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In sporting goods manufacturing, such as in fishing rod design, new products are created 

using an Edisonian process. By changing the geometry of the carbon fiber prepreg layup, a rod 

can be constructed that lends itself to a specific application. This thesis will present an integrated 

computational materials engineering (ICME) approach for carbon fiber fishing rods using 

simulation theory and experiments. The computations are based on the finite element method 

(FEM), including the use of integrated Euler-Bernoulli beam theory in MATLAB.  The 

experimental methodology uses three-point bending (3PB) flexure test analysis to determine 

values for Young’s Modulus which are then incorporated into numerical solutions and 

modelling.  Discretized values for Young’s Modulus are used in thin-walled tapered cylindrical 

Euler-Bernoulli beam models through variable second area moment of inertia (��) and constant �� approaches.  The 3PB flexural experiments performed on a test rod section agree to FEM 

solutions, along with convergence with respect to mesh size between variable �� and constant �� 

beam models.  A modal analysis on the beam provides insight to the free-vibrational effects of a 

fishing rod under differing boundary conditions.  Through this ICME approach, rod 

manufacturers can understand properties in rod prototypes and better develop future rod models.    
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Chapter 1: Introduction 

1.1 Motivation  

With the ability to form many geometries, carbon fiber lends itself to many applications.  

One of the most useful forms of carbon fiber is carbon fiber prepreg.  Prepreg in this case is short 

for pre-impregnated.  In this form, unidirectional carbon fiber filaments are manufactured with a 

pre-impregnated resin and supporting scrim layer to help with manufacturing processing.  This 

carbon fiber prepreg has longitudinal, transverse, and normal properties with respect to the 

unidirectional (longitudinal) fiber direction (Figure 1).  

 

 

Figure 1 – Unidirectional prepreg with unique longitudinal (1), transverse (2), and normal (3) 

properties. 

 

 

 

1 

2 
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The resin, when heated to a specific temperature, will impregnate the carbon fiber 

filaments and bond the filaments to adhere to the geometry of the desired part.  The scrim layer 

helps in the transportation and storage of the prepreg roll, as without this differing ply scrim, the 

prepreg would be fragile and the carbon filaments could become damaged easily.   

The developments in carbon fiber prepreg production in the latter half of the 1900s gave 

way to the material being used for many new applications.  Aside from aerospace and industrial 

applications, the prepreg was also adapted to be used by sporting goods manufactures.  By 

rolling the prepreg around a mandrel, a rod can be made with properties that excel the fiberglass 

and natural materials common in the past.  In this case, the use of carbon fiber in fishing rods 

will be examined and studied.   

  

1.2 History and Rationale 

Before the use of carbon fiber, rods were primarily constructed of bamboo or fiberglass. 

Fiberglass does not have the best stiffness for its size and weight, and rods constructed with 

fiberglass tended to be very heavy, even more so than their bamboo counterparts [1]. 

When carbon fiber rod manufacturing became standardized in the 1970’s, major rod 

manufactures jumped on this new ‘space age’ material.  Lighter, stiffer, and greater damping 

response of the carbon fiber yielded to a plethora of new rod designs and applications [1].  

When the rod is held in the hand for long periods of fishing, as in fly fishing, the weight 

of the rod can affect the angler’s experience.  The rod’s mass moment of inertia that is felt in the 

wrist and hand, known in fly fishing as “swing weight,” was greatly reduced and allowed for 

more power and energy to be transmitted to the line during the casting stroke [2]. 
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These advancements in rod manufacturing technology superseded the analytical 

procedures of the time.  With the modern advancements in experimental design and computer 

simulations, the goal of this thesis is to quantify the properties of a carbon fiber rod to better 

understand the ways that manufacturing can be streamlined and analyzed. To this day, many rods 

are manufactured by hand, and the design of new rods is done with an Edisonian ‘guess and 

check’ process.  This thesis serves as the groundwork to better understand the intrinsic properties 

of a carbon fiber rod, and how manufactures can use an ICME approach to accelerate the design 

process and create the best possible product.   

1.3 Manufacturing 

The carbon fiber arrives at the rod factory in a sheet called prepreg.  This sheet has pre-

impregnated fibers that have an uncured matrix material. This sheet is cut into smaller ‘flags’ and 

rolled (Figure 2) around the tapered steel mandrel coated with a wax removal agent.   

   

Figure 2 – Prepreg around mandrel 

The tip section of a fly rod is very thin, and may only have a few plies (layers), whereas 

the butt section (handle end) has many more plies. When the prepreg is applied to the mandrel, 

the side of the prepreg that is tacked down has its unidirectional fibers parallel to the length of 

Mandrel 
Unidirectional CF 

prepreg 
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the mandrel (Figure 3).  This “flag” of prepreg material is not a rectangular sheet.  The flag is cut 

from a sheet of unidirectional prepreg that has been determined to provide a consistent amount of 

material around the circumference of the mandrel.  

 

Figure 3 – Prepreg tacked to mandrel 

 

It is important to note that after rolling the tapered mandrel with the prepreg material 

attached the fibers during each consecutive wrap will not adhere to a uniaxial direction as shown 

in Figure 4. 

 

Figure 4 – Direction of Unidirectional Carbon fibers after rolling.  The directions of longitudinal 

(1) and transverse (2) will not align with center axis after the prepreg is rolled around the tapered 

mandrel. 

1 

2 

3 

Center axis  
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The prepreg resin is extremely important in the rod design.  The resin not only acts as a 

bonding agent for the plies, but it also protects the carbon fiber structure.  Many companies today 

use small particles in the resin to fill in extremely small gaps in the carbon fiber matrix  [3]. 

Once the rod is wrapped around the mandrel, it is tightly wrapped in a cellophane tape 

that pushes the layered carbon tightly together around the mandrel.  This cellophane tape also 

shrinks during the curing process, and reduces gaps between the prepreg and mandrel. The 

uncured resin now must be activated via the curing process.  The rods are put into a large curing 

oven where they go through a cycle of specific temperatures.  The rods are brought up from 

room temperature and held at time specific temperature plateaus that match the resin 

manufacturer’s specifications.  After cooling, the mandrel is pneumatically removed from the 

cured rod and the cellophane tape is removed.  Any error in this process can result in an 

undetectable failure mode of the blank [4]. 

1.4 Research Methods  

The development of an Integrated Computational Materials Engineering (ICME) 

approach to studying the thin-walled tapered beam is beneficial to understanding the bending 

characteristics of fishing rods.  Deflection curves are commonly used in the fishing rod industry 

to understand the taper and bending characteristics of a certain rod profile and design.  Rods 

have many different “action” profiles, which can consist of fast, progressive, and slow, as 

commonly used in the industry [2].  When the rod is loaded, as in during a cast, the rod will 

exhibit different flexure qualities depending on the taper and material used in the rod (Figure 5).  

For example, rods made with fiberglass with a lower modulus than carbon fiber will exhibit a 
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slower action.  Rods of similar length and stiffness can be compared from manufacturer to 

manufacturer (Figure 6).   

 

Figure 5 – Fly Rod Actions [5] 

 

Figure 6 – Fly rod deflection curves [6] 

 

A previous isotropic beam model was developed in ANSYS to determine the flexure 

characteristics of a rod, but this yielded low accuracy and adherence to the experiments 

performed.  By using a linear isotropic beam, the rod needed to be discretized into constant 

diameter sections for the calculation [7].  This model also did not consider the variation in 
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Young’s Modulus.  A tapered beam model was developed that allowed for higher accuracy 

compared to experiments.  This justifies the use of a tapered second area moment of inertia as 

used in the calculations [8]. 

1.5 Research Goals and Objectives  

By developing an approach that studies the rod as a beam, the effects of complex 

geometry and carbon prepreg layups can be accounted for in the variation in the second area 

moment of inertia and the variation in Young’s Modulus over the length of the beam.  Flexure 

tests can be performed, along with modal analysis in order to determine the flexure profiles and 

mode shapes of a rod.  These mode shapes can be used to help understand and achieve controlled 

rebound of the rod to a steady state position after a cast is performed.  By considering the 

variation in young’s modulus and area moment of inertia, a rod designer can balance these 

attributes to gain insight into the mechanical properties of fishing rods in order to aid the design 

process.   
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Chapter 2: Methods  

2.1 Assumptions and Approximations  

 Euler – Bernoulli (EB) beam theory was used in this work.  This introduced all the 

standard assumptions inherent in EB beam theory.  Using EB beam theory, two different finite 

element models were created in MATLAB in order to compare with the experiment. These two 

models were referred to as the constant second area moment of inertia (constant ��) and the 

variable second area moment of inertia (variable ��) models.  In the constant �� model, the area 

moment of inertia was assumed to be constant for each element in the model.  In the variable �� 

model, the taper of the beam was accounted of via integration of �� inside the stiffness matrix 

integral (Eq. 24).  These two beam models were important to understand the geometric stiffness 

effects of the beam. 

 In both MATLAB codes, the value for Young’s Modulus was assumed to be constant for 

each element in the beam.  The calculation of the Young’s Modulus for both beam models 

incorporates a constant area moment of inertia in its calculation.  Thus, the only difference 

between the two models is the calculation of the area moment of inertia.  This Young’s Modulus 

was found to vary over the length of the beam because of geometrical and manufacturing 

methods.  As discussed in Chapter 1.3, the layup of the rod was important to understand in this 

work.  From the butt of the rod to the tip, the unidirectional fibers became misaligned due to the 

wrapping of the fibers around the tapered mandrel. Considering the unidirectional (longitudinal) 

direction, the layering of prepreg over the length of the tapered beam would introduce a twist to 

the longitudinal direction that would not align with the center axis.  Thus, the Young’s Modulus 

would have components from both the longitudinal and transverse modulus of the prepreg 

material due to the changing direction of the prepreg.   
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In the specimen used, the wall thickness of the rod was found to be consistent over the 

length of the beam because of the wedge shaped “flag” of prepreg material (Figure 3).  These 

“flags” of material were measured and cut so there was a consistent amount of material around 

the mandrel.  This can also be seen via the slope of the inside and outside rod diameters being 

parallel as shown in Figure 18.  However, for some rod parts, the wall thickness might not be 

constant over the length of the rod.  The finite element model created in MATLAB accounts for 

varying wall thickness in the beam.   

In addition to these approximations, it is important to note that Euler-Bernoulli beam 

theory in this application uses 1D beam elements in two dimensions to represent a 3D rod.  The 

beam model used stepped sections consisting of an isotropic Young’s Modulus for the beam, and 

a constant mass for each element in the rod.   

 During the assembly of the local stiffness matrices used in the calculation, the rod was 

broken up into discrete elements.  Each element of the rod will have its own geometric and 

material properties.  This allows for control in the number of elements used in the MATLAB 

finite element model.   
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2.2 Euler-Bernoulli beam theory 

2.2.1 Stiffness Matrix  

Axial stress  ��� normal to the cross-section is related to the axial strain ��� through Young’s 

Modulus 	 [10]. 

 ��� = 	��� (1) 

Moment � around the y-axis is defined as 

���� = � ����� �� 
(2) 

 

Where ����� is the force normal to the infinitesimally small surface area �� and � is the 

moment arm measured from the y-axis.   

���� = ��	���� �� = � �	 �� ���� � ��� =  � ���� 	 � ��� �� 
(3) 

 

To which is found the moment curvature relation 

  ���� = 	�� �����  (4) 

 

Where 

 �� =  ���� �� 
(5) 

 

is the second area moment of inertia.  

�� =  − ���  

 

(6) 

Then 

 ���� = 	�� ������  

 

(7) 

  ̂ =  �����  
(8) 
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Infinitesimal Strain Energy is 

"# =  � 	��
�$%

�$&  ̂" ̂� 

(9) 

 '( = 1 − 3+� + 2+.,    '� = −+ + 2+� − +., 
 '. = 3+� − 2+., '0 = +� − +. 

(10) 

 

Through manipulation of the assumed displacement, and incorporating the shape functions in Eq. 

10 corresponding to the displacement � and rotation � 

 � =  1'(  2'�  '.  2'03 4�(�(����
5 

(11) 

 

The strain energy increment for element “e” is expressed as: 

 "#6 =  � 	��
�$%7

�$& " ̂ ̂� 

 

(12) 

 

Noting that the assumed displacement is expressed with + as a non-dimensional coordinate:  

 ̂ = ����� = ��+ 8���+ �+�9 �+� =  1:� �����  
(13) 

 

The assumed displacement with respect to Eq. 11 can be expressed as: 
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 ̂ =  1:�  ���'(�+� �( + ��'��+� 2�( + ��'.�+� �� + ��'0�+� 2��� 
(14) 

 

 

 ̂ =  12� 1−6 + 12+    �4 − 6+�2    6 − 12+    �2 − 6+�23 4�(�(����
5 

(15) 

  

 

Symbolically: 

 ̂ =  12� => 
(16) 

 

Using this relation into Eq. 12: 

"#6 =  120 � 	��
?$(

?$& ">@=@=>2�+ =  ">@ A 12. � 	��
?$(

?$& =@=>�+B > =  ">@C6> 

(17) 

 

 

 

Where: 

C6 =  12. � 	��
?$(

?$& =@=�+ 

(18) 

 

The equation above is used in the calculation of the local stiffness matrix for the tapered area 

moment of inertia. With the second area moment of inertia inside the integral along with the = 

matrices, this is integrated in +-space over the length of the desired beam element in order to gain 

the local stiffness matrix for that element.   
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C6 =  2	��2. D 6 −32 −6 −32−32 22� 32 2�−6 32 6 32−32 2� 32 22� E 

(19) 

 

With a constant second area moment of inertia, the local stiffness matrix is calculated as shown 

above.   

Considering the equilibrium equation F# =  G 

        
�HI�%J D 6 −32 −6 −32−32 22� 32 2�−6 32 6 32−32 2� 32 22� E 4�(�(����

5 =
KLM
LN G(6��(6G�6���6 OLP

LQ  
(20) 

Integrating second area moment of inertia: 

Classically, the second area moment of inertia for a hollow cylinder is given as: 

���+� =  R S64T ��U0�+� − �V0�+�� (21) 

Which was used in the constant �� beam model.  But considering the tapered section [10], let 

�U�+� = �WXYWZ�% + + �[     (22) 

 

And 

�V�+� = �WXYWZ�\��]Z\]X�% + + �[ − 2^[     (23) 

  

Where the integral with respect to s is performed and �[ and �] are the diameter at the butt and 

tip of each section and ^[ and ^] are the wall thickness at the butt and tip of each section, 

respectively.  By substituting Eq. 22 and Eq. 23 into Eq. 21 and then Eq. 21 into Eq. 18, it can be 
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determined that the closed-form of the Euler-Bernoulli stiffness matrix given the thin-walled 

hollow tapered cylinder is found to be 

C6 =  H%J _ �Rà0T 8R�WXYWZ�% + + �[T0 − R�WXYWZ�\��]Z\]X�% + + �[ − 2^[T09�?$%?$& =@=�+  
(24) 

 

 

After integrating Eq. 24, the matrix form of the Euler-Bernoulli beam theory for a thin-

walled hollow tapered cylinder was be found to be 

 

8 35	S5122�9 D F(( F(� F(. F(0F�( F�� F�. F�0F.( F.� F.. F.0F0( F0� F0. F00
E 4�(�(����

5 =
KLM
LN G(6��(6G�6���6 OLP

LQ  
 

(25) 

Where: F(( = �132�[.^[ + 15�[.^] + 45�[��]^[ + 18�[��]^] − 396�[�^[ − 90�[�^[^] − 18�[�^]� + 18�[�]�^[+ 45�[�]�^] − 90�[�]^[� − 72�[�]^[^] − 90�[�]^]� + 528�[^[. + 180�[^[�^]+ 72�[^[^]� + 60�[^]. + 15�].^[ + 132�].^] − 18�]�^[� − 90�]�^[^] − 396�]�^]�+ 60�]^[. + 72�]^[�^] + 180�]^[^]� + 528�]^]. − 264^[. − 120^[.^] − 72^[�^]�− 120^[^]. − 264^]0�/2� F(� = −�94�[.^[ + 11�[.^] + 33�[��]^[ + 9�[��]^] − 282�[�^[� − 66�[�^[^] − 9�[�^]� + 9�[�]�^]+ 12�[�]�^] − 66�[�]^[� − 36�[�]^[^] − 24�[�]^]� + 376�[^[. + 132�[^[�^]+ 36�[^[^]� + 16�[^]. + 4�].^[ + 38�].^] − 9�]�^[� − 24�]�^[^] − 114�]�^]� + 44�]^[.+ 36�]^[�^] + 48�]^[^]� + 152�]^]. − 188^[0 − 88^[.^] − 36�[�^]� − 32^[^]. − 76^]0�/2 F(. = −F(( F(0 =  −�38�[.^[ + 4�[.^] + 12�[��]^[ + 9�[��]^] − 114�[�^[� − 24�[�^[^] − 9�[�^]� + 9�[�]^[+ 33�[�]�^] − 24�[�]^[� − 36�[�]^[^] − 66�[�]^]� + 152�[^[. + 48�[^[�+ 36�[^[�^]� + 44^[^]. + 11�].^[ + 94�].^] − 9�]�^[� − 66�]�^[^] − 282�]�^]� + 16�]^].+ 36�[^[�^] + 132�]^[^]� + 376�]^]. − 76^[0 − 32^[.^] − 36^[�^]� − 88^[^].− 188^]0�/2 F�( = F(� 
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F�� = �68�[.^[ + 9�[.^] + 27�[��]^[ + 8�[��]^] − 204�[�^[� − 54�[�^[^] − 8�[�^]� + 8�[�]�^[ + 6�[�]�^]− 54�[�]^[� − 32�[�]^[^] − 12�[�]^]� + 272�[^[. + 108�[^[�^] + 32�[^[^]� + 8�[^].+ 2�].^[ + 12�].^] − 8�]�^[� − 12�]�^[^] − 36�]�^]� + 36�]^[. + 32�]^[�^] + 24�]^[^]�+ 48�]^]. − 136^[0 − 72^[.^] − 32^[�^]� − 16^[^]. − 24^]0� F�. = −F(� F�0 = �26�[.^[ + 2�[.^] + 6�[��]^[ + �[��]^] − 78�[�^[� − 12�[�^[^] + �[�^]� + �[�]�^[ + 6�[�]�^]− 12�[�]^[� − 4�[�]^[^] − 12�[�]^]� + 104�[^[. + 24�[^[�^] + 4�[^[^]� + 8�[^].+ 2�].^[ + 26�].^] − �]�^[� − 12�]�^[^] − 78�]�^]� + 8�]^[. + 4�]^[�^] + 24�]^[^]+ 104�]^]. − 52^[0 − 16^[.^] − 4^[�^]� − 16^[^]. − 52^]0� F.( = −F(( F.� = −F(� F.. =  F(( F.0 = −F(0 F0( = F(0 F0� = F�0 F0. = −F(0 F00 = �12�[.^[ + 2�[.^] + 6�[��]^[ + 8�[��]^] − 36�[�^[� − 12�[�^[^] − 8�[�^] + 8�[�]�^[ + 27�[�]�^]− 12�[�]^[� − 32�[�]^[^] − 54�[�]^]� + 48�[^[. + 24�[^[�^] + 32�[^[^]� + 36�[^].+ 9�].^[ + 68�].^] − 8�]�^[� − 54�]�^[^] − 204�]�^]� + 8�]^[. + 32�]^[�^] + 108�]^[^]�+ 272�]^]. − 24^[0 − 16^[.^] − 32^[�^]� − 72^[^]. − 136^]0� 
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2.2.2 Unit Test Verification 

 Unit tests were conducted to confirm the results from Eq. 20 and Eq. 25 are consistent.  

The results of solving Eq. 20 and Eq. 25 were compared with results from the MATLAB codes. 

The unit tests were performed using a two element simply supported beam with a cantilever 

point load.  

 

Figure 7 - Constant ��  beam model verification 

First, the constant �� case is considered (Figure 7).  Constant values of E, ��, and L were 

implemented using Eq. 20.  These constant values were given to be E =1, �( = 4, ��=3, and L = 

10.  The boundary conditions at node one were �( = 0  and �( = 0 with a point load               

h = −1 applied at the end of the beam �G���.   After inverting the stiffness matrix and solving for 

�� and �., the values were found to be: 

 

 

 

 

Element 2  Element 1  

P  
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Unit Test  Displacement �� Displacement �. 

Hand calculation -208.3333 -694.4444 

MATLAB code -208.3333 -694.4444 

 

Table 1 - Constant �� unit test results 

 

 

Figure 8 - Variable ��  beam model verification 

 

A second unit test verification was performed considering variable �� using Eq. 25 (Figure 8).  A 

two element simply supported beam with a cantilever point load is also used for the test.  More 

constant values are needed in this approach.  For the two-element model,  

 

 

 

 

 

 

 

 

P  

Element 1  Element 2  
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Value Element 1  Element 2  

�[ 20 15 

�] 15 10 

^[ 2 0.5 

^] 1 1 

L 100 100 

E 1 1 

 

Table 2 - Variable �� unit test values 

 

These values were used in the variable �� model for both the hand calculations and the 

MATLAB code.  The boundary conditions at node one were the same as the constant �� case, but 

the point load P was given to be -0.00001.  The results of the unit test are seen below.  

Unit Test  Displacement �� Displacement �. 

Hand calculation -0.000136988 -0.000682857 

MATLAB code -0.000136988 -0.000682857 

 

Table 3 - Variable �� unit test results 

 

These unit tests verify that the application of boundary conditions, solving of stiffness matrices, 

and assembly of local stiffness matrices are consistent between the MATLAB code and a simple 

hand calculation.  A refinement study was completed using dimensions of the test specimen rod 

subject to cantilever boundary conditions.  The constant �� converges to the variable �� model as 

the number of elements increases (Figure 9).   
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Figure 9- Convergence study with refinement 

 

2.2.3 Mass Matrix and Modal Analysis 

A calculation of the beam modes will also be beneficial in the analysis of rods  [9] [10] [11]. 

"i =  � "�jk� + �h%"���$%
�$%

�$&  

(26) 

Shown above is the incremental work "i for an applied cantilever loading condition, neglecting 

the effect of cross-sectional rotation. jk�, ^� is the applied force per unit length.  h%�^� is the 

force applied at  = 2.  ��, ^� is the transverse displacement. With the inertial force as an 

applied force per unit length, for the segment of length �: 

jk� = −�l���m  (27) 

  

Where m is the mass per unit length.  For the entire body: 
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− � "�jk� =  � "��m l��$%
�$&

�$%
�$&  

(28) 

 

For a two-node bending element,  

� = n>, � = n>m ,       "� = n"> = ">@n@ (29) 

 

Where 

' = 1'(  '�:  '.  '0:3 (30) 

 

with the shape functions being. 

 

'( = 1 − 3+� + 2+.,    '� = −+ + 2+� − +., 
 '. = 3+� − 2+., '0 = +� − +. 

(31) 

 

and  

> =  4�(�(����
5: element DOF vector 

(32) 

Accordingly: 
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− � "�jk� =  � "��m l��$��
�$�o

�$��
�$�o

= � ">@n@n>m l:�+?$( 
?$&  

 

(33) 

= ">@ A: � n@nl�+?$(
?$& B >m = ">@pq>m  (34) 

  

Where 

pq =  : � n@nl�+?$(
?$&  

(35) 

 

Is the element mass matrix, and for a constant m it can be shown that: 

pq = l:420 D156 −22 54 13−22 4 −13 −354 −13 156 2213 −3 22 4 E 

(36) 

 

However, in this model a constant l over the length of the whole rod is not applicable, because 

the mass of the rod changes with the taper, wall section, and material density of the length of the 

rod.  A linear regression was performed with respect to the mass density of the material and the 

volume of the material for each cut section of the rod.  This allows for the fully integrated mass 

matrix to be used in the calculation of the mode shapes, using Eq. 34.   

Now the equation of motion of the entire structure of the beam can be shown as: 
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− � "�jk� =  � "��m l��$��
�$�o

�$��
�$�o

= "r@srm  (37) 

Where s is the global mass matrix and r m is the global acceleration vector. 

This can be constructed into the equation of motion of the beam, combined with the beam 

stiffness as: 

srm + tr = u (38) 

 

To solve for free vibration of the cantilever beam (F=0), where r is an ' × 1 DOF vector.  With 

the reduced form after geometric boundary conditions are applied, Eq. 38 is homogeneous and 

produces a solution of the following form.  

r = wxy] = r = wx±V{] (39) 

 

For an oscillatory response with no energy loss (no damping).   �t − |�s�wx±V{] = 0 (40) 

 

Since x±V{] ≠ 0 for all time ^: �t − |�s�w = 0 (41) 

For nontrivial w, Eq. 41 can be solved in an eigenfunction analysis, with “det” being the 

determinant.   

�x^�t − |�s�w = 0 (42) 

With |� eigenvalues with N dof, there are N eigenvalues counting multiple roots. w is the 

eigenvector corresponding to |. For a standard eigenvalue analysis: 

tw = �sw (43) 

Where: 
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� = |� (44) 

  

For the ith mode twV = �VswV  →  twV = |V�swV  (45) 

For a system with N DOF, there are N natural frequencies and N natural modes, counting 

multiple roots separately.  |V are arranged in increasing order of magnitude, starting with |( as 

the lowest frequency.   

2.3 Specimen Manufacturing 

For the specimens used in the following analysis, Thomas and Thomas Fly Rod 

Company, located in Greenfield, Massachusetts provided eight test parts.  These parts were made 

with a prepreg incorporating Mitsubishi HR40 carbon fiber. After an entire four-piece fly rod is 

assembled, it will consist of a tip, tip-mid, butt-mid, and butt section (Figure 10).  The taper and 

construction of this test part corresponds to the tip-mid section of a saltwater fly-fishing rod.   

 

 

 

Figure 10 - Rod pieces Butt (1), Butt-Mid (2), Tip-Mid (3), Tip (4) 

 

 

Dimensions of parts. Test parts were 800mm long, with the largest outer diameter (OD) at the 

bottom of the part (butt) and smallest OD at the tip.  Given the length of the part, some rods were 

(1) (2) (3) (4) 
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cut in a bandsaw for use in 3PB (3-point bending) tests.  These parts were cut into 100mm 

sections, resulting in a total of 8 parts for the 3PB test (Figure 11).  

 

 

 

Figure 11 – Rod Sections  

 

2.4 Experimental procedure: Young’s Modulus  

A value of Young’s Modulus (	) was needed for the numerical procedure in this ICME 

approach.  Using a Tinius Olsen H25kt universal testing machine located in GEDMIL at the 

University of Maryland located in the Kim engineering building, the value was determined from 

a 3PB test, ASTM D790.   For this test, the 800mm test part was cut into eight 100mm sections.  

Each one of these sections corresponds to an element in the Euler-Bernoulli beam theory used in 

MATLAB.  These sections were placed into a 3PB test jig.  The span of the two rollers 

supporting the rod is 90mm.  This left a 5mm overhang over each end of the section to reduce 

free-end boundary effects.  The point load was applied directly at the center of the rod as shown 

in Figure 12 and Figure 13.  Data was collected at all stages of the test. The data given during the 

test was the deflection at the center of test part (mm), and the force applied (N). This data was 

then analyzed for linearity.  In a 3PB test, depending on the material, a non-linear regime can be 

achieved, due to the non-linear effects of material behavior during the loading process.   

Section 1  Section 2   Section 3   Section 4    Section 5    Section 6     Section 7   Section 8 
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The Euler-Bernoulli beam theory only holds for the linear effects of a material, so the 

data needed to be analyzed in order to determine when this non-linearity occurs. In Excel, the 

data was plotted for each test section.  In the early stages of the test, the linear properties of the 

material can be seen.  A low force and deflection were determined to be stable in the linear 

regime of the test.  

 

Figure 12 – Unloaded 3PB 
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Figure 13 – Loaded 3PB 

  

 

Figure 14 – 3PB Force Deflection Experimental Results 
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Figure 14 shows the results from the 3PB analysis performed on the beam sections.  The sections 

were loaded until a yield was detected. This yield was determined by observing the force-

deflection curves during loading and looking for a drop in force during the loading, or by audio-

visual cues such as cracking or visual deformation in the material of the test specimen.   

 

Figure 15 – 3PB Force Deflection Experimental Results (Linear Regime) 

 

A linear regression was performed on linear regime of the experimental results, shown in Figure 

15. These equations were then solved for the force at a given deflection, in this case 0.1mm 

(Figure 16).  
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Figure 16 – Force for deflection of 0.1mm during 3PB test for each beam section 

 

A linear regression of Figure 16 was used to determine the force required for a 0.1mm 

deflection of the beam during the experimental procedure for determining Young’s Modulus. 

After the maximum force and central vertical displacement values for each part were determined, 

a simple manipulation of the deflection at the center of a three-point flexure test equation for 

beam bending is used to determine 	 [12] [13].  

	 = i2.48�" 

 

(46) 
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This 	 in Eq. 46 is then used in the MATLAB analysis.  Shown in Figure 17, the Young’s 

Modulus was found to increase over the length of the beam.   

 

Figure 17 – Young’s Modulus E for each beam section. 

 

The inside and outside diameters of the beam were found to be linear.  This was because 

of the linearly tapered mandrel used during manufacturing along with the uniform wall thickness.  

A plot of the diameters is shown below in Figure 18 and this allowed for a linear regression to be 

made for discretization in the code to determine the second area moment of inertia, ��. 
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Figure 18 – Inside and outside diameters of the beam with measurements taken at 100mm 

intervals. 

2.5 Numerical Analysis and Justification  

Using the Euler – Bernoulli beam theory derived above, a MATLAB finite element code 

was constructed to create a robust way to model deflections on the test parts. This allows for a 

simplification of the entire rod to a discretized element length.  The code allows the user to set 

the number of elements to see the effects of mesh size given the boundary conditions and load. 

The local stiffness and mass matrices were assembled into global matrices.   

Two different boundary and loading conditions were performed on each model.  A 

cantilever boundary condition of fixed displacement and rotation with a 5N cantilevered point 

load was is performed.  

A second boundary condition was also used in order to gain values to compare the 

experiment to the numerical solution.  A 3PB test was used to determine the bending of the rod 
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with a 5N point load at the center of a beam span.  The roller support span on the 800mm long 

rod was 600mm, in order to reduce free end boundary effects  [14]. 

As mentioned in the theory above, two different uses of Euler-Bernoulli beam theory 

were performed to model the beam.   A variable �� (Eq. 24) over each beam element model using 

the shape functions to determine local stiffness matrices along with a constant �� over each 

element beam model (Eq. 20) were created in MATLAB.  The variable �� considers the changing 

area moment of inertia.  The variable �� was found to be almost equal to the constant �� (Figure 

19). 

 

Figure 19 – �� over the length of the beam 

In the MATLAB code, the boundary conditions are applied after assembly.  The code for 

displacement analysis accounts for the location of the boundary condition location automatically 

with respect to the number of elements used.  In addition to the deflection analysis, a modal 

analysis of the beam was also performed.  The boundary conditions for the modal analysis 

consisted of an unconstrained free vibration and a cantilevered free vibration condition.   
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A test rod specimen was loaded in a 3PB test (Figure 20) using the 3PB bending 

condition described above.  IC Measure software with a stable zoom camera was used to 

determine the deflection at eleven points corresponding to deflection measurements over the 

course of the length of the beam.  

 

Figure 20 – 3PB Experiment 

2.6 Steel 3PB Experiment 

The experiment and numerical solution were validated with a test of a 3.175mm diameter 

plain steel rod with a Young’s Modulus of 200GPa.  The theoretical equation used to determine 

the Young’s Modulus in Eq. 46 was found to match the corresponding finite element model 

created in MATLAB.  The experiment yielded a maximum deflection of 22.62mm (Figure 21).  

In the finite element model, the maximum deflection at the center of the steel rod with a 5N load 

was found to be 22.5532mm (Figure 22). 

 

Figure 21 – Steel 3PB flexure test – experiment 



 33 

 

 

Figure 22 – Steel 3PB flexure test – 32 element model 
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Chapter 3 : Results and Discussion 

3.1 Three-point bending condition  

Shown in Figure 23-25 are results of the 3PB flexure experiment plotted with the constant �� and 

variable �� beams.  The variable �� and constant �� beam show correlation with the experiment at 

a low element count and show good deflection characteristics compared to the experiment as the 

number of elements increases.    

 

Figure 23 – 3PB Results – 8 Elements 
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Figure 24 – 3PB Results – 32 Elements 

 

 

 

Figure 25 – 3PB Results – 112 Elements 

At 112 elements, the constant �� and variable �� beam deflections show very good agreement 

(Figure 25). 
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3.2 Cantilever bending condition  

 

Figure 26 – Cantilever bending condition – 8 Elements  

 

Figure 27 – Cantilever bending condition – 32 Elements 
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Figure 28 – Cantilever bending condition – 112 Elements 

Shown above are the results of the cantilever loading conditions applied to the constant �� and 

variable �� beams (Figures 26-28) 

3.3 Modal Analysis results 

The modal analysis can provide insight to how the rod will perform once the rod is unloaded 

during a cast.  Normalized eigenvectors were found and plotted for a free vibration of the beam 

with and without a cantilever boundary condition applied.  A 112-element beam was normalized, 

and the relevant modes were studied. The modes plotted are the most important to this beam 

analysis.  They represent the lowest frequencies that the rod would experience.  When a user of 

the rod has a rigid grip on the handle, the rod will experience modes like the cantilever boundary 

condition (Figure 30). If a user relaxes their grip on the rod, the free vibrational modes will be 

like the mode shapes shown without boundary conditions (Figure 29).  Both boundary conditions 

are important to understand the complete picture of how a rod will rebound and resonate during 

and after a cast.   
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Figure 29 – Mode Shapes without boundary conditions 

 

Figure 30 – Mode Shapes with Cantilever Boundary Condition 

 

N
o
rm

al
iz

ed
 M

o
d
e 

S
h
ap

e
N

o
rm

al
iz

ed
 M

o
d

e 
S

h
ap

e

Mode 1 – Rigid Body  

Mode 3  



 39 

 

 

Figure 31 – First Three Mode Shapes with Cantilever Boundary Condition 

3.4 Discussion of results 

Results of the 3-point flexure loading condition show good adherence to the experiment (Figure 

25).  As the number of elements increases, the variable �� beam converges to the constant �� 

beam.  Via a least mean-square convergence test (Figure 32), this can be shown as the error 

between the constant �� and variable �� beam decreases as mesh size increases. 
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Figure 32 – Least mean-square Convergence with respect to mesh size for the constant �� beam 

to variable �� beam. 

 

At 112 elements, the constant �� and variable �� beam models show good agreement with 

the 3PB experiment.  As shown in Figure 19, the values for constant �� and variable �� are 

almost exact over the length of the beam.  The refinement study (Figure 9) shows that at a low 

number of elements the FE models start to converge as the elements become smaller.  This 

results in excellent agreement between the constant �� and variable �� numerical solutions.   

The modal analysis provides insight into the mode shapes the rod experiences during free 

vibration.  The two boundary conditions studied cover the boundary conditions that fishermen 

would experience during use of a rod.  When a user relaxes their grip on the rod, the modes the 

rod experiences would be like modes three and four shown in the analysis without boundary 

conditions.  When the user has a tighter grip on the rod, such as during a cast, the modes of the 

rod change.   
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The first three modes shown in the modal analysis with a cantilever boundary condition 

considered provide insight into how the rod would resonate during the casting stroke (Figure 31) 

[2].  The knowledge of the modes experienced comes from personal experience using fly-fishing 

rods.    
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Chapter 4: Conclusion 

4.1 Main Contributions 

The results of the deflection analysis and modal analysis give insight to the properties of rod 

design.  By modifying the taper profile and materials used, these analysis techniques can be used 

to designed new tapers and rods.  A consistent bending profile is very important to the design of 

a rod.  With many differences in weights and lengths of rods, having a robust numerical model to 

describe the bending of a new rod design will reduce research and development time and allow 

for expedient prototyping.  Key takeaways from this thesis include: 

• The 3PB solution shows justification for testing individual sections to determine the 

Young’s Modulus.   

• The constant �� section beam model converges to the variable �� beam model.   

• The difference between the variable �� model and constant �� model is minimal.  

Constant �� models could be used in the future for further analysis.  This can be seen in 

Figure 16 and the results in Chapter 3.   

• Complex layups can be used in this model, with differing these prepreg layups accounted 

for by the experimentally found Young’s Modulus. 

• The relationship between the Young’s Modulus and the area moment of inertia is crucial 

to analysis.  This means the relationship between material, taper profile and wall 

thickness is one of the most important factors in rod design.  

 



 43 

 

4.2 Design  

Designing new rods can be aided by this approach.  The four parameters that dictate rod 

design are the mandrel taper, wall thickness of the hollow cross section, material choice, and 

overall mass of the rod.  A material suited for one mandrel taper and wall thickness may give the 

desired bending characteristics, but at the cost of increased mass.  Wall thickness, mandrel taper, 

and material can then be chosen in a way that reduces mass but gives the desired stiffness.  The 

method of quantifying and predicting the bending characteristics of thin-walled tapered hollow 

carbon fiber rods outlined in this thesis provides valuable information for the design of fishing 

rods.     

 The modal analysis serves as an exercise into how vibrational analysis can be conducted 

on fly rods.  The taper and material used effect these vibrational modes.  Rod designers can use 

this information to see how different tapers and materials effect these vibrational modes.   

4.3 Future Work 

The non-linear effects of the cantilever beam are important for modelling the rod.  Rod 

designers currently use deflection curves (Figure 6) as a crucial component during the 

prototyping and design phase for new rod models.  Further study into the effects of large 

deformation should be considered in future work.  Non-linear large deformation Euler-Bernoulli 

beam theory has proven to be accurate to experimental results [8].  Combined with the ICME 

method of analysis for determining the Young’s Modulus through experimental testing, this 

would allow for the analysis of large deflection loads applied to complex rod designs.   

As discussed in Chapter 2, the use of Euler-Bernoulli beam theory introduces critical 

assumptions and limitations into the model.  1D beam elements with two degrees of freedom do 

not allow for cross sectional deformation or distortion.  When a rod is loaded, the cross section 
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will deform and not retain its circular shape.  In recent years, rod manufacturers are using new 

layup methods to account for this deformation and simultaneously increase hoop strength [16]. 

3D models of the rod would prove very valuable in rod design.  The use of 3D shell 

elements in programs such as ANSYS would allow rod designers to conduct stress and large 

deformation analysis.  These models will also account for cross-sectional deformation.   

Further study into the modal analysis with added damping could also be conducted.  By 

introducing damping into the rod, mode shapes of the rod that would negatively affect casting 

performance could be analyzed and accounted for in design.  Adding small dampers inside the 

rod could provide enhanced resonance control to the rod or change the mode shapes to help with 

a smoother casting stroke and better rod recovery after a cast.   

This thesis studies one section of a current saltwater fly rod.  Studying a full-length fly-

fishing rod should be considered in future analysis as this will provide valuable information for 

rod design.  The methods of analysis used in this thesis can easily be scaled for use in the study 

of a full-length fly rod.   

Overall, this thesis provides the basis for a ICME approach to the study of thin-walled 

carbon rods with complex carbon fiber prepreg layups.  Through the numerical approach of 

Euler – Bernoulli beam theory, current rods and the rods of the future can be better understood 

and designed.   
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