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Abstract

In performing regularized set operations on two solids. the most difficult step 1=
boundary classification, in which the boundaries of eacli solid are split into portions
that are inside, outside. or on the surface of the other solid. In this paper. we present a
metheo for doing boundary classification on polvhedral solids. The approach is based
on recursively decomposing space Lased on the boundaries of the solids being classified.

This approach has several appealing properties: it is simple to describe. efficient
(tests indicate O(n log n ) complexity 1 a variety of cases). and can handle both manifold
and nonp-manifold 3-D solids. This approacl serves as thie hasis for set operations in the
Protosclid solid modeler.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Geom-
etry aud Object Modeling—Geomciric algorithms.

General Terms: Algorithms. Design

Additional Kev Words and Phrases: non-regular decomposition. boolean set operations.
polvhedra. non-manifolds.
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1 Introduction

The importance of regularized set operations in solid modeling is widely recognized [ReqS80].
The basic approach for performing regularized set operations on two houndary representa-
tions (B-Reps) can be separated into the following three steps:

1. Perform boundary classification on the two solids: that is. split the faces of each solid
into sub-faces, each of which is inside, cutside. or on the surface of the other solid.

2. Assemble the appropriate faces to produce the result of the desired set operation.

3. Topologically reduce tlie result. by combining coplanar adjacent faces and collinear
adjacent edges. ‘

Of these. tle first step—boundary classification—is the most difficult. TOI B-Reps. bound-
ary classification can be done in a brute-force manner by comparing every face of one solid
witl every face of the other. but this involves a quadratic number of comparisons. incur-
ring a worst-case time complexity of at least Q(n”).} However. often many of the faces
- being compared do not actually intersect each other—and in such cases. significantly more
efficient performance can be achieved if ways can be found to localize tlie face comparisons.

In this paper, we present a divide-and-conquer method for boundary classification that
achieves locality of face comparisons by decomposing space in a noun-regular manner called
input-directed decomposition. The basic algorithm is relatively simple to describe. and it
Lias been proved correct in {VanS9]. Since it proceeds purely by dividing faces into subfaces.
the algorithm does not require auxiliary data structures to represent explicitly the regions
or the relationships among them. Insiead. it is sufficient merely 1o keep track of what set
of subfaces falls into each region.

Based on this algorithm. we have built a solid modeler called Protosolid. Protosolid is
being used in several projects, at the University of Marvland [KNY91]. Purdue University
[NEWQ0. Van9la. Van91b]. and Cornell University [NEW90]. In using Protosolid. we have
found the algorithm to be quite efficient—and in this paper. we present the results of tests
showing its time complexity to be Ogiclogn) ov “typical case” problems.

In many previous approaches to boundary classification. lmitatious in the algorithm
or the data structures have caused difficulty in Lhandling non-manifold 3-D solids” [Bau72.
ManSs, GSR5. PRSRG]. Our input-directed decornposition algorithu is capable of handliug
non-manifold 3-D <ohoxvand our implementation of this algorithng in the Protosolid solid
modeler [Vans9] incorporates data structures capable of representiug such solids. Thus.
Protosolid can easily handle non-manifold 3-D solids.

Section 2 contains the mathematical preliminaries nceded to describe the algorithm.
Section 3 describes the algorithm. as well as some specific methods for performing some
of its basic operations. Section 4 briefly discusses our implementation of the algoritiim in
the Protosolid solid modeler. and Section 5 describes our measurements of the algorithin’s

1We believe the worst-case complexity is actually Q(n” log n). becanse of the overhead involved in repeat-
edly searching for various faces, edges. aud vertices—but we have not attempted 1o prove this.

®By “nou-manifold 3-D solids™. we mean regularized 3-dimensional sets that do not happen to be 2-
manifolds. This set does not include objects that are not homo"eneouc]\ three-dimensional. such as those
discussed by Weiler [WeiS6)].



time complexity on a number of different solid modeling problems. Section 6 compares our
approach to other related work, and Section 7 contains concluding remarks.

2 Mathematical Preliminaries

2.1 Standard Definitions

Below, we briefly review some of the basic definitions needed to characterize three-
dimensional solids. Most of these definitions are quite well-known (for example. see Re-
quicha and Tilove [RT78. Req77]. Kuratowski [KM76] and Mendelson [Men73]).

Let X be any subset of Euclidean 3-space (E2). Then X ~! = E? — X is the complement
of X. X is compact if and only if it is closed and bounded. kX and 7\ are the closure
and interior of X. respectively: and r X" = k({(X')) is the rcgularization of X. X is regular
if X = 7X (in intuitive terms, this means that X has no dangling faces. dangling edges
or isolated points). X is semi-analytic if it is a finite combination. via the set operations
union. intersection and complement. of sets X; of the form X; = {p € £®: fi(p) > 0}. where
f. is anv analvtic function on E?. X is a solid if it is compact. regular aud semi-analytic.
b(X)= kX — 71X is the boundary of X. It can be shown [RT78] that the set of all solids is
closed under the following regularized setl operations:

AU Y =X Ul
A0Y =r(XANY);
X =X
X -"Y=rX —-Y).

2.2 The Classification Scheme
A1

We define a fragment to be any regular! semi-analvtic subset of the boundaryv of a solid.
Note that a fragment need not necessarily be connected. Since the boundary of a solid 5 is
regular and semi-analvtic. b(.5) itsell is a fragment. It can also be shown that the set of al)
fragments of a solid is closed under regularized union. intersection. and difference [RT78]
Let S and T be any two solids. and [ be anv fragment of 5. Then we say that

1. [is homogeneously in T il either i(f) € (T ) or fis the union of finitely many smaller
fragments fi..... fj. each of which is homogeneously in T

2. [ is homogencously ouiside T if either i(f) C T71 or f is the union of finitely many
smaller fragments fi...., fi.. each of which is homogeneously outside T

3. [ is homogeneously with T if either {(a) [ C b(T). and for every point p € (f) and
every neighborhood N(p). (N(p)n S) (N(p)nT) # 0: or (b) f is the union of
finitely many smaller fragments f1...., fi.. each of which is homogeneously with 7"

4. f 1s homogeneously against T if either (a) [ C b(T). and for every point p € () there
is a neighborhood A {p) such that (N(p)nS)N™(N(p)NT) = @: or (b) [ is the wvnion
of finitely many smaller {fragments fy..... ;. eacli of which is homogeneousiv against
T.



T TR =

(2) (

Figure 1: Examples of singularities that can occur in non-manifold 3-D solids.

For each fragment f of S, at most one of the above properties can hold. If one of then does
hold. then we sav that [ is T-homogeneous (or simply homogeneous. if the identity of T is
clear).
In the above definitions. allowing f to be decomposed into fi...., fi enables us 1o handle
singularities that can arise in non-manifold situations such as the ones shown in Fig. 1.
Given any two solids S and T, the following four fragments are the classification sets
for S with respect to 1

S1x T is the largest fragment 2 of b(.5) that is homogeneously in T

SotuTT is the largest fragment z of b(.5) that is homogeneously outside 7
SwiTHT is the largest fragment 2 of b(.S) that is homogeneously with T
S ANTIT is the largest fragment z of b(.5) that is homogeneously against T

b(S) is the union of these four fragments. The IN and OUT classifications used by Tilove
[Til80] correspond to our I and OUT classifications. respectively. and his Ox classification
corresponds to the union of our WITH and ANTI classifications.

From the above definitions, it is straight{orward to show that

VSUTY) = (SovtT)yuU(TovTS)u(Swite T} (1)
SN T) = (SIxT)Uu(Tix Syu(SwitaT): * (2)
bSsS-="1T) (SorTTYU(TINS)YU(S ANTIT): {3)
WT =" 8) = (TorTS)u(SixTHyu(SantiT). (4)

3 The Algorithm

Eq.’s 1-4 state that from the classification sets. we can compute any regularized set op-
eration we desire. In a B-Rep of a polvhedron. solids and fragments are represented as
collections of planar faces. eacli of which has a finite number of bounding edges and a nor-
mal vector pointing outwards from the solid. Thus for B-Reps of polvhedra, our approach
is as follows: given collections of faces § representing 0(S) and 7 representing KT }. find
collections of faces Syx representing the classification set S1x 7T, Tyx representing the clas-
sification set 715 S, and so forth. Once this has been done. the results of the regularized
set operations are represented by the following collections of faces:

b(SU™T) s represented by Sovr U Tour USwiTh!
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procedure CLASSIFY(S.7)

1. Initially. set Spy = Sovr = Switk = Saxti = Tix = Tovr = Twity = Tant) = 0.
and X = {(S.7)}. X is the set of all fragments that need to be examined further.

2. Repeat Steps 3-5 until X = §. Then return S, Souvt. Swity. Santi: 7ix. ZouT-
Twiths and TanTr-

3. Select a pair of fragments (s.t) € X, and remove it from X

4. If ¢ is either empty or T-homogeneous and 1 is either empty or S-homogeneous, then
do the following:

o If sisnonempty. then put it into one of Six. SovT. SwiTh- or SanTi. depending
on its classification. If ¢ is nonempty. then put it into one of 71y, 7out. TwiTH-
or TyxTy. depending on its classification.

5. Otherwise, do the following:

(a) Select a closed half-space H that intersects & and {. (We call the plane P that
bounds H the splitiing plane.)

(b) Split s and t into subfragments s, s2. 11, and 15 ‘represeming s H.s—" H.
tN* H,and t == H, respectively. Put (s;.71) and (s5.172) into A,

end CLASSITY

Figure 2: Divide-and-conquer algorithm for boundary classification.

b(SN™T) is represented by Six U 7in USwiTh: . (6)
(S =" 1) is represented by Sovt U (7x)” USAnTH (N
0SS —="T) 1isrepresented by TouT U{(Six)" USanTI; (8)

where (S)x)™ and (7;x)” are the same as Syx and 7Tyx. respectivelyv. except that the faces
Liave their normal vectors pointing in the opposite direction. As mentioned in Section
1. these representations can then be simplified by combining coplanar adjacent faces and
collinear adjacent edges.

Fig. 2 shows our divide-and-conquer algorithm crassiry for computing collections of
{aces representing the classificatiou sets. This algoritlun maintaing a set X that contains
pairs of fragments. Initiallv, X contains only the pair (§.7). On each iteration of its
main loop. the algorithm removes a pair of {ragments (s.7) from X', and checks them for
homogeneity. I the algorithm determines that thev are homogeneous. then it classifies
theni. Otlierwise. it uses a splittiug plane P to split s and 1 into pairs of subfragments
(s3.11) and (&2.15). and puts these pairs into .

The crassiFy algorithm is based ou certain abstract operatious: selecting {ragments
from X. testing them for homogeneity, selecting a splitting plane P and a half-space [
bounded by P. and splitting the fragments. These operations can be performed in many
different wayvs, so Jong as thev produce the desired result. In the following subsections. we
describe the algorithms we use for these operations in the Protosolid solid modeler—and in



[Van89]. we prove that if these algorithms are used. then CLASSIFY is correct.

To simplify the presentation. we will use the term “fragment”™ sometinies to refer to the
fragment itsel{. and sometines 1o refer 1o the collection of faces representing the fragment.
Which meaning is intended should be clear from context.

3.1 Selecting Fragments

Step 3 of CLASSIFY selects a pair of fragments in X" so that they may be classified or split.
Each pair of fragments in X" must eventually be selected—so which pair of fragments is
selected first has no effect on thie correctness and time complexity of cLassiry. However,
1o achieve the best space complexity, we alwavs select {ragments from X in a deptli-first
nanner.

3.2 Testing for Homogeneity

Ior correctness of the algorithm. we want the “if " test in Step 4 of CLASSIFY to succeed ouly
if both s and { are either empty or homogeneous. Ideally, we would also like the converse to
be true. However, it is computationallv expensive to detect all the cases where s and 1 are
Lhomogeneous. and it is not necessary to detect all of these cases in order for the algorithm
to be correct. Thus. we instead test a simple set of conditions that are sufficient (but not
necessary) to guarantee homogeneity. In cases where ¢ and ¢ are homogeneous but our test
is not satisfied. cLassIFY will simply subdivide s and ¢ further. into subfragments for which
the the test will succeed.
There are three casesin which we detect homogeneity:

1. s = 0. Then 1 is homogeneously either in or outside 5. Distinguishing whether 7 is in
S or outside S can be done straightforwardly. Our technique for doing this is similar
but not identical to that used in Thibault and Navlor [TN87]. A discussion of the
details of our technique is outside the scope of this paper. but the reader can find
these details in [Van89]. :

2. 1 = 0. Then s is homogeneously either in or outside T: and as above. it is straight{or-
ward to tell which.

3. s and 1 are the same point set. and each is represented by a single {face. Then let the
faces be f, and f;. respectively. If the normal vectors for f, and f; point in the same
direction. then ¢ is homogeneously with T aud 7 is homogeneously with 5. Otherwise.
s is homogeneously against 7 and ¢ is homogeneously against S.

3.3 Selecting a Half-Space

Step Sa of CLASSIFY selects a half-space J7. in order to try to separate non-homogeneous
portions of s and/or 7. Since non-homogeneities occur only along the boundaries of the
solids. this suggests that we choose H based on faces of s and {. We call this strategy
input-directed decomposition.

This selection strategy works by chioosing three things: a face f. a splitting plane P based
on f.and a hali-space H bounded by P. These choices depend on various relationships
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among s. 1. and the convex region R that contains both s and 7. In the implementation,
we never need 1o compute K or represent it explicitly. because all of these properties can
easilv be computed from the fragments alone. However. the easiest wayv to explain how the
strategy makes its choices is to refer to K as if it were an explicit entity. There are two
cases. depending on whetlier or not R is planar:

1. R is nonplanar. Then we want the plane P that bounds H to contain one of the
faces of s or t. If f is any face of s or ¢, then either 7(f) C «(R)or [ C b(R); and if
f C b(R), then f’s normal vector either points outward from R (indicating that the
part of S or T bounded by [ is inside R) or into I (indicating that the part of 5 or
T bounded by [ is outside /). Thus. there are three subcases:

(a) Thereis a face f of s or 7 such that i(f) C i(R). Then let f be any such face. P
be thie plane containing f. and H be either of the two closed lialf-spaces bounded
by P.

{(b) For every face f of s or i. f C O(R). but there is a face f of s or t such that f’s
normal vector points outward from K. Then let P be the plane containing f.
and let H be the closed half-space bounded by P that does not contain R.

(¢) For every face f of s or t. f C b(R})and f's normal vector points into K. Tlien
let f be any face of s or t, P be the plane that contains f. and let I be the
closed half-space bounded by P that contains R.

2. R is planar. Then we want P to be perpendicular to the faces in R and 1o pass
through one of their edges (this is analogous to the task of cutting polygons in 2D).
There must be at least one edge ¢ of s or 7 such that i{e) C {(R). for otherwise s and
 would represent the same point set and eacli would consist of a single face. and thus
our homogeneity test (see Section 3.2) would have succeeded in Step 4 of CLASSIFY.
Let e be any such edge. P be the plane perpendicular to K and containing ¢. and [
be either of the two closed half-spaces bouuded by .

‘In each of the cases above. f. P and/or H are chiosen arbitrarily as any face. plane or half-
space that satisfies some property. In these cases. the algorithm is correct no watter which
choice is made: which plane or half-space 1o cliocose is purelv au efficiency consideration.
We have investigated various heuristic criteria for this choice (see [VanR9 for details).
However. in testing the performance of our implementation (see Section 5. we did not use
such heuristics. but instead had the algorithm chioose P aud I at random frons amoug the
available candidates. This way. we could average its performance over a number of runs.
for purposes of curve-fitting.

3.4 Splitting Fragments

Step 5b of cLassITY splits s into subfragments representing < " Jf and « =" [I, and { into
subfragments representing t N™ [{ and t =~ H. In order 1o describe Lhow this is done. we will
need the definitions presented in the following paragraph.

Any closed half-space IT can be uniquely written in the form

H={(z,y.z)|Aa+By+C=z+ D >0} (9}



Figure 3: Splitting a face.
R
where (A. B. (") is a unit-vector normal to H and pointing outward {rom it. and | D | is
the distance from the origin to the plane P that bounds H.* For each point p = (2.y.z).
we define
dip.H)=Ax+ By+ Cz =+ D. (10)

Then p€ A ifand only if d(p. H)> 0. and p € P if and only if d(p. H) = 0.

Let F be either s or 1. We want to split F into two subfragments F; = F ™ H and
Fr= F —= H. As described below, we consider each face f of F, and put it into Iy or Fs,
or split it:

1. Initially. set F} = Fy = §.
2. Yor each face f in the fragment I,

(a) Hd(v.H)> 0 for every vertex v of f. then [ C H.so put [ into F3.

(b} Otherwise. if d(v.h) < 0 for every vertex v of f. then (/) C H~!. so put f into
.

(c) Otherwise. split f into two or more subfaces as described helow, such that for
eacli subface g. either ¢ C H or #(g) C H™!. Put each face ¢ into either Fj or
Fa. as appropriate.

3. Atthis point. Fy = Fn™ H and Fo = F =~ H.so return Iy aud Fy.

Step 2¢ above requires splitting a face [ into two or more subfaces. This is done as
follows (& similar method is described in [Hof89]):

1. For each edge ¢ of f.if one vertex v of € is in A and the other vertex v is not. then
split ¢ by introducing into f a new vertex w at the point where ¢ intersects P. This
point can be computed as the simultaneous solution of the equation d(w. H) = 0 and
the equation for the line seguient wrv.

2. PN f consists of one or more line segments. As illustrated in Fig. 3. some of them may
already correspond to edges of f. and some may not. To tell these two cases apart. let
1" be a list of all vertices v of f such that d(v. H) = (. sorted in order along the line
of intersection between P and the plane of f. Tracing along this line of intersection.

“In our implementation of Protosolid, H is represented by the 4-tuple (A, B.C. D).



we are originally outside f. LIvery time we encounter a vertex v; in V7, we can tell
whether we have entered or exited [ by checking to see whether the vertices closc to
v; along the boundary of f are on opposite sides of .4 If we are inside [ and there
no edge (v,.%;41), then we create one.

4 Implementation

We have implemented the algorithm described in this paper as the basis for performing set
operations on B-Reps in a solid modeler called Prototolid. Currently. Protosolid is being
used in research projects at several different locations:

1. Protosolid is being used at Purdue University and Cornell University as part of the
Newton [NEWY0] project. Project Newton is a dvnamic simulation system that uses
rigid body dvnamics to simulate the motion of objects. Hoflimann states in [NEW9(]
that Protosolid is particularly suitable for the Newton project because

it has the additional capability of constructing an object representation
especially well-suited to answering efficiently whether two objects interfere.
and to delivering the needed geometric data for estimating the moment of
collision.

2. At the University of Marviand, Protosolid is used as part of an automated manufac-
turing project that includes design aud process planning. Parts are designed using an
user-interface built on top of Protosolid. The design is manipulated by a svstem for
algebraic feature translation [Kar90, KNY91]. in order to produce input 1o a process
planning syvstem [Tho89]. Througlout this process. Protosolid is used both to display
the part and the features, and to answer several kinds of queries about themn..

To describe the details of Protosolid is bevond the scope of this paper. but below we describe
a few of the implementation issues.

Protosolid is a B-Rep modeler that uses the “fedge-based™ data structure described
in [Van89]. Since this data structure was designed to handle non-manifold 3-D polvlhedral
solids. Protosolid can handle such solids without difficulty. Protosolid’s user interface allows
the user to build complex solids as combinations of parameterized primitives. using set
operations. Currently. Protosolid is written in Common Lisp. and runs on the TI/Explorer
aud Svmbolics Lisp machines—Dbut to imiprove its portability. we are currently rewriting
Protosolid in C'++.

Since the input-directed decomposition algorithm was developed for use on polvhedral
solids. one issue that arose in implementing Protosolid was how to handle curved surfaces.
One standard techuique in polvhedral modelers is to represent curved surfaces using faceted
approximations—butl by itself such an approach is not sufficient for applications such as the
automated manufacturing project. The current aproach used in Protosolid i1s to augment
the faceted approximation so that it also includes exact representations of several curved
surfaces. including cyvlindrical. spherical. conical. and toroidal surfaces. Protosolid uses the
faceted approxiniations both for graphics display and {or set operations—but each facet hLas

*Interested readers are invited to try this out using Figure 3 as an example.



a pointer to the curved surface it approximates. so that the properties of this surface can
be retrieved when needed. For future work. recent results by developed by Shapiro and
Vossler [SV90a. SV'90b] lead us to believe that our input-directed decomposition algorithm
can straightforwardly be extended to handle curved surfaces directly.

5 Efficiency

Since one of the major motivations for our work was to improve the efficiency of boundary
classification, we were interested in determining both the worst-case and average-case time
complexity of our mmput-directed decomposition algorithm. However. since there is no clear
notion of what constitutes a “random polyvliedron™, it is not entirely clear what the term
“average-case lime complexity” means—so doing a direct mathematical analvsis of the
algorithm’s complexity did not appear feasible.

Our solution was to examine the algorithm’s time complexity experimentally on several
different problems. using tie Protosolid solid modeler. In each experiment. the problem
was to compute some sequence of regularized union or intersection operations S, = T, U™ [;
or S;=T;n"U;.fori=1.2,... ,

In each experiment we wanted to measure. for each 7, the total number of faces n; in the
two input solids and the time t; taken for boundary classification on these solids. However.
the value of t; is not determined solelv bv n;. As discussed in Section 5a, when splitting a
region there is often more than one possible chioice for what splitting plane to use. A lucky
choice can result in fewer subsequent decompositions than an unlucky choice. so {; can vary
significantly depending on which plane is chosen. Thus. to get a good idea how ; depends
on n;, our approach was as follows: each time the algorithm needed to choose a splitting
plane, we had it choose the plane at random from among the available candidates: and we
let ¢; be the average time required for boundary classification over several computations of
Si. After measuring {; and n; in this way for each 7. we used least-squares curve-fitting
techniques to find a function fitting the data points (r;.1;) and having the form

Hn) = Z cmn” + ckgnklog n.
I3

We took the big-O complexity of {{n) to be an estimate of the time complexity of our
algorithm on this problem.

Below. we summarize the results of four such experiments. The experiments are dis-
cussed in more detail in Sections 5.1—5.4.

The first two problems are the “star” and “ring” problems discussed in Sections 5.1 and
5.2. We chose tliem to represent cases that are “tvpical™ in terms of their demands on the
boundary classification algorithm. In both of these cases. curve-fitting on the timing data
produced #(n) = O(nlogn).

The third problem is the “fans” problem discussed in Section 5.3. We chose it as
an example of a worst-case time-complexity problem for boundary classification. On this
problem. curve-fitting on the timing data produced #(n) = O(n°logn). Because of the
worst-case nature of this problem. we expect other boundary classification algorithms 1o
ltave the saie ume complexity or worsc on this kind of problernt.

10



The fourth problem is the “spheres™ problem discussed in Section 5.4. We chose this
problem for the following reasons. Since input-directed decomposition is a divide-and-
conquer algorithm. it performs most efficientiy where the problem decomposition produced
by splitting along the faces of the solids results in balanced subproblems. But in problems
such as the spleres problem. the input-directed decomposition strategy will produce badly
unbalanced subproblems. so the time complexity will not be very good. Curve-fitting on
the timing data for the spheres problem produced t(n) = O(n?).

In problems such as the spheres problem. it is possible that other appropriatelyv-chosen
decomposition strategies might perform more efficiently than the input-directed decompo-
sition strategy. To get better time complexity on such problems. we are experimenting
with a hybrid approach that combines the input-directed decomposition strategy witl a
regular decomposition strategy. Section 5.5 discusses our experience with one such hybrid
algorithm. and its implications for development of more effective hyvbrid algorithms.

5.1 The “Star” Problem

For the “star” problem, we took an 8-sided faceted cylinder. and subtracted from it a G-
sided faceted cvlinder. This produced a hollow tube Sy centered at the origin and having 16
faces (including the two end faces). Then. for 7 = 1....,12. we computed S; := §,_; U" 50
where S is Sg rotated 3¢ degrees about the origin. This produced a many-pointed asterisk-
shaped solid. as shown in Figure 4. For each 7. we let n; be the total number of faces in the
two solids S;_; and Sé to be classified. and 7; be the average timie required for houndary
classification over six computations of S;.

The data points (n;,?;) for this problem closely approximated an O(nlogn) function:®

1(n) = 0.0029479233nlogn + 4.2609991.

Ltz

The sum-of-squares value for the fit was \_‘121“{ ~1(n,))* = 1.11872. Figure 5 graphs the
data points (1,,7n;) and the function #{n). :

5.2 The “Ring” Problem

For the “ring” problem, 5S¢ was a hollow tube similar to the one in the “star™ problem. but
translated away from the origin. Fori=1..... 12, we computed S, := §,_1 U~ 5'6. where S
is Sg rotated 127 degrees about the origin. This produced a solid shaped like a portion of a
many-sided ring. as shown in Figure .

Just as before. for each 7 we let n; be the total number of faces in the two solids S;_; and
5§ to be classified. But this time. 10 get good data for curve-fitting, we needed to average 1,
over a larger number of runs than in the star problem. In both the ring problem and the star
problem. the number of candidate splitting planes is similar—but in the ring problem. if the
right planes are cliosen. fewer of them are actually needed in order to produce homogeneous
fragments. Thus. a lucky clioice of splitting planes can compute the boundary classification
very quickly. but an unlucky choice of splitting planes can cause the boundary classification
to take about as long as it did in the star problem. This means that the time required
for boundary classification has a larger variance in the ring problem than it did in the star

“As is standard in discussions of time complexity. we use log to mean log,.
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Figure 7: Fragmentation of the top face of a four-fingered fan. produced by boundary
classification in the fans example. The subfaces shown in Figure (a) were produced by
input-directed decomposition. and those shown in Figure (b) were produced by hybrid

decomposition (see Section 5.5).

problem. For this reason. we let {; be the average time required for boundary classification

over 60 computations of .§;. rather than only six computations.
The data points {(n;,1;) for this problem approximated an O(nlogn) function:

1(n) = 0.00072383609n logn + 1.6797639.
Tlie sum-of-squares value for the fit was 321(1; —1(n,))" = 0.338124. Figure 5 graplis the
data points (n;.1;) and the function t(n).

5.3 The “Fans” Problem

We considered the “fans™ problem specifically because it is a worst-case time-complexity
problem for boundary classification. In this case, for 7 = 2.3.....16, the problem is to
compute the union S; of two ¢-fingered fans T; and ;. positioned in the = = 0 plane in such
a way that every finger of T} intersected every finger of U,. To do boundary classification in
this problem. one must divide the faces of the fans into at least a quadratic number of sub-
faces. as illustrated in Figure 7(a)). Clearly. this problem requires time at least 2{n*) for all
boundary classification algorithms. We believe it actually requires time Q(n*log n). because
of the overhead involved repeatedly searching for various faces, edges, and vertices—but we
liave not attempted to prove this.

Tor each 7. we let 1, be the total number of faces in the two solids 7. and {7, 10 be classi-
fied. and 1, be the average time required for boundary classification over four computations

15



Figure 8 The solid Sy; in the spheres problem, generated by Protosolid using hybrid
decomposition. This solid has 3034 faces, 8236 edges and 5204 vertices.

of 5;. However, we could have obtained good enough data for curve-fitting by averaging
each 1, over fewer computations of 5;. The reason is that in this problem. the algorithm
does nearly the same number and kind of decompositions (and thus takes nearly the same
amount of time) regardless of the order in which the splitting planes are chosen.

For this problem. the data points (n;.t;) matched an O(n*logn) function almost per-
fectly:

t(n)= 0.003154987477210g n — 0.004_8458659722 = 0.0031549874712log(0.34485499n).

The sum-of-squares value for the fit was 315,(t; — #(n;))* = 0.25016. Figure 5 graphs the
data points (n,.1;) and the function 1(n).

5.4 The “Spheres” Problem

In some cases. the problem decomposition produced by splitting along the faces of the
solids will always result in badly unbalauced subproblems. When this occurs. the input-
directed decomposition algorithm will exhibit poor time complexity. even though the time
complexity might be better if the decomposition were done in some other manner.® Oue
example of this is a problem proposed in [HHKS87]: let Sg be a unit cube centered at the
origin. and for t = 1.2.....12. compute §; = 5,1 N* S _;. where S/_; is a copy of 5,7 that
has been rotated 45° around the z, y. or = axis. depending on whether ¢/3 has a remainder
of 1. 2. or 0. respectively. Figure 8 shows the B-Rep of the solid Sys.

For each 7. we let n; be the total number of faces in the two solids S;_; and S/_; to
be classified. Just as in the fans problem. the time required for boundary classification

“ Analogous behavior occurs in a number of divide-and-conquer algorithms, such as the well-known quick-
sort algorithm.
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in computing S; was nearly independent of the order in which the splitting planes were
chosen—so we let {; be tlie average time required for boundary classification over two
computations of 5;.

For this problem, the data points (n;.1,) closely matched an O(n?) function:

t(n) = 0.00028978021 77 + 0.0064192472nlogn.

The sum-of-squares value for the fit was Y5, (1; — #(n;))? = 4.08272. Figure 5 graphs the
data points (n;.1;) and the function #{(n).”

-

5.5 Hybrid Decomposition

Above. we have examined the performance of input-directed decomposition in several kinds
of boundary classification problems. The results can be summarized as follows:

1. In the ring and star problems. input-directed decomposition can localize the face
comparisons quite effectively. \We believe these problenis represent typical cases (for
example. in [Man88], Mantyla states thiat a “typical feature of "practical cases is that
the effect of a set-operation is localized in the three-dimensional space E*7).

o

. In tlre fans problems. input-directed decomposition cannot localize the face compar-
isons very well. But in this kind of problem, no other algorithm can localize the face
comparisons either.

3. In the spheres problem. input-directed decomposition cannot localize the face com-
parisons verv well—but this is not a worst-case boundary classification problem. For
this kind of probleni. it is possible to devise other algorithms that run significantly
{aster.

One alternative to input-directed decomposition is regular decomposition. in which every
region 1s a parallelepiped. each of whose sides 1s perpendicular 1o one of the z. y. and =
axes. The initial region is taken 1o be the smallest such parallelepiped that#encloses both
solids (this is easily determined from their extents). Whenever a region is split. it is split
in half using a splitting plane that is perpendicular to one of the axes.

During boundary classification of two solids S and T. regular decomposition cannot
always decompose S and T into homogeneous fragments. However. liomogencous fragments
can be produced by combining some regular decomiposition steps with sonie input-directed
decomposition steps. We call this approach “hvbrid decomposition.”

As a preliminary investigation of hvbrid decomposition. we have experimented with the
following hybrid decomposition algorithm:

Let ¢; and ¢y be positive integer constants. During the boundary classification
of § and T, suppose R is a region that needs to be decomposed. and s and
U are the fragments of S and 7 in R. If R is the result of ¢; decompositions
or fewer. and at least oune of s and ¢ has more than ¢y faces. then use regular

‘Since the number of topological entities in S, increases exponentially with 4. for 2+ > 10 the algorithm
required enough memory that paging occurred. invalidating our measurements of 1, for + > 10. Thus we
have only included data points for 1 =1,2..... G rather than 1 =1.2..... 12
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decomposition to decompose R. Otherwise, use input-directed decomposition
to decompose R.

As an example. Figure 7(b). shows the kind of fragmentation produced by running this
algorithm on two 4-fingered fars with ¢ = G and ¢; = 15. However, for our tests of the
_hybrid algorithm. we instead used ¢; = 15 and ¢y = 20. '

In the star and fans problems. the hybrid algorithm performed very inefliciently, taking
many times the amount of time required by input-directed decomposition. In the ring
problemi. the hybrid algorithin took more time than input-directed decomposition for small
2. but took less time than input-directed decomposition for large i. In the spheres problem.
the hybrid algorithm took much less time than input-directed.decomposition, but not in a
big-O sense.

In the star problem and the fans problem, it is not surprising that the hybrid aleorithm
performed inefficiently: regular decomposition is unable to decompose space in a wayv that
carn localize the face comparisous effectively. so the 15 levels of regular decomposition simply
introduced a large amount of overhead into the the boundary classification procedure. In
such cases. we would prefer a much smaller number of regular decomposition steps. But in
the spheres problem. regular decomposition improves the efficiency—and if we had increased
the number of regular decomposition steps as a function of 7, we might have heen able to
improve the big-O complexity. One way to address both of these issues simultaneously
would be to alternate regular decomposition steps with input-directed decomposition steps.
For future work. we intend to experiment with this approach.

6 Related Work

6.1 Regular Decomposition of Space

Quadtrees and octrees use regular decomposition of space to represent rectilinear solids.
but do mot provide an exact representation for non-rectilinear solids. Extended octyees
provide an efficient and exact representation of polvhedra [Nav87. NFBS7]. Isabel Navazo
in lier Ph.D. thesis [Nav86). and Avala [ABN85] showed how to perform set operatious on
extended octrees. Carlbom [Car87] has developed an approach to perform set operations
using the polytree data structure. which is an extension of the czact octree [BN85. Navi7)
data structure. Her techniques use the regular decomposition of space provided by the
polvtrees to perform set operations.

The main similarities aud differences between these approaches and ours are as follows:

1. Bach of these approaches proceeds by building data structures to represent localized
regions of space. and then using these data structures as the underlying representations
for tlie objects being manipulated. and it is well known that these data structures can
become very large for complex objects [Kar88]. Our approach avoids this problem
by dealing purely with boundary representations. without converting to and from an
alternative representation.

2. The size of a polviree or extended octree corresponds to the number of spatial de-
composition steps used to create the tree. In some cases input-directed decomposition
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will require a larger number of spatial decompositions. and in some cases it will re-
quire a smaller number. We believe that the best wav to get good performance over
a wide variety of problems is to combine regular decomposition with input-directed
decomposition (as we have described in Section 5.4},

3. Set operations on extended octrees or polytrees involve a large number of cases. Tor
example, in a polytree there are five different types of cells—so in order to perform set
operations, there are at least twenty-five different combinations to haundle. By using
input-directed decomposition and by manipulating the B-Reps instead of polviree
cells, we avoid this proliferation of cases.

Woodwark [WooS86] has used partitioning of space in order to determine the wireframe
of a solid object from a set-theoretic (half-space) nmiodel. Woodwark's approach is like ours
in the sense that it decomposes space without building a tree structure to represent the
decomposition—but the main distinctions of our approach from that of Woodwark are as
follows:

1. Woodwark uses regular decomposition of space, whereas we use a combination of
regular and input-directed decomposition. Thus, our previous comments about the
number of spatial decomposition steps are applicable here as well.

2. The problem Woodwark addressed is that deriving the wire-frame representation of
an object from its set-theoretic description. The problem of computing set operations
would require considerable extensions to Woodwark's partioning technique.

The EXCELL scheme used by Tamminen {Tam81] uses additional data structures to
represent a solid object. To begin with, the space occupied by an ohject is divided into
extendible cells that contain several data pages. one for each kind of topological entity. The
idea is not just to partition the space into cells of equal size. but to have the size of a cell
vary with the sparsity of the data. The primary advantage of such data structures is the
following: in order to perform set operations. one first localizes the region of space where
the operation (say intersection) occurs. Suppose we have to intersect a face of an object X
with the faces of an object Y. Now, instead of doing the intersection with all the {aces of
Y. one can do it just with the cells of ¥ and only if the face-cell intersection is positive. we
have to proceed further. This cau result in considerable savings in time for two reasons:

1. A face-cell intersection is faster than a {face-face intersection,

2. The underlving assumption here is that the set operations are localized to a small
region and therefore, a face-cell intersection will be positive only in a small percentage
of the cases. A worst-case scenario for the localization assumption is the fans example.

This is similar to the regular decomposition used in our approach. One drawback of the EX-
CELL approach is the overhead involved in continuously updating the directory structures.
cells. and the data pages, etc. used by this scheme.



6.2 Nonregular Decomposition of Space

Nonregular decomposition of space was first used by Tuchs in his presentation of Binary
Space Partitioning (BSP) trees to represent polyhedra for the use in a hidden surface algo-
rithm [FKN80]; the complexity of this approach was later analvzed by Paterson and Yao
[PY89]. The use of BSP trees has been extended by Thibault and Navlor to allow for the
conversion from CSG to BSP tree to B-Rep, and to allow for the computation of set opera-
tions between a BSP tree and a CSG primitive [TN87]. Considerable research is underway
to use BSP trees as an alternative [Nay90] representation scheme for solids.

In building a BSP tree, one decomposes space by partitioning it along the faces of the
solids being represented—and we decompose space in a very similar manner. However. with
BSP trees one builds data structures to represent localized regious of space, and theu uses
tliese data structures as the underlving representations for the objects being manipulated. In
contrast, our algorithm deals purely with boundary representations. without converting to
and from an alternative representation. However. since our scheme repeatedly decomposes
space 1n the same manner that BSP trees do. it can easily be modified to produce an explicit
BSP tree after the set operations have been performed—and we have recently extended
Protosolid to do this.

6.3 Other Related Work

B-Rep data structures have been around for nearly two decades, since Baumgardt’s [Bau72]
winged-edge data structure. Since tlien, several researchers have developed various tvpes
of B-Rep data structures, including the bridge-edge data structure of Yamaguchi and Tok-
ieda [Y'T83], the half-edge data structure of Mantvla [Man88], and the non-manifold data
structures of Weiler [Wei86] and Karasick [Karf§].

For our implementation of input-directed decomposition in the Protosolid solid modeler
[Van89]. we developed a “fedge-based data structure™ that is very similar to the star-edge
representation used by Iiarasick. The primary differences are that the fedge-based data
structure uses bridge edges and separates geometry from topology. and the star-edge repre-
sentation doesn’t. Although our data structures are similar to Karasick’s. the input-directed
decomposition algorithm we use to manipulate our data structures is very different from
Rarasick's algorithm for computing the intersection of two solids. Karasick's algorithm does
not do any decomposition of space. but instead classifies every face of a solid with respect
to the other solid. thus incurring a tyvpical-case time complexity of O(n*logn). Alse. for all
points that lic on the same plane of one solid. Karasick’s algorithm tries to classifv them
with respect to another solid—which leads to a proliferation of special cases. especially
because of isolated vertices. This problem does not arise in our algorithm.

7T Conclusion

In this paper. we have presented a divide-and-conquer method for boundary classification.
The basic algorithm is based on recursively decomposing space based on the boundaries of
the solids being classified—an approach which we call input-directed decomposition. BSP
trees [Nay90] decompose space in a very similar manuer—but in conirast 1o BSP trees.



our algorithm operates directly on B-Reps without converting to and from an alternative
representation. Our algorithm has been proved correct in [Van&9]. and it can easily handle
both manifold and non-manifold 3-D solids.

Input-directed decomposition provides the basis for set operations in our Protosolid
solid modeler. Protosolid is being used in several projects, at the University of Marviand
(KNY91], Purdue University [NCW90. Van91la, Vau91b]. and Cornel]l University [NEW90].
Using Protosolid. we have performed experiments to evaluate the time complexity of input-
directed decomposition. The experimental results indicate that its worst-case time com-
plexity is O(n?log n). and its tvpical-case time complexity is O(nlogn).

For future work on input-directed decomposition, we have several topics in mind:

1. As described in this paper, input-directed decomposition does not work on curved
surfaces. However. it appears that some of the methods developed by Shapiro and
Vossler [SV90a, SVIO0b] to convert B-Reps into CSG can be adapted for use with
input-directed decomposition. to extend it to handle curved surfaces. This provides a
promising direction for future research.

]

. We have done preliminary investigations of a hybrid decomposition strategy (see Sec-
tion 5.5) that combines input-directed decomposition with regular decomposition of
space. Our current version of hybrid decomposition takes less time than input-directed
decomposition on some problems and more time on others. We believe that a more
sophisticated version of the hybrid approach max turn out to give the best overall per-
formance over a wide variety of problems. and we intend to investigate this further.

3. The good performance of Protosolid on problems such as Karasick's spheres problem
THHKS7] was due to careful implementation and the inherent properties of the deconi-
position process, rather than through any particular methods for achieving robustness.
However, we are currently involved in further research on the issue of robustness. and
intend to incorporate this work into future versions of Protosolid.
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