THESIS REPORT
Ph.D.

Design of Structured Quantizers
Based on Coset Codes

by C-C. Lee
Advisor: N. Farvardin

Ph.D. 95-1

IBR

INSTITUTE FOR SYSTEMS RESEARCH

Sponsored by

the National Science Foundation
Engineering Research Center Program,
the University of Maryland,

Harvard University,

and Industry

ABSTRACT

Title of Dissertation: DESIGN OF STRUCTURED QUANTIZERS
BASED ON COSET CODES

Cheng-Chieh Lee, Doctor of Philosophy, 1995

Dissertation directed by: Professor Nariman Farvardin
Department of Electrical Engineering

For memoryless sources, Entropy-Constrained Scalar Quantizers (ECSQs) can
perform closely to the Gish-Pierce bound at high rates. There exist two fixed-rate
variations of ECSQ — Scalar-Vector Quantizer (SVQ) and Adaptive Entropy-Coded
Quantizer (AECQ) — that also perform closely to the Gish-Pierce bound. These
quantization schemes have approximately cubic quantization cells while high-rate
quantization theory suggests that quantization cells of the optimal quantizers
should be approximately spherical. There are some coset codes whose Voronoi
regions are very spherical. In this dissertation we present structured quantization
schemes that combine these coset codes with the aformentioned quantizers (SVQ,
ECSQ, and AECQ) so as to improve their performance beyond the Gish-Pierce
bound.

By combining trellis codes (that achieve a significant granular gain) with SVQ,
ECSQ, and AECQ, we obtain Trellis-Based Scalar-Vector Quantizer (TB-SVQ),
Entropy-Constrained Trellis-Coded Quantizer (ECTCQ), and Pathwise-Adaptive
ECTCQ (PA-ECTCQ), respectively. With an 8-state underlying trellis code, these
trellis-coded quantization schemes perform about 1.0 dB better than their naive

counterparts.

There are two approaches that can extend the quantizers (TB-SVQ, ECTCQ,
and PA-ECTCQ) for quantizing sources with memory. The first is to combine the
predictive coding operation of the Differential Pulse Code Modulation scheme with
various quantizers, yielding Predictive TB-SVQ, Predictive ECTCQ, and Predic-
tive PA-ECTCQ), respectively. There is a duality between quantizing sources with
memory and transmitting data over channels with memory. Laroia, Tretter, and
Farvardin have recently introduced a precoding idea that helps transmitting data
efficiently over channels with memory. By exploiting this duality, the second ap-
proach combines the precoder with TB-SVQ and ECTCQ to arrive at Precoded
TB-SVQ and Precoded ECTCQ), respectively. Simulation results indicate that the
porformance of these quantizers are also close to the rate-distortion limit.

The PA-ECTCQ performance has been shown to be robust in the presence of
source scale and, to a lesser extent, shape mismatch conditions. We also considered
adjusting the underlying entropy encoder based on the quantized output (which
provide some approximate information on the source statistics). The performance
of the resulting Shape-Adjusting PA-ECTCQ has been shown to be robust to a

rather wide range of source shape mismatch conditions.

DESIGN OF STRUCTURED QUANTIZERS
BASED ON COSET CODES

by
Cheng-Chieh Lee

Dissertation submitted to the Faculty of the Graduate School
of The University of Maryland in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
1995

Advisory Committee:

Professor Nariman Farvardin, Chairman/Advisor
Associate Professor Steven Tretter

Associate Professor Thomas Fuja

Assistant Professor KuoJuey Liu

Associate Professor William Gasarch

© Copyright by
Cheng-Chieh Lee
1995

Dedication

To Jer-Hsiong Lee and Yiuh-Mei Chen

i

Acknowledgements

I would like to thank my advisor, Professor Nariman Farvardin, for his
guidance, sustained encouragement and support. My time with him
has been a rewarding learning experience. I thank Dr. Rajiv Laroia
for his ideas at various stages of my study. With his guidance, I have
also profited greatly while visiting AT&T Bell Laboratories under the
URP summer internship program. I am grateful to the professors who
have taught me in the graduate courses. I would like to also thank my
friends in the Communications and Signal Processing Laboratory for
their assistance and numerous interesting discussions. Finally, I thank

my family and friends for their constant love and support.

iii

Table of Contents

Section
List of Tables
List of Figures

1 Introduction

1.1 Resolution-Constrained Quantizers
1.2 Entropy-Constrained Quantizers

1.3 Outline of the Dissertation

2 Preliminaries

2.1 Input Sources
2.2 A Generic Quantization Configuration
23 Granular Gain. L.

24 Coset Codes

2.4.1 Application of Coset Codes to Quantization .

2.4.2 Symmetry in Ungerboeck (1-D) Trellis Codes

3 On Variations of the TB-SVQ

v

Page
viii

xi

3.1 Introduction and Outline 21

3.2 Scalar-Vector Quantization 25
3.3 Combined SVQ Shaping and Trellis Coding 26
3.4 TB-SVQ Codebook Search Algorithm 28
3.4.1 Full-State Search Algorithm 29
3.4.2 State-Suppressed Search Algorithm 32
343 Complexity Issues 34
3.5 Predictive TB-SVQ 37
3.6 Simulation Results 000, 41
3.7 Summary and Conclusions 48
Combined Precoding and TB-SVQ 50
4.1 Introduction and Outline 50
4.2 Duality — Markov Sources/ISI Channels 53
4.3 Precoded TB-SVQ 58
4.4 Source Codebook Search Algorithms 62
4.4.1 AEP-Motivated Approach 62
4.4.2 Dynamic Programming Based Approach 67
4.5 Further Reduction in Precoding Error 69
4.5.1 Modified-I Precoder. 71
4.5.2 Modified-IT Precoder 71
4.6 Simulation Results 000, 73
4.7 Summary and Conclusions, 78
Entropy-Constrained Coset-Coded Quantization 80
5.1 Introduction and Outline 80

52 ECTCQ . o o o oot e e

5.3 Extensions of ECTCQ to Markov Sources
5.3.1 Predictive ECTCQ
5.3.2 Precoded ECTCQ
5.3.3 Complexity and Simulation Results

5.4 Extensions of USQ and UTQ
5.4.1 Coset-Based Quantizers
5.4.2 Coset-Threshold Quantizers

5.5 Summary and Conclusions

Adaptive Buffer-Instrumented Entropy-Coded Quantization

6.1 Introduction and Outline

6.2 Buffer-Instrumented Quantizers
6.21 AECQ e
6.2.2 Buffer-Instrumented ECTCQ
6.2.3 Simulation Results

6.3 Predictive Buffer-Instrumented Quantizers

6.4 Source Mismatch Issues.
6.4.1 PA-ECTCQ Performance.
6.4.2 Shape-Adjusting PA-ECTCQ

6.5 Summary and Conclusions

vi

7 Conclusions and Related Work
7.1 Summary and Conclusions,

7.2 Related Work

A Magnitude-Based ECTCQ Design Algorithm

vii

3.1

3.2
3.3
3.4
3.5

3.6

List of Tables

The threshold L of the N-sphere and N-pyramid bounded TB-SVQ
for various encoding rates and block lengths.
TB-SVQ code-vector encoding complexity.
TB-SVQ codebook search complexity.
Extra complexity of predictive TB-SVQ codebook search.
Performance (SNR in dB) of the 4-state TB-SVQ using the full-
state search algorithm with a delay of five N-vectors on encoding
memoryless Gaussian and Laplacian sources.
Performance (SNR in dB) of the 8-state TB-SVQ using the full-
state search algorithm with a delay of five N-vectors on encoding

memoryless Gaussian and Laplacian sources.

viii

Number Page
2.1 Granular gains of some known binary lattices. 20
2.2 Granular gains of Ungerboeck’s 1-D rate-1/2 trellis codes. 20

35

3.7

3.8

4.1
4.2

4.3

4.4

5.1

5.2

Performance (SNR in dB) of the 4-state TB-SVQ using the full-state
search algorithm (wth no extra quantization delay) and the state-
suppressed search algorithm on encoding memoryless Gaussian and
Laplacian sources. v v v v i i e e e e
Performance (SNR in dB) of the 4-state predictive TB-SVQ using
the full-state search algorithm (wth no extra quantization delay)
and the state-suppressed search algorithm on encoding two specified

Gauss-Markov sources. e e e e e

AEP-motivated precoded TB-SVQ codebook search complexity.
Performance (SNR in dB) of precoded TB-SVQ using the AEP-

-motivated codebook search algorithm with a delay of five N-vectors

on encoding a 15%order Gauss-Markov source (p1=09).
Performance (SNR in dB) of precoded TB-SVQ using the AEP-
motivated codebook search algorithm with a delay of five N-vectors

d

on encoding a 2"%order Gauss-Markov source (p; = 1.515, py =

—0.752). . .
Precoded TB-SVQ performance (SNR in dB) using dynamic pro-
gramming based algorithm with no extra quantization delay on en-

coding two specified Gauss-Markov sources.

Design performance (SNR in dB) of the entropy-constrained (by Hp)
CBQ for the memoryless Gaussian source.
Design performance (SNR in dB) of the entropy-constrained (by Hp)

CBQ for the memoryless Laplacian source.

ix

74

75

106

6.1

6.2

PA-ECTCQ performance (SNR in dB) on encoding memoryless
Gaussian and Laplacian sources.
Predictive PA-ECTCQ performance (SNR in dB) on encoding two

specific Gauss-Markov sources.

3.4

3.5

4.1

4.2

List of Figures

Performance (SNR in dB) of TB-SVQ on encoding a memoryless
Gaussian source at 1 bit/sample versus the quantization delay. . . .
Performance (SNR in dB) of predictive TB-SVQ (with 4-state trel-
lis) on encoding a (a) 1th_order (b) 21d_order Gauss-Markov source

at 1 bit/sample versus the quantization delay.

Quantization of Markov sources: (a) source model; (b) naive source

and innovations codebooks; (c) ideal source and innovations code-

Transmission over ISI channels: (a) channel model; (b) ideal trans-

mit and receive constellations.

xi

Number Page
2.1 A generic quantization configuration. 11
2.2 Encoder structure of the coset code. 16
2.3 Ungerboeck’s 4-state 1-D trelliscode. 18
3.1 Full-state TB-SVQ codebook search algorithm.. 31
3.2 State-suppressed TB-SVQ codebook search algorithm.. 33
3.3 State-suppressed predictive TB-SVQ codebook search algorithm. . . 40

43

4.3
4.4
4.5
4.6
4.7
4.8

5.1

9.2

5.3

5.4

3.5

5.6

9.7

5.8
3.9

Block diagram of precoded TB-SVQ.
Inverse transformation of the naive precoder.
AEP-motivated precoded TB-SVQ codebook search algorithm. . . .
Full-state precoded TB-SVQ codebook search algorithm.
Inverse transformation of the modified precoder.
Performance (SNR in dB) versus quantization delay of precoded TB-

SVQ using the full-state search algorithm on encoding a (a) 1th. (b)

9"_order Gauss-Markov source; the encoding rate is 1 bits/sample.

ECTCQ codebook search algorithm.
Magnitude-based ECTCQ performance (SNR in dB) on encoding
two generalized Gaussian sources with shape parameters (a) 6 = 0.6
and (b) 6=2.0.
ECTCQ coding redundancy using Huffman and arithmetic coders;
the source is memoryless Gaussian.
ECTCQ performance (SNR in dB) as a function of the quantization
delay on encoding a memoryless Gaussian source at 3 bits/sample. .
Predictive ECTCQ codebook search algorithm.
Precoded ECTCQ codebook search algorithm.
Performance (SNR in dB) of predictive and precoded ECTCQs on
encoding a 15t-order Gauss-Markov source (pp=09).
Block diagram of the coset-based quantizer.
TTQ design performance (SNR in dB) for the memoryless (a) Gaus-
sian, (b) Laplacian source; Ungerboeck’s 8-state trellis code is as-

sumed in TTQ, TBQ, and ECTCQ.

xii

92

6.1
6.2
6.3

6.4

6.5

6.6
6.7

6.8

6.9

6.10

Al

Block diagram of adaptive entropy-coded quantizer (AECQ). 114
PA-ECTCQ codebook search algorithm. 119
Buffer occupancy histogram of A-ECTCQ and PA-ECTCQ on en-
coding a memoryless Gaussian source at 3 bits/sample. 120
A-ECTCQ and PA-ECTCQ performance (in normalized MSE) as a

function of the delay d (in source samples) on encoding a memoryless
Gaussian source at 3 bits/sample. 121
PA-ECTCQ performance (SNR in dB) for memoryless generalized
Gaussian sources with shape parameter (a) § = 0.6 and (b) 6 = 2.0. 122
Predictive PA-ECTCQ codebook search algorithm. 125
PA-ECTCQ performance (in normalized MSE) in the presence of
source scale mismatch. 128
PA-ECTCQ performance (in normalized MSE) in the presence of
source shape mismatch. 0 L. 129
PA-ECTCQ performance (in normalized MSE) in the presence of
source shape mismatch; the underlying ECTCQ is designed for nom-
inal source of shape parameter 0.6 or 2.0. 131
Shape-adjusting PA-ECTCQ performance (in normalized MSE) in

the presence of source shape mismatch. 133

Magnitude-based ECTCQ design algorithm. 143

xiil

Chapter 1

Introduction

Quantization is the process of encoding to produce a digital stream (or description)
for a signal from some discrete-time real-valued source and decoding from the
digital stream to create an approximated replica of the signal. The compression
efficiency of a quantizer is measured by its rate, which is the average number of
bits per source sample produced by the encoder, and its average distortion induced
by substituting the replica for the original signal. Other important parameters
for assessing the performance of a quantizer include the coding delay and the
complexity of implementing its encoder and decoder. In the literature, the terms
source coding with a fidelity criterion [1]-[2], digital coding [3] and lossy signal
compression [4] are all used to connote this operation of achieving a compact
digital description for a signal.

An essential problem in quantizer design is to minimize the rate in the digital
description of the signal while maintaining a required level of fidelity, coding delay,
and implementation complexity. For stationary sources, the ultimate quantizer

rate-distortion performance can be described by Shannon’s theory [1]-[2],[5]-[6]-

Unfortunately, this theory provides no constructive quantizer design methodology
but yields a rate-distortion limit [6] that is only asymptotically (in delay and/or
complexity) approachable. In the dissertation we pursue low-complexity quantizers
that have an affordable coding delay and can provide a performance close to the
rate-distortion limit.

There are two methods of mapping the reproduction sequence to and from its
corresponding digital description. In the first method, each reproduction symbol
belongs to a codebook of a specified resolution and can hence be associated with
a codeword of a fixed number of digits. The corresponding quantization schemes
are generally called resolution-constrained. Shannon’s source coding theorem [1]
indicates that the quantizer output entropy is the minimum average information
required to faithfully represent the replica sequence (with a probability arbitrarily
close to one). In the second method, assuming that there exists an ideal entropy
code (such as the Huffman code [7] or the arithmetic code [8]-[9]), each reproduction
symbol is indexed by a variable-length codeword from the entropy codebook. The
corresponding quantizers are generally called entropy-constrained quantizers.

Quantizers can be broadly classified into two types — scalar quantizers and
delayed decision quantizers [3]. A scalar quantizer operates on one source sample at
a time. Delayed decision quantizers, on the contrary, take in more than one sample
to determine the replica for each source sample. Delayed decision quantizers can
be further divided into genuine vector quantizers [4] and multipath search coding
schemes, such as tree and trellis coders [10]-[11]. A vector quantizer operates on a
block of finite source samples at a time. By contrast, tree and trellis coders have a
sliding-block coding nature and operate in the infinite-dimensional sequence space.

Vector quantizers can generally offer more freedom than scalar quantizers in placing

the reproduction vectors in the multidimensional space. This freedom in turn leads
to several specific vector quantization gains over scalar quantization [12]-[14].
The rest of this introductory chapter is organized as follows. In Section 1.1,
we present a brief review of the high-rate quantization theory [12]-[14] in the
context of resolution-constrained quantization. Previous work on the resolution-
constrained quantizers that can achieve various vector quantization gains are also
mentioned. Similar discussions for entropy-constrained quantization are provided

in Section 1.2. Finally, the dissertation is outlined in Section 1.3.

1.1 Resolution-Constrained Quantizers

Resolution-constrained vector quantizers have more freedom than scalar quantizers
in placing their reproduction vectors (called code-vectors) in the multidimensional
space. This freedom in turn renders vector quantization three gains over uniform
scalar quantization. The first is the boundary gain® [14] and is realized by selecting
an appropriate codebook boundary which ensures that most of the code-vectors
are placed in the high probability region R,zp as dictated by the asymptotic
equipartition property (AEP). The second type of gain is the granular gain® [14]
that is achieved by having more spherical (for the squared-error distortion measure)
quantization cells than the cubic cells of uniform scalar quantizers. Finally, there
is the non-uniform density gain [15] which results from having the code-vectors
closely spaced in higher probability density regions and farther apart in lower

probability density regions. Several quantization schemes reported in the literature

!This is called the shape advantage in [13] for memoryless sources. The boundary gain includes
the memory advantage in [13] for sources with memory.

2This is called the space-filling advantage in [13].

that can achieve parts or all of these gains are described next.

Optimal scalar quantizers introduced by Max [16] and Lloyd [17], known as
Lloyd-Max quantizers (LMQs), minimize the average (squared-error) distortion
for a given number of quantization levels. These quantizers can achieve only the
non-uniform density gain. In spite of this gain, there still exists a big gap between
the LMQ performance and the rate-distortion limit.

Locally optimal vector quantizers introduced by Linde, Buzo and Gray [18]
(called LBG VQs) can perform arbitrarily close to the rate-distortion limit as the
dimension N becomes large. However, LBG VQs are generally unstructured and
their implementation complexity (computational and storage) is exponential in N7
(where r is the per sample bit rate). They are hence prohibitive even at modest
rates and dimensions. Suboptimal tree-structured vector quantizers [19] reduced
the computational complexity but at the cost of added storage complexity. On
the other hand, multi-stage vector quantizers [19] are simple to implement for a
large N7 but generally result in a significant performance degradation over optimal
vector quantizers.

The scalar-vector quantizer (SVQ) of Laroia and Farvardin [20] is a specific
kind of vector quantizer whose structure is derived from a scalar quantizer. It
is shown in [20] that SVQ can (asymptotically in block-length N) achieve the
optimal boundary gain for memoryless sources by placing the code-vectors on and
inside the region R ,zp. SVQ, however, realizes no granular gain as its quantization
cells are approximately cubic. The trellis coded quantizer (TCQ) of Marcellin and
Fischer [21] is also derived from a scalar quantizer and uses Ungerboeck’s idea
of coding by set partitioning [22] to realize a significant portion of the ultimate

granular gain. This quantizer makes no explicit attempt to exploit the boundary

gain.

The trellis-based scalar-vector quantizer (TB-SVQ) [15] introduced by Laroia
and Farvardin is a structured vector quantizer for stationary memoryless sources
that combines the SVQ idea [20] with that of TCQ [21]. The SVQ structure
allows TB-SV(Q) to achieve a large boundary gain while the underlying trellis code
enables it to realize a significant granular gain. Assuming that the block-length
N is sufficiently large so that there is no non-uniform density gain to be realized,
TB-SVQ is capable of realizing both the boundary and granular gains and has
been shown to outperform all (implementable) fixed-rate block-based quantization

schemes reported in the literature.

1.2 Entropy-Constrained Quantizers

There are two gains that entropy-constrained vector quantizers (ECVQs) can realize
over entropy-constrained scalar quantizers (ECSQs). The first, as in the resolution-
constrained case, is the granular gain and is achieved by having more spherical
(for the squared-error distortion measure) quantization cells than the cubic cells
of scalar quantizers. The second gain is the memory gain [12]-[13] that is available
only for sources with memory. To capitalize on the memory gain, ECVQ exploits
the freedom of placing its code-vectors in the multidimensional space (depending
on the source probability density function) as opposed to the Cartesian product of
a scalar codebook as in the ECSQ.

For a large class of memoryless sources [23], the performance gap between
the optimal ECSQ and the rate-distortion limit at high rates has been shown to

be 1.53 dB (for the squared-error distortion measure). This gap is exactly the

ultimate granular gain that the scalar quantizers fail to realize. The boundary
gain in the context of resolution-constrained quantization hence does not have its
counterpart in the context of entropy-constrained quantization [13]. It has been
shown [12, 23] that at high rates the optimal entropy-constrained quantizers are
very nearly uniform. At low rates, however, there can be some non-uniform density
gain over uniform quantization, as in the resolution-constrained case.

Necessary conditions for optimality of ECSQs and their design algorithms have
been derived in [24]-[26]. In [27], Chou et al. extended these results for ECVQs.
ECVQ can realize both the granular and memory gains and can, in principle,
approach the rate-distortion limit. Like LBG VQ, however, ECVQ is generally
unstructured and the complexity can be prohibitive even at modest rates and
dimensions.

For memoryless sources, the entropy-constrained counterpart for the structured
resolution-constrianed TB-SVQ is the entropy-constrained trellis-coded quantizer
(ECTCQ) [28]. For sources with memory, ECTCQ can be incorporated into a
predictive coding structure, giving rise to the so-called predictive ECTCQ [28].
These two entropy-constrained quantizers can achieve a significant portion of the
available vector quantization (granular and memory) gains and perform very close

to the rate-distortion limit.

1.3 Outline of the Dissertation

In the dissertation we treat the TB-SVQ of [15] and ECTCQ of [28] as the baseline
resolution-constrained and entropy-constrained schemes, respectively, and thereby

derive their possible variations and/or extensions. Generally speaking, the purpose

of the variations is to reduce the implementation complexity while their extensions
capitalize on the memory gain for sources with memory.

We can look at the quantizers that will be presented in the dissertation for
quantizing memoryless sources from another point of view. The optiomal ECSQ
performance (within about 1.53 dB of the rate-distortion limit) is sometimes called
the Gish-Pierce bound [23]. There are several variations [20, 46, 48] of ECSQ
that can also perform close to the Gish-Pierce bound. These quantizers have
approximately cubic quantization cells and hence fail to capitalize on the granular
gain. There are some coset codes [29]-[30] whose Voronoi regions are very spherical.
The quantizers that we develop for quantizing memoryless sources are obtained by
combining these coset codes with ECSQ or its variations. These quantizers use the
underlying coset codes to realize the granular gain and hence perform better than
the Gish-Pierce bound.

The rest of the dissertation is organized as follows.

In Chapter 2 we describe the models for sources that will be considered in the
dissertation, present some results from the high-rate quantization theory [12]-[14]
that are related to the granular gain, and provide background materials for coset
codes [29]-{30].

The TB-SVQ [15] can provide a rather competitive rate-distortion performance
for memoryless sources while maintaining a fixed encoding rate. In Chapter 3
we pursue possible extensions or variations of the TB-SVQ. Specifically, these
will include a simpler suboptimal codebook search algorithm for TB-SVQ and an
extension of TB-SVQ for quantizing sources with memory.

The duality between quantization and transmission has been studied in [14].

In Chapter 4, we exploit this duality and present a novel quantization scheme for

quantizing sources with memory. This new quantizer is motivated by the precoding
idea of Laroia et al. [31] that helps transmitting data efficiently over channels with
memory.

In Chapter 5, we present a novel ECTCQ that has a symmetric reproduction
alphabet. The added symmetry constraint is exploited to provide relatively simple
implementation vis-a-vis the previous ECTCQs reported in the literature [28, 32].
Gersho’s result [12] indicates that at high rates the optimal ECVQ should be
very nearly uniform. Hence, we will also consider designing entropy-constrained
quantizers directly based on some “good” coset codes.

Entropy-coded quantizers generally produce variable-length codewords while in
some situations the communication channel operates at a fixed rate. Transmission
of variable-length codewords over a fixed-rate channel necessitates the use of a
buffer of finite, and preferably small, size. The buffer overflow/underflow event
should be avoided as it could otherwise lead to loss of codeword synchronization
(and hence a large quantization distortion). In Chapter 6, we consider buffer
management strategies for the entropy-coded quantizers of Chapter 5. Adaptive
modifications will also be considered in the presence of source mismatch conditions.

In Chapter 7, we provide a summary of the dissertation. During the course
of this work, the quantizers developed have found extensive application in speech
coding [33]-[34] and image coding [35]-[37]. While these topics are not covered in

the dissertation, they are also briefly described.

Chapter 2

Preliminaries

This chapter provides preliminary materials such as a description of models for the
sources we consider, a generic quantization configuration, and a description of coset
codes. Notations and conventions that will be used throughout the dissertation

will also be presented.

2.1 Input Sources

We will consider both memoryless sources and sources with memory. The source
is a discrete-time real-valued stationary source denoted by {X; : i € Z} where
X; is a real random variable and Z is the integer set. Given a realization {z;} of
such a source, an equivalent N-dimensional (N-D) vector sequence {z, : n € Z}
can be formed by blocking every contiguous N samples into a vector; that is,
Tp = (TN, ToNi1, s Tnnan—1) € RV,

For memoryless sources, we will specifically confine our attention only to a class

(called generalized Gaussian) for which the marginal probability (density function

(p.d.f.) is given by
On(6, o)

p(z;0,0) = 2T(1/6) exp{~[n(6, 7) [}, (2-1)
where
1/2
n(0,0) =0 [?E?;Z;] , (2.2)

the shape parameter @ > 0 describes the exponential rate of decay, o2 is the source
variance, and I'(-) is the Gamma function. For § = 2.0 we have the Gaussian
distribution while for § = 1.0 we obtain the Laplacian distribution.

For sources with memory, we confine our attention only to the cases in which
the p.d.f. of the current source sample X; can be completely specified based on
the knowledge of a finite number, say p, of the most recent past source samples
Xi—py -+, Xi—2,X;—1 — a property owned by Markov processes. For simplicity,
these sources are called Markov sources. More specifically, we will consider sources

which can be represented by the output of a stable pth

order autoregressive linear
filter H(z) driven by a memoryless generalized Gaussian innovations process {W;}

where

1
H(Z) = 1= Zg?:l pjz—j, (23)

the coefficient p; € R, and the marginal p.d.f. of {W;} is as described in (2.1).

2.2 A Generic Quantization Configuration

The block diagram of a generic quantizer is shown in Figure 2.1. The encoder v
maps the source N-vector x, into a digital codeword c,. Based on the received

¢, after the communication channel (assuming no transmission error), the decoder

10

| 3 I ¢ C, | Y l
Int v " channel ——> vt In, B I

encoder 1 decoder ¢

Figure 2.1: A generic quantization configuration.

¢ then builds a replica &, for &,. The encoder mapping can be decomposed as
¥ o v, where & maps &, to an index j, € J (the set of all indices), v maps j, into
the channel codeword c,, and o denotes the composition operation. Similarly, the
decoder mapping can be described as 3 o y~! where y~! reconstructs the indices
and B produces &, for the decoded index j,.

The quantizer performance is evaluated by (i) the average distortion
1 .
Dy = S Elp(X, X)), (2.4)
and (ii) the average rate

Ry = - BUG(X))], (25)

per source symbol where p(-,-) and I(-) denote the nonnegative distortion measure
and codeword length (in bits), respectively. In the sequel, we will only consider
the squared-error distortion measure and assume that the quantization indices are
encoded into binary codewords. For a rate r bits/sample resolution-constrained
quantizer, each code-vector is represented by a codeword of Nr bits and hence
Ry = r bits/sample. Fixing the average rate, the design problem is to minimize
Dy. For a rate r bits/sample entropy-constrained quantizer, assuming that there

exists an ideal entropy encoder/decoder pair (,77!), the design problem is to

11

determine the pair (¢, §) that minimizes Dy subject to a constraint that the per

sample output entropy of « is no larger than r bits/sample.

2.3 Granular Gain

Zador [38] showed that for asymptotically high-rate quantization (both for the
resolution- and entropy-constrained cases) the minimum average (per dimensional)
distortion Dy is proportional to the quantization coefficient Cy which depends only

on the dimension N. Zador did not obtain Cy explicitly, but he showed that

1 —2/N 1 -2/N
I < < — .
5T NVN <Cy < Nl"(l +2/NYVy ™, (2.6)

where Vy is the volume of a unit sphere in RY.

A geometric interpretation of the coefficients Cy was made by Gersho [12],
which we briefly describe as follows. An N-D convex polytope PP is said to generate
a tessellation if there exists a partition of R" whose regions are all congruent to

IP. The normalized second moment of IP is defined as

G(P) = Wl?l)m o llz — &z, (2.7)

where & denotes the center of IP and Vol(IP) is the volume of IP. A class of
admissible polytopes in RY, denoted by Py, is the set of all convex polytopes that
generate tessellations of RY. Gersho conjectured that the optimal N-D polytope

N, defined as

Py = aﬂl;g min G(P), (2.8)

€L N

exists for each N and Cy is obtained as the normalized second moment of the

optimal polytope IP}; that is,

Cny = G(IPy). (2.9)

12

In Gersho’s conjecture, he implicitly assumes that the quantization cells of
optimal quantizers should be close (or identical) to the optimal polytope (which
is the most spherical one within the class of admissible polytopes). It is believed
that Cy dgcreases in N, implying that in higher dimensional spaces the optimal
polytopes are more spherical. An optimal N-D vector quantizer can hence realize

over the optimal scalar quantizer a portion of the granular gain [14] denoted by

Ci

NN = (2.10)

where C; = 1/12. It can be shown that both the upper and lower bounds on
Cy given in (2.6), and hence Cy itself, converge to 1/2me as N — oo [39]. The
ultimate granular gain y,(c0) is therefore me/6 (1.53 dB).

The optimal convex polytope P} is, however, unknown for most N. On the
other hand, lattices [39] constitute an important subclass of tessellations of RY.
There exist lattices and their extensions to the sequence space — trellis codes [22],
collectively known as coset codes [29]-[30], whose constituent convex polytopes are
very close to optimal. In addition, the inherent algebraic structures in coset codes
often lead to fast search/encoding algorithms. We next describe some properties

of coset codes that are relevant to quantizers to be presented in later chapters.

2.4 Coset Codes

Algebraically, a real lattice A is a discrete set of vectors in RY that forms a group
under ordinary vector addition operation. Geometrically, a lattice A is an infinite
regular array that covers RY uniformly. The Voronoi region of A, denoted by

Ry (A), is defined as the set of all points in RY that are at least as close to the

13

origin as to any other point A € A; i.e.,
Ry (A)2{z : ||z|? = min ||z — A%} (2.11)
AeA

The normalized second moment of a lattice is defined as the normalized second

moment of its Voronoi region; i.e.,
G(A) = G(Ry(A)). (2.12)

A sublattice A" of A is a subset of A which is itself an N-D lattice. The
sublattice induces a partition A/A’ of A into |[A/A’| cosets of A', where |A/A| is
the order of the partition. If we take one element from each coset of A', we obtain
a system of coset representatives for the partition A/A’, denoted by [A/A']. Then
every element A € A can be written uniquely as a sum XA = X' +c where ¢ € [A/A']
is the coset representative for the coset in which A lies, and A" = A—cis an element

of A'. This is called a coset decomposition of A and will be written as
A=A o[A/A]. (2.13)

An integer N-D lattice A is called a binary lattice if Z¥ /A/2*ZY for some
integer pu. The least such p is called the 2-depth of the lattice. A binary lattice
with 2-depth p is usually called a mod-2* lattice. Corresponding to a mod-2#
lattice A, there exists a linear (N, k) block code C over the 2#-ary Galois field such
that A consists of all integer N-tuples that are congruent modulo 2* to one of the
codewords ¢ € C [29]. This implies that, for example, a mod-2 lattice A can be
written as

2k_1

A= U c(i) + 22", (2.14)

14

where C = {¢(0),¢(1),--+,¢(2* — 1)} is the associated binary block code. More

generally, the decomposition of A into cosets of 2Z" can be written as
A=2ZN o [A/2*ZN] = 22V @ C, (2.15)

where every N-tuples in C is considered as an integer vector in R”.

Trellis codes are generalizations of finite-dimensional lattices to the sequence
space just as convolutional codes are generalizations of block codes. As for the
simplest example, consider an N-D lattice A which can be decomposed into 2¢17
cosets of sublattice A', each indexed by a coset representative A(2) for i € T ot
Denote by ¥ the space of all admissible output sequences (over Jox+-) of a rate-
k/(k + r) binary convolutional encoder. The associated N-D trellis code is given

by
AT ={{Na+Aen)}: N €A, Vn; {en} € T}, (2.16)

Both lattices and trellis codes can be put into the common framework of coset
codes introduced by Forney [29]-[30]. For simplicity of presentation, we will confine
our attention only to binary cases. The three main elements of a coset code, the

general structure of whose encoder is shown in Figure 2.2, are as follows:

1) An N-D lattice A.
2) A sublattice A" of A with |A/A'| = 20:+7),
3) A rate-k/(k + r) binary encoder C, which takes in k-bit input codeword and

puts out (k + r)-bit codeword.

The associated coset code, denoted by ©(A/A’;C), is the set of all sequences of
signal points that lie within a sequence of cosets of A" which could be specified by

a C-admissible sequence of (k + r)-bit codewords.

17k £{0,1,2,--, K — 1}.

15

k + r bits

k bits—| C [A/A']

Y

cc[A/A]

uncoded bits———— A’ - point in A

Figure 2.2: Encoder structure of the coset code.

2.4.1 Application of Coset Codes to Quantization

According to the discussion (on Gersho’s conjecture [12]) provided in Section 2.3,
quantizers whose codebooks are formed based on code-sequences of a coset code

C(A/A’;C) can realize a portion of granular gain given by

Ch

(CA/A50)’ (217)

YHC(A/450) =

where G(C(A/A'’;C)) is the normalized second moment of ©(A/A’;C).

When C is a block code, € (A/A’;C) reduces to the lattice A. In this case,
N =k +r and C is an (N, k) block code. The normalized second moments G(A)
for some binary lattices have been computed in the literature (see [39]); we provide
in Table 2.1 the corresponding granular gains of quantizers constructed based on
these lattices.

The normalized second moment G(C(A/A’;C)) of Ungerboeck’s famous 1-D
trellis codes [22] (called Ungerboeck trellis codes in the sequel) have been obtained
by simulations in [21]. In Table 2.2, we provide the corresponding granular gains

of quantizers constructed based on these trellis codes.

16

2.4.2 Symmetry in Ungerboeck (1-D) Trellis Codes

Here, we describe some symmetry properties associated with Ungerboeck trellis
codes [22]. These properties will be exploited to reduce the implementation (mainly
storage) complexity when we present the structured quantization schemes in later
chapters.

Let us consider an Ungerboeck trellis code [22] which is based on some rate-
1/2 convolutional code and an underlying partition of A = 2Z + 1 into four cosets
of 8Z, namely Ay, A, By, and B;. The convolutional code can be implemented
based on some specific shift register (see [22]), the content of whose delay elements
(memory) corresponds uniquely to the so-called trellis state. We will denote by
vand ¥ = {0,1,---,2” — 1} the number of delay elements of the shift register
and the space of all possible trellis states, respectively. Let each coset be indexed
exclusively by one of the four possible two-bit output word of the shift register.
Given any current trellis state, the next state is uniquely determined by the one-
bit input word to the shift register and the resulting state transition is labeled
by the two-bit output word of the shift register, or equivalently, one of the four
cosets — Ao, A1, By, and B;. Within one time frame, the set of all possible
transitions describes the trellis diagram. As an example, the trellis diagram of a
4-state Ungerboeck trellis code along with the four partitions of A are shown in
Figure 2.3.

Let us define two supersets A = AoU.A; and B = ByUB; and denote by A% the
nonnegative subset of A. There are three properties associated with Ungerboeck
trellis codes (along with the underlying lattice translate A we assume):

1. Each point in 4 has a dual point of the same magnitude in B.

2. For any trellis state s € X, the allowed superset is either .4 or B, but not in

17

Figure 2.3: Ungerboeck’s 4-state 1-D trellis code.

any other twisted form of the four cosets.

3. For any s € X, the previous allowed superset that leads to a transition to s

is either 4 or B, but not in any other twisted form of the four cosets.
Since the allowed superset for a given trellis state s; € X at time 4 is either A or
B (by Property 2) and there is at most one point of a specified magnitude in that
superset (by Property 1), there exists a state-dependent function F : ¥ x AT — A
that is capable of recovering a point z; that belongs either to A or B only by its

magnitude |z;| € AT; that is,
zi = F(si, |2i])- (2.18)

The state transition that originates from s; to the next state s;, is labeled by the

coset to which z; belongs. There hence exists another state-dependent function,

18

called the nezt-state function, NV : ¥ x AT — X, that can determine the next

trellis state s;;; based on the knowledge of s; and |z;|; that is,
Siv1 = N (si, |2i). (2.19)

Similarly, according to Properties 1 and 3, there exists the so-called previous-state
function P : X x AT — X that can determine s; based on the knowledge of s,

and |z|; that is,
8; = P(Si+1, |Zz|) (2.20)

Now we can claim that a trellis code-sequence {z;} can be equivalently represented
by its corresponding sequence of magnitudes {|z;|}. This is because that, given
the initial trellis state, the decoder can recursively apply (2.18) and (2.19) to

reconstruct {z;} from the received magnitude sequence {|z;|}.

19

A A C v(A) (dB) 2-depth

N
1 Z Z (1,0,00) 0

4 Dy 27° (4,3,2) 0.37 1
8 Dg 27° (8,7,2) 0.47 1
8 Eg 27% (8,4,4) 0.65 1
16 Ay 4Z' 2(16,15,2)+(16,5,8) 0.86 2
24 Ay 4Z* 2(24,18,4)+(24,6,16) 1.03 2

Table 2.1: Granular gains of some known binary lattices.

N A A state (C(A/A;C)) (dB)

4 0.99

8 1.10

16 1.15

1 Z 4Z 32 1.23
64 1.28

128 1.33

256 1.36

Table 2.2: Granular gains of Ungerboeck’s 1-D rate-1/2 trellis codes.

20

Chapter 3

On Variations of the TB-SVQ

3.1 Introduction and Outline

In the context of resolution-constrained quantization, vector quantizers can realize
over uniform scalar quantizers the granular, boundary, and non-uniform density
gains (see Section 1.1). For memoryless uniform sources, there are quantizers based
on lattices [39, 41] and trellis codes [21] which can realize the granular gain (to the
extent indicated in Tables 2.1 and 2.2). To realize both the boundary and granular
gains for memoryless non-uniform sources whose optimal codebook boundary R ,gp
can be easily determined (as dictated by the AEP) and characterized, the basic idea
is to optimally shape (according to R ,gr) an unbounded codebook corresponding
to some “good” lattice or trellis code. One generally need not be too concerned
with the non-uniform density gain as it becomes diminishingly small in optimally
shaped codebooks for a large vector dimension V.

The scalar-vector quantizer (SVQ) of Laroia and Farvardin [20] is a specific

kind of fixed-rate vector quantizer whose codebook structure is derived from a

21

variable-length scalar quantizer. It has been shown in [20] that for memoryless
sources SVQ can asymptotically (in N) achieve the ECSQ performance, which
at high rates is inferior to the rate-distortion limit only by the ultimate granular
gain of 1.53 dB. It should be mentioned that no granular gain is realized by SVQ
as its quantization cells are approximately cubic. This implies that SVQ can
asymptotically (in N) achieve the ultimate boundary gain by placing all code-
vectors inside Rygp. The trellis-based scalar-vector quantizer (TB-SVQ) recently
introduced by Laroia and Farvardin [15] is another structured fixed-rate quantizer
that combines SVQ [20] with the trellis-coded quantizer (TCQ) of Marcellin and
Fischer [21]. For memoryless sources, the SVQ structure allows TB-SVQ to achieve
a large boundary gain while the underlying trellis code enables it to realize a
significant granular gain. In addition, TB-SVQ could be derived from a non-
uniform scalar quantizer, which results in some non-uniform density gain. TB-SVQ
is hence capable of realizing all the three vector quantization gains (see Section 1.1)
and can, in principle, achieve the rate-distortion bound for large block-lengths and
powerful (possibly complex) trellis codes. To our knowledge, TB-SVQ has been
shown to outperform all other implementable resolution-constrained quantizers
reported in the literature.

Two TB-SVQ codebook design and search methods are described in [15]. In
the first method, the underlying scalar quantizer is generally non-uniform and is
iteratively designed based on a Lagrangian formulation similar to that for SVQ [20]
or ECSQ [26]. This method results in what will be called TB-SVQ-I in the sequel.
The TB-SVQ-I codebook search algorithm is based on dynamic programming and
is a combination of the SVQ codebook search algorithm [20] and the Viterbi trellis

search algorithm of TCQ [21]. The second approach is AEP-motivated and defines

22

the codebook as the collection of all uniformly spaced code-sequences that are
contained inside R ,gp, resulting in what will be called TB-SVQ-II in the sequel.
The design problem for TB-SVQ-II is simply to select a scaling factor for the
underlying trellis code that yields the desired number of code-vectors contained
inside R gp- For the codebook search, the source vector is first quantized to the
nearest trellis code-sequence just as in a TCQ. If the quantized vector lies inside
‘R sep, One proceeds to encode the next source vector. Otherwise, the source ovector
is said to be overloaded. In case of such an overload event, one gradually moves
the source vector slightly towards R ,zr and quantizes the shifted source vector to
the nearest trellis code-sequence until the quantized vector lies inside R sgp.

The TB-SVQ-I codebook search complexity is approximately that of SVQ times
the number of trellis states. For high encoding rates or complex trellis codes (with
a large number of states), the search complexity and storage requirement can be
prohibitive. TB-SVQ-I, however, is quite implementable at low rates and when
the underlying trellis code is not too complex. Also, a fixed number of operations
is needed for encoding each input vector. The search complexity of TB-SVQ-II is
roughly the same as that of TCQ and depends linearly on the number of trellis
states, if overload events occur only negligibly. Our simulation on TB-SVQ-II at
low rates, however, indicates that overload events occur quite significantly and
the number of operations required to produce the quantized output varies largely
depending on the input source vector.

In this chapter we describe, for memoryless sources, a hybrid of TB-SVQ-I
and TB-SVQ-II. The codebook structure of such a hybrid TB-SVQ is the same
as that of TB-SVQ-II, therefore rendering the design problem as simple as that

of selecting a scaling factor for the underlying trellis code. This design method

23

is generally simpler than the Lagrangian formulation for TB-SVQ-I. On the other
hand, the codebook search algorithm of the hybrid TB-SVQ is similar to that of
TB-SVQ-I. At low rates, the computational complexity and storage requirement
of such a dynamic programming based algorithm are quite affordable. In addition,
like TB-SVQ-I, a fixed number of operations is needed for encoding each input
vector.

In this chapter we also consider applying the TB-SVQ idea to encode sources
with memory. A popular idea for quantizing Markov sources is one that encodes
the so-called prediction residual — the difference between the input source sample
and its predicted version based on quantized samples in the past. The class of
source coders based on this idea, collectively referred to as the predictive quantizers,
includes the well-known differential pulse code modulation (DPCM) scheme [3].
Specifically, we will consider a combination of both TB-SVQ and DPCM — called
the predictive TB-SVQ — for quantizing Markov sources.

The rest of this chapter is organized as follows. The basic idea of SVQ [20] is
reviewed in Section 3.2. We then describe in Section 3.3 how SVQ is combined
with Ungerboeck trellis codes (for which some useful symmetry properties are
discussed in Section 2.4.2), yielding the TB-SVQ scheme which can realize both
the boundary and granular gains for memoryless sources. In Section 3.4, we present
the dynamic programming based TB-SVQ codebook search algorithms and analyze
their complexity. In Section 3.5, we present the predictive TB-SVQ scheme for
quantizing Markov sources. Simulation results will be provided in Section 3.6,

followed by a summary of this chapter given in Section 3.7.

24

3.2 Scalar-Vector Quantization

Consider an m-level scalar quantizer 8 described in terms of a set of reproduction
levels Q@ = {g; : € Tm} and a corresponding set of nonnegative integer lengths
L ={;:j € Tn}, where {; is the length associated with ¢;. If each component
of an input N-vector is separately quantized using &, the quantized vector will be
in an N-D grid of m" points — @". The codebook Z of a rate r bits/sample
SVQ V [20] derived from S = (Q, L) is a subset of Q| given as

N
Z={z2= (21,2, ,2n) € @V : Y Lsy < L}, (3.1)
i=1

where the index function f(-) : @ — Jy, is defined as
flg5) =34, § € Tm, (3.2)

and the threshold L is selected as the largest integer such that card(Z) < 2V,
The actual codebook cardinality card(Z) is generally not equal to but less than
the desired number of code-vectors — 27". Such a discrepancy can be quantified

by the so-called SVQ coding redundancy « (in bits/sample) where
2Nk = 9NT _ card(Z2). (3.3)

An N-sphere or N-pyramid bounded cubic lattice based quantizer is a special
case of SVQ in which & is an unbounded uniform scalar quantizer and the length
¢; associated with the level ¢; is defined as ¢; = |g;|* or ¢; = |g;|, respectively.
An N-D SVQ V is completely defined in terms of the triplet (Q,L,L). It is
shown in [20] that this simple structure of the SVQ codebook results in fast and
efficient algorithms for codebook search and code-vector encoding/decoding. For

more details on SVQ, see [20].

25

3.3 Combined SVQ Shaping and Trellis Coding

In this section we describe how SVQ [20] and Ungerboeck 1-D trellis codes [22]
are combined, leading to TB-SVQ [15]. The SVQ structure allows the TB-SVQ to
optimally shape the codebook boundary while the underlying trellis code enables
it to achieve a significant granular gain. Throughout the discussion in this section,
we will only focus on the memoryless Gaussian and Laplacian sources, for which
the optimal codebook boundaries are a sphere and a pyramid, respectively.

Let the TB-SVQ reproduction alphabet A = {£(2j+ 1) : j € T} (where &
is a scaling factor and card(A) = 2m) be partitioned into four subsets according
to Ungerboeck’s partition rule [22]. The equivalence between any Ungerboeck
1-D trellis code-sequence and its corresponding magnitude sequence has earlier
been established in Section 2.4.2. The basic idea of TB-SVQ is simply to achieve
SVQ shaping on the magnitude sequence. We hence proceed to consider an SVQ
V derived from the magnitude set @ = {g; = (2 + 1) : j € T} and the
corresponding set of nonnegative integer lengths £ = {¢; : j € J,}, where ¢, is
the length associated with the magnitude g;. As in the SVQ [20], a spherical or
pyramidal TB-SVQ codebook boundary can now be realized by setting ¢; = |g;|2/6?
or £; = |g;|/0, respectively. A trellis code-sequence of symbols from A is said to
be an N-D TB-SVQ code-sequence if every contiguous N-vector taken from the
corresponding magnitude sequence is a code-vector of the N-D SVQ derived from
the underlying scalar quantizer S = (Q, L).

For most efficient implementation of the SVQ-related codebook search and
code-vector encoding/decoding, it is suggested in [20] that the length set £ should
be shifted and scaled to as small nonnegative integers as possible. The simplest case

for the sphere- or pyramid-bounded TB-SVQ codebook corresponds to setting £; =

26

N-sphere N-pyramid

Rate||N = 16|N = 32|N =64||N = 16|N = 32|N =64

7 12 24 5 10 20
1.0 || (0.01) | (0.04) (0.11) | (0.05) | (0.01)

16 30 56 11 20 39
1.5 || (0.03) (0.01) || (0.02) | (0.04) | (0.02)

35 64 121 19 35 67
2.0 || (0.02) | (0.01) (0.01) | (0.01) | (0.01)

74 134 252 30 56 108
2.5 (0.01) | (0.01)

151 272 012 46 86 165
3.0 (0.01)

Number in the parenthesis is the corresponding SVQ
coding redundancy (in bits/sample).

Table 3.1: The threshold L of the N-sphere and N-pyramid bounded TB-SVQ for
various encoding rates and block lengths.

(lg;1*/62 —=1)/8 = j(j +1)/2 or ¢; = (|¢;1/6 —1)/2 = j, respectively. Now with the
given underlying scalar quantizer 8 = (@, £) where we assume @ is unbounded
(m = o0)!, a simple enumeration algorithm (see [20]) can be applied to determine
the threshold L, which is the largest integer that yields the cardinality of the
SVQ codebook Z no larger than 2" where r is the encoding rate in bits/sample.
The resulting threshold L for an N-D sphere- or pyramid-bounded TB-SVQ are
given in Table 3.1 for various values of NV and r. For cases where the SVQ coding
redundancies are noticeably large, their values are also given (in parentheses) in
Table 3.1.

The granular structure and codebook boundary of the optimal TB-SVQ are
already specified by the underlying trellis coding and SVQ shaping, respectively.

The only unknown to be determined is the scaling factor ¢ for the underlying scalar

! After L is determined, card(Q) can be set back to the largest integer m with £,,.; < L.

27

quantizer Q. Suppose that the optimal TB-SVQ codebook search algorithm (which
we will present in the next section) and a long training sequence are available, the
TB-SVQ design problem is simply to select the scaling factor § which yields the
smallest empirical quantization distortion. To encode a TB-SVQ code-sequence
into a binary stream, every N-vector is taken contiguously from the corresponding
magnitude sequence and fed into the SVQ encoder [20]. In the decoder, the binary
stream is decoded (by the SVQ decoder) into contiguous N-vectors, yielding the
magnitude sequence, from which the TB-SVQ code-sequence can be sequentially

reconstructed according to (2.18) and (2.19).

3.4 TB-SVQ Codebook Search Algorithm

In this section we present the TB-SVQ codebook search algorithms and analyze
their complexity. We first describe in Section 3.4.1 the optimal TB-SVQ codebook
search algorithm that is a combination of the SVQ codebook search algorithm [20]
and the Viterbi trellis search algorithm of TCQ [21]. This dynamic programming
based algorithm was derived for TB-SVQ-I in [15], but here we provide more details
about its implementation. The complexity of this optimal TB-SVQ codebook
search algorithm depends linearly on the number of trellis states. However, it
can be shown that it is rather inefficient to employ a complex trellis code. In
Section 3.4.2, we present a suboptimal TB-SVQ search algorithm that can suppress
the dependence of the implementation complexity on the number of trellis states.
In Section 3.4.3, the implementation complexity of these two search algorithms

will be analyzed and compared.

28

3.4.1 Full-State Search Algorithm

Let the input sequence {z;} be partitioned into contiguous blocks of N-vectors,
yielding {xy} where zy = (21, 2k2, -, k). In what follows, we present the
optimal full-state TB-SVQ codebook search algorithm that can globally search over
the quantizer codebook to determine the nearest code-sequence {&} for {z}.

Denote by Aj the minimum accumulated distortion that results when the first
k source vectors are quantized to a code-sequence whose final trellis state is s € 3.
Suppose that the encoder assumes a fixed delay of d N-vectors. To handle this
quantization delay, we need a buffer of (d + 1) N-vectors g} = (g0, a%,, ", % 4)
for each trellis state s that stores the unreleased portion of the trellis sequence
resulting in A;. Suppose that £ > d and denote by s* the trellis state that
minimizes A} over X, g, is hence released as the TB-SVQ code-vector &;_g.
To make the released sequence of N-vectors consistent with the underlying trellis
code, we also need another buffer o} = (034,04, *, 04 4) associated with each
g; where o} ; € X denotes the trellis state that g ; reaches for all j € J441.
All TB-SVQ code-vector buffers whose of , is different from o}, will result in a
released sequence inconsistent with the underlying trellis code and should therefore
be removed from further consideration.

Suppose that we have just determined Aj_; (and hence ¢§_, and of_;) for

kth

all s € X; now consider operating on the source vector xj. Denote by Dﬁ’s

the minimum accumulated distortion that results when the first ¢+ components of

l,s l,s

¢y are quantized to z¥° = (25, 25°,---,2) whose total length is [and which

reaches trellis state s at time instant i. Also, let t*° denote the initial trellis state

l,s

for z;

(i.e., the trellis state that the i-vector z}° reaches initially at ¢ = 0). In

kth

the beginning of the search cycle, DX* is initialized to the value of Aj_, for

29

all s € X. Suppose that Dé’s, b5 and t are already determined. Consider for

2, a candidate (i 4 1)-vector which is the concatenation of the previous i-vector

z{’sl and one symbol z € A. For such a candidate (i + 1)-vector to be consistent
with the underlying trellis code, I must be such that ({ — ') € £ and, according
0 (2.20), s’ must be P(s,! — I')2. According to (2.18), z is hence constrained to
satisfy z = F(s',1=1'). To determine z2*,, we need to solve for the pair (I*, s*) that
satisfies the aforementioned constraints and minimizes the accumulated distortion
Dz t1; that is, we need to determine
(I*,8") = a{lg,n;m Dl g [Zri41 — F(s, 1= 1)]?]. (3.4)
By solving (3.4), byproducts such as D, ol Zi +1, and t, ¢ are also obtained. The
above operation repeats until 2 = N when we have Dks s 2k 27, and ¢ Ns available. We
then search over [€ J 1, for [* that minimizes Dﬁ{f for each s € X. Dﬁ;’s is then
copied to A to be used for the next search cycle. The initial trellis state for 2"
is t\7°, based on which the buffers g5 and o are updated as ¢f = (qi’i ‘:,zl;,’s)
and o}, = (af};’_’i, s), respectively. As a summary, a C-like programming language
description of the full-state search algorithm is presented in Figure 3.1.
One can visualize the full-state TB-SVQ codebook search algorithm as follows.
The algorithm is essentially a sliding-block Viterbi algorithm [40] that operates on
each N-vector based on a 3-D search grid of N X (L+1) x | X| points where L is the

SVQ threshold length. The special case where there is no extra quantization delay

(d = 0) corresponds to a genuine block-based type of search algorithm. Within

2Tt should be mentioned that there is a one-to-one correspondence between £ and @ in the
specific sphere or pyramid bounded TB-SVQ we are considering. Due to this equivalence, we
can replace @ with £ in the input domain of the three functions F(X¥,-), N(X,-), and P(X,-)

described in Section 2.4.2; this will be implicitly assumed in the following discussion.

30

for (s € X) if (s == a specified trellis state) A®; = 0; else A?; = o0;
for (k=0;k <oo; k++) {
for (s € ;1 € J) if (1 ==0) Db* = A}_,; else Db* = oo;
for (s € X) z0* = 0;
for (i=0;i<N;i++)for (s€ ;1€ Try){

(I*,s*) = argmingy o) [Di * ot [hien — F(s, =)
z = F(s*,1 = I*);
Dﬁ’jl = Di" + (This1 — 2)%

ls __ 1*,s* .
241 = (Zi ,Z),

if (i == 0) tiF, = s*; else t25, =t *;
}
for (s € X) {
[* =arg minlEJL+1 Dk,
*,s *,s

* t * t
2 =DV g = (g, 2y%); oL = (0, s);

}
if (k> d) {

s* = argmin,_ 52 Ay;
release &y_q = qiio for TB-SVQ code-vector encoding;

for (se X) {
if (Ui,o # Uijo) Aj = oo;
O'Z = (Jlsc,l, Ulsc,27 Tt Olg,d);

§ — 8 8 8 .
a; = (@i, T Gha)s

Figure 3.1: Full-state TB-SVQ codebook search algorithm.

31

each search cycle, associated with the grid point (4,1, s) at time instant ¢, there is
an optimal i-vector zﬁ’s that has an accumulated length [and reaches trellis state
s. The resulting accumulated distortion is Dﬁ’s. Before operating on x, the value
of Af_, is copied to Dy for all s € 3. We then sequentially (in i) determine z>*
according to (3.4) and thereby update D>* for all | € J 1, and s € 3. After D
and le;;’ are determined, for each s, the minimum Dﬁ(,s (over | € J111) is copied

to Ay and the buffers gj, can be accordingly updated.

3.4.2 State-Suppressed Search Algorithm

The implementation complexity of the full-state search algorithm described in the
previous subsection is proportional to the number of trellis states. As can be
observed from Table 2.2, after the first 1 dB or so granular gain has been realized
by the 4-state trellis code, of the remaining granular gain only about 0.05-0.10 dB
is realized for every factor of two increase in the number of trellis states. This
indicates that it is rather inefficient (in terms of the tradeoff between complexity
and performance) to employ a complex trellis code. In what follows, we present
a suboptimal TB-SVQ search algorithm that can suppress the dependence of the
implementation complexity on the number of trellis states.

The basic idea of what will be called the state-suppressed search algorithm is
as follows. As opposed to the full-state search algorithm in which each search grid
point is a 3-D composite of the time instant ¢, the accumulated length [, and the
trellis state s, the state-suppressed search algorithm suppresses the trellis state
dimension and simply assigns a trellis state s! that satisfies the state transition

th

constraint for the (,1)"* point in the now 2-D search grid. We hence do not

need state-dependent buffers (like g§ and o§ as in the full-state search algorithm)

32

s* = a pre-specified trellis state;
for (k=0; k <oo; k++) {

for (I € Jr41) if 1==0) D} = 0; else D} = oo;
0 *
sy =s%

for (i=0;1 < N;i++) for (I € Tr+1) {

[* = arg miny [Dﬁl + [k it1 — 7(Sél,l - ll)]z ;
sz(Sé*,l—l*); .

Dl = DI + (g1 — 2)%

zl, = (zé*,z);

3£+1 = N(s{, 1= 1);

}

X __ : l.
[* = arg min,. 7 Dy;
x _ ol*,
§ =S8N

release & = 2% for TB-SVQ code-vector encoding;

Figure 3.2: State-suppressed TB-SVQ codebook search algorithm.

because the freedom of having a code-sequence reaching a specified trellis state at
any time instant is removed. Unlike the sliding-block coding nature of the full-state
search algorithm, the state-suppressed search algorithm is a genuine block-based
scheme and allows no extra quantization delay.

Denote by D! the distortion that results when the first s source samples of
are quantized to the optimal i-vector whose accumulated length is [. This i-vector
is denoted by 2} = (21,24,---,2}). Also, let s denote the trellis state that 2!
reaches. In the beginning of operating on each source N-vector, D) and s are set
to 0 and a pre-specified trellis state, respectively. Suppose that D}, 2!, and s! are
already determined for all | € J 1. Consider for 2., a candidate (i + 1)-vector

’
which is a concatenation of the previous i-vector z! and some symbol z € A. For
i Yy

33

such a candidate (i + 1)-vector to be consistent with the underlying trellis code,
I' must be such that (I — ') € £ and the corresponding trellis state st,, and
symbol z must satisfy s, = Nl 1—1) and z = F(s

L1 =1, respectively. To
determine 2., ;, we need to solve for [* that satisfies the aforementioned constraints

and minimizes the accumulated distortion D!, ,; that is, we need to determine

I* = arg min Dél + [Zip1 — f(s{,l - . (3.5)
1

By solving (3.5), byproducts such as D!,,, 2! ,, and s.,, are also obtained. The
above operation repeats until 1 = N when we have D), and 2z, available. Finally,
we search for I* that minimizes DY, over | € J 1,1 and release 2% as @). The

state-suppressed TB-SVQ codebook search algorithm is summarized in Figure 3.2.

3.4.3 Complexity Issues

Recall that a TB-SVQ code-sequence is converted into its corresponding magnitude
sequence before a magnitude-based SVQ encoding algorithm [20] is employed to
further encode it into a binary stream. The code-vector encoding complexity (in
terms of operations per sample and overall memory requirement) can therefore
be determined as in [20] and, under our new notations, is presented in Table 3.2.
We should mention that for code-vector encoding this result will be common to
all variations of the TB-SVQ to be presented in the sequel and hence will not be
reiterated.

We next analyze the implementation complexity associated with the full-state
codebook search algorithm. Determining each Dﬁfl, through solving (3.4), requires
4m—1 operations (2m additions, m multiplications, and m —1 comparisons) where

m = card(Q). This costs 2N(L + 1)(4m — 1) operations per search cycle. At

34

Computational Storage
(32-bit Adds/Sample) (32-bit Words)

Nmr/32 N%(L+1)r/32

Table 3.2: TB-SVQ code-vector encoding complexity.

the end of each search cycle, it takes 2¥L comparisons to determine the least
accumulated distortion for each trellis state. Also, at the end of each search cycle,
it requires extra 2” — 1 comparisons to determine the optimal candidate trellis
code-sequence. Overall, the computational requirement is approximately 2"(L +
1)(4m — 1) operations per source sample. The major storage requirement comes
from variables such as A, D4 zh8 55 g° and o°. All except A’ need to be
alternatively updated and hence cost twice as much in the required storage. Let
us assume that each accumulated distortion variable (such as A® and D) is
stored in a 32-bit word. The overall cost for the accumulated distortion variables
is 2“(2L + 3) 32-bit words. Each component of z"* and g° can be stored in the
form of an index of [log, m] bits to the magnitude set Q. The total storage
cost for 24 and @° is hence 2"1N(d + L + 2)[log, m]/32 32-bit words. Each
component of t+* and o is a v-bit index to X; the total storage cost in this regard
is 2" Nv(d+ L+ 2)/32 32-bit words. Overall, the storage requirement of the TB-
SVQ full search algorithm is approximately the sum of all we have just mentioned
and is given in Table 3.3.

The implementation complexity associated with the state-suppressed search
algorithm can be similarly quantified. We omit the complexity analysis here but

present the computational and storage requirements in Table 3.3. Clearly, the

35

Computational Storage
(Operations/Sample) (32-bit Words)
Full- 2(L+1)dm—1) || 2v[(2L + 3) + MLt oy m])]
State
State- (L+1)(4m — 1) 2(L +1) [1 + N oeaml]
Suppressed

Table 3.3: TB-SVQ codebook search complexity.

state-suppressed search algorithm is less complicated than the full-state search
algorithm by about a factor equal to the number of trellis states.

To get a clearer picture of the implementation complexity of these two TB-SVQ
codebook search algorithms, let us consider a more concrete example in which we
quantize the memoryless Gaussian source at 1 bit/sample using a 64-D 8-state
TB-SVQ; we have N = 64, v = 3. From Table 3.1, we can determine L = 24 and
subsequently m = 7. Also, suppose that the full-state search algorithm assumes
an encoding delay of four N-vectors (i.e., d = 4). Now, using Table 3.3, we
can determine that the computational and storage requirement for the full-state
search algorithm are 5,400 operations per source sample and 6,168 32-bit words,
respectively. For the state-suppressed search algorithm, the computational and
storage requirement are 675 operations per source sample and about 355 32-bit

words, respectively.

36

3.5 Predictive TB-SVQ

In this section, we consider a combination of both the TB-SVQ and DPCM schemes
— called predictive TB-SVQ — for quantizing Markov sources. The dynamic
programming based TB-SV(Q codebook search algorithm presented in Section 3.4 is
a multipath search method in which each search path stores a candidate quantized
sequence. The basic idea behind predictive TB-SVQ is simply to perform the
DPCM predictive coding operation in each search path of the TB-SV(Q codebook
search algorithm. A similar idea has been applied to the TCQ codebook search
algorithm, leading to the so-called predictive TCQ (PTCQ) [21]. Before describing
the algorithm we look at a naive coding scheme so as to motivate the predictive
TB-SVQ scheme.

First, we should mention that there is an invertible linear function 1/H (z) (see

th-order Markov source to

Section 2.1) that maps {x;} — a realization of some p
its corresponding innovations sequence {w;}. Each innovations sample w; can be

obtained as a linear combination of several source samples as follows:

p
W; = T; — ijxi_j. (36)
j=1

A naive quantization scheme for such a Markov source is one that quantizes the
innovations sequence {w;} and reconstructs the replica Z; for z; as the output of
source filter H(z) driven by the quantized innovations sequence {w;}; that is,
p
T =i+ Y pidicj. (3.7)
i=1
For example, the D*PCM scheme (see [3]) belongs to this class of source coders that
employs an underlying scalar quantizer to encode the innovations sequence. One

may now replace the scalar quantizer in D*PCM with a more powerful quantizer

37

(like TB-SVQ) in an attempt to realize both the boundary and granular gains in

the innovations domain. For this class of coders, however, optimal quantization

in the innovations domain does not necessarily lead to optimal quantization in

the source domain. This is due to the so-called quantization error accumulation

phenomenon [3] which we briefly explain as follows. Define e; £ z; — %; as the

quantization error in the source domain. By substracting (3.7) off (3.6), one obtains

P

e; = w; —W; + ;pjei_j, (3.8)

indicating that e; is equal to the innovations quantization error w; — w; plus some
accumulation of the most recent p source quantization errors.

The basic idea of DPCM — a closed-loop variation of D*PCM — is that of

quantizing the prediction residual ¢; = x; — Z; where
P
B= Y pifisj, (3.9)
=1

is a prediction of x; that is also known to the decoder. Denote by €; the quantized
version of ¢;. In the decoder, the quantized replica for x; is obtained as Z; = €+ Z;.
Obviously, the source quantization error z; —Z; is identical to the quantization error
€; — €; in the prediction residual domain and there is hence no quantization error
accumulation in DPCM.

Now we consider the predictive TB-SVQ scheme for quantizing Markov sources.
Essentially, we wish to generalize the underlying scalar quantizer in DPCM to the
more powerful TB-SVQ (so as to realize both the granular and boundary gains
in the prediction residual domain). In practice, however, we perform the DPCM
predictive coding operation in each search path of the TB-SVQ codebook search

algorithm. For simplicity, we next describe this generalization only on the state-

38

suppressed search algorithm presented in Section 3.4.2; the extension for the full-
state search algorithm should be straightforward and will be omitted.

Let us take the state-suppressed TB-SVQ codebook search algorithm described
in Section 3.4.2 as a baseline algorithm and consider the extra effort required to
perform the DPCM operation in each search path. First, we need an extra variable
& = (8,41, 8 p4a, -+, 8Y) for each [that stores the most recent p quantized
samples associated with 2zt — the quantized i-vector for the “pathwise” prediction
residuals. Suppose that D}, z}, &, and s! are just determined, we next show how
these variables are updated. It should be mentioned that a prediction of xj ;41

!
associated with z! can be made as
IR NN
j=l1

and the corresponding predicton residual is 7y ;41 — '. Treating the predicton

residual as an input to the quantizer, the minimization problem in (3.5) becomes
= argllmin D! 4 [zpie — 3 — F(,1=1)P|. (3.11)

By solving (3.11), byproducts such as D!, 2!, ,, and &t +1 are also obtained. The
above operation repeats until 2 = N and the rest of the algorithm is the same as
in Figure 3.2. In the decoder, the decoded TB-SV(Q code-sequence is delivered
as input to the source filter H(z) to produce the reproduction sequence {Z;}. A
C-like program summarizing the state-suppressed predictive TB-SVQ codebook
search algorithm is provided in Figure 3.3.

To optimally design this type of predictive source coders, a key problem is to
design the optimal quantizer matched to the probability density function (p.d.f.)
of the prediction residuals. However, there is an interdependence between the

quantizer structure and the prediction residual process. This interdependence has

39

s* = a pre-specified trellis state;
for (k=0;k < o0; k++) {

for (I € J1+1) if (I==0) D} = 0; else D} = oo;
0 *
So = $7;

for (1 =052 < N1+ +) {

for (l€ Jpy1) & = E?:l Pj§72+1—y§
for (1 € Tr41) {
[* = arg min, [Dfl + [Thip1 — 3 - F(S{J s NE

z= f(S,é*,l - l*);

D}, = D! + (zip1 — 3 — 2)%
&= (2,3 +2);

sy = (25 2);

35+1 = N(Sé*J - I*);

* __ : l. * __ ol ~0 __ Sl
= argming 7 Dy; § = sy Ty = Ty,
release zly for TB-SVQ code-vector encoding;

Figure 3.3: State-suppressed predictive TB-SVQ codebook search algorithm.

been shown to be very complicated even in the simplest case — the DPCM [42].
Partially because of this interdependence that leads to difficulties in determining
the actual residual p.d.f., and partially due to the fact that at high rates the
residual process is very close to the innovations process, it is common to design
the quantizer for the p.d.f. of the innovations process; we adopt this simple practice
in the course of developing the predictive TB-SVQ.

The implementation complexity associated with the predictive TB-SVQ (using

either the state-suppressed or full-state search algorithm) can be easily analyzed

40

Computational Storage
(Operations/Sample) (32-bit Words)

Full- 2(L + 1)(m + 2p) 2"2p+ 1)(L+1)

State

State- (L + 1)(m + 2p) 2p+1)(L+1)
Suppressed

Table 3.4: Extra complexity of predictive TB-SV(Q codebook search.

and is presented, in terms of extra complexity as compared to that required by the
baseline algorithm for memoryless sources (see Table 3.3), in Table 3.4. We should
also mention that the predictive TB-SVQ codebook search algorithm is merely
suboptimal. The suboptimality is due to the “greedy” nature in truncating the
search paths which currently have larger accumulated distortions than the survivor
one. As the future prediction residuals depend on the current quantization, chances
are that paths which eventually lead to smaller quantization distortions are already

abandoned.

3.6 Simulation Results

The TB-SVQ and predictive TB-SVQ performance are presented and discussed in
this section. The results reported are given as signal-to-noise ratio (SNR) in dB and
are obtained based on simulations performed on at least 160,000 source samples.
The memoryless sources we consider here include Gaussian and Laplacian sources,
while for Markov sources we consider two specific types of Gauss-Markov sources.

The PTCQ performance for Markov sources [21] will be included for comparison

41

against the predictive TB-SVQ, while for memoryless sources the performance of
the SVQ [20], TB-SVQ-I and TB-SVQ-II [15], and TCQ [21] will be included to
compare against the TB-SVQ. We will also include the rate-distortion limit for the
specific source in all cases.

We first consider the quantizer performance as a function of the quantization
delay. The dependence of the TB-SVQ performance on the delay d (in number of
N-vectors) for encoding a memoryless Gaussian source at 1 bit/sample is presented
in Figure 3.4; the block-length N is 16 or 32 for subfigure (a) or (b), respectively.
Similar plots for the predictive TB-SVQ for two types of Gauss-Markov sources
are given in Figure 3.5. These plots indicate that the delay required to saturate
the performance is smaller when the underlying trellis code has fewer states or
the block-length is larger. In generally, both the TB-SVQ and predictive TB-SVQ
require only a delay of one (16-D or 32-D) source vector to perform within 0.05 dB
of the saturated result (which can be obtained with an extremely large quantization
delay).

Now we shall assume a quantization delay of five source N-vectors which nearly
saturates the TB-SVQ performance using the full-state search algorithm. Table 3.5
illustrates the TB-SVQ performace with various block-lengths and encoding rates;
all quantizers considered here are based on Ungerboeck 4-state 1-D trellis code.
Simulation results in Table 3.5 indicate that TB-SVQ is no inferior to TB-SVQ-I
or TB-SVQ-II for the Gaussian source. TB-SVQ-I, however, outperforms TB-SVQ
for the Laplacian source. This is probably because TB-SVQ-I (whose underlying
scalar quantizer is non-uniform) can realize the non-uniform density gain which

is significant for the Laplacian source. TB-SVQ consistenly outperforms TCQ in

3The full-state codebook search algorithm is implicitly assumed.

42

T T 1 T T T T
L Rate-distortion bound |
5.8 1
56 R
—©o 4-state trellis
541 »—x 8-state trellis B
F52F - - - D AR A 4
o TCQ: infinite delay
oo
z 5 T
7
4.8+ 4
4.6+ 4
4.4% 16-D SVQ 7
4.2 1
4 . |) 1 1 1 L
0 1 2 3 4 5 6 7 8
Quantization Delay (16-vectors)
(a) N = 16.
£ Rate-distortion bound |
5.8 b
5.6 b
6—o6 4-state trellis
541 »—X 8-state trellis B
PR I N e G A .~ (S — iL ____ ——— 9
ﬁ TCQ: infinite delay
14
z 5 iy
17}
4.81 1
a6t 32-D sva i
4.4 E
4.2 -
4 1 i 1 1 1 1 1
[1 2 3 4 5 6 7 8
Quantization Delay (32-vectors)
(b) N = 32.

Figure 3.4: Performance (SNR in dB) of TB-SVQ on encoding a memoryless Gaus-
sian source at 1 bit/sample versus the quantization delay.

43

13.5 T T T T T T T

Rate-distortion bound

125} ‘ .

SNR (dB)
I

s ——
b —
15} ; N=16

Predictive TCQ: infinite delay

3 4 5
Quantization Delay (N-vectors)

s (a) P1= 0.9.

Rate-distortion bound

11.5F Predictive TCQ: infinite delay

6 7 8

3 4 5
Quantization Delay (N-vectors)

(b) p1 = 1515, py = —0.752.

Figure 3.5: Performance (SNR in dB) of predictive TB-SVQ (with 4-state trellis)

on encoding a (a) 1th_order (b) 2" order Gauss-Markov source at 1 bit/sample
versus the quantization delay.

44

Full-State TB-SVQ |TB-SVQ-I[TB-SVQ-II
Source |Rate|[N=16 N=32N=64| N=32 | N=64 |TCQ|R(D)

1.0] 526 524 5.49 5.14 5.47 5.00 | 6.02
Gaussian|| 1.5 || 8.01 830 8.38 — 8.35 — 1[9.03
20| 10.84 11.10 11.26 11.11 11.51 ||10.56(12.04
1.0) 479 537 5.72 5.85 5.68 4.34 | 6.62
Laplacian| 1.5 | 8.09 8.36 8.70 — 8.64 — |1 9.64

20| 1090 11.31 11.58 11.52 11.45 9.41 ||12.66

Table 3.5: Performance (SNR in dB) of the 4-state TB-SVQ using the full-state
search algorithm with a delay of five N-vectors on encoding memoryless Gaussian
and Laplacian sources.

all cases we considered. This should be credited to the boundary gain realized
by the SVQ shaping of the codebook boundary. We should also mention that the
TB-SVQ-I quantization delay, as reported in [15], is small (large) when quantizing
the Gaussian (Laplacian) distribution, while the TCQ quantization delay is equal
to the source sequence length.

Presented in Table 3.6 is the performance of all the quantizers considered in
Table 3.5 but now based on Ungerboeck 8-state 1-D trellis code. A comparison
between Tables 3.5 and 3.6 suggests that the 8-state TB-SVQ can achieve over the
4-state counterpart an improvement of less than 0.1 dB at the cost of approximately
twice as much implementation complexity. It is foreseeable that the improvement
with increasing the number of trellis states shall become less significant while
the implementation complexity continues to increase, suggesting that it will be
inefficient to employ a TB-SVQ with a trellis code that has too many states.

The state-suppressed search algorithm is known to be simpler than the full-
state search algorithm by a factor approximately equal to the number of trellis

states; see Tables 3.3 and 3.4. We next study the relative merits of the two

45

Full-State TB-SVQ | TB-SVQ-I|TB-SVQ-II

Source |Rate|N =16 N=32 N=64 N=32 | N=64 |TCQ|R(D)
1.0 528 526 5.55 5.27 5.52 5.19 || 6.02

Gaussian|| 1.5 || 8.04 835 845 — 8.40 — |1 9.03
20| 10.89 11.15 1133 | 11.19 11.26 ||10.70(12.04

10| 480 539 5.76 5.91 5.70 4.47 | 6.62

Laplacianj| 1.5 || 8.12 842 8.75 — 8.64 — || 9.64
2.0 1092 11.37 11.63 11.62 11.50 9.56 |12.66

Table 3.6: Performance (SNR in dB) of the 8-state TB-SVQ using the full-state
search algorithm with a delay of five N-vectors on encoding memoryless Gaussian
and Laplacian sources.

search algorithms by comparing the performance of the corresponding TB-SVQ
and predictive TB-SVQ schemes on encoding memoryless (Gaussian and Lapla-
cian) and Gauss-Markov sources, which are presented in Table 3.7 and Table 3.8,
respectively. Note that the state-suppressed search algorithm operates on each
source vector separately and the resulting quantizer is hence a genuine block cod-
ing scheme. For a fair comparison, we assume no extra quantization delay in the
full-state search algorithm; hence the resulting quantizer is also a genuine block
coding scheme. The simulation results in Tables 3.7 and 3.8 suggest that the state-
supressed search algorithm results in an SNR performance loss of about 0.1 to 0.4
dB; the performance loss is generally smaller at a higher encoding rate or with a
smaller block-length. It should be mentioned that this performance loss is paid off
by a reduction in the implementation complexity by a factor equal to the num-
ber of trellis states. In most cases, the TB-SVQ using the state-supressed search
algorithm still outperforms the SVQ which has about the same implementation
complexity but cannot achieve the granular gain for the memoryless sources. The

predictive TB-SVQ using the state-supressed search algorithm also significantly

46

outperforms PTCQ?* for the Gauss-Markov sources. This is credited to a better

codebook shaping by the SVQ in the prediction residual domain.

Full-State |[State-Suppressed SVQ
Source |Rate|N =16 N =32|N =16 N =32{N =16 N = 32|R(D)
1.0 509 513 || 4.71 4.67 439 4.64 | 6.02
1.5 7.82 821 || 7.50 7.79 741 7.55 | 9.03
Gaussian| 2.0 || 10.66 10.99 § 10.37 10.65 | 10.29 10.38 |[12.04
25| 1344 13.78 || 13.27 13.57 || 12.94 13.15 ||15.05
3.0 16.15 16.52 || 16.10 16.41 | 15.62 15.96 ||18.06
1.0 || 4.59 5.25 4.30 4.89 5.32 5.54 |/ 6.62
151 790 824 || 7.63 7.93 8.02 8.23 | 9.64
Laplacian| 2.0 | 10.69 11.14 || 10.50 10.86 || 10.50 10.82 {|12.66
2.5 13.32 13.87 || 13.14 13.66 | 12.96 13.45 ||15.67
3.0 1597 16.54 | 15.80 16.42 | 15.23 15.91 ||18.68

Table 3.7: Performance (SNR in dB) of the 4-state TB-SVQ using the full-state
search algorithm (wth no extra quantization delay) and the state-suppressed search
algorithm on encoding memoryless Gaussian and Laplacian sources.

Source Full-State State-Suppressed
Type |Ratel|N =16 N =32 N =64|N =16 N =32 N = 64|PTCQ||R(D)
1.0 11.42 11.59 1214 || 11.29 11.42 11.83 || 11.19]13.23
AR(1): 20| 1789 1835 1861 | 17.71 1810 18.32 | 17.21]19.25
p1 =09 |[3.0] 23.60 24.09 24.38 || 23.50 23.91 24.19 | 22.92 ||25.27
AR(2): 1.0 12.12 1233 1295 || 11.62 11.70 12.39 [} 11.58 |[14.96
p1=1515| 2.0 | 19.68 20.22 20.47 | 19.62 20.11 20.41 || 18.92 ||21.64
po = —0.752(| 3.0 || 25.88 26.27 26.62 || 25.69 26.20 26.52 || 25.00 |[27.66

Table 3.8: Performance (SNR in dB) of the 4-state predictive TB-SVQ using
the full-state search algorithm (wth no extra quantization delay) and the state-
suppressed search algorithm on encoding two specified Gauss-Markov sources.

“The PTCQ quantization delay is equal to the entire source sequence length which is 1,000 [21].

47

3.7 Summary and Conclusions

In this chapter several variations on the TB-SVQ for quantizing stationary sources
were presented. For memoryless sources the TB-SVQ we considered is a hybrid
variation of the TB-SVQs proposed by Laroia and Farvardin [15] — the codebook
structure is the same as that of TB-SVQ-II while the dynamic programming based
algorithm of TB-SVQ-I is used for optimal codebook search. For Markov sources
TB-SVQ was generalized to the predictive TB-SVQ that performs the DPCM
operation of encoding the prediction residual in each search path of the dynamic
programming based TB-SVQ codebook search algorithm.

Given a sufficiently large quantization delay, the full-state search algorithm
globally (hence optimally) searches over the TB-SVQ codebook and is better than
the AEP-motivated search algorithm of TB-SVQ-II. The full-state TB-SVQ code-
book search algorithm is optimal for memoryless sources while for Markov sources
the full-state predictive TB-SVQ codebook search algorithm is suboptimal due
to the greedy nature of possibly selecting the suboptimal survivor search path.
We demonstrated that it is too costly to employ a highly complex trellis code
attempting to realize all the possible granular gain. We have thereby proposed a
suboptimal state-suppressed search algorithm that can still realize some granular
gain but also removes the dependence of the implementation complexity on the
number of trellis states.

All these codebook search algorithms have been derived and are presented in a
C-like programming language format. Also, their implementation complexity has
been carefully analyzed.

Simulation results presented indicate that TB-SVQ using the full-state search

algorithm performs slightly better than TB-SVQ-II and outperforms most known

48

resolution-constrained quantization schemes reported in the literature. For Markov
sources the predictive TB-SVQ is also very competitive and performs very close
to the rate-distortion limit. We have observed that the state-supressed search
algorithm sacrifices only an SNR performance loss of about 0.1 to 0.4 dB for a
reduction in the implementation complexity at a factor equal to the number of
trellis states. The quantizers presented in this chapter should be specifically useful
when the block-length is large (the codebook structure is optimal according to
the AEP) and the encoding rate is low (the implementaion cost is low). Work is
underway to apply a 64-D predictive TB-SVQ in the context of low-rate speech

waveform coding [33)].

49

Chapter 4

Combined Precoding and

TB-SVQ

4.1 Introduction and Outline

While TB-SVQ can realize both the boundary and granular gains for memoryless
sources, it is not as straightforward to realize these gains for Markov sources. The
predictive TB-SV(Q described in Section 3.5 does realize some of both gains in the
prediction residual domain and performs very closely to the rate-distortion limit
for Markov sources. There are, however, two unsolved issues that keep it from
further approaching the rate-distortion bound. The first issue comes from the
difficulty in determining the probability density function of the prediction residual
process, which is due to the complex interdependence between TB-SVQ and the
corresponding prediction residual. The second issue is that the available full-state
codebook search algorithm is merely suboptimal; while an optimal codebook search

algorithm, if exists, will be extremely complicated and hence prohibitive. Another

50

drawback of predictive TB-SVQ is that at high rates the search algorithm (full-
state or state-suppressed) has a large implementation complexity. In this chapter,
we describe another extension of TB-SVQ to Markov sources that is capable of
realizing both boundary and granular gains and can asymptotically (in both rate
and block-length) achieve the rate-distortion limit.

We first explain why it is not a simple matter to realize both the boundary and
granular gains for Markov sources by considering the example of a Gauss-Markov
source. It is well known that the optimal N-D codebook boundary for such a source
is not a sphere (as in the memoryless Gaussian case) but some N-D “ellipsoid” [3].
The codebook that realizes both gains must therefore consist of lattice points or
trellis sequences that are contained inside this ellipsoid. Since there is no known
direct algorithmic method to index lattice points or trellis sequences inside an
arbitrary ellipsoid, such a codebook is not implementable in large dimensions where
table look-up would be prohibitive.

The duality between quantization and transmission problems has been studied
in [14]. Like codebooks, signal constellations for transmitting data also consist of
lattice points or trellis sequences that are enclosed inside a bounding region. It
was shown that quantization of memoryless Gaussian sources is the dual problem
for transmitting data over memoryless additive white Gaussian noise (AWGN)
channels under the average power constraint. The quantization boundary gain is
analogous to the transmission coding gain while the quantization granular gain
corresponds to the transmission shaping gain. Because of this duality, efficient
techniques developed for one problem always have their useful counterparts in the
other problem. For example, the AWGN transmission dual of TB-SVQ is the

SVQ-shaped trellis coded constellation [43] which can realize both the coding and

51

shaping gains.

In practice, however, many important channels are not memoryless but suffer
from intersymbol interference (ISI). Transmission over ISI channels, while realizing
both the coding and shaping gains, was traditionally considered a hard task. Until
recently the only implementable solution to this problem was the trellis precoding
scheme of Eyuboglu and Forney [44]. This is a clever scheme but it is complex to
implement and is not general enough as it restricts the constellation boundary to
be the Voronoi region of a trellis code. This clearly results in suboptimal shaping
gain for a given delay. To solve this problem, Laroia, Tretter, and Farvardin have
recently proposed another precoding scheme [31] that makes it possible to realize
both coding and shaping gains over ISI channels. This scheme uses a nonlinear
precoder to slightly disturb the signal constellation (designed for a memoryless
channel) before transmission. This precoding scheme is simpler to implement than
trellis precoding and does not place any constraint on the method of shaping.
When used with the SVQ-shaped trellis coded constellation, it can realize both
coding and shaping gains for transmission over ISI channels.

As will be discussed in Section 4.2, quantization of Markov sources is the dual
problem for data transmission over ISI channels. This duality paves the way for
employing the precoding idea [31] to the problem of quantizing Markov sources.
The new quantizer described in this chapter — dubbed precoded TB-SVQ — is the
quantization dual of the precoded SVQ-shaped trellis coded constellation for ISI
channels and it can realize both granular and boundary gains for Markov sources.
The granular gain is realized by the underlying trellis code while the combination
of the precoder and the SVQ structure provides the boundary gain. Hence the

precoder effectively extends the scope of TB-SVQ to quantizing Markov sources.

52

The rest of this chapter is organized as follows. The next section discusses the
duality between quantizing Markov sources and transmission over ISI channels.
In Section 4.3, we describe the precoding idea of Laroia et al. [31] and present
the precoded TB-SVQ for quantization of Markov sources. In Section 4.4, we
provide codebook search algorithms for the precoded TB-SVQ and analyze their
implementation complexity. Two improved precoders more recently proposed by
Laroia [45] are presented in Section 4.5. Simulation results will be provided in

Section 4.6. Finally, a summary and conclusions are presented in Section 4.7.

4.2 Duality — Markov Sources/ISI Channels

In this section, we describe the duality between quantization of Markov sources
and data transmission over ISI channels. This duality can be extended to other
sources and channels, but for simplicity of discussion we shall be mainly concerned
with Gaussian sources and channels.

With a high probability, a vector of a large block-length from a memoryless
Gaussian source lies inside a sphere — called the source sphere whose normalized
per dimension squared-radius is equal to the source variance. When designing a
quantizer for this source, the boundary gain is maximized (overload probability is
minimized) if the codebook has the smallest volume and contains the source sphere.
Likewise, with a high probability, the received point after an AWGN channel for
a transmitted point from a large dimensional constellation lies inside a sphere —
called the noise sphere whose normalized per dimension squared-radius is equal to
the noise variance and which is centered at the transmitted point. When designing

a constellation for this channel, the coding gain is maximized (error probability is

93

minimized) if the Voronoi cells of the constellation points are the smallest volume
cells each containing its corresponding noise sphere. We hence see that the Voronoi
cells of a transmission constellation play a role similar in nature to the boundary
of the quantization codebook.

The average power constraint in transmission dictates that for a given power
(normalized per dimension second moment) the signal constellation should have
the maximum volume. The shape that has the maximum volume (highest rate) for
a given second moment in /N dimensions is an N-sphere. Similarly, the Voronoi cells
of the quantizer codebook for the squared-error distortion measure should have the
maximum volume (smallest rate) for a given second mement (distortion). Hence
the shaping gain in transmission plays a role similar in nature to the granular gain
in quantization. We will next study how the above analogies extend to Markov
sources and ISI channels.

First, we consider quantization of a Markov source whose source model is shown
in Figure 4.1:(a). The quantization codebooks used in the source and innovations
domains will be called the source codebook and innovations codebook, respectively.
The basic idea of the naive source coding scheme which extends the underlying
scalar quantizer in the D*PCM to the TB-SVQ (as was described in Section 3.5)
is to define the source codebook as the image under H(z) of the optimal TB-SVQ
innovations codebook; see Figure 4.1:(b) for a generic picture of the corresponding
source and innovations codebooks. This quantizer will have the right boundary
properties because it minimizes the overload probability of the source codebook.
This naive quantizer, however, does not have good granular gain properties as
the quantization cells of the source codebook have an arbitrary shape obtained by

filtering under H(z) the corresponding (approximately) spherical quantization cells

54

Source Filter

W; ——» l— I;
(] H z) 1
innovations Markov
source source
(a)

innovations source
codebook codebook

L
innovations source
codebook codebook
(c)

Figure 4.1: Quantization of Markov sources: (a) source model; (b) naive source
and innovations codebooks; (c) ideal source and innovations codebooks.

95

of the innovations codebook. Since the objective of quantization is to minimize
the squared-error distortion in the source domain, a good quantizer will require
the quantization cells of the source codebook to be approximately spherical in
order to capitalize on the granular gain. Also, to maximize the boundary gain, the
corresponding innovations codebook should have a spherical boundary. Hence for
Markov sources, the granular gain is determined from the source codebook while
th boundary gain is determined from the innovations codebook. A generic picture
of the structure of ideal source and innovations codebooks for a Markov source is
presented in Figure 4.1:(c).

Next consider an ISI channel shown in Figure 4.2:(a). The transmitted sequence
u; goes through a channel filter G(z) and at the output of the filter white Gaussian
noise is added to the signal. To send information over the channel, binary data
is used to address a point in a signal constellation which we call the transmit
constellation. The image of the transmit constellation under the channel map G(z)
is called the receive constellation. The channel output is mapped to the nearest
point in the receive constellation. The binary data is recovered by determining
the address of this point. Due to the average power constraint the transmitte
constellation should have a spherical boundary. The shaping gain is therefore
determined by the boundary of the transmit constellation. Also, because the noise
is white Gaussian and introduced in the receive constellation, the corresponding
receive constellation must have Voronoi cells that cover most of the noise sphere
and hence minimizes the probability of error. This is equivalent to a large minimum
distance between its points (sequences). The coding gain is therefore determined
by the Voronoi cells of the receive constellation. A generic picture of the ideal

transmit and receive constellations structure for transmission over ISI channels is

56

white
Gaussian
noise

. Channel Filter| é channel
Ui —> G(2) output

transmit receive
constellation constellation

(b)

Figure 4.2: Transmission over ISI channels: (a) channel model; (b) ideal transmit
and receive constellations.

presented in Figure 4.2:(b).

Now, the duality between quantizing Markov sources and transmitting over ISI
channels is quite apparent. The quantization granular gain — determined from the
quantization cells of the source codebook, is the dual of the transmission shaping
gain — determined from the boundary of the transmit constellation. Similarly, the
quantization boundary gain — determined from the boundary of the innovations
codebook, is the dual of the transmission coding gain — determined from the

Voronoi cells of the receive constellation.

57

4.3 Precoded TB-SVQ

By applying the duality between quantization and transmission problems, one can
always find useful counterparts in one problem from efficient techniques developed
for the other problem. For example, TB-SVQ can realize both the boundary and
granular gains when quantizing memoryless sources and is the motivation for its
AWGN transmission dual — the SVQ-shaped trellis coded constellation [43] which
can realize the dual coding and shaping gains. Transmission over ISI channels while
realizing both coding and shaping gains was traditionally considered a difficult
problem, until recently when it was solved by a precoding scheme proposed by
Laroia, Tretter, and Farvardin [31]. In what follows, we address the problem of
combining the precoding idea with TB-SVQ for quantizing Markov sources while
realizing both boundary and granular gains. For simplicity of presentation we shall
be mainly concerned with Gauss-Markov sources.

Realizing a significant granular gain requires that the quantization cells of the
source codebook be as spherical as possible. This can be achieved if the source
codebook is a subset of sequences of some “good” trellis code which will be called
the source trellis code. The innovations codebook thus consists of the filtered trellis
sequences which are the images under the inverse source filter 1/H(z) of the source
trellis sequences. Further, to realize the optimal boundary gain, the innovations
codebook should have a spherical boundary. Consider an ideal quantizer whose
codebook has the above desired properties. Such a codebook, however, is not easy
to implement as there is no known simple algorithm to index either the filtered
trellis sequences in the sphere-bounded innovations codebook or the source trellis
sequences in the ellipsoid-bounded source codebook.

Suppose that we can find a transformation — called the precoder — that maps

98

the filtered trellis sequences to some source trellis sequences and possesses the

following two properties:

I. The precoder disturbs the input only slightly — just enough to ensure that
the output is a legitimate source trellis sequence.

II. The precoding transformation is invertible.

Redefine the innovations codebook as consisting of those filtered trellis sequences
for which the corresponding precoder output sequences are contained inside a
(Cartesean product of) sphere(s). Because of Property I, the boundary of this
innovations codebook would still be very close to spherical, resulting in a close
to optimal boundary gain. The image under the precoding transformation of the
innovations codebook is called the precoded codebook which resembles a TB-SVQ
codebook. Due to Property II, there is a one-to-one correspondence between the
innovations codebook and the precoded codebook. The indexing problem is hence
solved by indexing the precoded codebook based on the available TB-SV(Q indexing
algorithm.

Now with such a precoder available to solve the codebook indexing problem,
TB-SVQ can be extended to a novel quantization scheme which will be called
precoded TB-SVQ. We next describe the operation of this new quantization scheme
whose block diagram is provided in Figure 4.3. The input source sequence {z;} is
first quantized by the source codebook quantizer (which we will elaborate in the
next section) to a preferably nearest source trellis sequence {&;}, which then passes
through the inverse source filter 1/ H(z) to produce the corresponding filtered trellis
sequence {y;}. The precoder then transforms {y;} into a TB-SVQ code-sequence
{9:} which is encoded into binary data (using the TB-SVQ encoding algorithm) and

transmitted. The receiver decodes the received binary stream into {;}. Since the

99

Source 3 i Ji
@, —»|Codebook — 1/H(2) o Precoder —— TB-SVQ
Quantizer Encoder
Y
Channel
Yi Ui
5 g « Inverse |, TB-SVQ |
i H(z) e Precoder [Decoder |

Figure 4.3: Block diagram of precoded TB-SVQ.

precoder transformation is invertible, the inverse precoder exists and can recover
the filtered trellis sequence {y;} from {§;}. The quantized output {#;} is hence
obtained by filtering {y;} with the source filter H(2). Since the corresponding
innovations codebook has a nearly spherical boundary, the source codebook has a
nearly optimal codebook boundary. Also, the source codebook has approximately
spherical quantization cells. Precoded TB-SVQ can therefore realize both granular
and boundary gains for Markov sources provided a suitable precoder exists.

We next show that a naive precoder indeed exists and its corresponding inverse
precoder is the same as the precoder used for transmissions over ISI channels [31].
Recall that in Ungerboeck’s 1-D trellis codes, the 1-D lattice translate A = 2Z + 1
is partitioned into four cosets of the sublattice A" = 8Z — called the coset lattice.
This precoder is simply a “memoryless quantizer” that maps y; to the nearest point
§; equivalent modulo A" to #;. The corresponding quantization error — called
the precoding error — e; 2 §; — y; is always in the Voronoi region V = [—4,4)

(neglecting the scaling factor) of the coset lattice. It is obvious that {§;} is also

60

Mod A’
J
s H(z) —1 le

Figure 4.4: Inverse transformation of the naive precoder.

a source trellis sequence. Now let us examine if this naive precoder possesses the
two properties described above. The first requirement is that the y; and §; be close
in Euclidean distance, i.e., E[e?] should be much smaller than the source variance.
Since e; is always constrained to lie inside the Voronoi region V (multiplied by),
this requirement will automatically be satisfied for high rate quantization when
the average energy of V is much smaller than the source variance. Now consider
the inverse precoder shown in Figure 4.4 which is the quantization dual of the ISI
transmission precoder of [31]. At time instant 7, the filter H(z) — 1 first produces
Z; — y; based on its input and output samples in the past. Since Z; and §; are
equivalent modulo A', a modulo operation can be performed on #; — y; to obtain
the precoding error e;. Since §; = y;+e€;, y; can hence be reconstructed by removing
e; from §,. We have therefore verified the second requirement that the precoder
be an invertible transformation.

The granular and boundary structures of the precoded TB-SVQ codebook are
already exactly specified by the underlying trellis code and the combination of
the precoder and SVQ, respectively. The only unknown to be determined is the

scaling factor é for the underlying lattice translate A. The precoded TB-SVQ

61

design problem is hence simply to select the scaling factor § that yields the smallest
empirical quantization distortion, provided that a long training sequence and the

codebook search algorithm are available.

4.4 Source Codebook Search Algorithms

We will present in this section two different approaches that can quantize the
input sequence {z;} to the trellis sequence {Z;} in the source codebook. The first
approach is AEP-motivated and is an extension of the TB-SVQ-II codebook search
algorithm [15] to Markov sources. The second approach is dynamic programming
based and assimilates the predictive TB-SVQ codebook search algorithms given in

Section 3.5.

4.4.1 AEP-Motivated Approach

Suppose that the vector block-length N is sufficiently large. The AEP suggests
that, with a high probability, a vector from a Gauss-Markov source lies inside an
ellipsoid — called the source ellipsoid — which is the image under the source filter
H(z) of a sphere containing the corresponding innovations vector with the same
probability. At high rates, the precoded TB-SVQ source codebook consists of a
subset of source trellis sequences that are enclosed inside the source ellipsoid. If the
input sequence {z;} is quantized to the nearest trellis sequence {Z;} by a simple
trellis search algorithm (just as a TCQ [21] but in the unbounded space), the AEP
tells us that almost all contiguous N-vectors from {Z;} should lie inside the source
ellipsoid. In case of an overload event, we can repeatedly shift the corresponding

source /N-vector toward the source ellipsoid and apply the TCQ search again until

62

the quantized N-vector is inside the source ellipsoid. At high rates, overload event
rarely occurs and the codebook search is hence as simple as that of a TCQ.

The source sequence {z;} is segmented into contiguous blocks of N-vectors,
yielding {x;} where @y = (zk,1, k2, -+, Zk,n)- Our objective is to quantize {xy} to
the nearest source trellis sequence whose corresponding precoder output {@,} is a
legitimate TB-SVQ sequence. Denote by A;, the minimum accumulated distortion
that results when the first k£ source vectors are mapped to a TB-SVQ sequence
whose final trellis state is s € X. Suppose that the quantizer assumes a fixed
delay of d N-vectors. To handle this quantization delay, we need a buffer of (d+1)
N-vectors qi = (@3 0,a} 1, "+ G} 4) for each trellis state s that stores the unreleased
portion of the trellis sequence resulting in Aj. Suppose that k > d and denote by
s* the trellis state that minimizes A} over X, g§ is hence released as the TB-SVQ
code-vector 4,_,. To make the released sequence of N-vectors consistent with the
underlying trellis code, we can employ another buffer o} = (074,08, ", 0% 4)
associated with each qj where o} ; € 27 denotes the trellis state that gj ; reaches,
Vj € Jat1- All TB-SVQ code-vector buffers whose oy, is different from a,scjo will
result in released sequence inconsistent with the underlying trellis code and should
therefore be removed from further consideration.

Suppose that we have just determined Aj ; (and hence qj_; and oj_,) for

all s € ¥, now consider operating on the kth

source vector xy. Denote by D;
the minimum accumulated distortion that results when the first ¢ components
of x;, are quantized to a trellis sequence whose final trellis state is s; the most
recent p + 1 quantized samples associated with this trellis sequence are stored in
&; = (8]_,,%,,---,2]). Also, associated with the trellis sequence resulting in

D;, let the corresponding precoder output and initial trellis state (at ¢ = 0) be

63

denoted by §; = (45,95, -,) and &, respectively. We repeat the following
procedure until there is at least one /) that is a TB-SVQ code-vector. First, D}
is initialized to the value of Aj_;, Vs € X. Suppose that D}, &, y;, and ¢ are
already determined. Given a trellis state s € 3 and one, say ‘s', of its two possible
previous states, let Q* denote a function that determines for the input sample z

the reproduction symbol # in the allowed coset as dictated by s and s'; that is,

!

t=Q"(z,s,s). (4.1)
To determine Z7, ,, we need to solve the minimization problem:
s* = argmin D} + [gxi11 — Q" (Tkit1,5,9)] (4.2)
s

by which byproducts such as &;,, D, and t;,, can also be obtained. The inverse

source filter output, denoted by y, is then computed according to

p
Yy =i~ piEiy (4.3)
=1

The corresponding precoder output §;,; is obtained simply by quantizing y to the

closest point that is in the same coset lattice as is 7 ,; that is,

:01284-1 = Q*(y7 S*’ S)' (44)

The above procedure repeats until we get to ¢ = N. Should there be no ¢35 that is
a legitimate TB-SVQ code-vector, we say that the source vector x; lies upon the
surface of the so-called overload ellipsoid. We then slightly disturb x; along the
gradient vector (at @) of the overload ellipsoid surface (in an attempt to move it

toward or into the source ellipsoid) and start the search procedure again. Once

11t should be mentioned that §; is a local variable within the kth search cycle and should not

be confused with the global variable ;.

64

there is at least one g% that is a legitimate TB-SVQ code-vector, the value of
D}, is copied to A} for the next search cycle. The begining trellis state for g3
is t*, based on which the buffers ¢i and o are updated as ¢} = (q¢t_,,¥%) and
o} = (o}_,,s), respectively. This AEP-motivated precoded TB-SVQ codebook
search algorithm is summarized in Figure 4.5.

For a sufficiently large vector block-length and rate, the AEP suggests that
the overload events occur only insignificantly. In this case, it takes approximately
the computational complexity of an unbounded TCQ trellis search algorithm to
search for the reproduction sequence, which is 16 + 3 - 2" operations/sample. Some
other extra computational requirements arise for the inverse source filtering and
precoding. For each search path, it takes 2p operations to compute the inverse
source filter output. The precoding operation then takes two more operations
(one for shifting and the other for scaling) to quantize the the inverse source filter
output to the nearest point in a specified translate of the coset lattice. The overall
computational complexity is hence 164 (5+2p)-2¥ operations/sample. We omit the
storage requirement analysis for the AEP-motivated precoded TB-SVQ codebook

search algorithm here but give the result in Table 4.1.

Computational Storage
(Operations/Sample) (32-bit Words)

v v N(d+2)[log, m]+v{d+14-2¥
16+(5+2p)2 3.2 +2(p+1)+ ()r°8216] {]

Table 4.1: AEP-motivated precoded TB-SVQ codebook search complexity.

65

for (s € X) if (s == a specified trellis state) A®, = 0; else A?; = oc;
for (k=0;k <oo; k++) {

Searched_Flag = 0;

while (Searched Flag==0) {

for (s € X) D§ = A} _y;
for (t=0;i<N;i++)for (se X) {

s* = arg mingy [D~sl + [Trir1 — Q*(Thir1, 5, 8))?|;

z= Q (xkz+1a3 S)

Df+1 = D + (ka_l - 117)2

R (a:z ,x),

y=x—2§ 1P5&5 41— —j1

¥ = (07,Q(w,59));

if (1==0)t,,=s"elset, =t;
}
for (s € X) if (g5 is a TB-SVQ code-vector) Searched Flag = 1;
if (Searched_Flag==0) shift =) toward the codebook boundary;

for(s€ X) { AL =Dy a4 =(aq"1,9%); o1=(04,9);)
if (k>d){

s* = argmin__ 57 Aj;
release Y,_q4 = q,scjo for TB-SVQ code-vector encoding;

for (s € &) {
if (Uko # Uk*o) Ay =00
O'k = (Uk 1) 0k2 " ,ai,d);

q; = (le,ka, ' ,Qi,d)§

Figure 4.5: AEP-motivated precoded TB-SVQ codebook search algorithm.

66

4.4.2 Dynamic Programming Based Approach

The AEP-motivated precoded TB-SVQ codebook search algorithm generally works
very well when both vector block-length and encoding rate are large. Like the
search algorithm for TB-SVQ-II [15], however, when the encoding rate is low over-
load events occur much more often and the actual computational complexity ac-
cordingly increases. Besides, the number of operations required to produce the
quantized vector varies largely depending on the input source vector. In this case
for memoryless sources the dynamic programming based TB-SV(Q codebook search
algorithm presented in Section 3.4 should be more useful than the AEP-motivated
counterpart (TB-SVQ-II) because (i) fixed number of operations can be expected
to determine the quantized vector; and (ii) its implementation complexity is quite
affordable. Here we consider this type of dynamic programming based codebook
search algorithm for precoded TB-SVQ.

In what follows, we describe the full-state search algorithm and omit the simpler
state-suppressed search algorithm. The variables xk, 9, A}, d, g}, and o used
in the AEP-motivated search algorithm will stand for the same variables here; the
reader is referred to Section 4.4.1 for their specific meanings. Also, how gj and
o operate according to the delay d is exactly the same as the AEP-motivated
algorithm and will be omitted, too.

Suppose that we have just determined A} _,, g;_,, and o}_, for all s € ¥, now
consider operating on x;. Denote by Dg’s the minimum accumulated distortion that
results when the first ¢ components of ;. are quantized to 5:2’3 whose corresponding
precoder output @2’3 reaches trellis state s € X' and has a total length | € J1,1.
Denote by t/° the initial (i = 0) trellis state for §°. Suppose that D>, &,

9>, and t>° are already determined. We next describe how to determine Qﬁ’jl for

67

alll € Jry1 and s € X. Consider for Qijl a candidate (7 + 1)-vector which is
the concatenation of the previous i-vectors @i ** and one TB-SVQ symbol yz T

satisfying the state transition and length accumulation constraints; that is,
Al ' ’
g = F(s,1-1), (4.5)

Since the precoder output 4> 71 is equivalent modulo the coset lattice A’ to wz S T

the actual quantization replica for xj;;1, we have
ls __ Als
Yil1 = Ty — 2 (4.6)

for some z € A'. On the other hand, the corresponding input to the precoder is

! I
N3 1
&0 — ;37 where

~z+1 - Z p] Az+1—j (47)

is a prediction of zj ;.1 based on :?: . The coset lattice point z hence depends

II II

L now written as 2/ — and can be obtained by quantizing .} A

only on &;
to the nearest point in A". The corresponding reproduction symbol for Tt 1S

fol + 2 * and the resulting accumulated distortion is hence
Dbty = DY 4 [mags — gy — 2 2 48
i+1 = L [Tki+1 — i — 27 % (4.8)

To determine Qé’jl, we need to solve for the optimal length {* and state s* (who
can be determined by P(s,!—[*)) that minimizes the accumulated distortion DY?;

that is,
wﬁﬂ:m$wﬂmﬁ+mmﬂ—if—fGJ—mP. (4.9)

Now suppose that Dﬁ(,s, :i:le, QZNS, and tlli,s are determined. For each s € X,

we search for [* that minimizes D%’. A is thereby set to the value of DY

68

*,s

Buffers g} and o are updated according to gj = (qf:’[';, #h) and 0% = (a7, 9),
respectively. Also, the most recent p samples of :i:l,:,’s are copied to :;;8’8 that will
be used by the inverse source filter in the next search cycle.

Summarized in Figure 4.6 is the full-state precoded TB-SVQ codebook search
algorithm, which is very similar to that for predictive TB-SV(Q presented in Sec-
tion 3.5. In predictive TB-SVQ, the DPCM operation is performed in each search
path. While in precoded TB-SVQ, we pathwise perform the inverse source filtering
and precoding transformation. The implementation complexity of precoded TB-
SVQ under the dynamic programming based search algorithm is about the same
as that for predictive TB-SVQ. We will omit the complexity analysis here but refer

the reader to the result given in Section 3.5.

4.5 Further Reduction in Precoding Error

The precoding error is the quantization dual of the so-called precoding loss [31]
in data transmission. Just like the precoding loss will disturb the boundary of
the transmit constellation [31], the precoding error will disturb the innovations
codebook boundary. The precoding error (loss), if significantly large, could reduce
the boundary (shaping) gain and hence should be kept as small as possible. In
this section two precoding schemes more recently developed by Laroia [45] that can
further reduce the transmission precoding loss are described. These new precoding
ideas can also be used to reduce the quantization precoding error. These modified
precoders were described based on Ungerboeck’s 2-D trellis codes in [45]. For
simplicity and continuity of presentation, we shall use Ungerboeck’s 1-D trellis

codes.

69

for (s € X)) if (s == a specified trellis state) A®, = 0; else A®; = oo;
for (k=0; k < o0; k++) {
for (s€ X;1€ Jpy)if (1 ==0) D}* = Al_,; else Db* = oo;
for (=04 <N;i++) {

for (s€ X;1€ Jpy1) 25* = nearest point in A" to SF_ p-§:l-’_s-_ ;
+ =1 Fj*i—j-1

for (s€ Xyl € T) {
(I*,s*) = argmin(l/)s,) [Df S 4 [Thie1 — ZlI’SI B }_(8,,1 _ l’)]2 ;

ghs = F(s%,1 = 1);

sls (1M als).
i = (807, 9%);
sls [Al%,s* * g% ~ .
mz-{-l = (mz ,Zl »$ + yl,s)’

if (i == 0) tif, = s*; else t2°, =/,
}
}
for (se X) {
l* = a,rg minlEJL+1 Di\,fs’
* tl*,s N tl*,s
Als‘: = DﬁV’S; qz = (qkli17yl]\/"s); U'z = (O'klil,s);
:Acg»s — ﬁl]:},s;
}
if (k>4d) {

$* = argmin__ 32 Ay;
release §,_, = qj o for TB-SVQ code-vector encoding;

for (s € X) {
if (of0 # 0kp) Af = 003
Ulsc = (02,17 02,27 e 7alsc,d);

= S .
q; = (Qi,p iz qk,d),

Figure 4.6: Full-state precoded TB-SVQ codebook search algorithm.

70

4.5.1 Modified-I Precoder

The inverse precoder of this new precoding scheme, -called the Modified-I precoder,
is the quantization dual of the so-called ISI coder of Laroia [45]. Compared to the
naive precoder described in Section 4.3, it can further reduce the precoding error
by a factor equal to two.

Let us now denote by A = 4Z — the sublattice of A with a partition order
of two. In Figure 2.3, the supersets A and B are both translates of A'. This new
precoder is simply another “memoryless quantizer” that maps y; to the nearest
point ; in the pre-specified superset A (or B). The corresponding precoding error
e; = J; — y; is always in the Voronoi region V = [-2,2) of A'. Tt should be
mentioned that the sequence {#;} is not congruent to {#;}. Generally speaking,
{9:} may even not be a source trellis sequence. But the TB-SVQ coder/decoder
pair can still be applied here to transmit {;}, except that the decoded sequence
are equivalent to {g;} only in magnitude. Because we know which superset (A or
B) was used to quantize y;, the magnitude information of the TB-SVQ decoded
sequence suffices to exactly recover {g;}. It can be shown that the inverse precoding
operation is identical to that of the naive precoder (see Figure 4.4), except that
now the lattice A" is twice as much denser and the Voronoi region V of A" (which

confines the precoding error) is reduced by a factor equal to two.

4.5.2 Modified-II Precoder

This new precoder, called the Modified-II precoder, is motivated by the modified
ISI coder of Laroia [45]. Compared to the Modified-I precoder, it can further
reduce the precoding error by another factor equal to two. We next describe this

more sophisticated precoding scheme.

71

Si+1
Si Delay |« : N e
. % (I Yi A
lgil— F |— ,@ ¢ ;(“)_] > H(z) - 7
|
1or-1, _
! H(z)—1
|
! Y
|
! Mod A
: Ti =2 — ¥
I
I .
! € \ 4 v
IL _____________ Superset
Switch

Figure 4.7: Inverse transformation of the modified precoder.

The Modified-II precoder is also a memoryless quantizer that maps y; to the
nearest point ¢; in A. The precoding error e; = ; — y; hence lies inside the
Voronoi region V = [—1,1) of A. Like the Modified-I precoder, the precoder
output sequence {g;} may not be a source trellis sequence, but we still apply the
TB-SVQ encoder to encode the corresponding magnitude sequence into a binary
stream. The TB-SVQ decoded sequence is generally different from {g;} but has an
identical magnitude sequence as that corresponding to {g;}. We hence need to show
that there exists an inverse precoding transformation that is able to reconstruct
the precoder input {y;} from the decoded magnitude sequence {|g;|}.

The block diagram of such an inverse precoder is presented in Figure 4.7, in
which the source filter H(z) is also shown following the inverse precoder to produce

the quantized output {%;}. It should be mentioned that y; = &; — ¥; where Z; is

72

a prediction of z; based on past samples of {%;}. We therefore have the following

useful identity
U= — T + e (4.10)

At time instant ¢, the filter H(z) — 1 first operates on past samples of {y;} and
yields Z; = Z; — y;. Since Z; € A, we can apply a modulo A filter to operate on
Z; and produce the precoding error e;. For simplicity of discussion, let us neglect
the lattice scaling factor §. Since both §; and %; are points in A, the identity in
(4.10) tells us that Z; — e; should be 2k for some k € Z. Besides, if k is even, 9
and Z; must belong to the same superset (A or B) which is dictated by the current
trellis state s;. Otherwise, §; and Z; belong to different supersets. In either case,
the state-dependent function F given in (2.18) can be used to obtain a candidate
point z; € A that is in the same superset as is Z; and has the same magnitude as
7;. If k is even, z; is equal to ¢;, or otherwise it is equal to —¢;. The box labeled
“Superset Switch” determines this condition and thereby controls if z; should be
switched to the dual point of the identical magnitude in the other superset to yield
¥;. Now we have ¢§; = y; + e; and e; available, y; can be obtained. Accordingly,
the output of the source filter yields #; and we can use the next-state function N

given in (2.19) to update the trellis state at next time instant.

4.6 Simulation Results

The precoded TB-SVQ performance are presented and discussed in this section.
The results reported here are given as signal-to-noise ratio (SNR) in dB and are
obtained based on simulations performed on at least 160,000 source samples. We

will specifically consider two types of Gauss-Markov sources: one is a 15%-order

73

Trellis|| Block- Precoded TB-SVQ
States||Length|[Rate Precoder Version Predictive
2% || (N) || (r) | Naive | Mod.-I | Mod.-II || TB-SVQ (|R(D)
20| 16.92 | 18.15 18.36 18.40 |19.25
32 ||13.0] 23.75 | 24.00 24.02 24.13 ||25.27
4.0 | 29.54 | 29.59 29.59 — 31.29
4 2.0 | 16.77 | 18.17 18.42 18.63
64 3.0 23.93 | 24.21 24.26 24.41
4.0 29.85 | 29.91 29.92 —
2.0 17.24 | 1842 18.57 18.46
32 || 3.0 23.88 | 24.11 24.12 24.17
4.0 | 29.60 | 29.64 29.64 —
8 20| 17.12 | 18.44 18.60 18.68
64 | 3.0 24.10 | 24.33 24.36 24.46
4.0 29.94 | 29.98 29.99 —

Table 4.2: Performance (SNR in dB) of precoded TB-SVQ using the AEP-
motivated codebook search algorithm with a delay of five N-vectors on encoding

a 15%-order Gauss-Markov source (p1 = 0.9).

source with correlation coefficient p; = 0.9 while the other is a an-order source

with correlation coefficients p; = 1.515 and p; = —0.752.

Presented in Table 4.2 is the precoded TB-SVQ performance on encoding the
15t.order Gauss-Markov source using the AEP-motivated search algorithm with
a quantization delay of five N-vectors; for comparison, the rate-distortion limit
and the predictive TB-SV(Q performance using the full-state search algorithm with
the same quantization delay are also included. The results presented indicate
that the precoder with a smaller precoding error does provide a better overall
system performance. Generally speaking, the precode TB-SVQ performance can be
improved by increasing the block-length N or the number of trellis states 2”. There

exists, however, the example in which with the naive precoder and a 4-state trellis

74

Trellis| Block- Precoded TB-SVQ
StatesfLength|Rate Precoder Version Predictive
(2) it (N) | (r) | Naive | Mod.-I | Mod.-II || TB-SVQ ||R(D)
2.0} 18.92 | 20.18 20.47 20.36 ||21.64
32 || 3.0 26.26 | 26.47 26.52 26.41 |27.66
4.0 || 32.06 | 32.10 32.11 — 33.68
4 2.0 § 18.65 | 20.20 20.52 20.56
64 || 3.0 26.39 | 26.68 26.75 26.72
4.0 || 32.42 | 32.49 32.50 —
2.0 | 19.43 | 20.53 20.72 20.49
32 3.0 | 26.48 | 26.62 26.65 26.50
4.0 || 32.16 | 32.17 32.17 —
8 2.0} 19.15 | 20.54 20.79 20.71
64 || 3.0 26.63 | 26.84 26.89 26.79
4.0 || 32.54 | 32.58 32.59 —

Table 4.3: Performance (SNR in dB) of precoded TB-SVQ using the AEP-
motivated codebook search algorithm with a delay of five N-vectors on encoding

a 2"%order Gauss-Markov source (p1 = 1.515, po = —0.752).

the 32-D quantizer outperforms the 64-D counterpart at 2 bits/sample. This could
happen because the precoding error disturbs the optimal codebook boundary and
effects the boundary gain. In all cases we considered, predictive TB-SVQ slightly
outperforms precoded TB-SVQ based on the Modified-II precoding scheme. But
we should mention that precoded TB-SVQ is much simpler to implement than
predictive TB-SVQ in all these cases. Similar simulation results for the 9" order
Gauss-Markov source are provided in Table 4.3. All the previous discussions on
Table 4.2 seems still valid for Table 4.3 except that the simpler precoded TB-SVQ
(based on the Modified-II precoder) now slightly outperforms the more complex
predictive TB-SVQ.

In what follows, we will implicitly assume that precoded TB-SVQ is based on

75

the Modified-II precoding scheme as it provides the smallest precoding error. The
variation with the quantization delay of the precoded TB-SVQ performance at 1
bit/sample for the two specified Gauss-Markov sources is presented in Figure 4.8;
for comparison, we have also included the predictive TB-SV(Q performance. These
plots indicate that precoded TB-SVQ, like predictive TB-SVQ, requires only a
delay of one (16-D or 32-D) source vector to perform within 0.05 dB of the saturated
(arbitrarily long delay) system performance. Also, at such an encoding rate as low
as 1 bit/sample, predictive TB-SVQ consistently outperforms precoded TB-SVQ
by about 0.6 dB for the 15t.order Gauss-Markov source and, to a lesser extent, by
about 0.2 dB for the 2™%-order Gauss-Markov source.

The precoded TB-SVQ performance obtained using the dynamic programming
based (full-state or state-suppressed) search algorithm with various block-lengths
and rates are provided in Table 4.4. At rates 2 and 3 bits/sample, the results
obtained by the full-state search algorithm are somewhat inferior to those given in
Tables 4.2 and 4.3 (obtained by the AEP-motivated search algorithm). This prob-
ably has to do with the suboptimality of the dynamic programming based search
algorithm, which is due to the greedy nature in selecting the survivor search path.
The simulation results in Table 4.4 also suggest that the state-suppressed search
algorithm results in an SNR performance loss of about 0.1 to 0.4 dB; this per-
formance loss is generally smaller at a higher encoding rate or with a smaller
block-length. Like predictive TB-SVQ, this performance loss is paid off by a re-
duction in the implementation complexity at a factor equal to the number of trellis

states.

76

T T T T T T T
11.8f E
K —H H: % X *
11.6'//,;7]
114 k
1.2 N
o 11;{’ . - T
& |-
10.8} b
10.6 »—% 32-D Predictive TB-SVQ ~
6—© 16-D Predictive TB-SVQ
1041 #— - —% 32-D Precoded TB-SVQ b
O— -0 16-D Precoded TB-SVQ
10.2f 1
10 1 1 1l 1 1 1 il
0 1 2 3 4 5 6 7 8
Quantization Delay (N-vectors)
(a) pr =0.9.
13 T T T T T T T
12.8f J
1261 * * % * 3
- o9
124+ 1
W — = —Wm — — —————— — — - == - ——
s e S S R
12.2} o " - h
k) y
e 12 7 4
4 o
[
11.8f b
11.6[*-—% 32-D Predictive TB-SVQ E
66— 16-D Predictive TB-SVQ
114 *— % 32-D Precoded TB-SVQ 1
O- -0 16-D Precoded TB-SVQ
11.2f b
11 1 1 1 1 1 1 1
0 1 2 6 7 8

Figure 4.8: Performance (SNR in dB) versus quantization delay of precoded TB-
SVQ using the full-state search algorithm on encoding a (a) 1th. (b) 27

3 4 5
Quantization Delay (N-vectors)

Gauss-Markov source; the encoding rate is 1 bits/sample.

77

Source Full-State State-Suppressed
Type |Rate|N =16 N =32 N =64|N =16 N =32 N = 64|PTCQ||R(D)
1.0 10.84 1098 11.48 || 1040 1040 10.93 | 11.19]13.23
AR(1): 20| 1765 18.07 18.31 | 17.42 17.82 17.99 |[17.21(19.25
p1=09 | 3.0 23.40 23.83 24.10 | 23.27 23.71 23.96 | 22.92 |25.27
AR(2): 1.0 11.89 12,12 12.73 || 11.23 11.34 12.07 || 11.58 ||{14.96
p1=1.515| 20| 19.75 20.24 20.48 || 19.55 20.03 20.31 || 18.92|21.64
p2 = —0.752| 3.0 || 25.86 26.35 26.61 | 25.78 26.27 26.54 | 25.00 (|27.66

Table 4.4: Precoded TB-SVQ performance (SNR in dB) using dynamic program-
ming based algorithm with no extra quantization delay on encoding two specified
Gauss-Markov sources.

4.7 Summary and Conclusions

In this chapter we discussed the duality between quantizing Markov sources and
transmitting data over ISI channels. We then described the precoding idea of
Laroia et al. [31] that solves the problem of realizing both shaping and coding gains
for data transmission over ISI channels. Due to the duality between quantization
and transmission, we have utilized this precoding idea in developing precoded
TB-SVQ that can realize both granular and boundary gains for Markov sources.
The granular gain is realized by the underlying trellis code while the combination
of the precoder and the SVQ structure provides the boundary gain. This new
quantization scheme is asymptotically optimal and can, in principle, approach the
rate-distortion bound for Markov sources.

We have présented two different suboptimal precoded TB-SV(Q codebook search
algorithms: the first is AEP-motivated while the second is dynamic programming
based. Both algorithms have been carefully derived and were summarized in a

C-like programming language format. Also, their implementation complexity are

78

briefly discussed. At high rates, the AEP-motivated algorithm is as simple as the
Viterbi trellis search algorithm of the TCQ [21]. At low rates, however, overload
events occur too often, hence significantly raising the actually search complexity.
In this case, the dynamic programming based algorithm should be used instead
because its implementation complexity is quite affordable and fixed number of
operations can be expected to produce the quantized output.

The precoding error will disturb the optimal codebook boundary and reduce
the boundary gain if it is significantly large. Two modified precoding schemes
recently preposed by Laroia [45] were presented in their simplest form based on
Ungerboeck’s 1-D trellis code. These modified precoders can effectively reduce the
precoding error and have been employed to further improve the precoded TB-SVQ
performance.

Simulation results presented indicate that at high rates precoded TB-SVQ out-
performs predictive TB-SVQ for higher order Gauss-Markov sources. Predictive
TB-SVQ slightly or significantly outperforms precoded TB-SVQ for lower order
Gauss-Markov sources or at lower rates, respectively. This suggests that while
predictive TB-SVQ could be useful for low-rate coding of Markov sources pre-
coded TB-SVQ could be potentially useful for high-rate coding of higher order

Gauss-Markov sources.

79

Chapter 5

Entropy-Constrained

Coset-Coded Quantization

5.1 Introduction and Outline

Due to its simplicity, entropy-constrained scalar quantizer (ECSQ) has been and
continues to be a popular method of digitizing analog signals. Optimal ECSQs are
known to perform within about 1.53 dB of the rate-distortion bound for a large
class of memoryless sources [23]. ECSQ, however, cannot capitalize on the granular
gain as its quantization cells are approximately cubic. While entropy-constrained
vector quantizers (ECVQs) [27] can achieve the granular gain and possibly memory
gain for Markov sources, the lack of their codebook structures makes them difficult
to implement for a large block-length or encoding rate. In this chapter, we address
the problem of designing “structured” entropy-constrained quantizers that can
achieve both the granular and memory gains.

The widespread use of ECSQs has naturally spurred a significant activity in

80

optimizing their performance [23]-[26]. We next provide some results within this
activity that are related to the course of this chapter. Gish and Pierce’s results [23]
suggest that optimal ECSQ tends toward uniform scalar quantizer (USQ) in the
limit of large entropy. Optimal quantizers in the low bit-rate region, however, are
generally non-uniform and are designed based on solving a Lagrangian functional
minimization problem [24]-[26]. Farvardin and Modestino [26] later show that the
optimal ECSQ performance can be obtained using uniform-threshold quantizers
(UTQs) which have the uniformly distributed quantization thresholds like the USQ
but have their reproduction values at the centroids of each quantization interval.
Rate-distortion performance of the DPCM schemes for Markov sources have also
been studied in [42].

For high-rate quantization of memoryless sources, Fischer and Wang [28] show
that the performance improvement over ECSQ of a coding scheme placing an
entropy coder in tandem with TCQ is roughly source independent {28]. This fact
suggests that a significant granular gain that can be realized by TCQ [21] for
memoryless uniform sources should also be achievable in their entropy-constrained
TCQ (ECTCQ) [28] for memoryless non-uniform sources. For Markov sources,
Fischer and Wang [28] also extend ECTCQ to predictive ECTCQ — a variable-
rate predictive coding scheme that performs the DPCM predictive coding operation
in each search path of the ECTCQ codebook search algorithm.

ECTCQ can also be considered as a trellis-coded extension of ECSQ. Likewise,
predictive ECTCQ is a trellis-coded extension of the DPCM scheme. Like ECSQ,
optimal ECTCQ is typically designed based on solving a Lagrangian functional
minimization problem [28]; consequently, the ECTCQ codebook search algorithm

is similar to that for TCQ but subject to a new distortion measure (to be described

81

in the sequel).

The focus of this chapter is threefold: (i) development of ECTCQ that takes
into account symmetry properties of the underlying Ungerboeck trellis code; (ii)
study of possible quantization schemes for Markov sources other than predictive
ECTCQ; and (iii) development of the trellis-coded extensions of USQ and UTQ
to the sequence space. So far, the ECTCQs reported in the literature [28, 32]
do not exploit the symmetry properties of Ungerboeck trellis codes in any sense.
We will investigate if these symmetry properties, when exploited appropriately,
can effectively reduce the system implementation complexity. Besides describing
predictive ECTCQ, we will also consider combining the precoding idea described in
Section 4.3 and ECTCQ for quantizing Markov sources. There is no question that
both USQ and UTQ are simpler to design and implement than optimal ECSQ.
We expect that this fact should carry over to the multidimensional space, so that
entropy-constrained quantizers based on coset codes (see Section 2.4) can also be
simpler to design and implement than optimal ECTCQ.

The rest of this chapter is organized as follows. In Section 5.2, we address issues
related to implementation of ECTCQ. Extensions of ECTCQ to Markov sources
are considered in Section 5.3. In Section 5.4, we describe the possibly simpler
coset-based entropy-constrained quantizers. Finally, a summary and conclusions

are provided in Section 5.5.

5.2 ECTCQ

In this section, we consider issues related to implementation of ECTCQ. We first

present the codebook structure of ECTCQ and its search algorithm in Section 5.2.1.

82

In Section 5.2.2, we describe three different approaches of entropy encoding the
ECTCQ reproduction sequence, resulting in three respective versions of ECTCQ.
What is novel here is the third version of ECTCQ whose reproduction alphabet
is constrained to be symmetric about the origin. The motivation for placing this
symmetry constraint is that the probability density functions (p.d.f.’s) of most
of the useful sources are symmetric about the origin. In Section 5.2.3, we show
that this symmetry property, along with the symmetry properties of Ungerboeck
trellis codes, can be exploited to provide relatively simple implementation vis-a-vis
the ECTCQ reported in the literature [28, 32]. Numerical results of ECTCQ for

quantizing memoryless sources are provided in Section 5.2.4.

5.2.1 Generic Codebook Structure and Search Algorithm

In what follows we describe the generic codebook structure of ECTCQ and its
codebook search algorithm. We will assume that the underlying trellis code is an
Ungerboeck trellis code (see Section 2.4.2). Generalization to other trellis codes is
possible but will be omitted here.

An ECTCQ has a scalar reproduction alphabet Y = {y1,¥2, - -, Yom }, which is
partitioned into four subsets, namely Dgy, D;, D,, and D;3. For each Ungerboeck
trellis code, there is an underlying rate-1/2 convolutional code C and each of the
four codebook subsets is indexed exclusively by a 2-bit output codeword of the
convolutional encoder. A sequence of symbols from) is said to be an ECTCQ
reproduction sequence if its subset indices correspond to a code-sequence of C.

The ECTCQ codebook design problem was solved by Fischer and Wang in [28]
based on a Lagrangian formulation typically used for solving entropy-constrained

minimization problems [26]-[27]. This design algorithm will not be reiterated here;

83

but we provide in Appendix A details of the design algorithm for a special type of
ECTCQ that will be described shortly. For continuity of presentation, however, we
do need to mention that under such a Lagrangian formulation the optimal ECTCQ
reproduction sequence is the one that is closet to the input source sequence subject
to the so-called biased squared-error distortion measure £ : R x Y — R™ evaluated

as
E(z,y5) = (z — y)° + A, (5.1)

where A > 0 is the Lagrangian multiplier and ¢; (in bits) denotes the minimum
information required to be sent for an event that an input random variable is
quantized to y;. The Lagrangian multiplier A has a geometrical interpretation as
the negative slope of the tangent line supporting the optimal quantizer operational
rate-distortion performance for a given source. At high rates, A tends to zero and
£(-,-) hence gradually degenerates to the normal squared-error distortion measure.

We next describe the ECTCQ codebook search algorithm which determines
for the input source sequence {z;} the optimal ECTCQ reproduction sequence
{#;}. This is simply the Viterbi trellis search algorithm of TCQ [21] but subject
to the biased squared-error distortion measure £(-,-). Denote by A the minimum
accumulated biased distortion (or called Lagrangian functional) that results when
the first ¢ source samples are quantized to a reproduction sequence reaching trellis
state s € X. Suppose that the quantizer assumes a quantization delay of d source
samples. To handle this quantization delay, we need buffers qf = (¢4, 471, -+, ¢} 4)
and o} = (0}y,07,,"+,0},) for each trellis state s; the specific meanings for these
buffers and how they operate can be found in the codebook search algorithm for
any delayed decision quantizer presented in the previous chapters. Recursively, we

update A; (and hence determine g; and o) by solving the following minimization

84

for (s € X)) if (s == a specified trellis state) A®, = 0; else A, = oc;
for (1=0;i<o00;i++) {

for (k € J4) y* = arg miny,ep, (i, y;);
for (s e X) {

s* = argming AL +£(zi, y*¢)
7 = yk(s*:s);

A = ALy +&(zi, 2);

qzs = (qz‘?—*laz);

Onz? = (ag—la 3);

}
if (i >d) {

s* = argmin__ 32 A7;
release Z;_q = ¢f, for entropy encoding;
for (se X) {

if (UZO # ais;)) A} = o0;
0": = (Uis,la 05,2’ T Uz's,d);

8§ — § 3 S .
q; = (‘Ii,u 0 TR qi,d))

Figure 5.1: ECTCQ codebook search algorithm.
problem:
s = argmin AL, +€(zi, y*9), (5:2)

where s ranges between two possible previous states for s, k(s', s) is the index
to the codebook subset allowed for the specific trellis transition from s to s, and
yk(s”s) is the closest point within Dy .y to z; under the distortion measure £(-, -).

The ECTCQ codebook search algorithm is summarized in Figure 5.1.

85

5.2.2 Three Versions of ECTCQ

Here we present three versions of ECTCQ corresponding to various approaches
of entropy encoding the reproduction sequence. The first is the most general one
and works even for other than Ungerboeck trellis codes. The resulting ECTCQ,
however, can operate only at rates no less than 1 bit/sample. The other approaches
work only for Ungerboeck trellis codes and the resulting quantizers can operate
at any possible rate. The third approach further requires that the reproduction
alphabet satisfies a symmetry property to be discussed shortly. In all cases, we
assume that an ideal entropy coder always exists and encodes y; into a binary
codeword of ¢; bits — the minimum information required for representing an event

that an input random variable is quantized to y;.

Subset-Based ECTCQ [28]

This is the naive ECTCQ proposed by Fischer and Wang [28]. Recall that
each state transition in the trellis diagram is labeled by one of the four possible
codebook subsets and can be specified by a corresponding 1-bit input codeword
to the underlying convolutional encoder. Given a reproduction sequence, this
ECTCQ explicitly specifies the sequence of subset indices by the corresponding
sequence of 1-bit input codewords to the convolutional encoder. Besides, each
symbol in Dy is translated into a binary codeword that is a concatenation of a
1-bit codeword specifying the trellis transition (and hence Dj) and a codeword
from a subset-dependent! entropy codebook specifying the symbol within Dj; the
resulting ECTCQ is hence called the subset-based ECTCQ. The average encoding

1For simplicity, one usually assumes that the entropy coder is state-independent.

86

rate is 1 + H(Y'|D) bits/sample where

H(YID)= -3 P(Dy) S P(y|Dy)log, P(yIDy), (53)

k=0 yeDk

P(Dy) is the probability of selecting a reproduction symbol from Dy, and P(y|Dy)
is the conditional probability of selecting y within Dy.

It is obvious that the subset-based ECTCQ can operate only at rates no less
than 1 bit/sample?. In what follows we describe two other approaches of entropy
encoding the reproduction sequence such that the resulting ECTCQs can also

operate at lower rates.

Superset-Based ECTCQ [32]

This is an ECTCQ based on a clever idea proposed by Marcellin [32] that
absorbs the subset index information into the entropy encoding operation.

Define two supersets By = DolUDs; and B; = D;UD;. Let the underlying
trellis code be an Ungerboeck trellis code, we have that for any trellis state all the
allowed reproduction symbols constitute either By or B;. We can therefore convert
each reproduction symbol into a binary codeword from one of the two superset-
dependent entropy codebooks; the resulting ECTCQ is hence called the superset-
based ECTCQ. Given a current trellis state the reproduction symbol determines
uniquely the trellis transition (and hence the next state); there is no need to send

separate information regarding the subset indices. The average encoding rate is

H(Y|B) bits/sample where

1

H(Y|B) = —kZP(Bk) Zl; P(y|By) log, P(y|By), (5-4)
=0 yeby

P(By) is the probability of selecting a reproduction symbol from By, and P(y|B)

is the conditional probability of selecting y within By.

*Reasonable performance was achieved only for rates higher than 1.5 bits/sample [28].

87

Magnitude-Based ECTCQ

The p.d.f.’s of most of the useful sources are symmetric about the origin. For
this type of sources we consider a specific ECTCQ whose reproduction alphabet
Y = {£y;, £Ys, -, 1Y} (where 0 < y; < y, < -+ < y,,) is also symmetric
about the origin. The ECTCQ design algorithm this added symmetry constraint
is provided in Appendix A.

According to Ungerboeck’s rule {22], one can partition) into two supersets
B, and B, such that (i) for each trellis state all the allowed reproduction symbols
constitute either By or By; and (ii) two reproduction symbols of the identical
magnitude are assigned exclusively to By or B;. Denote by @ = {y1,%9, ", Y}
the set of all possible magnitudes. Following the discussion in Section 2.4.2, one
can reconstruct the actual reproduction sequence from its corresponding magnitude
sequence using a state-dependent function F : 3 x Q — Y similar to (2.18)."

Like TB-SVQ which encodes the magnitude sequence using an SVQ encoder,
the basic idea of what we will call the magnitude-based ECTCQ is simply to entropy
encode the magnitude sequence. The average encoding rate is H(Y") bits/sample
where

H(Y)=- 3 P(y)log, P(y), (5.5)
ye@
and P(y) is the probability of selecting reproduction symbols of magnitude y.

5.2.3 Complexity Issues

Here we describe the complexity issues for implementing the ECTCQ. We first
analyze both computational operations per sample and overall memory required

for the ECTCQ codebook search algorithm. This is followed by a brief discussion

88

on the relative complexity required for the entropy coder. We should mention
that the three versions of ECTCQ described in Section 5.2.2 differ only in the
way the reproduction sequence is entropy encoded but not for the codebook search

algorithm presented in Section 5.2.1.

Codebook Search

Let us keep Figure 5.1 as a reference and derive the complexity required for
the ECTCQ codebook search. Computing all the branch metrics over) for an
input sample requires 6m operations (4m additions and 2m multiplications) where
card()) = 2m; we assume that each A¢; is pre-computed and stored. Besides, it
takes 2m — 4 comparisons to determine the smallest branch metrics (each for one
of the four codebook subsets). Determining A?, through solving (5.2), requires 3
operations (2 additions and 1 comparison). Since card(X) = 2%, it totally costs
3 - 2¥ operations to determine A] for all s € 3. Finally, 2¥ — 1 comparisons are
required to choose the optimal reproduction sequence. Overall, the computational
cost is [8m + 4 - 2¥ — 5] operations/sample. The major memory requirement comes
from variables such as A}, ¢, and of. After some computations, the total storage

cost for these variables is found to be [2"*1 + Sy + [log, m])] 32-bit words.

Entropy Encoding

Now we consider the complexity required to entropy encode the reproduction
sequence. Specifically, the well-known Huffman codes [7] and arithmetic codes [8, 9]
are considered. We should mention that the arithmetic coder has now been known
to be superior to the better-known Huffman coder in many aspects (see [8, 9]).

Suppose that every N-vector taken from the reproduction sequence is encoded
by an N th order Huffman coder. As the Huffman coding operation is essentially a

table lookup (computational complexity is trivial), the overall size of lookup table is

89

used as an indication to the storage complexity. In the subset-based ECTCQ [28],
each subset has m/2 reproduction symbols. A block of N subsets have therefore
(m/2)N entries. There are 4V different types of a block of N subsets. The overall
lookup table size is hence (2m)¥. Similar discussion applies and we obtain an
identical amount of lookup table size for the superset-based ECTCQ [32]. In the
magnitude-based ECTCQ, the magnitude set @ has m symbols. It is obvious that
an N th order Huffman coder based on @ has a lookup table of m”" entries. The
magnitude-based ECTCQ is hence 2V times less complex (in terms of memory
requirement) than the other counterparts in encoding the reproduction sequence
using an N th order Huffman coder.

Now consider encoding the reproduction sequence by an arithmetic coder. In
the subset-based (superset-based) ECTCQ where the entropy coder operates in
somewhat a way similar to a finite-state machine, one needs to store the sets of
conditional probabilities of reproduction symbols within all subsets (supersets)
and recursively adopts one set as specified by the trellis transition. It is simpler
to arithmetic encode the magnitudes in the magnitude-based ECTCQ because the
magnitude set @ has one half less the reproduction alphabet and the probabilities

of symbols in @ are always fixed inherently in the arithmetic coder.

5.2.4 Simulation Results

We have designed the magnitude-based ECTCQ (using the algorithm provided in
Appendix A based on a training sequence of at least 10 samples) for some typically
used generalized Gaussian sources. In all cases, Ungerboeck’s 1-D 8-state trellis
code [22] is assumed and the initial trellis state is set to 0; the convergence threshold

€ is set to0 0.0005; and the Lagrange multiplier A is tuned by experiments to yield an

90

output entropy close to design target. In what follows we provide the performance
of the optimized quantizers on encoding separately generated sequence of 1,000
blocks, each of 1,000 samples.

Figure 5.2 illustrates the magnitude-based ECTCQ SNR-entropy performance
for two different generalized Gaussian sources. For comparison, the rate-distortion
bound and entropy-constrained UTQ performance for each source are also included.
The UTQ performance is known to be close to that of the optimal ECSQ [26]. The
performance gap between the magnitude-based ECTCQ and UTQ hence gives an
indication to the granular gain achieved by the trellis coding. Numerical results
indicate that the magnitude-based ECTCQ performs about 1 dB better than the
UTQ and within 0.5 dB of the rate-distortion bound at high rates. At lower
rates, ECTCQ can achieve relatively fewer granular gain over UTQ, especially for
sources with broad-tailed p.d.f. (e.g., the one with shape parameter 6 = 0.6). We
should also mention that there is no noticeable performance difference between
the magnitude-based ECTCQ and the subset-based or superset-based ECTCQ
reported in the literature [28, 32|, indicating that the imposition of the symmetry
constraint on the reproduction alphabet essentially costs no performance loss. We
will in the sequel assume implicitly that ECTCQ is magnitude-based.

We have also conducted experiments on entropy encoding the ECTCQ output.
Figure 5.3 illustrates the coding redundancy (in bits/sample) — the difference
between the actual coding rate and the average output entropy — yielded when
using Huffman or arithmetic coders to encode the ECTCQ reproduction seqeunce
for the memoryless Gaussian source. In the Huffman coding approach, to reduce
the coding redundancy while simultaneously taking the implementation issue into

account, an N-th order Huffman code is used where N is chosen such that the

91

SNR (dB)

40

35

Rate-distortion bound

0- - © Magnitude-based ECTCQ
+ - -+ UTQ

3
Rate (bits/sample)

(b)

0 l L L 1 1
0 1 2 3 4 5
Rate (bits/sample)
(a)
40 T T T T T
Rate-distortion bound
O- - © Magnitude-based ECTCQ
35 +--+ uTQ
30
25
o
=2
o 20
z
[
15
10
5
0 1 1 1 1 i
0 1 2 4 5

Figure 5.2: Magnitude-based ECTCQ performance (SNR in dB) on encoding two
generalized Gaussian sources with shape parameters (a) € = 0.6 and (b) 6 = 2.0.

92

0-05 T T T T T T T T T T T
0.04
0.03

0.02 -

/ /7
A AVAY
N2 A

€\ XN

h
-] 1
0.01 M nod
', Ly \'/
= ECTCQ + Huffman Coding
0.00 \
ECTCQ + Arithmetic Coding
s 1 1
3

Redundancy (bits/sample)

4 . 5 6 ‘ 7 ‘ 8
Rate (bits/sample)

-0.01 —r
0

Figure 5.3: ECTCQ coding redundancy using Huffman and arithmetic coders; the
source is memoryless Gaussian.

overall codebook size m” is no larger than 2048. Among other feasible advantages
mentioned in [8, 9], the arithmetic coding approach apparently has a smaller coding

redundancy than the Huffman coding approach.

All the previous simulation results were obtained by assuming a sufficiently
large quantization delay (of 1,000 source samples). The ECTCQ performance on
encoding the memoryless Gaussian source at 3.0 bits/sample as a function of the
quantization delay d (in source samples) is illustrated in Figure 5.4. We observe
that while larger quantization delay does yield better quantization performance,

in practice, a delay of 100-200 samples is sufficient as the ECTCQ performance

saturates quickly at such a quantization delay.

93

17.70 T T T T T T T

Infinite quantization delay
17623 hmmmmmcccc————— .!::'_i ___________________ _|
17.60 + .
)
z
g 17.50 E
42}
17.40 _
17.30 : ' ‘ ' . ' : '
0 50 100 150 200

Quantization Delay (Samples)

Figure 5.4: ECTCQ performance (SNR in dB) as a function of the quantization
delay on encoding a memoryless Gaussian source at 3 bits/sample.

5.3 Extensions of ECTCQ to Markov Sources

In this section, we present two quantization schemes — dubbed predictive and
precoded ECTCQs — that are extensions of ECTCQ to Markov sources. The
way we extend ECTCQ to predictive or precoded ECTCQ is exactly the same
as we extended TB-SVQ to predictive or precoded TB-SVQ in Chapter 3 or 4,
respectively. The basic idea is to perform the DPCM predictive coding operation
or the precoding transformation separately in each search path of the ECTCQ

codebook search algorithm.

5.3.1 Predictive ECTCQ

This quantization scheme generalizes the ECTCQ codebook search algorithm such
that each search path performs the predictive coding operation of the DPCM
scheme. The survivor path reaching trellis state s at time ¢ — 1 has stored itself the

most recent p samples in the corresponding candidate quantized output sequence

94

up to time 1—1, denoted by & ., = (&5_,,---, %% ,, 25 ,). Based on &% ., a pathwise
’ i—1 i—p? 1 i—=2r -1 i—1

prediction Z; of the input sample z; can be made according to
p
= Z pi%i_; (5.6)

the corresponding prediction residual is z; — ;. Denote by A} the minimum
accumulated Lagrangian functional (biased suqared-error distortion) that results
when the first ¢ prediction residuals (along the search path) are quantized to an
ECTCQ reproduction sequence reaching trellis state s € X. The minimization
problem in (5.2) now becomes

(5°,v") = argmin AL + €(wi ~ 31 0, (57)
where s’ ranges between two possible previous states for s and y is the closest
point to z; — :if’ within the codebook subset allowed for the trellis transition from
s’ to s under the biased squared-error distortion measure £(-,-). The predictive
ECTCQ codebook search algorithm is summarized in Figure 5.5.

Predictive ECTCQs belong to the class of closed-loop predictive quantizers (see
Section 3.5). For this class of predictive quantizers, there is an unsolved problem
as to detremine the p.d.f. of the prediction residual. We will bypass this problem in
the course of developing predictive ECTCQ by designing the underlying ECTCQ
matched directly to the p.d.f. of the innovations process. We should mention that
the abovementioned predictive ECTCQ codebook search algorithm is not optimal.
The suboptimality is due to the “greedy” nature in discarding the search paths
which currently have larger accumulated Lagrangian functionals than the survivor
one. As the future prediction residuals depend on the current quantization, chances
are that paths which eventually lead to smaller accumulated Lagrangian functionals

are already abondoned. Optimal codebook search algorithm for predictive ECTCQ

95

for (s € X) if (s == a specified trellis state) A®, = 0; else A®; = oo;
for (i =0;i<o00;i++) {

for (s € X) #f = X5, p;&f_j;
for (se X) {

(s*,y%) = argmingy) AL, +€(zi — & ,9);
Af =AY+ (i — 5, 9);

& = (&),,5 +y");

Qf (qgil’ y*);

0"; (a"z?ila 3);

~

}
if (i > d) {

s* = argmin _yr AJ;
release §;_q = gf, for entropy encoding;

for (s e X) {
if (03 # 05p) A] = 00;
0'2 = (a;,la 0'3,27 Ty Uf,d);

q‘z? = (qf,la qf,z) T qid):

Figure 5.5: Predictive ECTCQ codebook search algorithm.

is not available yet if it is not an exhaustive approach which is prohibitive.

5.3.2 Precoded ECTCQ

This is a quantization scheme that combines ECTCQ and the precoding idea of
Laroia et al. [31]. Note that a synchronous operation between the precoder and

inverse precoder requires that the reproduction alphabet Y be unformly spaced.

96

We will hence consider only the uniform ECTCQ? whose reproduction alphabet
Y can be written as {£d,+34,---,+(2m — 1)} for some scaling factor §. The
codebook search is essentially the same as that for predictive ECTCQ, except that
in each search path we perform the precoding transformation.

In what follows we will simplify the derivation of the codebook search algorithm
by neglecting some (possibly critical) technical background; the reader is referred
to the discussion on the dynamic programming based precoded TB-SVQ codebook
search algorithm provided in Section 4.4.2 for what she/he feels missed but crucial.
Also, we will denote by A’ a coset lattice of the coarsest lattice still containing Y
as a subset. What A’ really stands for will depend on the version of the precoder
(see Sections 4.3 and 4.5).

Like the codebook search algorithm for predictive ECTCQ, the survivor path
reaching trellis state s € X' at time 7 — 1 has stored the most recent p samples
in the corresponding candidate quantized output sequence up to time 7 — 1 —

~ 8 _ ~8
i1 = (xi—p"

++, 8 o,%7_,)- A prediction I} = 37, p;#f ; of z; based on &;_,
is then quantized to the nearest point z{ in A. Denote by A; the minimum
accumulated (biased) distortion that results when the first ¢ source samples are
quantized such that the corresponding precoder output is a trellis-coded sequence

of symbols from) reaching state s. The minimization problem in (5.2) now

becomes

(%) = argmin ALy +&(mi — 2]), (5.8)

Y

where s ranges between two possible previous states for s and y' is the closest

point to z; — 2z under the biased squared-error distortion measure within the

3Design algorithm for this type of uniform ECTCQ is provided in Appendix A.

97

for (s € X) if (s == a specified trellis state) A®; = 0; else A®; = o0;
for (i =0;i <o0;i++) {

for (s € X) zf = nearest point in A’ to >r 1 P
for (se X) {

(s*,y*) = argmingy) AL, +&(zi - 28 ,1);
A = AL +E&(zi - 27, y);

B = (i'f}pi* +v*);
q; = (¢i-1,¥");
0"3 = (0'1,‘?—178);

}

if (i > d) {

§* = argmin . 32 AJ;
release §;—q = qf’B for entropy encoding;

for (s € X) {
if (Uf,o # 0-'?,;)) A7 = o0;
o= (Uf,l’ Oz's,?’ Tt Uf,d);

§=
S — 8 8 8 .
q; = (%’,1’ Q2 ‘Jz',d)a

Figure 5.6: Precoded ECTCQ codebook search algorithm.

codebook subset allowed for the trellis transition from s to s. This precoded
ECTCQ codebook search algorithm is summarized in Figure 5.6.

Recall that at high rates the AEP-motivated codebook search algorithm is
simpler than the dynamic programming based algorithm for precoded TB-SVQ
(see Chapter 4). We consider the following precoded ECTCQ codebook search
approach. Here we do not pathwise perform the precoding transformation but

simply place the precoder in tandem with an unbounded TCQ (whose reproduction

98

alphabet is the coarsest lattice still contatining)J’). We have mentioned earlier in
Section 5.2.1 that at high rates the biased squared-error distortion mensure &(-,)
tends toward the normal squared-error distortion measure; TCQ is hence simply
a Viterbi trellis search algorithm subject to the squared-error distortion measure.
If the ECTCQ reproduction alphabet) has sufficiently many symbols, almost
all the precoder output samples will be in Y. In case there is a precoder output
sample that is not a symbol in Y (this could occur only infrequently), it can be
shown that the reproduction sequence can be locally modified so as to regulate the

corresponding precoder output sample into).

5.3.3 Complexity and Simulation Results

In this subsection, we analyze the implementation complexity of predictive and
precoded ECTCQs and provide their simulation results.

Let us first derive the complexity required for the predictive ECTC(Q codebook
search algorithm (presented in Figure 5.5). Computing each pathwise prediction &}
requires 2p — 1 operations (p— 1 additions and p multiplications). It hence requires
27(2p — 1) operations per source sample to compute all the pathwise predictions.
For each one of the two previous trellis states of s € X, denoted by s, computing
the corresponding accumulated Lagrangian functional requires (2m+1) operations
(1 addition for computing pathwise prediction residual xi—:i;‘?l , (2m—1) for selecting
the symbol y €)Y that yields the smallest branch metric, and 1 addition for
accumulating the Lagrangian functional). Determining A for all s € X, through
solving (5.7), hence requires 2”(4m + 3) operations. Finally, 2 — 1 comparisons

are required to choose the optimal search path. The overall computational cost

is [2¥(2p + 4m + 3) — 1] operations/sample. Compared to the ECTCQ codebook

99

search algorithm (provided in Figure 5.1), extra memory requirement comes from
variable such as &;, which amounts to [2¥*'p] 32-bit words.

The implementation complexity required for the precoded ECTCQ codebook
search algorithm (presented in Figure 5.6) can be similarly analyzed and will be
omitted. We next briefly disuss the implementation complexity required for the
high-rate degenerated search algorithm mentioned near the end of Section 5.3.2.
We will assume that the reproduction alphabet Y is large enough to encompass all
the precoder output samples. The computational complexity is hence that of an
uniform TCQ plus about 2p operations/sample for the precoding transformation.
The memory requirement for the degenerated algorithm should be somewhat less
than the algorithm presented in Figure 5.6 as there is no need to perform pathwise
precoding operation (the pathwise variable £ can be saved).

Based on simulations performed on test sequence of 1,000 blocks, each of 1,000
samples, the predictive and precoded ECTCQ performance (SNR in dB) with a

lth-order Gauss-Markov source

sufficiently large quantization delay on encoding a
(p1 = 0.9) are given in Figure 5.7; the underlying trellis code is Ungerboeck’s
8-state trellis code. The simulation results indicate that at high rates (i) both
predictive and precoded ECTCQs perform very close to the rate-distortion bound;
and (ii) precoded ECTCQ slightly outperforms predictive ECTCQ. At rate as low
as 1.0 bit/sample, predictive ECTCQ still performs reasonably well. Precoded
ECTCQ starts to fall apart at rate near 3.0 bits/sample. This could be partially
due to that fact that the precoding error gradually becomes significant and due
to the discrepancy between the biased squared-error and squared-error distortion

measures at low rates. Simulation results for precoded ECTCQ at lower rates are

not available because the design algorithm given in Appendix A provides uniform

100

45

40

Rate-Distortion Bound
66— Precoded ECTCQ

a5l *- — % Predictive ECTCQ

: ——
Rate (bits/sample)
Figure 5.7: Performance (SNR in dB) of predictive and precoded ECTCQs on

encoding a 1%%-order Gauss-Markov source (p; = 0.9).

ECTCQs that perform well only at rates no less than about 3.0 bits/sample.

5.4 Extensions of USQ and UTQ

In the limit of large rate, the (generally) non-uniform reproduction alphabet Y
of ECTCQ tends toward uniform and the biased squared-error distortion measure
degenerates to the normal squared-error distortion measure. One can hence expect
that a high-rate ECTCQ will be very close in codebook structure to a naive coding
scheme that is a concatenation of an unbounded uniform TCQ and an entropy
encoder — an extension of the entropy-coded USQ to the sequence space. In
Section 5.4.1, we generalize this idea and introduce a class of high-rate efficient
entropy-coded quantizers that simply places an entropy encoder in tandem with a

coset code quantizer (see Section 2.4). Since the underlying coset codes will be more

101

explicitly utilized in specifying the quantizer structure, we expect that this class of
quantizers — called coset-based quantizers (CBQs) — should be simpler to design
and implement than ECTCQ. In Section 5.4.2, we consider a modified version
of CBQ used for low-rate quantization of memoryless sources — dubbed coset-
threshold quantizer (CTQ) — that is an extension of UTQ to the multidimensional

space.

5.4.1 Coset-Based Quantizers

Each one in this class of entropy-coded quantizers has its codebook structures
explicitly specified by some coset codes ©(A/A’;C); the generic block diagram of
this type of quantizers is illustrated in Figure 5.8. Depending on whether C is a
block or convolutional code, ©(A/A’;C) reduces to the lattice A or a trellis code
based on the lattice partition A/A' and the binary code C. Likewise, we shall
say that CBQ reduces to lattice-based quantizer (LBQ) or trellis-based quantizer
(TBQ). We should also mention that ©(A/A’;C) is scaled by a factor 6. How
this scaling factor should be selected will be described shortly. For simplicity of
discussion, we shall assume that § = 1.

The CBQ operates as follows. The input source N-vectors {zx,} is mapped by
the coset quantizer to some code-sequence {&,} in €(A/A’;C). Each N-vector
&, € A is the sum of some coset representative A(¢,) and a point)\, in A’ where
¢, is the (k+7)-bit output codeword of the underlying rate-k/(k-+r) binary code C.
We can encode &, into a binary string that is a concatenation of the corresponding
k-bit input codeword w,, to C and some variable-length codeword associated with
A'n. In the receiver, the reproduction vector &, can be reconstructed as the sum

of the (entropy) decoded X', and A(c,) where ¢, is the output codeword of C

102

1/6

Cn w,
C—l
, C Q(A/:l' ;C)“J
ntizer
antiee | Entropy
)', |Encoder ‘ !
Channel
0 Xa Entropy|
Decoder|
Ty,
Ao(C [«
)\(Cn) ° wy

Figure 5.8: Block diagram of the coset-based quantizer.

corresponding to the input codeword w,,.

We should mention that if A’ is cubic the entropy encoding of X, at high rates
could be made as simple as that of IV repetitions of a scalar entropy encoding. This
is an essential property to coset-based quantizers such that the simplest effort of
entropy encoding can be achieved; we shall assume that all coset-based quantizers
satisfy this property. We next provide more respective details for some lattice-

based or trellis-based quantizers that will be considered in the sequel.

Lattice-Based Quantizers

In this case, C is an (NN, k) binary block code (where N = k+r) and C(A/A’;C)
reduces to the lattice A itself. Specific lattices that we will use in developing LBQ
include Z, Dy, and Ej; their corresponding block codes are described in Table 2.1
and the quantization algorithms for these lattices can be found in [39]. Note that

the sublattices of these lattices are all cubic.

Trellis-Based Quantizers

103

The underlying trellis codes of trellis-based quantizers we will consider are
Ungerboeck’s rate-1/2 1-D trellis codes (N = k = r = 1). In this case, the
box labeled “C(A/A’;C) quantizer” in Figure 5.8 represents the Viterbi search
algorithm [40] employed for ©(A/A’;C). We will assume that A is shifted such
that it is symmetric about the origin. This yields the equivalence between any
trellis code-sequence and its corresponding magnitude sequence. As we have shown
in Section 5.2.3 for the magnitude-based ECTCQ, this can effectively reduce the

entropy encoding complexity.

It is obvious that the only design issues for coset-based quantizer are the scaling
factor ¢ for the coset code and the scalar entropy encoder. We next briefly describe
a design methodology for this purpose. For a given scaling factor 4, a long training
sequence {&,} is quantized by the coset quantizer to some code-sequence {&,} in
C(A/A’;C). Taking the coset representative off each quantized N-vector &,, we
obtain {\';,} — a sequence of points in A". Since A’ is cubic, an empirical scalar
entropy codebook can be designed based on {/\'n}. The average quantizer output
rate is the sum of r/N bits/sample (for the coset representives) and the average
entropy rate of {\',}. This procedure is repeated for several values of 6 until the
average quantizer output rate is close to a desired entropy constraint.

The above CBQ design approach was performed for the memoryless Gaussian
and Laplacian sources; the resulting design performance (SNR in dB) are presented
in Tables 5.1 and 5.2. Note that the special case of LBQ based on Z actually
corresponds to USQ. The simulation results indicate that at high rates the other
quantizers outperform USQ by an amount equal to the granular gain achievable by
the underlying coset codes. Also, the 8-state TBQ peformance is found to be close

to that of the 8-state ECTCQ (presented in Section 5.2) at high rates. We should

104

LBQ TBQ: (2*)
Hy Z D; Es 4 8 16 32 R(D)
2.0 10.10 9.60 9.45 11.19 11.27 11.34 11.41 12.04
3.0 16.43 16.59 16.72 17.45 17.53 17.60 17.66 18.06
4.0 22.53 22.84 23.09 23.53 23.61 23.67 23.73 24.08
5.0 28.57 28.92 29.20 29.56 29.65 29.71 29.77 30.10
6.0 34.59 34.96 35.24 35.59 35.67 35.73 35.79 36.12
7.0 40.61 40.98 41.27 41.61 41.69 41.76 41.82 42.14
8.0 46.64 47.01 47.20 47.63 47.72 47.78 47.84 48.16

Table 5.1: Design performance (SNR in dB) of the entropy-constrained (by Hy)
CBQ for the memoryless Gaussian source.

mention that these numerical results in Tables 5.1 and 5.2 are the ultimate “design”
performance. When operating the designed quantizers on separately generated test
sequence, chances are that source samples are quantized to some null symbols that
have an empirically design probability of zero. To reduce the possibility of this
co-called overload event, we have used an extraordinarily long training sequence (of
107 samples) in the CBQ design procedure. To completely avoid the oyerload event,
one can either pad in the null symbols some non-zero probabilities according to
the source p.d.f. (and redesign the entropy codebook) or locally disturb the coset
code-sequence into the codebook. Either way, however, should yield the overall

quantization performance slightly inferior to those given in Tables 5.1 and 5.2.

5.4.2 Coset-Threshold Quantizers

A necessary condition for quantizer optimality is that each reproduction vector
should be located at the centroid of its corresponding quantization cell. In coset-
based quantizers, each reproduction vector is actually located at the center of its

corresponding quantization cell. This should not be a problem at high rates as the

105

LBQ TBQ: (2*)
Hy Z D: BEs 4 8 16 32 R(D)
5.0 10.96 10.33 10.20 11.69 11.77 11.84 11.91 12.67
3.0 17.09 17.12 17.28 18.04 18.12 18.19 18.25 18.69
4.0 23.16 23.43 23.68 24.15 24.23 24.29 24.35 24.71
5.0 29.20 29.56 29.81 30.19 30.28 30.34 30.40 30.73
6.0 35.22 35.58 35.86 36.22 36.30 36.36 36.42 36.75
7.0 41.24 41.60 41.89 42.24 42.32 42.38 42.44 42.77
8.0 47.28 47.63 47.92 48.27 48.36 48.42 48.48 48.79

Table 5.2: Design performance (SNR in dB) of the entropy-constrained (by Hp)
CBQ for the memoryless Laplacian source.

source p.d.f. is approximately uniform within each quantization cell (the center
is effectively the same as the centroid). At low rates, however, this necessary
condition generally is not satisfied.

Following the above discussion, we next provide a possible modification on
the quantizer structure such that the necessary condition for optimality is better
satisfied. We can employ another reproduction alphabet Y = {yf} (other than

h reproduction vector

the original one which is a subset of A) where yf — the j ¢
within the k¥ coset — is derived as the empirical centroid of all those training data
mapped to this specific quantization bin. This modification results in what we will
call coset-threshold quantizer (CTQ) in the sequel. Again, depending on whether C
is a block or convolutional code, we shall say that CTQ reduces to lattice-threshold
quantizer (LTQ) or trellis-threshold quantizer (TTQ). We will, however, no longer
discuss LTQ in the sequel as it entails an unstructured reproduction alphabet)
in the multidimensional space.

The least possible encoding rate of TBQ (or TTQ) will be 1 bits/sample if

we explicitly specify the sequence of coset representatives as in the subset-based

106

80 [80

ol 6071

g g

40 o 40
g L UsSQ Z

20 201

TBQ
0.0 . L - . . 0.0 y
0.0 02 04 0.6 08 1.0 0.0 0.2 04 0.6 08 10
Rate (bits/sample) Rate (bits/sample)

(a) (b)

Figure 5.9: TTQ design performance (SNR in dB) for the memoryless (a) Gaussian,
(b) Laplacian source; Ungerboeck’s 8-state trellis code is assumed in TTQ, TBQ,
and ECTCQ.
ECTCQ. At high rates, it is justifiable to do so since a source sample is quantized
to each one of the two admissible cosets of A" with about the same probability. At
low rates when the scale of the coset code becomes large, however, this probability
distribution may be highly biased to some specific coset. There hence exists some
redundancy in fixed-rate encoding the coset representatives. One can exploit the
equivalence between any trellis sequence and its corresponding magnitude sequence
and thereby reduce such a coding redundancy by entropy encoding the magnitude
sequence as in the magnitude-based ECTCQ.

Figure 5.9 displays the 8-state TTQ design performance in the low bit-rate re-
gion for the memoryless Gaussian and Laplacian sources. The rate-distortion limit
and performance of the 8-state ECTCQ, 8-state TBQ, USQ, and UTQ for these

two specific sources are also included for comparision. The TTQ performance is

107

very close to that of ECTCQ at almost all rates for the Guassian source while TTQ
is inferior to ECTCQ by about 0.2 - 0.4 dB for the Laplacian source. Besides, TTQ
consistently outperforms UTQ for the Gaussian case while the TTQ performance is
inferior to UTQ for the Laplacian source at rates less than 0.6 bits/sample. Again,
these simulation results in Figure 5.9 are the ultimate design performance. The
actual quantization performance for separately generated test sequence should be

slightly inferior to those given in Figure 5.9.

5.5 Summary and Conclusions

In this chapter we have developed structured and efficient entropy-constrained
quantization schemes for digitizing stationary sources. These quantization schemes
are simple to implement as their codebook structures are specified based on the
coset codes. Besides, these quantization schemes can realize over the optimal
ECSQ the granular gain to provide performance much closer to the rate-distortion
bound for memoryless sources. Possible extensions of these quantizers to Markov
sources have also been discussed.

We have presented the generic ECTCQ codebook structure, its optimal search
algorithm, and three versions of ECTCQ. What is novel is the third version —
the magnitude-based ECTCQ — whose reproduction alphabet is constrained to
be symmetric about the origin. Imposing such a symmetry constraint on the
ECTCQ reproduction alphabet is heuristically reasonable as the p.d.f.’s of most
of the useful sources are symmetric about the origin. Simulation results indicate
that placing such a symmetry constraint costs no rate-distortion performance loss

and can provide relatively simple implementation vis-a-vis the ECTCQ reported

108

in the literature [28, 32].

We have presented predictive and precoded ECTCQs that are extensions of
ECTCQ for quantizing Markov sources. The way ECTCQ is extended to these
two quantization schemes is equivalent to that of extending TB-SVQ to predictive
or precoded TB-SVQ described in Chapter 3 or 4, respectively. We have also
demonstrated that at high rates precoded ECTCQ degenerates to a simple scheme
that is essentially a concatenation of an unbounded TCQ (subject to the normal
squared-error distortion measure), a precoder, and an entropy encoder. Simulation
results indicate that at high rates both quantizers (with an 8-state trellis code)
perform within 0.5 dB of the rate-distortion limit for Markov sources. Generally
speaking, at high rates, precoded ECTCQ has a better performance than predictive
ECTCQ. However, precoded ECTCQ falls apart at rate near 3.0 bits/sample while
predictive ECTCQ still performs reasonably well at lower rates.

We have also introduced a class of entropy-coded quantizers, called CBQ, that
each places an entropy encoder in tandem with some coset code quantizer. These
quantization schemes are extensions of the asymptotically (in rate) optimal USQ to
the multidimensional space. A special case of CBQ — TBQ — can be considered as
the high-rate degenerated version of ECTCQ. Since the underlying coset codes are
more explicitly utilized in specifying the quantizer structure, CBQs are simpler to
design and implement than ECTCQ. We also considered TTQ which is a modified
version of TBQ used for digitizing memoryless sources at low rates and is an
extension of UTQ to the sequence space.

One important feature of the quantizers presented in this chapter is that the
quantizers operate effectively in the multidimensional space (the granular gain can

be achieved) while the effort of entropy encoding the multidimensional symbols

109

is reduced to a simple repetition of some scalar encoding operations. This is in
some sense equivalent to that TB-SVQ [15] (or see Chapter 3) is derived from an
underlying scalar quantizer. We should mention that the fixed-rate TB-SVQ has to
afford relatively higher complexity to provide a rate-distortion performance equal
to that of the variable-rate quantizers presented in this chapter. Although the
variable-rate coding nature renders the entropy-coded quantizers the drawback
of possibly catastrophic error propagation in the case of noisy communicatiqn
channel. There are, however, situations where the problem of error propagation can
be effectively protected and hence the simpler variable-rate quantizers developed

in this chapter should be favored.

110

Chapter 6

Adaptive Buffer-Instrumented

Entropy-Coded Quantization

6.1 Introduction and Outline

While entropy-coded quantizers generally produce variable-length codewords, in
most two-way communication situations the communication channel operates at a
fixed rate. Transmission of the variable-length codewords over a fixed-rate channel
necessitates the use of a buffer of finite, and preferably small, size. Clearly, one
should prevent the buffer overflow/underflow event from occurring for otherwise
it could lead to loss of codeword synchronization and hence a large quantization
distortion. In this chapter, we consider buffer management strategies for ECTCQ
and predictive ECTCQ.

The adaptive entropy-coded quantizer (AECQ) [46] is a buffer-instrumented
variation of entropy-coded scalar quantizer in which a simple feedback control

mechanism is used to maintain the buffer occupancy at the desired “half-full”

111

state. This scheme has been shown to be very effective in avoiding the buffer
overflow/underflows. It has been shown in [46] that given a sufficiently large
buffer size and a suitable feedback control mechanism, the cost for such a buffer-
instrumentation adaptation is only some negligibly small additional quantization
error. Also, the AECQ performance has been shown to be robust in the presence
of some specific source mismatch conditions [47].

AECQ is essentially a scalar quantizer. To capitalize on the granular gain,
we may generalize the underlying ECSQ to its vector extension — entropy-coded
vector quantizer (ECVQ). In spite that it could outperform AECQ, the resulting
quantization scheme is generally non-structured and will be prohibitive for a large
block-length or encoding rate. It is due to this concern that we shall not pursue this
issue but instead consider buffer-instrumented variations of the more structured
ECTCQ.

In AECQ, the buffer occupancy at each time instant is always referenced to
adapt the encoder characteristics right before the next source sample arrives. The
feedback control of the AECQ hence operates in somewhat an “instantaneous”
manner. A naive buffer-instrumented ECTCQ is one that replaces the underlying
scalar quantizer of AECQ with ECTCQ. Due to the encoding delay associated
with the ECTCQ codebook search procedure, however, the feedback control of
this naive quantization scheme can only operate in a “delayed” manner.

There are three contributions that will be presented in this chapter: (i) the idea
of pathwise adaptation which allows the feedback control to adjust the ECTCQ
encoder characteristics instantaneously; (ii) extension of the buffer-instrumented
quantization scheme to Markov sources; and (iii) study of the buffer-instrumented

ECTCQ performance in the presence of source probability density function (p.d.f.)

112

mismatch conditions. The main theme of pathwise adaptation is simply that of
performing the buffer-instrumented feedback control operation separately in each
search path of the ECTCQ codebook search algorithm. This simple idea gives
rise to what we will call pathwise-adaptive ECTCQ (PA-ECTCQ) in the sequel.
To realize the memory gain for Markov sources, PA-ECTCQ can be extended to
predictive PA-ECTCQ by combining the DPCM predictive coding operation into
the PA-ECTCQ codebook search algorithm. Study of the PA-ECTCQ performance
to some typical source mismatch conditions is encouraged by the fact that the
AECQ performance is to some extent robust in the presence of these mismatch
conditions [47].

The rest of this chapter is organized as follows. In Section 6.2, we briefly
review AECQ, describe a naive buffer-instrumented variation of ECTCQ, and
present PA-ECTCQ. Generalization (of PA-ECTCQ) to predictive PA-ECTCQ
for Markov sources is presented in Section 6.3. Along presenting PA-ECTCQ and
predictive PA-ECTCQ), their codebook search algorithms and extensive simulation
results are also described. In Section 6.4, we study the PA-ECTCQ performance
in the presence of source mismatch conditions. We will also consider approaches
of adapting the underlying ECTCQ codebook structure in accordance with the
knowledge gradually acquired by learning the statistical properties of the input

source sequence. Finally, a summary and conclusions are presented in Section 6.5.

6.2 Buffer-Instrumented Quantizers

The scenario of this section is as follows. We describe AECQ and a relatively simple

approach of implementing this buffer-instrumented quantizer in Section 6.2.1. In

113

/

ECSQ % | Encoder
Encoder Bufler

f
Feedback | _ J' Y

Control Channel

7 ECSQ < Gi Decoder |,
: Decoder Buffer
:
Feedback|_ _ |
Control

Figure 6.1: Block diagram of adaptive entropy-coded quantizer (AECQ).

Section 6.2.2, we first describe a naive buffer-instrumented variation of ECTCQ and
point out its drawback of operating the feedback control in a delayed manner. We
then describe PA-ECTCQ and present its codebook search algorithm. Simulation

results for these quantization schemes are provided and discussed in Section 6.2.3.

6.2.1 AECQ

The block diagram of AECQ is illustrated in Figure 6.1. We will assume that
the channel operates at a rate of 7 bits/sample, the buffer size is B bits, and the
underlying entropy encoder is a 15t_order encoder in the sense that it operates on
one quantization index at a time. Generalization to a block-based entropy encoder
is straightforward (see [46]) but, for simplicity, will be omitted.

We now describe AECQ. At the ith encoding cycle, the channel codeword ¢;

of m; bits produced from encoding z; is delivered as input to the buffer while

114

simultaneously r bits are released for transmission over the channel. The encoder
buffer state after this encoding cycle, denoted by z;, is hence recursively updated
according to z; = 2z;_1 + m; — r. The basic idea of AECQ is to adapt the encoder
characteristics (base on feedback information of z;_;) before encoding z; such that
the buffer state z; at the end of the ith encoding cycle is regulated as close to the
desired “half-full” state (B/2) as possible. In the decoder side, suppose that the
decoder buffer state Z;_; can address to a synchronous mode as is assumed in the
encoder. The entropy decoder hence is able to correctly decode ¢; (of m; bits).
At the end of the ith decoding cycle, the decoder buffer is updated according to
2; = %1 —m; +r. Clearly, if the initial states z_; and Z_; are both set to B/2, z;
and 2; should be symmetric about B/2!. According to this property, synchronous
operation between the AECQ encoder and decoder can thus be achieved without
any side information.

While a number of strategies for adapting the encoder characteristics (see [46])
are possible, one that is relatively simple to implement and has been shown to
provide quite effective rate-distortion performance is as follows. For most useful
sources, the p.d.f.’s are decreasing in magnitude of the argument. Besides, the
entropy encoder is such that input samples of smaller (larger) magnitudes are
generally encoded into codewords of shorter (longer) lengths. Based on these
observations, instead of actually modifying the encoder characteristics, the source
sample z; is pre-divided by a feedback signal f(z;_; — B/2) before being encoded

where f(-) is a monotone increasing function with f(0) = 1. An example of such

l2_1 and Z_; can be set to any number b with 0 < b < B. In this case, z; and 2; will be

symmetric about b if 0 < 2; < B. However, if b # B/2, buffer overflow/underflow event may

occur in the decoder while it is avoided in the encoder.

115

a function, which was used in [47] and will be used throughout this chapter, is

4

1—_%7—/5; z > min(K, B/2),
—L . 0 < z < min(K, B/2),
f(l') = 1—vz /2K — — (/) (61)

1+~vz/2K; —min(K,B/2)<z <0,

\ 1—7/2; z < —min(K, B/2),

where 0 < 4 < 2 and K is a specified positive integer. The roles that v and
K play in determining the feedback characteristics are described in [46] and are
omitted here. The decoder can track the buffer occupancy history and hence yield

the feedback signal f(z;_; — B/2). The replica &; for z; is then constructed by

multiplying f(z;_; — B/2) to the entropy decoded symbol.

6.2.2 Buffer-Instrumented ECTCQ

In a strict sense, AECQ is a scalar quantizer and hence fails to capitalize on the
granular gain. Based on the AECQ idea of buffer-instrumented adaptation, it is
straightforward to generalize the underlying entropy-coded scalar quantizer to the
entropy-coded vector quantizer so as to realize the granular gain. The resulting
quantization scheme, however, is generally non-structured and could be prohibitive
for a large block-length or encoding rate. As the more structured ECTCQ is
a simpler alternative than ECVQ to realize the granular gain, we next consider
adaptive buffer-instrumented entropy-coded ECTCQ.

Let us first consider a naive adaptive ECTCQ (A-ECTCQ) which replaces the
underlying ECSQ with ECTCQ. There is no direct interaction between ECTCQ
and the feedback control mechanism in this naive coding scheme. We should also
mention that there is an inherent encoding delay d (in samples) associated with the

ECTCQ codebook search algorithm (see Section 5.2.1). Based on the buffer state

116

z;_1, the feedback control hence adjusts the magnitude of the source sample x;,4
also in a delayed manner. By contrast, the AEC(Q feedback control can adjust the
magnitude of z; “instantaneously”. ECTCQ (where the buffer adaptaton is absent)
generally requires a sufficiently large quantization delay to realize a significant
granular gain (see, for example, Figure 5.4). In A-ECTCQ, however, a large delay
could possibly deteriorate the effectiveness of the feedback control as the delayed
feedback control cannot adjust the magnitudes of the intermediate samples which
have already been encoded in the search path (and whose associated codewords
are already determined to be delivered to the channel buffer).

It should be mentioned that the released ECTCQ reproduction sequence is
a delayed version of one of the candidate sequences stored in the search paths
of the ECTCQ codebook search algorithm. We have earlier used this fact to
derive the predictice ECTCQ codebook search algorithm (see Section 5.3.1) which
pathwise performs the DPCM predictive coding operation. Similar idea gives rise
to a modified buffer-instrumented ECTC(Q — dubbed pathwise adaptive ECTCQ
(PA-ECTCQ) — that “pathwise” performs the buffer-instrumented adaptation.

We now describe the PA-ECTCQ codebook search algorithm which, like that
for predictive ECTCQ), is a variation of the ECTCQ codebook search algorithm
presented in Section 5.2.1. This new quantization scheme is based on the fact
that the actual buffer occupancy z; after having delivered into buffer the binary
stream associated with all the intermediate symbols up to time instant ¢ in the
released sequence can be predicted. Denote by A] the minimum accumulated
nonstationarily scaled distortion? that results when the first ¢ source samples are

quantized to a reproduction sequence reaching trellis state s € . Also, let 2}

2This is the biased squared-error distortion scaled nonstationarily by the feedback control.

117

denote the actual buffer state if the reproduction sequence associated with A is
the released sequence. The problem of selecting one of the two possible survivor
paths at time 7 — 1 extending to trellis state s at time ¢ (i.e., determining Af) can

be written as

* ok : s T !
(s*,9") = argmin A]_; + &(U), (6.2)

i

(s') m
where s ranges between two possible previous states for s, f(:) is the feedback
control mapping, and y is the closest point to the pathwise scaled input sample
within the codebook subset allowed for the trellis transition from s to s. The

buffer occupancy 2{ is then updated according to
2 =20 —r+ Ly, (6.3)

where r is the channel operating rate in bits/sample and £(y*) denotes the codeword
length (in bits) generated by the entropy encoder for the reproduction symbol y*.
To prevent the search path from yielding the buffer overflow/underflow event, we
should place an extra constraint on ¢ in solving (6.3) as 0 < zfl_l —r+£(y) < B.
The decoder can track the buffer occupancy history and hence yield the feedback
signal f(2{, — B/2). The reproduction symbol #; for z; is then obtained by
multiplying f(2{", — B/2) to the decoded symbol y*. This PA-ECTCQ codebook

search algorithm is summarized in Figure 6.2.

6.2.3 Simulation Results

The A-ECTCQ and PA-ECTCQ performance for some memoryless generalized
Gaussian sources are presented and discussed in this subsection. All numerical

results to be presented are obtained based on simulation performed on test sequence

118

for (s € X) if (s == a specified trellis state) A®, = 0; else A®, = oo;
for (s == a specified trellis state) z°; = B/2;
for (i=0;1<o0;i++) {

for (s € ¥) {
* k) Sn . §’ z; Y.
(s*,y*) = argmingy) A7 +€(m,y);
A=A, +€(m,y*); z =2 —r+Ly");

q; = (1121171/*); o; = (‘7511,3);

}
if (i >d) {
s* = argmin s Aj; release ;g = qf}, for entropy encoding;
for (s € X) {
if (Uz's,o # Ui:)) Aj = oo;
o] = (071,000,054 @ = (G B Ba);

Figure 6.2: PA-ECTCQ codebook search algorithm.

of at least 10® samples. We should mention that both quantzition schemes can
be considered as fixed-rate quantizers and their encoding rate is equavalent to the
average channel operating rate. The underlying ECTCQ is chosen as the one whose
output entropy is closest to the encoding rate. Besides, it is possible to achieve a
nonintegral encoding rate by time sharing of two integral channel operating rates.

The buffer-state histograms of A-ECTCQ and PA-ECTCQ for some specific
encoding delays on encoding the Gaussian source at 3 bits/sample are illustrated
in Figure 6.3. In simulations leading to these results, the underlying trellis code is

Ungerboeck’s 8-state trellis code, the buffer size B = 192 (in bits), the feedback

119

0.04 -

PA-ECTCQ
Delay = 30, 50 80 A-ECTCQ
0.03 Delay =30
* Delay = 50
2
£
15 002 -
£~
& Delay = 80
0.01
0.00 : — ' '
0 32 64 96 128 160 192

Buffer-State

Figure 6.3: Buffer occupancy histogram of A-ECTCQ and PA-ECTCQ on encod-
ing a memoryless Gaussian source at 3 bits/sample.

control is such that K = 96 and v = 2.0, and the entropy encoder is a gnd_
order Huffman encoder. In A-ECTCQ), a larger delay results in a wider dispersion
in the buffer-state distribution — which suggests a higher probability of buffer
overflow/underflow®. By contrast, the PA-ECTCQ buffer-state histograms are
somewhat indistinguishable among various choices of the encoding delay and have
a relatively narrow dispersion in distribution. The A-ECTCQ and PA-ECTCQ
normalized mean squared-error (MSE) performance as a function of the delay
are given in Figure 6.4. We can observe that in PA-ECTCQ a larger encoding
delay does yield a better performance while this is not true for A-ECTCQ. These

results indicate the given the same buffer size and feedback control mechanism

3We have observed from our experiments that for A-ECTCQ the buffer overflow/underflow

event begins to occur at an encoding delay of 90 samples.

120

2.05e-02

1.95e-02
m
72}
= 1.85e-02
o]
[5]
N
=
§ 1.75¢-02
Z. 1723e-02
—— ECTCQ: 3 bits/sample
1.65e-02 |-
/* R-D Bound
1pg3e02 p-—-—-- it sl il b S P
20 40 60 80 100
Encoding Delay

Figure 6.4: A-ECTCQ and PA-ECTCQ performance (in normalized MSE) as a
function of the delay d (in source samples) on encoding a memoryless Gaussian
source at 3 bits/sample.

PA-ECTCQ is more effective in avoiding the buffer underflow/overflow event than
A-ECTCQ. Besides, like ECTCQ, PA-ECTCQ performance can be improved by
increasing the encoding delay.

Since PA-ECTCQ outperforms A-ECTCQ in almost all respects, we will in the
sequel skip A-ECTCQ and concentrate only on PA-ECTCQ (with a sufficiently
large encoding delay). The performance of PA-ECTCQ on encoding generalized
Gaussian sources of shape parameters 0.6 and 2.0 are presented in Figure 6.5.
Here we have adopted the more efficient arithmetic encoder (than the Huffman
encoder) as the underlying entropy encoder. For reference, we have also included
in Figure 6.5 the non-feedback arithmetic coded ECTCQ performance. The results

indicate that the buffer-instrumented adaptation, while regulating the variable-

121

40 T y T T T
Arithmetic coded ECTCQ
@ - -0 PA-ECTCQ; B=256, K=128,y=1.0 o
35 o .o PA-ECTCQ;B=128, K=64,y=1.0 o
o- - © PA-ECTCQ; B=64, K=32,y=1.0 o]
% - —x PA-ECTCQ; B=256, K=192,y=2.0 225 %

30l X X PA-ECTCQ; B=128, K=96,y=2.0 T X 3

X- - X PA-ECTCQ; B=64, K=32,y=2.0 2R o o=
; o -

25} .
- E
o
s
o 20F .
4
[72]

15} .

10 1

st _
i 1 1 1 1
% 1 3 4 5 6
Rate (bits/sample)
(a)
40 r T T T .
Arithmetic coded ECTCQ
@ - -0 PA-ECTCQ; B=256, K=128,7=1.0
35F 0 - o PA-ECTCQ; B=128, K=64,y=1.0 7%
0- - © PA-ECTCQ; B=64, K=32,7=1.0 %
% — =X PA-ECTCQ; B=256, K=192,7=2.0 £%90 .
30 x x PA-ECTCQ; B=128, K=96,y=2.0 Z8 % 4
X- - X PA-ECTCQ; B=64, K=32,7=2.0 P

25t
)
2
« 20
b
w

15}

o[

5_.
1 1 1 1 1
% 1 2 3 4 5 6
Rate (bits/sample)
(b)

Figure 6.5: PA-ECTCQ performance (SNR in dB) for memoryless generalized
Gaussian sources with shape parameter (a) 6 = 0.6 and (b) 8 = 2.0.

122

Trellis States

Source Rate 1 4 8 16 32 R(D)
1.0 4.63 5.50 5.58 5.65 5.70 6.02

Gaussian 2.0 10.56 11.48 11.59 11.63 11.71 12.04
3.0 16.57 17.51 17.59 17.65 17.71 18.06

1.0 580 6.20 6.29 6.37 6.41 6.62

Laplacian 2.0 11.40 12.12 12.19 12.24 12.36 12.66
3.0 17.27 18.12 18.17 18.19 18.36 18.68

Table 6.1: PA-ECTCQ performance (SNR in dB) on encoding memoryless Gaus-
sian and Laplacian sources.

rate codewords to the fixed-rate channel?, induces some certain performance loss
— represented by the performance gap between PA-ECTCQ and non-feedback
arithmetic coded ECTCQ. Generally speaking, a larger buffer size or smaller value
of y can yield better PA-ECTCQ performance. For a fixed buffer size and feedback
function, the performance loss is somewhat more significant for the broader tailed
sources.

Presented in Table 6.1 are the performance (SNR in dB) of PA-ECTCQ using a
relatively large buffer size on encoding memoryless Gaussian and Laplacian sources
at various encoding rates. In simulations leading to these results, the buffer size
is B = 1024 bits, the feedback control is specified by K = 768 and v = 2.0, and
the underlying entropy encoder is an arithmetic encoder. We should mention that
the scheme with 1-state trellis is actually AECQ (where the underlying quantizer
is the UTQ). We have noticed that PA-ECTCQ performs very close to ECTCQ
(or UTQ). This could be due to the fact that the buffer size B is sufficiently large

for these specific cases.

“In all cases we considered, the buffer overflow/underflow event has been avoided.

123

6.3 Predictive Buffer-Instrumented Quantizers

In this section, we present a novel quantizer — called predictive PA-ECTCQ —
that is a generalization of PA-ECTCQ for quantizing Markov sources. The way
we generalize PA-ECTCQ to predictive PA-ECTCQ is exactly the same as we
generalize ECTCQ to predictive ECTCQ (see Chapter 5). The basic idea is to
further incorporate the DPCM predictive coding operation in each search path of
the PA-ECTCQ codebook search algorithm.

We next present the predictive PA-ECTCQ codebook search algorithm, which
is an amalgamation of the DPCM and PA-ECTCQ codebook search algorithms.
For simplicity and continuity of presentation, we will use the PA-ECTCQ codebook
search algorithm as a baseline and describe only extra efforts required to exploit
the source correlation. Like the codebook search algorithm for predictive ECTCQ),
we assign for the survivor search path reaching trellis state s € X at time ¢ — 1
a buffer that stores the corresponding p most recent quantized output samples,
denoted by &; ; = (&{_,, -+, %], ;). Based on &;_,, a pathwise prediction Z;
of z; can be made according to (5.6) and the corresponding prediction residual
is ; — Z{. Replacing the source sample z; with the pathwise prediction residual
T — :T:fl for some previous state s of s, the minimization in (6.2) becomes

1]
73

. 5 xT; — '
(8%, y") = argmin A]_; +&(—— Y), (6.4)

i

") m
where s’ ranges between two possible previous states for s, f(-) is the feedback
control mapping, and y is the closest point to the pathwise scaled prediction
residual within the codebook subset allowed for the trellis transition from s to
s. The decoder can track both " and f(z{"; — B/2). The replica #; for z; is

therefore obtained as the sum of #{ and the entropy decoded symbol y* scaled by

124

for (s € X) if (s == a specified trellis state) A®; = 0; else A®; = oo;
for (s == a specified trellis state) z*; = B/2;
for 1 =0;4i<o0;i++) {

for (s € X) &5 = X0, pj&_j;
for (s e X) {

1

* x\ . ., ‘?’ z,—E5 .
(s*,y*) = argmingy) A, +£(m,y)

S= AL (TR), =2 — Ly

i - [z ,—BJ2)’
B; = (&_,,% + f(2, — B/2)-y");
g = (g ,,y"); oi=(ci,s);

}

if (i > d) {

s* =argmin__yy A; release §_4 = qf}) for entropy encoding;
for (s e X) {

if (05’0 # UZ:)) Al = o0
ol = (of,l,afﬂ, . --,ais,d); a4 = (6, G5 B a)s

Figure 6.6: Predictive PA-ECTCQ codebook search algorithm.
f(z5", — B/2); that is,
8 =% +f(z5, - B/2)-y". (6.5)

To continue the pathwise predictive operation, the buffer &; should be updated
according to & = (:i:f:l,icf* + f(z5, — B/2) y*) For completeness, we have
summarized the predictive PA-ECTCQ codebook search algorithm in Figure 6.6.

The predictive PA-ECTCQ performance (SNR in dB) on encoding two specific

Gauss-Markov sources are presented in Table 6.2. In simulatons (performed on

125

Trellis States
Source Rate 1 4 8 16 32 R(D)
1.0 10.39 11.91 12.16 12.47 12.54 13.23
AR(1): 2.0 17.3518.21 18.38 18.50 18.66 19.25
p1 =09, 3.0 23.64 24.20 24.30 24.55 24.74 25.27
AR(2): 1.0 9.18 13.37 13.67 13.92 14.12 14.96
p1 =1515 2.0 19.39 20.38 20.64 20.84 20.99 21.64
p2 = —0.752 3.0 25.85 26.37 26.65 26.86 26.98 27.66

Table 6.2: Predictive PA-ECTCQ performance (SNR in dB) on encoding two
specific Gauss-Markov sources.

test sequence of at least 10° samples) leading to these results, the buffer size is
B = 1024 bits, the feedback control is specified by K = 768 and v = 2.0, and the
underlying entropy encoder is an arithmetic encoder. In terms of approaching the
rate-distortion bound, the predictive PA-ECTCQ performance for Markov sources
is relatively about 0.4 dB inferior to that of PA-ECTCQ for memoryless sources.
This could be due the suboptimality of the predictive ECTCQ codebook search
algorithm. Nevertheless, predictive PA-ECTCQ still performs very close to the
rate-distortion limit and significantly outperforms the other fixed-rate quantizers

such as predictive and precoded TB-SVQs considered in Chapters 3 and 4.

6.4 Source Mismatch Issues

An important issue in assessing the practical utility of adaptive entropy-coded
quantization schemes is the inherent robustness of these techniques. That is, the
sensitivity of the resulting performance to various deviations from nominal design

conditions. In this section, we assess the robustness of PA-ECTCQ. We will present

126

in Section 6.4.1 simulation results of the PA-ECTCQ performance in the presence
of source mismatch conditions. We must mention that PA-ECTCQ can only adapt
its reproduction levels. In Section 6.4.2, we describe an approach of adapting the
underlying entropy encoder in accordance with the knowledge gradually acquired

by learning the statistical properties of the input source sequence.

6.4.1 PA-ECTCQ Performance

We will confine our attention to the class of generalized Gaussian sources whose
p.d.f’s can be described as in (2.1). Within this class, the p.d.f. po(z) of the

nominal source is such that the shape parameter § = 6, and the variance o2 = o7.

Mismatch to Scale

Mismatch with respect to scale occurs when the p.d.f. p(z) of the input source
differs from the nominal p.d.f. po(z) only in the source variance. That is, the actual
source p.d.f. is described by p(z) = (00/0)po((00/0)x). We define ¢ = (Z)? to
represent the scale mismatch parameter.

The PA-ECTCQ performance (in normalized MSE) on encoding a memoryless
Gaussian source of a mismatched scale (parameterized by ¢) at 3 bits/sample is
illustrated in Figure 6.7. In simulations leading to these results, the underlying
ECTCQ (with an 8-state trellis) is designed for the nominal Gaussian source at
3 bits/sample, the encoding delay d is 100 samples, K = B/2, and the entropy
encoder is a 2"%order Huffman encoder. For comparison, performance for Lloyd-
Max quantizer (LMQ) and ECTCQ, both matched to the source scale, and the
rate-distortion bound are also included. For a large buffer size and a large value

of v, the PA-ECTCQ performance is insensitive to a rather wide range of source

scale mismatch. For a fixed buffer size, the buffer overflow/underflow immunity

127

0.035
m 0.030
v
=
E 0.025
:
Q
Z. 0020
0.015 \ 1
s Matched ECTCQ; PABCICQ o~ R-DBound
3 bits/sample; infinite delay =2 r=1
0.010 el Y
0.01 0.1 1.0 10.0 100.0

Variance-Mismatch, {

Figure 6.7: PA-ECTCQ performance (in normalized MSE) in the presence of source
scale mismatch.

can be improved with an increased value of 7, but at the cost of some increased
distortion.

We have also observed in our experiments that the source scale mismatch results
in an increase (decrease) in the average occupancy level from the desired point B/2
for { > 1 (¢ < 1). This phenomenon is very similar to that for AECQ subject to

source scale mismatch [47] and can be explained likewise.

Mismatch to Shape

In this case, the source has the same variance o2 as in the nominal design. But

the shape (exponential decay) parameter 6 is different from the nominal shape

parameter 6.
In Figure 6.8, we illustrate the PA-ECTCQ performance (in normalized MSE)
for test sources of various shape parameters §; the underlying ECTCQ (with

an 8-state trellis) is designed for the nominal Gaussian source (f, = 2.0) at 3

128

0.10

[\
\
\\
0.08 N
\‘4\—~— Matched Lloyd-Max
w N Quantizer; 3 bits/sample
w2 AN
S 006 - W
N
3 0.04 - PA-ECTCQ, B =64 >~ __
PA-ECTCQ,B=128 ~~~___
PA-ECTCQ, B =256 T
e e —
g T FR Matched ECTCQ;
i R-DBound 3 bits/sample; infinite delay
000 1 1 1 1 | 1 1 L J
0.5 1.0 2.0 50

Shape-Parameter, 0

Figure 6.8: PA-ECTCQ performance (in normalized MSE) in the presence of source
shape mismatch.

bits/sample, the encoding delay d is 100 samples, the feedback control is such
that K = B/2 and v = 2.0, and the entropy encoder is a 2"d_order Huffman
encoder. Also included are the rate-distortion limit and the performance for LMQ
and ECTCQ, both matched to each value of §. We can observe from Figure 6.8
that the PA-ECTCQ performance can be improved by increasing the buffer size. In
all cases we considered, PA-ECTCQ consistently outperforms LMQ. Also, the PA-
ECTCQ performance is rather insensitive to source shape mismatch for sources
with shape parameters close to the nominal shape parameter (§, = 2.0). For
sources with broader-tailed distributions (6 < 2.0), there is still a significant gap
between the PA-ECTCQ performance and rate-distortion bound.

The average buffer occupancy state under shape mismatch is always shifted

somewhat to the left. As was explained in [47], this is because the p.d.f. of the

129

memoryless Gaussian source (6 = 2) has the highest differential entropy for a
given variance. The histograms for broad-tailed distributions (6 < 2.0) generally
have wider buffer-state dispersions. For more narrow-tailed distributions (6 > 2.0)
the dispersion decreases and the buffer occupancy histogram is highly peaked.

Explanations for such phenomena can also be found in [47].

6.4.2 Shape-Adjusting PA-ECTCQ

Simulation results in Section 6.4.1 indicate that the PA-ECTCQ performance is
robust in the presence of source scale and, to a lesser extent, shape mismatch
conditions. In this subsection, we attempt to improve its robustness to source shape
mismatch conditions. We will specifically provide several heuristic approaches
that could help shortening the significant performance gap between PA-ECTCQ
and the rate-distortion bound for sources with broad-tailed distributions, which is
demonstrated shown in Figure 6.8.

First, we can employ the arithmetic encoder as the underlying entropy encoder
in PA-ECTCQ. Simulation results for such a modified PA-ECTCQ (with B = 256,
K = 192, and other parameters equal to those in Figure 6.8) are presented in
Figure 6.9. The resulting PA-ECTCQ performance is slightly superior to those
(with similar buffer size and feedback control function) given in Figure 6.8. This
should be credited to that the arithmetic encoder has a smaller coding redundancy
than the Huffman encoder. However, the performance gap between this modified
PA-ECTCQ and rate-distortion bound for sources with broad-tailed distributions
is still significant. We will take such a PA-ECTCQ as a baseline; all other schemes
to be discussed in the sequel will assume the same buffer size, number of trellis

states, and feedback control function.

130

0.08

0.071 = = - Rate-Dirsortion Bound

‘\ Matched ECTCQ
o.06F & - -0 PA-ECTCQ: 0 =2.0
) ‘\ ¥—x PA-ECTCQ: 6 =0.6
]
w005
[0}
= \
- \
<« L \
% 0.04 ®
g \
3 AN
Z0.03f ®

SO0~ 0-0---0 - -0 -0 O- O

L
%.5 1.0 2.0 5.0
Shape-Parameter

Figure 6.9: PA-ECTCQ performance (in normalized MSE) in the presence of source
shape mismatch; the underlying ECTCQ is designed for nominal source of shape
parameter 0.6 or 2.0.

It can be argued that for sources with broad-tailed distributions, samples with
large magnitudes occur with a significant probability. The PA-ECTCQ designed
for a nominal Gaussian (6 = 2.0) source generally does not have a reproduction
alphabet large enough to deal with the source samples with large magnitudes.
Simulation results in [47] indicate that the AECQ performance in the presence of
source shape mismatch condition can indeed be improved by using a larger set of
reproduction symbols. To execute a similar experimentation for PA-ECTCQ, we
need to design the ECTCQ with a somewhat expanded reproduction alphabet. In
practice, we have observed that it is inefficient to serve this purpose® by applying
the training sequence oriented ECTCQ design algorithm (given in Appendix A).
On the other hand, the ECTCQ we have designed for the generalized Gaussian

source with a shape parameter of 0.6 has a relatively large reproduction alphabet.

5We have later realized that it could be easier to design TBQ described in Chapter 5.

131

Simulation results for PA-ECTCQ based on such an ECTCQ codebook is given in
Figure 6.9, from which we can assert that PA-ECTCQ generally performs well for
sources whose shape parameters range around the shape parameter , assumed in
the nominal design.

Since the ECTCQ designed for §, = 0.6 seems to have a reproduction alphabet
large enough to cope with all the generalized Gaussian sources we considered (with
0.5 < 0 < 5.0), we will implicitly assume its codebook structure in PA-ECTCQ.
According to the simulation results in Figure 6.9, our new problem becomes that
PA-ECTCQ does not perform well for sources with narrow-tailed distributions
(0 > 2.0). Actually, the PA-ECTCQ performance is even inferior to the LMQ
performance for # > 2. We should mention that the adaptation we have been
considering so far only modifies the ECTCQ reproduction levels; the underlying
arithmetic encoder is not adaptive. We attempt to solve this new problem by
making the arithmetic encoder adaptive based on an algorithm derived by Witten
et al. [9]. In such an adaptive arithmetic encoding algorithm, the source p.d.f. is
described by an empirical set of symbol occuring frequencies and is updated once
immediately after each symbol is encoded. We now assign for each search path of
the PA-ECCTCQ codebook search algorithm an adaptive arithmetic coder. The
arithmetic coders are pathwise adapted based on increasing (by one) the occuring
frequency of the symbol closest to the reproduction symbol. This new quantization
scheme can adapt its underlying entropy encoder In some sense, this new adaptive
quantizer attempts to adjust its underlying entropy encoder so as to match (its
nominal shape parameter) to the input source based on the quantized output
(which is also available to the decoder). We will call this quantization scheme

shape-adjusting PA-ECTCQ.

132

0.08

0.07

o
=]
&

[t

=]

&
T

- — - Rate-Dirsortion Bound
Matched ECTCQ
© - -0 PA-ECTCQ: 6 =20
*—— Shape-Adjusting PA-ECTCQ

Nomalized MSE
o
[=]
ES

1
?).5 1.0 2.0 5.0
Shape~Parameter

Figure 6.10: Shape-adjusting PA-ECTCQ performance (in normalized MSE) in
the presence of source shape mismatch.

The performance (in normalized MSE) for shape-adjusting PA-ECTCQ in the
presence of source shape mismatch conditions is illustrated in Figure 6.10. These
results are obtained based on simulations performed on a test sequence of at least
10® samples. By comparing Figures 6.9 and 6.10, we can observe that for sources
whose shapes are close to the nominal shape (6, = 0.6), PA-ECTCQ (6, = 0.6)
and shape-adjusting PA-ECTCQ have about the identical performance. This fact
suggests that entropy encoder adaptation is not so crucial in these cases. For
narrow-tailed sources (§ > 2.0), however, there is a significant performance im-
provement of shape-adjusting PA-ECTCQ over PA-ECTCQ (6, = 0.6). In all
cases we considered, shape-adjusting PA-ECTCQ performs very close to ECTCQ
— matched to all various source shapes. We can hence assert that shape-adjusting
PA-ECTCQ performance is robust subject to a rather wide range of source shape

mismatch conditions.

133

6.5 Summary and Conclusions

In this chapter we developed various extensions of AECQ [46]. To capitalize
on the granular gain, we have combined the buffer-instrumented adaptation idea
of AECQ [46] with ECTCQ of Chapter 5 and proposed a new quantizer called
pathwise-adaptive ECTCQ (PA-ECTCQ). To exploit the memory gain for Markov
sources, we combined the DPCM predictive coding operation with PA-ECTCQ and
proposed predictive PA-ECTCQ. In both PA-ECTCQ and predictive PA-ECTCQ),
the buffer-instrumentation adaptation has successfully regulated the variable-rate
codewords through a fixed-rate communication channel and both quantizers are
free of any buffer overflow /underflows. Given a large buffer size and an appropriate
feedback control mechanism, the tradeoff is only some negligibly small additional
quantization distortion.

Our simulation results indicate that the PA-ECTCQ performance is robust in
the presence of source scale and, to a lesser extend, shape mismatch conditions.
We have also considered adjusting the underlying entropy encoder in accordance
with the quantized output and proposed shape-adjusting PA-ECTCQ. The shape-
adjusting PA-ECTCQ performance has been shown to be robust to a rather wide
range of source shape mismatch conditions.

It is likely impossible to find a unique statistic model well matched universally
to all types of real-world sourecs. In the quantization process of any analog source
digitization system, there hence exist more or less source mismatch conditions
(see [36]). We have demonstrated the potential of PA-ECTCQ in providing efficient
and robust performance in the context of image transform coding [36]-[37].

There are two open problems related to the quantizers described in this chapter.

The first is that of determining in some sense the optimal feedback function for

134

a given unknown source mismatch condition and buffer size. We should mention
that quantizers described in this chapter are slideing-block coders and operate in
the sequence space. Although we consider these quantization schemes as fixed-rate
quantizers, their inherent entropy coding nature leaves them still vulnerable and
sensitive to channel noise. The second problem is to prevent a single channel error
from causing catastrophic reconstruction errors (also called error propagation).
One possibility is to convert these sequence-based quantizers into block-constrained
schemes like those considered by Balamesh and Neuhoff [48]. We are currently in
search of methods implementing quantizers described in this chapter on a block
basis. The objective is to derive a quantizaton scheme that is block-constrained
(hence free of error propagation problem) and can capitalize on all the possible

vector quantization gains.

135

Chapter 7

Conclusions and Related Work

7.1 Summary and Conclusions

The implementation complexity of the optimal vector quantizer is unaffordable
even for quantization at low rates and moderate block-lengths. To overcome the
complexity problem, in this thesis we developed structured resolution-constrained
or entropy-constrained quantization schemes for quantizing stationary memoryless
or Markov sources.

According to high-rate quantization theory [14]-[13], vector quantizers whose
quantization cells are approximately spherical can realize the granular gain over
scalar quantizers whose quantization cells are rectangular. There exist the so-called
coset codes [29)-[30] that have been shown to be very useful in both quantization
and transmission problems. Our motivation for developing structured quantizers
based on coset codes are twofold: (i) the Voronoi regions (quantization cells) are
approximately spherical; and (ii) their inherent algebraic sructures help in reducing

the implementation complexity. In Chapter 2, we provided preliminary materials

136

which include a brief review of coset codes. We should mention that coset codes
include trellis codes [22] and lattices [39] as the special cases. During the course
of this thesis, we have more often used trellis codes than lattices. This is because
that for a given complexity trellis codes are more efficient in capitalizeing on the
granular gain than lattices. We have also described in Chapter 2 some symmetry
properties of Ungerboeck’s 1-D trellis codes [22] that were used in quantization
schemes presented in Chapters 3-6.

The trellis-based scalar-vector quantizer (TB-SVQ) is a state-of-the-art efficient
resolution-constrained quantizer recently proposed by Laroia and Farvardin [15].
In Chapter 3 we presented several variations on TB-SVQ. First, for memoryless
sources we considered a hybrid of two TB-SVQs described in [15]. This TB-SVQ is
simpler to design and has about the same performance as those in [15]. Second, for
Markov sources TB-SVQ was generalized to predictive TB-SVQ that combines the
DPCM predictive coding opration with TB-SVQ. We have also derived a simpler
suboptimal codebook search algorithm — called the state-suppressed codebook
search algorithm — for these two new quantization schemes.

In Chapter 4 we discussed the duality between quantizing Markov sources and
transmitting data over ISI channels. The precoding idea of Laroia et al. [31] that
solves the problem of realizing both shaping and coding gains for transmission over
ISI channels was also described. Due to the quantization/transmission duality,
we then combined this precoding idea with TB-SVQ. The resulting quantization
scheme — dubbed precoded TB-SVQ — is asymptotically optimal and can, in
principle, approach the rate-distortion bound for Markov sources. The granular
gain is realized by the underlying trellis code while the combination of the SVQ

structure and precoder provides the boundary gain. At low rates, the precoding

137

error is significantly large and will disturb the optimal codebook boundary (hence
reduce the boundary gain). Two modified precoding schemes recently preposed by
Laroia [45] were presented in their simplest form based on Ungerboeck’s 1-D trellis
code. We have employed these two modified precoders to improve the precoded
TB-SVQ performance.

In Chapter 5 we developed structured entropy-coded quantization schemes. We
first described a novel entropy-constrained trellis-coded quantization (ECTCQ)
scheme that has a symmetric reproduction alphabet. Simulation results indicate
that placing such a symmetry constraint costs no rate-distortion performance loss
and can provide relatively simple implementation vis-a-vis the ECTCQ reported in
the literature [28, 32]. We have also presented predictive and precoded ECTCQs
that are extensions of ECTCQ for quantizing Markov sources. The way ECTCQ
is extended to predictive or precoded ECTCQ is similar to that of extending TB-
SVQ to predictive or precoded TB-SVQ described in Chapter 3 or 4, respectively.
We also introduced coset-based quantizer (CBQ) that is in essence an extension of
uniform scalar quantizer (USQ) to the multidimensional space. Since the under-
lying coset codes are more explicitly utilized in specifying the quantizer structure,
CBQ is simpler to design and implement than ECTCQ).

In Chapter 6 we have combined the buffer-instrumented adaptation idea of
AECQ [46] with ECTCQ of Chapter 5 and proposed a new quantizer called
pathwise-adaptive ECTCQ (PA-ECTCQ). To exploit the memory gain for Markov
sources, we combined the DPCM predictive coding operation with PA-ECTCQ),
leading to predictive PA-ECTCQ. Both quantizers have successfully regulated the
variable-rate ECTCQ output codewords through a fixed-rate communication chan-

nel and are free of the buffer overflow/underflow problem. Given a large buffer size

138

and an appropriate feedback control mechanism, the feedback control costs only
negligibly small additional quantization distortion. The PA-ECTCQ performance
has been shown to be robust in the presence of source scale and, to a lesser extend,
shape mismatch conditions. We have also considered adjusting the underlying en-
tropy encoder in accordance with the quantized output (a replica for the input
source sequence) and proposed shape-adjusting PA-ECTCQ. The shape-adjusting
PA-ECTCQ performance has been shown to be robust to a rather wide range of

source shape mismatch conditions.

7.2 Related Work

To establish the usefulness of the quantization schemes described in the thesis on
real-world sources we have applied them to problems in quantization of speech
and image data. In [33], predictive TB-SVQ is used to efficiently quantize the
speech waveform at low bit rates. The performance is significantly better than
that obtained by predictive TCQ in [49]. For high-rate quantization of speech
data, predictive TB-SVQ becomes too complicated while the simpler precoded
TB-SVQ can provide a relatively equivalent performance [34]. Due to its efficient
rate-distortion performance, ECTCQ has been applied in the context of transform
image coding [35, 37]. There always exist more or less source mismatch conditions
in a transform image coding system (see [36]). We demonstrated the potential of
PA-ECTCQ in providing relatively efficient and robust performance in problems

of quantizing image transform coefficients [36]-[37].

139

Appendix A

Magnitude-Based ECTCQ

Design Algorithm

An entropy-constrained quantizer can be expressed in terms of the configuration
provided in Figure 2.1. At each time instant, & maps the input random vector X
to a quantization index a(X). An ideal entropy encoder 7 then converts a(X)
into a binary codeword (a(X)) whose length is denoted by |y(a(X))|. One is
generally interested in finding the triplet (o,7,3) that minimizes the expected
distortion between X and its reproduction f(a(X)) subject to a constraint on the
quantizer output entropy E[|y(c(X))|]. This constrained minimization problem

can be solved by minimizing the Lagrangian functional

(e, B) = B [[X — B(e(X)) + Alv(u X))], (A1)

where A > 0 is the Lagrangian multiplier and represents the slope of the tangent
line supporting the quantizer operational rate-distortion performance. This design
approach is usually employed for various values of A, leading to a variety of output

entropies.

140

Suppose that the input source is ergodic and we have a long training sequence
X = {z;} avaiable. Based on this training sequence, we next provide the design
algorithm for the magnitude-based ECTCQ by deriving a solution to minimizing
an empirical form of the Lagrangian functional J)(a,7, §) given in (A.1). What
we will present is in essence similar to the design algorithm for the ECVQ [27] or
the subset-based ECTCQ [28].

The codebook structure of a magnitude-based ECTCQ is completely specified
by its magnitude set @ = {v1,%2," -, Ym}, the corresponding entropy codebook
C = {c1,¢2, -+, Cm}, and the Lagrangian multiplier \. We assume that an ideal
entropy codebook C always exists and the codeword length of c;, denoted by ¢, is
eqal to the self-information [5] of the event S(a(X)) = +y; where X is a source
random variable.

For a given triplet (o, v, (), define X; = {z € X : |f(a(z))| = y;}. X can be
divided into X = {z € X : B(a(z)) = y;} and X;_ = {z € X : B(a(z)) = —y;}

An empirical form for the Lagrangian functional in (A.1) becomes

henf)= e | T o)+ X &e-w)|, (A.2)
7=t oe X zeX;
where
€(z,ty;) = (zF yj)2 + M, (A.3)

is called the biased squared-error distortion measure.
To minimize the Lagrangian functional given in (A.2) starting from an arbitrary

coder (@, 4, 3 the basic idea is to repeatedly apply a transformation

(a(t+1), ’)’(t+1), /3(t+1)) — T(a(t), fy(t)’ ﬂ(t)) (A4)

141

such that J® = In(a®, 4 B®) decreases in t. Since J® is bounded below by
zero, {J®} is guaranteed to converge. As a convergence criterion for the algorithm,

we may use the simple stopping rule
(J(t) _ J(t+1))/J(t+1) <e, (A5)

where € > 0 is a convergence threshold. We next describe a possible transformation

T that operates as follows:

o+ — arg min In(a, 7D, g0, (A.6.a)
A — arg gnin (@D y, 0, (A.6.b)
Y = argmin J3 (oD, 4D,). (A6.c)

Fixing § and v, (A.6.a) means applying the Viterbi trellis search algorithm
to determine the optimal reproduction sequence {j,(-t+1)} for the training sequence
{z;}. One can then determine X §t+1) based on {#{"""}. The (empirical) probability
that a source sample is mapped (by @) to y; or —y; can hence be estimated as
Pj(tH) ~||X §t+l) [I/]|1X|{- Note that « has nothing to do with the quantization error,
the second step of 7 (A.6.b) decreases the Lagrangian functional by modifying the

codeword length according to
¢; = —log, P;. (A7)

Now fixing o and v, the mapping # that minimizes (A.2) is one that, for each j,

minimizes

Y. (@-9)?+ > (@+y) (A.8)

t+1 t+1
ze X5y L

142

0. given X,), ¢, and (o, ~© gO);
set t =0 and J© = oo;

1. encode X with ¥® and 8®, yielding {.@(tﬂ)} and J&,
if (J® — Je0) /gt < ¢ quit;

2. based on {#{"*)}, determine {X{*V} and {P{"*"};
update 1) according to (A.7).

3. encode X with v**1) and B®, yielding new {X;Hl)};
update B®1) according to (A.9);
replace ¢ by ¢ + 1; go to step 1;

Figure A.1: Magnitude-based ECTCQ design algorithm.

The jth magnitude y§t+1) should therefore be updated as the weighted centroid

S= 3 - ¥ s / sl (A.9)

se XY 2e XY
Figure A.1 summarizes this magnitude-based ECTCQ design algorithm.

The classical result of Gish and Pierce [23] indicates that the optimal entropy-
constrained quantizers at high rates are very nearly uniform. Besides, the uniform
quantizers are easier to implement. These have been the motivation for designing
ECTCQ whose reproduction symbols are taken from an appropriately scaled and
shifted version of the integer set {28]. Here we also consider the uniform ECTCQ in
which the magnitude y; = (25 —1)d where ¢ is a scaling factor. Replacing this new
constraint into (A.2) and setting 0J,/0d = 0, we obtain a new updating formula
for B in terms of ¢ as follows:

m m
O =13@ -1 X - ¥ 2 / (Z,:(zy' - 1)2||Xjn) .(A.10)

i=1 t41 t4+1
! X7 ceXJTY !

143

Bibliography

[1] C.E. Shannon, “A mathematical theory for communications,” Bell Syst. Tech.

J., vol. 27, pp. 397-423, 623-656, 1948.

[2] C. E. Shannon, “Coding theorems for a discrete source with a fidelity crite-

rion,” IRE Nat’l. Conv. Rec. part 4, pp. 142-1632, 1959.

(3] N. S. Jayant and P. Noll, Digital Coding of Waveforms: Principles and Ap-
plications to Speech and Video Coding. Englewood Cliffs, NJ: Prentice-Hall,
1984.

[4] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
Boston: Kluwer Academic Publishers, 1992.

[5] R. G. Gallager, Information Theory and Reliable Communications. New York:
Wiley, 1968.

(6] T. Berger, Rate-Distortion Theory. Englewood Cliffs, NJ: Prentice-Hall, 1971.

[7] D. A. Huffman, “A method for the construction of minimum-redundancy

codes,” Proc. IRE, vol. 40, pp. 1098-1101, Sept. 1952.

[8] J. Rissanen and G. Langdon, Jr., “Arithmetic coding,” IBM J. Res. Develop.,
pp. 149-162, March 1979.

144

[9] 1. Witten, R. Neal, and J. Cleary, “Arithmetic coding for data compression,”
Commun. ACM, vol. 30, pp. 520-540, June 1987.

[10] F. Jenilek, “Tree encoding of memoryless time-discrete sources with a fidelity

criterion,” IEEE Trans. Inform. Theory, vol. IT-15, pp. 584-590, Sept. 1969.

[11] A.J. Viterbi and J. K. Omura, “Trellis encoding of a memoryless time-discrete
source with a fidelity criterion,” IEFE Trans. Inform. Theory, vol. 1T-20,
pp. 325-332, May 1974.

[12] A. Gersho, “Asymptotically optimal block quantization,” IEEE Trans. In-
form. Theory, vol. I'T-25, pp. 373-380, July 1979.

[13] T. Lookabaugh and R. Gray, “High-resolution quantization theory and
the vector quantizer advantage,” IEEE Trans. Inform. Theory, vol. IT-35,
pp- 1020-1033, September 1989.

[14] V. Eyuboglu and G. D. Forney, Jr., “Lattice and trellis quantization with
lattice- and trellis-bounded codebooks — High-rate theory for memoryless

sources,” IEEFE Trans. Inform. Theory, vol. IT-39, pp. 46-59, Jan. 1993.

[15] R. Laroia and N. Farvardin, “Trellis-based scalar vector quantizer for mem-
oryless sources,” IEEE Trans. Inform. Theory, vol. I'T-40, pp. 860-870, May
1994.

[16] J. Max, “Quantization for minimum distortion,” IEEE Trans. Inform. Theory,

vol. IT-6, pp. 7-12, Mar. 1960.

[17] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inform. Theory,
vol. IT-28, pp. 129-137, March 1982.

145

[18) Y. Linde, A. Buzo, and R. M. Gray, “An algorithm for vector quantizer
design,” IEEE Trans. Commun., vol. COM-28, pp. 84-95, Jan. 1980.

[19] R. M. Gray, “Vector quantization,” IEEE ASSP Magazine, vol. 1, pp. 4-29,
April 1984.

[20] R. Laroia and N. Farvardin, “A structured fixed-rate vector quantizer derived
from a variable-length scalar quantizer: Part [—Memoryless sources,” IEEF

Trans. Inform. Theory, vol. I'T-39, pp. 851-867, May 1993.

[21] M. Marcellin and T. Fischer, “Trellis coded quantization of memoryless and
Gauss-Markov sources,” IEEE Trans. Commun., vol. COM-38, pp. 82-93,
Jan. 1990.

[22] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans.
Inform. Theory, vol. IT-28, pp. 5567, Jan. 1982.

[23] H. Gish and J. N. Pierce, “Asymptotically efficient quantizing,” IEEE Trans.
Inform. Theory, vol. IT-14, pp. 676-683, Sept. 1968.

[24] T. Berger, “Optimum quantizers and permutation codes,” IEEE Trans. In-

form. Theory, vol. IT-18, pp. 759-764, Nov. 1972.

[25] T. Berger, “Minimum entropy quantizers and permutation codes,” IEEE

Trans. Inform. Theory, vol. IT-28, pp. 149-157, Mar. 1982.

[26] N. Farvardin and J. Modestino, “Optimum quantizer performance for a class

of non-Gaussian memoryless sources,” IEEE Trans. Inform. Theory, vol. IT-

30, pp. 485-497, May 1984.

146

[27]

28]

[29]

30]

31]

[32]

[33]

P. Chou, T. Lookabaugh, and R. Gray, “Entropy-constrained vector quantiza-
tion,” IEEE Trans. Acoust. Speech, Signal Process., vol. ASSP-37, pp. 31-42,
Jan. 1989.

T. Fischer and M. Wang, “Entropy-constrained trellis-coded quantization,”

IEEFE Trans. Inform. Theory, vol. IT-38, pp. 415426, March 1992.

D. Forney Jr., “Coset codes — Part I: Introduction and geometrical classifi-

cation,” IEEE Trans. Inform. Theory, vol. IT-34, pp. 1123-1151, Sept. 1988.

D. Forney Jr., “Coset codes — Part II: Binary lattices and related codes,”

IEEFE Trans. Inform. Theory, vol. IT-34, pp. 1152-1187, Sept. 1988.

R. Laroia, S. Tretter, and N. Farvardin, “A simple and effective precod-
ing scheme for noise whitening on intersymbol interference channels,” IEEE

Trans. Commun., vol. 41, pp. 460-463, October 1993.

M. W. Marcellin, “On entropy-constrained trellis coded quantization,” IEEE
Trans. Commun., vol. 42, pp. 14-16, Jan. 1994.

C.-C. Lee, N. Phamdo, R. Laroia, and N. Farvardin, “On predictive TB-SVQ
of speech at low bit rates,” submitted to CISS’95, (Baltomore, MD), March

1995.

N. Phamdo, C.-C. Lee, and R. Laroia, “Speech coding using ISI coded quan-
tization,” to be presented at ICASSP’95, (Detroit, MI), Aug. 1994.

N. Farvardin, X. Ran, and C.-C. Lee, “Adaptive DCT coding of images us-
ing entropy-constrained trellis coded quantization,” Proc. IEEE Int. Conf.

Acoust., Speech, Signal Process., vol. V, pp. 397-401, April 1993.

147

[36]

[39]

[40]

[41]

[43]

C.-C. Lee, N. Farvardin, and X. Ran, “Robust quantization of DCT coeffi-
cients in adaptive transform coding of images,” IEEE Workshop on Intelligent

Signal Process. and Commun. Systems, (Sendai, Japan), Nov. 1993.

H. Jafarkhani, N. Farvardin, and C.-C. Lee, “Adaptive discrete wavelet trans-

form coding of images,” to be presented at ICIP’94, (Austin, TX), Nov. 1994.
{

P. L. Zador, “Asymptotic quantization error of continuous signals and the
quantization dimension,” IEEE Trans. Inform. Theory, vol. IT-28, pp. 139~
149, March 1982.

J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups.
New York: Springer-Verlag, 1988.

D. Forney Jr., “The Viterbi algorithm,” Proc. IEEE, vol. 61, pp. 268-278,
1973.

K. Sayood, J. D. Gibson, and M. C. Rost, “An algorithm for uniform vector
quantizer design,” IEEE Trans. Inform. Theory, vol. IT-30, pp. 805-814, Nov.
1984.

N. Farvardin and J. Modestino, “Rate-distortion performance of DPCM
schemes for autoregressive sources,” IEEE Trans. Inform. Theory, vol. IT-

31, pp. 402-418, May 1985.

R. Laroia, N. Farvardin, and S. Tretter, “On optimal shaping of multidimen-
sional constellations,” IEEE Trans. Inform. Theory, vol. 40, pp. 1044-1056,
July 1994.

148

[44]

(4]

[46]

[47]

[48]

[49]

V. Eyuboglu and G. D. Forney, Jr., “Trellis precoding: Combined coding,
precoding and shaping for intersymbol interference channels,” IEEE Trans.

Inform. Theory, vol. IT-38, pp. 301-314, Jan. 1992.

R. Laroia, “Coding for intersymbol interference channels — combined coding

and precoding,” submitted to IEEE Trans. Inform. Theory, July 1994.

N. Farvardin and J. Modestino, “Adaptive buffer-instrumented entropy-coded

quantizer performance for memoryless sources,” IEEE Trans. Inform. Theory,

vol. I'T-32, pp. 9-22, Jan. 1986.

J. Modestino, D. Harrison, and N. Farvardin, “Robust adaptive buffer-
instrumented entropy-coded quantization of stationary sources,” IEEFE Trans.

Commun., vol. COM-38, pp. 859-867, June 1990.

A. Balamesh and D. Neuhoff, “Block-constrained methods of fixed-rate
entropy-coded scalar quantization,” submitted to IEEE Trans. Inform. The-

ory, Sep. 1992.

M. W. Marcellin, T. R. Fischer, and J. D. Gibson, “Predictive trellis coded
quantization of speech,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. ASSP-38, pp. 46-55, Jan. 1990.

149

