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Quorum sensing  (QS) is a process that allows bacteria to communicate with each 

other to coordinate collective behavior in response to changes in environmental 

conditions. Their ability to mediate biofilm formation of biofilms and antibiotic 

resistance has created challenges on healthcare systems, and an impetus for us to 

understand QS systems. QS mediated by autoinducer-2 is likely to be the most common 

of these mechanisms. Recent work has elaborated on the LuxS-regulated (Lsr) system 

which can mediate and process AI-2 to QS-dependent behaviors, particularly regulatory 

elements including the lsr intergenic region and the repressor LsrR, the so-called QS 

“switch”. In this thesis, we present a simulation of an example lsr-QS-system to elucidate 

the role of the lsr intergenic region binding site interactions and how this model 

integrates with recent literature on LsrR’s protein structure to provide further details on 

the mechanisms of how the switch may operate in real systems. 
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Chapter 1: Introduction 

Bacterial biofilms have become a significant public health problem that have 

not only increased the cost of medical care by contaminating devices, but have been a 

significant means by which bacteria propagate antibiotic resistance.  [1-4] The issue 

impacts many fields including implanted biomedical devices that become 

contaminated, such as prosthetic biomedical devices [1], include catheters[5-7], 

pacemakers[8,9], hip implants [1,10], and bone cement [11]. In urinary catheters 

alone, the development of urinary tract infections (UTIs) within catheters, and the 

resistance of bacteria to normal antibiotics have contributed to $400 million (USD) in 

additional costs to utilize such devices alone, and have resulted in up to 1 million new 

cases of hospital transmitted infections annually[7]. There are several strategies that 

have been used to mitigate these infections. One strategy has been to simply swap the 

infected device with  a replacement device. This presents a number of complications 

and increases the cost of those devices. Another strategy has been to treat the 

infections with antibiotics [7,12], or coat the devices with the antibiotic laden 

coatings or films [13-16]. While many trials have been performed, few had  any 

impact on reducing infections owing to the complex dynamic of infection processes, 

particularly those that gain multiple antibiotic resistance. (We discuss some 

mechanisms of multiple antibiotic resistance later in this section.)Few trials have been 

carried out carried out on complex biofilms containing multiple species of bacteria. 

Those that have reported some reduction in biofilm size, retain the possibility of 

increased antibiotic resistance ormultiple antibiotic resistance in the surviving 

bacterial populations. In many cases of implanted devices, antibiotic resistance, even 
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with biocompatible materials, may still occur because the innate and adaptive 

immune systems may not recognize the surface as ‘self’, and thus not be ‘checked’ 

for pathogens because the ‘sensing’ neutrophils and lymphocytes may not be able to 

access the surface [17] (as one mechanism for assessing what is considered “self” vs 

“non-self” or “foreign”).    

Antibiotic resistance does not just happen in cases of implantable biomedical 

devices, but has been occurring in increasing frequencies independent of those from 

implantable devices. For instance, in some hospital tests for E. coli infections, over 

90% of the bacteria identified were multi-drug resistant [18,19]. The increasing 

frequency of vancomycin-resistant Enterococchi  (VRE)[20-28], and multiple drug 

resistant (MDR) Staphlococcus aureus (MRSA)[29-38] infections raises the concern 

that much of the current stock of antibiotics may be rendered useless against common 

infections. (In most cases, vancomycin is regarded as the ‘antibiotic of last resort’, 

due its strength and side effects [39].) In these bacteria, antibiotic resistance can be 

mediated through physical barriers that either keep bacteria without means to resist or 

utilize the antibiotic in a positive manner[4,40], or without efflux pumps to physically 

pump out the antibiotic once the antibiotic is recognized [2,41,42]. These efflux 

pumps and biofilm behaviors are described in great detail elsewhere. 

Nevertheless, the organization within those biofilms, and the ability of 

bacteria in biofilms to survive antibiotic treatment suggest that if bacterial colonies 

can be localized such that they remain planktonic (not form a biofilm), there would be 

many possibilities for improvement towards solutions that can not only prevent 

antibiotic resistant device contamination, but also improve the efficacy of antibiotics 
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in treating infections. For that to happen, there needs to be some sort of central 

linking behavior that may cause bacterial colonies in one condition to remain 

planktonic, and for bacteria to form biofilms in another. This link can be based on 

nutrient availability, tensile or shear stress in the system, or on other stresses. Most 

importantly, this link is based on number density—how many bacterial cells are in a 

given area at a certain time. When bacteria would perceive this number density to be 

higher than a threshold exists, or a “quorum”—meaning that there may be too many 

members in an area to share resources and remain planktonic— so they may form a 

biofilm, or become virulent, or otherwise coordinate their behavior as a collective 

unit, taking on phenotypes that aid in determining their fate. Examples of collective 

behaviors that are regulated by quorum sensing are the establishment of biofilms, the 

attachment of pathogenic E. coli to epithelial cells, the transference of virulence 

factors, etc. Excellent reviews have appeared that explain the mechanisms of the 

signal transduction processes as well as additional examples of the emergent 

behaviors [43-52] [53] (UK). Briefly, these bacteria synthesize molecules dedicated 

to quorum sensing (quorum sensing molecules). When the concentration of these 

molecules is above threshold, and depending on external conditions, the quorum 

sensing molecule can be imported, processed, and induce the expression of genes that 

contribute to the formation of a biofilm, to virulence, to other behaviors including the 

facilitation of chemotaxis[54].  

Quorum sensing (QS) molecules can be classified into three different 

categories—N-acylhomoserine lactones (AHLs) including autoinducer-1s (AI-1s) that 

mediate intraspecies signaling, autoinducers such as autoinducer-2 (AI-2) and 
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autoinducer-3 (AI-3) that may mediate both interspecies and intraspecies quorum 

sensing. Of these, AI-2 is the most ubiquitous, and most utilized of the known QS 

molecules[55]. Because of its detection among many species, and because many 

species contain a conserved pathway which produces AI-2 (which will be described 

in later sections), AI-2 producing and sensing systems have drawn significant interest.  

Based on their availability, and their application to a common class of MDR 

infections, we utilize the Escherichia coli (E. coli) QS system, and in particular, the 

E. coli K12 LuxS-regulated (Lsr) quorum sensing system as our system of interest. 

The current understanding of this circuit was described in Hooshangi and Bentley, 

and Tsao et al [56-58], and will be explained in more detail in later sections. 

Recently, however, our laboratory has undertaken a systematic study of the 

mechanisms of the transcriptional control circuits for this system. Byrd has developed 

new insight on the effects of the lone repressor in this system, LsrR, on gene 

expression in the bicistronic lsr regulon[59]. Influencing the interactions between 

LsrR and the lsr regulon have become a major starting point for the development of 

QS inhibitors, although initial studies have only targeted the prevention of the 

derepression of the lsr regulon [44,60,61], or efflux pumps that may pump out 

antibioitics. [62] Importantly Byrd demonstrated through genetic mutation of the 

intergenic region within the lsr regulon (between lsrRK and lsrA) that there are 

putative binding sites for CRP and LsrR that when considered in more detail reveal 

the possible existence of dimer and tetrameric forms of LsrR that play a role in the 

transcription of the lsr regulon.  
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This thesis builds on the concepts of Hooshangi and Bentley [43] , but adds 

significantly more complexity to the regulatory cascade; the desire being to strike a 

mathematical representation of the results of Byrd. The thesis is organized into 

component parts: a section on Model Development; a section on Simulation Results; 

a section on Concluding Remarks; and finally, a section on Future Work that might 

reveal additional insight beyond the factors considered here. 
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Chapter 2: Model Development 
 

Previous work by Hooshangi and Bentley [43] demonstrated that we could 

build a simple deterministic model of the lsr AI-2 quorum sensing regulatory 

network, based on knockout experiments of regulatory components.  However, more 

recent studies have revealed more mechanistic detail of the transcriptional regulation 

and secondary regulators to the quorum sensing response. Therefore, we have 

reevaluated Hooshangi and Bentley’s model and significantly modified the model to 

improve its relevancy to a more sophisticated model experimental system. 

In order to develop our model, we needed to make some basic assumptions. 

These assumptions are elucidated in Section 1. 
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Section 1: Assumptions in the Model 

Assumption 0: We have developed an idealized time-dependent profile for the 

appearance and disappearance of AI-2 that follows typical batch experiments of wild-

type E. coli K12 strains[63,64]. We consider this profile as a fixed profile that the 

model dynamics will be built around. 

 

Assumption 1: The model cell contains a mutation in the gene sequence of lsrB, 

meaning the transporter Lsr can be inserted into the plasma membrane of our model 

E. coli cell, but it cannot import AI-2. Likewise, this cell contains the ∆pts mutation, 

which knocks out the PTS pathway that is considered to be an alternate pathway for 

AI-2 importation besides the one through Lsr[65-67], and lsrK (Lsr transporter). 

Therefore, all phosphorylation of AI-2 occurs via the pathway through LsrK, and all 

AI-2 is imported into our cell by simple diffusion. With simple diffusion governing 

the AI-2 import, intracellular AI-2 that has not been converted to phospho-AI2 (AI2-

P) is assumed to reach rapid equilibrium with extracellular AI-2 concentration. This 

equilibrium between intracellular and extracellular AI-2 exists at all times throughout 

our simulation.    
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Assumption 2: Lsr kinase (from lsrK), the enzyme which phosphorylates AI-2 when 

imported through either the main pathway or through simple diffusion, is permanently 

stable. We allow our cell to express lsrK normally prior to all our simulations, and 

knock out lsrK before the start of any simulation. Therefore, we assume that no lsrK 

is made, and that lsrK’s activity can be represented by a single maximum rate 

constant, klsrK. 

 

Assumption 3: The amount of ATP consumed by our system is negligible to that 

which is consumed by other cellular processes. Therefore, we assume ATP 

concentrations inside the cell remain constant throughout all simulations.  
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Section 2: Detailed Development 

For simplification, our model of the lsr quorum sensing in LuxS knockouts is 

divided into four modules, which are summarized by Figure 1. Briefly, AI-2 is 

imported into our model cell via the AI-2 Importation Module (if not through the 

so-called alternative pathway involving the phophoenolpyruvate (PEP) transferase 

system) and processed via AI-2 Binding/Processing Module, which produces AI2-P. 

This AI2-P triggers derepression of Quorum Sensing (QS) Response Module, 

which produces a number of outputs including activation of the AI-2 Importation 

Module and the AI-2 Binding/Processing Module, or repression of the Quorum 

Sensing Response Module. This Quorum Sensing Response Module is regulated 

by input from the cAMP/CRP Module.  These modules will be described in the next 

several sections, which include our descriptions of the equations that describe the 

activities going on in each of these modules. 
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Figure 1: Overview of our quorum sensing system as divided into its basic 

components. Arrows govern the flow of outputs to inputs. Arrowheads pointing 
into an icon represent inputs, while arrows pointing away from our module in 

question represent outputs of our system. Connections in red represent 
conditions, and output flow that is not included in our model. The assumptions 
we make in Section 1, as well as throughout this discussion, are implemented 

instead. 

 

Subsection 1: AI-2 Importation Module 

In order for AI-2 to have any influence inside the E. coli cell, it must be imported into 

the cell. Importation into bacterial cells can happen through either simple diffusion or 

through some receptor-mediated process. Evidence has been built up for the existence 

of two different AI-2 internalization pathways in Enteric bacteria. The first is through 

a receptor-mediated process mediated by Lsr, the transporter that is produced by the 

lsrACDB flank of the lsr operon. Lsr is a multimeric membrane protein complex with 

two membrane-bound domains (lsrA and lsrC) and two active domains (lsrB and 
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lsrD).  Crystallographic studies have suggested that Lsr functions similar to an ATP-

binding cassette protein [46], requiring ATP phosphorylation and dephosphorylation 

in order to shuttle AI-2 into the cell and recycle Lsr. This process is diagrammed in 

detail in Figure 2. Briefly, if environmental AI-2 is above a threshold concentration, it 

will initially bind to the LsrB domain of Lsr. Upon the phosphorylation of Lsr’s 

intracellular domains via ATP, Lsr undergoes a change in conformation, and shuttles 

and releases AI-2 inside the cell. Once AI-2 is inside the cell, Lsr is dephosphorylated 

and returns to the original state, to import more AI-2.  Through the production of Lsr, 

induction of the lsr operon (which we define as the Quorum Sensing Module), affects 

the rate at which AI-2 imported through Lsr.  

 
Figure 2: AI-2 importation pathway via the transporter Lsr. 

 
While Lsr was the first transporter identified, Pereira and colleagues (cite) 

suggested that knocking out lsrACDB (lsrA + lsrC + lsrD + lsrB), the genes that 
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produce Lsr, did not significantly reduce AI-2 internalization. While lsrACDB was 

considered to be a main transporter system, another transport system, knocking out 

the phosphoenolpyruvate transferase system (PTS), produced a much more significant 

drop in AI-2 internalization [66,67]. However, how exactly PTS interplays within 

Lsr-independent AI-2 import remains unclear, and does whether PTS is the main 

component through which initial AI-2 import. Until we know further details, we will 

assume a time-dependent profile of AI-2 which is observed outside the cell and is 

exactly mimicked by the intracellular domain. In essence, while we know it is not the 

case, our assumption is akin to rapid equilibrium of AI-2 and AI-2P outside and 

inside the cell membrane. It is this profile that initiates the quorum sensing regulatory 

structures at predetermined times. We can also force AI-2 importation (via Lsr) to 

happen via making a point mutation in lsrA and lsrC that renders Lsr unable to bind 

to the plasma membrane.   

In wild-type E. coli cells containing LuxS, once the LuxS produces the AI-2 

precursor (DPD) and this is converted to AI-2, it has been proposed that this AI-2 

leaves the cell through interactions with a secondary transporter protein known as 

YdgG (or TqsA) [68]. It remains unclear however, how YdgG operates to export AI-

2, or if YdgG is even significant for AI-2 export in E. coli. So, for simplicity, we 

assume that this process happens through simple and rapid diffusion; and we can 

effectively ‘knock out’ the gene producing YdgG, ydgG, or otherwise disregard its 

activity. Our discussion of YdgG will be described in more detail in the synthesis 

section. 
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Because we have now assumed AI-2 diffusion can happen both in the forward 

and reverse direction, we now assume that there is an equilibrium state between 

intracellular and extracellular AI-2. Assuming this happens rapidly, Assumption 1 

holds true for our cell. Therefore, we will assume import always happens, and PTS 

acts as a secondary regulator that is always on. 

While our model cell is incapable of producing or exporting AI-2, we must 

acknowledge our cells can still be placed into a dynamic AI-2 environment. Luo and 

colleagues demonstrated such a real system could be set up [69]. So, we set up a 

virtual machine controlling AI-2 concentration in our virtual batch, such that we see 

how our system responds as extracellular (and intracellular) concentrations of AI-2 

increase to some peak and then decrease to near zero levels.   

To do this, we fitted a pseudo-Gaussian curve to AI-2 activity data observed 

by Liang Wang et al [63,64], with the small conversion, which we assume here as 

1µM AI-2 = 1600 activity units BB170, and parameters α, β, and γ, parameters that 

define the characteristics of our pseudo-Gaussian function. (We call it a pseudo-

Gaussian curve because we are not dealing with probability distributions. True 

Gaussian functions, as we define them, represent probability distributions whose 

areas under the curve must equal 1 by definition.) The values from our fit are listed in 

Table 1, and the fit when compared to Liang Wang’s data is shown in Figure 3. This 

continuous function can be differentiated over time and used directly as a dynamic 

model input that is later integrated simultaneously with all other state variables. 

      (1) 
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Figure 3: AI-2 Curve Fitting AI-2 curve (solid red line) fitted to data from [63] 

with the conversion factor of 1600 AI-2 activity units/1 uM AI-2 (blue filled 
circles) 

That is, we can now differentiate our form for Ao(t), our autoinducer-2 

concentration profile, yielding a variable input into our lsr system to obtain our ODE 

equation for our autoinducer-2 concentration in (2) (or I in Supplementary Figure 1). 

       (2) 

 

 

Subsection 2: AI-2 Processing Module 

While many studies have correlated AI-2 to the expression of the lsr operon, 

and other lsr-dependent genes, we also know that AI-2 (in whatever form is 

recognized by the species of bacteria in question) cannot directly activate 

transcription of Lsr[70,71]. Genetic structural analysis of a gene downstream from 

lsrR by Taga et al. identified a new gene in S. typhimurium that was homologous to 
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bacterial carbohydrate kinases—indicating that the new gene was likely a 

phosphatase. Because of its location within the operon, the new gene was dubbed 

lsrK, which produced the protein LsrK (luxS-regulated kinase).  Further experiments 

by Wang et al., 2005; Hooshangi and Bentley, Taga et al, and others which studied 

the effects of knocking out this new gene on transcription of the lsr operon 

[43,46,63,71] in E. coli and S. typhimurium suggested a strong correlation between 

knocking out lsrK and strongly reduced expression of Lsr, implying that LsrK 

converts AI-2 into an active form in order to de-repress the lsr operon. Taga et al, also 

performed ATPase assays on the new protein in vivo and demonstrated that lsrK had 

ATPase activity, and therefore LsrK was actually a kinase. 

A summary of our “AI-2 processing” module, as initially presented in this 

section, is diagrammed in Figure 3. Briefly, AI-2 that has been internalized into the 

cell binds to LsrK, and LsrK transfers a phosphate group from ATP (which also binds 

to lsrK) to AI-2, converting AI-2 to the active phosphorylated form, AI-2-P. Upon the 

release of AI-2-P, LsrK can take on another molecule of AI-2, and AI-2-P can follow 

on one of two paths---1) it can be simply degraded through a lsrG-dependent pathway 

initially identified by Marques  and colleagues [72] , or 2) it can activate the ‘quorum 

sensing response’, which will be detailed by the Quorum Sensing Module.  
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Figure 4: AI-2 processing module - steps involving lsrK and lsrG. 

Ordinary differential equations (ODEs) detailing components of the AI-2 processing 

module were derived from Figure 3, following the arrows in black (in general terms). 

These ODEs, including our ATP equation based in Assumptions 2 and 3, are detailed 

in equations II-IV in Supplementary Figure 1.  

 

Subsection 2.1: lsrG-Dependent Degradation of Phospho-AI2 

 While lsrG had been identified as one of the genes expressed when AI-2 de-

represses the lsr operon, its function had not been clearly identified until recently. In 

2007, Xavier and colleagues demonstrated that LsrG could convert AI-2-P to two 

polyglycolic acids. However, they observe that one polyglycolic acid (PGA) appears 

in larger amounts in vitro than does the other acid, suggesting that one PGA could be 

converted into another. So, Marques et al. created ∆lsrG E. coli mutants and tested the 

effects of knocking out lsrG on Lsr expression, as determined by inserting a β-
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galactosidase reporter gene downstream from lsrACDB [72]. In the ∆lsrG strains, 

they find, through NMR studies, that AI-2-P accumulates intracellularly in levels 

close to tenfold higher than in cells containing lsrG. They also identified the two 

different PGAs that appeared in Xavier et al.’s 2007 study [70] as 3-hydroxy-2,4-

pentadione-5-phosphate (P-HPD) and 3,3,4-trihydroxy-2-pentanone-5-phosphate (P-

TPO) [72], an intermediate between AI-2-P and P-HPD known as 3,4-dihydropent-3-

en-2-ol-5-phosphate (P-DHPEO), and a final product from the non-enzymatic 

oxidation of P-TPO, which is 3,3,4,4-tetrahydroxy-2-pentanone-5-phosphate (P-

TetraPO). Jt is still unclear what happens with P-TetraPO [72], and so for modeling 

purposes, we simply assume that the modeling pathway is a degradation pathway that 

can be summarized by a single degradation rate constant kdeg_Ap, which is defined in 

Supplementary Figure 3.  

 

Subsection 3: Quorum Sensing Module 

Once LsrK phosphorylates imported AI-2 to form AI-2-P, it enters into our 

Quorum Sensing Module, , which can be summarized by Figure 4 and divided into 

several steps that include 1) cleavage of the LsrR tetramer, 2) the subsequent 

expression of the lsr operon and 2) the reformation of the LsrR tetramer.  
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Figure 5: Diagram of the quorum sensing module. Binding of AI-2-P (red 
diamonds) to the lsrR tetramer (blue circles, bound to binding sites marked by a 
salmon-color) lead to the splitting apart of the tetramer into two dimers and the 
eventual cleavage of the AI-2-P lsrR dimers off of the lsr operon, partially 
derepressing the lsr operon. Binding of cAMP-CRP (yellow star with yellow ‘pac-
man’) to the CRP-binding sites (yellow on lsr operon) as a result of events in the 
cAMP-CRP module result in the full activation of transcription of the lsr operon, 
which produces mRNA for genes on both flanks of the lsr operon, as well as mRNA 
for the reporter (lacZ) associated with either lsrRK or lsrACDB. The mRNA is then 
translated into lsrR monomer (blue circles), Lsr (green pac-man), and beta-
galactosidase (teal hexagons). If LsrK is functional, expression of lsrK would feed 
back to the AI-2 processing module (red arrow). If LsrACDB is function, expression 
of lsr would facilitate more imporation of AI-2. lsrR dimerizes to form the free dimer 
(two circles), then binds to its binding sites on the lsr operon. The two bound dimers 
are then brought together to reform the LsrR tetramer.  
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 Subsection 3.1: LsrR Tetramer Cleavage 

 The first step of the quorum sensing process involves the binding of AI-2-P 

(phospho-AI2) to LsrR. Experimental studies suggested that, based on genetic 

homology to similar proteins and preliminary crystallography studies [73], that LsrR 

exists as a tetramer when bound to four ‘operator’ (O) binding sites (putative binding 

half-sites) identify by Byrd as shown in Figure 6. We propose that the cleavage 

occurs as a two-step process. First, two AI-2-P molecules bind to the tetramer, 

cleaving the tetramer into two LsrR dimer-AI-2-P complexes still bound to their 

binding sites. Then, due to the instability of the LsrR dimer-AI-2-P-DNA complexes, 

the LsrR dimer-AI-2-P complexes are subsequently released from the putative 

binding half-sites.  



 

 20 
 

 

 
Figure 6: The lsr operon containing the lsrR tetramer. (The LsrR tetramer consists 
of the blue circles bound joined together). The lsrR tetramer is bound to the operon at 
binding sites O1, O2, O3, and O4 (salmon rectangles). Removal of lsrR triggers the 
expression of lsrACDB (bottom, in green) or lsrRK (top, in green), and their 
associated reporters (signified by R, in light blue). cAMP-CRP complexes can 
enhance and fully activate expression of the lsr operon by binding to CRP-binding 
sites C1 and C2 (yellow).  

 These steps occur given a few premises. First, we assume that since the 

tetramer itself is formed by the binding of two homodimers, there have to be two 

binding sites on the homodimers (one on each homodimer) required to break apart the 

tetramer into two LsrR dimer-AI-2-P complexes removed from the lsr operon or else, 

we assume, we may still see complete repression of either flank of the lsr operon. The 

particular flank that would still be repressed would be the flank whose dimer is not 

bound to AI-2-P. We also assume that changes in the intermolecular forces, whether 

hydrophobic, steric, or electrostatic, between the dimer-AI-2-P complexes and their 

associated DNA molecules are strong enough to forces the complexes off of their 

associated binding sites, and that these complexes are degraded by an unknown 
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pathway in which neither LsrR dimer nor AI-2-P are recycled back into the regulatory 

circuit. 

 Given these assumptions, we now identify our governing rate constants and 

state variables that are used in our model. The initial binding reaction of AI-2-P with 

the tetramer that forms the LsrR dimer-AI-2-P complexes bound to the lsr operon are 

governed by the rate constant kbind (see Supplementary Figure 4), and the cleavage 

reactions of the dimer-AI-2-phosphate complexes off of the associated dimer binding 

sites are governed by kcleave1 (lsrRK) and kcleave2 (lsrACDB). Bulk (LsrR) tetramer, AI-

2-P, (LsrR) dimer/lsrRK complex, dimer/AI-2-P/lsrACDB complex, dimer/AI-2-P 

complex, free lsrRK and free lsrACDB  concentrations are represented by the state 

variables (listed in Supplementary Figure 3) Tb, Ap (from the AI-2 Processing 

Module), Dp_b|lsrR, Dp_b|lsrA, Dp, lsrR, and lsrA respectively. 

Subsection 3.2: lsr Expression and Output 

Once LsrR has been released from its binding sites near lsrRK (∆lsrK) and 

lsrACDB, one would presume that expression of lsrR is straight forward—lsrACDB, 

lsrR and their associated reporters are transcribed (mRNA encoding each is 

produced), and translated into proteins (and an output for the β-galactosidase activity 

assay) including the monomer form of lsrR, and the transporter. We initially assume 

the transcription equations have the form shown in equation 18, for only the lsrACDB 

flank (transcribing monomer), where lsrA is previously defined. We introduce a 

constant, B, that represents the observed bias towards lsrR with the conditions held in 

19. Maximum rate constant, ktcR is the basal transcription rate for lsrR, kdeg_mRNA is 

the mRNA-specific degradation rate. We will initially assume ktcR and kdeg_mRNA for 
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our system are known and that lsr expression is not biased to either flank, for the 

purposes of our discussion.  

    (18) 

   

 (19) 
However, establishing unregulated transcription and translation after an initial 

activation event is a dangerous concept in modeling of biological systems. Several 

studies have suggested that cyclic-AMP (cAMP) acts as such a regulator through 

interactions with its receptor protein (cAMP receptor protein, or CRP)[74,75], which 

can, in turn, positively regulate expression of a target gene by improving the access of 

RNA polymerases and transcription regulatory proteins to the target sequence. In our 

particular case, cAMP-CRP binding to a DNA region upstream of either flank of the 

lsr operon could positively regulate expression of the lsr operon. While the DNA 

binding sections were identified as being upstream of lsrACDB and lsrRK, little was 

known about the role of the binding site sequences themselves because studies 

examining the role of cAMP-CRP binding in lsr regulation only addressed the role of 

the production of CRP. Then, Wang et al., positively demonstrated the binding of 

CRP to the operator regions within the intergenic lsr regulatory region [64]. 

Sequencing work by Byrd [59,76] identified the exact sequences for the two CRP 

binding sites in the lsr operon, labeled as C1 and C2 in Figure 5. This work also 

allowed him to directly introduce mutations into either CRP binding site (or both), 

and identify the role that the binding site sequence could play in mediating the 

regulation of the expression of lsr. When a point mutation was introduced at either 

site C1 (near lsrRK), or C2 (near lsrACDB), expression of either lsrRK or lsrACDB 
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(as measured by the β-galactosidase activity associated with a reporter lacZ attached 

immediately downstream of either lsrRK or lsrACDB) is reduced by 96% from the 

wild type population (E. coli containing intergenic plasmids containing unmutated C1 

and C2 sections), which provided an effect that was slightly stronger than was 

knocking out CRP. Therefore, we must take into account the ability of CRP, in 

particular cAMP-CRP complexes to bind to its binding site, as an effector of lsr 

mRNA synthesis. (We will detail the modeling of this particular process in section 

B.4, when we discuss the cAMP module.)  

The positive regulation we see with cAMP-CRP on transcription of the lsr 

operon is similar to those that have been modeled for β-galactosidase production in 

low-glucose conditions [75], as shown in equation 20. We will call this modifier Ω, 

and define it in terms of cAMP:CRP:C2 (cAMP-CRP complexes bound to site C2) 

and C2 (free C2 sites), and incorporate it as a multiplier before 18 to our next form of 

transcription as shown in equation 22. Increasing Ω increases the transcription rate of 

our transporter (and associated reporter). We will test our assumption of this form of 

Ω against the form of Ω, which we call Ω* in (21) which is part of the modifications 

we make to our model to determine whether our assumption will hold, later in this 

study when we modify the base model. 

        
 (20) 

         
 (21) 

 
 (22) 
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We must now consider the possibility of transcriptional bias in our system. 

Transcriptional bias can arise in a biological system when a derepression event 

induces expression of genes both upstream and downstream of the repression sites. 

While expression or promoter bias appears to be common among eukaryotes, 

particularly higher order eukaryotes, Byrd was the first to demonstrate that this 

expression bias existed in E. coli, within its lsr operon. He demonstrated that the lsr 

operon is biased towards expressing genes on the lsrACDB flank of the operon—

through both ChIP-chip mircroassays and through beta galactosidase activity 

assays[59]. Based on this data, we know that B > 1. Later in this study, we will use 

his beta galactosidase activity data [59] to fit our transcription rate constants and 

determine the exact value of this bias. This bias, integrated into 22, along with the 

definition of ktcA in (23), allows us to complete our ODE for transcription (XII and 

XIV, for reporter mRNA).  

      (23) 
For now, however, we must continue our discussion lsr operon expression 

with a discussion of protein production and how we will measure our outputs. 

Because the bias of the lsrR system is in the direction of lsrACDB, we automatically 

set B, for the case of lsrR, to 1. Therefore, in the case of lsrR (variables mRNA|lsrR 

and mRNA|X) become equations XI and XIII, respectively.    

Ultimately, the product of the de-repression of the lsrR operon is the 

production of proteins on either side of the intergenic region of the lsr operon. Like 

transcription, the level of detail to which we will model translation (and the output of 

such) will depend on how much detail we actually need. Since we are not concerned 

with the overall mechanisms of translation, we make two assumptions. First, 
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translation simply happens—and that outside of the mutations that we have made in 

lsrACDB and knockouts of lsrK, all proteins (or monomers) are produced normally. 

(Had we not knocked down both genes, we would observe an increase in AI-2 

phosphorylation due to the additional synthesis of lsrK shown in Figure 4.) Second, 

we assume that when lsrA, lsrC, lsrD, and lsrB—the component proteins of the AI-2 

transporter, Lsr, rapidly polymerize into their final form and are translocated to the 

plasma membrane as such. We take this as an assumption since no evidence has been 

developed, nor mechanism has been proposed for the translocation of Lsr from the 

bacterial cytoplasm to the plasma membranes, cell walls, or capsules. Therefore, we 

can assume that translation of the transporter, lsrACDB, can be governed by a single 

translation rate constant, ktlA, and set Equation XVII to reflect our assumptions 

(assuming some degradation of the transporter).  

In addition to translation of LsrACDB, we must also consider the translation 

of lsrR, which is not as straightforward as that of the transporter because LsrR exists 

in active form as either a dimer or a tetramer, as shown by Byrd and Xiu. LsrR is 

most active in its repressor role as a tetramer. Because LsrR is polymeric (and a 

homo-polymer), further steps must be taken in order to form the fully active protein. 

These steps will be discussed in detail in Section B.3.3. 

Regardless of the functionality of our system, if we want to make our model 

reflect experimental reality, we must provide some output of the model that is readily 

understandable by experimentalists. Most microbiological experiments dealing with 

quorum sensing use some quantification of a change in intensity of a visual signal, 

whether it is the BB170 AI-2 assay, or the beta-galactosidase activity assay more 
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commonly used to measure bacterial gene expression. So, if the output of protein 

expression can be tied to a change in the output of one of those assays, further 

experimentation can be used to help refine the model to meet the needs of 

experimental research. Because the beta-galactosidase activity assay is utilized more 

widely, we tailor our output to that. Details of this process are discussed in the 

Supplementary Text (Section S2). Equations XIII and XIV,  as previously discussed, 

describe the transcription of the reporter mRNA for either flank. Equations XV and 

XVI, which describe the beta-galactosidase activity in terms of bulk concentration 

rather than Miller Units, are identical to XVII and XVIII in form, with the exception 

that the functional unit, as converted in Supplemental Text S2, is converted to Miller 

Units (the standard activity unity in the beta-galactosidase activity assay), and that 

beta-galactosidase is assumed to degrade at a different rate than will either the lsrR 

monomer or the transporter.  
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Subsection 3.3: lsr Operon Repression 

 In order for the system to return to the original, state, the tetramer must be 

reformed. Here, we predict several steps based on homology to UlaR [59,77], and 

assumptions from previous models. First, LsrR monomer dimerizes to form the LsrR 

dimer (completing equation XVIII), and confirmed experimentally by Byrd and Lu, 

[59,77]. Free dimers then bind to the DNA at sites O1 and O2, or O3 and O4, 

effectively removing the lsrRK or lsrACDB available for transcription. In this model, 

we assume this DNA binding event occurs cooperatively with respect to our dimer. 

This assumption holds for any interaction between DNA and DNA-binding proteins, 

but we elect to only model the dimer binding step as such because cAMP-CRP 

binding only functions in a regulatory role. Derivations of the cooperative binding 

terms in equations XIX-XXI  are discussed in Supplemental Text S1.  

Once both dimers have bound to the lsr operon, we will assume at this point 

that there is a process, either through undiscovered assistive regulatory processes, or 

spontaneously, that the lsr operon closes back up and reforms the tetramer. This 

process is not cooperative, and is governed by the rate constant ktet. Once the tetramer 

reforms, our system returns to the original state. Since we track varying bound states 

of the dimer, and of the availability of free lsr operon, we are able to monitor the 

overall state of our system, and the relative activity of our quorum sensing system.  
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Subsection 4:  cAMP-CRP Module 

Cyclic AMP (cAMP), a regulator which highly influences the synthesis of the 

lac operon, is an important secondary regulator within the AI-2 quorum sensing 

process. Several studies have suggested that knocking out the gene producing cAMP 

producing protein, glycerol-3-phosphate (G3P) dehydrogenase [59,78], prevents the 

expression of genes on either side of the lsr operon.  Further studies suggested that 

cAMP caused these effects through interactions between its receptor protein, which 

we will call cAMP receptor protein (CRP), and genomic binding sites near the 

promoter sequences on either flank of the lsr operon, which we will call C1 and C2 

(see Figure 5 for location). It has also been demonstrated, through knocking out either 

CRP-binding site, that the production of lsrRK gene products requires the binding of 

the cAMP-CRP complex to C1 , and the production of lsrACDBFG similarly requires 

the binding of cAMP-CRP to C2[59].  In our model, we assume these binding events 

occur independently of the AI-2-dependent events.  These binding events are shown 

in the diagram in Figure 7, and the equations governing these events are described by 

equations XXII-XXVIII in Supplementary Figure 1, which are derived based on the 

rate constant definitions in Table 2 as well as the events in Figure 6. 



 

 29 
 

 
Figure 7: The cAMP-CRP module. Cyclic AMP, assumed to already be present in 
the bacterial cell, binds with the cAMP-receptor protein (CRP) in the cytosol. The 
cAMP-CRP complexes then bind the lsr operon at site C1 (or C2). This binding event 
triggers transcription of genes bidirectionally on the lsr operon. cAMP-CRP is then 
cleaved off to reform the constituent cAMP and CRP molecules. 

In the case of this model, we assume a mechanism that involves cAMP-CRP 

binding together in the cytosol before binding to the CRP binding site shown above. 

However, CRP bound to C1 without cAMP bound to CRP’s ligand-binding domain 

(LBD) can still bind to site C1. In this case, bound CRP is thought to help with the 

folding of the lsr operon and help re-form the LsrR tetramer, but further studies (yet 

to be published) suggest that there may be more interactions involved than previously 

identified. And so, we leave studying the effects of mutations of CRP sites to our 

future work. And for this study, we simply assume the mechanism above for the 

purposes of incorporating cAMP regulation into our model. 
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Subsection 5: Synthesis Module 

In order for AI-2 to exist in real cell media, it must be synthesized somewhere. 

The pathway for AI-2 synthesis has been well-established in E. coli and appears to be 

conserved among many bacterial species. We discuss the pathway here, but we do not 

incorporate AI-2 synthesis into our model as a part of this work. Rather we will 

incorporate the AI-2 synthetic pathway in a future extension of our model.  

The main pathway is relatively simple. Methionines are converted to S-

adensosylmethionine (SAM) by the enzyme MetK. This is followed by the 

demethylation of SAM by the enzyme CheR (in the presence of a methyl acceptor) to 

form S-adenylhomocysteine (SAH). SAH is then hydrolyzed by the enzyme Pfs to 

form S-ribohomocysteine (SRH). The enzyme LuxS, knocked out in our study, then 

converts SRH to an AI-2 precursor known as 4,5-dihydroxy-2,3-pentanedione (DPD), 

which is unstable and immediately converted into one of several more stable isomers 

which are known as AI-2.   

Each step in this process is regulated by a number of means. At the SAM to 

SAH step, the enzyme SpeD can compete with CheR (or a similar SAM-

demethyltransferase) for SAM. Instead of SAM being converted to SAH, SAM could 

be decarboxylated and converted to the alternative product MTR, as well as 

spermidine and adenine[79]. At the SAH to SRH step, cAMP can upregulate this step 

by increasing the synthesis (and thus availability) of Pfs[63,79,80]. Conversely, 

because cAMP is often synthesized as a signaling molecule in E. coli in low-glucose 

conditions, this conversion of SAH to SRH is downregulated in the presence of high 

intracellular glucose concentrations. At the SRH to DPD level, cAMP and glucose 
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carry out opposite effects based on increasing or decreasing the expression (and 

production) of LuxS—except in that LuxS expression is positively correlated to 

glucose concentration (rather than to cAMP, as with Pfs expression). 

Even in conditions that are supposed to mean high optimal AI-2 synthesis 

inside the cell, depleting the cells of iron(III) ions (or LuxS in cell-free media of 

iron(III) ions), depletes the concentrations of AI-2 that are synthesized. [81] 

Therefore, it is implied that iron(III) ions activate LuxS by binding to some regulatory 

site on LuxS.  
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Section 3: Model Implementation and Calibration 

Subsection 1: Calibration of Transcription Constants ktcR and B 

One of the main goals of the model we are developing is to explain and 

simulate experimental data. And in order for our model to be supported by  

experimental data, we must be able to fit our parameters to some sort of real data. In 

the absence of methods to test a lot of our kinetic parameters, we utilize output 

features from previously published data (Byrd, 2011). Since the only temporal 

domain data we find refers to the expression of lsrRK and lsrACDB in Miller Units, 

we must calibrate our model accordingly. For all intensive purposes, we assume that 

translation is governed by the rate constants ktl and ktlA, which are each set to 1 min-1. 

So, we utilize the output data to determine our transcription rate constants ktcR and B.  

To determine ktcR, we first assigned a starting value of ktcR = 0.1 min-1
 and B = 

1 (assuming zero transcriptional bias in our system). We then implemented our ODE 

system with ktcR varying from our preliminary value of 0.1 min-1 to 1 min-1. Then, we 

extracted our data points that matched the time points from Byrd’s activity unit data. 

Due to the adaptive step-size utilized by MATLAB in order to compute the numeric 

integral, an exact match between the time point in Byrd’s work [59] (approximated 

and reproduced in Figure 8) and that in the data point may not be found. So to 

compensate, we find the time point in our model simulation that is closest to the 

particular time points in the data (with the least amount of error). We then find our 

beta-galactosidase activity at those time points based on the system we have just 
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integrated (See Section B.6.2. for how it was implemented), and compile them into a 

row vector the same length as our experimental time vector.  

Once we have these data points, we selected our ktcR by calculating R2 values 

between the model with the ktcR in question. R2
 is a statistical measurement which 

determines how well data fits to a particular model, or how well a particular model 

fits to a known set of data. We define R2 as a metric to test the latter, and we calculate 

it via the calculations in (24) through (26). 

We start our calculation by defining our vector of β-galactosidase activity data 

(without considering which flank we are considering right now) , and the predicted 

β-Galactosidase activity data from our model at a particular ktcR, Y.  We can now 

define our error vector, ε with a length L (also equal to the length of the time vector 

from the Byrd data), by vector equation in 24. (These errors can also be called 

residuals.) 

       (24) 
In the first step to normalizing the error, we find the sum of the square of the 

error, SSE, as shown in (25), for our error vector ε by squaring each element (εi) and 

adding the elements together.        

 
In order to compare this error with the variance within our data, we now 

compute the total sum of squares of our data in , SStotal as shown in (26), where 

Var( ) is the variance of  

      (26) 
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We now can compute R2 as shown in (27). 

 
We note a few key observations. If SSE > SStotal, we observe that our R2 value 

will be negative, meaning that we cannot use our model to predict our data. Thus, we 

reject ktcR values that produce an R2 < 0. Likewise, if SSE = SStotal, we will have an 

R2 = 0, which represents random correlation. Because of this, we also reject any ktcR 

which results in R2 = 0. Therefore, the first class of ktcR values we accept are those 

with R2 > 0. Because of our definition of R2 (and that SSE and SStotal cannot be 

negative), the maximum R2 we obtain would be R2 = 1, which defines a perfect fit to 

our data. Because of this, we select our ktcR based on which ktcR produces the highest 

R2 value, when compared to our data.  

After the initial round of implementing this algorithm and rejecting the 

negative R2 values, we identify the ktcR values such that R2 went from increasing to 

decreasing, and used those ktcR values to refine our estimate for ktcR. When we could 

not improve our R2 value any further, we selected the ktcR that produced the highest 

R2 value.  

After selecting a ktcR value, we hold ktcR and vary our transcriptional bias B 

over a pre-defined range, and select our B using a similar protocol to the one we just 

described for selecting ktcR, except utilizing the ktcR we had previously estimated.   

As we will demonstrate in Section 3.2.2 (Chapter 3, Section 2, Subsection 2), 

this approach will form the basis of how we might utilize our model to demonstrate 

the effects of specific mutations.  
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Subsection 2: General Model Implementation  

In order to solve our model, we needed to select a program that could 

integrate our model in an accurate, yet computationally efficient manner. To do this, 

the models were implemented using the constants in Table 1, the initial values in 

Table 2, and in MATLAB (Mathworks, Inc.) and integrated using MATLAB’s 

ODE23s algorithm. (ODE23s is one of many ODE numerical integration algorithms 

that comes prepackaged within the MATLAB software package, which uses a low-

order (n=1) Runge-Kutta method which is capable of handling stiff systems. Higher-

order non-stiff algorithms may have provided a higher-accuracy solution by running a 

higher-order Runge-Kutta integration step, we found that these higher-order nonstiff 

methods, with regards to integrating our 28-equation ODE system, too 

computationally expensive to be integrated on a standard 64-bit personal computer.) 

 

Subsection 3: Implementation of Sensitivity Analysis 

Sensitivity analyses are useful tools to understand how a system would change 

in response to the changing biological conditions of a system, or what would happen 

to our system under differing conditions for rate constants. For linear systems, this 

process is relatively simple. We would first find all our equilibrium points (solving 

our mass matrix dYdt = 0, where Y represents then entirety of our ODE system as 

shown in Figure A). Then, we would find the Jacobian of that matrix and find the 

eigenvalues and/or eigenvectors of the resulting matrix. We could then plug in our 

equilibrium points to determine the stability of our system at those points. If the real 

parts of eigenvalues are all negative, the equilibrium (or steady-state) points are all 
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stable at those conditions. If any eigenvalue is zero then we cannot determine the 

stability of the system at that point. If any eigenvalue has a positive real component, 

the system would be marginally stable at best (if every other eigenvalue is negative), 

and likely to be unstable. Discriminant analysis can be used to determine the ranges 

of each rate constant that could predict the behavior of the system. However, in large 

systems, discriminant analysis becomes complicated and computationally expensive.  

And for large nonlinear systems, no standard algorithm for determining 

stability points exists. Even if one existed, completing one for a 28-D system may be 

more computationally expensive than simply evaluating the ODE system over a 

period of time, simply changing one particular constant.  And so, we perform our 

sensitivity analyses by varying our rate constants within a range that we predefine. 

For our system, this may represent a certain fold increase or decrease in transcription 

rate of our gene, in dimerization rate of a protein, or affinity of a protein for DNA (in 

the form of dissociation constants). How this increase or decrease in each rate 

constant depends on how we define them to begin with. As we show in sections C.3. 

and C.4, modifying the value of a constant or form of transcription influence the 

behavior of our system, not just with the immediate effects, but with state variables 

that are further downstream. 

As to some applications of our sensitivity analysis, we might want to know 

what happens with expression of lsr if we reduced or amplified the affinity of the 

LsrR binding sites for LsrR, citing situations in which we might make a point 

mutation experimentally to demonstrate the effects of such. Or, we might want to 
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track primary and secondary effects of changing the rate at which a regulatory or 

primary reaction process might happen.      
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Chapter 3: Results 

 

Section 1: Fitting the Basic Model Shows a Dynamic Response to the External AI-2 

System 

Using the equations in Figure A and the constants in Tables 0 and 1, we 

created a base case for the model to determine how our control would respond over 

time.  

Figure 8 shows the general response curve of the AI-2 phosphorylation-

dependent equations as a response to our AI-2 and ATP input (a). As the intracellular 

(and extracellular) AI-2 concentration in our system increases, we see an increase in 

the production of both products including AI-2-P (shown in (c)), and ADP (shown in 

(b)). As AI-2 concentrations fall off, AI-2-P and ADP production stop and the 

concentration-dependent degradation of ADP and AI-2-Pstart to dominate. The peak 

in AI-2-P concentration occurs at t=400 minutes and has a full width half maximum 

(FWHM) of ~240 min, roughly the same time at which our fitted AI-2 concentration 

curve peaks but a larger FWHM. The FWHM of AI-2-P curve, is smaller than that for 

ADP (FWHM = 350 min) because AI-2-P, as has been well established, drives the 

cleavage of the lsrR tetramer.  
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Figure 8: Dynamics of  lsrK-dependint phosphorylation reactions. The dynamics for 
the lsrK-dependent phosphorylation of AI-2 is shown over a simulation period of 
1000 minutes. Our input ATP and AI-2 concentration profiles are shown in (a). The 
lsrK-catalyzed reaction between ATP and AI-2 produce the ADP (b) and AI-2-P (c) 
in the manner shown.  

 
Fittingly, as the plots in figures 9a-d suggest, the resulting AI-2-P dephosphorylation 

can be tied to decreases in tetramer concentration. When we examine tetramer 

concentration in the presence of AI-2, we observe that as AI-2 increases, our tetramer 

concentration decreases from our initial value of 20 molecules/cell (20 copies of the 

lsr intergenic region (as well as lsrR and lsrACDB)) to almost zero when AI-2 

concentration hits its peak, and rises again back towards the original state as AI-2 

(and AI-2-P) is depleted. The plots in figure 9c and d, highlight that the bound 
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phosphorylated lsrR dimer and free phosphorylated dimer concentration profiles 

follow the patterns we see for our AI-2-P and tetramer curves. When the free AI-2-P-

dimer complex appears, we also see a similar appearance in the free (de-repressed) 

lsrRK gene or free (de-repressed) lsrACDB gene in equal magnitude, as shown in 

Figure 10. The concentrations of those free genes increases with increasing AI-2 at 

roughly the same time point, and then decreases as AI-2 (and AI-2-P) become less 

available, and as synthesized dimer binds to the free genes.  

 
Figure 9: Tetramer cleavage reactions. The lsrR tetramer (b, in blue) is 
dephosphorylated in response to the input AI-2 and ATP, and subsequently AI-2-P 
concentrations in (a). When AI-2-P binds to the lsrR tetramer, it initially forms an 
immediate AI-2-P/lsrR dimer complex that is bound to binding sites O1 and O2 
(Dpb|lsrR), and O3 and O4 (Dpb|lsrA) in the lsr regulon as shown in (c) (scale: 1x10-6 
uM). Since these complexes may not be stable when attached the lsrR binding sites, 
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AI-2-P/lsrR dimer complexes (phosphorylated dimers) (d) break away from the 
aforementioned binding sites.  

When the lsrRK  and lsrACDB genes are transcribed (as well as the mRNA 

genes) they follow a similar profile to everything else. They increase to peaks at 

around t = 240 minutes and decrease back down to a steady state close to zero for the 

rest of the simulation (though the decrease does not really happen until after t=360 

minutes). The general profile of mRNA synthesis also translates to the production of 

Lsr, and the monomer form of LsrR, as expected. However, the relative profiles of 

beta galactosidase (check for beta galactosidase everywhere in the thesis to make sure 

it’s the same everywhere – hyphen no hyphen etc… activity in both lsrR and lsrA 

directions, as shown in Figure 12, follows more of a sigmoidal profile, reaching an 

equilibrium state when AI-2 is depleted, since we do not include a degradation term 

for beta galactosidase. Some modifications to the mRNA transcription terms are 

discussed in the sensitivity analysis in section C.3. We also consider the allosteric 

regulator cyclic AMP (cAMP) and its influence on expression of lsrR and lsrACDB. 

Furthermore, these similar observations extend to the synthesis of AI-2 transporter 

(Lsr), shown in Figure 11 and reflected in the beta-galactosidase activity data in 

Figure 12, since the transcription and translation of lacZ attached to either lsrR or 

lsrA is controlled by the same promoters controlling transcription and translation of 

lsrR and LsrACDB (Lsr).  
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Figure 10: lsr operon de-repression and LsrR monomer synthesis. The de-repression 
of lsrR and lsrA to free states (c) and the transcription (c) and translation of the lsrR 
mRNA to lsrR monomer (d) in response to AI-2-P input (a). Figure (b) shows the 
concentration of lsrR tetramer in our system, that its derepression by the binding of 
AI-2-P is tied to the increase in the rate of de-repression of lsrR and lsrA and the 
production of lsrR monomer. Scale for mRNA concentration in (c) is 10-3 µM. 
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Figure 11:  Production of lsrR transporter in the model. Production of the lux-S 
regulated transporter Lsr from lsrACDB. AI-2 phosphorylation (a), besides activating 
the transcription and translation of lsrR monomer, also induces the production of 
mRNA transcripts of lsrACDB (c) which produces Lsr (d). Scale for mRNA 
concentration in (c) is 10-3 µM.  

This base model was fitted to Byrd’s transcription data up to t=10 hours (and 

ignoring the overnight culture) using an R2-based algorithm previously described in 

Section B.6.1.   The fit values for this “base case” are shown in Figure 13. These 

points, along with the transcription of the associated mRNA of the beta galactosidase 

genes associated with lsrR and lsrA, are shown in figure 12 (c) and (d), in 

correspondence to the variable AI-2 and AI-2-P input (a) and LsrR tetramer that 

represses our system. The beta galactosidase activities, unlike LsrR monomer and 

transporter synthesis, flat-lines when AI-2 is depleted (rather than decreasing to zero 
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concentration). But, like in the monomer and transporter concentrations, they appear 

to start to reach an equilibrium level in the absence of AI-2 at t > 240 minutes. And 

so, in the base case, the fit to Byrd’s dynamic data with a wild type insert of plsrA14 

and plsrR26 (plasmids containing the wild type intergenic regions with lacZ reporters 

expressed in either the lsrA direction or the lsrR direction)..  

 
Figure 12: Beta-galactosidase activity associated with de-repression of the lsr 
operon. (a) shows the input AI-2 and resulting AI-2-P concentration profiles we fitted 
before. (b) shows the dynamic response of the lsrR tetramer concentration. (c) shows 
transcription of lacZ reporter genes attached upstream of either lsrR and lsrACDB 
(scale is 10-3

 uM mRNA), and (d) shows the beta galactosidase activity that results 
from AI-2 activation in Miller Units. The points from Byrd (filled-in triangles) are 
shown to represent the fit that was utilized for our transcription constants.   
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FITTED PARAMETER VALUE R2 

ktcR 2.1 min-1 0.9321 

B 1.225 0.9250 

Figure 13: Estimated values of ktcR and B 

To close the loop on our system, the lsrR monomers dimerize to form free 

lsrR homodimers. The dynamics of this part of the loop are shown in Figure 14. LsrR 

monomer concentration follows a profile similar to that of the mRNA concentration 

profile for lsrR, in that it increases to a peak value, stays close to that peak value until 

AI-2 is partially depleted, and then decreases back to zero rapidly as AI-2 is further 

depleted. The free LsrR dimer concentration, on the other hand, appears to form a flat 

line until approximately t = 360 min, after which it starts increasing to an equilibrium 

value beyond the 10 hour simulation. This odd event is highlighted by the 

concentration profiles of LsrR dimers bound to the putative binding sites in figure 

14d (which follow each other). This observation suggests that the formation of the 

free LsrR dimer could be a rapid step until the putative binding sites reach saturation. 

The rapid increase (and eventual equilibration of) LsrR tetramer concentration 

confirms that the AI-2 depleted system reaches equilibrium. And by the end of the 

simulation, most of the available bound dimers have re-formed the initial 

concentration lsrR tetramer, corresponding to a near-zero concentration of AI-2. 

Several studies suggested that this simple folding of the tetramer does not happen 

simply from lsrR dimers binding to both sets of putative binding sites. Rather, it is 

believed that CRP, when bound to C1 and C2, may assist in the folding of the lsr 

intergenic region forming the hairpin loop that may facilitate the reformation of the 
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lsrR tetramer. In Figure 15, we consider the cyclic AMP dynamics of our system. In 

our model, we assume CRP binding, or more specifically cAMP-CRP binding, to the 

CRP binding sites C1 and C2 in our system. All components of this system reach 

equilibrium with each other, suggesting that there will always be cAMP-CRP 

complexes that are bound to C1 or C2 (or both) at any point in the simulation. This 

may assist both the folding of the lsr intergenic region and the derepression of lsrR 

and lsrACDB. That is, we do not describe CRP dynamics in the current model. 

The dynamics of the CRP-related module (cAMP module) are shown in 

Figure 15, and suggest that the binding of cAMP-CRP complexes to CRP binding 

sites (as shown in figures 15c-d), as well as the formation of CRP complexes (15c) 

appears to be AI-2 independent (shown in 15a and b), as well as independent of the 

breaking apart of lsrR tetramer. However, figure 15e) suggests that while the actions 

appear to be independent, only a small concentration of CRP binding sites appear to 

be occupied despite excess cAMP and CRP present in our simulated sample. And so, 

we do not know enough from this base case to necessarily confirm the regulatory role 

of cAMP in influencing the dynamics of LsrR (in its several forms).   
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Figure 14: Re-formation of the tetramer. Dynamics of the re-formation of the LsrR 
tetramer (b) in response to AI-2 and ATP, and consequently AI-2-P input (a). 
Increases in AI-2 lead to a significant decrease in lsrR tetramer, which leads to the 
synthesis of lsrR monomer (c). The monomers in (c) then form a homodimer (shown 
in c), which then bind to the putative binding sites O1/O2 (Db|lsrR) or O3/O4 
(Db|lsrA) (d). An increase in free LsrR dimer occurs at t=450 min due to the started 
saturation of putative binding sites.  
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Figure 15: Cyclic AMP regulatory dynamics. Cyclic AMP (cAMP) and CRP 
initially form cAMP-CRP complexes (c). This reaction, not being dependent on AI-2 
and ATP concentration (a) or tetramer concentration (b), moves to rapid equilibrium. 
(d) tracks the concentration of cAMP-CRP complexes bound to CRP binding sites C1 
and C2. (e) shows the dynamics associated with the free CRP binding sites (C1 and 
C2). All concentrations are bulk concentrations defined in uM.   
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Section 2: Adjustments to the Model 

The basic model may be the first model of the lsr operon that takes into 

account the molecular dynamics of LsrR and its interactions with the operon. We 

reveal further dynamics of the model through a generalized sensitivity analysis of two 

different parameters Kbind|lsrR and Kbind|lsrA, and model specific effects of particular 

mutations of various binding sites through their effects on specific binding parameter. 

Kbind|lsrR and Kbind|lsrA are micro-dissociation constants that govern the binding of 

the LsrR dimer to either the O3/O4 half-sites (Kbind|lsrR) or O1/O2 half-sites. The 

lsrR or lsrACDB genes are considered repressed in one direction once the LsrR dimer 

binds to the set of half-sites in the direction of gene expression in which we are 

interested. (More  on this matter will be discussed in Section 3.2.2.) 

 

Subsection 1: Effects of Specific Mutations 

Previous studies by Byrd and others suggested that specific mutations to 

different genes within the lsr operon had differing effects in affecting the 

bidirectional expression of the lsr operon. To demonstrate such effects, we examined 

several such mutations—the lsrR knockout mutation, which we identify as CB11, and 

various binding site mutations—the putative binding sites O1, O2, O3, and O4, whose 

mutations we attempt to reflect by fitting Kbind|lsrR and Kbind|lsrA to the WT 

conditions. But before we begin discussing those results, we had to define our CB11 

conditions to reflect basal transcription, and then reflect those realities.  
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Subsection 1.1: The lsrR Knockout (CB11 strain)  

As mentioned in the previous section, Byrd developed a strain of E. coli K12 

that were lsrR knockouts. In his experimental studies, he found that expression of 

lacZ reporter genes in either direction were significantly higher than in similar wild 

type strains (expressing lsrR normally). In our simulation, we reflected the CB11 

mutation by defining a new protein translation constant ktlM, which in the wild type 

case, is equivalent to ktl. In CB11, ktlM = 0. We also set Tb = 0, and lsrR = lsrA = 

N*0.00167 uM/(molc/cell) (calculated in Supplementary Text S2), where N is our 

copy number.  

 
Figure 16: Wild type and lsrR knockout (CB11) fitted over time. 
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Figure 17: lsr operon de-repression intermediates in wild-type (WT) and lsrR knockout 
(CB11) conditions 
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Figure 18: Wild type and lsrR knockout dynamics of LsrR and LsrACDB protein 
products. 
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Figure 19: Bound dimer differentiation in wild type and lsrR knockout (CB11) 
conditions. 

As we expected, and as shown in Figures 17 through 19, we do not any 

significant concentration of LsrR products in the CB11 system. We see several 

features. First, mRNA concentrations in reporters and genes in both directions 

(including the garbage “knockout mRNA” reach a non-zero steady-state in the CB11 

case, rather than return to zero as they would in the wild type. This is consistent with 

permanent derepression of the lsr operon. Second, we observe that Lsr transporter 

concentration reaches a non-zero equilibrium state, in absence of LsrR-dependent 

repression. Third, and probably most significantly, we observe that beta-galactosidase 

activity moves from a sigmoidal profile that reaches a steady state to a linear profile 

that keeps increasing. When fitted using Byrd’s temporal data using our R2-based 
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algorithm, we find that we can fit that data best with ktcR = 3.25 min-1 (R2 = 0.8566) 

and B = 1.64 (R2 = 0.8849).  

 

Subsection 1.2: Reflecting Real Mutations in the Model   

 
One application of our model might be to examine the effects of particular 

mutations within the lsr intergenic region on the expression of our operon. As 

previously stated, our model is the first model to consider the molecular dynamics of 

the LsrR repressor, rather than simply a “quorum sensing switch” in the Lsr quorum 

sensing system. We previously suggested how theoretically how adjusting our micro-

dissociation binding constants could affect the expression of the lsr operon, raising 

expression levels in both directions.  

We test this assumption by simulating model systems in which plasmids 

containing mutations of different combinations of binding sites have been inserted 

into the genomes of E. coli K12 bacteria. A summary of the mutations is listed in 

Figure 21, and in graphic form in Figure 20.  
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Figure 20: Table of mutations studied in this thesis. Values in this data set are 
beta-galactosidase activity values taken from measur Modified from [59,76]  
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Figure 21: Table of plasmids containing the mutations studied in this thesis 

Plasmid ID 
(expressed in 
lsrA 
direction) 

Plasmid ID 

(expressed in 
lsrR direction) 

Description of plasmid (excluding promoter 
and lacZ reporter) 

Parameter 
estimated 

plsrA14 plsrR26 Native lsr intergenic region Kbind|lsrR & 
Kbind|lsrA 

Vm|lsrR & 
Vm|lsrA 

plsrA34 plsrR33 Contains mutations to putative binding sites 
O1 & O4 

Kbind|lsrR & 
Kbind|lsrA 

plsrA13 plsrR24 Contains mutations to putative binding sites 
O1 & O2 

Kbind|lsrR & 
Kbind|lsrA 

plsrA12 plsrR25 Contains mutations to putative binding sites 
O3 & O4 

Kbind|lsrR & 
Kbind|lsrA 

plsrA11b plsrR27 Contains mutations to putative binding sites 
O1 & O3 

Kbind|lsrR & 
Kbind|lsrA 

plsrA11 plsrR30 Contains mutations to putative binding sites 
O2 & O4 

Kbind|lsrR & 
Kbind|lsrA 

plsrA32 plsrR31 Contains mutations to putative binding sites 
O2 & O3 

Kbind|lsrR & 
Kbind|lsrA 

plsrA40 plsrR39 Contains mutations to promoter binding site 
P1 

Vm|lsrR & 
Vm|lsrA 

plsrA42 plsrR41 Contains mutations to promoter binding site 
P2 

Vm|lsrR & 
Vm|lsrA 

pcrp9 pcrp22 Contains a mutation to CRP binding site C1 kC1 & kC2 

pcrp8 pcrp23 Contains a mutation to CRP binding site C2 kC1 & kC2 
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When Byrd ran each mutation in CB11 and Wild Type E. coli K12 strains, he 

reported the expression in terms of Miller Units (as we have used for our model). 

However, in this experiment, these experiments were run as overnight culture 

(defined here as t = 10 hours) with only the final expression values being reported. 

We estimate what each mutation does in our system by first estimating our 

transcription constants—ktcR and B—such that the activity value in our simulation is 

within 0.1 Miller Units of the experimental value, with a shooting method algorithm 

described (as a sample global algorithm) in Figure 25 and in detail in Figure 26.  
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Figure 22: Table of results from simulations involving lsrA-directed mutants 
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Briefly, we selected an initial range of ktcR, and integrated our CB11 model 

with ktcR in that range. Then, we extracted the t=600 point, calculated the beta-

galactosidase activity in the lsrR direction, and then calculated the error for each 

constant relative to the target value. If we were not already within our threshold of 0.1 

MU, we looked for a sign change in the error. We selected our new bounds at the sign 

change, and repeated these steps until we either found a ktcR within our error 

threshold, or we were approaching some asymptote in the minimum.  Having our ktcR, 

using the CB11 conditions again (since ktcR and B in this case represent transcription 

without any sort of repression), we used this algorithm to estimate B.  
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Figure 23: Table of results from simulations involving lsrR-directed mutants 



 

 61 
 

 
Figure 24: Binding and constants for each mutation experiment 

 

 
Figure 25. General algorithm used for each mutagenesis experiment. The general 
algorithm used to estimate each data point in Figures 22-24 as a series of subroutines 
based on the one shown in Figure 26. 
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Figure 26: Representative shooting-based algorithm used to estimate Kbind|lsrR and 
Kbind|lsrA in mutation experiments. 

 
In our studies of putative binding site mutations, once we had our ktcR and B 

for each case, switching to the wild type conditions, Kbind|lsrR and then Kbind|lsrA 

were estimated to our error thresholds, except for cases in italics using the algorithm 

in Figure 22. In those cases, Kbind|lsrR and Kbind|lsrA are estimated to a steady-state 

value. To compare what our activities represented in terms of repression, we 

calculated percent repression (%Rep) using equation 30, where  represents 

the beta-galactosidase activity in the lsrX direction (in absence of a gene known as 
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lsrX, we use lsrX to represent either the lsrR direction or the lsrA direction. 100% 

repression represents 0% expression relative to the lsrR knockout. 0% repression 

indicates that expression levels are very similar to those of the lsrR knockout.    

 (30) 
As shown in Figures 23-25, we are able to estimate Kbind|lsrR and Kbnd|lsrA 

when our system is more than 10% repressed. Under 10% repression, we are only 

able to hit the ‘steady state’ value. This ‘steady state’ value was determined by doing 

one iteration of the Kbind|lsrR/Kbind|lsrA algorithm (see Figure 25) varying Kbind|lsrR 

and Kbind|lsrA in the direction which reduces the magnitude of the error in beta-

galactosidase activity. These cases feature a mutation at putative binding sites O1, 

O4, or both. Byrd suggested that these mutations would have a much greater effect 

than mutations at sites O2 or O3, or both because of the mutations’ proximity to the 

promoter regions P1 and P2 in the lsr intergenic region. In his case, % repression was 

reduced to <5%. In our case, the O1/O4 mutation resulted in our lowest percent 

repressions, but no smaller than 9.8% repression in the lsrR direction and no smaller 

than 11% repression in the lsrA direction.  

Outside of those mutations, our estimation algorithms and our model are able to 

predict mutant behavior in the putative binding site regions. This model is the first 

ODE -based model to measure the effects of particular putative binding site mutations 

.  There also appears a dependence of the putative binding site constants on overall 

transcription of lsrRK and lsrACDB. Fittingly, in the wild type system, the more lsrR 

mRNA is produced, the more dimer is produced. Because the total amount of binding 

sites is limited by both our copy number N and our assumption that bacterial 

population does not change, there are fewer binding sites available for these dimers. 
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Therefore, the micro-dissociation constants governing these binding reactions will be 

larger. The larger micro-dissociation constants suggest that a higher concentration of 

LsrR dimer competition could make the repression step appear weaker. It also 

compounds a problem of the model as to what happens with excess LsrR dimer. Lu 

and colleagues found that each LsrR dimer had a distinct ligand-binding domain 

(LBD) at the C-terminus and a distinct DNA-binding domain at the N-terminus (the 

opposite end of the protein [73,77]. Although no work has been directly done to study 

the particular LBD of the LsrR dimers, proteases could recognize and bind to the 

LBD to degrade the excess dimer. Likewise, we could implement such a degradation 

model in Michaelis-Menten form, if the kinematics of the degradation reaction of a 

protease with the matching LBD is known or experimentally determined, or as 

general protein degradation if not. 

 
 

 



 

 65 
 

Chapter 4: Preliminary Conclusions 

. In this study, we designed and tested a network ODE-based mathematical 

model of the dynamics of the lsr operon—the “quorum sensing switch” in the AI-2 

quorum sensing system in many bacteria. For the first time in E. coli, we were able to 

model the lsr operon in its quorum sensing role taking into account the molecular 

dynamics of LsrR as a tetramer. (Previous models had only considered LsrR as a 

single repressor, and did not take into account its dynamics, nor those of the lsr 

intergenic region. [43,82]) We also fitted this model to reflect dynamic expression on 

both sides of the lsr operon in response to a dynamic AI-2 profile. We also studied 

how our binding and transcription constants would change the expression of the 

operon in either the lsrR direction or the lsrA direction. The change in expression of 

genes in the operon, as we note later, may be a proxy for the 140 genes whose 

expression is altered by knocking down lsrR, and by our work and suggestions from 

the work by Ha and colleagues, changing the ability of LsrR to bind to its binding 

sites in the lsr intergenic region. Byrd inserted plasmids with expression vectors 

expressed in the lsrR direction and the lsrA direction containing several mutations of 

the putative binding sites, whose sequences he identified (reprinted in Figure 27). 
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Figure 27: Single strand genetic sequence (with mutations in complement) of the lsr 
intergenic region. [59] 

The putative binding site O1 (sequence TGAACA) and putative binding site 

O3 (sequence TGAACA) are identical. The mutation performed to the complements 

of both binding sites (4: T->A) is also identical, changing a pyrmidine complement 

for a purine bonded by the same number of hydrogen bonds. Yet both have different 

effects. Mutating O1 in conjunction with O4 (TGTTCA: 4: AG & 5: GA) 

decreases %Rep significantly in both lsrR and lsrA directions, and significantly 

increases Kbind|lsrR and Kbind|lsrA. But the O1 mutation in any other context seems to 

be dependent on other mutations. Mutating the seemingly identical O3 site with the 

same mutation increases ktcR from the 0.9-1 min-1 to 3-5 min-1
 range and decreases B 

from 1.222-1.4 to < 0.38, changing the transcription bias from slightly in the lsrA 

direction to significantly in the lsrR direction. The putative binding site constants 

(micro-dissociation constants) also increase significantly from a base value in the 10-5 

µM range to the 10-2 µM range. In this context, the single pyrimidine to purine 
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mutation in O3 may be more significant. It does not simply just pull the DNA base 

pairing too close for hydrogen bonds to form (and for the DNA) to be stable, but it 

also significantly decreases the interaction strength between the DBD of the LsrR 

dimer and O3. Wu and colleagues suggest that the LsrR ligans that might be a part of 

the DNA binding domain are Gln-33 (glutamine-33), and Tyr-26 (tyrosine-26). Given 

their codon sequences, it is more likely that the mutation affects the binding of Gln-

33 to the putative binding site, and that LsrR binds to O3 at the glutamine-receptive 

region. Changing the sequence may affect the protein’s ability to bind to that residue 

changing the steric forces between the mutant complement and the normal binding 

strand. But from Wu’s work and comparative studies with the sorbitol operon 

regulator SorC and the central glycolytic genes regulator (CggR) in Bacillus subtillis 

[83]—two proteins in the SorC DeoR family that are homologous (similar) in 

structure and function to LsrR, it appears that the steric effects may affect the 

cooperativity between the dimer.   

In cooperative binding, binding of one ligand usually makes the binding of 

other ligands to the same protein more energetically stable. In DNA-protein 

interactions there may be an order to the interactions, if the protein ligand binds to 

multiple DNA sites. In our case, because the O3 mutation has such a strong effect on 

the transcriptional rates and biases in our simulation, we think that the cooperative 

binding of LsrR dimer to the lsr operon at the putative binding sites O1 and O2, and 

O3 and O4 might have ordered priority, with the LsrR dimer binding to sites O3 and 

O4 (lsrR direction) having the highest priority.  
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The phenomenon of “ordered cooperativity” of the system may not natural to 

cooperative binding systems, where a ligand can bind to any unsaturated binding site. 

This may imply that a secondary layer of regulation might be influencing the normal 

randomness of cooperative binding interactions between our ligand (LsrR dimers) and 

our receptor (the putative binding half-sites O3 and O4). Our simulations confirm 

Byrd’s observations that O3 mutations reverses the transcriptional bias of the lsr 

operon , and translate these experimental outputs into computationally relevant 

kinetic parameters that can reflect more than simply the detectable output of the 

system. Byrd had initially suggested that there might have existed an integration host 

factor (IHF) that might specifically recognize the binding half-site O3. IHFs are 

global gene regulators that have been postulated to have a role in the bending of DNA 

[84-87] into different forms. Depending on the series of genes IHF binds to, IHF 

might influence bacterial phenotypes ranging from regulating genes involved with 

bacterial pathogenicity [88] to the growth of flagella in enterohemorrhagic E. coli 

(EHEC)  [85], and may function in gene regulation similar to the role histones play in 

eukaryotic genetic regulation [89-91]. We suggest that if the O3 binding half-site 

contains an interaction point for IHF to influence regulation of the lsr operon, its 

effects can be quantified in kinetic terms by our model.  

This additional layer of regulation that might surround binding site O3 

suggests that the simplistic notion of LsrR as the main quorum sensing “switch” 

might have a small complication. Our mathematical model reflects the potential for 

this small complication, and, as previously discussed, translates these complications 

into kinetic terms. These kinetic terms become much more useful when the output of 



 

 69 
 

our system is no longer simply the expression of lacZ (more specifically lacZYA), but 

rather one of 146 genes in E. coli alone responsible for auto-aggregation into 

biofilms, biofilm matrix proteins [80] and invasiveness of S. typhimurium [92]. In this 

context, our simulation work of the lsr intergenic region (and LsrR) as the quorum 

sensing switch provides a simulation framework with which we may not need an 

experimentally-relevant reporter like lacZ to reverse engineer a mechanism for 

biofilm formation involving the lsr quorum sensing system as one part of solving the 

problem of multiple antibiotic resistant infections (and device contaminations). 

Although the proliferation of efflux pumps may present another way to mediate MDR 

directly, no studies have linked any of these efflux pumps, including AcrB in our 

model system (E. coli) to lsrR. And thus, the role of LsrR in MDR might be limited to 

its roles in biofilm formation in E coli.     

The series of simulations we performed to test our model of the lsr quorum 

sensing system may thus be used to study MDR in the context of biofilm formation. 

While we discuss a very basic future applications of this first-principles mode in 

Section 5, these applications can be tied into MDR by providing a simple method 

with which we can assess the presence, quantity, and function of biofilm building 

blocks from bacteria utilizing the lsr quorum sensing system that has been shown, in 

biofilms involving other bacterial species besides E. coli, to increase MDR 1000-

fold[93]. Other models of the lsr quorum sensing system developed by Hooshangi 

and Bentley [43] and Gonzalez Barrios and Achenie [82] address the overall lsr 

quorum sensing system without considering the dynamics of the LsrR quorum 

sensing “switch” that affects so many genes involved with biofilm formation and thus 
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MDR. Our model incorporates kinetic details of the expression of LsrR, its several 

forms, and tie in the dynamics of those forms of LsrR to an output which can be 

converted to a framework to monitor the kinetics of the lsrR-linked proteins that may 

form the building blocks to one form of MDR. Our parameter search studies also 

present a method by which future modelers can perform virtual mutagenesis 

experiments on ODE systems with a genetic component to estimate changes  on an 

MDR protein or gene of interest. And combining with our use of experimental units 

that can be measured by standard experimental assays, rather than bulk concentration 

measurements, our model presents a platform on which experimenters can predict the 

behavior of network components in their model system that may be accessible via 

experimentation, and allow them to gain more systemic relevance from their 

experiments.  No other model of the lsr quorum sensing system has been able to offer 

such convenience and modeling opportunity to experimenters. And so, besides being 

able to translate the findings of Byrd into a simulation-based context (and providing 

evidence for Gln-33 being the primary binding residue in LsrR to O3 and O1), we 

have done so in a way that experimenters can integrate their own population 

dynamics and lsr-dependent activity assays (of any kind).         
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Chapter 5:  Future Work 

 

The model we developed provides a preliminary indication of how LsrR 

quorum sensing might work when we fill in the details of the molecular structures and 

interactions of the many proteins involved in autoinducer-2 quorum sensing systems, 

and in particular, Lsr-based AI-2 quorum systems. We demonstrated our ability to 

model how altering the dynamics of lsr binding regions, as well as the polymeric 

forms of the repressor LsrR might affect expression of genes on either side of the lsr 

operon. However, this work provides a foundation later research that we would like to 

do. This section addresses several of those concerns.  

Section 1: cAMP-CRP Binding Interactions 

One complication we had in constructing our model was our limited 

knowledge of the CRP interactions in our system. Early studies suggest that CRP-

binding interactions not just implicate cAMP-CRP binding in upregulating or 

downregulating transcription of genes on either side of the lsr operon [59,94], but 

they might also be implicated in the folding and unfolding of the lsr operon. Data 

shown in Figure 19, showing the effects of CRP binding site mutations and our 

simulations reflecting the mutations in Figure 26 are shown in Figures 27 and 28, 

reflect the possible effects of mutating the different combinations of CRP binding site 

knockout mutations on expression of the intergenic region. In these cases, we utilized 

CB11 (lsrR knockout strains) whose basal transcription characteristics were similar to 

those E. coli strains containing the plsrR26 & plsrA14 plasmids (ktcR = 0.938 min-1 
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and B = 1.305). With our putative binding site constants (Kbind|lsrR and Kbind|lsrA) 

and our promoter binding site constants (Vm|lsrR and Vm|lsrA)  set to their base 

values, we estimate our CRP-binding constants kC1 and kC2 using a similar algorithm 

to what we had used to estimate Kbind|lsrR and Kbind|lsrA.  

  

 
Figure 28: Graphical representation of CRP binding site mutations, taken and 
modified from [59]. Xs represent the sites in the lsr intergenic region were 
mutated.  

 

 
Figure 29: Simulation results of mutation experiments expressed in the lsrA 
direction. 

 

 
Figure 30: Simulation results of mutation experiments expressed in the lsrR 
direction 
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Our early simulation results suggest that we can reflect changes in the CRP binding 

sites in the expression of both sides of the lsr operon, and that there appears to be no 

limit on how low our percent expression (%Exp), defined in Equation 31, can go 

(with 100% expression representing the expression of our positive control (plsrA14 & 

plsrR26). 

   (31) 

This model still does not account for CRP assisting the folding of the lsr operon, as a 

step in reforming the LsrR tetramer in the absence of AI-2. Nor does it necessarily 

involve for any potential integration factors [59,76] that might interact with the lsr 

intergenic region that might assist the DNA in reforming the hairpin loop structure. 

Our work will move towards explaining and modeling the factors necessary in order 

to model this looping process. 

 

Section 2: Promoter Binding Sequences 

Some of our real mutation experiments have also included simulating what happens 

when a mutation occurs not within a putative binding site or CRP binding site, but 

within a promoter binding site. There are two promoter regions that promoters can 

bind to in order to enhance transcription of the lsr operon—sites P1 and P2 shown in 

Figure 19, which sit close to the lsrR and lsrK and lsrACDB genes in the lsr 

operon[59,76]. Since we assumed that a mutation to either promoter region might 

have an influence on expression of the lsr operon in both directions, we incorporated 

this into our model. Rather than having the promoter site mutation directly affect 

transcription and thus the bidirectional expression of the lsr operon, we implemented 
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the promoter changes through the constants Vm|lsrR and Vm|lsrA, the maximum 

reaction rates of the repression step. If the mutation of the promoter binding site 

downregulates expression in either direction relative to the positive control (plsrA14 

& plsrR26), the mutation is said to increase Vm|lsrR or Vm|lsrA. If the promoter 

binding site mutation turns out to upregulate expression in the same direction (lsrR or 

lsrA) relative to the positive control, then Vm|lsrR or Vm|lsrA decreases relative to the 

positive control value. Experimental results, as well as our simulation results initially 

mentioned in Figure 19 and summarized in Figures 29 and 30 suggest that Vm|lsrR 

and Vm|lsrA do not change in a way that is necessarily consistent, nor is the change in 

expression in the lsrR or lsrA directions very significant.   The sequence of the 

promoter sequence is known, but a clearer picture of other secondary promoters and 

regulators that might affect how the promoter might be expressed is not known, and 

represent a category of simulations that we might want to carry out in the future. 
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Figure 31: Simulation results of promoter-site mutations in the lsr intergenic 
region in the lsrA direction. Thesereflecting these effects by modifying Vm|lsrA. 
Simulations were carried out using an algorithm similar to those for determining 
Kbind|lsrA for putative binding site experiments.  
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Figure 32: Simulation results of mutation experiments involving promoter-site 
mutations in the lsrR direction.  These mutations were reflected by by modifying 
Vm|lsrR. Simulations were carried out using an algorithm similar to those for 
determining Kbind|lsrR for putative binding site experiments. 
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Section 3: Other modifcations to the Model 

The model we developed offers a simplistic insight into how the structure and 

details of the LsrR repressor may affect the expression of genes on both sides of the 

lsr operon. It is simplistic because we made several assumptions that took out the 

complexities of AI-2 synthesis, potential interactions with other autoinducers, as well 

as AI-2 importation and AI-2 phosphorylation. Below we detail several changes to 

the model that we will make for future studies. 

Subsection 1: Incorporating AI-2 Importation and LsrK Dynamics 

In real Lsr-based quorum systems, AI-2 is imported using an active form of 

Lsr, which we have shown to be synthesized. In the real system, we might expect a 

positive-feedback loop of AI-2 importation and phosphorylation by LsrK leads to the 

synthesis of more Lsr importers, and thus more AI-2 is imported, etc. until the system 

runs out of AI-2. In reality LsrK would not necessarily be the first importer. Some 

studies have identified the phosphoenolpyruvate (PEP)-transferase system (PTS) as 

the initial importer of AI-2 when quorum sensing conditions have been met (AI-2 

concentration above one threshold, bacterial density above another threshold) [66]. 

We will detail the dynamics of the PTS / alternative pathway in internalizing and 

processing AI-2, and the production of LsrK as a protein product in our system. 

However, it is unclear how much of a role the PTS pathway plays once LsrK is in the 

system. These modeling experiments may help to elucidate the role and timing of 

both the PTS pathway, and the LsrK pathway. And in the case of LsrK, we may also 

be able to test out different inhibitors of the system.   
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Subsection 2: Incorporating AI-2 Synthesis 

As previously mentioned in this work, we removed AI-2 synthesis from the 

equation, and simply forced AI-2 curve based on data tracking AI-2 levels in E. coli 

samples, and assumed AI-2 was synthesized elsewhere, and intracellular and 

extracellular AI-2 were in equilibrium with each other, and that the AI-2 

concentration (or population) threshold typically required for bacteria, including E. 

coli, to exhibit population-dependent behavior was already met. The AI-2 synthetic 

pathway is one that is widely conserved and well-elucidated in E. coli [59,76,77,79] 

and other bacterial species [95-100]. We plan on incorporating the synthetic pathway 

in future models. There are several ways we could do this. One way could be to 

simply implement the AI-2 synthetic pathway. But that would also incorporate a 

complication of auto-importation (a cell utilizing AI-2 it had just produced) that we 

could set some basic conditions and determine how auto-importation complicates 

matters. It might be a way to explain why Luo and colleagues separated AI-2 

synthesizers from AI-2 receivers in his AI-2-based microfluidics device [69]. Current 

literature seems to only suggest or implicate the protein TqsA as a chief exporter of 

AI-2. And because AI-2 itself is relatively conserved, there may not be a limit as to 

how much specificity each AI-2 molecule could have. Providing an answer on auto-

importation could help determine whether it is something we need to worry about as 

we expand our model. 
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Subsection 3: Incorporating Our Model Into a Population-Based Model 

While we model quorum-sensing using a constant population, quorum sensing 

in itself is a population-dependent behavior. More often than just cells synthesizing 

lots of AI-2 before importing it back in, quorum sensing mediates responses of groups 

of cells to environmental conditions and mediates a response to those conditions. This 

could mean that, instead of simply mediating the response by the expression of 

reporters of activity of the lsr operon, the output of our model could be the synthesis 

of biofilms, the actuation of antibiotic resistance mechanisms, or swimming in the 

direction of the AI-2—outputs that cannot necessarily be measured by the standard 

beta galactosidase activity assay.  

In future work, we have several different means of incorporating population 

dynamics into our model. Most simply, we could tie our OD600 that we used to 

calculate Miller Units from bulk concentration to the population of bacteria in some 

test volume. The supplemental text in Section 6.2 (Chapter 6, Section 2) provides a 

preliminary method of how we tied OD600 into our calculation, but in the case of our 

model case we assumed an OD600 of 1.0 throughout the entire length of our 

simulation (and in all the simulation data presented in this work). But any vector of 

OD600 data can be used here. And thus, we can tie our model implicitly to population 

growth or death based on definition of the Miller Unit alone.       

To add more complication, we could tie AI-2 synthesis and protein and small 

nucleotide synthesis to population growth. We could implement this simply using a 

Monod model of bacterial growth and substrate consumption, and simply imply 

substrates are consumed in the synthesis of key molecules like AI-2, cyclic AMP, 
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ATP, and the lsr operon. But that leaves the question of how substrates are reformed, 

because eventually the cultural substrate might run out.  

 

Subsection 4: Simulating the Effects of Inhibitors 

Many efforts have been in place to examine possible quorum sensing 

inhibitors. Much has been made by the use of AI-2 inhibitors and some studies, AI-2 

analogs which can be phosphorylated by LsrK, but cannot de-repress the lsr operon. 

These drugs, which are collectively known as quorum sensing inhibitors (QSIs), show 

promise in treating MDR [60,61]. Our model offers a way in which we could reflect 

the effects of these drugs on expression of both sides of the lsr operon, and 

downstream genes that could convey MDR.  

One such class of drugs may be AI-2 analogs—molecules that are structurally 

similar to AI-2 to bind LsrK [101], but not similar enough to AI-2 to de-repress the 

lsr operon. These molecules could contain the basic DPD structure, but they may 

contain alkyl functional groups (ethyl, propyl, butyl, hexyl) whose hydrophobic 

interactions may not align well with the LBD of LsrR [102], because DPD may not 

cyclize into R/S-DHMF a secondary precursor that must be further hydrated and 

modified in order to form AI-2. With these, so far in vitro, propyl-DPD has 

demonstrated to be an antagonist of the quorum sensing circuit—but it lowers the 

effective kcat from 7.6 s-1 (432 min-1) to 5.8 s-1
 (348 min-1), and the effective Km is 

increased from 1.0 mM (1000 µM) to 1.4 mM (1400 µM) [101]. However, IC50, 

which is related to Ki (the inhibition constant for the phosphorylation of DPD (AI-2)) 

is 5.3 µM, which is within the range of our simulation. The form of IC50 used also 
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implies that propyl-DPD (and other AI-2 analogues) may be competitive inhibitors, 

though this observation has yet to be tested. This seems to suggest that propyl-DPD 

might be a very effective QS inhibitor, which we could represent in our model as a 

competitive inhibitor to DPD binding to LsrK. 
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Subsection 5: Algorithm Changes 

Even just keeping our model as is, we would like to apply several changes to 

our algorithm to make our estimation algorithm more robust. 

One way, or investigation that we may need to do is reverse the order of Kbind|lsrR 

and Kbind|lsrA calculations. Preliminary results (not shown here) suggest that the 

magnitude of our binding constants do not change because which binding constant to 

calculate first. But this needs to be extended to each experiment to confirm these 

initial findings. 

  One other change may be to fit our model—both in the lsrR direction and the 

lsrA direction (transcription and binding as well) in the same window. In our model, 

we estimated ktcR, B, Kbind|lsrR, and Kbind|lsrA in separate directories (though all under 

the same directory). With ODE23s, the exact value of the output changes with each 

iteration. While the variations are generally <10 Miller Units in this work, it may be 

significant enough that it could throw off Kbind|lsrR and Kbind|lsrA, as well as B. Our 

future work, with this modification, may help us determine how different our 

estimations were, and whether our observations from this study hold up with 

ODE23S actually holding the beta-galactosidase activities constant.  Early prototypes 

geared at automating this process have proven to be computational inefficient in the 

MATLAB language—we see enough that it is possible to streamline our algorithm 

without switching languages/development environments or integrators.  
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Chapter 6:  Supplementary Material 
 
Supplementary Figure 1: Equations used in our model 

 

Equation # ODE Module 

 

I ((2) in text) 

  

 

   

Importation 
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AI-2 Processing 
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AI-2 Processing 
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AI-2 Processing 
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Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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VIII 

 

 

 

Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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XIV 

 

 

 

Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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Quorum Sensing Actuation 
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XXII 
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Section 1: Cooperative Binding Events 

We assume that the binding of our lsrR dimer to its binding sites on either side 

of the lsrR operon represent the only cooperative binding events in our system. For 

either case, we assume that our reaction series is defined by reaction R2, where nR is 

the cooperativity coefficient defined as by table 2,  is an unstable complex initially 

formed when the dimer reversibly binds to lsrR at binding sites O1 and O2, ε and δ 

are rate constants that govern the forward and reverse reactions at the first step of R2.  

kb is the rate constant governing the binding and stabilization of  to lsrR to form the 

stable species, Db|lsrR (the dimer irreversibly bound to O1/O2).  

                               ε 
   (nR)D + lsrR ======    
 (R2) 
                                    δ 

We now focus on the reversible step, and assume the forward and reverse 

reactions reach rapid equilibrium, and write our balance.  

 
        (3) 

 
We also introduce a new constant, , our association equilibrium constant, as 

defined in (4). 

 
       (4) 

 
We solve (3) for  and utilize our definition in (4) to obtain the expression in (5). 

     (5) 
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We now initially consider our second reaction, and write a simple ODE for the 

formation of Db|lsrR and define this expression as our reaction velocity v in (6), where 

kb is defined as in (7). 

     (6) 
        (7) 

 

Vm|lsrR is defined in Table 3, and is the saturation of our free lsrR molecules as 

defined in (8).  

          (8) 

 

We now substitute in the final expression in (5) for  into (8), and simplify (dividing 

out the common lsrR term). 

                (9) 
 

We now define our dissociation constant, KD, in (10)and multiply (9) by (10) to 

obtain our final saturation form in (11).  

      (10) 

     (11) 
 

The expression in (11) represents one form of the Hill equation. However, it 

may be more important for us to find the dissociation constant at which 50% of the 

available binding sites are saturated. We can solve for Kd when = 0.5. We solve 

(11) with this substitution to find out that Kd = DnR. We select the value for our dimer 

concentration D (whatever that value could be for our data), and assign it as Kb|lsrR, 

obtaining our final expression for  in (12), and substituting into (7) to obtain our 
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final expression for our cooperative binding term, kb. Then, we plug (13) back into 

(6) to get our final expression for cooperative binding velocity, which is cooperative 

in relation to our dimer. 

     (12) 

    (13) 

    (14) 
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Section 2: Derivation of the Miller Unit-to-Concentration Conversion Factor, κ 

In order for a mathematical model to be relevant for experimenters, the model 

must, in our case, find methods to use the terms and outputs of experimental work. In 

many quorum sensing experiments, this output is usually tied to a change in visual 

output, with some quantification of that visual output, whether in Miller Units, Vibrio 

BB170 assays, or fluorescence imaging. Generally speaking, this requires the 

insertion of a reporter gene, which produces either a fluorophore or a protein that will 

trigger a color-change response to a standard assay.  

For our model, since we are modeling data presented by Byrd et al., we 

represent our experimental data in Miller Units, which is based on early 

investigations of the lac operon by Jeffery Miller and colleagues[103-105].   

Classically, the Miller Unit can be defined as in (15), where A420 and A600 are 

absorbances of our bacterial sample at light wavelengths of 420 Hz and 600 Hz, and 

A550 measures the absorbance of scattered light at 420nm, due to cell debris.   

     (15) 

If we assume that cell debris scattering is negligible in comparison to the direct 

absorption at 420nm, and 600nm, (15) reduces to the form in (16).  

    (16) 

 

In order to proceed from here, we could note that A600 is dependent on the 

bacterial population density. In our model, we assume that if we observe an A600 = 

1.0, we have a cell density of ~109 cells/mL. Likewise, we assume our operating 

volume, Vsample is 1.0 mL, we also assume that time (t) is 1 time unit—which will 
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change if we want to define our Miller Unit in terms of time in seconds, minutes, or 

hours.   

We must also consider our A420. Our model has been developed in terms of 

bulk concentration µM. But equation (15) and (16) require that we utilize absorbance. 

The Beer-Lambert law, as shown in (17), defines optical density (absorbance) at a 

particular wavelength for a known species as linearly proportional to the bulk molar 

concentration of that species (C). We assume we are carrying out a single 

spectrophotometric experiment, since our indicator, a product of beta-galactosidase 

metabolism, produces a chromophore that emits visible light at a single wavelength. 

      (17) 
 

In (17), Aλ is the optical density (absorbance) of light at a wavelength λ Eλ is an 

extinction coefficient, which we will define here nominally in units of µM-1, and the 

concentration of beta galactosidase produced from our targeted reporter, in µM.   

However, to do our conversion we will need to make a couple further 

assumptions. First, cells fill the entire 1 mL volume of our test system. Second, we 

will assume that a single E. coli cell has a volume of ~1x10-15 L. 

Before we begin the next step in our conversion process, we must convert a 

concentration in terms of molecules/cell to µM (x 10-6 mol/L), as shown below, 

starting off with a concentration of 1 molecule/cell. 

    
 

The rest of the conversion process is not as straight forward. 
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While we initially define (16) in terms of our concentration by (17), most 

beta-galactosidase manufacturers produce synthetic beta galactosidase will rate their 

beta galactosidase samples by the number of activity units generated per mg beta 

galactosidase. For our model, we selected a beta galactosidase produced by Sigma 

Aldrich that has an activity of 600 activity units (AU) per mg protein, which we will 

define as shown in Supplementary Figure 2. 
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Parameter Definition Value Source/Assumed? 

N Conversion between 
A600 

(spectrophotometric 
absorbance at 

600nm) and cell 
density 

1 x 10-9 cells/mL / 
(1 A600) 

Assumed 

NA Avogadro’s number 1 mol = 6 x 1023 
molecule(s) 

Assumed 

G Activity per mass 
beta galactosidase 

protein 

600 activity 
units/mg protein 

Sigma-Aldrich, 2013 

MW Molecular wt. beta-
galactosidase 

125 kDa = 
125,000 mg/mmol 

Assumed 

X Conversion factor 
between 

molecules/E. coli cell 
and bulk 

concentration 

1 molecule/cell = 
0.00167 uM 

This paper 

Vcell Typical volume of E. 
coli cell 

1x10-15 mL Assumed 

Vsample Total sample volume 1 mL Assumed 

Supplementary Figure 2: Parameters used in our conversion 
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Supplementary Figure 3: State variables in this model 

Variable Definition Type Initial Value Source 

 Transporter 
protein Lsr; 

Concentration 0 µM This paper, 
Assumed 

 Intracellular 
adenosine 

diphosphate 
(ADP) 

Concentration 0 µM This paper, 
Assumed 

 Autoinducer-2 
(AI-2) outside our 

system 

Concentration 0.0045 µM This paper, 
Assumed 

 Phospho-AI2 
(AI2-P), 

intracellular 

Concentration 0 µM This paper, 
Assumed 

 Intracellular 
adenosine 

triphosphate 
(ATP) 

Concentration 5 µM [106] [107] 

 cAMP binding 
site on lsrR side 

of lsr operon 

Concentration 20 
molecules/cell 

This paper, 
Assumed 

 cAMP binding 
site on lsrA side 

of lsr opreon 

Concentration 20 
molecules/cell 

This paper, 
Assumed 

 Cyclic AMP 
(cAMP) 

Concentration 0.1 µM This paper, 
Assumed 
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 Cyclic AMP-

CRP complex 
Concentration 1300 

molecules/cell 
[13][107]  

 cAMP-CRP 
complex bound 

to C1 

Concentration 0 µM This paper, 
Assumed 

 cAMP-CRP 
complex bound 

to C2 

Concentration 0 µM This paper, 
Assumed 

 lsrR protein, 
dimer 

Concentration 0 µM This paper, 
Assumed 

 lsrR dimer 
bound to 

lsrACDB at 
O3/O4 

Concentration 0 µM This paper, 
Assumed 

 lsrR dimer 
bound to lsrRK 

at O1/O2 

Concentration 0 µM This paper, 
Assumed 

 AI2-P/lsrR dimer 
complex, free 

Concentration 0 µM This paper, 
Assumed 

 AI2-P/lsrR dimer 
complex, bound 

to O3/O4; 
intermediate in 

tetramer 
cleavage reaction 

Concentration 0 µM This paper, 
Assumed 

 AI2-P/lsrR dimer 
complex, bound 

to O1/O2; 
intermediate in 

tetramer 
cleavage reaction 

Concentration 0 µM This paper, 
Assumed 
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 Activated/free 

lsrACDB gene(s) 
available for 
transcription 

Concentration  20 
molecules/cell 

This paper, 
Assumed 

 

 

 Activated/free 
lsrRK gene(s) 
available for 
transcription 

Concentration 20 
molecules/cell 

This paper, 
Assumed 

 lsrR monomer Concentration 0 µM This paper, 
Assumed 

 mRNA 
transcribing the 

transporter 
synthesized from 

lsrACDB 

Concentration 0 µM This paper, 
Assumed 
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 mRNA 

transcribing 
monomer 

syntheized from 
lsrRK (lsrK 
knockout) 

Concentration 0 µM This paper, 
Assumed 

 lacZ Reporter 
mRNA reporting 

lsrRK 
transcription  

Concentration 0 µM This paper, 
Assumed 

 lacZ Reporter 
mRNA reporting 

lsrACDB 
transcription 

Concentration 0 µM This paper, 
Assumed 

 lsrR tetramer Concentration 20 
molecules/cell 

This paper, 
Assumed 

 β-Galactosidase 
activity 

associated with 
synthesis of 
transporter 

Activity 0 Miller Units This paper, 
Assumed 

 β-Galactosidase 
activity 

associated with 
synthesis of lsrR 

monomer 

Activity 0 Miller Units This paper, 
Assumed 
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Parameter Definition Base Value/Units Source 

B Bias to transcribe 
towards lsrACDB 
side of lsr operon 

1.225 (unitless) This thesis, fitted 
to Fig 3.6 from 

[59] 

 
Michaelis-Menten 
constant governing 

the cooperative 
binding of the lsrR 
dimer to binding 
sites on lsrACDB 

side of the lsr operon 
(at binding sites O3 

and O4) 

1 x 10-4 µM This paper, 
assumed 

 Michaelis-Menten 
constant governing 

the cooperative 
binding of the lsrR 
dimer on lsrRK side 

of lsr operon (at 
binding sites O1 and 

O2) 

1 x 10-4 µM This paper, 
assumed 

 Maximum rate, 
binding of lsrR dimer 

to binding sites O3 
and O4 

1 µM-min-1 This paper, 
assumed 

 Maximum rate, 
binding of lsrR dimer 

to binding sites O1 
and O2 

1 µM-min-1 This paper, 
assumed 



 

 102 
 

 
 Rate constant 

governing binding of 
phosopho-AI2 to 

tetramer, and initial 
cleavage to two 
phosphorylated 

dimers, still bound to 
the lsr operon 

1 µM-2-min-1 This paper, 
assumed 
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 Rate constant, 

governs the binding 
of cAMP-CRP 
complex to C1 

1 µM-1-min-1 This paper, 
assumed 

 Rate constant, 
governs the binding 

of cAMP-CRP 
complex to C2 

1 µM-1-min-1 This paper, 
assumed 

 Rate constant 
governing the binding 

of cAMP to CRP 

1 µM-1-min-1 This paper, 
assumed 

 Rate constant; 
cleavage of Phospho-
AI2/dimer complex 

from lsrRK 

1 min-1 This paper, 
assumed 

 Rate constant; 
cleavage of Phospho-
AI2/dimer complex 

from lsrACDB 

1 min-1 This paper, 
assumed 

 Rate constant; 
nonspecific 

protein/nucleoside 
degradation  

1 min-1 This paper, 
assumed 

 Rate constant; 
specific degradation 

of phosphor-AI2 

1 min-1 This paper, 
assumed 

 Rate constant; 
specific degradation 
of free lsrR dimer  

1 min-1 This paper, 
assumed 

 Rate constant; 
specific degradation 

of lsrR monomer 

1 min-1 This paper, 
assumed 

 Rate constant; 1 min-1 This paper, 
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specific degradation 
of mRNA 

assumed 
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 Rate constant; AI-2 

phosphorylation by 
lsrK 

1   This paper, 
assumed 

 Rate constant; 
dimerization of lsrR 

monomer 

1 µM-1-min-1 This paper, 
assumed 

 Rate constant; 
breakdown of cAMP-

CRP complexes 
bound to lsr operon to 

cAMP and CRP 

1 µM-1-min-1 This paper, 
assumed 
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 Rate constant; 

maximum 
transcription rate of 

mRNA of 
lsrACDBFG + 

associated 
reporter/lacZ 

Defined by B*ktcR This paper, 
defined by model 

 Rate constant; 
maximum 

transcription rate of 
mRNA of lsrRK as 

defined by our model 
+ associated 
reporter/lacZ 

2.1 min-1 This paper, fitted 
to Figure 3.6b 

from [59] 

 Rate constant; 
governing the 

formation of the lsrR 
tetramer 

2 µM-1-min-1 This paper, 
assumed 

 Cooperativity 
coefficient; binding 
of dimer to O3/O4 

1.4 This paper, 
assumed 

 Cooperativity 
coefficient; binding 
of dimer to O1/O2 

1.4 This paper, 
assumed 

α AI-2 curve fitting 
parameter; Controls 

the peak height of the 
AI-2 curve 

0.005 µM (800 
Activity Units) 

This paper, fitted 

β AI-2 curve fitting 
parameter; Peak 

height location; offset 
from t =0 

240 min [64] 
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γ AI-2 curve fitting 

parameter; Parameter 
controlling peak 

width of AI-2 curve 

110 min This paper, fitted 

Ψ Conversion factor; 
molecules/cell to µM 

concentration 

See paper  This paper, 
converted 

κ Conversion factor to 
convert from µM 
concentration to 
Miller Units (β-

galactosidase activity 
units) 

See paper This paper, 
converted 
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