fixed the scanning resolution to 300 dpi and used

different binarization thresholds during scanning. If the threshold is too small, the

lines are severely broken as shown in Fig. 3.6a (with the threshold of 40). If the

threshold is too large, text and lines are smeared together, as shown in Fig. 3.6c (with

the threshold of 240). As shown in Fig. 3.6b and d, our algorithm can still detect

lines correctly under such extreme conditions. The quantitative evaluation result

is shown in Fig. 3.5b. The curve labeled with ◦ in the figure shows the detection

accuracy when the training set and test set are scanned with the same binarization

threshold. In most applications, the test set may have different characteristics with

the training set. The curve labeled with + in Fig. 3.5b shows the detection accuracy
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Figure 3.5: Robustness testing. The curves labeled with ◦ shows the detection

accuracy under the condition where the test set has the same degradation level

with the training set. Curves labeled with + are the results when the test set

and the training set have different degradation levels. (a) Scanning resolution. (b)

Binarization threshold. (c) Synthesized degradation.

using the HMM trained on the training set scanned with a binarization threshold of

128. As we can see, good results are achieved in a wide range even though the test

set has different characteristics with the training set.

Synthesized data are often used to test an algorithm because it can directly

control the image quality of the test samples. In the following experiments, we

selected the data set with good image quality (scanned with 300 dpi and the bina-

rization threshold of 128), and randomly flipped a certain ratio of black pixels on

lines to white, keeping all pixels on text unchanged. Figs. 3.7a and 3.7c show the de-

graded images with 50% and 90% black pixels on lines flipped to white, respectively.

As shown in Fig. 3.7b, the line detection result is perfect even if half the black pixels

are flipped. Fig. 3.7d shows that the horizontal lines are still detected correctly even

when 90% black pixels are flipped, but the vertical lines are misdetected. Fig. 3.5c
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(a) (b)

(c) (d)

Figure 3.6: Scanned form documents with different binarization thresholds and the

corresponding line detection results. (a) and (c) Scanned images under thresholds

of 40 and 240 respectively. (b) and (d) are corresponding line detection results of

(a) and (c). The detected lines are shown in black and overlay with the original

documents.
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(a) (b)

(c) (d)

Figure 3.7: Degraded form documents and the corresponding line detection results.

Red lines drawn on original images indicate the detected lines. (a) About 50% of

the pixels of the lines are flipped. (c) about 90% of pixels of the lines are flipped.

(b) and (d) are corresponding line detection results to (a) and (c).

shows the detection accuracy versus degradation level on the test set. The curve

labeled with ◦ shows the results when the test sets have the same degradation level

with the training sets. We can see that our method is very robust. It maintains

good results with accuracy of 96.2% even when 80% black pixels of lines are flipped.

The curve labeled with + shows the accuracy on the test sets using the HMM model

trained on samples with the degradation level of 50%. Almost the same accuracy

is achieved until 70% black pixels on lines are flipped. After that, it breaks down

faster.
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3.4 Form Identification

Our line detection algorithm can be extended to form identification. Suppose there

are n form templates λ1, λ2, . . . , λn. According to the Bayesian rule, λ̂ that maxi-

mizes the posteriori probability is selected as the template for the input form

λ̂ = arg max
λi

P (λi|O) = arg max
λi

P (O|λi)P (λi). (3.5)

Here, O is the observation (the projection profile in our method). P (λi) is the

priori probability of form template λi. P (O|λi) is the probability of observing the

sequence of observations given the model λi, which can be calculated efficiently with

the forward algorithm [51].

Although a Gaussian distribution is a good approximation for observations of

a line state, it is not good enough to approximate the observations of a non-line

state, as shown in Fig. 3.2g. As demonstrated experimentally, such approximation

error does not affect the line detection results noticeably. However, it will make

calculating the probability P (O|λ) in Eq. (3.5) un-reliable, since the observations

are dominated by non-line states. Alternatively, given a form model λ, we first detect

lines under the model. Suppose, hL1, hL2, . . . , hLN are decoded as observations of line

states, and g1, g2, . . . , gN−1 are line gaps, the probability of the input form sample

belonging to the model λ is approximated as

Q(O|λ) =
N

√
ΠN

i=1P (hLi|λ)ΠN−1
i=1 P (gi|λ) (3.6)

In the above equation, we omit the observations of non-line states. The model with

the highest probability is selected as the final form identification result.
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We test the proposed method on the NIST Structured Forms Reference Set,

NIST Special Database 2 [65]. The data set consists of 5,590 pages of binary, black-

and-white images of synthesized documents. The documents in this database are 12

different tax forms from the IRS 1040 Package X for the year 1988. These include

Forms 1040, 2106, 2441, 4562, and 6251 together with Schedules A, B, C, D, E,

F, and SE. Eight of these forms contain two pages or form faces for a total of 20

different form faces represented in the database. The number of samples of each

form face varies from 59 to 900. The first 20 samples of each form face are used for

training and the rest for testing. The form identification results are perfect with an

accuracy of 100%.

3.5 Summary and Future Work

In this chapter, we applied our general model-based line detection algorithm to

known form processing. There are two tasks in known form processing: form identi-

fication and form registration. These two tasks can be solved in one unified frame-

work by extending our model-based line detection algorithm. Our approach is robust

under a wide range of scanning resolutions, binarization thresholds, and synthesized

degradation levels, as demonstrated experimentally. A further improvement of the

proposed work may use the Gaussian mixture distributions or the exponential dis-

tribution to replace the simple Gaussian distribution to model the observations of

non-line states.

58



Chapter 4

Handwriting Identification in Noisy Document

Images

4.1 Introduction

Handwriting often combines with machine printed text. Handwriting in a machine

printed document often indicates corrections, additions, or other supplemental infor-

mation that should be treated differently from the main content. The segmentation

and recognition techniques requested for machine printed and handwritten text dif-

fer significantly. Therefore, identification of handwriting from machine printed text

is important for the following document image analysis.

Handwriting/machine printed text discrimination can be performed at differ-

ent levels, such as the text line [19, 20, 21, 22], word [23], or character level [24, 25].

Special consideration must be given to the size of the region being segmented before

performing any classification. We call the smallest unit for classification a pattern

unit. If the unit is too small, the information contained in it may not be sufficient

for classification. If it is too large, however, different types of components may be

mixed in the same region. In previous work [25] we conducted a performance evalu-

ation for the classification accuracy of machine printed text and handwriting at the

character, word, and zone levels. Experiments show that a reliable classification can

be achieved at the word level. We therefore segment images at the the word level,
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then perform classification.

The data set we are processing is noisy, which makes for a more challenging

problem. Most document enhancement algorithms can remove large noise compo-

nents (e.g., marginal black strips) with some simple rules [17, 18], and small noise

components (e.g., pepper-and-salt noise) with morphological operations. However,

noise components with a compatible size to printed words cannot be easily removed.

In our approach, we treat noise as a distinguished class and model it based on se-

lected features. We treat the problem as a three-class (machine printed text, hand-

writing, and noise) identification problem.

In practice mis-classification happens in an overlapping feature space. This

holds especially true for handwriting and noise. To deal with this problem, we

exploit contextual information in post-processing and refine the classification. Con-

textual information helps improve classification accuracy. Many OCR systems use

it, and its effectiveness has been demonstrated in previous work [66, 67]. The key is

to model the statistical dependency among neighboring components. An OCR sys-

tem outputs a text stream that is one-dimensional. Therefore, an N-gram language

model, based on an Nth order 1-D Markov chain, effectively models the context.

With assistance from a dictionary, the N-gram approach can correct most recogni-

tion errors. Images, however, are two-dimensional. Generally, 2-D signals are not

causal, and it is much harder to model the dependency among neighboring compo-

nents in an image. Among the image models studied so far, Markov random fields

(MRF) have been widely studied and successfully used in many applications [68].

MRFs are suitable for image analysis because the local statistical dependency of an
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image can be well modeled by Markov properties. MRFs can incorporate a priori

contextual information or constraints in a quantitative way. The MRF model has

been extensively used in various image analysis applications, such as texture synthe-

sis and segmentation, edge detection, and image restoration [69, 70]. We use MRFs

to model the dependency of segmented neighboring blocks. As post-processing,

MRFs can further improve classification accuracy.

The proposed method is not limited to extracting handwriting from a heteroge-

neous document. After classification, we can output different contents into different

layers. By separating noise, the layer of machine printed text is much cleaner than

the original noisy document. Our approach can be used as a document enhance-

ment procedure, which facilitates the further document image analysis tasks, such

as zone segmentation and OCR. In this chapter, we demonstrate the effectiveness

of our approach on zone segmentation.

The remainder of this chapter is organized as follows. In Section 4.2, we briefly

review the previous work on handwriting/machine printed text identification. Noise

identification and removal also relates to our work and is reviewed. We present the

detailed description of our classification method in Section 4.3. MRF based post-

processing is discussed in Section 4.4, and the experimental results are presented

in Section 4.5. The effectiveness of our approach for document enhancement is

demonstrated in Section 4.6 with the application of zone segmentation. The chapter

concludes with a brief summary and a discussion of future work in Section 4.7.
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4.2 Related Work

Some work has been accomplished on handwriting/machine printed text identifi-

cation. The classification is typically performed at the text line [19, 20, 21, 22],

word [23], or character level [24, 71]. At the line level, machine printed text lines

are typically arranged regularly with a straight baseline, while handwritten text

lines are irregular with a varying baseline. Srihari et al. [22] implemented a text

line based approach using this characteristic and achieved a classification accuracy

of 95%. One advantage of this approach is that it can be used in different scripts

(Chinese, English, etc.) with little or no modification. Guo et al. [23] proposed

an approach based on the vertical projection profile of the segmented words. They

used a hidden Markov model (HMM) as the classifier and achieved a classification

accuracy of 97.2%. Although less information is available at the character level,

humans can still identify the handwritten and machine printed characters easily,

inspiring researchers to pursue classification at the character level. Kuhnke [24]

proposed a neural network-based approach with straightness and symmetry as fea-

tures. Zheng et al. [71] used run-length histogram features to identify handwritten

and printed Chinese characters and achieved promising results. In previous work,

we implemented a handwriting identification method based on several categories

of features and a trained Fisher linear discriminant classifier [25]. However, the

problems introduced by noise are not addressed.

Since our approach can be seen as a document enhancement technique, the

work on noise removal also relates to our work. Noise may be introduced in docu-
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ment images through (1) physical degradation of the hard-copy documents during

creation, and/or storage, and (2) the digitization procedure, such as scanning. If

severe enough, either of them can reduce the performance of a document analy-

sis system significantly. Several document degradation models [72, 64, 73], meth-

ods for document quality assessment [74, 75], and document enhancement algo-

rithms [76, 77, 78] have been presented in previous work. One common enhance-

ment approach is window-based morphological filtering [76, 77, 78]. Morphological

filtering performs a table looking-up procedure to determine an output of ON (black

pixel) or OFF (white pixel) for each entry of the table, based on a windowed ob-

servation of its neighbors. These algorithms can be further categorized as manually

designed, semi-manually designed, or automatically trained approaches. The kFill

algorithm, proposed by O’Gorman [78], is a manually designed approach and has

been used by several other researchers [74, 79]. Experiments show it is effective for

removing salt-and-pepper noise. Liang et al. [80] proposed a semi-manually designed

approach with a 3×3 window size. They manually determine some entries to output

ON or OFF based on a priori observations. The remaining entries are trained to

select the optimal output.

It is difficult to manually design a filter with a large window size, and success

depends on experience. If both ideal and degraded images are available, optimal

filters can be designed by training [77]. After registering the ideal and degraded

images at the pixel level, an optimal look-up table can be designed, based on ob-

servation of the outputs of each specific windowed context. However, it is difficult

to train, store, and retrieve the look-up table when the window size is large. This
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approach requires both the original and the corresponding degraded images for train-

ing. Loce [77] used artificially degraded images generated by models for training,

while Kanungo et al. [81, 82, 83] proposed methods for validation and parameter

estimation of degradation models. Though the uniformity and sensitivity of their ap-

proach has been tested by other researchers [84, 73], no degradation model has been

declared to pass the validation. Another problem with morphological approaches

is the small window sizes. The most commonly used window size is no larger than

5 × 5, which is too small to contain enough information for enhancement.

The above approaches only identify and remove small-sized noise components.

The removal of large-sized noise components is also addressed in the literature, such

as marginal noise removal [85] and show-through removal [86, 87]. It is hard to

discriminate noise from compatible sized text. In this dissertation, we treat noise

as a distinguished class and use a classification based approach.

4.3 Text Identification

In this section we present our text (machine printed or handwritten) extraction and

classification method.

4.3.1 Feature Extraction

Several sets of features are extracted for classification. Table 4.1 lists the descrip-

tions and sizes of the feature sets. Machine printed text, handwriting, and noise

have different visual appearances and physical structures. Structural features are
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(a) (b)

(c) (d)

Figure 4.1: Illustration of feature extraction. (a) The overlap area of the connected

components inside a pattern unit is extracted as a structural feature. (b) Run-

length histogram features. (c) Crossing-count features. The crossing counts of the

top and bottom horizontal scan lines are 1 and 2, respectively. (d) Bi-level 2 × 2

gram features.
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Table 4.1: Features used for machine printed text/handwriting/noise classification

Feature set Feature description # of features # of features selected

Structural Region size, connected components 18 9

Gabor filter Stroke orientation 16 4

Run-length histogram Stroke length 20 5

Crossing-count histogram Stroke complexity 10 6

Bi-level co-occurrence Texture 16 2

2×2 gram Texture 60 5

Total 140 31

extracted to reflect these differences. Gabor filter features and run-length histogram

features can capture the difference in stroke orientation and stroke length between

handwriting and printed text. Compared with text, noise blocks often have a sim-

ple stroke complexity. Therefore, crossing-count histogram features are exploited to

model such differences. We aslo take regions of machine printed text, handwriting,

and noise blocks as different textures. Two sets of bi-level texture features (bi-level

co-occurrence features and bi-level 2×2 gram features) are used for classification. In

the following subsections we present these features in detail.

Structural Features

We extract two sets of structural features. The first set includes features related to

the physical size of the blocks, such as density of black pixels, width, height, aspect

ratio, and area. Suppose the image of the block is I(x, y), 0 ≤ x < w, 0 ≤ y < h,

and w, h are its width and height, respectively. Each pixel in the block has two

values: 0 represents background (a white pixel) and 1 represents content (a black
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pixel). Then the density of the black pixels d is

d =

w−1∑
x=0

h−1∑
y=0

I(x, y)

w × h
(4.1)

The sizes of machine printed words are more consistent than those of handwriting

and noise on the same page. However, machine printed words on different pages

may vary significantly. Therefore, we use a histogram technique to estimate the

dominant font size [18], then use the dominant font size to normalize the width (w),

height (h), aspect ratio (r), and area (a) of the block.

The second set of structural features is based on the connected components

inside the block, such as the mean and variance of the width (mw and σw), height

(mh and σh), aspect ratio (mr and σr), and area (ma and σa) of connected compo-

nents. The sizes of connected components within a machine printed word are more

consistent, leading to smaller σw and σh. For a handwritten word or noise block,

the bounding boxes of the connected components tend to overlap with each other,

as shown in Fig. 4.1a. For machine printed English words, however, each character

forms a connected component not overlapping with others. The overlapping area

(the sum of the areas of the gray rectangles in Fig. 4.1a) normalized by the total

area of the block is calculated as a feature. We also use the variance of the vertical

projection as a feature. In a machine printed text block, the vertical projection

profile has obvious valleys and peaks since neighboring characters do not touch each

other. However, for a handwritten word or noise block, the vertical projections are

much smoother, resulting in smaller variance.
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Gabor Filter Features

Gabor filters can represent signals in both the frequency and time domains with

minimum uncertainty [88] and have been widely used for texture analysis and seg-

mentation [89]. Researchers found that they match the mammalian visual system

very well, which provides further evidence that we can use it in classification tasks.

In the spatial and frequency domains, the two-dimensional Gabor filter is defined as

g(x, y) = exp

{
−π

[
x′2

σ2
x

+
y′2

σ2
y

]}
× cos{2π(u0x + v0y)} (4.2)

G(u, v) = 2πσxσy(exp{−π[(u′ − u′
0)

2σ2
x + (v′ − v′

0)
2σ2

y ]} +

exp{−π[(u′ + u′
0)

2σ2
x + (v′ + v′

0)
2σ2

y ]}) (4.3)

where x′ = −x sin θ + y cos θ, y′ = −x cos θ − y sin θ, u′ = u sin θ − v cos θ, v′ =

−u cos θ − v sin θ, u′
0 = −u0 sin θ + v0 cos θ, v′

0 = −u0 cos θ − v0 sin θ, u0 = f cos θ,

and v0 = f sin θ. Here f and θ are two parameters, representing the central frequency

and orientation of the Gabor filter.

The variances of the filtered images are taken as features. In our experiments

16 Gabor filters with different orientations θk = k×180/N, k = 1, 2, . . . 16, are used,

which generate 16 features.

Run-length Histogram Features

Run-length histogram features are proposed in [25] for machine printed/handwritten

Chinese character classification. These features are used in our case to capture the

difference between the stroke lengths of machine printed text, handwriting, and
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noise blocks. First, black pixel run-lengths in four directions, including horizontal,

vertical, major diagonal, and minor diagonal, are extracted. We then calculate four

histograms of run-lengths for these four directions, as shown in Fig. 4.1b. To get

scale-invariant features, we normalize the histograms. Suppose Ck, k = 1, 2, ..., N ,

is the number of runs with length k, and N is the maximal length of all possible

runs, then the normalized histogram C ′
k is

C ′
k =

Ck

N∑
i=1

Ci

(4.4)

We then divide the histogram into five bins with equal width and use five Gaussian-

shaped weight windows to get the final features (Fig. 4.1b). Taking the horizontal

run-length histogram as an example, the run-length histogram feature Rhi is calcu-

lated as

Rhi =
w∑

k=1

G(k; ui, σ)C ′
k, i = 1, 2, 3, 4, 5 (4.5)

where w is the width of the block (the maximal length of all possible horizontal

run-lengths) and G(k; ui, σ) is a Gaussian-shaped function:

G(k; ui, σ) = exp

{
−(k − ui)

2

2σ2

}
(4.6)

As shown in Fig. 4.1b, σ is chosen so the weight on each bin border is 0.5. Another

alternative is to use rectangular windows without overlap between neighboring bins.

Experiments show that the extracted features with Gaussian weighted windows are

more robust. Five features are extracted in each direction, leading to 20 features.

69



Crossing-Count Histogram Features

A crossing count is the number of times the pixel value changes from 0 (white

pixel) to 1 (black pixel) along a horizontal or vertical raster scan line. As shown in

Fig. 4.1c, the crossing counts of the top and bottom horizontal scan lines are 1 and

2, respectively. Crossing counts can be used to measure stroke complexity [90, 25].

In our approach, first the crossing count for each horizontal and vertical scan line is

calculated. Similarly, we get two histograms for the horizontal and vertical crossing

counts respectively. The same technique (as in extracting the run-length histogram

features) is exploited to get the final features from the histograms. A total of 10

features are extracted.

Bi-level Co-occurrence Features

A co-occurrence count is the number of times a given pair of pixels occurs at a

fixed distance and orientation [91]. In the case of binary images, the possible co-

occurrence pairs are white-white, black-white, white-black, and black-black. In our

case, we are concerned primarily with the foreground. Since the white background

region often accounts for up to 80% of a document page, the occurrence frequency

of white-white or white-black pixel pairs will always be much higher than that of

black-black pairs. The black-black pairs carry most of the information. To elim-

inate the redundancy and reduce the effects of over-emphasizing the background,

we consider only black-black pairs. Four different orientations (horizontal, vertical,

major diagonal and minor diagonal) and four distance levels (1, 2, 4, and 8 pixels)
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are used to classify (16 features total). The horizontal co-occurrence count Ch(d),

for example, is defined as

Ch(d) =
∑

x

∑
y

I(x, y)I(x + d, y), d = 1, 2, 4, 8 (4.7)

I(x, y) = 0 for white pixels; therefore only black-black pixel pairs contribute. For

a fixed distance d, we normalize the occurrence by dividing by the sum of the

occurrences in all four directions.

Bi-level 2×2 gram Features

The N×M grams were first introduced in the context of image classification and

retrieval [92]. An N×M gram extends the one-dimensional co-occurrence feature to

the two-dimensional case. We only consider 2 × 2 grams, which count the numbers

of occurrences of the patterns shown in Fig. 4.1d. The cells labeled 0/1 should

take specific values, and the values of other cells are irrelevant. Therefore, there

are 24 = 16 patterns for each distance d. Like the co-occurrence features, the all

white patterns are removed to reduce over-emphasis on the background. For a fixed

distance, the occurrences are normalized by dividing by the sum of all occurrences.

Four distances (1, 2, 4, and 8 pixels) are chosen, generating 4 × 15 = 60 features.

4.3.2 Feature Selection

There are two purposes for feature selection. The first involves reducing the com-

putation needed for feature extraction and classification. As shown in Table 4.1, we

extract a total of 140 features from the segmented blocks. Though these features are
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designed to distinguish between different types of blocks, some features may contain

more information. Using only a small set of the most powerful features reduces the

time for feature extraction and classification. The second purpose is to alleviate the

curse of dimensionality problem. When the number of training samples is limited,

using a large feature set may decrease the generality of a classifier [93]. The larger

the feature set, the more training samples are needed. Therefore, we perform feature

selection before feeding the features to the classifier.

We use a forward search algorithm to perform feature selection [94]. We first

divide the whole feature set F into a currently selected feature set Fs and an un-

selected feature set Fn which satisfy

Fs ∩ Fn = Φ (4.8)

Fs ∪ Fn = F (4.9)

The selection procedure can then be described as

1. Set Fs = Φ, and Fn = F .

2. Label all features in Fn as un-tested.

3. Select one un-tested feature f ∈ Fn and label it as tested.

4. Put f and Fs together and generate a temporary selected feature set F f
s .

5. Estimate the classification accuracy with feature set F f
s using a 1-NN classifier

and leave-one-out cross validation technique. Basically, at each iteration only

one sample is used for testing, while the others are used for training. We
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repeat this process until all samples have been used as testing samples once.

The average accuracy for all iterations is taken as the estimated accuracy

for the current feature set. The leave-one-out cross validation technique can

estimate the accuracy of a classifier with small variation [93].

6. If there are un-tested features in Fn, go to step 3.

7. Find a feature f̂ ∈ Fn, such that the corresponding temporary feature set F f
s

has the highest classification accuracy:

f̂ = arg max
f∈Fn

Accuracy(F f
s ) (4.10)

then move f̂ from Fn to Fs.

8. If Fn �= Φ, go to step 2; otherwise exit.

We use LNKnet pattern classification software to conduct our feature selection ex-

periments [95]. LNKnet provides several classifiers, such as likelihood classifiers,

k-NN classifiers, and neural network classifiers, and several feature selection algo-

rithms such as forward search, backward search, and forward and backward search.

Feature selection can be an extremely expensive task. Considering the large number

of feature sets to evaluate, and the number of classifiers to train, the lightweight for-

ward feature selection algorithm and 1-NN classifier, which does not need training,

are used in our feature selection experiment.

We collected about 1,500 blocks for each class. As shown in Fig. 4.2a, when

the number of selected features increases, the error rate decreases sharply at first.

The trend reverses at some point. The best classification is achieved when only 31
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(a) (b)

Figure 4.2: Feature analysis. (a) Feature selection: the best classification result is

achieved when 31 features are selected. (b) PCA: the best classification result is

achieved when 64 principal components are used.

features are selected, with an error rate of 5.7%. When all features are used, the

error rate increases to 9.2% due to the limited number of training samples and large

feature set. The last column in Table 4.1 lists the number of features selected in each

set. It shows that texture features, such as bi-level co-occurrence and 2 × 2 grams,

are less discriminating than other feature sets, mainly because of the small region

size. Only 1/8 of the bi-level co-occurrence features and 1/12 of the 2 × 2 gram

features are selected. Crossing-count histogram features and structural features are

more effective, with more than half of the original features in both sets selected in

the final feature set.

Principal component analysis (PCA) is another technique for reducing feature

dimension [93]. To extract the first n principal components, we need to search a

subspace of dimension n with basis w. Suppose the mean is already removed from

the feature vector X, and let the projection of X onto this subspace be X̂

X̂ = (wT
1 X)w1 + (wT

2 X)w2 + . . . + (wT
nX)wn (4.11)
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PCA finds the optimal subspace ŵ such that the energy contained in X̂ is maximized:

ŵ = arg max
w1,...,wn

n∑
i=1

V ar
[
X̂i

]

s.t. wT
i wj =




1 if i = j

0 if i �= j

(4.12)

The optimal basis is the first n eigenvectors of the covariance matrix of X, cor-

responding to the first n eigenvalues [93]. The first n principal components are

Pi = wT
i X, i = 1, . . . , n. The idea of PCA is to concentrate the energy into the

first several principal components. Assuming the classification information is con-

tained in the energy, the first several principal components are more powerful than

the remaining components. Furthermore, PCA analysis can remove the correlation

among features.

As in the feature selection experiment, we use the 1-NN classifier and the

leave-one-out technique to estimate the classification accuracy. Fig. 4.2b shows

the classification error rate versus the number of principal components used. As in

feature selection, the error rate reduces quickly at first until 16 principal components

added. The minimal error rate, 8.5%, is achieved when 64 principal components are

used. Compared with the minimum error rate of 5.7% achieved by the feature

selection technique, PCA is not as powerful as feature selection in this problem.

Furthermore, to perform PCA, all features must be extracted first. However, for

feature selection, we only need to extract the desired features, which would increase

the feature extraction speed. Therefore, in the following, we do classification on the

31 selected features.
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4.3.3 Classification

Compared with the neural network (NN) and the support vector machine (SVM), the

Fisher linear discriminant classifier is easier to train, faster to classify, needs fewer

training samples, and does not suffer from the over-training problems. According to

the comparison experiment in Subsection 4.5.2, the SVM classifier performs slightly

better than the Fisher linear discriminant classifier, but the latter is much faster.

We therefore use it for classification. For a feature vector X, the Fisher linear

discriminant classifier projects X onto one dimension Y in direction W

Y = WTX (4.13)

The Fisher criterion finds the optimal projection direction Wo by maximizing the

ratio of the between-class scatter to the within-class scatter, which benefits the

classification. Let Sw and Sb be the within- and between-class scatter matrices

respectively,

Sw =
K∑

k=1

∑
x∈class k

(x − uk)(x − uk)
T (4.14)

Sb =
K∑

k=1

(uk − u0)(uk − u0)
T (4.15)

u0 =
1

K

K∑
k=1

uk (4.16)

where uk is the mean vector of the kth class, u0 is the global mean vector, and K is

the number of classes. The optimal projection direction is the eigenvector of S−1
w Sb

corresponding to its largest eigenvalue [93]. For a two-class classification problem,

we do not need to calculate the eigenvectors of S−1
w Sb. It is shown that the optimal
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projection direction is

Wo = S−1
w (u1 − u2) (4.17)

Let Y1 and Y2 be the projections of two classes and let E[Y1] and E[Y2] be the means

of Y1 and Y2 respectively. Suppose E[Y1] > E[Y2], then the decision can be made as

C(X) =




class 1 If Y > (E[Y1] + E[Y2])/2

class 2 Otherwise

(4.18)

It is known that if the feature vector X is jointly Gaussian distributed, and the

two classes have the same covariance matrices, then the Fisher linear discriminant

classifier is optimal in a minimum classification error sense [93].

The Fisher linear discriminant classifier is often used for two-class classification

problems. Although it can be extended to multi-class classification (three classes

here), the classification accuracy decreases due to the overlap between neighboring

classes. Therefore, we use three Fisher linear discriminant classifiers, each optimized

for a two-class classification problem (machine printed text/handwriting, machine

printed text/noise, and handwriting/noise). Each classifier outputs a classification

confidence, and the final decision is made by fusing the outputs of all three classifiers.

4.3.4 Classification Confidence

In a Fisher linear discriminant classifier, the feature vector is projected onto an axis

on which the ratio of between-class scatter to within-class scatter is maximized.

According to the central limit theorem [52], the distribution of the projection can

be approximated by a Gaussian distribution, if no feature has dominant variance
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over the others,

fY (y) =
1√
2πσ

exp

[
−1

2

(
y − m

σ

)2
]
, (4.19)

where fY (y) is the probability density function of the projection. The parameters

m and σ can be estimated from training samples. The classification confidence Ci,j

of class i using classifier j is defined as

Ci,j =




fY (y|X∈class i)

fY (y|X∈class i)+fY (y|X∈another class)
If i is applicable for classifier j.

0 Otherwise

(4.20)

where i is the class label and j represents the trained classifiers. If a classifier is

trained to classes 1 and 2, its output is not applicable to estimating the classification

confidence of class 3. Therefore, C3,j = 0. The final classification confidence is

defined as

Ci =
1

2

3∑
j=1

Ci,j (4.21)

Ci,j ∈ [0, 1] for the two applicable classifiers and Ci,j = 0 for the third classifier,

Ci ∈ [0, 1]. However, Ci is not a good estimate of the a posteriori probability since

∑3
i=1 Ci = 1.5 instead of 1. We can take Ci as an estimate of a non-decreasing

function of the a posteriori probability, which is a kind of generalized classification

confidence [96].

Fig. 4.3 shows the word segmentation and classification results (with the Fisher

linear discriminant classifier) for the whole and parts of a document image, with

blue, red, and green representing machine printed text, handwriting, and noise

respectively. We can see that most of the blocks are correctly classified. However

some blocks are misclassified due to an overlap in the feature space. For example,
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some noise blocks are classified as handwriting in Fig. 4.3b, and some small printed

words are classified as noise in Fig. 4.3c. Since little information is available in small

areas, it is difficult to get good results. In the next section, we present a method

of Markov random field (MRF) based post-processing to refine the classification by

incorporating contextual information.

4.4 MRF-Based Post-Processing

4.4.1 Background

Let X denote the random field defined on Ω, and let Γ denote the set of all possible

configurations of X on Ω. X is an MRF with respect to the neighborhood η if it

has the following Markov property

Pr(X = x) > 0 for all x ∈ Γ (4.22)

P (xs|xr, r ∈ Ω, r �= s) = P (xs|xr, r ∈ η) (4.23)

Compared with Markov chains, one difficulty with MRFs is that they have no

chain rule. The joint probability P (X = x) cannot be recursively written in terms

of local conditional probabilities P (xs|xr, r ∈ η). Therefore, it is difficult to get an

optimal estimate of the MRF X̂ which maximizes the a posteriori probability

X̂ = arg max
X

P (X|Y) (4.24)

The establishment of the connection between the MRF and Gibbs distribution pro-

vides a way to optimize the MRF. To maximize the a posteriori probability of the
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(a)

(b)

(c)

Figure 4.3: Word block segmentation and classification results, with blue, red, and

green representing machine printed text, handwriting, and noise respectively. (a) A

whole document image. (b) and (c) Two parts of the image in (a).
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MRF, we need to minimize the total energy of the corresponding Gibbs distribution

X̂ = arg min
X

∑
c∈C

Vc(X) (4.25)

Here, a clique c is defined as a subset of sites in which every pair of distinct sites

are neighbors. The clique potential Vc(X) is the energy associated with a clique and

depends on the local configuration of clique c. Therefore, the optimization problem

(4.24) is converted to another optimization problem (4.25). The information about

the observation Y is contained in the clique system.

In the study of MRFs, the problems are often posed as labeling problems in

which a set of labels are assigned to sites of an MRF [70]. In our problem, each block

constitutes a site of an MRF. A label (machine printed text, handwriting, or noise)

is assigned to each block, and context information (encoded by the MRF model) is

used to flip the labels so that the total energy of the corresponding Gibbs distribution

is minimized. Relaxation algorithms are often used for MRF optimization [70].

4.4.2 Clique Definition

As shown in (4.25), the MRF is totally determined by clique c and clique potential

Vc(X). The design of the clique and its potential is crucial, but a systematic method

is not yet available. In our case, machine printed text, handwriting, and noise exhibit

different patterns of geometric relationships. Our definition of cliques reflects these

differences.

Printed words often form horizontal (or vertical) text lines. Clique Cp is defined

in Fig. 4.4a, which models contextual constraints on neighboring machine printed
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words. We first define the connection between word blocks i and j. As shown in

Fig. 4.4a, Ov is the vertical overlap between two blocks, and Dh is the horizontal

distance between two blocks. The distance between block i and j is

D(i, j) = |Dh(i, j) − Gw| + |Hi − Hj| + |Chi − Chj| (4.26)

where Dh(i, j) is the horizontal distances between words i and j, Gw is the estimated

average word gap in the whole document, Hi and Hj are the heights of blocks i and

j respectively, and Chi and Chj are the vertical centers of the two blocks. Two

blocks are connected if they satisfy

1. Ov ≥ min(Hi, Hj)/2

2. 0 ≤ Dh ≤ 2Gw

3. D(i, j) < Tp, where Tp is a threshold, which is not sensitive to post-processing.

After defining the connection between two blocks we can construct a graph

in which nodes represent blocks and edges link two connected nodes. If a node is

connected with more than one node on one side (left or right), we keep only the

edge with the smallest distance. Clique Cp can be represented by nodes together

with their left and right neighbors. If we cannot find neighbors on the left or/and

right sides, the corresponding neighbor is set to NULL.

Noise blocks exhibit random patterns in geometric relationships and tend to

overlap or in close proximity. As shown in Fig. 4.4b, the noise block labeled “Center”

is overlapped with blocks 1, 2, 3, and is close to block 4. Clique Cn is defined
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(a) (b)

Figure 4.4: Clique definition. (a) Cp for horizontally arranged machine printed

words. (b) Cn for noise blocks.

primarily for noise blocks. Similarly, the distance between two blocks is defined as

D(i, j) = max(Dh(i, j), Dv(i, j)) (4.27)

where Dh(i, j) = max(Li, Lj) − min(Ri, Rj), Dv(i, j) = max(Ti, Tj) − min(Bi, Bj),

and L, R, T , B are the left, right, top, and bottom coordinates of the corresponding

blocks. If two blocks overlap in the horizontal or vertical direction, then Dh(i, j) < 0

or Dv(i, j) < 0. Blocks i and j are connected if, and only if, D(i, j) < Tn, where Tn is

a threshold. If Tn is too big, incorrect label flipping of noise and handwriting between

two printed text lines may happen. If Tn is too small, the contextual constraints on

the noise blocks cannot be used fully. We set Tn as half of the dominant character

height (about 10 pixels in our experiments). Each node, together with all nodes

connected to it, defines clique Cn. The number of connected nodes may vary from 0

to almost 10, depending on the size of the block. As an approximation, we consider

only the first four nearest connected neighbors. If the number of neighbors is less

than four, we set the corresponding neighbors to NULL.

The geometric constraint on handwriting has weaker horizontal or vertical
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structure than machine printed words, thus it is partially reflected in both cliques

Cp and Cn. Therefore, we do not define a specific clique for handwriting.

4.4.3 Clique Potential

Clique potential is the energy associated with a clique. We assign high energy to an

undesirable configuration of the clique and low energy to a preferred configuration.

For example, an undesired configuration of clique Cp (as shown in Fig. 4.4a) is that

the left and right blocks are labeled as printed text and the center block as noise.

Flipping the label of the center block from noise to printed text would achieve a

more preferred configuration, and reduce the total energy. Another undesirable

configuration occurs when all blocks are labeled as printed text for the clique Cn in

Fig. 4.4b. It should have higher energy than the configuration in which all blocks

are labeled as noise. In many applications the clique potentials are defined ad hoc.

One systematic way is to define clique potential as the occurrence frequency of each

clique in the training set, which can be expressed as a function of local conditional

probabilities. Based on this idea, we define two clique potentials Vp(c) and Vn(c) for

cliques Cp and Cn as

Vp(c) = − P (Xl, Xc, Xr)

(P (Xl)P (Xc)P (Xr))w
, (4.28)

Vn(c) = − P (Xc, X1, X2, X3, X4)

(P (Xc)P (X1)P (X2)P (X3)P (X4))w
, (4.29)

where Xl, Xc and Xr are labels for the left, center, and right blocks of clique c, w

is a constant, and Xi, i = 1, 2, 3, 4, is the label of the ith nearest block. The energy
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of the corresponding Gibbs distribution is

U(X|Y) = ws

∑
s∈Ω

[−P (xs|ys)] + wp

∑
c∈Cp

Vp(c) + wn

∑
c∈Cn

Vn(c), (4.30)

where ws, wp, and wn are weights which adjust the relative importance of classi-

fication confidence and contextual information for cliques Cp and Cn. If ws = 1,

wp = 0, and wn = 0, no contextual information is used; with increase in wp and wn,

more contextual information is emphasized. If we set wp = wn = ∞, or equivalently

ws = 0, no classification confidence is used.

In the following experiments, we want to use MRFs for word block label-

ing. The number of handwritten words is much smaller than the other two types,

leading to a lower estimated frequency of cliques with handwriting. As a result,

the optimization tends to label handwritten words as machine printed text or

noise. Therefore, we regularize the estimated clique frequency P (Xl, Xc, Xr) and

P (Xc, X1, X2, X3, X4) by dividing by the product of the probabilities of the word

block labels which comprise the clique. The above regularization is similar to the

previous approach [97], where w is set to 1. In our case, w is changeable; increasing

w will emphasize handwritten words. Our clique potential definition is systematic

and can be optimized for different applications.

After defining the cliques and the corresponding clique potential, we can search

the optimal configuration of the labels of all blocks, so the total energy of the corre-

sponding Gibbs distribution is minimized. Relaxation algorithms are often used for

MRF optimization. There are two types of relaxation algorithms: stochastic and

deterministic [70]. Stochastic algorithms can always converge to the global optimal
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solution if some constraints are satisfied. They are, however, computationally de-

manding. Deterministic algorithms are simpler, but only converge to local optimal

solutions depending on the initial value. In our experiments, highest confidence first

(HCF), a deterministic approach, is used for MRF optimization due to its fast speed

and good performance [98]. In each iteration of the HCF algorithm, only one block

is chosen to flip its label such that the total energy reduces the largest. It repeats

this procedure until no single flipping can further reduce the total energy. Since

each flipping would reduce the energy and the energy is bounded below, the HCF

algorithm converges in a finite number of steps. Fig. 4.5 is an example of the refined

classification results after post-processing. Compared with Fig. 4.3, we can see in

Figs. 4.5a and (b) that most misclassified noise blocks are corrected, with a few

exceptions due to their having fewer constraints. The misclassified small machine

printed words are all corrected in Fig. 4.5c.

4.5 Experiments

4.5.1 Data Set

We collected a total of 318 business letters from the tobacco industry litigation

archives. These document images are noisy with a significant amount of handwrit-

ten annotations and signatures, a few logos, and no figures or tables. Currently,

we identify three classes: machine printed text, handwriting, and noise. We used

224 images for training and the remaining 94 for testing. There are about 1,500

handwritten words in the training set. Since much more machine printed and noise
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(a)

(b)

(c)

Figure 4.5: Word block classification results after post-processing with blue, red,

and green representing machine printed text, handwriting, and noise respectively.

(a) The whole document image. (b) and (c) Two parts of the image in (a).
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blocks are present, we randomly selected about the same number of blocks of each

type for training. We used accuracy and precision as metrics to evaluate the result:

Accuracy of type i =
# of correctly classified blocks of type i

# of blocks of type i
, (4.31)

Precision of type i =
# of correctly classified blocks of type i

# of blocks classified as type i
. (4.32)

4.5.2 Classifier Comparison

In this section, we compare the performance of three different classifiers: the k-NN

classifier, the Fisher linear discriminant classifier, and the SVM classifier. The SVM

classifier is based on VC dimension theory and structural risk minimization theory

of statistical learning [99]. A public domain SVM tool, LibSVM, is used in the

following experiment [100]. The N-fold (N = 10 in our experiment) verification

technique, a variation of the leave-one-out technique, is used to estimate the clas-

sification accuracy. Instead of holding one sample for testing at each iteration, it

first divides the data set into N groups (N = 10 in our experiment), then holds one

group of samples for testing and the remaining groups for training. Table 4.2 shows

the classification accuracies of all the classifiers. We can see that the SVM classifier

achieved the highest accuracy. Considering the large variance, the improvement is

not significant. The variance of the classification accuracy of all classifiers is the

smallest for printed text and the largest for handwriting, indicating that the printed

text is more compact in the feature space. Among all three classifiers, the Fisher

linear discriminant classifier is the fastest since it needs only one vector multipli-

cation to perform a classification. Therefore, we use the Fisher linear discriminant
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Table 4.2: Performance comparison of three different classifiers: the k-NN classifier,

the Fisher linear discriminant classifier, and the SVM classifier.
# of

blocks

the k-NN classifier the Fisher classifier the SVM classifier

Correct Accuracy Var Correct Accuracy Variance Correct Accuracy Var

Printed text 1,519 1,489 98.0% 1.4% 1,473 97.0% 1.1% 1,480 97.4% 1.2%

Handwriting 1,518 1,390 91.6% 2.3% 1,410 92.9% 2.2% 1,435 94.5% 2.1%

Noise 1,512 1,406 93.0% 2.0% 1,451 96.0% 1.5% 1,453 96.1% 1.2%

Overall 4,549 4,285 94.2% 1.3% 4,344 95.5% 0.9% 4,368 96.0% 0.9%

Table 4.3: Single word block classification.

# of blocks Percentage # of correctly

classified blocks

# of misclassified

blocks
Accuracy Precision

Printed text 19,227 66.9% 18,446 781 95.9% 99.5%

Handwriting 701 2.4% 653 48 93.2% 62.9%

Noise 8,802 30.7% 8,522 280 96.8% 93.0%

Overall 28,730 100.0% 27,621 1,109 96.1% N/A

classifier for the rest of the experiments.

The classification result on the test set of 94 images, using the Fisher linear

discriminant classifier, is shown in Table 4.3. The accuracies on all three classes

range from 93.2% to 96.8%, with an overall accuracy of 96.1%. While this overall

accuracy is high, we notice that the precision for handwriting is low (62.9%). This

is mainly because the number of handwritten words in the testing set is small.

Even small percentages of mis-classification of machine printed text and noise as

handwriting will significantly decrease the precision of handwriting.
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(a) (b) (c)

Figure 4.6: MRF-based post-processing. (a) Number of corrected blocks using clique

Cp. (b) Number of corrected blocks using clique Cn. (c) Number of corrected blocks

using clique Cp and classification confidence.

4.5.3 Post-processing Using MRFs

In the following experiments we investigate how MRFs can improve classification

accuracy. In the first run, we set ws = 0 , wn = 0 and wp = 1 to show the

effectiveness of clique Cp. Fig. 4.6a shows the number of corrected blocks, which

were previously misclassified, with change in w. As expected, Cp is effective for

machine printed words, but not as effective for handwriting and noise. When w = 0.3

(under this condition, the classification accuracy of all three classes increases), 355

(46%) of the previously misclassified machine printed words are corrected. When w

increases, handwriting is emphasized more, leading to higher classification accuracy

of handwriting, and lower accuracy of machine printed words and noise. In practice,

w can be adjusted to optimize the overall accuracy.

In the second run, we test the effectiveness of clique Cn by setting ws = 0, wp =

0, and wn = 1. As shown in Fig. 4.6b, clique Cn effectively corrects classification

errors of noise blocks. The classification error of noise blocks is greatly reduced
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when w is small. For w = 0.6 (under this condition, the classification accuracy of all

classes increases), the number of misclassified noise blocks is reduced by 99 (35%).

Cn can also correct some classification errors of machine printed words, but is less

effective than Cp as shown in Fig. 4.6a.

The third run tests the effectiveness of classification confidence for post-

processing. Fig. 4.6c shows post-processing results by adjusting wp when w = 0.3,

wn = 0, and ws = 1. Adjusting wp will change the total flip number. When wp = 0,

the energy reaches the minimum with the initial labels, and the total flip number

is 0. When wp increases, more emphasis is placed on contextual information, and

the flip number increases. When wp → +∞, it converges to the case of wp = 1 and

ws = 0, the setting of the first run. The maximal overall classification accuracy is

achieved when wp = 6. Compared with the first run, the total number of corrected

blocks increases from 389 to 424 by incorporating classification confidence. Similar

results are achieved by combining classification confidence with clique Cn.

In the last run, we fix ws = 1 and manually adjust w, wp, and wn to optimize

the overall classification accuracy. The final parameters we chose are w = 0.39,

wp = 5, and wn = 4. Table 4.4 shows the results after post-processing. The “Error

Reduction Rate” in Table 4.4 is defined as follows:

Error
Reduction

Rate
=

# of Errors Before Post-Processing − # of Errors After Post-Processing

# of Error Before Post-Processing

(4.33)

The error rate reduces to about half of the original for both machine printed

text and noise, but increases slightly for handwriting. However, compared with Ta-
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(a) (b)

(c) (d)

Figure 4.7: An example of machine printed text and handwriting identification from

noisy documents. (a) The original document image. (b) Machine printed text. (c)

Handwriting. (d) Noise. The logo is classified as noise since currently we only

consider three classes.
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Table 4.4: Word block classification after MRF based post-processing.

# of blocks

# of

correctly

classified
blocks

# of

misclassified
blocks

Reduction of
misclassified

blocks

Error
reduction

rate
Accuracy Precision

Printed text 19,227 18,835 392 389 49.8% 98.0% 99.7%

Handwriting 701 652 49 -1 -2.1% 93.0% 83.3%

Noise 8,802 8,682 120 160 57.1% 98.6% 96.0%

Total 28,730 28,169 561 548 49.4% 98.1% N/A

ble 4.3, the precision of handwriting increases from 62.9% to 83.3% due to fewer

machine printed text and noise mis-classifications as handwriting. The overall ac-

curacy increases from 96.1% to 98.1%.

Fig. 4.7 shows an example of machine printed text and handwriting iden-

tification from noisy documents. To display the classification results clearly, we

decompose the classified image into three layers, representing machine printed text

(Fig. 4.7b), handwriting (Fig. 4.7c), and noise (Fig. 4.7d) respectively. The result

is good with few mis-classifications.

Our approach is general and can be extended to other languages with minor

modification. Fig. 4.8 shows identification results for a Chinese document. In Chi-

nese, there is no clear definition of words and no spaces between neighboring words.

Therefore, the parameters of our word segmentation module are adjusted to get

characters. We only need to retrain the classifiers; the post-processing module is

intact. We can see that most handwriting and noise blocks are classified correctly,

but several machine printed digits are misclassified as handwriting. On the right

margin of the document, some machine printed text is identified as noise due to
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touching.

Our approach is fast; the averaging processing time for a business letter

scanned at 300 dpi is about 2-3 seconds on a PC with 1.7 GHz CPU and 1.0 GB

memory.

4.6 Application to Zone Segmentation in Noisy Images

The proposed method is not limited to extract handwriting from a heterogeneous

document. After classification, we can output different contents into different lay-

ers. By separating noise, the layer of machine printed text becomes cleaner than

the original noisy document. Therefore, our approach can be used as a document

enhancement procedure, which facilitates further document image analysis tasks,

such as zone segmentation and OCR.

In this section, we show that our method can improve general zone segmen-

tation results after removing identified noise. We evaluated two widely used zone

segmentation algorithms: the Docstrum algorithm [18] and ScanSoft SDK, a com-

mercial OCR software package [101]. Many different zone segmentation evaluation

metrics have been proposed in previous work. Kanai et al. [102] evaluated zone

segmentation accuracy from the OCR aspect. Any zone splitting and merging, if it

does not affect the reading order of the text, is not penalized. The approach of Mao

and Kanungo [103] is based on text lines, which penalizes only horizontal text line

splitting and merging, since it will change the reading order of text. Randriamasy

et al. [104] proposed an evaluation method based on multiple ground truth, which
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(a) (b)

(c) (d)

Figure 4.8: An example of machine printed text and handwriting identification from

Chinese documents. (a) Original Chinese document image. (b) Machine printed

text. (c) Handwriting. (d) Noise.
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is very expensive. Liang’s approach is performed at the zone level [76]. After find-

ing the correspondence between the segmented and ground-truthed zones, any large

enough difference is penalized. We use Liang’s scheme in our experiment since we

focus on zone segmentation. From the OCR perspective, vertical splitting or merg-

ing of different zones should not be penalized even when these zones have different

physical and semantic properties. From the point of view for zone segmentation, it

should be penalized.

There are 1,374 machine printed text zones in 94 noisy document images.

The experimental results are shown in Table 4.5. All merging and splitting errors

are counted as partially correct in the table. Before noise removal, ScanSoft has

very poor results, an accuracy of 15.9%, on noisy documents under this metric.

After analyzing the segmentation results, we found that ScanSoft tends to merge

horizontally arranged zones into one zone, which is suitable for documents with

simple layouts such as technical articles, but not for other document types such as

business letters. The Docstrum algorithm outputs many more zones than ScanSoft,

resulting in a higher accuracy (53.0%), but also a higher false alarm rate (114.1%).

After noise removal, the accuracy of both algorithms increases significantly, from

15.9% to 48.4% for ScanSoft and from 53.0% to 78.0% for the Docstrum algorithm.

The false alarm rate is reduced from 32.5% to 1.3% for ScanSoft and from 114.1%

to 7.9% for Docstrum.

Fig. 4.9 shows the zone segmentation results for two noisy documents with

the Docstrum algorithm before and after noise removal. The handwriting is output

to another layer, not shown here. After noise removal, we see fewer splitting and
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Table 4.5: Machine printed zone segmentation experimental results on 94 noisy

document images (totally 1,374 zones), before and after noise removal.

Before noise removal After noise removal

Correctly

segmented
zones

False
alarm
zones

Partially

correctly

segmented
zones

Missed
zones

Correctly

segmented
zones

False
alarm
zones

Partially

correctly

segmented
zones

Missed
zones

ScanSoft 219
(15.9%)

446
(32.5%)

1,148

(83.7%)
7

(0.5%)
665

(48.4%)
18

(1.3%)
671

(48.8%)
38

(2.8%)

Docstrum 728
(53.0%)

1,568

(114.1%)
646

(47.0%)
0

(0.0%)

1,071

(78.0%)
109

(7.9%)
270

(19.7%)
33

(2.4%)

merging errors, and overall the segmentation results have significantly improved.

4.7 Summary and Future Work

In this chapter, we have presented an approach to segmenting and identifying hand-

writing from machine printed text in extremely noisy document images. Instead of

using simple filtering rules, we treat noise as a distinct class. We use statistical clas-

sification techniques to classify each block into machine printed text, handwriting,

and noise. We then use Markov random fields to incorporate contextual information

for post-processing. Experiments show that MRFs are an effective tool for modeling

local dependency among neighboring image components. After post-processing, the

classification error rate is reduced by approximately 50%.

Our method is general enough to be extended to documents in some other

scripts, such as Chinese, by re-training the classifier. However, our approach does

not apply in a straightforward manner to cursive scripts such as Arabic. Two

observations used to discriminate handwriting from machine printed text for English

documents do not hold for Arabic documents. (1) Handwriting is more cursive than
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(a) (b)

(c) (d)

Figure 4.9: Zone segmentation before and after noise removal using the Docstrum

algorithm. (a) and (c) show the results before noise removal. (b) and (d) are the

results after noise removal.
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machine printed text in English documents. However, machine printed Arabic text

is cursive in nature. (2) People like to connect several characters during writing.

However, many machine printed Arabic characters are also connected. Preliminary

experiments using the same feature set proposed in this chapter were performed

for Arabic documents, resulting in a low classification accuracy at word level. New

features should be designed for Arabic documents. It should be much easier to

distinguish handwriting from machine printed text in Arabic at the text line level.

However, how to reliably extract text line from a heterogeneous and noisy document

is challenging problem in itself.
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Chapter 5

Handwriting Matching

5.1 Introduction

Handwriting samples (the same content) are often produced with large deformation

by different persons or the same person at different times.1 Due to the difficulty in

re-producing a handwriting sample exactly, handwriting is often used to identify a

person. On the other hand, large deformation is a challenge for other handwriting

related applications such as handwriting recognition and retrieval. To study the de-

formation characteristics, it is crucial to automatically establish the correspondence

between two handwriting samples, which have the following applications:

1. It is much easier to define similarity measures between handwriting samples

after establishing the correspondence. The measures are often more robust

and have more distinguishing power, comparing to the case where we do not

know the correspondence [26, 105, 106].

2. The deformation characteristics learned can be used to synthesize visually re-

alistic handwriting samples [107]. The quality of a trained statistical model

for pattern classification depends highly on the quality of the training set.

1In this chapter, we exclude the variation produced by different contents (e.g., the difference

between handwriting of letters ’a’ and ’b’). Throughout this chapter, we focus on the deformation

in shape.
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As a rule, the more samples used for training, the higher the generalization

capability of the trained classifier. Since collecting a large volume of handwrit-

ing samples is generally very expensive, synthesized samples are often used to

enlarge the training set [3, 108].

In this chapter, we study the handwriting matching problem. In the next two chap-

ters, we will apply our matching algorithm to handwriting synthesis and retrieval,

respectively.

We study handwriting matching in a broader context of shape matching, which

is often encountered in image analysis, computer vision, and pattern recognition. A

shape may be represented as a set of features at different levels, such as points, line

segments, curves, or surfaces. Shape matching may be performed on these represen-

tations. The survey paper by Loncaric [109] covers the extraction and representation

of a shape. Different distance definitions between two features (i.e., point, lines, or

curves) and their use in shape matching can be found in [110]. In general, the higher

the level of a feature, the more difficult it is to extract the feature reliably. The ex-

traction of interesting points, for example, is easy (sometimes trivial), and it is more

general since lines and surfaces can be discretized as a set of points. Although such

discretization is by no means optimal, reasonable matching results may be achieved

in many cases [111]. Point matching, therefore, is often used in applications such

as pose estimation [112, 113], medical image registration [114], surface registra-

tion [115, 116], object recognition [26], and handwriting recognition [105, 106].
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In our approach, we first extract the handwriting skeleton, then uniformly

sample a set of points from the skeleton. After that, we develop an algorithm to

estimate the correspondence between two point sets. Compared to the original pixel-

based representation (which can be seen as a representation with dense points), our

approach demands fewer points. Several hundred points are enough to represent the

structure of handwriting. Another advantage is our representation is more robust

to stroke width variation, which is often introduced by the use of different writing

tools or different digitization parameters (e.g., different parameters for scanning

and binarization). Our point matching algorithm uses no or little prior knowledge

of handwriting, and is general enough to be applied to other point pattern based

nonrigid shape matching problems. In the remaining of this chapter, we describe

our algorithm in the broader context of nonrigid shape matching, instead of the

narrower handwriting matching.

5.1.1 Overview of Our Approach

Although the absolute distance between two points may change significantly un-

der nonrigid deformation, the neighborhood structure of a point is generally well-

preserved due to physical constraints. For example, a human face is a nonrigid

shape, but the relative position of chin, nose, mouth, and eyes cannot deform in-

dependently due to underlying constraints of bones and muscles. These physical

constraints restrict the deformation of the point set sampled from a face. The rough

structure of a shape is typically preserved, otherwise even people cannot match

shapes reliably under arbitrary large deformation. Such constraints may be repre-
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sented as the ordering of points on a curve. Sebastian et al. [117] demonstrated the

effectiveness of point ordering in matching curves, but for general shapes other than

curves, local point ordering is difficult to describe, and is ignored in many point

matching algorithms [26]. As a major contribution, we formulate point matching

as an optimization problem to preserve local neighborhood structures. In addition

to the physical constraint explanation, our approach is supported from cognitive

experiments of human shape perception. Strong evidence suggests the early stages

of human visual processing is local, parallel, and bottom-up, though feedback may

be necessary in later stages. Preserving local neighborhood structures is important

for people to detect and recognize shapes efficiently and reliably [118, 119].

In our approach, we formulate point matching as an optimization problem

to preserve local neighborhood structures during matching. Our formulation has

a simple graph matching interpretation, where each point is a node in the graph

and two nodes are connected by an edge if they are neighbors. The optimal match

between two graphs is the one that maximizes the number of matched edges (i.e.,

the number of neighborhood relations). Graph matching is an NP-hard problem.

Exhaustive or branch-and-bound search for a global optimal solution is only realistic

for graphs with few nodes. As an alternative, a discrete optimization problem can be

converted to a continuous one, allowing several continuous optimization techniques

to be applied [120, 121]. In our approach, we use the shape context distance to

initialize graph matching, followed by a relaxation labeling process to refine the

match.
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5.1.2 Previous Work

Shapes can be roughly categorized as rigid or nonrigid, and the realization of a

shape may undergo various deformations in captured images. With a small num-

ber of transformation parameters (six for a 2-D affine transformation), rigid shape

matching under the affine [111, 115] or projective transformation [113] is relatively

easy and has been widely studied with an extensive literature. Since it is impos-

sible to sufficiently discuss previous publications without omitting many excellent

works, we refer the reader to other survey papers for a large bibliography [122, 123].

Although many point matching algorithms developed for rigid shapes can tolerate

some degree of noise or local distortions, large free-form deformation presents a sig-

nificant challenge. Recently, point matching for nonrigid shapes has received more

and more attention. In the following literature review, we will focus on publications

on nonrigid shape matching.

Point matching for nonrigid shapes is problematic because the method must

compensate for both linear distortions (i.e., translation, rotation, scale changes, and

shear) and non-linear distortions. Therefore, the common framework of iterated

correspondence and transformation estimation is used widely. The iterated closest

point (ICP) algorithm is a well-known heuristic approach proposed by Besl and

McKay [111, 115]. Assuming two shapes are roughly aligned, for each point in one

shape, the closest point in the other shape is taken as the current estimate of the cor-

respondence. The affine transformation estimated with the current correspondence

will then bring two shapes closer. ICP was later extended for nonrigid free-form
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surfaces [116]. The framework consists of three stages. First, the rigid displacement

is estimated using surface curvatures. Second, the global affine transformation is

estimated using the ICP algorithm. Third, a local affine transformation (LAT) is

attached to each point to deform the surface locally. Wakahara [105] used LAT to

match and recognize handwritten characters. A dynamic window with a gradually

decreasing size is used to estimate the local affine transformation for a point. This

approach was later improved by combining global and local affine transformations

to increase the robustness [106].

Although LAT has enough flexibility to model local nonrigid deformation, no

standard exists to define the neighborhood window size to estimate the parameters

of LAT. How to combine the global and local affine transformations is an open prob-

lem as well, so more flexible deformation models with closed-form representations

are desired. In the literature on interpolation and approximation, radial basis func-

tions (RBF) with different kernel functions, such as the thin plate spline (TPS) [124]

and the Gaussian RBF [125], are widely used. Recently, the TPS deformation model

began to be applied in point matching [26, 2] because it can be formulated as an

optimal solution of the bending of a thin plate [124]. Chui and Rangarajan [2] pro-

posed an optimization based approach, the TPS-RPM algorithm. The TPS model’s

bending energy and the average Euclidean distance between two point sets are com-

bined in an objective function. The soft assignment technique and deterministic

annealing algorithm are used to search for the optimal solution, which significantly

outperforms the ICP algorithm on nonrigid point matching. Belongie et al. [26]

proposed another method for nonrigid point matching. In this approach, a shape
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context is assigned to a given point, which describes the relative distribution of the

other points in the shape. After defining the similarity between two points based on

their shape contexts, the Hungarian algorithm [126] searches for the optimal match

between the two point sets. Similarly, the TPS model brings two shapes closer in

each iteration.

More recently, Glaunes et al. [127] proposed another point matching approach.

Taking a point set as a sampling of the underlining distribution, they proposed

a theory based on diffeomorphisms on distributions. Their formulation reduces

to an optimization problem with a weighted summation of two parts: the energy

associated with the deformation and the distance between two point sets under this

deformation. This is similar to the objective function in [2], although no explicit

deformation model is assumed. The variational method is used to search for the

optimal deformation. Experimental results on synthesized data are encouraging,

but more extensive tests should be performed to show the effectiveness of their

approach.

Another interesting work is matching articulated objects [112]. An articulated

object (such as a person) is composed of several rigid segments connected by pivot

points. The deformation of rigid segments can be modeled with an affine transfor-

mation. A global hierarchical search strategy searches for and matches pivot points,

and local matching of rigid segments is used to prune the search tree, thus reducing

the computational cost [112].

The remainder of this chapter is organized as follows. In Section 5.2, we

formulate point matching as an optimization problem. Our strategy to search for
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an optimal solution is described in Section 5.3. Shape deformation models, such

as the affine transformation and TPS, are discussed in Section 5.4, followed by a

brief summary of our approach in Section 5.5. We demonstrate the robustness of

our approach with experiments in Section 5.6, and the chapter concludes with a

discussion of the future work in Section 5.7.

5.2 Problem Formulation

In this section, we formulate point matching as an optimization problem. Sup-

pose a template shape T is composed of M points, ST = {T1, T2, · · · , TM}, and

a deformed shape D is composed of N points, SD = {D1, D2, · · · , DN}. It is a

common practice to enforce the one-to-one matching constraint in point match-

ing, so the point sets ST and SD are augmented to S ′
T = {T1, T2, · · · , TM , nil} and

S ′
D = {D1, D2, · · · , DN , nil} respectively, by introducing a dummy or nil point. A

match between shapes T and D is f : S ′
T ⇔ S ′

D, where the matching of normal

points is one-to-one, but multiple points may be matched to a dummy point.

Under a rigid transformation (i.e., translation and rotation), the distance be-

tween any pair of points is preserved. Therefore, the optimal match f̂ is

f̂ = arg min
f

C(T,D, f), (5.1)

where

C(T,D, f) =
M∑

m=1

M∑
i=1

(
‖Tm − Ti‖ − ‖Df(m) − Df(i)‖

)2

+
N∑

n=1

N∑
j=1

(
‖Dn − Dj‖ − ‖Tf−1(n) − Tf−1(j)‖

)2
. (5.2)
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In this cost function, we penalize any matching error which does not preserve the

distance of a point pair. If M = N and no points are matched to dummy points,

the first term and the second term in (5.2) should be equal, and the optimal match

should achieve zero penalty, C(T,D, f̂) = 0. Points matching a dummy point

need special treatment, and to simplify the representation, we do not describe such

treatment here. We will return to this issue.

If nonrigid deformation is present, the distance between a pair of points will

not be preserved, especially for points which are far apart. On the other hand,

due to physical constraints and in order to preserve the rough structure, the local

neighborhood of a point may not change freely. We, therefore, define a neighborhood

for point i as Ni. The neighborhood relationship is symmetric, meaning if j ∈ Ni

then i ∈ Nj. Since we want to preserve the distances of neighboring point pairs

under deformation, (5.2) becomes

C(T,D, f) =
M∑

m=1

∑
i∈Nm

(
‖Tm − Ti‖ − ‖Df(m) − Df(i)‖

)2

+
N∑

n=1

∑
j∈Nn

(
‖Dn − Dj‖ − ‖Tf−1(n) − Tf−1(j)‖

)2
. (5.3)

The absolute distance of a pair of points is not preserved well under scale changes.

Therefore, we quantize the distance to two levels as

‖Tm − Ti‖ =




0 m ∈ Ni

1 m /∈ Ni

and ‖Dn − Dj‖ =




0 n ∈ Nj

1 n /∈ Nj

. (5.4)

(5.3) then is simplified to

C(T,D, f) =
M∑

m=1

∑
i∈Nm

d(f(m), f(i)) +
N∑

n=1

∑
j∈Nn

d(f−1(n), f−1(j)), (5.5)
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where

d(i, j) =




0 j ∈ Ni

1 j /∈ Ni

. (5.6)

To deal with points matched to a dummy point, we let d(., nil) = d(nil, .) =

d(nil, nil) = 1 to discourage the match.

In the following, we rewrite the objective function of (5.5), and interpret it as

a graph matching problem. First, we subtract a constant term from C(T,D, f).

C ′(T,D, f) = C(T,D, f) −
M∑

m=1

∑
i∈Nm

1 −
N∑

n=1

∑
j∈Nn

1

=
M∑

m=1

∑
i∈Nm

[d(f(m), f(i)) − 1] +
N∑

n=1

∑
j∈Nn

[d(f−1(n), f−1(j)) − 1]

= −
M∑

m=1

∑
i∈Nm

δ(f(m), f(i)) −
N∑

n=1

∑
j∈Nn

δ(f−1(n), f−1(j)) (5.7)

where

δ(i, j) = 1 − d(i, j) (5.8)

Minimizing C(T,D, f) is equivalent to minimizing C ′(T,D, f) since the difference

between them is a constant. Therefore, the minimization problem of (5.1) is equiv-

alent to the following maximization problem.

f̂ = arg max
f

S(T,D, f) (5.9)

where

S(T,D, f) =
M∑

m=1

∑
i∈Nm

δ(f(m), f(i)) +
N∑

n=1

∑
j∈Nn

δ(f−1(n), f−1(j)) (5.10)

This formulation has a simple graph matching interpretation. Each point is a node

in the graph, and two nodes are connected by an edge if they are neighbors. The
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(a) (b)

Figure 5.1: A point set (a) and its graph representation (b).

dummy node is not connected to other nodes in the graph. If connected nodes m

and i in one graph are matched to connected nodes f(m) and f(i) in the other

graph, δ(f(m), f(i)) = 1. The optimal solution of (5.9) is the one that maximizes

the number of matched edges of two graphs.

No obvious neighborhood definition exists for a point set. In the following we

present a simple neighborhood definition.2 Initially, the graph is fully connected,

then we remove long edges until a pre-defined number of edges are preserved. Sup-

posing M nodes in the graph and on average each point has Eave neighbors, then the

number of preserved edges is M ×Eave/2 (Eave = 5 in default). With this neighbor-

hood definition, the graph representation of a point set is translation, rotation, and

scale invariant. Fig. 5.1 shows a point set and its graph representation. We expect

points connected with an edge move together under deformation, so the structure

of the graph is preserved.

2Our framework is general enough to incorporate other neighborhood definitions. Please refer

to Section 5.6 for a definition, which is robust under nonuniform scale changes for different parts

of a shape.
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Graph matching (more generally, attributed relational graph matching) is used

in [128] and [129] to match road maps extracted from aerial photographs. Our graph

definition differs from theirs, where road intersections are nodes in the graph and

two nodes are connected by an edge if a road appears between two intersections.

Such a graph definition is natural for a road map, but errors in road detection will

change the graph structure. In our case, given an arbitrary set of points, there is no

such natural definition of connections among points. Graph matching is widely used

in many fields such as computer vision and pattern recognition. There are various

kinds of graph structures, and many different metrics are available in the literature

to evaluate a match between two graphs [130]. Our graph representation and the

corresponding matching metric are derived from the observation (or assumption)

that nonrigid deformation will not change the neighborhood of a point significantly.

5.2.1 Matching Matrix

We can represent the matching function f in (5.10) with a set of supplemental

variables, which can be organized as a matrix P with dimension (M + 1)× (N + 1).

P =




p11 · · · p1N p1,nil

...
...

...

pM1 · · · pMN pM,nil

pnil,1 · · · pnil,N 0




(5.11)

If point Tm in the template shape T is matched to point Dn in the deformed shape

D, then Pmn = 1; otherwise Pmn = 0. The last row and column of P represent

the case that a point may be matched to a dummy point. Matrix P satisfies the
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following normalization conditions

N+1∑
n=1

Pmn = 1 for m = 1, 2, · · · , M, (5.12)

M+1∑
m=1

Pmn = 1 for n = 1, 2, · · · , N. (5.13)

Using matrix P , the objective function (5.10) can be written as

S(T,D, P ) = 2
M∑

m=1

∑
i∈Nm

N∑
n=1

∑
j∈Nn

PmnPij (5.14)

5.3 Searching for an Optimal Solution

Since Pmn ∈ {0, 1}, searching for an optimal P that maximizes S(T,D, P ) is a

difficult discrete combinatorial problem. In our approach, we use relaxation labeling

to solve the optimization problem, where the condition Pmn ∈ {0, 1} is relaxed as

Pmn ∈ [0, 1] [121]. After relaxation, Pmn is a real number, and the problem is

converted to a constrained optimization problem with continuous variables.

5.3.1 Matching Initialization

The performance of relaxation labeling depends heavily on the initial value of the

matching probability matrix P . We need a good initial measure of the matching

probabilities. One option involves assigning an attribute, such as the color or inten-

sity gradients of the pixel, to a point if it is extracted as a pixel in an image [131].

We can then compute the similarity between a pair of points, and convert it to a

measure of the matching probability. If a set of points is given without any ad-

ditional information, the shape context provides an effective way to compute the
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(a) (b)

Figure 5.2: Shape context of a point. (a) Basic shape context. (b) Our rotation

invariant shape context. The point labeled with * is the mass center of the point

set.

similarity between two points [26]. In our approach, we use the shape context dis-

tance to initialize the point matching probabilities. If other attributes of a point are

available, they can be easily incorporated into our framework.

To extract the shape context of a point, an array of bins is placed around the

point, as shown in Fig. 5.2a. The number of points inside each bin is calculated as

the context of this point. Therefore, the shape context of a point is a measure of the

distribution of other points relative to it. Bins that are uniform in log-polar space

are used to make the descriptor more sensitive to positions of nearby points than to

those of points far away. Five bins for the radius and 12 bins for the rotation angle

are used throughout our experiments. Consider two points, m in one shape, and n

in the other shape. Their shape contexts are hm(k) and hn(k), for k = 1, 2, . . . , K,

respectively. Let Cmn denote the cost of matching these two points. As shape

contexts are distributions represented as histograms, it is natural to use the χ2 test

statistic [26]

Cmn =
1

2

K∑
k=1

[hm(k) − hn(k)]2

hm(k) + hn(k)
(5.15)
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(a) (b)

Figure 5.3: Point matching probability matrix P . The matching probabilities to

a dummy point are not shown. White represents a high probability. (a) Initial

probabilities using the shape context distance. (b) After 300 iterations of relaxation

labeling updates.

The Gibbs distribution is widely used in statistical physics and image analysis to

relate the energy of a state to its probability [69]. Taking the cost Cmn as the energy

of the state that points m and n are matched, the probability of the match is

Pmn ∝ e−Cmn/Tinit (5.16)

Parameter Tinit is used to adjust the reliability of the initial probability measures,

where Tinit ∈ [0.05, 0.1] is appropriate according to our experiments. We set the

probability for a point matching to a dummy point, Pm,nil or Pnil,n, to 0.2. Exper-

iments show that our approach is not sensitive to this parameter. Fig. 5.3a shows

the initial matching probability matrix P of two shapes.

Obviously, shape context is translation invariant. Using bin arrays with an

adaptive size according to the mean point distance of a shape, the shape context is
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scale invariant too [26], but it is sensitive to large rotations. In some applications,

rotation invariance is required. Our graph representation is rotation invariant, so we

need a rotation invariant initialization scheme. A complete rotation invariant shape

context was proposed using the tangent direction at each point as the positive x-

axis for the local coordinate system [26]. One drawback of this approach is that the

tangent direction, defined for gray-scale images, does not apply for binary images.

Furthermore, if only the point set is given without accessing the original image, we

cannot estimate the tangent direction. Another drawback is that as a first-order

derivative operation, the estimate of the tangent direction is sensitive to noise.

Instead, in our approach, we use the mass center of a point set as a reference point

and use the direction from a point to the mass center as the positive x-axis for the

local coordinate system. Fig. 5.2b shows our rotation invariant shape context. If

there is zero mean white noise in point position measurements, after averaging, the

effect of noise to the mass center is reduced. Therefore, our approach is more robust

than the tangent direction based approach under noise.

5.3.2 Relaxation Labeling

Relaxation labeling was first proposed in a seminal paper by Rosenfeld et al. in

the mid-1970s [121]. The basic idea is to use iterated local context updates to

achieve a globally consistent result. The contextual constraints are expressed in

the compatibility function Rmn(i, j), which, in our case, measures the strength of

compatibility between Tm matching Dn and Ti matching Dj. The support function

Smn measures the overall support the match between points Tm and Dn receives
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from its neighbors.

Smn =
∑

i∈Nm

∑
j∈Nn

Rmn(i, j)Pij (5.17)

The original updating rule is3

Pmn :=
PmnSmn∑N
j=1 PmjSmj

. (5.18)

The denominator enforces the normalization constraint. Traditionally, only the

one-way normalization constraint, Eq. (5.12), is enforced in relaxation labeling.

In the original paper, Smn is defined heuristically. Although with ad hoc

heuristic arguments, a variety papers later reported on the practical usefulness of

the algorithm (see [132] for a review and an extensive bibliography). The success in

real applications and the heuristic flavor of the algorithm motivated investigators to

establish a theoretic foundation. There are two approaches. Some have tried to set

the labeling problem within a probabilistic framework using Bayesian analysis [133,

128]. The Bayesian theory can explain only one iteration of the relaxation process.

An alternative explicitly defines some quantitative measure of consistency to be

maximized, then formulates the labeling problem as one of optimization [134, 135].

Projected gradient methods are often used to optimize the objective function. In

these theories, the support function Smn is defined as the derivative of the objective

function with respect to Pmn [135]. The updating rule of the projected gradient

methods is

P := P + γQ(S) (5.19)

3In the original paper, the support function S is defined in a heuristic way in the range of [−1, 1].

In order to satisfy P ≥ 0 after updating, 1 + S is used to substitute S in both the numerator and

denominator in the updating rule [121].
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where γ is the updating step and S is a matrix composed of elements Smn. Q(S) is

a projection operation of S to limit the range of Pmn to [0, 1] and enforce normaliza-

tion constraints. In the case of boundary points (i.e., having at least one component

of the probabilities equal to zero or one), the projection operation is much more

complicated and the procedure becomes computationally expensive. Furthermore,

the updating step γ is difficult to tune. An increase in the objective function is guar-

anteed only when infinitesimal steps are taken, and searching for the optimal step

size in each iteration is computationally expensive. Recently, Pelillo [136] showed

that the original updating rule in (5.18) does converge to a local minimum if 1)

the objective function is a polynomial with nonnegative coefficients, and 2) Smn is

defined as a gradient of the objective function. The advantages of this updating

rule, compared with the projected gradient methods, are 1) computationally expen-

sive projection operations are avoided, and 2) it is parameter free. We tried several

updating rules compared in [137] and found that the updating formula of (5.18) is

robust and achieves better results. With our objective function of (5.14), Smn takes

the form of

Smn = 4
∑
i∈Nm

∑
j∈Nn

Pij (5.20)

Since Smn ≥ 0, the constraint that Pmn ∈ [0, 1] is satisfied after normalization. Inter-

preted in the relaxation labeling theory, our compatibility function is Rmn(i, j) = 1

if a pair of neighbors Tm and Ti are matched to a pair of neighbors Dn and Dj;

otherwise Rmn(i, j) = 0. We can easily show that our objective function corre-

sponds to the average local consistency measure of the Hummel-Zucker consistency
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theory [135]. According to the consistency theory, each update step will increase

the overall consistency of the system. Each unambiguous consistent solution is a

local attractor. Starting from a nearby point, the relaxation labeling process will

converge to it [135, 136]. Although there is no guarantee that the updating process

will converge to an unambiguous solution starting from an arbitrary initialization,

our experiments show that most elements of matrix P do converge to zero or one.

In previous applications of the relaxation labeling technique, a many-to-one

match is allowed [138, 139, 140, 141, 142]. Only a one-way normalization constraint,

either (5.12) or (5.13), is enforced. Unfortunately, in many applications, one-to-one

match is desired. Projected gradient methods may be modified to enforce one-to-one

match. The projection operation, however, is computationally expensive, and it is

unclear how to find a projection satisfying two-way normalization constraints. In

our approach, a different approach based on alternated row and column normaliza-

tions of the matching probability matrix P is used to enforce one-to-one match [2].

A nonnegative square matrix with each row and column summing to one is called a

doubly stochastic matrix. Sinkhorn [143] showed that the iterative process of alter-

nated row and column normalizations will convert a matrix with positive elements

to a doubly stochastic matrix. The conclusion can be extended to a non-square

matrix with positive elements. We call a matrix where each row and column (ex-

cept the last row and column) sums one a generalized doubly stochastic matrix.

We can show that alternated row and column normalizations (except the last row

and column) of a matrix with positive elements will result in a generalized doubly

stochastic matrix. Please refer to the Appendix of this chapter for the proof. This
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technique was also used in the soft assignment point matching approach without

proof [2]. Though relaxation labeling with one-way normalization constraint can be

theoretically well founded [136], it is not clear whether the updating process will

converge to a local optimum and increase the consistency after imposing the one-

to-one matching constraint. We found the updating process still converges through

experiments, but we cannot prove it theoretically.

Fig. 5.3a shows the initial value of the point matching probability matrix P of

two shapes. After each relaxation labeling update, we perform alternated row and

column normalizations to matrix P . Generally, a few rounds will bring a matrix

close to a generalized doubly stochastic matrix. After 300 iterations of relaxation

labeling updates, the ambiguity of matches decreases. As shown in Fig. 5.3b, most

elements of the matrix converge to zero or one.

After relaxation labeling updates, points with maximum matching probability

less than Pmin (Pmin = 0.95) are labeled as outliers by matching them to dummy

points. The matched point pairs are used to estimate the parameters of the affine

or TPS deformation model, and the estimated parameters are used to transform

the template shape to bring it closer to the deformed shape. In some application

scenarios (e.g., the experiments in Section 5.6.1), we may want to find as many

matches as possible. Unfortunately, the ratio of points matched to dummy points by

the relaxation labeling updates cannot be controlled directly. After several iterations

of correspondence and transformation estimations, two point sets may be close to

each other. Therefore, in the last round, we find the optimal one-to-one match by

minimizing the summation of Euclidean distances from the transformed template
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shape to the deformed shape.

Dist =
M∑

m=1

‖T ∗
m − Df(m)‖ (5.21)

where T ∗
m is a point from the template shape after TPS transformation. The optimal

match f̂ of (5.21) can be found using the Hungarian algorithm [126]. We emphasize

that the above process is necessary only to disable the automatic outlier rejection

scheme of the algorithm and find as many matches as possible between two point

sets.

5.3.3 Relationship to Previous Work

One difference from the previous applications of relaxation labeling on point match-

ing [142] is that we use it to solve a constrained optimization problem so the relax-

ation labeling process is guaranteed to converge to a local optimal solution [136].

In the previous work, relaxation labeling is used in an ad hoc way without an ob-

jective function to be optimized, so no clear indication exists for the quality of the

solution. Furthermore, unlike previous work, we can enforce one-to-one matching

in our approach if necessary.

The relaxation labeling method used in our approach is similar to the well-

known soft assignment technique [120, 2]. Both convert the discrete combinatorial

optimization problem to one with continuous variables by assigning a probability

measure to a match. The procedure is called relaxation or soft in these two tech-

niques respectively. Generally, deterministic annealing is used to solve the soft

assignment problem. It begins with a high temperature where the matching proba-
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bilities are uniform. By gradually decreasing the temperature, the matching proba-

bilities will converge to a local optimal solution of the objective function. An appro-

priate choice of the initial temperature and temperature reduction ratio is necessary

to achieve good results [2]. On the contrary, the relaxation labeling based approach

is parameter free. Another advantage is that we can easily incorporate a mean-

ingful initialization in relaxation labeling. Since the distribution of local optima is

complex, a good initialization is crucial to achieve a good result. Unfortunately,

it is difficult to incorporate an initialization method into the deterministic anneal-

ing framework. It is also a drawback of another continuous optimization technique

for graph matching proposed by Pelillo [144]. We tested the soft assignment based

graph matching method [120] and found the results were worse than the relaxation

labeling based approach.

5.4 Shape Deformation Models

It is difficult to achieve a good match for shapes under both rigid and nonrigid dis-

tortions with a single-step approach. The strategy of iterated point correspondence

and transformation estimations is widely used for nonrigid shape matching. In our

approach, for the first iteration, the affine transformation between two shapes is es-

timated and corrected. Instead of using the least squares (LS) estimator to estimate

parameters of the affine transformation [26], we use a more robust least median

squares (LMS) estimator. In the following iterations, the thin plate spline (TPS)

deformation model is exploited to bring two shapes closer. Our approach is simi-
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lar to [26] except that a more robust LMS estimator is used to estimate the affine

transformation, instead of the LS estimator.

5.4.1 Affine Transformation Estimation Based on LMS

The LS estimator is widely used to estimate transformation parameters. Suppose

point (xi, yi) is matched to point (ui, vi), for i = 1, 2, · · · , n, the optimal parameters

of the affine transformation minimize the summation of squares of the regression

errors.

Â, T̂ = arg min
A,T

n∑
i=1

∥∥∥∥∥∥∥∥


 ui

vi


− A


 xi

yi


− T

∥∥∥∥∥∥∥∥

2

(5.22)

where A is a 2 × 2 matrix representing the rotation and anisotropic scale changes,

and T is a translation vector. One advantage of the LS estimator is that closed-form

solutions are available [145]. It is, however, sensitive to outliers in matching [146].

The breakdown point is often used to evaluate robustness of an estimator under

outliers, which is defined as the smallest proportion of observations that must be

replaced by arbitrary values in order to force the estimator to produce values arbi-

trarily far from the true values [147]. The breakdown point of the LS estimator is

0%. Furthermore, it is difficult to detect outliers based on the regression residual

errors since they may spread over all of the points [146].

In general, the results of the first iteration of point matching may be noisy

with many errors, so a more robust estimator is required. Several robust regression

methods have been proposed in the statistics literature. Among them, the least

median squares (LMS) estimator achieves the highest possible break down point,
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50% [146]. Instead of minimizing the summation of squares of regression errors, the

LMS estimator minimizes the median of the regression errors.

Â, T̂ = arg min
A,T

median




∥∥∥∥∥∥∥∥


 ui

vi


− A


 xi

yi


− T

∥∥∥∥∥∥∥∥

2

for i = 1, 2, · · · , n



(5.23)

There are no closed-form solutions for (5.23). Normally, we randomly select a subset

with three matched pairs (which can determine an affine transformation) and cal-

culate the median of the regression errors using the estimated parameters. Iterating

the random selection procedure, an optimal solution of (5.23) can be achieved. Sup-

pose there are n matched pairs and about 50% of them are wrong. In the worse case,

we must select at least


 n

3


 −


 n/2

3


 + 1 different subsets to ensure at least

one subset without outliers is selected. This is too pessimistic. In real applications,

we only need to examine a small number of subsets. After examining k subsets,

the probability of having at least one good subset is 1−


1 −


 n/2

3


 /


 n

3






k

(assuming sampling with replacement). For example, let n = 200, the probability

of getting at least one good subset in 50 random selections is 99.8%. The LMS

estimator can be used to estimate the affine transformation without knowing the

correspondence between two point sets [148]. Without rough correspondence, a large

number of subsets need to be examined.
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5.4.2 TPS Deformation Model

The TPS model is often used for representing flexible coordinate transformations

because it has a physical explanation and closed-form solutions in both transforma-

tion and parameter estimation [124]. It has been used in nonrigid shape matching

in [26] and [2]. Two TPS models are used for the 2-D coordinate transformation.

Suppose point (xi, yi) is matched to (ui, vi) for i = 1, 2, · · · , n, let zi = f(xi, yi) be

the target function value at location (xi, yi), we set zi equal to ui and vi in turn

to obtain one continuous transformation for each coordinate. The TPS interpolant

f(x, y) minimizes the bending energy

If =

∫ ∫
R2

(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

dxdy (5.24)

and has the solution of the form

f(x, y) = a1 + axx + ayy +
n∑

i=1

wiU(‖(xi, yi) − (x, y)‖) (5.25)

where U(r) is the kernel function, taking the form of U(r) = r2logr2. The parameters

of the TPS models w and a are the solution of the following linear equation
 K P

P T 0




 w

a


 =


 z

0


 (5.26)

where Kij = U(‖(xi, yi) − (xj, yj)‖), the ith row of P is (1, xi, yi), w and z are

column vectors formed from wi and zi respectively, and a is the column vector with

elements a1, ax, and ay.

If errors appear in the matching results, we use regularization to trade off
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between exact interpolation and minimizing the bending energy as follows.

Hf =
n∑

i=1

[zi − f(xi, yi)]
2 + λIf (5.27)

where λ is the regularization parameter, controlling the amount of smoothing. The

regularized TPS can be solved by replacing K in (5.26) with K +λI, where I is the

n × n identity matrix [149, 150]. We set λ = 1 in the following experiments.

5.5 Summary of Our Approach

Following is a brief summary of our approach.

Input: Two point sets, T1, T2, . . . , TM from the template shape T , and D1, D2, . . . , DN

from the deformed shape D.

Output: The correspondence between two point sets.

1. Set the transformed template shape T ∗ as T .

2. Set iteration number to one.

3. Calculate the shape context for each point in T ∗ and D, and use (5.15) to

calculate the distance between each point pair T ∗
m and Dn.

4. Use (5.16) to initialize the matching probability matrix P and convert it to a

generalized doubly stochastic matrix by alternated row and column normal-

izations.

5. Use (5.18) to update the matching probability matrix R (R = 300) times.

After each update, convert matrix P to a generalized doubly stochastic matrix.
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6. If the iteration number is one, use LMS to estimate the affine transformation

between T and D.

7. Otherwise, use (5.26) to estimate parameters of the TPS deformation model

between T and D.

8. Transform template point set T to T ∗ using the estimated deformation pa-

rameters.

9. Increase the iteration number by one. If the iteration number is less than Imax

(Imax = 10), go to step 3.

Suppose both shapes have N points, the computation cost of shape context

distances is in the order of O(N2). Relaxation labeling updates will take O(N2)

time. The computational complexity of the algorithm may be largely dependent

on the implementation of the spline deformation, which can be O(N3) in the worst

case. With our un-optimized C++ implementation, matching two shapes (each with

100 points) takes about 1.6 seconds on a PC with a 2.8 GHZ CPU.

5.6 Experiments

In this section, we show our approach preserves sequential ordering of points (a

degenerated neighborhood structure) on open curves and closed contours during

matching. We also test our approach in matching real handwriting samples. We

then quantitatively compare it with two state-of-the-art algorithms for robustness

under deformation, noise in point locations, outliers, occlusion, and rotation.
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Our Approach

Shape Context

TPS-RPM

Figure 5.4: Point matching results on open curves (the left column) and closed

contours (the middle and right columns). Top row: our approach. Middle row: the

shape context algorithm. Bottom row: the TPS-RPM algorithm.

5.6.1 Some Examples

We have tested our algorithm on the samples used in [2] and compared our results

with two other algorithms: shape context [26] and TPS-RPM [2]. In these examples,

the template and deformed shapes have the same number of points. To achieve a

direct and fair comparison, we prefer to match as many point pairs as possible

without rejection. The shape context algorithm can achieve this by setting the

outlier ratio to zero. The TPS-RPM algorithm and our relaxation labeling based

approach may reject some points as outliers by matching them to a dummy point.

Unfortunately, there are no parameters available in either algorithm to adjust the

ratio of rejected points explicitly. In this experiment, after point matching and
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shape transformation are finished, we use the approach discussed in Section 5.3.2 to

minimize the summation of Euclidean distances between the transformed template

point set and the deformed point set (see, Equation (5.21)).

Fig. 5.4 shows the point matching results of three algorithms on a pair of

open curves and two pairs of closed contours. As shown in the left column, all

three algorithms achieve good results for the pair of open curves even though the

deformation is large. Neighboring points may swap their matches in TPS-RPM. For

the first pair of closed contours, all algorithms achieve reasonable results, but the

shape context algorithm introduces a few mismatches as shown in the middle column

of Fig. 5.4. Since the rotation between two shapes is large for the second pair of

closed contours, the rotation invariance shape context is used for initialization in

our approach and the shape context algorithm. Both our approach and TPS-RPM

achieve good results and preserve the sequential ordering of points. The result of

the shape context algorithm is not as good: neighboring points in one shape may

be matched to points far apart in the other shape.

We also test our algorithm for handwriting matching. Figs. 5.5a and b show

two samples of handwritten initials from the same person. We notice the structural

change for handwriting is large: the characters overlap each other in the first sample,

but they are well separated in the second sample. We uniformly sample 200 points

from the skeletons of the handwriting, as shown in Figs. 5.5c and d. Fig. 5.5e shows

the point matching results using our approach. Points labeled with green color

are outliers rejected by our algorithm. On the D’s, most points are assigned with

correct correspondence. The touching parts of the S are assigned with low matching
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(a) (b)

(c) (d)

(e)

Figure 5.5: Handwriting matching. (a) and (b) two handwritten initials from the

same person. (c) and (d) the point sets (each with 200 points) sampled from the

skeletons of (a) and (b), respectively. (e) Point matching results using our approach.

(a) (b) (c)

Figure 5.6: More examples of handwriting matching using our approach.
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Figure 5.7: A neighborhood definition which is robust under large nonuniform scale

changes for different parts of a shape. (a) Point sets of the template (o) and deformed

(+) shapes. (b) Template graph with 210 edges. (c) Deformed graph with 196

edges. Among them, 178 (91%) edges also present in the template graph. (d) Point

matching result.

probabilities, therefore rejected as outliers. More examples of handwriting matching

are shown in Fig. 5.6.

Our approach is general enough to incorporate other neighborhood definitions.

In this experiment, we use a neighborhood definition which is robust when different

parts of a shape have significantly different scales. For two points in a shape, they

are neighbors if and only if they are both in each other’s top Eave nearest points.

This neighborhood relationship is still symmetric and scale invariant. A fish shape

is used to synthesize test samples. First, we applied a moderate amount of nonrigid

deformation to the template shape, and then enlarged the fish tail. Fig. 5.7b and

c show the graphs of the template and deformed shapes when Eave = 5 and the

fish tail is enlarged to four times of the original size. This neighborhood definition

is robust: 91% of the edges in the deformed graph have a correspondence in the

template graph, and a good point match is achieved as shown in Fig. 5.7d.
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5.6.2 Quantitative Evaluation

Synthetic data is easy to obtain and can be designed to test specific aspects of an

algorithm. We test our algorithm on the same synthesized data as in [2] and [26].

Three sets of data are designed to measure the robustness of an algorithm under

deformation, noise in point locations, and outliers. In each test, the template

point set is subjected to one of the above distortions to create a target point set (for

the latter two test sets, a moderate amount of deformation is present). Two shapes

(a fish and a Chinese character) are used, and 100 samples are generated for each

degradation level. We then run our algorithm to find the correspondence between

these two sets of points and use the estimated correspondence to warp the template

shape. The accuracy of the match is quantified as the average Euclidean distance

between a point in the warped template and the corresponding point in the target.

Alternative evaluation metrics are possible (e.g., the number of correctly matched

point pairs), but in order to compare our results directly with two other algorithms,

we use the same evaluation metric as in [2] and [26]. Fig. 5.8 shows several examples

from the synthesized data sets, and Fig. 5.9 demonstrates the quantitative evalua-

tion results. Since the new neighborhood definition presented above is not robust

to outliers, the original version is used throughout this experiment. Our algorithm

performs best on the deformation and noise sets. For the outlier test set, however,

no clear winner appears. The TPS-RPM algorithm outperforms our algorithm on

the Chinese character shape under large outlier ratios. Since points are spread out

on the Chinese character shape, when a large number of outliers are present, the
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Figure 5.8: Chui-Rangarajan synthesized data sets. The template point sets are

shown in the first column. Column 2-4 show examples of target point sets for the

deformation, noise, and outlier tests respectively.

neighborhood of a point changes significantly (as shown in the last column of Fig.

5.8), which violates our assumption. Points on the fish shape are clustered, and the

neighborhood of a point is preserved well even with a large outlier ratio. Therefore,

better results are achieved by our algorithm on this shape.

Often present in real applications, occlusion is a challenge for many algorithms.

In the following experiments, we test the three algorithms under occlusion using

synthesized data. A moderate amount of nonlinear deformation is applied to a

shape. We then randomly select a point and remove it with some of its closest

points. Six occlusion levels are used: 0%, 10%, 20%, 30%, 40%, and 50%, and 100

samples are generated for each level. The top row of Fig. 5.10 shows two synthesized

samples. Quantitative evaluation results are shown in the bottom row of Fig. 5.10.

The TPS-RPM algorithm treats all extra points as outliers, which are assumed to

be independently distributed. Since it does not model the distribution of occlusions
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Figure 5.9: Comparison of our results (◦) with the TPS-RPM (∗) and shape con-

text (�) algorithms on the Chui-Rangarajan synthesized data sets. The error bars

indicate the standard deviation of the error over 100 random trials. Top row: the

fish shape. Bottom row: the Chinese character shape.

well, the performance of TPS-RPM deteriorates quickly. In our approach, the change

of neighborhood structure is restricted to points close to the occlusion. As shown

in Fig. 5.10, our approach achieves the best results for up to 40% occlusion. When

the occlusion ratio is large, a shape is likely to be broken into several parts and the

neighborhood structure of almost all remaining points may be changed. Therefore,

when the occlusion ratio is 50%, the difference between our approach and the shape

context algorithm is small.

In some applications, rotation invariance is a critical property of a shape

matching algorithm. We test our algorithm under rotations using synthesized data

of the same fish and Chinese character shapes. A moderate amount of nonlinear

deformation is applied to a shape, and the ground-truthed correspondences are used
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to correct the rotation introduced in the deformation. We then rotate the deformed

shape. The probability of selecting a clockwise or counterclockwise rotation is equal.

Six rotations are used: 0, 30, 60, 90, 120, and 180 degrees. One hundred samples

are generated for each rotation. The top row of Fig. 5.11 shows two synthesized

samples. At the first iteration, the rotation invariant shape context distance is used

to initialize the matching probabilities in our approach. The rotation between two

shapes is corrected by the affine transformation in the first iteration. After that,

the normal shape context distance is used. Quantitative evaluation results appear

in the bottom row of Fig. 5.11. We can see that our method is truly rotation in-

variant, and it consistently outperforms the shape context algorithm. TPS-RPM,

however, can only tolerate a rotations up to 60 degrees. The TPS-RPM algorithm

often fails to converge to a useful solution if rotation with any degree is allowed [2],

so a parameter λ2 is used to penalize a large rotation in the TPS-RPM algorithm.

If λ2 is set to zero, its performance deteriorates significantly, much worse than our

approach at any level of rotation. Therefore, the default setting of λ2 (λ2 = 0.01) is

used in this comparison experiment for the TPS-RPM algorithm.

The variance of all algorithms is large. Therefore, a statistical analysis must be

applied to ascertain whether the difference between these algorithms is significant.

Mean and variance can fully characterize only a Gaussian distribution. Fig. 5.12a

and b show the error histograms of the shape context algorithm and our approach.

The histograms are generated on 100 trials of the fish shape under the deformation

level of 0.05. The distributions differ significantly from a Gaussian distribution.

Some challenging samples deteriorate the performance and increase the variance, and
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Figure 5.10: Comparison of our results (◦) with the TPS-RPM (∗) and shape context

(�) algorithms under occlusion. Left column: the fish shape. Right column: the

Chinese character shape. Top row: synthesized samples. Bottom row: mean and

variance of errors.
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Figure 5.11: Comparison of our results (◦) with the TPS-RPM (∗) and shape context

(�) algorithms under rotation. Left column: the fish shape. Right column: the

Chinese character shape. Top row: synthesized samples. Bottom row: mean and

variance of errors.
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the performance of two algorithms on the same sample is not independent. Fig. 5.12c

shows the histogram of paired differences between two algorithms (the error of the

shape context algorithm minus that of our approach). The two algorithms have

the same performance for about one third of the test samples, and our approach

outperforms the shape context algorithm on most of the remaining samples.

Since the distribution of errors is not Gaussian, we use the Wilcoxon paired

signed rank test, which is powerful and distribution free [151]. In the Wilcoxon

test, paired differences are formed, and the absolute values are ranked. Where ties

occur, the average of the corresponding ranks is used. If the difference between two

measures is zero, this sample is excluded from the analysis. The sum of the ranks

with a positive sign and the sum of the ranks with a negative sign are calculated.

The test statistic is the smaller of these two sums. Table 5.1 shows the statistical

analysis (with two-sided significance level of 0.01) of the performance of our ap-

proach compared with two other algorithms. Here, + (−) means the improvement

(deterioration) of our approach is statistically significant compared with the other

algorithm, and = means two algorithms do not differ significant. The statistical test

verifies that the improvement of our approach on most data sets is significant.

5.7 Conclusions and Future Work

In this chapter, we have introduced the notion of a neighborhood structure for the

general point matching problem. We formulated point matching as an optimiza-

tion problem to preserve local neighborhood structures during matching. Extensive
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Figure 5.12: Histogram of errors. (a) The shape context algorithm. (b) Our ap-

proach. (c) Paired differences between two methods (the error of the shape context

algorithm minus that of our approach).

Table 5.1: Wilcoxon paired signed rank test. +, −, and = mean the former algorithm

is better, worse, or no difference than the latter, respectively.

Fish Chinese character

Ours vs. shape context Ours vs. TPS-RPM Ours vs. shape context Ours vs. TPS-RPM

Deformation = = + + + = = + + + + + + + + + + + + +

Noise = + + + + + + = + + + + + + + + = + + + + + + +

Outlier + + + + + + + + = = + + + + + + = = - -

Occlusion = + + + + = + + + + + = + + + + + + + + + + + +

Rotation + + + + + + = + + = = = - - + + + + = = + + + +
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experiments were presented to demonstrate the robustness of our approach. Com-

pared with the other two state-of-the-art algorithms, our approach performs as well

or better under nonrigid deformation, noise in point locations, outliers, occlusion,

and rotation.

Large outlier or occlusion ratios (especially if the occlusion breaks a shape into

several isolated parts) can significantly change the local neighborhood structure. A

combination of different sources of degradation, such as large rotation, noise, and

occlusion, also presents a challenge, which should be addressed in our future re-

search. In this work, the relaxation labeling method is used to solve the constrained

optimization problem. Only converging to a local optimum, it is by no means the

best approach. We are testing other optimization methods such as simulated anneal-

ing, genetic algorithms, and graduated nonconvexity methods. Our graph matching

formulation is applicable for both 2-D and 3-D shapes. Using the shape context

distance for initialization, we only demonstrate it on 2-D shapes, since the original

shape context is defined only for 2-D point sets. We will test the effectiveness of our

approach for 3-D shape matching by extending the shape context to 3-D point sets.

A reference C++ implementation of our approach is available under the terms

of the GNU General Public License (GPL) at http://www.enee.umd.edu/∼zhengyf/

PointMatching.htm.
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Appendix

Sinkhorn showed that iterated alternative row and column normalization will convert

an N × N matrix with positive elements to a doubly stochastic matrix [143]. In

our relaxation labeling approach, we perform iterated alternative row and column

normalization (except the last row and column) to a non-square K × N (K �= N)

matrix A. This appendix demonstrates this approach is mathematically sound: the

process will converge to a unique matrix TA, such that each row and column of TA

sums one (except the last row and column). The proof in this appendix adheres

to Sinkhorn’s approach. In [143], several important steps are skipped and a few

typographical errors exist. In this appendix, more cases are discussed to generalize

Sinkhorn’s conclusion. First, we give a formal definition of our generalized doubly

stochastic matrix..

DEFINITION 1. A K ×N matrix A is called a generalized doubly stochastic
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matrix if

K∑
i=1

aij = 1 for j = 1, 2, . . . , N − 1 (5.28)

N∑
j=1

aij = 1 for i = 1, 2, . . . , K − 1 (5.29)

The operation of row normalization can be represented as a left multiplication

of A with a diagonal matrix, and the operation of column normalization can be

represented as a right multiplication of A with another diagonal matrix. Multiple

row (column) normalization matrices can be combined as D1 (D2). Therefore, the

overall iterated row and column normalization can be represented as TA = D1AD2.

The following theorem establishes the uniqueness of such a representation.

Theorem 5.1 To a given strictly positive K×N matrix A there corresponds exactly

one generalized doubly stochastic matrix TA which can be expressed in the form

TA = D1AD2 where D1 and D2 are diagonal matrices with positive diagonals. D1 =

diag{d11, d12, . . . , d1,K−1, 1} and D2 = diag{d21, d22, . . . , d2,N−1, 1}. The matrices D1

and D2 are unique.

Proof: Suppose there exist two different pairs of diagonal matrices D1, D2

and C1, C2 such that P = C1AC2 and Q = D1AD2 are both generalized doubly

stochastic. Then, we can write Q as Q = D1C
−1
1 PC−1

2 D2. Let E = D1C
−1
1 and

F = C−1
2 D2, then Q = EPF . Suppose E = diag{e1, e2, . . . , eK−1, 1} and F =
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diag{f1, f2, . . . , fN−1, 1}, Q can be expanded as

Q =




e1f1P11 e1f2P12 . . . e1fN−1P1,N−1 e1P1N

e2f1P21 e2f2P22 . . . e2fN−1P2,N−1 e2P2N

...
...

...
...

...

eK−1f1PK−1,1 eK−1f2PK−1,2 . . . eK−1fN−1PK−1,N−1 eK−1PK−1,N

f1PK1 f2PK2 . . . fN−1PK,N−1 PK,N




(5.30)

The summation of the ith row of Q equals 1, for 1 ≤ i ≤ K − 1.

ei(f1Pi1 + f2Pi2 + . . . + fN−1Pi,N−1 + PiN) = 1 (5.31)

Since
∑N

j=1 Pij = 1 and Pij > 0, 1/ei is a convex combination of {fj, 1}. Therefore,

min
j
{1, fj} ≤ 1

ei

≤ max
j

{1, fj} for i = 1, 2, . . . , K − 1 (5.32)

Similarly, we can get

min
i
{1, ei} ≤ 1

fj

≤ max
i

{1, ei} for j = 1, 2, . . . , N − 1 (5.33)

There are three cases: 1) maxi ei ≤ 1; 2) mini ei ≥ 1; and 3) mini ei ≤ 1 ≤

maxi ei. Let’s discuss the first case that maxi ei ≤ 1. Using the second inequality

in Eq. (5.33), we get fj ≥ 1. Then second inequality in Eq. (5.32) becomes

1 ≤ ei maxj fj. It follows that

1 ≤ min
i

ei max
j

fj (5.34)

Similarly, the first inequality in Eq. (5.33) becomes fj mini ei ≤ 1. Therefore,

min
i

ei max
j

fj ≤ 1. (5.35)
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Combining the above two inequalities, we get

min
i

ei max
j

fj = 1 (5.36)

Let consider the summation of the row of Q corresponding to the minimum

ei. Suppose e1 = mini ei

1 = e1(f1P11 + f2P12 + . . . + fN−1P1,N−1 + P1N)

≤ e1[max
j

fj(P11 + P12 + . . . + P1,N−1) + P1N ]

≤ e1 max
j

fj(P11 + P12 + . . . + P1N)

≤ e1 max
j

fj

= 1 (5.37)

The equality holds if and only if f1 = f2 = · · · = fN−1 = 1. And considering the

column with the maximum fj, we get e1 = e2 = · · · = eK−1 = 1.

For the second case, mini ei ≥ 1, it is easy to verify that

max
i

ei min
j

fj = 1 (5.38)

And for the last case, mini ei ≤ 1 ≤ maxi ei, we can get both equalities (5.36) and

(5.38). Following similar arguments, we can show that the equalities f1 = f2 =

· · · = fN−1 = 1 and e1 = e2 = · · · = eK−1 = 1 hold for all cases. It follows that

D1 = C1, D2 = C2, and P = Q. That means such factorization is unique, and the

resulted generalized doubly stochastic matrix is unique too.

Theorem 5.2 The iterative process of alternately normalizing the rows and columns

(except the last row and column) of a strictly positive K × N matrix is convergent

to a strictly positive generalized doubly stochastic matrix.
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Proof: The iteration produces a sequence of positive matrices which alternately

have row (except the last row) and column (except the last column) sums one.

We will show that the two subsequences which are composed respectively of the

matrices with row sums one and the matrices with column sums one each converge

to a positive generalized doubly stochastic limit of the form D1AD2. The uniqueness

part of Theorem 5.1 guarantees two limits are the same. In the following, we only

show the convergence of the subsequence of the matrices with column sums one. The

convergence of the other subsequence is easy to show following similar arguments.

Let {An} = {(anij)} be the sequence with column sums one (except the last

column), and An have row sums λn1, λn2, . . . , λn,K−1. After row normalization, we

calculate the column sums δnj (for 1 ≤ j ≤ N − 1)

δnj =
K−1∑
i=1

anij/λnj + anKj (5.39)

Since
∑K

i=1 anij = 1, δnj is a convex combination of {1/λnj, 1}. It follows

1

max{1, λn(M)} ≤ δnj ≤
1

min{1, λn(m)} for j = 1, 2, . . . , N − 1 (5.40)

where the m and M respectively label minimal and maximal quantities relative

to a given An. Similarly, since λn+1,i of matrix An+1 is a convex combination of

{1/δnj, 1}, it follows that

1

max{1, δn(M)} ≤ λn+1,i ≤
1

min{1, δn(m)} for i = 1, 2, . . . , K − 1 (5.41)

There are three cases: 1) λn(m) ≥ 1; 2) λn(M) ≤ 1; and 3) λn(m) ≤ 1 ≤

λn(M). For the first case λn(m) ≥ 1, from Eq. (5.40) we get 1/λn(M) ≤ δnj ≤ 1.
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Using Eq. (5.41), we get

1 ≤ λn+1,i ≤ λn(M) (5.42)

Therefore,

case 1: λn(m) ≥ 1 ⇒ 1 ≤ λn+1(m) and 1 ≤ λn+1(M) ≤ λn(M) (5.43)

Similarly

case 2: λn(M) ≤ 1 ⇒ λn+1(M) ≤ 1 and λn(m) ≤ λn+1(m) ≤ 1(5.44)

case 3: λn(m) ≤ 1 ≤ λn(M) ⇒ λn(m) ≤ λn+1(m) ≤ 1 ≤ λn+1(M) ≤ λn(M)(5.45)

In the following, we want to show that for case 1 and 3, λn(M) left converges to

1 (from a value larger than 1); and for case 2 and 3, λn(m) right converges to 1

(from a value smaller than 1). If the convergence holds, using Eq. (5.40), it follows

that δnj converges to 1 too. Therefore, the sequence of matrices An converges to a

generalized doubly stochastic matrix.

Let an be the minimal element of An (excluding the last row and column), we

want to show that an > 0 for all n. Starting from A1 = {a1ij}, we can combine all

row normalizations of row i (i < K) up to nth iteration as xni = [λ1iλ2i · · ·λni]
−1.

For the last row xnK = 1. All column normalization of column j (j < n) up to nth

iteration is combined as ynj = [δ1jδ2j · · · δnj]
−1. For the last column ynN = 1. Since

summation of column j of An equals one,
∑K

i=1 xniaijynj = 1, for j = 1, 2, . . . , N −1,

we get

ynj =
1∑

i a1ijxni

≤ 1

a1ijxni

≤ 1

a1xni

(5.46)
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In particular ynj ≤ 1/[a1xn(M)]. Since

N∑
j=1

xnia1ijynj = λn+1,i (5.47)

As we can see from (5.43), (5.44) and (5.45), for all three cases, λn+1,i is bounded

away from 0. Let λn+1,i ≥ λ, it follows that

xni ≥
λ∑

j a1ijynj

≥ a1λxn(M)/N. (5.48)

The last inequality is derived from the fact that a1ij ≤ 1. Also ynj = 1/
∑

i a1ijxni ≥

1/[Nxn(M)] and we see that an+1,i,j = xnia1ijynj ≥ a1λ/N2 = a > 0. Therefore,

an > 0 for all n.

For case 1 and 3, we want to show that λn(M) right converge to 1. It is clear

that λn(M) → 1 + c where c ≥ 0. For convenience set λn(M) = 1 + cn.

δnj =
K−1∑
i=1

anij

λni

+ anKj =
∑

i:λni≤1

anij

λni

+
∑

i:λni>1

anij

λni

+ anKj

≥
∑

i:λni≤1

anij +
1

1 + cn

∑
i:λni>1

anij +
1

1 + cn

anKj =

∑K
i=1 anij + cn

∑
i:λni>1 anij

1 + cn

(5.49)

Using the fact that
∑

i anij = 1,

δnj ≥
1 + cn

∑
i:λni>1 anij

1 + cn

≥ 1 + cnan

1 + cn

(5.50)

It follows that

λn+1,i =
N−1∑
j=1

anij

λniδnj

+
aniN

λni

≤ 1 + cn

1 + cnan

N−1∑
j=1

anij

λni

+
aniN

λni

(5.51)

Since 0 < an < 1, therefore (1 + cn)/(1 + cnan) > 1, thus

λn+1,i ≤
1 + cn

1 + cnan

(
N−1∑
j=1

anij

λni

+
anNj

λni

)
(5.52)
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Because
∑N

j=1 anij/λni = 1 (the row summation after row normalization), therefore,

λn+1,i ≤
1 + cn

1 + cnan

<
1 + cn

1 + cna
(5.53)

The above inequality holds for all i, particularly,

1 + c ≤ λn+1(M) <
1 + cn

1 + cna
(5.54)

Since cn → c, the above condition holds if and only if c = 0. Therefore λn(M) → 1.

For case 2 and 3, we need to show that λn(m) left converge to 1. Let λn(m) →

1 − d where d ≥ 0, and λn(m) = 1 − dn, then

δnj =
∑

i:λni≤1

anij

λni

+
∑

i:λni>1

anij

λni

+anMj ≤
1

1 − dn

∑
i:λni≤1

anij+
∑

i:λni>1

anij+anMj =
1 − dnan

1 − dn

(5.55)

And

1 − d ≥ λn+1(m) ≥ 1 − dn

1 − dnan

>
1 − dn

1 − dna
(5.56)

Since dn → d, the above condition holds if and only if d = 0. It follows λn(m) → 1.

This completes the proof.
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Chapter 6

Handwriting Synthesis

6.1 Introduction

A statistical pattern recognition system depends heavily on the size and quality

of the training set. Although preparing samples of machine printed text is easy,

doing so is expensive for handwriting. Synthesized data can be used as a supple-

ment. In the previous work, many handwriting synthesis approaches have been

proposed to simulate the writing style of a person [152], or enlarge the training set

for a recognition system [108, 3]. They can be roughly categorized as perturbation-

based, model-based, or example-based. Perturbation-based methods need only one

handwriting sample. New samples are generated by assigning random parameters

to a deformation model, which is then used to deform the sample [108, 2]. How-

ever, without considering the deformation characteristics of handwriting, unrealistic

samples may be generated. Instead, model-based approaches learn the deformation

of handwriting and explicitly describe it as a distribution (the distribution is often

called a model) [152, 153]. After learning, handwriting synthesis is the process of

drawing new samples from the distribution. Although theoretically founded, model-

based approaches have some drawbacks in real applications: handwriting models are

often complex, and many samples are demanded for model training. Example-based

approaches use two handwriting samples and generate new samples with shapes sim-
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ilar to both inputs [3]. Compared with model-based approaches, fewer samples are

needed because this approach does not need to learn the distribution of deforma-

tion. Both model-based and example-based approaches need to perform handwriting

matching, which is a challenge because handwriting is a nonrigid shape.

6.2 Our Approach

The key problem of handwriting synthesis involves generating samples that look nat-

ural. Otherwise, arbitrarily synthesized samples cannot improve (if not deteriorate)

the performance of the system trained on them. Although handwriting samples

vary greatly in respect to size, rotation, and stroke width, shape is generally used

to categorize them into different classes. Since nonrigid deformation of handwriting

is large, we argue that a synthesis algorithm should learn the shape deformation

characteristics from real handwriting samples. It is reasonable to assume that the

shape space of handwriting with the same content (e.g., the handwriting samples

of the letter ‘a’) is continuous. For characters with several different writing glyphs,

such as number ‘7,’ we may need to do clustering analysis to segment the shape

space into multiple continuous sub-spaces. Given two handwriting samples close

in the shape space, the interpolation between them is likely to lie inside the shape

space too (this is guaranteed if the shape space is convex). That means, given two

actual and similar handwriting samples, it is reasonable to assume a person may

write with a shape between them (i.e., with similar but less degree of deformation).

In this chapter, we propose an example-based handwriting synthesis approach
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using two training samples. We use our handwriting matching algorithm to establish

the correspondence between two handwriting samples. After handwriting matching,

we warp one sample toward the other using the TPS deformation model. By adjust-

ing the regularization parameter λ of the TPS deformation model (Equation (6.1)),

we can adjust the amount of non-rigid deformation.

Hf =
n∑

i=1

[zi − f(xi, yi)]
2 + λIf (6.1)

Please refer to Section 5.4 for a detailed description of the regularization. The reg-

ularization parameter λ is used in a different way compared to the shape matching

in the previous chapter. Here, we use it to adjust the amount of non-rigid deforma-

tion. It has been shown that if λ = ∞, the deformation is the affine transformation.

With a smaller λ, the interpolated shape is closer to the target shape. On shape

matching, however, it is used to reduce the effect of outliers in the match estimate.

Among all previous work, the algorithm proposed by Mori et al. [3] is the

most similar to our approach. They use the well-known iterated closed point (ICP)

algorithm [111] to get the displacement vector of each pixel. A new sample is

generated by moving each pixel along its displacement vector. Compared with our

approach, it has two drawbacks: (1) the ICP algorithm is not robust under nonrigid

deformation [2], and (2) the displacement field is not continuous, so the synthesized

sample may change the topology.
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Figure 6.1: Handwriting synthesis. Two training samples and the point matching

result are shown on the top row. Synthesized samples: second row for our approach,

third row for [2], and forth row for [3].

6.3 Experiments

In this section, we apply our handwriting matching algorithm to handwriting syn-

thesis and compare it with two other algorithms [2, 3]. The top row of Fig. 6.1 shows

two handwriting samples and their point matching result. Under this match, we use

TPS to deform the first sample to synthesize new samples, as shown in the second

row. From left to right, λ takes the value of ∞, 10, 1, and 0.1, respectively. With

the decrease of the regularization parameter λ, the synthesized sample is closer to

the second real sample. The third row in Fig. 6.1 shows synthesized samples using

a perturbation-based approach [2]. With only one training sample, the deforma-

tion of synthesized samples is random, and sometimes unnatural samples may be

generated. The third row shows the synthesized samples using the approach of [3].

Suppose point Ti is matched to point Df(i), its displacement is di = Df(i) − Ti. For
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an un-matched point, the displacement takes the value of its closest matched point.

A new sample is synthesized by moving a point along its displacement.

Si = Ti + ρdi (6.2)

If ρ = 0, the synthesized sample is the original template; and if ρ = 1, all matched

points will be moved to the target under any matching function. The last row of

Fig. 6.1 shows several synthesized samples with ρ equals 0.2, 0.4, 0.6, and 0.8,

respectively. As shown in the figure, both example-based approaches can learn

shape deformation characteristics given good point matching results. The approach

of [3], however, may change the topology (the synthesized handwriting is broken

into several parts) due to the dis-continuity of the displacement field. This draw-

back becomes obvious when point matching errors (which are un-avoidable in real

applications) are present. The second and third rows of Fig. 6.2 show synthesized

samples using our approach and [3]. The topology of samples synthesized by our

approach is preserved, even under substantial matching errors. Using the approach

of [3], unrealistic samples are generated.

More examples on handwriting synthesis are shown in Fig. 6.3. The ordering

of samples is the same as Fig. 6.1. Samples with different slants (within the range

of the slant between two training samples) are generated using our approach.

6.4 Discussion and Future Work

In this chapter, we applied our handwriting matching algorithm to synthesize new

training samples for handwriting recognition. Our approach automatically learns
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Figure 6.2: Handwriting synthesis with point matching errors presented. Two train-

ing samples and the point matching result are shown on the top row. Synthesized

samples: second row for our approach, third row for [3].

Figure 6.3: More examples on handwriting synthesis. Two training samples and the

point matching result are shown on the top row. Synthesized samples: second row

for our approach, third row for [2], and forth row for [3].
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shape deformation characteristics from training samples, generating more visually

realistic samples. Although it has been shown in several independent experiments

that synthesized handwriting samples can improve a recognition system trained on

them [3, 108], we will perform more experiments to verify it in the future. The

limitation of our approach is that we assume the same character is written with

similar shape though with some degree of distortion. Due to difference in geological

location, education, and culture, people may write the same character with signifi-

cantly different shapes. We may need to perform clustering analysis to separate the

training samples into several clusters. Each cluster is more homogeneous, so our

approach can be applied.
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Chapter 7

Handwriting Retrieval

7.1 Introduction

Handwriting not only conveys information by its content (what one writes), but also

contains unique characteristics of the writer (how one writes). People have produced

huge amounts of handwritten documents in history and continue to do so. With the

coming of the electronic document era, the traditional library faces the challenge

of how to make an enormous amount of handwritten historical documents accessi-

ble electronically. Scanning documents into a computer is easy. However, without

a searchable index, the scanned images have little use. In one solution, optical

character recognition (OCR) can convert handwriting to text, then the traditional

text-based retrieval techniques can perform their tasks. However, the state-of-the-

art techniques for handwriting recognition are error prone. No reliable product is

available to recognize unconstrained handwriting, except for handwritten digits [6].

Recognition errors will significantly deteriorate the performance of the traditional

text-based techniques. Direct retrieval based on image, without recognition, may

achieve better results [154]. Another application of handwriting retrieval is search-

ing a specified signature in a set of documents. Handwriting recognition has little

use in this application because the signature’s character sequence has little or no in-

herent importance. Instead, its unique characteristics are of more concern. In these
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applications, the direct retrieval of handwriting in document images is desired.

The retrieval of character sequences is also called keyword spotting in the

literature [155]. Two similar keyword spotting approaches based on the hidden

Markov models (HMM) were proposed in [155] and [156] for printed text in degraded

document images, where the results of OCR were not reliable. The training of

HMMs needs a large set of labeled samples, but only one or several handwriting

instances may be available for query. Several handwriting retrieval techniques, such

as the dynamic time warping based approach [154] and the corner feature based

approach [157], have been proposed. However, these techniques are not robust

under non-rigid deformation of handwriting.

Alternatively, we can consider handwriting as a shape. Shape presentation,

analysis, matching, and recognition is an active area in computer vision and widely

studied [109, 110]. Recently, the shape context method proposed by Belongie et

al. [26] has achieved success in many shape recognition and retrieval applications.

A shape is represented as a set of points in this approach. A shape context is

assigned to each point, which describes the relative distribution of the other points

in the shape. After defining the similarity between two points based on their shape

contexts, the Hungarian algorithm [126] searches for the optimal match between the

two point sets. Similarity measures, such as the shape context distance and the thin

plate spline (TPS) bending energy, are calculated with the current estimate of the

correspondence and used for shape recognition or retrieval. Ling and Jacobs [158]

improved the original shape context method by replacing the Euclidean distance

with the inner-distance, which is invariant for articulated shapes, in the calculation
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of shape context. Though the discrimination power is improved by using the inner-

distance, the method is sensitive to structure change of a shape. As shown in

Fig. 7.3, a handwriting stroke is often broken. Two strokes may touch each other

in one sample, but well separated in another sample. Structure change is also a

challenge for shock-graph based approaches [159, 160], where the connection of two

points by a stroke is utilized. On the contrary, by treating a shape as a set of isolated

points, the original shape context method is more robust under structure change.

In many shape retrieval approaches [161, 162, 158], a shape is often represented as a

sequence of ordered points sampled from its contour. This may apply for the retrieval

of on-line handwriting samples collected on a PDA or TablePC. However, for an off-

line handwriting sample, it is difficult to recover the temporal information [163].

Therefore, we cannot order points to form a 1-D sequence reliably due to structure

change of handwriting.

In this chapter, we test several variations of the original shape context method

for handwriting retrieval. The shape context method can be decomposed as two

steps: shape matching and shape retrieval. Each step has several alternative tech-

nical solutions, which are tested in our experiments. To avoid confusion, we call

these two steps of the original method the shape context matching algorithm and

the shape context retrieval algorithm, respectively. As discussed in the previous

chapter, the shape matching part of the shape context algorithm is not robust. Two

neighboring points in one shape may be matched to two points far apart in the

other shape. We proposed a new shape matching algorithm in the previous chap-

ter to preserve local neighborhood structures during matching. Experiments show
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our new approach achieves much better shape matching results. In this chapter,

we replace the original shape matching method with the proposed one and test it

for handwriting retrieval. Experiments show that a slight improvement is achieved.

We propose a few new similarity measurements based on the point matching results

to further improve the retrieval accuracy. The performance with a single query is

limited due to noise and the large variations of handwriting. We propose a method

to combine retrieval results with multiple queries.

7.2 Our Handwriting Retrieval Method

In the original shape context method, a set of uniformly sampled points on the

contour is used to represent a shape, as contour is a general representation and a

shape can be recovered from its contour. However, a contour is affected by the

stroke width, which depends on the writing tools and scanning parameter settings.

Instead, we use a skeleton, which is widely used in handwriting recognition, to rep-

resent a handwriting sample. There are two advantages of using a skeleton: 1) it is

robust under the variation in stroke width; 2) less points are demanded to represent

handwriting. Suppose each shape is represented with N points, the computation

time is in the order of O(N3) for shape matching and O(N2) for similarity calcu-

lation. With a small number of points, we can significantly increase the retrieval

speed. Fig. 7.1a shows the shape representation with 300 points sampled from the

contour, and Fig. 7.1b shows the representation with 200 points from the skeleton.

We can see that 200 points from the skeleton is as good as 300 points from the
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(a) (b)

Figure 7.1: Handwriting representation: contour vs. skeleton. (a) Representation

with 300 points sampled from the contour. (b) Representation with 200 points

sampled from the skeleton.

contour to represent a handwriting sample.

After point matching, two similarity measures were proposed in the original

shape context method [26] for shape recognition and retrieval. One is based on

the shape context distance (Dsc), and the other is the TPS bending energy (Dbe).

Suppose there are M points in the template shape T and N points in the deformed

shape D. The shape context distance between shapes T and D is the symmetric

sum of shape context matching costs over best matching points,

Dsc =
1

M

∑
t∈T

arg min
d∈D

C(T (t), d) +
1

N

∑
d∈D

arg min
t∈T

C(T (t), d), (7.1)

where T (.) denotes the estimated TPS shape transformation; C(., .) is the shape

context matching cost between two points. Consider two points, t in shape T , and d

in the other shape D. Their shape contexts are ht(k) and hd(k), for k = 1, 2, . . . , K,

respectively. C(t, d) is defined as

C(t, d) =
1

2

K∑
k=1

[ht(k) − hd(k)]2

ht(k) + hd(k)
. (7.2)

The TPS bending energy represents the amount of deformation between two
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shapes and can be used as a shape similarity measure. As discussed in the previous

chapter, two TPS models are used for 2-D coordinate transformation. Dbe is defined

as the sum of the bending energy of two TPS models.

Besides Dsc and Dbe proposed in the original shape context method, we can

define more similarity measures to improve the retrieval accuracy. The TPS bending

energy only measures the energy of deformation beyond an affine transformation.

In other words, the bending energy is zero for an affine transformation. An affine

transformation can be decomposed as translation, rotation, and anisotropic scales.

According to Kendell’s shape theory [164][145, p. 1], shape is, “all the geometrical

information that remains when location, scale and rotational effects are filtered

out from an object.” So, shape is invariant up to the similarity transformation

(translation, rotation, and isotropic scale). The amount of anisotropic scales is a

good measure of the similarity between two shapes. 1 Suppose the scales of the

x and y coordinates are Sx and Sy, respectively. We can estimate the scales from

the affine transformation matrix based on the singular value decomposition. A 2-D

affine transformation can be represented as a 2× 2 matrix A and a 2× 1 translation

vector T 
 u

v


 = A


 x

y


+ T. (7.3)

1This similarity measure was implemented in the Matlab package of the shape context method

distributed on-line. But its effectiveness in shape recognition and retrieval has not been tested and

documented in the paper [26].
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Sx and Sy are the singular values of matrix A. The distance Daf is defined as

Daf = log

(
max(Sx, Sy)

min(Sx, Sy)

)
. (7.4)

If the scales are isotropic, Sx = Sy, then Daf = 0.

We propose another distance measure, Dre, based on the registration residual

errors. Suppose point ti in shape T is matched to point df(i) in shape D. Dre is

defined as

Dre =

∑
i:f(i) �=nil ||T (ti) − df(i)||∑

i:f(i) �=nil 1
, (7.5)

where ||.|| is the Euclidean distance. In calculating Dre, we remove those points

matching to a dummy point nil.

Our matching algorithm will automatically reject some points as outliers. If

two shapes are similar, the number of rejected points will be small, so the number of

outliers offers a measure of the similarity between two shapes. The distance measure

Dou is defined as the number of outliers rejected during matching.

In total, we have five similarity measures, which have different scales. The

overall similarity measure Dall is defined as the weighted Euclidean distance of all

distance measures. Given a query, we calculate its distance measures to all samples

in the database. We, then, can calculate the variance of each measure. The overall

similarity measure Dall is define as

Dall =
Dsc

V ar(Dsc)
+

Dbe

V ar(Dbe)
+

Daf

V ar(Daf )
+

Dre

V ar(Dre)
+

Dou

V ar(Dou)
. (7.6)

Since the weights are calculated on-line, different queries may have different combi-

nation weights. In general, we do not have many samples to train the weights for
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a retrieval task, and the above scheme is by no means optimal. Commonly, user’s

feedback is often used to adjust the weights in the retrieval community. This process

is called relevance feedback, which may significantly increase the retrieval accuracy

after a few iterations.

The retrieval performance with a single query instance is limited due to the

noise and the large variations of handwriting (as shown in Figs. 7.2b and 7.3). The

performance of a retrieval depends heavily on the sample used for query. It is often

possible to have a couple of handwritten samples from the same person available for

retrieval. For example, we can ask the person to write a sample several times, or we

can select the correctly returned samples from the first-round retrieval and use them

with the original query instance in the second-round retrieval. Suppose, multiple

instances from the same class q1, q2, . . . , qk are used as queries. The corresponding

distances of a handwritten sample in the collection to these queries are d1, d2, . . . , dk.

We combine them into a final distance

d = f(d1, d2, . . . , dk). (7.7)

Using one instance for query, we can achieve a sorted list of all samples in the

collection. Using multiple instances, multiple sorted lists of the same collection can

be achieved. The problem of combining these sorted lists to get the final one is

similar to the multiple classifier combination problem, which is an active research

topic in pattern recognition. Many techniques have been proposed. Currently we use

a simple technique: using the smallest distance as the combined distance measure

d = min{d1, d2, . . . , dk}. (7.8)
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7.3 Experiments

In this section, we first present our retrieval evaluation metrics. The effects of differ-

ent shape representations, shape matching algorithms, and similarity measures are

compared in the task of handwritten initial retrieval. We also present an experiment

for logo retrieval.

7.3.1 Evaluation Metrics

Evaluation metrics for retrieval are well studied in the traditional information re-

trieval literature. Generally, two set of metrics, precision and recall, are widely

used.

Precision =
# Returned relevant samples

# Returned samples
(7.9)

Recall =
# Returned relevant samples

# Relevant samples in the database
(7.10)

Region of characteristic (ROC) curves, indicating the relationship between precision

and recall, can release the performance of a retrieval algorithm completely. Since

comparing ROC curves of two algorithms is complicated, sometimes, a metric with

a scalar value is preferred. R-Precision is such a metric. Suppose a total of M

samples in the database, and among them N samples are relevant for a query. The

retrieval algorithm will return a ranked list of all M samples. R-Precision is the

precision of the first N retrieved samples in the list.

R-Precision =
# Relevant samples in top N returned samples

N
(7.11)

R-Precision is used for evaluation in the following experiments.
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(a) (b)

Figure 7.2: Some samples from the handwritten initial data set. (a) One sample

from each person. (b) Several samples from one person.

7.3.2 Handwritten Initial Retrieval

To test the effectiveness of the proposed method for handwriting retrieval, we col-

lected a small dataset of handwritten initials. We had eight persons with each

of them writing 40 sets of initials. Fig. 7.2a shows one sample from each person,

and 7.2b shows several samples from one person. As we can see, variations (besides

rotation and scales) are large for handwriting, and noise, such as underlines, would

make things worse.

In the first experiment, we evaluate the effect of different shape representa-

tions on retrieval accuracy. For a general shape, a contour is often use to represent

a shape, then a number of points are uniformly sampled from the contour. Hand-

writing is composed of thin strokes, so skeleton representation may offer a better

choice than contour. In this experiment, we use the original shape context algorithm

for experiments: the original shape context matching method is used to search for

the correspondence between two point sets; Dsc and Dbe are used to measure the

similarity between two shapes. The number of sampled points is fixed as 200. For
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an exhaustively evaluation on the database, each sample should be selected once

for query. Supposing M samples in the database, the number of shape comparisons

is M × (M − 1). In our case, it is 320 × 319 = 102, 080. Each shape compar-

ison may take about one second. Due to the speed, we randomly select 10% of

the samples as queries. It is sufficient to reveal the difference between different

shape representations. To remove any bias, the selected sample is removed from

the database for this query. The overall R-Precision is reported as the average of

R-Precisions of all queries. The overall R-Precision of the contour based repre-

sentation is 69.4%. For comparison, two skeleton extraction algorithms are imple-

mented [165, 166]. The overall R-Precision increases slightly to 70.5% using Dyer

and Rosefled’s method [165], and to 71.4% using Zhang and Suen’s method [166].

Since the latter skeleton extraction algorithm achieves the best performance, we use

it for the following experiments.

In this experiment, we test the effectiveness of our shape matching method.

We replace the matching method with our approach presented in the last chapter,

and use the same similarity measures Dsc and Dbe. The same 10% randomly selected

samples in the previous experiment are used as queries. The overall R-Precision us-

ing our shape matching approach is 72.3%. Out of our expectation, the improvement

is slight compared to the original overall R-Precision of 71.4%. Detailed analysis

shows that our shape matching approach decreases the average distances between

shapes from the same category. This verifies that better shape matching results

are achieved by our approach. However, our matching approach also decreases the

average distances between shapes from different categories. The conclusion of this
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experiment is that a better shape matching algorithm does not necessarily increase

the discrimination capability of a measure, which is defined on the matching results.

In the following experiment, we compare the effectiveness of different similar-

ity measures. Unlike the previous experiments, we make full use of the database.

All samples are used in turn for query. Since our shape matching algorithm is much

slower than the shape context matching algorithm, we use the original matching

method. Table 7.1 shows the experimental results. The most powerful similarity

measure is the TPS bending energy (Dbe), followed by the affine transformation

based measure (Daf ). This experiment show that measures based on transforma-

tions (TPS for non-linear transformation and affine for linear transformation) are

more robust than other features. The remaining measures can be ordered according

to the discrimination power as the shape context distance (Dsc), the residual error

in registration (Dre), and the outlier ratio (Dou). The outlier ratio feature is signifi-

cantly less effective than the others, although it still provides some retrieval power.

By combining Dbe and Dsc as in the original shape context method, the overall

R-Precision is 71.2%. If we combine all features, the overall R-Precision improves

to 74.4%, demonstrating that different features are complementary. Fig. 7.3 shows

one query example. Excluding the query itself from the database leaves 39 relevant

samples. Among them, nine are ranked outside the top 39 returned samples. The

figure also shows the missed samples and false alarms. Most false alarms rank low,

just higher than the border line.

Table 7.2 shows the retrieval accuracy using multiple instances from the same

person. We randomly select multiple instances from a person and remove them
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Query Instance

Missed samples

(45) (47) (103)

(115) (153) (158)

(177) (251) (255)

False alarms

(28) (30) (31)

(32) (34) (35)

(36) (37) (39)

Figure 7.3: Handwritten initial retrieval. The first row is the instance used for

query. The middle zone shows the missed samples, and the bottom zone shows the

false alarms. The rank for each sample is shown under the corresponding image.
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Table 7.1: Query with different similarity measures.

Dsc Dbe Daf Dre Dou Dsc+Dbe Dall

Overall R-Precision 56.1% 60.9% 57.3% 50.1% 35.5% 71.2% 74.4%

Table 7.2: Query with multiple handwritten initial samples from the same person.

Number of instances One Two Three Four

Overall R-Precision 74.4% 83.4% 86.2% 88.1%

from the database. Each instance is used to query the database. Eq. 7.8 is used to

combine the overall distance measures Dall of multiple queries. As we can see, using

multiple instances can significantly increase the performance. With more instances

added, the overall R-Precision increases steadily. When four instances are used,

88.1% overall R-Precision is achieved.

7.3.3 Logo Retrieval

A logo is important to identify a document’s source. Generally, logos can be seen

as rigid shapes. However, some organizations make small adjustment to their logos

periodically. Logos from different departments under the same organization (such

as a university or the federal government) may contain a similar layout with a small

variation to reflect their identity. In this experiment, we consider the task of finding

all documents containing a specified logo given by a query. Since a logo is often

embedded in a document, we need to segment it from other document components.
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We use the automatic logo detection algorithm developed by Dr. Drayer at Fort

Meade, Maryland. The tobacco data set is used for the experiment. In the data

set, 546 documents contain visible logos, and the algorithm detected 350 of them.

A logo is claimed to be detected if the major parts of the logo are detected, so in

many cases the so-called correct detection is not perfect. A small part of a logo

may be lost, and other components may be grouped into the detected logo. We

use these 350 detected logos for the experiment of logo retrieval. There are 23

logo categories, and some may contain sub-categories (variations). The distribution

of each category is not even. About half of the logos, 179 instances, belong to one

category. We randomly selected one instance from this category as a query, as shown

in the first row of Fig. 7.4. Since skeleton representation is sensitive to noise for a

general shape, we use 200 points uniformly sampled from the contour to represent a

logo. All similarity measures are used, and the overall distance measure Dall is used

to rank the remaining 349 logos. Thirty-three of the relevant logos rank outside the

top 178, resulting in the corresponding R-Precision of 81.5%. Fig. 7.4 shows several

relevant logos that rank outside the top 178. Most missed logos occur because of

the segmentation errors. In some cases, the approach may fail due to variations in

the logo design, as shown in the last row of Fig. 7.4.

To fully evaluate the performance in logo retrieval, we use each instance in

the collection for query. Table 7.3.3 shows the overall R-Precision using different

similarity measures. The overall R-Precision is 67.9%. As demonstrated in the

table, combining different similarity measures can significantly improve the retrieval

accuracy.
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Query Instance

Missed samples due to segmentation errors

Missed samples due to variations in the logo design

Figure 7.4: Logo retrieval. The top row is the instance used for query. The following

rows show the missed logos in the top returned samples.

Table 7.3: Overall R-Precision for logo retrieval with different similarity measures.

Dsc Dbe Daf Dre Dou Dall

Overall R-Precision 53.8% 57.8% 54.6% 48.3% 30.3% 67.9%
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7.4 Summary and Future Work

Experiments show that shape context is effective for handwriting retrieval. Skele-

ton representation is more suitable for handwriting than contour and improves the

retrieval performance. Our new shape matching method only slightly improves the

retrieval accuracy, since it simultaneously decreases the distance measures between

two shapes from both the same and different categories. Overall, the distinguish-

ing power of a distance measure only improves slightly using our matching method.

Adding more similarity measures will improve the retrieval accuracy significantly.

A more effective way to improve the accuracy is to use multiple samples for query.

When four instances are used for query, the overall R-Precision increases from 74.4%

to 88.1% in our handwritten initial retrieval experiment.

Handwriting retrieval (non-rigid shape retrieval in general) is a difficult prob-

lem. In this chapter, we presented only our preliminary efforts on this topic. Much

work remains for the future. We tried to combine our previous work on handwriting

identification with the handwriting retrieval proposed in this chapter into a complete

system. However, segmentation errors significantly deteriorated the overall retrieval

performance. This is still an open problem in computer vision and needs further

investigation. Future research may also look into the optimal combination scheme

for different distance measures. Relevance feedback is a solution, but the effective-

ness of this approach needs to be verified in the context of handwriting retrieval by

experiments.
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Chapter 8

Conclusions

8.1 Summary

Our work has centered around the ability to separate handwriting from other layers

in noisy documents. Following are our key contributions.

1. Many handwritten documents have rule lines as a background pattern. The

lines must be detected and removed before feeding the text to an optical

character recognition (OCR) engine. Severely broken rule lines present a great

challenge for existing line detection algorithms. We proposed an HMM model

to incorporate the constraints among a set of parallel lines. Our method is

fast and achieves both a high accuracy and a low false alarm rate. It has been

tested on a real Arabic data set, and promising results were achieved. After

line detection, line removal is performed by line width thresholding.

2. For handwriting identification in noisy documents, we proposed a classification

based scheme. The input document is segmented at the word level. Several

features, including structures, Gabor filters, run-length histograms, crossing-

count histograms, and textures, are extracted for classification. The classifica-

tion result is reasonable, with a few mis-classifications due to the overlapping

of different classes in the feature space. Some other cues may refine the clas-
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sification results. For example, machine printed text, handwriting, and noise

exhibit different patterns of geometric relationships. Printed words often form

horizontal (or vertical) text lines, and noise blocks tend to overlap each other.

The novelty of our approach involves using the Markov random field (MRF)

to model the geometric relationship among neighboring blocks. Experiments

show that MRF based post-processing is effective, where almost half of the

mis-classifications are corrected after post-processing.

3. The identified handwriting may be further analyzed. In this dissertation, we

proposed a novel point pattern based handwriting matching technique and

applied it for handwriting synthesis and retrieval. We studied handwriting

matching in a broader context of nonrigid shape matching. For nonrigid

shapes, most neighboring points cannot move independently under deforma-

tion due to physical constraints. Therefore, though the absolute distance be-

tween two points may change significantly, the neighborhood of a point is well

preserved in general. Based on this observation, we formulate point match-

ing as a graph matching problem. Each point is a node in the graph, and

two nodes are connected by an edge if their Euclidean distance is less than a

threshold. The optimal match between two graphs is the one that maximizes

the number of matched edges. The shape context distance is used to initialize

the graph matching, followed by relaxation labeling for refinement. Experi-

ments demonstrate the effectiveness of our approach: it outperforms the shape

context and TPS-RPM algorithms under nonrigid deformation and noise on a
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public data set.

4. The techniques proposed in this paper are not limited to the processing of

handwriting documents. For example, our model-based line detection algo-

rithm, proposed in Chapter 2, can extend straightforwardly for known form

identification and registration. In Chapter 4, we separate different components

into three layers, handwriting, machine printed text, and noise. By separating

noise, the layer of machine printed text is much cleaner than the original noisy

document, which facilitates further processing, such as zone segmentation and

OCR. Our approach for handwriting matching, discussed in Chapter 5, is gen-

eral enough to be applied to other point pattern based nonrigid shape matching

applications.

8.2 Future Work

Though promising results have been achieved on several key issues in processing of

handwriting documents, many possible extensions for further improvement exist.

1. In Chapter 4, how to extend our handwriting identification method to cursive

scripts, such as Arabic, is under investigation. We found two observations used

to discriminate handwriting from machine printed text for English documents

do not work well for Arabic documents. (1) Handwriting is more cursive than

machine printed text in English documents. However, machine printed Arabic

text is cursive by nature. (2) People like to connect several neighboring char-

acters during writing. However, machine printed Arabic characters are often
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connected too. Preliminary experiments on Arabic documents, using the same

feature set proposed in Chapter 4, resulted in a poor classification accuracy.

One possible solution is to design new features for Arabic documents. Alter-

natively, we can perform handwriting/machine printed text discrimination at

a higher level than word blocks, such as the text line level. Reliably extracting

text lines from a heterogeneous and noisy document is a challenging problem

itself. I am collaborating with another PhD student on this topic. Preliminary

results are promising, but more experiments are necessary. Another problem

is that word level classification is still demanded in real applications because

short text lines may contain only one or two words. How to combine the clas-

sification results at word and text line levels presents one direction for future

research.

2. For nonrigid shape matching in Chapter 5, large outlier or occlusion ratios

(especially if the occlusion breaks a shape into several isolated parts) can

significantly change the local neighborhood structures. Combination of differ-

ent sources of degradation, such as large rotation, noise, and occlusion, also

presents a challenge, which should be addressed in future research. In this

dissertation, the relaxation labeling method is used to solve the constrained

optimization problem. Converging only to a local optimum, it is by no means

the best approach.

3. In Chapter 7, our experiments on handwriting retrieval show that a better

shape matching method does not always result in a higher retrieval accuracy.
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Combining several robust similarity measures is more effective to improve the

retrieval accuracy. How to get the optimal combination weights for different

measures is a topic under investigation. Techniques in the literature of tradi-

tional information retrieval, such as relevance feedback or clustering analysis,

should be studied in the context of handwriting retrieval to test their effec-

tiveness. Segmentation errors will significantly deteriorate the overall retrieval

performance. This is still an open problem in computer vision and needs fur-

ther investigation.
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