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Abstract

In this correspondence, the performance and complexity of channel-optimized vector
quantizers are studied for the Gauss-Markov source. Some interesting observations
on the geometric structure of these quantizers are made which have an important
implication on the encoding complexity. For the squared-error distortion measure, it
is shown that while the optimum partition is not described by the nearest-neighbor
rule, an operation equivalent to a Euclidean distance measurement with respect to
an appropriately defined set of points (used to identify the encoding regions) can
be used to perform the encoding. This implies that the encoding complexity is
proportional to the number of encoding regions. It is then demonstrated that for
very noisy channels and a heavily correlated source, when the codebook size is large
the number of encoding regions is considerably smaller than the codebook size -
implying a reduction in encoding complexity.

t This work was supported in part by National Science Foundation grants NSFD
MIP-86-57311 and NSFD CDR-85-00108, and in part by a grant from Martin Mari-
etta Laboratories.



I. Introduction

Vector quantization, as a means of data compression, has received a tremendous
amount of attention in the past decade. This is, primarily, due to dramatic per-
formance improvements obtained in many image and speech coding situations when
scalar quantizers are replaced by vector quantizers [1]-[3].

A data compression system removes the redundancy in the source and retains
the useful information for subsequent transmission and/or storage. This removal of
redundancy, in turn, introduces a great deal of sensitivity to the transmission noise
or storage device errors. Since vector quantization is now finding applications in
practical situations and since some type of channel noise is present in any practical
communication system, the analysis and design of vector quantizers for noisy channels
is receiving increasing attention. In [4]-[8], various techniques for assigning binary
codewords to the vector quantizer codevectors are proposed. On the other hand, a
modification of Lloyd’s algorithm for the design of vector quantizers for noisy channels
is discussed in [9]-{13].

In this correspondence, besides providing explicit numerical results on the perfor-
mance of channel-optimized vector quantizers for Gauss-Markov sources, we provide
some insight on the geometric structure of the channel-optimized vector quantizer
and discuss its implication on the encoding complexity. We will show that while the
optimum partition is not described by the nearest-neighbor rule, an operation equiv-
alent to a Euclidean distance measurement with respect to an appropriately defined
set of points can be used to perform the encoding. We will show that the complexity
of this operation is proportional to the number of encoding regions (instead of the
codebook size). Further, we will demonstrate that, in general, when the channel
gets noisier the number of encoding regions associated with the optimum system gets
smaller - hence resulting in lower complexity.

The rest of this paper is organized as follows: In Section II notation is introduced
followed by a brief description of the problem. In Section III the necessary condi-
tions for optimality are presented. Section IV includes a discussion of the geometric
structure of the optimum partition and the implications of this on the encoding com-
plexity. In Section V specific numerical results on the performance and complexity
of the channel-optimized vector quantizer for Gauss-Markov sources are presented.
Finally, a summary is presented in Section VI.

I1. Notation and Problem Statement

Let us suppose that the source to be encoded is a real-valued, stationary and ergodic
process {X;; t =0,1,...} with zero mean and variance o%.

The source is to be encoded by means of a vector quantizer (VQ) whose output is
transmitted over a channel. We consider a k-dimensional, M-level VQ and a discrete
memoryless channel (DMC) with input and output alphabets J = {1,2,...,M}.
The overall encoder-decoder, as illustrated in Fig. 1, can be described in terms of
an encoder mapping v, a channel indez mapping b and a decoder mapping g. The
~encoder v : R¥ — J is described in terms of a partition P = {51, S3,...,Sx} of R
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according to !
y(x)=1i,ifx€eS; 1€, (1.a)

where X = (Tnk, Tnk+1,.-->Znk+k—1) 18 a typical source output vector. The channel
index assignment is a one-to-one mapping b: J — J which assigns to the encoder
output ¢, an index ¢’ = b(z) € J which is then delivered to the channel. The channel
is a DMC with P(j|¢') denoting the probability that the index j is received given
that i’ is transmitted. Finally, the decoder mapping ¢ : J — RF, is described in
terms of a finite reproduction alphabet (codebook) C = {c;,¢,...,cpm}, according
to

9()=c¢;, 7€ JT. (1.b)

Let us assume that the distortion caused by representing the source vector x by a
reproduction vector (also called a codevector) y, is given by a non-negative distortion
measure d(x,y). The performance of this coding system is generally measured by
the average distortion per sample D(P,C;b) and the encoding rate R. The average
distortion is described by

1 M M
D(P,Cib) = 1 Y. 3 P [ px)dlx,e)ix (2.2

where p(x) is the k-fold probability density function (p.d.f.) of the source and the
encoding rate is given by

1

Rzk

log, M, bits/sample. (2.b)

For a given source, a given noisy channel, a fixed dimension k£ and a fixed code-
book size M, we wish to choose C, P and b in such a way as to minimize D(P,C;b).

III. Necessary Conditions and Algorithm

For now, let us consider the simpler problem of minimizing D(P,C;b) when b is
fixed. This problem is a straightforward extension of the channel-optimized scalar
quantization problem [10] and a special case of the trellis vector quantization of [11],
[12]. In fact, upon rewriting (2.a) as

1 M M
D(P,Ci%) = 1 3 [ p0(3 PG, e )i 3)

1 Notice that the notation used for P does not exclude the possibility that some of
the encoding regions be empty. This corresponds to the situation where the encoder
simply does not transmit some of the indices in J; due to the channel noise, however,
any index in J may be received and hence the size of the reproduction alphabet must
be exactly M.



it becomes clear that for a fixed b, the problem of minimizing the average distortion
is identical to the VQ design problem with a modified distortion measure [11] (the
term in the braces in (3)). Specifically, for a fixed b and a fixed C, the optimum
partition P* = {S},S;,...,S}3,} is such that

M M
St ={x: ) PG ) < 3 PGIND)(x ;) VI}, i€ T (4a)

= ]:1

We remark here that any change in b(z) in (4.a) will only result in a relabeling of
the elements of P*. In fact, the MSE obtained after the application of (4.a) will be
independent of the index assignment b. For this reason, we believe the choice of b
is only of limited importance in the VQ design. The numerical results in Section V
support this claim.

Similarly, it is easy to show that for a fixed b and a fixed P, the optimum

codebook C* = {e},c3,...,c},} must satisfy
& = arg min, E{dX,y)lV =5}, j € J, (4)
yE]R,’c

where V is used to denote the random variable at the channel output.

A successive application of equations (4.a) and (4.b) results in a sequence of
encoder-decoder pairs for which the corresponding average distortions form a non-
increasing sequence of non-negative numbers which has to converge. Therefore, a
straightforward extension of the algorithm in [1] can be used for optimizing the
partition P and the codebook C. From now on, we will refer to the encoder-decoder
pair obtained from this modified algorithm as the channel-optimized VQ (COVQ).

Let us now focus attention on the squared-error distortion criterion where
d(x,y) =|| x — y ||?. In this case, the optimum partion in (4.a) is given by

M M
St = s S PGB - il < 3 PGBk -l VI), i€ T, (5a)
Jj=1 j=1

Similarly, the optimum codebook is easily shown to simplify to

o = Zin PUIG) [ xplx)dx
TS PGING)) s, p(x)dx

€J. (5.b)

For the Gauss-Markov source, the binary symmetric channel and the squared-
error distortion measure, performance results at different bit rates and for various
values of k are presented in Section V. In what follows, for the squared-error distortion
measure we will concentrate on the geometric structure of the channel-optimized
vector quantization scheme and its implications on the encoding complexity.



IV. Geometric Structure and Complexity Implications
For fixed b and C, the ith optimum encoding region described by (5.2), can be written

St={\Sh (6)

I#1
where S} is described by

a={x: 2Z[P(J|b(1)) P(5l6(EN)(x, €5) Z[P (716(D)= PGB lleslI*}, (7)

and (x,y) denotes the inner product of x and y. In view of the expression in (7),
the region S}; is characterized by a hyperplane H;;, separating the regions S¥ and S},
described as follows:

M M
Hi ={x=2_Z[P(J'Ib(l))—P(jlb(i))](x,Cj) = > _[PGIND) - PGl lleslI*). (8)

i=1

Note that the hyperplane H;; is not necessarily the perpendicular bisector of the
cord connecting c¢; and c;. This observation has an important implication: unlike the
conventxonal VQ (noiseless channel case), to determine whether x belongs to S} or

(one side of Hj; or the other), it is not enough to perform a distance measurement
from X to ¢; and ¢;. In fact, to make this determination, as it can be seen from (7),
distance measurements from x to all ¢;’s is necessary. This corresponds to a major
increase in encoding complexity which is merely due to the presence of the noisy
channel. In the following we will show that this encoding complexity can be reduced
in two ways.

First, let us define for all nonempty S;’s

M
yi = B(Y|X € 5) = Y P(jlb(i))c;, i € T, 9)
=1

where Y denotes the random variable at the output of the decoder. Also, for brevity
of notation we will define

M
A . . .
o = E([Y|*|X € Si) = ) P(jlb(@))lle;1%, i € T (10)
j=1
Then, it is easy to show that the hyperplane H;; is described by
Hy={x:2(x,y1~yi) =a1—a}. (11)

It is interesting to note that while H;; is not necessarily perpendicular to the
cord connecting ¢; to ¢;, according to (11), it is perpendicular to (but not necessarily
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the bisector of) the cord connecting y; to y;. This means that the distances of x
to y; and y; can be used to determine the side of Hy to which the point x belongs.
More precisely, to determine which region a given point x belongs to, it suffices

to compute d;(x) = a; — 2(x,y;), forall ¢ € J which correspond to nonempty
regions, and select that ¢ which minimizes dj(x). Notice that this involves only M
inner product computations and M scalar subtractions. Hence, the complexity of
encoding is essentially proportional to the number of nonempty encoding regions in
the partition P*.

The second important point is that, in fact, when the channel is noisy, the
number of nonempty encoding regions associated with the locally optimal encoder-
decoder pair may turn out to be smaller than the cardinality of the codebook, M.
Roughly speaking, this means that the optimum system trades quantization accuracy
for less sensitivity to channel noise. The same observation was made in the case of
channel-optimized scalar quantization [10]. To be more specific, let us go back to
(5.a) and consider the final optimum codebook C*. Then, for some i, it may be the
case that for any x € RF there exists an [ = {(x) such that 2 P(]Ib(l))”x —c|* £
>_; P(16(3))|Ix — c;%; this corresponds to Sf = 0. Generally, the more noisy the
channel i is, the smaller the number of nonempty encoding regions will be. To illustrate
this point, for a two-dimensional (k = 2), three-level (M = 3) VQ with a fixed
codebook C = {c; = (1,0), c2 = (-1,0), c¢s =(0,2)} and a DMC described by the
diagram in Fig. 2, we have depicted the shape of the optimum encoding regions and
the corresponding y;’s for ¢ = 0.00, 0.10, 0.15 and 0.20, in Figs. 3.a - 3.d. Here, we
have assumed that b(:) = i, i = 1,2,3. It can be seen from these figures, that for
the fixed codebook C, the encoding region S5 becomes smaller as € gets larger; this
is because the channel is less reliable in transmitting ¢ = 2 than ¢ = 1 or 3. It is seen
(Fig. 3.d) that when e = 0.20, S7 vanishes, implying that no source output vector
should be mapped to : = 2.

Suppose for a given source, a given channel and a given codebook size M, the
locally optimum COVQ is found. Let us assume that the partition associated with
this COVQ consists of N (N < M) encoding regions. Then, despite the fact that
there are M codevectors in the codebook C, we have only N y;’s as defined in (9)
and hence the encoding complexity is proportional to N. As our numerical results in
Section V indicate, for very noisy channels and for a correlated source, the value of
N is noticeably smaller than M, resulting in considerable complexity reductions.

V. Numerical Results

In this section, we present numerical results on the performance and complexity of the
COVQ scheme and make comparison with the Linde, Buzo and Gray VQ (LBGVQ)
whose design is based on a noiseless channel assumption [1].

We consider a Gauss-Markov source with two different correlation coefficients:
p = 0.0 and p = 0.9. The channel is assumed to be a Binary Symmetric Channel
(BSC) with crossover probability e. The binary codeword delivered to the channel is
the binary representation of the index at the output of the channel index assignment

mapping.



For R = 1 bit/sample, Signal-to-Noise Ratio (SNR) performance results are
presented in Tables 1 and 2 for p = 0.0 and 0.9, respectively. These results include
k=1,2,4 and 8 and € = 0.00,0.005,0.01,0.05 and 0.10. Also, the number of encoding
regions (as a measure of encoding complexity) for these different cases is included in
Tables 3 and 4.

Before we discuss these results, some details about how they are obtained are
necessary. The LBGVQ results are obtained by using the algorithm in [1] with a
stopping threshold of 10~3. The assignment of binary codewords to the codevectors
of the designed LBGVQ is done via a simulated annealing algorithm described in [7].
The COVQ results are obtained by means of the same algorithm with the modified
distortion measure [9]-[11]. The LBGVQ and its corresponding binary codeword
assignment are used as the starting point for the design of the COVQ for ¢ = 0.005.
Then, the COVQ obtained for € = 0.005 is used as the starting point for the COVQ
for € = 0.01, and so on. Our experiments indicate that the final results for the COVQ
are not very sensitive to the initial choice of the binary codeword assignment for the
LBGVQ. This implies that in minimizing the average distortion in (3) the initial
choice of b does not play a significant role.

The results in Tables 1 and 2 indicate that the COVQ performs better than the
LBGVQ in all cases; the performance improvements are more noticeable for larger
dimensions, higher source correlation values and very noisy channels. It is interesting
to note that, in fact, it is for these cases (e.g., k = 8, p = 0.9 and € = 0.1) that the
largest reduction in the number of encoding region (hence, encoding complexity) is
observed.

VI. Summary and Conclusions

We have described a VQ-based system in a noisy channel situation. It is shown that in
some cases (especially, when the channel is very noisy) useful performance gains can
be obtained by using a COVQ instead of an LBGVQ. Furthermore, we have shown
that the encoding complexity can be made proportional to the number of nonempty
encoding regions; this is done by defining an appropriate set of points with respect
to which an operation equivalent to a Euclidean distance measurement is performed.
Finally, it is shown that when the channel is very noisy and for correlated sources,
the number of encoding regions is much smaller than the codebook size and hence

the encoding complexity of COVQ is smaller than that of LBGVQ.
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[€=10.00 [e¢=0.005] ¢=0.01 | e=0.5 ] c=0.10]

k=1]LBGVQ| 4.40 4.25 4.10 3.09 2.09
covaQ 4.40 4.25 4.11 3.15 2.27
k=2 LBGVQ | 4.38 4.23 4.08 3.06 2.05
CcCOovQ 4.38 4.23 4.11 3.15 2.26
k=4[ LBGVQ | 4.58 4.36 4.15 2.82 1.64
covQ 4.58 4.43 4.24 3.17 2.28
k=8| LBGVQ | 5.08 4.64 4.25 2.15 0.70
COovQ 5.08 4.64 4.34 3.19 2.29
Table 1: SNR (in dB) Performance Results;
Memoryless Gaussian Source; R = 1 bit/sample.
{€=0.00]€=0.005]|e=0.01]e=0.05] e=0.10 |
k=1{LBGVQ 4.40 4.25 4.10 3.09 2.09

CcovQ 4.40 4.25 4.11 3.15 2.27

LBGVQ | 7.87 7.31 6.81 4.13 2.19
CcCovQ 7.87 7.31 6.83 4.37 2.76

k=4 |LBGVQ| 10.18 9.10 8.24 4.37 2.00
CcCOovQ 10.18 9.15 8.37 6.23 4.65
k=8 LBGVQ|[ 11.49 9.99 8.87 4.46 2.00

COovQ 11.49 10.31 9.70 7.44 5.73

Table 2: SNR (in dB) Performance Results;
Gauss-Markov Source; p = 0.9; R =1 bit/sample.



[ €=10.00 [ €=0.005] e=0.01 | €=0.056]€=0.10 |

E=1]LBGVQ| 2 2 ) 3 )
covQ 2 2 2 2 2
k=2]LBGVQ 4 4 4 4 4
covQ 4 4 4 4 4
k=4 | LBGVQ 16 16 16 16 16
CcovQ 16 16 16 16 16
k=8| LBGVQ 256 256 256 256 256
covQ 256 256 256 256 256
Table 3: Number of Encoding Regions;
Memoryless Gaussian Source; R = 1 bit/sample.
[ €=0.00{€e=0.005]e=0.01]e=0.05]e=0.10
k=1|LBGVQ 2 2 2 2 2
__|covq | 2 2 2 2 2
k=2 |LBGVQ| 4 4 4 4 4
covQ 4 4 4 4 4
k=4 | LBGVQ 16 16 16 16 16
covQ 16 16 16 11 9
k=8| LBGVQ 256 256 256 256 256
CcovQ 256 249 230 98 61

Table 4: Number of Encoding Regions;

Gauss-Markov Source; p = 0.9; R = 1 bit/sample.
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Figure 2: Codevectors and Channel Transition Probabilities.
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Figure 3: Shape of Encoding Regions for Different Values of e.



