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Abstract

We present here a methodology to enhance the LZW coding for text compression
using a variable-length binary encoding scheme. The basic principle of this enocoding
is based on allocating a set of prefix codes to a set of integers growing dynamically.
The prefix property enables unique decoding of a string of elements from this set. We
presented the experimental results to show the effectiveness of this variable-length binary
encoding scheme.

1 Introduction

The two general categories of text compression techniques are statistical coding and dictionary
coding. The statistical coding is based on the statistical probability of occurrence of the
characters in the text, e.g. Huffman coding [1], Arithmetic coding [2] etc. In dictionary
coding, a dictionary of common words is generated such that the common words appearing
in the text are replaced by their addresses in the dictionary [3]. Most of the adaptive
dictionary based text compression algorithms belong to a family of algorithms originated by
Ziv and Lempel [4, 5], popularly known as LZ coding. The basic concept of all the LZ coding
algorithms is to replace the substrings with a pointer to where they have occurred earlier in
the text [6]. The most popular variation is the LZW algorithm [7]. In this paper, we will
describe here a methodology to enhance the compression ratio obtained by LZW algorithm
using a novel technique of variable-length binary encoding based on a special binary tree

data structure called the phase in binary tree.

We describe the LZW algorithm and redundancy in binary encoding of its output in
section 2. In section 3, we describe the on-line variable length binary encoding scheme. We
use this binary encoding scheme to encode the LZW codes in section 4. We describe the

decoding method in section 5. The experimental results are presented in section 6.



2 The LZW Algorithm

Let § = 51828, be a string (or text) over the alphabet ¥ = {ay,a, - -,a,}. The LZW
algorithm maps § into the compressed string ¢(S) = p1p2...pn, where p; is a positive
integer and p; <n+¢—1, for¢=1,...,n. This mapping can be achieved with the aid of
a ‘dictionary trie’. This dictionary trie (T') is constructed on-line during compression of the
text as shown in Figure 1. Each node in T represents a substring found by concatenating the
characters in the label of each node on the path from the root node. Each node is numbered
by an integer which is used as a pointer (code value) to replace a matching substring into
the text to form the output code. T is initialized as a ¢ + 1 rooted tree where the root is
labeled (0, A) to represent the null string (A). The root has ¢ children nodes labeled (1,a;),
(2,az), ..., (g,a,) respectively to represent ¢ single character strings. This is shown as Tj in
Figure 1. The LZW algorithm is described below. The input text is examined character by
character and the longest substring in the text which already exists in the trie, is replaced
by the integer number associated with the node representing the substring in the trie. This
matching substring is called a prefix string. This prefix string (w) is then extended by the
next character (K) to form a new prefix string (wK'). A child node is created at the node

representing the matching substring in the trie to represent the new prefix string.

Initialize the trie with single-character strings;
Initialize w with the first input character;
Loop : Read next input character K;
if no such K exists (input exhausted) then
Output the code value of w;
EXIT from the Loop;
end if;
if wK exits in the trie then
w «— wkK;
else /* The phrase wK doesn’t exist in the trie */
Output the code value of w;
Insert the phrase wK into the trie;
w+— K;
end if;
end Loop;
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Example: ¥ = {a,b,c}, § = abcabbcabbaaaaaa. ¢(S) = 1,2,3,4,5,7,1,10,11.
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Figure 1: Example of the dictionary Trie using LZW algorithm.

The steps and the corresponding trie data structure to encode the above string S are
shown in Figure 1. In each step ¢ > 0, we output the pointer p; which we find from the label
associated with the dark node in trie T;. T; is then modified to T;;; by inserting a node to
represent the new prefix string which is shown by the node lead by the dotted line in T};.
Also note that the number of nodes in T; is always ¢ + ¢ and the pointer p; to output at step
tis 1 < p; < i+ q. Since the final dictionary trie T contains 11 prefix strings (represented
by 11 nodes), each pointer will be encoded by [11] = 4 bits each. As a result, the size of the

compressed string ¢(.9) is 36 bits.




The size of the pointer in LZW algorithm is predefined and hence the same fixed number
of bits are output in each LZW code irrespective of the number of entries in the dictionary.
As a result a large number of bits are used unnecessarily when the number of phrases into
the dictionary is less than half of its maximum size. In the LZC algorithm (which is a variant
of the LZW algorithm used in UNIX-Z compression), string numbers are output in binary
[8]. The number of bits used to represent the string number in any step varies according to
the number of phrases (say M) currently contained in the dictionary. For example, when the
value of M is in the range 256 to 511 each string number can be represented using a 9 bits
binary number and when M becomes in the range 512 to 1023, each string number will be
represented as a 10 bits binary number and so on. The scheme is also sub-optimal because
a fractional number of bits is still wasted unless M is a power of 2. For example, when M
is 513, it is possible to encode the first 512 string numbers in the dictionary (0 through 511)
using 10 bits while 512 and 513 can still be represented as 2-bit binary numbers ‘10’ and
‘11’ respectively, without violating the prefix property because the first 512 binary codes will
start with the bit 0 and the last two codes starts with the binary bit 1. We will describe this

methodology in the following sections.

3 A Variable Length Binary Encoding

The variable length binary encoding is based on a binary tree called the phase in binary

tree as defined below.
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Binary Tree Binary Tree
T T T T
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Figure 2: A phase in binary tree.

Definition 1: Given a positive integer N expressed as N = > 2 _; 29" where a1 > ag >
++->as; > 0and s > 1, a phase in binary tree T' with N leaf nodes is a rooted binary

tree that consists of s complete binary trees' Ty, T3, --,T; of heights a1, ag,- - -, as

1A complete binary tree of height & is a binary tree with 2" leaf nodes and 2" — 1 internal nodes. A
complete binary tree is represented by a solid triangle in this paper.



respectively, arranged as shown in Figure 2.

Lemma 1: A phase in binary tree T with N leaf nodes is unique and it contains N — 1

internal nodes.

Proof : The structure of the phase in binary tree with N leaf nodes is based on the repre-

sentation of the positive integer N as

N=3 gom
m=1

where a; > ag > --- > as > 0 and s > 0. Expression of N suggests that ay,as,---,a,
are the positions of bit 1 when N is represented as a normalized unsigned binary
number using a; + 1 bits. Since the representation of an integer in the form of a
normalized unsigned binary number is always unique, the structure of the phase in

binary tree with N leaf nodes is also unique.

According to the definition of a phase in binary tree, T’ consists of s complete binary
subtrees Ty, T, -+, T as shown in Figure 2 and the number of nodes in the complete
binary tree T, is 2°»t! — 1, where a,, is the height of T}, for every 1 < m < s. Hence

sum of the number of nodes of all the above complete binary subtrees is

8 8
Yot -1)=2) 2" ~5=2N—s
m=1

m=1

The remaining nodes in T form the path starting from the root node of T to the
root node of Ts_1, consisting of s — 1 nodes including the root node of T' as shown
in Figure 2. As a result, total number of nodes in the phase in binary tree T is
2N — s+ (s—1)=2N — 1. Since T has N leaf nodes, the number of internal nodes in
T including the root nodeis 2N -1 - N=N —-1. O

Definition 2: Given a set of n binary codes V = {V4, V5, -+, V,,}, such that | V;|< [log, n]
for every 1 < i < n, the value(V;) of the binary code V; € V' is defined by the decimal
value of V; formed by appending [log, n]— |V;| number of 0’s at the end of V;.

Definition 3: Given a phase in binary tree T' with n leaf nodes, we can associate a unique
set of binary codes V = {V;,V;,---,V, } with the leaves by labeling every left edge of
T by 0 and every right edge by 1 such that V; is the sequence of 0’s and 1’s in the
unique path from the root node to the i th leaf node of T', where the leaves are indexed
consecutively from left to right. This set of binary codes is called a phase in binary

encoding of size n.



Corollary 1: For a phase in binary encoding V' = {V1,Vs,---,V,.} of size n, the following
relations always holds : value(V;) < value(Vi41) and |V;|>|Viq1| for every 1 < i < n.

Corollary 2: If V* and V® are two phase in binary encodings of sizes nq and ng respectively
such that n; < ng, |V |<| V| and | V2 |=|V?|= Vi = VP for every 1 < i < ngy.

Since each code in the phase in binary encoding is represented by a leaf node of the
corresponding phase in binary tree, the phase in binary encoding forms a set of uniquely

decodable prefix codes.

4 Allocation of the Phase in Binary Codes in LZW output

In each step of the LZW algorithm, only one phrase may be inserted into the dictionary, i.e.
only one pointer is appended into the pointer list. We can express the set of pointers in step
i as a sequence of g + i integers P* = {1,2,---,q + i} in increasing order. The sequence P!
of length ¢ 4 ¢ can be mapped into the leaf nodes of a phase in binary tree with ¢ + ¢ leaf
nodes. Hence each pointer in step 7 can be encoded using a uniquely decodable prefix code.
The interesting property of this encoding is that no code of the first ¢ + ¢ integers in step
i+ 1is a prefix of the codes in step 7. As a result, the LZW codes (i.e. the pointers) in every
step can be encoded by the phase in binary codes to form a variable-length binary encoding
of text. We first show with the same example how to assign the phase in binary codes
to the pointers in each step of the compression. We later describe a decoding algorithm
that uniquely generates the original LZW codes. The steps are shown in Figure 3. The
single character strings are represented by the dictionary trie To with the set of pointers
PY = {1,2,3} as shown in Figure 3. These pointers can be mapped into the variable length
binary encoding C° = {00, 01, 1} represented by the phase in binary tree By. In the next step
the set of pointers is P! = {1,2,3,4}, which can be mapped into the set of binary encodings
C!' = {00,01,10,11} represented by the binary tree B; as shown in Figure 3. Hence the
output pointer 2 can be encoded using two bits ‘01’. Following the same procedure the sets
of pointers P?, P3,... P® can be mapped into the sets of binary encodings C?,C3,--.,C?
obtained from the phase in binary trees B, Bs,: -, Bg respectively as shown in Figure 3.
Accordingly, the output pointers 3, 4, 5, 7, 1, 10 and 11 in the next seven consecutive steps
can be encoded as ‘010’°, ‘0117, ‘100°, ‘110°, ‘0000’, ‘11’ and ‘11’ respectively. Hence the
compressed string ¢(.5) can be encoded as 00 01 010 011 100 110 0000 11 11 using 24 bits,
instead of 36 bits using the fixed-length encoding.



5 Decoding of the Binary Codes

During the decompression process using the LZW algorithm, logically the same trie is created
as in the compression process. But generation and interpretation of the binary tree is a little
tricky although the same binary tree will be essentially generated as in the compression
process. To decompress the binary codes, we start with the same phase in binary tree By
and the corresponding trie Tp as in the compression process. In each step i, a string of
characters (say S;) is regenerated. In step ¢, the phase in binary tree B, is traversed starting
from the root node. The left child (or the right child) is traversed if the next input bit is 0
(or 1) until a leaf node in B; is reached. The label of this leaf node in B; is the pointer to
a node in T; which represents the regenerated substring S; to output. In step ¢, the phrase
formed by concatenating the previous output substring S;_; (only exception during the first
step, ¢ = 0 and S_; = A) and the first character (say K) of the present output substring S5;,
i.e. S;_1K is inserted into the trie T; to create the new trie Tj;;. If the substring S;_1 K
already exists in T;, the trie T;+; will be identical to T;. The new node (if any) in T4 will
be represented by the pointer ¢ + 4 in T;4;. The phase in binary tree B; is then incremented
to B;yq and the new leaf node B;;; is labeled by the integer ¢ 4+ ¢4 1. The same procedure

is repeated until all the bits in binary code ¢(S) have been exhausted.

It should be mentioned here that the decoding operation in LZW is handled differently
in a special case. This special case occurs whenever the input string contains a substring
of the form KwKwkK, where Kw already appears in the trie. Here K is a single character
from the alphabet and w is a prefix string. This is explained in detail in the original paper
of LZW [7]. If the original input string () contains a substring of this form, during the
decoding operation of our proposed binary encoding, we will find that the decoded label
from the binary tree is not yet created in the trie in the corresponding step (say step j).
In this case, we know that the output string S;_; (obtained in the immediate previous step
Jj — 1) was of the form Kw. Hence we need to output a substring 5; of the form KwK in
the present step and insert the prefix string §; = KwK into the trie T; to form T;4; and
the corresponding node representing 5; in T;41 will be marked by ¢ + j.

We describe the above decoding process using the same example to decode the binary
code ¢(S) = 0001 010 011 100 110 0000 1111. This binary code ¢(S) was obtained by
compressing S = abcabbcabbaaaaaa using the proposed phase in binary encoding scheme.
We start with the phase in binary tree By with 3 leaf nodes and the trie Ty consisting of the
single character strings as shown in Figure 4. Here the alphabet is ¥ = {a,b, c} and hence

size of ¥ is ¢ = 3. In the first step (i = 0), we traverse the phase in binary tree By starting



from the root node and reach to the leaf node of label 1 after reading the first two input bits
00. This label 1 indicates a pointer in trie Ty which represents the output substring So=‘a’.
The binary tree By is modified to B; to represent a phase in binary tree with 4 leaf nodes
and the new leaf node is now labeled by ¢+ ¢ + 1 = 4 as shown in the phase in binary tree
B, in Figure 4. In the next step (i = 1), the By is traversed and the next two input bits
01 lead to the leaf node 2 in B;. The node of label 2 in trie Ty represents the output string
51="0". This character concatenated with the previous output substring ‘a’ forms the new
prefix string ‘ab’ which is inserted into the trie to form T5. This is shown by the broken
edge in T3 in Figure 4. The new pointer to the prefix string ‘ab’ is ¢ + ¢ = 4. The phase in
binary tree B; is now incremented to form the phase in binary tree By with 5 leaf nodes.
The new leaf node is labeled by ¢+ ¢+ 1 = 5 as shown in Bj in Figure 4. In the following
step (¢ = 2), By is traversed and the next three input bits 010 lead to the leaf node of label 3
which represents the output substring S2=‘c’ in T,. This is concatenated with the previous
output substring S7=°0’ to form the new prefix string ‘bc’ and inserted into the dictionary
trie to form T3. The new pointer to the prefix string ‘bc’ in T3 is labeled by ¢ + ¢ = 5. The
phase in binary tree B; is now incremented to form the phase in binary tree B3 with 6 leaf
nodes. The new leaf node is labeled by ¢+7+1 = 6 in B3. Bz is then traversed and the next
three input bits 011 lead to the leaf node of label 4 which represents the output substring
Ss=‘ab’ as shown in T5. The first character(e) of this output substring is concatenated with
the previous output string So=‘c’ to form the new prefix string ‘ca’ which is inserted into the
trie to form T4. The pointer of this prefix string ‘ca’ in Ty is now ¢ + i+ 1 = 6. The phase
in binary tree B3 is now incremented to the phase in binary tree B4 with 7 leaf nodes and
the new leaf node is labeled by ¢ 4+ ¢+ 1 = 7. Following the same procedure in next three
steps (i.e. i = 4,5,6), we can regenerate the decoded output substrings S4="‘b¢c’, S5s=‘abb’
and Sg=‘a’ for the binary sequences 100, 110 and 0000 from the phase in binary trees By,
Bs, Bg and the corresponding tries Ty, T5 and Tg respectively. In step 7 (i = 7), we will
traverse the binary tree B; and the next two input bits 11 will lead to the leaf node marked
by the integer 10 in B7. But there is no node in the trie 77 labeled by the pointer 10. This
arises due to the special case of appearance of a substring KwKwK, as we described above.
Hence the output substring should be of the form KwkK. In this case, Kw is the output
substring Ss=‘a’ in the previous step. As a result, K = ¢ and w = A here. So we output the
substring S7=KwK = aa and insert the prefix string ‘aa’ into the trie represented by the
node labeled by the pointer ¢ + ¢ = 10 to form Ts. The same situation arises, for the next
two input bits 11. By traversing the tree Bg using the bits 11, we reach to the leaf node of

label 11. But there is no pointer 11 in trie Ts. Hence the special case arises, where K = a



and w = a. Hence output substring will be S = KwK = aaa. Since all the input bits are
exhausted the decoding process stops. Now concatenating all the output substrings above,

we regenerate the original string S = abcabbecabbaaaaaa.

(Sizes are expressed in nearest Kilo-bytes)

TEXT Original LZW LZWAJ
bib 111 64 45
book1 768 446 346
book2 610 346 259
geo 102 84 77
news 377 246 188
objl 21 14 13
obj2 246 143 123
paperl 53 31 24
paper2 82 45 35
progc 39 22 18
progl 71 32 25
progp 49 19 18
trans 93 50 36
Average 202 119 93

6 Experimental Results

We have implemented our scheme and tested it with texts of different sizes and charac-
teristics. In all the cases, the phase in binary encoding method significantly improves the
performance of the raw LZW technique with fixed-length pointer size of 12 bits and starting
the dictionary all over again after it is full. We have performed our experiment with different
maximum allowable height of the binary tree. The best performance is achieved when the
binary tree is allowed to grow to a maximum height of 15. In our implementation, we allowed
the binary tree to grow until it becomes a complete binary tree of height 15 and start all
over again after that. We presented the experimental results in the above table to compare
the compression performance based on the LZW method and our proposed variable-length
encoding scheme which we call the LZWAJ scheme. The experiment was performed on the
files obtained from the University of Calgary text corpus in addition to several other text

files. The experimental results of our scheme illustrate the significant improvements obtained



by using our scheme over the LZW algorithm.

7 Conclusion

In this paper, we have presented a novel methodology for enhancing the performance of
the LZW text compression algorithm. We have implemented the scheme and presented
the experimental results. The experimental results show that we can achieve much better

compression than these obtained by using the standard LZW algorithm.
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Figure 3: Example of the LZWAJ coding (Continued in the next page also).
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Example of the LZWAJ encoding (Continued).
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Figure 4: Example of the LZWAJ decoding of binary codes.
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