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 Significant recent research has focused on the marriage of consumer preferences 

and engineering design in order to improve profitability.  However, in many markets, the 

profitability of new products for manufacturers is also a significant function of the retail 

channel structure through which the new products reach the ultimate customer. At the 

crux of the issue is the fact that channel dominating retailers, like Home Depot, Toys R’ 

Us, Wal-Mart have significant power arising from their hundreds of billions of dollars of 

sales revenue and have the ability to unilaterally control a manufacturer’s access to the 

customers.   

 A product design methodology is proposed that accounts for this new and 

important power asymmetry.  Manufacturer’s product success as defined by profit is 

affected by pricing at the retail and wholesale levels which in turn is dependent on the 

channel structure, i.e., retailer monopoly or duopoly.  These channel structures are 

explored in this dissertation under an econometric or game theoretic framework and the 

results are shown to have important implications for designers.  Additional non-

traditional considerations for engineering product design such as bundling and exclusive 



 

contracts which are typical for retail channels are also explored by integrating marketing 

models with a design optimization structure.  Lastly, some design methods for mitigating 

uncertainty in the strategic landscape of retailer dominated channels are developed.  

 The dissertation has three research thrusts. Research Thrust 1 is devoted to 

developing a product design optimization approach with retailer acceptance as a 

probabilistic constraint on candidate designs.  Slotting allowances are considered in 

concert with engineering design as complimentary approaches to achieving access to 

consumer markets.  The retailer’s decision framework and the design optimization 

approach of Thrust 1 are extended in Thrust 2 to include competitive pricing responses 

from both competing manufacturers and channel controlling retailers.    In Thrust 2 the 

implications for product design when manufacturers face monopolistic and duopolistic 

retail channels is explored as well as the design implications of an exclusive 

manufacturer/retailer relationship.  Finally, in Thrust 3 the prior thrusts are implemented 

for multiple product categories and product bundles in order to consider synergy and 

competition amongst multiple complementary designs.  Under this final Thrust 3, an 

approach to mitigating the risk of uncertainty in competitor design attributes is also 

developed. 
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CHAPTER 1:      INTRODUCTION 

This dissertation presents new methods for integrating engineering design 

optimization with marketing and strategy models in the consideration of a major force in 

the modern retail market: the channel dominating retailer.  The methods proposed 

improve upon existing methods by incorporating the retailer’s ability to control and even 

possibly deny market access to manufacturer products by virtue of their consolidated 

position.  Including this externality (the retailer) provides a more realistic product design 

context.  Additionally, the product design optimization context is enriched through the 

proposed methods by allowing retailers and manufacturers to price products strategically 

in response to any introduction of a new design. 

The impact of tightly controlled channels (by retailers) is the overarching theme 

for this dissertation and several methodologies and analyses are developed to address new 

design and marketing practices relevant to this type of market.  The dissertation involves 

three research thrusts.  In research Thrust 1, a design methodology that accounts for the 

common practice of paying a retailer a fixed fee (slotting allowance) to guarantee shelf 

space is developed.  This analysis is performed under static competitor prices (i.e., retail 

and wholesale prices are assumed static).  In research Thrust 2, an approach is presented 

that accounts for the strategic pricing of competitor products in response to any design 

introduction which allows designers to consider strategic response in advance of 

introducing any design.  Using this approach, the impact of retailer characteristics 

(desirability to certain consumer segments) and the possibility of using one retailer 

exclusively as a channel partner are evaluated with respect to optimal designs.  Finally, in 

research Thrust 3 the simultaneous design of multiple products and product bundles 
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competing across categories for market share is considered.  In this final approach, the 

primary focus is on the strategic design of product bundles for greater profitability but 

additionally uncertainty in competitor strategy, cost models, and even design attributes is 

considered as a preliminary investigation into design for uncertainty in retail channels.    

1.1 MOTIVATION AND OBJECTIVE 

Engineering design is the foundation for product design.  Engineering design 

decisions are ultimately realized in products as attributes and features that are important 

to customers and the retailers who carry the products.  The realization that the decision 

for many of these attributes and features are made early in the design stage and are 

prohibitively costly to change in order to improve the marketability of the product, has 

led engineering design to focus on customer preferences in addition to the conventional 

engineering criteria. To that end, many approaches have been developed in recent years 

to collect and integrate customer preferences in the early stages of design in order to 

develop market-focused products.  However, a new force has emerged in the modern 

marketplace that requires additional consideration: the dominant retailer. Consolidation in 

the retail market has created some of the world’s largest corporations that control in 

excess of 70% of many markets (Cappo, 2003) thereby controlling the access 

manufacturers have to the consumer market.  In some cases, retailers have even become 

principal buyers for a supplier’s or manufacturer’s entire product line (Smith, 2002, 

Useem et al., 2003; Dukes et al., 2006).  In effect, the “Big-Box” retailers such as Wal-

Mart and Home Depot are gatekeepers to consumer markets and the manufacturer’s 

success depends on convincing retailers to carry their products (Bounds, 2006).  In fact 
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accounting for just 7 select retailer revenues revealed a total revenue in excess of $562 

Billion in 2006 (see Table 1.1.1) (Annual Reports, 2006).  

Retailer Revenue ($B) 
Wal Mart $313 

Home Depot $91  
Target $60  
Lowes $43 

Best Buy $31 
Circuit City $12  
Toys R' Us $12 

Total $562 
Table 1.1.1: Dominating Retailer Profits 

This revenue total is nearly 4% of the U.S. gross domestic product and higher 

than the 2007 U.S. Department of Defense Budget of $502 Billion (GPO, 2006). While 

these figures convey the consolidated nature and sheer size of modern retailers they do 

not express the drastic power shift from manufacturers to retailers.  As little as 30 years 

ago, the majority of retail products were sold through small local retailers frequently 

referred to as “Mom and Pop” stores (Boyd, 1997).  U.S. census data (U.S. Census, 2002) 

reveals that the number of retail establishments is continually dwindling and fell by 

800,000 establishments to 1.1 million establishments between 1972 and 2002.  

Considering a population increase of 50% during that same period the number of retailers 

per person has declined by 60% since 1972.  Not surprisingly, the revenue per 

establishment also supports this consolidation trend:  $650K/establishment in 1972, 

$1.1M/establishment in 1992 and $3M/establishment in 2002 (controlled for inflation).    

Further evidence of this power comes from the fact that multinational chains of stores 

have become commonplace as the rate of chain store openings continues to increase.  In 

the early 1960s the number of Wal-Mart stores numbered less than 15 while today they 
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amount to over 6,600 stores internationally.  Similarly, Circuit City and BestBuy now 

operate over 1,500 and 750 stores respectively (Annual Reports, 2006).  Lastly, this 

power shift is important because for most of the 20th century the manufacturers capable 

of developing and distributing products were the larger of the two parties involved in the 

retail channel (manufacturer and retailer) and could in effect “push” products on retailers.  

One need not search too hard to observe the reversal of this relationship.  Examples of 

retailers greatly overshadowing manufacturers include Home Depot’s $91 Billion in 

revenue vs. $6.5 Billion for its largest power tool supplier or Toys “R” Us $12 Billion vs. 

Mattel’s less than $5 Billion (Annual Reports, 2006).  Manufacturers are already forced 

to take this retailer power into account in the area of pricing and marketing. In this 

dissertation, the retailer focus is extended to an overall product design approach in the 

belief that manufacturers should be proactive in their engineering design considerations 

as they price and market their products. 

Retailers are primarily interested in vastly different metric than the manufacturers 

such as revenue per square foot versus the profit of a specific product offering.  

Logically, a retailer will only carry those products that maximize overall category profit.  

For example, Home Depot will only carry the five out of twenty available drills that 

generate the greatest revenue for the drill category.  This revenue depends on the 

competitive environment (e.g., prices at Lowes), preferences of customers toward the 

assortment of drills carried at Home Depot, and the accessories that are available for the 

drills. The retailer puts together these assortments and accessories in such a way to 

maximize the chances that customer will buy a product (and spend more) on any visit to 

the store.  Given that the retailer’s shelf space is limited, manufacturers have to carefully 
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consider (1) the attributes and features of their product vis-à-vis the assortment the 

retailer carries, (2) the strategic environment of the retailer (monopoly, duopoly, 

oligopoly, exclusive contract etc.), (3) the possible bundle of the product and the 

accessories, and (4) uncertainty in parameters supporting the design selection, all at the 

early design stage.    

In considering the gate-keeper role of retailers and the competitive products and 

their designs, a product designer cannot afford to take a “myopic” perspective in the 

design decisions by considering only his/her design and its impact on the market. 

Because engineering design decisions determine product cost and attribute positioning at 

the foundation of the development process it is logical to conclude that engineering 

decisions are transmitted to competitors and retailers as strategies to which they are 

forced to counteract. For example, just as a manufacturer considers retailers’ assortment, 

profit criteria, and competitors’ existing products in designing a new product, other 

competitors may anticipate this strategy and make their own move to influence the 

retailer. They might, for example, reduce their wholesale prices to the retailers to make 

the retailer margins more attractive. Or they may offer some additional features to their 

products to make them more appealing to retailers as well as consumers.  

Retailers, on the other hand, may also consider such strategic maneuvers in new 

product offerings and wholesale prices to make their own assortment decisions. Thus, 

these counteractions leading to a “game of moves and countermoves” in the marketplace 

call for the manufacturer to be “strategic” in their design decisions – that is, make design 

decisions by anticipating the moves of the competitors and retailers so that when the 

market is in equilibrium, none of the competitors or retailers have any incentive to 
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change the status-quo.  This dissertation seeks to integrate the strategic decision 

perspective with design engineering and marketing in a quantitative manner. The 

strategic design of the firm depends upon the projected market share of a new product 

offering as well as manufacturing costs estimated in the engineering phase considering 

the anticipated moves of competition and the retailers. Marketing relies upon engineering 

design to produce customer desired product attributes. Engineering design is charged 

with the complex task of developing products for uncertain customer preferences and 

competitive environments.   

Last but not least, uncertainty arises in many forms in product design. 

Traditionally, engineering design has focused on uncertainty in design parameters, 

customer usage and more recently customer preferences. Given the aforementioned lack 

of attention to strategic considerations and dominant retailers it should come as no 

surprise that uncertainty in competitor responses and channel controlling retailers have 

not been addressed. This uncertainty can arise from lack of knowledge about competitor 

or retailer assessments of: equilibrium pricing strategies, customer segment preferences, 

competitor costs (fixed and variable), competitor’s or retailer’s aversion to risk or 

existence of future competitor offerings.   Ultimately, the manufacturer would like to 

mitigate risk from uncertainty and exploit opportunities presented by the strategic 

environment.  Ideally a manufacturer’s decision making approach (See Figure 1.1.1) 

would simultaneously: 

• Maximize the chance of the product being selected by the dominant retailers 

• Maximize his/her own profit under strategic/competitive wholesale and retail 

price responses 
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• Reduce the uncertainty in the projected profit propagated from uncertainties in 

competitor strategies, customer preferences, demand fluctuations and cost 

projections.   

None of the current design methodologies reported in the literature account for the 

gate-keeper role of the retailer or the strategic interactions inherent in a channel 

environment while designing a product for success.  The focus of this dissertation is 

on addressing this gatekeeper role using the objectives listed above as overarching 

goals for any method developed.    

Costs

Target Market

Design Engineer

Retailer Competition
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Manufacturer
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Engineering Design 
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Product 
Selection

Pr
od

uc
t F

lo
w

 

Figure 1.1.1: Product Design for Dominant Retailers with Competition 

1.2 RESEARCH THRUSTS 

There are three main concerns (See Figure 1.2.1) that a manufacturer faces when 

developing products for retailer markets which will make up the thrusts of this 

dissertation.  First the manufacturer must ensure that the product makes it to market and 
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therefore must have a tractable approach for predicting the retailer’s acceptance decision 

(Research Thrust 1).  Second, responses of competitors will affect the profitability of the 

retailers and the focal manufacturer.  Realizing this, in Research Thrust 2 an econometric 

approach to accounting for competitive response at retail and wholesale levels will be 

integrated into the basic framework developed in Research Thrust 1.  Thrusts 1 and 2 

only consider strategic and design interactions within one product category.  In Thrust 3, 

the very common retail practice of bundling complimentary products (e.g., two different 

tools) from different product categories to compete in multiple product categories is 

explored.  Additionally, this thrust implements an initial investigation of the important 

elements of uncertainty in the channel environment.  
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Figure 1.2.1: Design Considerations for Retail Channels 

1.2.1  RESEARCH THRUST 1:  ENGINEERING PRODUCT DESIGN 

OPTIMIZATION FOR RETAIL CHANNEL ACCEPTANCE 

An approach to modelling the importance of product acceptance by a dominant 

retailer will be investigated.  This foundational effort will assume that competing 

manufacturers do not have the capability to change their wholesale prices or product 

attributes in the near term, although the effects of competition will be addressed in 

subsequent chapters.   The purpose of the thrust will be to provide a manufacturer with a 

decision framework under which engineering design variables can be optimized for profit 
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while simultaneously ensuring that the dominant retailer remains as profitable or more 

profitable (indicating a high probability of accepting the new product by the retailer).  

The approach will endogenize the uncertainty in market segment’s preferences through a 

bottoms-up1 transformation of deterministic engineering design variables to customer 

relevant product attributes.  This is important because the value placed by each customer 

segment on each product attribute is uncertain and directly affects the decision 

framework of the risk-averse retailer.    

1.2.2 RESEARCH THRUST 2:  DESIGN FOR EQUILIBRIUM PRICING IN 

CHANNEL MARKETS 

In the short term, a price change is the only strategic move that is possible for a 

competitor (i.e., a design cannot change overnight for a competitor).  However, the prices 

are fixed for two quarters to several years.  Strategic moves are analyzed in the context 

that equilibrium is reached where none of the competitors (at the wholesale and retail 

level) can be made better off by changing their price.  This equilibrium pricing will 

ultimately affect the profitability of the retailers and manufacturers.  As such, a 

methodology is proposed that allows a manufacturer to predict both retail and wholesale 

price equilibria that result from engineering design decisions.   The manufacturer’s 

equilibrium profit is proposed as a substantially improved engineering optimization 

objective as it more accurately reflects reality.   Several cases are investigated that 

                                                 

1 Bottoms-up refers to the selection of specific engineering variables that when aggregated at the highest 

level result in quantifiable customer level product attributes.  This approach is distinct from the extant 

literature where attributes are selected at the highest level before engineering takes place (see e.g., Luo et 

al., 2007).   
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highlight the importance of: (1) monopolistic retailers, (2) duopolistic retailers , (3) 

customer preferences for different retailers, (4) and the possibility of exclusive contracts 

(which are prevalent for many retailers). 

1.2.3 RESEARCH THRUST 3: MULTI-CATEGORY DESIGN OF BUNDLED 

PRODUCTS FOR RETAIL CHANNELS CONSIDERING DEMAND 

DEPENDENCIES AND UNCERTAINTY IN COMPETITIVE RESPONSE  

One prevalent approach to increasing both retailer and manufacturer revenues is 

to improve the attractiveness of a product offering (to end customers) by bundling related 

items together for one price. To be most effective, bundled products should be developed 

with an integrated design approach that seeks to achieve synergies of value for the end 

customer as well as cost efficiencies through measures such as using common parts.  

Given these important interactions, a bundled product design approach is developed that 

takes into account strategic reactions (price changes) of retailers across the bundled and 

unbundled product categories and accounts for demand dependencies between bundled 

and unbundled goods. Additionally, there exists poorly defined uncertainty in terms of 

competing manufacturer product attributes, customer preferences, and even engineering 

design tolerances for many product categories.  To mitigate the risk of these 

multidisciplinary uncertainties a robust design approach is implemented in a novel 

manner to ensure acceptable product profitability and market share under a range of 

uncertain possibilities.  A bundled product design case study is presented for two 

complimentary power tools that offer a synergy in value.  Manufacturer profit and market 

share are optimized both deterministically and under intervals of uncertainty (robust 

optimization) surrounding competitor actions, cost models and engineering parameters.  
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1.3 ASSUMPTIONS 

In developing the design approaches in this dissertation, a few assumptions are 

made that are common to each of the research thrusts: 

• Firms have multiple competing objectives that are, to a large extent, functions 

of engineering design variables.  Foremost, a firm wishes to maximize profit 

but additionally a firm may wish to maximize market share or the profitability 

of its channel partners.   These objectives are usually competing and therefore 

candidates for multi-objective optimization.   

• During game theoretic or econometric price setting it is assumed that strategy 

sets of each competitor are known to all competitors and that players (retailer 

and manufacturers) are rational, strategic and exhibit foresight.  Rationality 

implies that decision makers attempt to maximize utility (Osbourne and 

Rubinstein, 1994).  Maximizing utility for game players (retailers and 

manufacturers) will generally mean maximizing profit. 

• Firms are risk averse and value the ability to choose less risky alternatives.  

Akin to some investors preferring high yield risky stocks and others preferring 

the 10 year treasury, it is assumed that firms are not merely risk neutral (i.e., 

wanting to maximize expected value).   Each firm can have a different risk 

tolerance or preference. As such, analyses are presented to show the tradeoff 

between predicted profit and a risk metric.  Frequently, in this dissertation, 

risk is quantified in terms of design rejection by the channel controlling 

retailer. 
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1.4 ORGANIZATION OF DISSERTATION 

The dissertation is organized in a sequential fashion as presented in Figure 1.4.1.  

Chapter 2 provides terminology and nomenclature common to the rest of dissertation as 

well as background information on tools such as Multiple Objective Genetic Algorithm 

(MOGA).  The initial analysis of the decision making by channel dominating retailers is 

made in Chapter 3.  This chapter provides an approach to design optimization assuming 

that retailers will only accept products that reliably improve profitability (Thrust 1).  It 

also assumes other retailers and manufacturers do not change their wholesale and retail 

prices.  In Chapter 4 additional layers of complexity are added to the modeling process by 

allowing manufacturers and retailers to alter prices in response to any new design offered 

by the focal manufacturer.  The goal of this effort is to understand how competitors will 

react to a presumably strong new design entrant.  A strategic or game theoretic 

framework is developed in Chapter 4 that allows these pricing reactions to take place 

(Thrust 2) and be accounted for during design optimization.  Chapters 3 and 4 analyze 

optimal design for the retail channel but for one product category only.  Chapter 5 

extends the effort to multiple product categories and includes an analysis and case study 

of product bundle design optimization for retail channels.  As shown in Figure 1.4.1 

uncertain modeling parameters are considered in Chapters 3 and 5 while Chapter 4 is 

deterministic.  Similarly, competitive pricing is only considered in Chapters 4 and 5 with 

the greatest emphasis on multilayered strategic pricing in Chapter 4.    In each chapter a 

multidisciplinary case study is presented that demonstrates the approach.  Finally, in 

Chapter 6 conclusions about the work are presented and comments about contributions of 

the dissertation are made along with options for future research.   
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Figure 1.4.1 shows the organization and flow of information in this dissertation.  

 

Chapter 1
Introduction; 

Motivation and Objectives;
Research Thrusts; 

Assumptions

Chapter 2
Definitions and 

Terminology

Chapter 3
Probabilistic Design for Retail 

Channel Acceptance with 
Static Competitor Pricing

Chapter 4
Strategic Engineering 
Product Design For 

Monopolistic and Duopolistic 
Retail Channels

Chapter 5
Multi-Category Design of

Bundled Products for Retail Channels 
Considering Demand Dependencies 

and Uncertainty in Competitive Response

Channel 
Uncertainty
Considered

Strategic
Pricing 

Response
Considered

Non-Strategic
Pricing

Chapter 6
Conclusions

Main Contributions
Future Research

 

Figure 1.4.1: Organization of Dissertation 
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CHAPTER 2:      DEFINITIONS AND TERMINOLOGY 

In this chapter, several definitions and terminologies are provided to facilitate 

understanding of the multidisciplinary environment that is the focus of this dissertation.   

Marketing and economics definitions that may not be well known in the engineering 

community are discussed in Section 2.2.  In Section 2.3, Multiple Objective Genetic 

Algorithms (MOGA) are describe to facilitate understand of Chapters 4 and 5 where a 

MOGA is used extensively. 

2.1 INTRODUCTION 

In the past, engineering and marketing practitioners have been accused of each 

operating in a vacuum.  Although there have been several methods put forward to 

integrate engineering and marketing, none have specifically address the growing power 

of the retailer.  This issue is addressed in the present dissertation.  Due to the cross-

disciplinary nature of the problem we provide introductory definitions and terminologies 

in Section 2.2.  Additionally, less common definitions related to decision making and 

robust optimization are presented in Section 2.2. 

  An overview of MOGAs is also presented in this chapter as one of the preferred 

methods for solving non-convex problems with discrete design variable inputs.  

Additionally, MOGAs are capable of handling multiple objectives clearly very realistic 

given the sales and profit targets simultaneously pursued by most firms.  Solving such 

multi-objective problems generally yields and optimal set of solutions (Pareto frontier) 

which is discussed.  In this chapter we focus on the details of MOGA computations and 

demonstrate its usefulness in subsequent chapters for solving multidisciplinary problems.  



 16

2.2 MARKETING AND ECONOMICS DEFINITIONS AND 

TERMINOLOGIES 

A few terms from the marketing and economics literature are used throughout this 

dissertation that it may be useful to define:  

Assortment - For this work an assortment is defined as the products within a 

product family offered to consumers by the retailer (e.g., the 5 handheld angle grinders in 

the angle grinder product category at Home Depot) (Kotler, 2002). 

Bundle – The sale of two or more different products or services as a package.  

Bundling can occur with varying levels of independencies between products.  Product 

bundling has significant dependency while price bundling does not.  Product bundling 

requires significant foresight as the designs of the two or more products must perform 

well together to create any demand synergy.  In offering a bundle to a retailer the 

manufacturer should be mindful that the offering will likely cannibalize from two 

different product categories. 

Cannibalization – When a vendor introduces a new product that decreases 

demand for an existing product of the same vendor cannibalization of the existing 

product occurs (Kotler, 2002). 

Channel – A channel is a conduit by which goods or services are transferred from 

the producer to the customer (Coughlan, 2001).  For this dissertation, retail channels are 

explored where manufacturers use intermediaries (retailers) to transfer their goods to 

customers. 
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Choice (Demand) Model – Choice or demand models predict the demand for a 

product for a particular market or segment through the comparison of its utility to all 

other products available in the assortment (competing products) (Lourviere et al., 2004). 

Conjoint Analysis – A methodology for utility function estimation that relies on 

the comparison of hypothetical product profiles by potential customers.  The results of 

customer scoring, ranking or rating of the profiles are evaluated with a statistics package 

to estimate utility for individual attributes of a product which can in turn be used to 

obtain the overall utility for all attributes and based on choice model used to design or 

position a product (Green and Srinivasan, 1990). 

Duopoly – a special type of oligopoly where only two producers exist in one 

market. 

Exclusive (exclusive channel) – a strategy where a manufacturer uses only one 

reseller or retailer for his products (Moner-Coloques, 2006).  

Games or Game theory– refers to a broad array of microeconomic techniques 

used to analyze interactions amongst decision makers (Osborne and Rubinstein, 1994).   

In this dissertation competition for profitability of firms is modeled as game amongst 

non-cooperative players. That is, players do not form coalitions are collude to raise prices 

but rather compete to maximize their individual profitability.  Thus we are interested in 

non-cooperative games.  Additionally, the games are modeled under the assumption of 

“perfect information”.  Perfect information implies that that all players know the state of 

nature.  For example, all manufacturers and retailers know the preferences of customers 

with certainty.  Additionally, perfect information implies that all players know that the 

other players know the state of nature (consumer market in our case) and vice versa.     
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Monopsony – A single customer exists for a service or product.  This is similar to 

the situation where a single producer or manufacturer exists (e.g., monopoly).   

No Choice Option – The no-choice option is the option for customers to choose to 

not purchase any of the competing products.  It is included with a utility value for the no-

choice option in the demand model (Lourviere et al., 2004). 

Nominal Optimum – An optimal value for a deterministic (i.e., without 

uncertainty) optimization problem. 

Oligopoly – a market with only a few competitors (Vives, 1999).  

Price Equilibrium – A price equilibrium is reached when none of the players 

(competitors) has an incentive to change their product’s price: commonly referred to as a 

Nash equilibrium.  A Nash equilibrium is a widely accepted solution to competitive 

games that makes no claim about how the solution is reached only that it is a solution 

reached by rational decision makers taking into account the objectives of his/her 

opponent.  A Nash equilibrium exists under the competitive circumstances frequently 

encountered by manufacturers and retailers.  In games where the player’s profit functions 

are assumed to be continuous and twice differentiable in price it is sufficient to say that a 

Nash equilibrium exists if the profit functions for each player are quasi-concave in own-

price (Osborne and Rubinstein, 1994).  Many profit functions exhibit quasi-concavity and 

for the basic cases of the logit choice model it has been proven that quasi-concavity exists 

(Anderson et al., 1992).    

Rational Decision Maker – A rational decision maker is one that is aware of his 

alternatives, forms expectations about unknowns (e.g., competitor pricing), has clear 
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preferences (e.g., prefers more profit to less) and chooses his action deliberately after 

some process of optimization. 

Robust Optimum – A robust optimum (for a maximization problem) for this 

dissertation will assume the definition that it is a design that with the  highest value that 

does not vary outside of an acceptable objective variation range when the uncontrollable 

(or uncertain) parameters are considered.  For this approach a decision maker must 

specify the acceptable variation range.  See Li et al. (2006) for full implementation 

details.   

Slotting Allowance - A slotting allowance is a fixed payment to a retailer by a 

manufacturer that entices the retailer to carry a product.  This payment offsets the 

retailers risk in committing shelf space to a product with uncertain demand (Lariviere and 

Padmanabhan, 1997), (Sudhir and Rao, 2006).     

Segments – Frequently consumers have heterogeneous preferences as an entire 

market yet can be grouped in to several groups or segments with significant internal 

homogeneity (Kamakura and Russell, 2003).   Segments have utility functions that are 

distinct from one another which provides an opportunity for increased accuracy in 

estimating demand.  For example, one segment of consumers may prefer heavy products 

for their perceived robustness while another segment might prefer light products for 

mobility.  If one just averages the two segment preferences the two extremes (heavy and 

light) could have equivalent utility which cannot provide insight as to which attribute to 

design toward (heavy or light).  In contrast, this is not a problem if distinct segment 

utility functions are used.  For example, when three products already exist in the heavy 

product segment the designer will be able to automatically identify the greater 
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profitability of the light segment which is underserved (fewer products with the light 

attribute exist).   

Utility – Utility is a measure of satisfaction that one derives from a good or 

service (Von Neumann and Morgenstern, 1944).   

Value Proposition – The added benefit of a seller’s product relative to the next 

best alternative (Kotler, 2002 or Donaldson et al., 2006).   The value proposition made by 

a manufacturer to a retailer would be the improved profit for the retailer resulting from 

the improved product attributes.  From the retailer’s perspective an acceptable value 

proposition would result in a greater retailer profit by increasing the retailer’s overall 

market share or by reducing wholesale cost. 

2.3 MULTI-OBJECTIVE GENETIC ALGORITHM (MOGA) 

MOGA is an optimization technique capable of optimizing two or more 

objectives, f,  at one time.  It has the desirable property of being capable of globally 

optimizing non-convex problems with or without discrete design variables (Deb, 2001).  

MOGA will be used in chapters 4 and 5 to simultaneously optimize profit and market 

share objectives for the focal manufacturer.   Like all genetic algorithms, the MOGA is 

population based in that it starts with an initial set of designs (or a population) which are 

successively altered based on a strategy until the best population is found.  As shown in 

Figure 2.3.1 our MOGA implementation proceeds through a few simple steps.  First, 

design variables are generated as candidates to make up the first population.  These 

design variables are encoded and concatenated as binary strings for each instance of 

design variables or “individual” that is a member of the population.  Each individual is 

evaluated by an objective function call.  This is referred to as “simulation” in Figure 2.3.1.  
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Once the objective values are known for the population the individuals can be ranked in 

terms of performance.  This is known as fitness assignment or evaluation which is 

performed using a non-dominated sorting algorithm (NDSA) (Deb, 2001).  Consider 

Figure 2.3.2 which is the minimization of two objectives f1 and f2 .  Using NDSA, the 

purple dots are ranked lower (better) than all blue dots.  Essentially, the algorithm ranks 

lowest (best) the designs that no other design can claim to be better with respect to all 

objectives.   

The best ranked points are removed from the population and the NDSA is run 

repeatedly until all points are ranked.  Each time the NDSA loops through the population 

the rank index increases by one which means successive designs are ranked (worse) as 

they are selected by the NDSA.     

Once all points are ranked fitness assignment or evaluation is complete.  In the 

next two steps (Figure 2.3.1) after fitness assignment a new population is created.  One 

approach (as employed in this dissertation’s MOGA) is to partition the current population 

in to dominated and non-dominated designs.  The non-dominated designs and possibly 

more low ranked designs are copied to elite fractional space of the population to preserve 

the best members of the current population.  The remaining population members are 

generated using mutation or crossover functions with non-dominated and dominated 

designs as parents.  This mutation (flipping chromosome bits) and crossover procedure 

(swapping binary chromosome sections) guarantees that some offspring retain some of 

the non-dominated parent’s chromosome and can even improve upon the parent’s 

performance depending on the outcome of the mutation. Since the process is random it is 

also possible to have two dominated parents mate and create non-dominated offspring.     
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Once the new population is developed and sent back to the simulation stage for 

evaluation one generation has passed.  The process is repeated until a stopping criterion is 

met.  The stopping criteria can be a number of generations or a geometric evaluation of 

whether the Pareto Frontier (best ranked designs) is still getting better relative to a 

reference position in objective space.   The approach is implemented in Matlab’s genetic 

algorithm toolbox (Matlab, 2007) and uses the feasible over infeasible approach (Deb, 

2001) for constraint handling.  That is during fitness evaluation infeasible designs are 

ranked worse than all feasible designs regardless of their objective function performance.   

 

Simulation

Current population of designs

Elite designs Offspring
Next population of designs

Fitness evaluation

Code designs

Dominated
designs

Non-dominated
designs

 

Figure 2.3.1: Flowchart of MOGA in One Generation  
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f1

f2

   

Figure 2.3.2: Solutions to Multi-Objective Problem 

2.4 SUMMARY 

This chapter has provided an introduction to background economics and 

marketing material that may not be familiar to some engineers.  These definitions will be 

used throughout subsequent chapters in the development of our multidisciplinary 

approach.  Additionally, MOGAs were described briefly because they are used 

extensively in Chapters 4 and 5 to deal with multiple objectives simultaneously.  MOGAs 

are also ideal for solving discontinuous objective functions with discrete design variables 

such as those frequently encountered in product design.   

In the next chapter the channel design optimization problem will be tackled 

considering uncertainty in end customer preferences but will be limited non-strategic 

competition in terms of wholesale and retail product pricing.  That is prices are developed 

from a firm level analysis of margins rather than a game theoretic approach as presented 

in Chapter 4. 
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CHAPTER 3:      ENGINEERING PRODUCT DESIGN 

OPTIMIZATION FOR RETAIL CHANNEL ACCEPTANCE 

Significant recent research has focused on the marriage of consumer preferences 

and engineering design in order to improve profitability.  The extant literature has 

neglected the effects of marketing channels which are becoming increasingly important. 

At the crux of the issue is the fact that channel dominating retailers, like Wal-Mart, have 

the ability to unilaterally control manufacturer’s design decisions as gatekeepers to the 

consumers or market.  In this chapter, we propose a new methodology that accounts for 

this power asymmetry and will be used by all subsequent chapters.  A chance constrained 

optimization framework is used in this chapter to model retailer acceptance of possible 

engineering designs and accounts for the important effect on the profitability of the 

retailer’s assortment through a latent class estimation of demand from conjoint surveys.  

The approach allows the manufacturer to optimize a product design for its own 

profitability while reliably ensuring that the product will make it to market by making the 

retailer more profitable with the addition of the new product to the assortment.  As a 

demonstrative example, we apply the proposed approach for product design selection in 

the case of an angle grinder. For this example, we analyze the market and are able to 

improve expected manufacturer profitability while simultaneously presenting the 

designer with tradeoffs between slotting allowances, market share, and risk of retailer 

acceptance.   

Section 3.1 provides the introduction and motivation for designing for retail 

channel acceptance along with a review of the extant research of integrated engineering 

and marketing design models.  An overview of the framework that is used to tackle the 
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problem multidisciplinary problem is provided in Section 3.2.   Sections 3.3 and 3.4 

model the decision criteria of the retailer and manufacturer respectively while Section 3.5 

provides a demonstration example that will be used throughout this dissertation.  Section 

3.6 provides analysis and discussion of the approach and conclusions are provided in 

Section 3.7.   

3.1 INTRODUCTION 

Manufacturers have traditionally focused on consumers’ preferences as a strategic 

guiding light for designing successful products.  The recent development of the 

“superstore” and strong retail channels has rendered this consumer-centric paradigm 

somewhat inadequate.  In an expose (Frontline, 2004) of Wal-Mart business practices the 

question was asked “Is Wal-Mart good for America?”  To answer this question one must 

delve into the changes brought about by massive consolidation of retail storefronts by 

companies like Wal-Mart, Target and Home Depot.  The changes are sweeping to say the 

least.  One salient example exists in the lawnmower product category: 

Americans now buy more than 8.5 million push and riding lawn mowers a 

year – and they buy more than 70% of them at Wal-Mart, Home Depot, 

and Lowes.  Just twenty years ago 80 percent of lawn mowers were sold at 

independent retailers. 

     The Wal-Mart Effect (Fishman, 2006) 

The answer to the Frontline’s question largely depends upon whether or not you 

are a consumer, a producer (manufacturer) or competing retailer.  Consumers have 

benefited tremendously from reduced prices (8-27%, Singh, 2006), competing small 

retailers have obviously been negatively impacted or even driven out of business but the 
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less obvious affect is that manufacturers have less market power and must take into 

account strategic dominance of these retail players to gain access to consumers.   

This change in power over the last 20 years amounts to a shift from “push” to 

“pull” production (Frontline, 2004).   Traditionally manufacturers operated in a push 

mode where they designed products they determined consumers wanted and tried to 

convince or “push” retailers to carry the product.  This worked for a large part of the 20th 

century when manufacturers were relatively large compared to the small retail stores that 

carried their products.  The aptly named “pull” approach is a reversal of roles where the 

retailer partially dictates design requirements.  The retailer “pulls” in products based on 

their own objectives rather than entirely making the decision base on the desires of end 

customers.  The retailer still makes an assessment of what the consumer wants to stay 

competitive but, in a way, insidiously arranges assortments to maximize retailer profits 

rather than customer utility.  Thus the “pull” paradigm as discussed in this chapter 

amounts to a retailer profit focus vs. a focus totally on consumer utility.   

As mentioned in the Chapter 1, modern retailers have grown to such 

disproportionate size compared to their supporting manufacturers that one should expect 

a paradigm shift from the push to pull production to persist.   An obvious conclusion 

from massive retailer revenues present in Chapter 1 (Table 1.1.1) is that market power or 

control is derived from these revenues.  Given this position of power, the manufacturer 

must admit (perhaps grudgingly) that the retailer’s concerns ought to be taken into 

account in the manufacturer’s design decision process.  The retailer and manufacture both 

have the customer’s interests in mind but have conflicting objectives to maximize their 

own profits while serving the customers. These conflicting objectives put them on 
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adversarial positions. Thus if the manufacturer is hoping to maximize profits, he should 

realize this and try to co-opt the retailer by taking his considerations into account while 

serving the ultimate market (consumers).  This is our purpose in developing this chapter.   

It is generally agreed that retailers are profit maximizing entities who make 

decisions on which manufacturer products to carry based upon the availability of shelf 

space and the effect on their current assortment (Simpson et al., 2001).  Additionally, the 

channel controlling retailers can be influenced by human relational factors, and a myriad 

of manufacturer side incentives such as advertising or slotting allowances (Gilliland, 

2004).  Because as much as 90% of all new products fail (FTC, 2001), slotting 

allowances are offered by manufacturers as a risk mitigation feature for retailers.  Much 

of the business literature that has analyzed manufacturer/retailer relationships has 

concluded, with an almost obvious assertion, that while many of the factors are 

important, no single factor is as important as the short term profitability of the product 

selected to be carried by the retailer (Wagner et al., 1989, Shipley, 2001).  

In nearly all cases of retail environments and especially with retailer dominated 

channels, shelf space is finite (with the notable exception of online merchants).  It is 

therefore important for a manufacturer to evaluate his value proposition to the retailer 

(i.e., relative improvement for the retailer’s product line from a profitability viewpoint) 

within the context of the retailer’s assortment in order to assure channel acceptance 

(Simpson et al., 2001).  A product offering that completely cannibalizes (captures market 

share from) an equivalently profitable product will be poorly received.  In contrast, an 

unrepresented product (that has negligible cannibalization) with somewhat less demand 

or margin can be well received and added to the product category vice replacing an 
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existing model.  A retailer will add a product without replacing a competitor when shelf 

space is valued at less than the candidate product’s value proposition.  That is, the 

additional shelf space dedicated to the new product creates more profit than alternative 

products regardless of category.  Thus the manufacturer must ensure that his product 

makes the assortment more profitable than the existing assortment by supplanting a less 

profitable product or in fitting a niche.  This can be done by convincing some of the 

retailer’s customers, who currently are not buying any product in the category, to buy the 

new product (McIntrye, 1999).  We take the effect of the retailer’s assortment into 

account in our model of the retailer’s decision process using preferences of customer 

segments in the market, identified through a latent class preference (Section 3.3.4).    

The integration of marketing and engineering design is a burgeoning field, yet no 

model to date adequately addresses the role of the channel retailer as a gate keeper for the 

market (Luo, 2005).  Recent research has explored the interaction of collected marketing 

data and realistic engineering design constraints, e.g., (Li and Azarm, 2000, Wassenaar 

and Chen, 2003, Wassenaar et al., 2005, Michalek et al., 2005, Georgiopoulous et al., 

2005, Cooper et al., 2006, Besharati et al., 2006), to find an optimal solution for a 

financially oriented objective function.  For instance, Wassenaar and Chen (2003) and 

Wassenaar et al. (2005) use demand modeling or discrete choice analysis based on 

customer information (surveys) in the design of a universal motor.  Georgiopoulous et al. 

(2005) use a simple demand model for resource allocation and production capacity in the 

design of products.  They argue persuasively that “engineering decisions do not take 

place in a vacuum” and “economic, investment, and engineering design decisions affect 

each other implicitly or explicitly”.  While the reported approaches have been 
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improvements in the internal coordination of the manufacturer’s engineering design and 

marketing objectives they neglect to account for the retailer’s control of market access to 

end customers.  Our method is distinct in that we incorporate the concerns of an 

externality: the retailer.   

The objective of this chapter is to find product design solutions with maximum 

profit for a manufacturer consistent with previous work but also account for the growing 

importance and risk associated with the channel retailer.  We propose a manufacturer 

profit design optimization framework that treats customer segment preferences 

probabilistically in predicting retailer product acceptance.  A chance constraint that 

focuses on improving retailer profit in the face of uncertain customer preferences is 

employed to that end together with other engineering design constraints.   

3.2 BOTTUM-UP DESIGN FRAMEWORK 

The model we developed incorporates the channel power of a strong retailer 

through a bottom-up approach where a detailed engineering design module provides the 

foundation for marketing and cost estimating modules.  In actual industrial practice, 

marketing executives of the firm frequently select a target design for a product based on 

market research without regard to specific knowledge of the impact on engineering 

design.  We term this a naïve top-down approach because customer level product 

attributes are simply selected and passed down to the engineers to achieve with only 

occasional feedback.  It should be noted that there are top-down approaches (e.g., 

Waterfall in: Verner and Cerpa, 1997), Analytical Target Cascading (ATC), (Michalek et 

al., 2005), and others (Kumar, et al., 2006) that are not naïve in that they take into 

account multiple stages and feedback (waterfall) or multiple discipline objectives and 
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constraints with repeated feedback (i.e., ATC) or even multiple products in a family 

considering cost and manufacturing synergies (Kumar et al., 2006).   

While a naïve top-down approach is simple to understand and fits the hierarchical 

structure of many firms it has the deleterious effect of dictating high level attributes that 

may not be feasible (in terms of engineering design) or cost effective as cost is dependent 

principally on the engineering design.  Take for example, a firm executive that dictates 

that a new angle grinder must be extremely light and powerful and his conjoint studies 

suggest that a 1-lb angle grinder with an amp rating of 30 amps that costs less than all 

other products on the market would capture a large market share.  Such a target would 

not be feasible in the engineering design domain and also unachievable in the cost 

domain.  The only recourse in a naïve top-down approach is for the firm executive to 

guess which product attributes might be feasible and also a cost effective design.  Clearly, 

the naïve top-down approach can not approach optimality in terms of firm profit for these 

weaknesses.  ATC is an alternative top-down approach that with considerable additional 

complexity in sub-discipline coordination may be capable of performing such an 

information flow (top to bottom) with an optimal result. 

In contrast, our method begins at the engineering level or the lowest level 

decisions (e.g., selecting armature diameter instead of power output).  Unlike the naïve 

top-down approach the bottom-up approach (Figure 3.2.1) as used in our model is 

capable of incorporating the marketing models as a portion of the mapping that 

transforms engineering design variables, x, into product attributes, y, and to utility, u, and 

finally market share, m. Additionally, costs, C, are dependent upon the engineering 

design variables.  As such, the bottom-up approach allows the firm to develop a 
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generalized profit model which can be optimized and is completely dependent on 

engineering design yet incorporates the externalities of customer preferences and 

competitor offerings.  

Ultimately, the choice between a top-down and bottom-up approach may be most 

dependent upon the maturity of the product category in question and the commitment of 

the firm to innovation.  For fledgling product categories with a wide range of expansion 

and innovation possibilities the top-down approach may retain greater flexibility in 

simply setting performance goals at the top-level and allowing new sub-discipline models 

and options to be integrated as they become available.  For mature industries with well 

known costs, the bottom-up approach provides an efficient and logical method to quickly 

translate engineering design attributes into an estimated market share and profit.   

In the broadest sense, this is exactly what our model does but with the additional 

concern of satisfying the retailers profitability concerns (Figure 3.2.1).  It takes the inputs 

of engineering design variables x, conjoint surveys (customer utility estimates), and 

channel retailer shelf surveys (competitor product attributes) and outputs designs x that 

are acceptable to the retailer and provides optimal profits for the manufacturer.  The 

retailer’s decision is whether or not to carry a product which is of significant concern to 

the manufacturer as this determines market access in a highly consolidated retail market.   

This decision by the retailer is represented with a decision node near the top of Figure 

3.2.1.  The retailer decision is supported by the marketing module and takes into account 

the effect of a new product introduction on all products in the assortment.  The 

manufacturer’s decision of which product to produce or to what levels should design 

variables x be set is more complicated and influenced by feedback from the engineering 
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module, marketing module, and the cost estimating module.  The entire system is 

controlled by an optimization algorithm which in this case is single objective – 

manufacturer expected profit.  The latent class model (Kamakura and Russell, 1989) will 

compute the customer segment preferences prior to the optimization using conjoint 

surveys as an input and the number of segments defined by the user.  Thus the relative 

utility of a trial design will be readily known and as a consequence so will market share 

and profit.   

Engineering design (the selection of x) is the foundation of this approach although 

there are a number of intermediate steps as depicted in Figure 3.2.1.  Intermediate 

variables that are functions of design variables are denoted with an asterisk (*) in the 

nomenclature section of Chapter 1.  Each of the steps depicted in Figure 3.2.1 and the 

variables displayed will be explicated in detail in subsequent sections.  The overall 

objective of our formulation is to maximize manufacturer profit through the selection of 

engineering design variables x and a manufacturer’s suggested retail price MSRP.  The 

design space is bounded by a chance constraint that describes the probability of retailer 

acceptance as well as deterministic engineering constraints (e.g., heat flux, stress, etc.).  

We develop a model for the retailer’s product acceptance decision as a chance constraint 

in Section 3.3 and return to the manufacturer’s objective in Section 3.4.    
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Figure 3.2.1: The Bottom –Up Framework 
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3.3 THE RETAILER’S PRODUCT ACCEPTANCE DECISION 

We begin our modeling process of retailer acceptance of products, which will act 

as a constraint for the manufacturer’s problem, with several simplifications.  First, we are 

interested in a channel environment where a single or a few dominant retailers hold the 

majority of the channel power.  Singular dominance for many product categories in many 

regions of the United States is very much the case with Wal-Mart (frequently referred to 

as a monopsony).  Signs of slightly more dispersed channel power asymmetry also exist 

in the power tool industry (Home Depot and Lowes) and the consumer electronics 

industry (Best Buy and Circuit City).  The centralized power enjoyed by these retailers is 

a major concern for manufacturers and can result in a “produce/not produce” decision 

based solely on the acceptance of the dominant retailer.  As a result, we model using Eq. 

(3.1) the channel decision maker as a chance constraint (Birge and Louveaux, 1997) on 

the manufacturer’s design selection problem, where the left side of Eq. (3.1) computes 

the probability P of the value proposition ψ being greater than the switching cost 

threshold b.  To satisfy this constraint, the probability computed on the left side must be 

greater than the acceptance level α specified by the designer:  

           ( ) [ ]10,∈≥≥Ψ ααbP          (3.1) 

The probability of acceptance can be selected by the designer to determine what type of 

design will satisfy the retailer α% of the time since the retailers actions cannot be known 

with certainty.  Also, one can solve for α if a product design (including MSRP) is already 

known.  Such a constraint can be thought of as being similar to a traditional reliability 

constraint where, for example, a beam of design x1 will fail with a probability of (1- α)% 

given the uncertainty in loads and beam characteristics. 
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Frequently, in the literature, it is mentioned that retailers act on relational factors 

as mentioned previously.  The relationship with the various manufacturers’ sales people 

would be an example.  The switching cost threshold, b, can be used to take this into 

account along with the decision maker’s personal aversion to change (Simpson et al., 

2001).  A risk neutral retailer would require a probability of acceptance marginally above 

50% in order to justify switching to the new assortment.  For our analysis we will 

examine various levels of retailer acceptance probability α.  Manufacturers would 

obviously prefer that the dominant retailer will reliably accept their design and develop 

product designs to that end.    

3.3.1 COMPUTING THE RETAILER VALUE PROPOSITION 

The manufacturer’s value proposition is the means by which it can convince a 

retailer to carry its product. The value proposition ψ is defined as the amount by which 

the proposed product offering will improve the retailer’s profitability.  It is a critical 

component of the acceptance criteria established in Eq. (3.1) and the only means by 

which a manufacturer can overcome the indifference of the retailer or the switching cost 

threshold.  An assumption is made that the retailers evaluate all products within the 

context of the retail assortment.  The manufacturer takes the retail assortment into 

account in trying to convince a retailer to carry their product.  A model of the value 

proposition is shown in Eq. (3.2): 

ON ππ −=Ψ       (3.2) 

The profits of the new and previous assortments, πN and πO, can be decomposed 

into several components as we refine our model. 
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The contribution of each product, i=1,…,n, to the retailer’s profit is the product of market 

share, mi, market size N, and retail margin (Pi-Wi).  The demand variable m is estimated 

with the latent class model, see Section 3.3.4.  Summing the contribution of the n 

products in the assortment is the retailer’s entire profit for the new assortment, πN. Also:  
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−=
1

π          (3.4) 

Where for the prior assortment profit, πO, we sum the contribution for the p prior 

products just as we did for the original assortment.  Essentially, the manufacturer is 

attempting to convince the retailer that the new assortment n will be more profitable than 

the old assortment p through this value proposition. 

3.3.2 RETAIL MODELS WITH SLOTTING ALLOWANCES 

In general, a slotting allowance is a monetary incentive offered to a retailer when 

a manufacturer knows little about the demand for a new product (Lariviere and 

Padmanabhan, 1997), (Sudhir and Rao, 2006).    Essentially, the manufacturer guarantees 

an initial fixed payment (slotting allowance) to the retailer in order to obtain acceptance 

and therefore shelf space. Retailer acceptance models that consider slotting allowances 

are relatively sparse in the literature.  Lariviere and Padmanabhan (1997) and Desai 

(2000) develop deterministic models where manufacturers set prices and slotting 

allowances first and then the retailer’s decision is developed as a subsequent profit 

maximization model.  In contrast Shaffer (1991) and Chu (1992) (as noted by Sudhir and 

Rao, 2006) develop deterministic models where the retailer sets an optimal slotting 

allowance policy which is substituted into the manufactures profit maximization model.  
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Richards and Patterson (2004) develop a unique stochastic model where the value of a 

new product and slotting allowance as a real option with only product returns modeled as 

Brownian Motion/Poisson or a jump diffusion process. 

Our approach (like Sudhir and Rao, 2006; Lariviere and Padmanabhan, 1997 and 

Desai 2000) is to add the slotting allowances to the value proposition in the retailer’s 

decision model:  

( ) α≥≥+Ψ bAP                              (3.5) 

Eq. (3.5), is modeled as a chance constraint (i.e., stochastic constraint) and takes into 

account the multi-dimensional uncertainty in segmented customer preferences.  These 

uncertain customer preferences result in uncertain demand levels and are thus a critical 

portion of the value proposition in Eq. (3.5) (See Section 3.3.3 for implementation 

details).   

Slotting allowances are interesting in the context of a chance constraint as in Eq. 

(3.5) in that the slotting allowance itself is a deterministic quantity that can be used to 

offset increased uncertainty in the value proposition for the retailer.  Although empirical 

information about slotting allowances is scarce (Sudhir and Rao, 2006) our analytical 

interpretation of slotting allowances as a one time offset to retailer risk in accepting new 

products is consistent with the literature (Bloom et al., 2000; Sudhir and Rao, 2006; 

White et al., 2000).  A variety of slotting allowance and product offering combinations 

satisfy the same constraint which we discuss fully in Section. 3.6.2. Manufacturers can 

use such a constraint to evaluate potential offerings of design variables.     
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3.3.3 SOLUTION TO THE FULL RETAILER MODEL 

As mentioned previously (Section 3.3.2) our method is unique in its approach to 

modeling the retailer’s decision under uncertainty although probabilistic and reliability 

constraints are frequently used in engineering design (Du and Chen, 2004, Zou and 

Mahadevan 2006).  Specifically, we take into account in engineering design the uncertain 

utility that customer segments will assign to all preferences, not just rate of return as in 

Richards and Patterson (2004). We demonstrate the implementation of these uncertain 

preferences with the latent class model in this section and how the risk can be mitigated 

by a slotting allowance.  To understand the mechanics of evaluating slotting allowances 

in light of this risk, it is useful to combine the previous equations for an aggregate view 

of the retailer’s constraint: 
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We can simplify the above equation prior to finding the deterministic equivalent 

of the chance constraint. For example, through the use of a representative retailer’s 

annual report a retailer’s margin can be assumed (e.g., Home Depot: 37%), which is 

equivalent to the quantity Pi-Wi written as GMRetailer×Pi.  Using the prior market’s known 

product offerings, we can compute the prior assortments profit πo using market shares for 

m j as: 
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Initially we assume that the manufacturer is interested in only one channel 

retailer, has decided against slotting allowances, and assumes negligible switching cost so 

that the chance constraint can be further reduced to:  

( ) απ ≥
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i
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At this point it is useful to apply the well known result (Charnes and Cooper, 

1963; Vajda, 1972; Birge and Louveaux, 1997) for developing the deterministic 

equivalent of a chance constraint which assumes that random variables are normally 

distributed.  (However, even if this normal distribution assumption does not hold, it is 

possible to find a transformation that makes the random process approximately normal 

(Albada and Robinson, 2007).) Consistent with the normal assumption, the market share 

mi is assumed to be stable and normally distributed random variable. The mean for each 

products market share is calculated as:  

     ( )ii mE=µ       (3.9) 

It is assumed there will be some covariance amongst the product market shares so 

a variance – covariance matrix is developed through Monte Carlo simulation of uncertain 

customer utility estimates as explained in Section 3.3.4.  This variance-covariance matrix 

is used to calculate the overall standard deviation of the jointly distributed random 

variables where: 
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i and j are the column and row indices of the variance-covariance matrix.  The variance 

makes up the diagonal elements and the covariance terms make up the off-diagonal 

elements of the variance-covariance matrix.  All variance and covariance terms are easily 

estimated using Excel’s built-in variance and covariance functions and the latent class 

model developed in Section 3.3.4.  Taking the norm-inverse (F-1) of the resulting 

standard deviation and the probability complement, the chance constraint takes the form 

(Charnes and Cooper, 1963):    
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We assume that the competing manufacturers maintain their current pricing 

levels.  In reality, some of the manufacturers will respond to the new product by adjusting 

their value proposition.  Generally, for directly competing products, the wholesale price 

will go down making the retailer’s profit margin much more attractive for the entire 

assortment. This reduction in competitor prices actually aids the attacking manufacturer 

in strengthening his value proposition by increasing the right side of the chance 

constraint, Eq. (3.14).   It is important to note that it has been observed that wholesale 

prices can increase under increased competition but this is not the norm (Berstein and 

Federgruen, 2003).  We do not adjust pricing for competing products in our model for 

tractability but are able to provide a conservative and appropriate estimate of retailer 

acceptance through the use of the chance constraint.  This is a significant improvement 

over deterministic models and is in keeping with the general perception that slotting 
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allowances are offered to mitigate the retailer’s risk.  Additionally, we consider risk 

related to uncertain customer preferences which have not been modeled stochastically 

with slotting allowances.    

3.3.4 ESTIMATION OF PRODUCT DEMAND 

The latent class approach (Kamakura and Russell, 1989) recognizes that there 

exists in the market distinct latent segments of consumers who use different choice 

criteria and that the accuracy of market share can be improved through this consideration 

of heterogeneity in preference modeling. The segments for the latent class approach are 

independent of demographics.  Customers are grouped based on the similarity of their 

preferences for the various features that make up the power tool rather than ethnicity, 

gender or socio-economic backgrounds.  For example a segment of consumers shopping 

for an angle grinder may prefer low weight models that by design are also usually lower 

in amperage.  This segment could be made up of hull technician demographic (typically 

grinding fiberglass hulls overhead) and the DIY (Do-It-Yourself) single female who may 

want, for instance, a light tool for furniture paint stripping.  The latent class model groups 

individuals based on similarity of their preferences (i.e., both demographics prefer a light 

tool) and estimates the overall size of the segments based on a least squares fit of the 

collected conjoint data.  Additionally, to minimize errors in estimating customer 

preferences and maximize the use of marketing resources, conjoint experiments can 

efficiently be developed to reduce the number of experiments necessary to achieve 

acceptable levels of error by as much as 50% (Huber and Zwerina, 1996).   
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In order to estimate a given product’s share of a segment using the latent class 

approach we sum up utilities u of the j attributes of product i within the segment 

(Kamakura and Russell, 1989): 
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                  (3.15) 

A piecewise linear interpolation is assumed for all non-integer attributes in calculating 

utility. 

The same procedure is performed for each of the n competing products 

(assortment). We are able to estimate the segment share of product i in segment k while 

taking into account the utility of the no choice (or no purchase) option Unc: 
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This is one of the key steps in developing a model that adequately addresses 

assortment in the channel retailer situation.  It should be obvious now that as a new 

product is introduced that has different attribute levels than the existing assortment the 

probability of selection is altered for all products. It is worth noting that b in Eq. (3.5) can 

also be used to represent the value that the retailer places on an additional unit of shelf 

space.  In the case where a significant portion of the population is underserved (i.e., 

prefer the no choice or no purchase option) it may be advisable to design products that 

the retailer may add to the assortment instead of displacing an existing model.  We 

suggest the additional space can be analyzed by setting the value b equal to the estimated 

value of the shelf space.  This approach is necessary because the out-of-category product 

currently occupying the shelf space will not affect the in-category market share mik and 
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therefore the value of the shelf space must be accounted for outside of the market share 

computation. 

The process in Eq (3.16) is performed for each of the segments k for the given 

assortment of products.  The total market share (%) of a given product is computed from 

the segment size S (%), market share in each segment mik (%):           

                 ∑ ×=
k

ikki mSm      (3.17)                  

In order to take into account the stochastic nature of the utilities it is necessary to 

add a random element ε to the utility function. 
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The final distribution of mi is used in the chance constraint and is estimated with 

Monte Carlo simulation of each attribute j, in each product i, in each segment k.  Each mik 

is the average of the simulations after completing Z iterations of Eq. (3.16) with point 

estimates from Eq. (3.18).  Thus the number of simulated attribute utilities necessary 

Sims is the product of Monte Carlo iterations Z, the quantity of products i, the number of 

segments k and the number of attributes j:  

         kjiZSims ×××=                             (3.19)       

3.4 THE MANUFACTURER’S DECSION 

The manufacturer develops products within a strategic context.  This is significant 

because designs that are only profitable in the short term may not produce lasting 

competitive advantage (Porter, 1985).  There are many methods for evaluating the 

strategy of a manufacturing firm in the strategic management literature (e.g., Drucker, 

1973, Mintzberg, 1987, Porter, 1996).  We propose a flexible profit maximizing function 
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that allows the manufacturer to pursue a number of strategies depending upon the 

decision making process of the retailer.  Under our model the manufacturer can pursue a 

cost leading (lowest cost), quality leading (highest quality), or differentiation2 marketing 

strategy. 

The manufacturer is concerned with a profit maximizing strategy for a given time 

horizon.  The time horizon for this profit maximization is of critical concern.  For 

example, in many industries it is acceptable to post losses on products to gain future sales 

in the form of predatory pricing (Lindsay and West, 2003).  In addition, it has become 

common for manufacturers to develop a bundling strategy where losses are posted on one 

item in order to tie-in sales on another.  The most frequently quoted example of this is the 

losses on inkjet printers for future profits in cartridges.  And more recently there exists 

examples where manufacturers suffer losses on video game consoles to promote game 

sales.  With some modifications our model should be capable of approaching these 

combined decisions through a generalized profitability model that accounts for the timing 

of revenue through Net Present Value (NPV) analysis as well as the bundling effect by 

using a combination of demand models in the objective function that include the prior 

profitability of unbundled assortments and the new profitability of bundled assortments.  

Bundling and the timing of cash flow are not explicitly modeled in the example problem 

of this work but are proposed as appropriate candidates for extending the approach. 

 As stated earlier we assume that the manufacturer has the intention of 

maximizing profit or shareholder value.  It is well accepted (Grinblatt and Tittman, 

                                                 

2  Differentiation strategy refers to a strategy where a manufacturer offers products that differ from 

competitors along one or more attribute in order to fill a niche that prefers the offered set of attributes. 
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1998), (Cantor and Lippman, 1983) that financial decisions take into account time and 

financial uncertainty.  Most simply put, our objective function is to maximize the NPV of 

profit: 

( ) FlowsCashNPV:MAX      (3.20) 

The development of the manufacturer model based on cash flows is somewhat 

more complex (with the addition of production costs C) but consistent with our analysis 

of the retailer: 
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This representation of the variable cash flow incorporates the fact that the 

manufacturer has to evaluate its production decision within the context of its current M 

offerings or product line.  It would make very little sense for the manufacturer to expend 

the effort to develop a product that cannibalizes another product in his own line that is 

currently profitable.  This model endogenizes the possibility of this cannibalization by 

summing over all products in the product line, N.  We add the effect of time on our 

revenue where WACC is the weight adjusted cost of capital used to discount cash flows 

over T periods: 
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3.4.1 PARAMETRIC PRODUCTION COST MODEL 

Numerous methods for estimating the cost of production exist in the literature.  

Related methods vary from detailed design estimates to novel neural network 

applications. Parametric methods, initially developed by the Department of Defense in 

WWII to estimate the cost of producing additional warplanes, have been the most widely 

used over the last half century and remain so today in government and industry (D.O.D., 

1999).   For example, the most popular software cost estimating technique of the 80’s and 

90’s is parametric and is still in use:  Constructive Cost Model or COCOMO (Boehm, 

1981).   

A detailed estimate is far too expensive and cumbersome for the early stages of 

design and can limit the design space (Scanlan, 2002) whereas parametric methods are 

quick, efficient, and accurate so long as sufficient historical information is available, 

production methods have not changed, and an extremely refined design resolution is not 

necessary.  The product of interest in this article exists in a mature industry where 

production techniques are well-established and significant historical and current market 

data exists.  Parametric methods are suitable in this instance as our product category is 

essentially a slightly differentiated commodity where all producers have similar cost 

structures.  Parametric estimation assumes that the commodity production techniques are 

well developed (nearly optimized already), that all producers are similarly competent, 

and that the economy of scale has already peaked due to large product volume (1 million 

units or more for our producer).  Costs are simply then a function of higher level product 

attributes.  This allows the designer/estimator to base cost relationships on engineering 

performance attributes such as: weight, speed, size, etc. (D.O.D., 1999).  These are 
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similar characteristics to the project level parameters in the widely validated COCOMO 

(Boehm, 1981).  That is not to say that the cost model and subsequent design 

considerations could not be made better with the inclusion of learning curves, and factors 

of scale but rather the parametric approach is sufficient for this application. 

Additionally, under a scenario where a manufacturer is first entering a new 

product category it is unlikely that s/he will have access to detailed production cost 

estimates or even be inclined to expend resources in developing cost estimates without 

first developing a strategy.  Parametric estimation is particularly well suited for this 

situation as performance characteristics and attributes for existing models in the product 

category are readily available.  Retail prices are the most readily available cost data for 

retail products (as opposed to wholesale prices which are confidential) and with a little 

effort: wholesale and production costs can be estimated using constant retail and 

wholesale margins.  For this chapter we begin with a dominant channel retailer’s 

financial performance and compute its gross margin GMRetailer from its sales and cost of 

merchandise COM: 

SALES
COMSALESGM tailer

−
=Re                      (3.23) 

We use this gross margin to discount the retail price of a potential product along 

with an analysis of a manufacturer’s annual report which has a similar structure yet Cost 

of Goods, COG, for a manufacturer: 

SALES
COGSALESGM MFR

−
=                           (3.24) 

These margins determine the percentage of the retail price made up by the 

physical production costs, C: 
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     )1)(1( Re MFRtailer GMGMRC −−=           (3.25) 

This analysis yields a much generalized characterization of production costs 

relative to retail prices that is appropriate for the average product produced by the subject 

manufacturer and sold by the channel retailer.  In order to develop a cost model that 

accurately fits the market characterized by the specific margins of interest we use 

multiple regression analysis (Winston, 2004) to relate engineering performance 

parameters to production cost.  Further details and an example are provided in Section 

3.5.2. 

3.4.2 THE COMBINED MANUFACTURE/RETAILER MODEL 

The combined model for the manufacturer’s decision is then formulated to 

maximize future cash flows based on a latent class market share function and a 

parametric cost model subject to engineering constraints and retailer acceptance: 
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The engineering constraints g(x) are endogenous to the model.   

The simplest scenario is one where the manufacturer offers only one product 

(NPD), and only one retailer exists to sell that product (a very strong channel 

relationship).  Additionally, we make the assumption that the retailer has fixed shelf 

space and that the manufacturer’s product must replace an existing product.  For this 
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dissertation, we assume that consumer preference does not change in time so we know 

that a decision that maximizes profit in the first period will maximize profit in all 

subsequent periods.   

3.5 CASE STUDY APPLICATION 

A demonstration example for our methodology was developed based upon a 

popular consumer product category:  right angle grinders.  These tools are used for in a 

variety of industrial and home settings and provide an excellent example of a product 

with multiple disparate customer segments.  The tool is used for applications ranging 

from cutting high modulus steel to shaping wood and fiberglass products.  We develop 

the latent class estimation of demand in Section 3.5.1, a parametric cost model in Section 

3.5.2, and a detailed engineering model to ensure feasibility in Section 3.5.3.  The 

problem demonstration is optimized using variations of Eq. (3.26) in Section 3.6.   

3.5.1 MARKETING MODEL EXAMPLE:  ANGLE GRINDER 

The latent class segmentation portion of the Sawtooth Software Market Research 

Tools (SMRT) (Sawtooth, 2001) was used to analyze 249 conjoint surveys of angle 

grinders (Figure 3.5.1) in the development of Table 3.5.1.   

 

Figure 3.5.1: 4.5” Angle Grinder Commonly Used for Masonry and Metal Work 

As shown in Table 3.5.1 each segment has an estimate of utility mean (µ) and 

standard deviation (σ) for several possible alternatives of product attributes.  The utilities 
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are normalized by Sawtooth (Sawtooth, 2001) and therefore add up to zero for an 

attribute category.   

 

Segment One Two Three Four 
Share 37.80% 24.80% 12.10% 25.30% 

 µ σ µ σ µ Σ µ σ 
Brand         

W -0.5 0.12 0.5 0.08 2.2 0.11 -0.2 0.05 
X 0.2 0.12 1.1 0.09 -2.4 0.12 -0.2 0.14 
Y 0.8 0.14 0.1 0.12 -1.5 0.15 1.2 0.16 
Z -0.5 0.13 -1.6 0.11 1.7 0.06 -0.8 0.16 

Price         
$79.0 -0.1 0.16 -0.1 0.01 0.0 0.07 0.0 0.12 
$99.0 -0.9 0.13 -1.2 0.04 1.9 0.08 -0.2 0.08 

$129.0 1.0 0.13 1.2 0.07 -1.9 0.09 0.3 0.08 
Amps         

6.0 1.3 0.08 0.5 0.12 -1.5 0.11 -0.5 0.13 
9.0 0.1 0.09 -1.4 0.13 -0.7 0.12 -2.4 0.12 

12.0 -1.4 0.10 1.0 0.15 2.1 0.12 2.8 0.22 
Life (hrs)       

80.0 -0.9 0.10 -0.1 0.12 -4.7 0.07 0.8 0.15 
110.0 1.3 0.11 -0.5 0.08 -5.8 0.03 0.7 0.18 
150.0 -0.5 0.12 0.6 0.11 10.5 0.01 -1.5 0.12 

Switch type       
Paddle 0.4 0.14 0.3 0.10 -3.3 0.04 -0.7 0.13 

TopSlider -1.0 0.19 -0.7 0.12 -3.0 0.04 0.4 0.15 
SideSlider 2.4 0.16 -0.1 0.07 2.5 0.04 0.6 0.05 

Trigger -1.8 0.16 0.4 0.15 3.9 0.03 -0.3 0.15 
Girth         

Small 2.5 0.10 0.7 0.15 1.5 0.02 2.4 0.11 
Large -2.5 0.08 -0.7 0.13 -1.5 0.05 -2.4 0.13 

Weight 
16lbs -2.3 0.06 -0.8 0.07 -0.5 0.03 1.5 0.13 
9 lbs 0.5 0.10 -1.2 0.08 2.0 0.03 0.5 0.03 
6 lbs 1.8 0.17 2.0 0.02 -3.5 0.02 -2.0 0.13 

No Choice -0.2  -0.2  -0.2  -0.2  
Table 3.5.1: Utility Estimates for Four Segments 
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An example of segment shares is shown in Table 3.5.2 for a sample set of 

attributes for 4 existing tools (A to D) and the new product development (NPD) of the 

focal manufacturer:  

 Tool A B C D NPD 
Brand W X Y Z X’
Price ($) $79.00 $99.00 $129.00 $79.00 $101.93
Amps 6.00 9.00 12.00 6.00 6.59 
Life (hrs) 80 110 150 110 110
Switch Paddle Trigger  Side Side  Side  
Girth Small Large Large Small  Small  
Weight (lbm) 5.00 9.00 16.00 5.00 7.2 
Segment % 21.3 0.04 18.9 22.8 36.9 

Table 3.5.2: Example Segment Share 

Customers in Segment One prefer high prices, low amp ratings, small girth, light 

weight, side slider switch etc.  Each of the designs in Table 3.5.2 partially satisfy these 

desires as the designs are truly intended for all segments at once.  Each of the segment 

shares in Table 3.5.2 are dependent upon how well the product fits the segment 

preferences as well as the competing product attributes as the total utility of all products 

forms the denominator in Eq. (3.16).  It is worth noting that negative attributes such as 

the heavy weight and large girth of Tool C can be overcome by positive segment 

attributes such as high price (a signal of quality to some consumers (Daughety and 

Reinganum, 2007, Fluet and Garella, 2002) and the side slider switch. 

3.5.2 COST MODEL EXAMPLE:  ANGLE GRINDER 

Twenty available grinder models were collected from two large retailers that can 

be characterized as channels in and of themselves.  C was computed for each model using 

the margins developed in the preceding paragraphs.  Many characteristics available for 

the twenty models were investigated as explanatory variables for cost, including: switch 

type, amp rating, mass, torque, RPM, body length, etc.  Production cost was set as the 
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dependent variable with each of the characteristics tested as independent variables.  

Conveniently multiple-regression is capable of obtaining β values (see Eq. (3.27)) for 

binary data through the coding of dummy variables.  An example of a dummy variable is 

a “1” for the presence of a slider switch and “0” for not present.  The switch types for the 

grinders were coded as dummy variables in order to determine if a significant cost 

relationship existed between the switch type and production cost.  The model was tested 

for its assumptions using usual diagnostics (i.e., normality test, test of homoskedasticity, 

and tests for independence of error terms and validation of linear assumption) and it was 

determined to be reliable and valid for the application. See Winston (2004), Milton and 

Arnold (2003) or Render et al., (2006) for a detailed review of multiple regression and 

selection of predictor variables.  All variables from Table 1.1.1 were tested with t-Stat, P 

values and R-Squared statistics.  The only two variables that had significance in terms of 

t-Stat, and the corresponding P value were the amps I of the tool and the power to weight 

P/W ratio.  Additionally, the t-Stats for Amps and Power to Weight ratio were 

significantly higher than required for the number of degrees of freedom applicable.  Thus 

the null hypothesis is rejected for Amps and Power to weight ratio yielding a 78.5% 

explanatory value.  The functional form of the regression model is shown below: 

eWPICi +++= )/(210 βββ               (3.27) 

where β1 and β2 are the multiple regression coefficients with values of 3.6160 and 0.1865 

respectively, and the estimate’s intercept β0 is found to be -29.294.  The error in the 

prediction is represented with e.  The ANOVA table for this multi-regression is presented 

in Appendix A. 
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3.5.3 ENGINEERING MODEL DEMONSTRATION: UNIVERSAL MOTOR 

AND BEVEL GEARS 

An engineering model is necessary to produce feasible designs that generate 

product attributes that can be evaluated within the context of the latent class model.  As 

mentioned previously, this chapter explores the design space of an angle grinder.  Several 

existing and validated design models exist for the major components of the angle grinder 

such as the universal motor (Simpson, 1998) and the American Gear Manufacturers 

Association standard for bevel gears (Hurricks, 1994).  We used these design models to 

develop optimal products in concert with the latent class segment model by transforming 

engineering attributes into consumer level product attributes.  The two components of 

greatest interest (motor and bevel gear set) are shown in Figure 3.5.2. 

 

Figure 3.5.2: Engineering Components 
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Pinion pitch diameter Dp (m) 0.009≤ Dp ≤ 0.03 
Current I (amps) 6≤ I ≤ 12 
Gap thickness lgap (m) 0.0005 ≤ lgap≤  0.07 
Stack length L (m) 0.01≤ L ≤ 0.02 
Armature turns Nc (# of turns) 20 ≤ Nc ≤ 300, Nc ∈ Ζ 
Stator turns Ns  (# of turns) 10 ≤ Ns ≤ 200, Ns ∈ Ζ 
Gear ratio r 0.2 ≤ r ≤ 4 
Stator outer radius Ro (m) 0.01≤ Ro ≤ 0.01 
Stator thickness t (m) 0.0001≤ t ≤ 0.1 

Table 3.5.3: Engineering Design Variables 

The engineering design variables x make up the physical characteristics of the 

motor and bevel gear assembly (Table 3.5.3).  These design variables go through a series 

of engineering computations in the process of transforming them to measurable customer 

level attributes used in the latent class model (Table 3.5.4 and Table 3.5.5).  Table 3.5.4 

and Table 3.5.5 develop in a sequential fashion to facilitate the readers understanding of 

computation dependencies. For example, Ar in line two of Table 3.5.4 depends on lr in 

line one.  Those designs that meet the physical constraints (Table 3.5.6) are eventually 

realized as customer relevant attributes (Table 3.5.7).   
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Armature diameter lr (m) lr =2(Ro-t-lgap) 

Armature section Ar (m2) 4/)(A 2
r rl⋅= π

Wrap length lrw (m) Llr 22A r +=

 ρ (ohm-m) 20 awg 0.036 ohms-m 

Wire area Aw (mm2) 20 0.504 mm2 

Arm. resistance Ra (ohms) wrwca AlNR /)(ρ=

Stator resistance Rs (ohms) wrwsa AlNR /)(2 ρ=

Resistance losses Pcopper  )(2
ascopper RRIP +=

Brush coefficient α (volts) α =2  

Brush losses Pbrush  (W) IPbrush ⋅= α

Voltage V (volts) V=120 v 

Power in  Pin (W) VIPin ⋅=

Motor output Pout (W) copperbrushinout PPPP −−=

Density  Steel ρ s (kg/ m3) ρ s = 8000(kg/ m3) 

 ρ copper (kg/ m3) ρ copper = 8900 (kg/ m3) 

Stator mass M s  (kg) soos LtRRM ρππ ⋅⋅−−= ))()(( 22  

Armature mass M a  (kg) sra LAM ρ⋅⋅=

Windings mass Mw  (kg) copperwscrww ANNlM ρ⋅+= )2(  

Motor mass Mm  (kg) wasm MMMM ++=

Motor constant K  π/cNK =

Magnetomotive force ℑ  INs=ℑ

Mean stator path  l c  (m) 2/)2( tRl oc += π

Stator cross section As tLAs ⋅=

Armature section Aa (m2) ra lLA ⋅=

Gap cross section Ag (m2) rg lLA ⋅=

Permeability of steel 
steelµ  steelµ =1000 

Permeability, free space 
oµ  7104 −⋅= πµo

Stator reluctance sℜ  )(2/ sosteelcs Al ⋅⋅=ℜ µµ

Armature reluctance 
rℜ  )/( aosteelrr Al ⋅⋅=ℜ µµ

Air gap reluctance gℜ  )/( gogapg Al ⋅=ℜ µ

Total reluctance totℜ  gastot ℜ+ℜ+ℜ=ℜ 2

Flux φ  totℜℑ= /φ

Torque T (N-m) IKT /φ⋅=

Revolutions per minute N )(/)(549.9 mNTkwPN out −⋅=  

Table 3.5.4: Universal Motor Design Computations 
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The computations in Table 3.5.4 are dependent upon the input of the design 

variables and the inputs of several constants such as the resistivity and cross sectional 

area of 20 awg copper wire.  Looking forward to how our engineering design variables 

will affect the customer level attributes one can see that decisions such as stator diameter 

and stator thickness will invariably affect the overall weight of the tool and the girth, 

which are attributes analyzed in the conjoint study.    

Pinion torque (load RPM)  Tp (N-m) rpPT outp 65004599 /. ⋅=

Gear torque (load RPM)  Tg (N-m) rTT pg ⋅=  
Pressure angle φp °= 20pφ  
Cone distance C (m) ))(2/( pp SINDC φ⋅=  
Face width b (m) b=.008 m 

Gear pitch diameter Dg (m) rDD pg ⋅=  
Tooth loading intensity Fi (N) (/(2 CbDCTF ppi −⋅⋅⋅=

Elasticity factor (Carbon steel) Ze  189=eZ  
Zone factor ZH 2)2(/(4 pH SINZ φ⋅=  
Pinion pitch angle θg )/( CDASIN pp =θ  
Shaft angle γ °= 90γ  

Gear pitch angle θg pg θγθ −=  
Pinion cone depth dv (m) )( ppv SECDd θ⋅=  
Gear cone depth Dv (m) )( gpv SECDD θ⋅=  
Amplification (light/medium shock) 35.1=aK  
Load distribution (precision gears) 2.1=mK  
Geometry factor J J=.25 

Number of pinion teeth N t N t =11 

Module (pinion) m m=D p / N t 

Pinion mass Mp (kg) 4/)( 2
steelpp bDM ρπ ⋅⋅⋅=

Gear mass Mg (kg) 4/)( 2
steelgg bDM ρπ ⋅⋅⋅=

Bevel gears mass Mbg (kg) gpbg MMM +=  
Table 3.5.5: Bevel Gear Design Computations 
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Two design variables are necessary for modeling the bevel gears in addition to those 

already chosen for the motor.  The pinion pitch diameter Dp (m) and gear ratio are 

allowed to vary as design variables and allow for a wide range of gear designs (Table 

3.5.5).  

The engineering constraints g(x) (Table 3.5.6) help avoid the stereotypical 

problem of the marketing domain dictating solutions in the engineering domain that are 

infeasible.  We fuse the two domains in our objective function and the constraints of 

Table 3.5.6 to ensure that the optimal product in terms of manufacturer profit and market 

share is also feasible.  In addition to the constraints used in previous work (Simpson, 

1998, Wassenaar and Chen, 2003) we use several physical constraints to ensure sustained 

operability of the motor such as limiting the magnetic flux B and the heat flux Ks. 

Flux density armature Br (T) TAB ar 5.1/ ≤= φ

Flux density stator Bs (T) TAB ss 5.1)2/( ≤⋅= φ

Flux density air gap Bg (T) TAB gg 5.1/ ≤= φ

Armature heat flux Ks (A/m) 10000≤
⋅
⋅

=
r

c
s l

INK
π

Stator heat flux Ks (A/m) 10000
)(
≤

+
⋅

=
tl

INK
r

s
s π

Length to diameter ratio 5/ ≤GL

Integer turns int, =sc NN

Grinding wheel RPM Nout 10000/ ≤= rNNout

Bending stress σb (Pa) MPaJmFKK imab 145)/()( ≤⋅=σ  

Contact stress σf (Pa) MPa
Dd

DdFKKZZ
vv

vvima
eHf 720

)(
)(
≤

+
=σ  

Armature tip velocity va  )/(3658 smlNv ra ≤⋅⋅= π

Table 3.5.6: Grinder Constraints g(x) 
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Motors are also limited in terms of speed because a mechanical failure of the 

armature wire is possible due to centripetal force.  Also of concern are the grinding 

wheel’s material limitations which are frequently stamped on the wheel as not to exceed 

10,000 RPM.  Serious injury could result as the wheel shatters if the 10,000 RPM is 

exceeded.  The grinding wheel RPM and armature velocity need to be considered 

separately as we have gear ratio, r, as one of our design variables.  Lastly, we employ two 

constraints for the bevel gears to ensure that the contact stress, σf, and the bending stress, 

σb, of the gear tooth do not exceed the, σy, yield strength of the carbon steel.  Numerous 

other calculations were not included as they were never active during the optimization 

search.  Examples include constraints for shear stress in the bevel gear shaft, armature, 

and stator.   

Girth G (m) G=2(Ro+.004(m)) 
Amperage I (Amp) I 
Fixed mass Mf (kg) kgMMM commutarcordf 58.1......=++=

Total mass Mt (kg) Mt=Mbg+Mm+M f 

Table 3.5.7: Customer Level Product Attributes y 

As mentioned previously the girth of the tool and the total mass of the tool are 

important customer level attributes.  We assume a fixed mass for the grinder’s cord, 

commutator, gear shafts, plastic body and 5/8th inch (industry standard) arbor, and safety 

shield.  The weight of 1.58 kg was determined empirically and assumed fixed as 

preliminary calculations show that all of the fixed components were capable of handling 

12 Amp motors.  It is conceivable that one could develop a set of design variables x for 

each of these components and include them in the overall optimization problem.  In this 

section we have shown how the customer level attributes of weight, amperage, and girth 

are dictated by engineering level design variables.   
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3.6 CASE STUDY RESULTS 

The Power Tool Institute (Luo, 2005) estimates the size of the angle grinder 

market to be 9 million units with our channel retailer controlling at least 1/3rd of this 

market or 3 million units.  For comparison an original assortment that included a tool 

from brand W generated an objective function profit of $15.95 Million for the subject 

manufacturer.   Initially, we focus on the case that the market is mature (little incentive 

for advertising), the manufacturer does not consider slotting allowances and s/he has 

already sunk costs into plant property. This type of analysis is demonstrated in Section 

3.6.1.  In Section 3.6.2 we reinsert the slotting allowance A and demonstrate the effect of 

slotting allowances on retailer acceptance of the optimal design generated in Section 

3.6.1.  Comparing the two approaches to reliable acceptance shows that different 

combinations of engineering designs and slotting allowances can achieve the same 

reliability with varying success in terms of profitability. 

For this problem we used 1,000 Monte Carlo simulations Z.  We examine 5 

products with 7 attributes within 4 segments for a total of 140,000 random variables.  A 

deterministic optimization of the model takes approximately 5 seconds but when the 

chance constraint is added the additional computations of 1,000 market shares requires 

approximately 150 seconds.   The mi are computed as before and Table 3.6.1 is an 

example of estimated market shares for the 5 products in the assortment.  

Tool A B C D NPD 

Margin $29.23 $36.63 $47.73 $29.23 $44.03 

Market  19.49% 0.04% 18.67% 12.94% 52.49% 

Table 3.6.1: Example Market Share 
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As mentioned previously the latent class model simulations are used to estimate 

the variance-covariance matrix using Excel’s built in functions.  This matrix and the 

product margin complete the chance constraint.  The Standard Evolutionary Solver 

(Nenov and Flystra, 2003) (a genetic optimization algorithm from Frontline Systems 

Premium Solver) was used with the following genetic algorithm parameters: population 

(1,000), generations (1,000), mutation rate (0.075), precision3 (0.000001), convergence4 

(0.0001).  It is possible to use other optimization algorithms for problems such as this but 

we found the genetic algorithm most suitable because some of the engineering design 

variables are integers and discontinuities exist in the calculation of market share due to 

linear interpolation of utility between adjacent points.  After running the optimization 

problem through the genetic algorithm the manufacturer’s profit improved for the NPD 

(Table 3.6.2) substantially when requiring a 75% probability of satisfying the chance 

constraint. The new product of the profit per unit and the market share increased to 

$13.09 unit which yields a total profit of $39.29M or an increase in total profit of $23.34.   

Tool Brand Price AMP LIFE 
(hrs)

Switch Girth Weight 

Prev. W $89.00 10 80 Side  Small  9.00 

NPD Y $129.00 6 110 Side  Large  8.8 

Table 3.6.2: Previous and New Product Development (NPD) Comparison 

 

 
                                                 

3 Precision – amount of allowed constraint violation for both equality and inequality constraints. 

4 Convergence – a user specified parameter that terminates the problem when 99% of the members of the 

final population are different by less than the convergence parameter in terms of the objective function.  
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3.6.1 TRADEOFFS IN MANUFACTURER’S PROFIT VS. RETAILER’S 

ACCEPTANCE 

In a sense, for this example we have two objectives where the first objective is to 

maximize profit and the second is to ensure meeting our chance constraint with a high 

probability, e.g., the constraint epsilon approach to multi-objective design (Deb, 2001).  

Figure 3.6.1 shows that as we increase the requirement that the chance constraint be met 

with a higher probability the expected profit of the design falls.  This result is expected 

because a higher probability of acceptance constricts the design space more than a low 

probability of acceptance and thus some more profitable designs are pruned from the set.  

It is worth noting that the retailer acceptance constraint was not active at an α level of 

75% but was active for α=[80%, 95%] and no feasible solutions existed for α=99%.  That 

is, there were no designs that could create a 99% probability of retailer acceptance given 

the level of uncertainty in customer preferences.   

A Pareto set of designs (see Chankong and Haimes, 1983, Steur, 1986, Miettinen, 

1999, Deb, 2001) is presented in Table 3.6.3.  Interestingly, although somewhat 

expectedly, we see that designs that are highly profitable yet have lower probability of 

acceptance have similar characteristics.  These designs are characterized by heavy 

weight, large girth, low power, and high prices.  At the other extreme are designs that 

have a very high chance of satisfying retailer acceptance.  The right side of Table 3.6.3 

and Figure 3.6.1 show that very acceptable designs (to the retailer) are lower in price, 

lighter in weight, larger in girth, and are more powerful. A grouping of moderately 

acceptable designs with moderate profit has been identified in the center of Figure 3.6.1.  

This middle group of designs has some attributes that lie between the ranges of the 
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extreme design groups (weight, price, and power).  In apparent contradiction to general 

design trend the middle group is characterized by small girth.  A decidedly non-

quantitative approach was used to group the designs along the Pareto Frontier.  We 

simply looked at the inflection points or where the curvature changed along the Pareto 

Frontier and in conjunction with the high level design trends in Table 3.6.3 with the 

purpose of demonstrating the affect of retail channel constraint on engineering design.   

Profit vs. Probability of Acceptance

$22

$26

$30

$34

$38

$42

75.0% 80.0% 85.0% 90.0% 95.0% 100.0%

Probability of Retailer Acceptance %

Pr
of

it 
$M

Solution Type
Girth: Large
Weight: Heavy
Power:  Low
Price: High

Solution Type
Girth: Small
Weight: Medium to Light
Power:  Low
Price: High

Solution Type
Girth: Large
Weight: Light
Power:  Medium
Price: Med-High

 

Figure 3.6.1: Profit vs. Probability of Acceptance (%)  

The implications of results such as Figure 3.6.1 and Table 3.6.3 are discussed in 

detail in Section 3.7. 
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Objective 
Profit $M $39.29 $38.90 $35.27 $31.08 $25.80 $24.64 $23.73

Probability 
Acceptance (%) 75.0% 80.0% 85.0% 87.5% 90.0% 92.5% 95.0%

Design Variables 
Nc (turns) 150 150 150 150 149 149 149
Ns (turns) 25 18 12 13 23 22 22
Ro (m)  2.2 2.0 1.79 1.83 2.11 2.10 2.108
T(mm) 7.4 5.5 3.6 4.0 6.8 6.7 6.75
Lgap (mm) 3.3 2.0 0.05 0.06 0.06 0.06 0.06
I (amps) 6.0 6.0 6.0 6.44 6.82 7.74 7.88
L (m) 0.143 0.143 0.105 0.067 0.034 0.034 0.034
Gear Ratio (r) 2.00 2.00 2.78 4.00 4.00 4.00 4.00
Pinion Pitch Dp 
(cm) 1.35 1.35 1.35 1.35 1.35 1.35 1.35

Select Attributes 
Price $129.0 $129.0 $129.0 $129.0 $127.4 $118.5 $116.2
Weight (lbm) 8.80 8.11 6.50 5.70 4.99 5.01 5.00
Girth (Large/ 
Small) Large Large Small Small Large Large Large

Table 3.6.3: Pareto Frontier of Designs 

3.6.2 SLOTTING ALLOWANCE SENSITIVITY 

It is also possible to determine a slotting allowance necessary to ensure a specific 

probability of acceptance which precludes the need to change the design.  As an example 

we compute the slotting allowance required to improve our optimal product’s acceptance 

probability (Table 3.6.2 NPD solution) above the initial 75% threshold.  The NPD design 

in Table 3.6.2 is held fixed and the right side of the chance constraint is manipulated by 

adding the slotting allowance A.  The total slotting allowance for the assumed 3M units 

controlled by the channel retailer is graphed in Figure 3.6.2 for reliabilities ranging 75% 

to 99.9%. 



 64

0
5

10
15
20
25
30
35
40
45

75% 80% 85% 90% 95% 100%
Retailer Acceptance Reliability (%)

Pr
of

it 
($

M
)

0
2
4
6
8
10
12
14
16
18
20

Sl
ot

tin
g 

A
llo

w
an

ce
 

($
M

)

Profit ($M) Slotting Allowance ($M)
 

Figure 3.6.2: Effect of Slotting Allowance 

These results will be compared to those of Section 3.6.1 in Section 3.7. 

3.7 DISCUSSION OF APPROACH AND CASE STUDY 

 Based on our case study and through the development of our approach we believe 

there are several important results that might be generalized to the overall issue of 

designing products for retail channel acceptance.  We feel that three primary areas 

provide the greatest insights for design and focus on them for our discussion.  These areas 

are: (1) the importance of customer preferences and the retail assortment on design, (2) 

the impact of retailer acceptance on design, and (3) the considerations of slotting 

allowances along with the firm’s strategic position in selecting a design. 

3.7.1 IMPLICATIONS OF CUSTOMER PREFERENCES AND 

ASSORTMENTS ON PRODUCT DESIGN 

In performing the process proposed in this chapter a multidisciplinary design team 

can present a Pareto frontier of designs to upper management for selection.  Clearly, a 

typical engineering approach of simply finding the Pareto set of designs with respect to 



 65

engineering constraints is not capable of finding these same solutions.  For example, a 

traditional engineering approach would attempt to find design variables that minimize 

cost and maximize performance such as amp rating, power, or power to weight ratio.  

This is all very logical to an engineer to perceive high power ratings, low cost and high 

power to weight ratio as desirable although the most difficult to achieve.  One only needs 

a cursory review of the consumer segment preferences (Table 3.5.1) to see that somewhat 

counter intuitively (to the engineer) many consumers prefer heavier products with lower 

power ratings which do not lie along the engineer’s personal Pareto frontier.  Some 

consumers even prefer a higher price which directly contradicts the downward sloping 

demand curves implemented in Georgiopoulous et al., (2005) and Michalek et al., (2005). 

Beyond the issue of consumer utility not corresponding to an engineer’s utility for 

designs there exists further complications with the assortment and market segments that 

exist. That is to say that, a designer cannot simply characterize an entire markets utility 

function and expect to design an optimal product without considering the assortment.  

Our approach aids manufacturing teams (marketers and engineers) in finding designs that 

take into account the positioning (product attributes) of competitive products and 

automatically obtains solutions that capitalizes on the most profitable segments.  In fact, 

the first solution in Table 3.6.3captures 54%, 0%, 0%, and nearly 97% of segments 1 to 4 

respectively while the last design captures 86%, 3%, 0%, and 42% of segments 1 to 4.  It 

would be nearly impossible for an engineer to identify that a heavy product, with low 

power, large girth and high price best satisfy these segments which are evidently most 

vulnerable in terms of competitor offerings.   
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The problem is further complicated by the fact that segments vary in size S to a 

great degree (see Table 3.5.1).  Integrating the latent class customer segment model or a 

model of equivalent resolution is an appropriate approach to dealing with this 

complexity.  Likewise, without engineering model integration it would be impossible for 

a marketing manager to predict engineering design feasibility as well as the profitability 

of the segment due to a lack of knowledge about cost.  A marketing manager can easily 

propose a set of product properties that are costly to achieve and erode profit yet appear 

to be desirable to many segments.  The equivalent error in the engineering domain would 

be to design for high level product attributes that are desirable to a segment yet without 

regard to the positioning of competitive products (i.e., the segment may be already 

saturated).  Our approach overcomes these problems by integrating the two domains with 

careful translation of engineering design variables to market share and finally to total 

profit. 

3.7.2 IMPORTANCE OF RETAILER ACCEPTANCE CRITERIA TO DESIGN 

Most importantly, our results indicate that one can actually design products with 

greater acceptability to retailers.  We can observe that the design changes significantly as 

greater reliability is enforced between the 75% and 95% range (e.g., the transition from 

heavier, less powerful products to lighter, more powerful products).  The change in 

design is observed for several reasons but they are all related to the enforcement of the 

chance constraint which we attempt to explain.  In positioning the products in Table 3.6.3 

the optimization algorithm will select products that only marginally satisfy retailer 

acceptance.  Two types of designs are acceptable to the retailer.  Those that increase 

profit without increasing uncertainty and those that increase profit enough to offset any 
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increase in uncertainty affecting the chance constraint.  If we remember that the customer 

has a “no purchase” option it should be apparent that uncertain utilities can (in some 

realizations) result in a reduction of the overall market size.   

As mentioned in previous sections, the algorithm presents new products to each of 

the segments for the computation of segment share.  These new products obviously have 

different attributes and it can be observed in Table 3.5.1 that each attribute has a different 

level of utility uncertainty surrounding it.  A design that has a high mean utility might 

also have a greater amount of uncertainty for a segment.  Ideally, new attributes would 

have higher utility and lower uncertainty.  New designs will replace segment shares of 

competitor designs that have higher or lower levels of uncertainty in the Monte Carlo 

simulation which, of course, yields varying levels of market share.  The designs on the 

left of Table 3.5.1 and Figure 3.6.1 represent the most uncertain designs to the retailer in 

terms of utility uncertainty and relative to the competitor designs yet have the greatest 

expected profit for the manufacturer.  The designs on the right of Table 3.5.1 have lower 

uncertainty in terms of utility and are less competitive (in terms of capturing market share 

for the manufacturer) with the more certain or profitable competitor designs in the 

existing assortment.   

It is not the intent of this chapter to suggest that in all firms the design team must 

generate a Pareto set for management that satisfies engineering constraints and the 

acceptance constraint.  Alternatively, management can set the reliability constraint level 

prior to optimization but for many the Pareto set will provide more information for upper 

level decision makers.  When presented with the Pareto set decision makers can perform 

tradeoff analysis with knowledge of the range of possibilities as well as knowledge that is 
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not explicitly modeled.  For example, a firm that has recently suffered common stock 

price erosion from negative press may select a higher level of acceptance probability to 

avoid the synergy of negative news.  A tradeoff can be performed between the designs for 

actual design selection. For example, the risk neutral manufacturer might consider the 

expected profit to be E[P]=α⋅Profit since a rejection results in zero profit.  In the case of 

the results tabulated in Table 3.6.3 the risk neutral manufacturer would actually select the 

design corresponding to α=82.5% as this has the highest expected profit (E[P]=αP 

=0.825⋅ $37.76=$31.15) including the 17.5% risk of rejection.  Other methods for 

including risk aversion of manufacturers can be employed in future work such as 

developing a utility function for the probability of success and profit (e.g., Clemen and 

Reilly, 2000). 

3.7.3 SLOTTING ALLOWANCES: CONSIDERATIONS FOR THE FIRM IN 

DESIGN SELECTION 

As mentioned previously, slotting allowances are commonly used in the retail 

sector to ensure retailer acceptance of a manufacturer’s products.  Providing the slotting 

allowance (Section 3.6.2) increases acceptability much the same way that altering the 

design can (Section 3.6.1). In comparing Figure 3.6.2 and Figure 3.6.1 the most obvious 

difference is that increasing the slotting allowance (Figure 3.6.2) is capable of achieving 

nearly 100% probability of retailer acceptance where adjusting the engineering design 

(Figure 3.6.1) was unable to do so.  Second, we observe that a profit of $32.8M with a 

95% probability is possible by increasing the slotting allowance to just over $6M where 

changing the design to improve acceptance reduces the profit to just under $23.9.  This 

demonstrates that the manufacturer has two possible methods for achieving reliable 
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acceptance of designs that might be used separately or in conjunction as we’ll try to 

demonstrate. 

Realizing that the manufacturer can delay the slotting allowance decision until 

negotiations with the retailer adds considerable flexibility to the design selection process.  

The design decision and slotting allowance selection can be tailored to the focal 

manufacturer’s unique cash flow and balance sheet position.  For example a firm that has 

significant cash reserves might select a financially riskier design (lower probability of 

retailer acceptance) from Figure 3.6.1 in the anticipation that the subsequent negotiation 

of a slotting allowance with the retailer will produce the greatest profits along the curve 

from Figure 3.6.2.  In contrast, a firm with lower cash reserves (i.e., unable to offer a 

$6M or higher slotting allowance) can select a design further along Figure 3.6.1 

accepting lower profitability for higher acceptance reliability based solely on engineering 

design.  A new slotting allowance tradeoff could be developed for this higher acceptance 

probability design in the same way that we did for Figure 3.6.2.  The manufacturer with 

lower cash reserves could then evaluate the design selection with respect to the range of 

acceptability for his/her more limited slotting allowance reserves.   

The Pareto frontier in Figure 3.6.2 is a valuable tool for the decision maker in 

evaluating the probability of channel acceptance in conjunction with a slotting allowance.  

It should be possible to perform engineering optimization using the slotting allowance as 

an additional design variable as a logical extension to our work.  This would (as 

suggested by Georgiopoulous et al., (2005)) even further integrate business decisions 

with engineering which is critical to the competitive advantage of the firm.  Additionally, 

even though competitors are considered static (i.e., not going through a product offering 
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refresh) in our analysis, the model is easily extendable to considering uncertainty in 

competitor offerings through a probabilistic treatment of assortment attributes in the 

market share and chance constraint formulation.  For example, if a manufacturer is 

concerned about a simultaneous new offering from a competitor, additional uncertain 

parameters can be added to the chance constraint and the risk can be mitigated with the 

use of focal product design, slotting allowance or both as in Figure 3.6.1and Figure 3.6.2.  

We feel that this tradeoff between product design, slotting allowances, and the modeling 

of the risk aversion of the firm would be most useful to practitioners and academia alike.   

3.8 SUMMARY 

The primary contribution of this approach has been to provide a decision 

framework for manufacturers in developing products for an emerging economic force 

which we have termed the channel dominating retailer.  Some previous work has been 

reported in integrating engineering with consumer preferences but those methodologies 

have not addressed the realities of modern retailer controlled channels.  The design 

decision process presented in this chapter also enables the manufacturer to more 

accurately predict the market share of his/her own product by estimating demand across 

consumer segments.  Lastly, this chapter provides a framework for the manufacturer to 

assess risk of channel acceptance through a chance constrained methodology and thereby 

make appropriate design decisions with regard to a slotting allowance.   This constraint 

on retailer acceptance for product design will be used extensively in Chapters 4 and 5 as 

additional considerations are added to the modeling process.  

The model is an improvement over extant methodologies but improvements and 

extensions are of course possible.  Thus far, the approach has neglected the competitive 
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response of manufacturers and retailers to the entrance of a new product.  Manufacturers 

can respond in the short term by changing prices and by designing new products in the 

long term.  Even more importantly, retailers will price products to maximize their 

products which can affect manufacturer market share and profit remarkably. For this 

reason, econometric models or game theory models will be employed in Chapters 4 and 5 

to account for such responses.  These results provide a first step toward these 

enhancements as the decision framework of the manufacturer and retailer have now been 

formed.   

In the next chapter this decision framework will be employed with a game 

theoretic modeling of prices at the retail and wholesale levels with the goal of more 

accurately determining design optimality under competition.  This chapter arrived at an 

estimate of wholesale prices from fixed margins and assumed retail prices stay constant 

as a new product is introduced.  The next chapter will address these limitations by 

allowing competitors to respond to new entrants with their best response which is taken 

into account by the new entrant in advance (i.e., a strategic game unfolds). 
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CHAPTER 4:      STRATEGIC ENGINEERING PRODUCT DESIGN 

FOR MONOPOLISTIC AND DUOPOLISTIC RETAIL 

CHANNELS 

In this chapter, a method is presented for manufacturers to anticipate the reactions 

of retailers to new designs, in terms of their retail pricing, and consider them early in the 

engineering design process. A key consideration in the approach is that retailers carry 

multiple products and have to select and price them as an assortment while considering 

competitor retailer assortments. A multi-product price equilibrium is developed for retail 

markets with differentiated products and a demand function based on the multinomial 

logit (MNL) model.  This equilibrium result is used to extend the approach developed in 

Chapter 3 to develop optimal engineering designs considering equilibrium pricing.  The 

approach significantly improves the focal manufacturer’s projected profitability by 

probing the design space for new designs that better fit the requirements of end-customer 

segments while considering several common channel pricing structures.  The results 

show that the channel structure considered has a significant impact on optimality of 

product design. 

The rest of the chapter is organized as follows.  After the introduction in Section 

4.1, an overview of our proposed framework along with model assumptions and 

justifications is provided in Section 4.2. In Section 4.3, we provide the specifics of the 

methodology in translating a product design to its corresponding market share estimate. 

Section 4.4 highlights the specifics of modeling the strategic interactions along with the 

key theorems that drive our proposed empirical methodology.  In Section 4.5 we briefly 

discuss the application that provides an illustration of our methodology.  In 4.6 different 
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strategic cases are evaluated with the case study and results discussed. Section 4.7 

provides some concluding remarks.  

 

4.1 INTRODUCTION 

The product development process has been defined as the transformation of a 

market opportunity into a product available for sale and involving disciplines of 

marketing, operations management, organizational management and engineering design 

each focusing on critical decisions (Krishnan and Ulrich, 2001). These critical product 

design decisions are ultimately realized as product attributes and features that are 

important to the market and must compete against other products along multiple attribute 

dimensions, including price. The realization that the decision for many of these attributes 

and features are made early in the design stage and cannot be changed significantly to 

help the marketability of the product or its economic success, has led to cross-disciplinary 

approaches in many of these related fields (Ulrich and Eppinger, 2004). To that end, 

many approaches have been developed in recent years to collect and integrate customer 

preferences in the early stages of design to provide the manufacturer flexibility in 

designing products that are market-focused.  Some of them focus on the information 

sharing and coordination aspects across disciplines (see e.g., Terwiesch et al., 2002); 

others propose specific design methodologies that consider cross-disciplinary impact and 

synergies (Morgan et al., 2001).  As mentioned in Chapter 3 with respect to the 

engineering design literature, the cross disciplinary methodologies developed have been 

improvements in engineering design aspects but assume that the manufacturer or 

producer interacts directly with the consumer in the marketplace.  These recent 

approaches rely on the estimation of customer utility for high level product attributes that 
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are the result of engineering design decisions.  High level product attributes are translated 

into market share and profit with implications focusing on competitive draw or market 

expansion using a discrete choice model and generally a cost model (see, for example, 

Ramdas and Sawhney, 2001).  

While the above methodologies are suitable for contexts where manufacturers sell 

products directly to consumers, their efficacy is seriously compromised in indirect 

channels where manufacturers have to go through retailers to reach their customers.  With 

the emerging clout of these retailers in their channel relationships, manufacturers are 

already forced to take this retailer power into account in the area of pricing and marketing 

(Luo et al., 2007). In this chapter, we extend our analysis to consider strategic pricing in 

the overall product design approach.  An integrated approach is proposed that considers 

not only customer preferences in the early stages of the engineering design process but 

also the retailer pricing decisions and assortment compatibility (i.e., is the product good 

for the assortment) so as to account for the gatekeeper role these powerful retailers play 

in the market.  

Retailers are primarily interested in vastly different metric than the customers in 

evaluating a new product to carry.  While strong overall customer preference for the 

product is expected, it is the revenue per square foot that will determine whether a retailer 

will carry the product – it has to maximize overall category profit.  For example, Home 

Depot will only carry the five out of twenty available drills that generate the greatest 

revenue for the drill category.  This revenue, in turn, depends on the assortment of drills 

that is available at the store for customer to buy. The retailer puts together these 

assortments in such a way to maximize the chance that customers will buy a product (and 
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spend more) on any visit to the store.  Given that the retailer’s shelf space is limited, 

manufacturers, therefore, have to carefully consider the attributes and features of their 

product vis-à-vis the assortment the retailer carries, and competitors product features and 

attributes, all at the early design stage so as to maximize the chances of the product being 

carried by the powerful retailers and being successful in the market.  

In considering the gate-keeper role of retailers and the competitive products and 

their designs, the manufacturer cannot afford to take a “myopic” perspective in the design 

decisions by considering only their design and its impact on the market. Because 

engineering design decisions determine product cost and attribute positioning at the 

foundation of the development process it is logical to conclude that engineering design 

decisions are transmitted to competitors and retailers as strategies to which they are 

forced to counteract. For example, just as a manufacturer considers retailers’ assortment, 

profit criteria, and competitors’ existing products in designing a new product, other 

competitors may anticipate this strategy and make their own move to influence the 

retailer. They might, for example, reduce their wholesale prices to the retailers to make 

the retailer margins more attractive. Or they may offer some additional features to their 

products to make them more appealing to retailers as well as consumers.  Retailers, on 

the other hand, may also consider such strategic maneuvers in new product offerings and 

wholesale prices in making their own assortment decisions.  Thus, these counteractions 

leading to a “game of moves and countermoves” in the marketplace call for the 

manufacturer to be “strategic” in their design decisions – that is, make design decisions 

by anticipating the moves of the competitors and retailers so that in equilibrium, none of 

the competitors or retailers have any incentive to change the status-quo.   
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This chapter seeks to integrate the strategic decision perspective with engineering 

design, manufacturing cost and marketing in a quantitative manner. The strategic design 

of the firm depends upon the projected market share of a new product offering as well as 

manufacturing costs estimated in the engineering design phase considering the 

anticipated moves of competition and the retailers. Marketing relies upon engineering 

design to produce customer desired product attributes. Engineering design and 

manufacturing are charged with the complex task of developing cost-efficient products 

for uncertain customer preferences and competitive environments. Using a strategic 

approach the designer will be able to develop a scenario that if a product is designed with 

engineering design variables x, that result in product attributes y, an equilibrium price P 

will result in the retail environment as a result of strategic interactions by competing 

retailers and manufacturers.  The retail price P determines market share m and 

manufacturer profitability П of the design which is the overall objective of the 

manufacturer.  The extant approaches in the integrated design-manufacturing-marketing 

literature have not endogenized the important pricing process in engineering design.      

With respect to the extant literature in the product development area, our 

approach focuses on the impact of downstream channel strategies on product design 

decisions, an area of limited focus thus far (see Krishnan and Ulrich, 2001). Additionally, 

this chapter proposes a framework for marketing and product strategy within retail 

channels which is an area identified as requiring additional research (Krishnan and Loch, 

2005). From a pure analytical viewpoint, a number of game theoretic frameworks have 

been developed to understand strategic interactions with monopolies (Dewan et al., 

2003), duopolies (Savin and Terwiesch, 2005, Balsubramanian, 2004, Klastorin and Tsai, 
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2004) and oligopolies (Naik et al., 2005) which are commonly observed in modern 

manufacturing and retail environments.   The issue of multi-tiered strategic interactions 

(e.g., manufacturer duopoly, retailer duopoly) which is critical for modeling channel 

player behavior has been studied for simple and pre-existing product wholesale and retail 

pricing decisions (e.g., pricing of detergents) (Basuroy et al., 2001).  The multi-tier 

structure has been rarely extended to competing along multiple dimensions.  For 

example, Tsay and Agrawal study a single manufacturer/product with duopolistic 

retailers competing along two dimensions: service and price (Tsay and Agrawal, 2000).  

However, none of the previous approaches focus on the design of products. The one 

exception is the work of Luo et al. (2007) who empirically determine the high level 

product attributes for a manufacturer in an oligopolistic setting interacting with a 

monopolistic retailer.   Luo et al. (2007) have analyzed the econometric and marketing 

portion of the product pricing and attribute decisions without delving into the feasibility 

of any engineering design which is the focus of our approach along with a generalization 

of the approach to a retail duopoly.   

This chapter presents a multidisciplinary approach to product design that includes 

multiple player interactions (retailers and manufacturers), heterogeneous consumer 

marketing models, and integrated engineering design models and cost models. The 

strategic interaction considered is broad (retailer duopoly or oligopoly), which has not 

been explored in conjunction with engineering design and manufacturing costs  in the 

extant research. We prove  that a multi-product price equilibrium exists in the retail space 

for differentiated products under the multinomial logit (MNL) model and use this result 

to develop a methodology for optimal engineering designs for both monopoly and 
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duopoly retail channels structures.  This proof allows the manufacturer to anticipate the 

potential price reactions to any change in design and therefore to evaluate the profit 

potential of any candidate design under the MNL demand model.  Not only do we take 

into account price reactions by retailers to design introductions but also the reactions of 

competing manufacturers. 

4.2 MARKET STRUCTURE AND PROPOSED FRAMEWORK 

The product-market that we consider in this chapter is one characterized by 

manufacturers reaching out to customers indirectly through retail channel consisting of 

powerful retailers (monopoly or duopoly).  The manufacturers differentiate themselves 

with strong brands in a mature market and compete with other manufacturers for retail 

shelf-space. When they introduce new products, they set wholesale prices for the 

retailers, who choose to either carry the product or not carry the product. Retailers set 

their own retail prices, which along with the wholesale price is taken into account for the 

carry-not carry decision. This product-market is characteristic of many consumer 

durables that are engineered and marketed to customers through retailers (e.g., power 

tools, household appliances, electronics, etc.).  The multi-level strategic design 

framework is shown in Figure 4.2.1. From the bottom to the top, the framework includes 

the consideration of engineering design criteria for the focal manufacturer (bottom level), 

consideration of strategic criteria with respect to the manufacturer’s competitors and 

dominant retailers (middle level), and the consideration of customer segments and 

preferences (top level).  This problem will be analyzed from the perspective of the 

manufacturer firm (i.e., the perspective of a product designer in the firm) who is 

interested in maximizing profit. The general framework is shown in Figure 4.2.1 for a 
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retailer duopoly with four manufacturers and four consumer segments. This model can be 

simplified to the monopolistic channel by removing one retailer.  

x?

Retailer Competition

Manufacturer
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Product 
Selection
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Marketing
Design
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Figure 4.2.1: Strategic Design Framework 

The product design problem can be described as follows (see Figure 4.2.1). In a 

competitive market of i products, Manufacturer A (the focal manufacturer) designs a 

candidate product with engineering design variables x where in it must take into account 

the strategic response of other manufacturers.  We assume that the other manufacturers B, 

C and D have only the strategic move of altering their wholesale prices WB, WC and WD, 

respectively. This is a standard assumption (Luo et al., 2007) as other responses in 

attributes are difficult to achieve in the short-term (Hauser, 1988, Horsky and Nelson, 
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1992). In order for manufacturers to set wholesale prices they must know the effect on 

market share which can only be determined after retailers set their retail prices (e.g., Pri 

=P1i , P2i,…,PRi  where i is index for the retailer’s assortment and r is the index for the 

retailer).  We assume that both retailers and manufacturers are fully informed about 

customer preferences (top level), which is a valid assumption in mature markets (e.g., 

Villas-Boas and Zhao, 2005).  The market provides feedback to the retailers’ actions in 

the form of product market shares mi.  The retailers choose their retail prices to maximize 

profits in the monopoly case or to reach price equilibrium in duopoly/oligopoly case.  

Once retail prices are fixed at the retail level, manufacturers can determine equilibrium 

wholesale prices.  Given price equilibrium at the two levels (manufacturing and retail 

levels) the manufacturer is able to determine the efficacy of any candidate design x.  The 

focal manufacturer can, thus, perform a strategic scenario analysis with retail profits and 

manufacturer profits as outcomes given any design candidate. Thus the framework 

provides a much richer and realistic environment for evaluating engineering design 

decisions since it accounts for the power of retailers and the strategic responses available 

to competitors. We expand on the links between engineering design, strategy and 

marketing in the next few sections. 

 

4.3 FROM PRODUCT DESIGN TO MARKET SHARE  

Before discussing the strategic interactions in any design evaluation, we present 

the mapping process for turning engineering designs x into product attributes y which are 

then used to determine market share mi while highlighting where the pricing process 

affects market share.  This process is depicted in Figure 4.3.1 for a hand-held power tool 
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– a right angle drill.  We assume that market information – competition and their 

offerings – is already available, through shelf surveys of assortments at the channel 

dominating retailers.  In the short term, we assume that the physical attributes of 

competitor products, y , are fixed The three right angle drills at the right of Figure 4.3.1 

are an example of existing assortment in the focal retailers in the application we consider.  

Each power tool’s attributes in the assortment are recorded as the existing competitor’s 

attributes which are critical to the positioning of any new design.  Customer preference 

data can be in the form of survey data or choice-based conjoint data or point-of-sale data.  

For our application, we collect preference data through conjoint analysis where customers 

are presented with product prototypes for direct comparison.  The customer preference 

data is analyzed using finite mixture estimation techniques to identify distinct latent class 

segments to capture the heterogeneity in customer preferences (Kamakura and Russell, 

1989) 5 .  This latent class approach along with the shelf survey allows our design 

approach to search for gaps in the competitive landscape that are weak in terms of 

competitive offerings as well as find customer segments whose preferences are currently 

underserved.  The integration of this information with a bottom-up cross disciplinary 

translation of engineering designs into customer relevant product attributes is presented 

in Figure 4.3.1. 

                                                 

5 Alternatively, heterogeneity can also be captured using Hierarchical Bayesian estimation methods.  
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Figure 4.3.1: Product Design to Market Share 

The design process starts with an instance of design variables x, which are then 

transformed to intermediate variables y through appropriate engineering computations 

(See bottom two blocks in Figure 4.3.1).  For example, the weight of product is 

calculated from the density and volume of its constituent components.  Similarly, power 

and torque of a product will be functions of gear ratios, current and voltage.  Engineering 

constraints such as gear stresses, heat flux, armature velocity and others are calculated at 

this point to determine if the candidate design is feasible before proceeding to market 

share estimate determination.  Design variables and engineering functions (constraints or 

attribute functions) need not be continuous as we will employ a genetic algorithm to find 

optimal designs (Deb, 2001) It is worth noting that the marketing and engineering should 
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collaborate (e.g., Morgan et al., 2001) to determine which product attributes are most 

relevant in investigating for optimization (i.e., they must matter to customers or affect the 

production cost).  For example, the marketing communicates to engineering that weight is 

one of the important evaluation criteria to customers and should be an output of the 

design model.   

Similarly, if engineering and manufacturing have determined that revolutions-per-

minute RPM is an important driver of cost in the past due to higher stresses and heat 

dissipation requirements it should be communicated to marketing for inclusion in the 

conjoint study in an appropriate way.  Even if customers place little value on RPM, this 

knowledge will be important to the overall design optimization as designers can therefore 

relax preconceived notions for minimum RPM values (a constraint) and possibly reduce 

production costs without affecting overall product performance and utility.  Thus, an 

early concurrent consideration of all the relevant criteria (engineering design and 

customer preference) by the product development team gives a significant advantage in 

avoiding the costly mistake of performing customer studies that do not contain all of the 

relevant attributes that are cost or performance drivers in the engineering model (see 

Loch and Terwiesch, 1998). 

Once product attribute variables y are determined from intermediate engineering 

design computations, one can estimate the utility of each attribute y (with a piecewise 

interpolation of utility values assigned to attribute levels, if needed) based on the conjoint 

analysis estimates for each segment by summing the utilities ujk, in segment k, of all 

attributes j that appear in product i.  This effort allows one to estimate market share as 

demonstrated in Section 3.3.4 using Eq. (3.15) to Eq. (3.17) with the one distinction that 
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pricing no longer remains constant and is continually adjusted at the top of Figure 4.3.1 

in response to any new design entering at the bottom of Figure 4.3.1.  

Given that retailers have increasingly consolidated power and control of the retail 

channel (i.e., access to consumers), evaluating the manufacturer’s design in the context of 

the effect it has on retailer profit is an important consideration although our primary 

objective is to maximize the manufacturer profit.  Clearly, if the manufacturer is 

concerned with possibility of being denied shelf space by the retailer he/she would prefer 

to select a design that is much more profitable for the retailer than the existing assortment 

it carries.  At the same time the manufacturer’s profits and the retailer’s profits are 

competing objectives so a manufacturer would benefit from being able to choose from an 

optimal set of designs with respect to each of these objectives.  The formulation 

presented in this chapter is such an approach to setting the manufacturer’s design strategy 

given a specific channel structure.  As such in addition to maximizing manufacturer profit 

we add a constraint to our formulation where the manufacturer also wishes to increase 

retailer profitability so as to ensure market access. Thus, the manufacturer’s objective 

(which is our focus) (when facing a monopolist retailer) can be stated as: 
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In section 4.5.1 we extend this formulation to multi-objectives for several other cases of 

channel markets (e.g., duopololistic retailers).  Initially we present a single objective 
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(maximize manufacturer profit) to facilitate understanding of the pricing framework that 

will be presented in the subsequent section. 

The manufacturers profit Пi  is maximized by altering engineering design variables x 

to satisfy engineering constraints g(x) ≤ b, realizing that market share mi is largely a 

function of y and therefore x.  In addition to focusing on optimizing retailer profit we 

constrain the design search space to only those designs that improve the retailer’s profit 

(i.e., ∑∑
==

≥
n

i

old
n

i

new
ii

11

ππ ) just as we did in Chapter 3.  This channel profit constraint is 

deterministic unlike the stochastic or “chance constrained” approach present in Chapter 3.  

Production costs Ci  can be modeled as a function of the engineering design variables x or 

can be estimated from product attributes, y , like those shown in Figure 4.3.1 (D.O.D., 

1999, Boehm, 1981, Scanlan, 2002).   We again use the latter approach in our 

application, which is based on historical prices of products in a category.  The 

formulation presented above may appear simple until one considers that market share is 

also significantly dependent on retail price Pi (as shown in Figure 4.3.1) which is also 

dependent upon the wholesale price Wi  which is not entirely under the manufacturer’s 

control.  Predicting the equilibrium retail and wholesale price of the products will be 

discussed in the next section along with the engineering optimization interface.   

4.4 APPROACH TO STRATEGIC INTERACTIONS 

A pricing framework that analytically captures the strategic interactions of Figure 

4.2.1 is presented in Figure 4.4.1 for both monopoly (1 retailer) and duopoly (2 retailers) 

channels with an oligopoly of manufacturers competing with the focal manufacturer.  The 

framework incorporates the layers of strategic pricing moves available to competitors and 

will be referred to repeatedly in the remainder of this section.  It should also be noted that 



 86

we approach strategic interactions under the classical game theory assumptions 

(Osbourne and Rubinstein, 1994) that players are rational and fully informed of each 

others possible strategic moves (i.e., perfect information).   

4.4.1 PRICING FRAMEWORK 

The focal manufacturer (Manufacturer A) develops a new product A in the 

assortment i=1,2,…,n  that has engineering design variables x (bottom layer of Figure 

4.4.1) with an objective to maximize profit.  In the short term (one quarter to one year) 

the competing manufacturers will be unable to change product designs because of the 

manufacturing line and supply contract modifications that would be necessary.  However, 

they can alter their wholesale prices and do so under the assumption that their 

competitors will attempt to make a “best response” to any Wi decision (manufacturer 

layer, Figure 4.4.1).  The retailers also select retail prices Pri that will maximize their 

profit under a “best” response assumption from their competitive retailer (in the case of a 

duopoly retail channel) or simply maximize profit (in the case of the monopoly channel).  

The retail prices and product designs affect each consumer segment depending on its 

specific preference structure, which the finite mixture latent class model estimates based 

on the conjoint analysis.  These determine the segment sizes and the market shares (top 

layer of Figure 4.4.1).    
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Monopoly Channel 

Retail Pricing Level: RPL1

Wholesale Pricing Level: WPL1

Duopoly Channel

Engineering Design Level: EDL2
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Figure 4.4.1: Pricing Framework 

The game theoretic aspects of retailers and manufacturers selecting retail and 

wholesale prices based on Nash equilibria or “best response” functions makes the 

problem of optimizing product design computationally intensive.  We solve the layered 

equilibrium situation as a nested algorithm where the retail pricing level (RPL) 

optimization is the selection of retail prices P using the Nash equilibrium of profit for 

retailers.  The first order condition for a Nash Equilibrium must be met for each 
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retailer/product profit combination riπ which is essentially requires solving a system of 

equations where the derivative of profit with respect to price Pri is set to zero: 

0=
∂
∂

ri

ri

P
π      (4.2) 

In the duopoly case this becomes: 
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In practice, to solve Eq. 4.2 and Eq. 4.3 we use an optimization routine to minimize the 

square of the sum of the first derivatives of retailer profit with respect to each of the retail 

prices. 

For the monopoly case we simply find the set of prices Pi that maximize 

monopoly profit: 

 ∑
=

n

i
iPi 1

max π:         (4.4) 

The existence and (preferably) uniqueness of the Nash equilibrium for retail prices for the 

multinomial logit (MNL) demand function is necessary to guarantee an equilibrium at the 

retailer where each of the retailers offer multiple products.    Unlike the Nash equilibrium 

existence theorem (Caplin and Nalebuff, 1991) for a single product (competitors carry 

one product), to date a multi-product price equilibrium existence proof does not exist 

(Anderson et al., 1992).  The multi-product environment is far more common in the retail 

environment as each retailer generally carries an assortment of products and thus 

deserves consideration.      



 89

THEOREM 1 – Retailers’ multi-product Nash equilibrium:  A unique Nash equilibrium in 

prices exists for a retailer carrying an assortment of n products in a category of N 

products carried by all retailers. 

 Proof is given in Appendix B. 

The next layer for consideration in the pricing framework is setting of wholesale 

prices which are also based on the concept of Nash equilibrium.  Similar to retail prices, 

we minimize the sum of the squares of the first derivatives of manufacturer profit 

functions with respect to wholesale prices Wi  to solve Eq. 4.5 for each of the 

manufacturers i=1,2,..n.   
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THEOREM 2 – Manufacturer’s single product Nash equilibrium:  A unique Nash 

equilibrium in wholesale prices exists for a manufacturer selling products through a 

differentiated-retail-duopoly. 

 Proof is given in Appendix B. 

 This structure creates a vertical Nash Equilibrium for the manufacturers and 

retailers in setting prices, which is an assumption that has ample support in actual 

practice (see Choi, 1991 and Kadiyal et al., 2001).  A review of each of the proofs 

presented in the Appendix shows that the existence of global maximizing strategies for 

both the retailers and manufacturers requires that each of them to consider prices set by 

the other.  While we cannot guarantee convergence of wholesale and retail prices 

considered simultaneously for all situations, we have observed convergence empirically 

without difficulty for all the cases we have considered in the application.  The last layer 

of the optimization is the setting of engineering design variables by the focal 
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manufacturer.   The engineering design problem is clearly not convex with many 

discontinuous and discrete variables.  As such we use a genetic algorithm (Deb, 2004) to 

optimize the design.   

The sequence for the pricing framework for monopoly and duopoly (shown in 

Figure 4.4.1) can be thought of as proceeding through the following steps for each design 

considered during the optimization: 

1. Start with a population of engineering design alternatives at the Engineering 

Design Level (EDL).  

2. Set initial wholesale prices Wi at the Wholesale Pricing Level (WPL) for each 

design alternative: 

a. Monopoly (WPL1): One set of wholesale prices is initialized  

b. Duopoly (WPL2): Two sets of wholesale prices are initialized at 

WPL2 

3. Set initial retail price at the retail price level (RPL) for each design: 

a. Monopoly: One set of retail prices is initialized at RPL1  

b. Duopoly: Two sets of retail prices are initialized at RPL2  

4. Calculate market shares (mi and mri) based on utility of the engineering 

designs and retail prices and returned to the RPL. 

a. Monopoly (MSA1): Return markets shares mi for the monopolist 

b. Duopoly (MSA2): Return market share mri for each retailer. 

5. Adjust retail prices in the RPL until: 



 91

a. Monopoly (RPL1):  monopolist profit is maximized in RPL1.  Due to 

the no-choice option in the latent class model and a downward sloping 

demand function the problem is quasiconcave.   

b. Duopoly (RPL2):  a Nash equilibrium is reached for logit models by 

minimizing the first partial derivatives of retail firm profit. 

6. Pass equilibrium retail prices (RPL) back to step two.  Wholesale prices are 

adjusted (as a short term strategic response) until Nash equilibrium is reached 

(i.e., no manufacturer can alter the wholesale price and capture more profit).   

Once a Nash equilibrium (Eq. 4.5) is reached proceed to step 7.   

7. Estimate profit from engineering design variables (cost), market share (step 

four), and equilibrium wholesale price (step six). 

8. Stop if optimal profit is found.  (Note: it is possible to implement additional 

objectives in this step for a multi-objective problem). 

4.4.2 STRATEGIC CASES 

We present four cases of varying channel structure to show the effect of taking 

into account the channel’s competitive landscape on optimal engineering design based on 

an actual product-market.  We consider 4 manufacturers (A to D) and 2 retailers (1, 2). 

Case 1:  Retailer Monopoly/Manufacturer Oligopoly 

This is the simplest case of the four as there is no strategic interaction between 

retailers.  The retail optimization layer is simply a profit maximization problem that 

depends upon the wholesale inputs of the manufacturers and of course the consumer 

characteristics.  Strategic interactions occur at the manufacturer level in setting wholesale 
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prices which impact the engineering optimization. This is the baseline case that extends 

the prior work (Luo et al., 2007) to include engineering design optimization. 

Case 2:  Retailer Duopoly/Manufacturer Oligopoly: Identical Retailers 

Here a retailer duopoly exists but consumers are indifferent across all segments as 

to which retailer to buy from so the retailer’s only compete on price.  This case is more 

complex than Case 1 due to the nature of the strategic interactions at the retailer level, 

though both cases require an inner optimization at the retailer layer.  The formulation for 

the setting retailer prices takes into account wholesale prices as before but now is 

formulated as an equilibrium optimization where retail prices are adjusted to minimize 

the square of the first derivatives of the duopoly retailers’ profits with respect to price.  

We assume that consumers are indifferent toward the retailers and that each retailer 

carries the same assortment.  While somewhat unrealistic, such a case should demonstrate 

downward pressure on retail prices and therefore wholesale prices relative to the 

monopoly case. This will also serve as a baseline to examine Case 3 and Case 4 results. 

Case 3:  Retailer Duopoly/Manufacturer Oligopoly: Differentiated Retailers 

A more realistic approach would account for the preference of consumers for the 

retailers themselves.  It is well documented that specific retailers target specific consumer 

segments and therefore logical to assume that they have achieved differentiation in that 

regard.  For example, Lowes targets female customers with wider, brighter isles and a 

greater emphasis on decorating (Pittman, 2005).  A conjoint study can easily include 

samples where product i is offered at retailer r and then assess the value that consumers 

place on the “retailer attribute”.  Because the value of the product will vary with each 

retailer, the equilibrium prices at the retail level should be at least marginally different.  If 
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manufacturers can predict outcomes for this scenario with our methodology they should 

be able to develop more profitable designs and wholesale price negotiations at the other 

optimization levels.  In Table 3.5.1 of the previous chapter we show that 3 out of four 

customer segments prefer one retailer over the other. 

Case 4: Retailer Duopoly/Manufacturer Oligopoly: Exclusive retailer strategy  

Numerous examples exist in a variety of markets where manufacturers and 

retailers seek exclusive reseller relationships (Moner-Coloques, 2006).   This is done as a 

means to secure access to market (manufacturer’s perspective) and as a means 

differentiate an assortment for greater profits (retailer’s perspective).   We model this 

arrangement in a manner similar to Case 2 except that the focal manufacturer decides to 

go to the market through only one of the two identical retailers as an exclusive retailer 

strategy.  This approach where one retailer is allowed to fulfill all demand “Referral to 

Reseller” has been shown to theoretically improve profits 6  for both parties in the 

exclusive channel (Tsay and Agrawal, 2004).  Our method is similar to previous analyses 

(Trivedi, 1998) where the manufacturer is integrated with only one retailer except that we 

allow the retailer to carry additional differentiated products from the original assortment 

which reflects market reality of our shelf surveys.  The retailer chosen for the exclusive 

relationship will carry the new product offered by the manufacturer as long as its profits 

improve relative to the original assortment just as in the previous cases.  The competing 

retailer not chosen for exclusivity with our manufacturer simply offers the original 

assortment.  

                                                 

6 For example, Apple and AT&T sold 270,000 iPhones in under 30 hours in an exclusive channel relationship which 

boosted both firms profitability (Hartley, 2007).     
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4.5 CASE STUDY 

We chose to apply Cases 1-4 to the engineering problem problem developed in 

Chapter 3, Section 3.5.  This detailed engineering design structure and marketing data 

(conjoint analysis) (Luo et al., 2007) were available for common small angle grinders and 

an ideal candidate application for the case studies as they are typically sold in a strong 

retailer channel environment as presented in Chapter 3.   A brief shelf survey of the 

channel controlling retailers Lowes and Home Depot would reveal an assortment similar 

to that shown in Table 4.5.1. 

 
 

Tool A B C D
Brand W X Y Z
Price ($) $79.00 $99.00 $129.00 $79.00
Amps 6.00 9.00 12.00 6.00
Life (hrs) 80 110 150 110
Switch Paddle Trigger Side Side
Girth (in) 2 3 3 2.25
Weight (lbm) 5.00 9.00 16.00 5.00 

Table 4.5.1: Example Assortment at a Retailer 

For the first four strategic cases from Section 4.4.2 our model replaces Tool A 

with a new product whenever the channel constraint is met in Eq. (4.1).  The assortment 

is the same for the retailers under the monopolist and duopolist cases in that they carry 

the new product and products C-D.  For the fourth (exclusive retailer channel) we assume 

that retailer one carries the new product and that the competing retailer carries the 

existing product (i.e., Product A from Table 4.5.1).   
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4.5.1 OPTIMIZATION APPROACH 

We used Matlab’s Genetic Algorithm and Direct Search Toolbox (GADS) 

(Matlab User Manual, 2007) to develop a multi-objective genetic algorithm (MOGA) to 

simultaneously optimize focal manufacturer profit (Manufacturer A) and retailer profit.  

While our focus is to maximize the focal  manufacturer’s profit while ensuring that 

retailer makes at least as much profit as he was making with the existing assortment, 

determining the Pareto solutions for manufacturer and retailer profits would help us 

understand the trade-off better, as we show subsequently.  Additionally, one might think 

of increasing the retailer’s profitability above the prior assortment profit as strengthening 

the manufacturers case to obtain shelf space.  We formulate the manufacturer’s decision 

as two objectives: (1) maximizing his own profit, and (2) maximizing the channel 

partner’s profit (monopolist, duopolist, or exclusive retailer).  This can be described 

mathematically by adding the second objective to the optimization formulations as shown 

in Figure 4.5.1: 
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Figure 4.5.1: Optimization Formulations 

 A non-dominated sorting algorithm (Deb, 2001) is employed to find a Pareto 

frontier for each strategic situation (Monopoly, Duopoly with identical retailers, and 

Duopoly with differing retailers, and the Exclusive retailer).  The 9 design variables were 

encoded in a binary format with lower and upper bounds specified in accordance with 
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Table 3.5.3.  The wholesale prices were allowed to increase up to $100, which is higher 

than the maximum wholesale prices encountered in practice.  The design variables were 

encoded as 200 bit binary strings and run with a population size of 100 for 200 

generations.  Additionally, the MOGA was set to terminate if objective function values 

change less than 1×10-6 over 50 generations or change less than 1×10-6  for a time period 

of 10,000 seconds.  Constraints were handled using the “Feasible Over Infeasible 

Approach” (Deb, 2001) where violated designs are set equal to the worst function call 

plus a penalty.  Additionally, a crossover fraction of 0.6, a mutation rate of 0.1 and an 

elite fraction of 1/3rd were used.  The inner optimizations for retail price setting and 

wholesale price setting are strictly quasi-concave for monopoly and duopoly price setting 

(See proofs in Appendix B) and as such are amenable to gradient based optimizers such 

as Matlab’s fmincon (Matlab User Manual, 2007). The computational issues involved in 

our methodology are discussed at length in Appendix B.   

4.6 DISCUSSION OF APPROACH AND CASE STUDY 

4.6.1 INTERPRETATION OF MANUFACTURER VS. RETAIL PROFITS 

The results focus on Manufacturer A’s design strategy in developing a new design 

to replace the existing Product A design in the market under different channel structures, 

with the assumption that the competitor products remain in the market with their existing 

attributes, which is taken into account in developing the new design scenarios. The 

competitors can however change their wholesale prices of their products in the short-

term.  As expected the strategic cases present varying levels of profitability for the 

manufacturers and retailers highlighting the impact of the varying market power of the 

two types of players under different channel structures (monopoly and duopoly).    
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In Figure 4.6.1 we present an optimal set of designs for four strategic cases where 

the focal manufacturer is able to manipulate a design (Tool A) to achieve maximum 

profit for himself and the retailer (monopoly) or retailers (duopoly).  All the design 

solutions satisfy a constraint that the retailers’ profits exceed those with preexisting 

assortment and thus achieve channel acceptance under the proposed decision framework.  

The profit level of the existing assortment for each of the strategic cases is shown as a 

dashed horizontal line in Figure 4.6.1.  The great variety of optimal designs are shown in 

Figure 4.6.1 to highlight the importance of the strategic case and how designs can change 

as one transitions between manufacturer profitability and retailer profitability along the 

Pareto set of designs.  Initially we focus on explaining equilibrium prices for the strategic 

cases and will return to the variety of designs present in the next section. 

Consider the retailer monopoly case in Figure 4.6.1.  Design A3 is the optimal 

design from the focal manufacturer’s (Mfr A) viewpoint which maximizes A’s profit 

while ensuring that retailer makes more profit than what he makes with the existing 

assortment. The other design solutions along the Pareto frontier from Design A1 to 

Design A3 increase retailer profit at the expense of the manufacturer profit.  If 

Manufacturer A is greatly concerned about being rejected by the retailer due to the 

uncertainty in the retailers own decision framework he might select a design between 

Design A3 and Design A1 along the Monopoly Pareto frontier.  Any design between 

these two points clearly increases the manufacturer’s value proposition to the retailer 

which motivates the retailer to carry the product.   
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Figure 4.6.1: Strategic Environment Comparison 

4.6.2 COMPARISON OF STRATEGIC ENVIRONMENTS:  CASES 1-3 

The solution set of each of the strategic cases presented Figure 4.6.1 are unique 

and depend on the specific channel structure.  The monopoly Pareto frontier is the least 

profitable situation for manufacturers as both duopoly cases have acceptable solutions 

that have higher profits than the monopoly solution with the greatest manufacturer profit.  

In addition, monopoly retailer profits exceed any of the duopoly cases which consistent 

the extant literature (Gibbons, 1992), (Anderson et al., 1992) given that the monopolist 

does not have competition to shift prices lower.  The increased price competition in the 

two duopoly retailer situations (identical and differentiated) allow for the possibility of 

greater manufacturer profits as prices in the retail space a lower resulting in fewer 

customers preferring the no-choice option. The reasons for this are clear when we look 
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closer at the retail prices that are the outcomes under the various situations (See Table 

4.6.1 to Table 4.6.3). In each of the tables, we present the optimal new design for 

Manufacturer A as the third row which is preceded by other Pareto designs that increase 

retailer profits at the expense of manufacturer profits.    The last row in each of the tables 

presents the wholesale prices and retailer prices for the pre-existing assortment (Table 

4.5.1).   

Overall, the results are consistent with the general economic model predictions for 

monopoly and duopoly structures.  For example, in the optimal solutions (Designs A3, 

A6, and A9) the retail margins are much higher for the monopoly retailer ($72 to $84) as 

compared to the margins in the duopoly situations ($26 to $50).  This is to be expected 

when one player in the channel controls access to consumers.   Additionally, 

manufacturers receive lower wholesale prices at strategic equilibrium under the 

monopoly situation ($25 to $50) versus the duopoly ($39 to $70).  The retailer obviously 

enjoys much higher profits as a monopoly (note that duopoly profits are sum of the two 

retailer’s profits in Figure 4.6.1).  

Equilibrium Wholesale Prices Equilibrium Retail Prices New 
Design 

ID 
 

Tool A 
 

 
Tool B 

 
Tool C 

 
Tool D 

 
Tool A 

 
Tool B 

 
Tool C 

 
Tool D 

Mfr A 
Profit 

($Million)

Retailer 
Profit 

($Million)

A1 $43.23  37.46 $25.01  $25.33  $118.89  $113.12  $100.65  101.53 $167.00 $523.40 
A2 $46.21  $38.27  $38.45  $25.67  $118.40  $110.46  $110.64  $97.86  $218.00 $468..34 
A3 $50.03  $41.10  $32.95  $31.81  $128.46  $119.53  $111.38  $110.24  $257.1 $370.5 

 
Equilibrium 
Prices with 
 Existing 
Design 

 
 

$29.78 

 
 

$42.70 

 
 

$29.78 

 
 

$52.01 

 
 

$89.93 

 
 

$102.85 

 
 

$90.75 
 

 
 

$112.16 

  Current 
Mfr A 
Profit 

 
$30.38 

Current 
Retailer’s

Profit 
 

$313.77 
  

Table 4.6.1: Designs for Monopoly Retailer 

In Table 4.6.1, we observe that the wholesale price of the optimal new design 

(A3) for manufacturer A is much higher than the existing design in the market due to the 
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greater utility of the new design. In this scenario, Manufacturer B and D also lower their 

wholesale prices as a reaction to the new design A3 which improves the retailer’s profit. 

However, Manufacturer C raises the wholesale price. This is consistent with predictions 

in extant literature (Hauser and Shugan, 1983) who show that incumbent manufacturers 

may find raising wholesale prices as a defensive strategy to be optimal for them 

depending on the distribution of consumer tastes and which segment the tool is targeted. 

In the monopoly case, the retailer does pass on the decrease in wholesale prices to 

consumers in the form of lower retail prices except for Tool C (compare the existing 

retail prices in the last row with the equilibrium retail prices for Pareto optimal design A1 

in the first row). Another interesting result is that if Manufacturer A chooses to introduce 

Design A1, with a much lower wholesale price, it leads to pricing by other manufacturers 

which are also very low, even though the other attributes of their design remain the same.  

At some of these wholesale prices, these manufacturers may actually be selling below 

costs; however this reaction is to be expected as they would try to stem the loss of market 

share to Manufacturer A (similar to airlines matching cut-rate prices of competitors even 

though it might result in losses for everyone). However, the optimal design A3 (from 

MFR A’s perspective) does not suggest any such possibilities. 

Another interesting result in the monopoly case is how much market share the 

monopolist retailer gives up to the “no choice” option.  Summing the market shares for 

the four tools for each case A1, A2, and A3 yields total market shares of 72%-75% 

implying that 25% to 28% of consumers will opt to purchase none of the tools based on 

the high price.  This is readily observed in the retail prices for the monopolist being $20 

to $50 higher than the in the duopoly cases.  In contrast, the customers purchasing a tool 
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under duopolistic competition are in the 95% to 98% range which is consistent with the 

notion that competition is better for consumers.    The differentiated duopoly has a slight 

edge in penetration relative to the identical duopoly (i.e., closer to 98% for many of the 

Pareto designs) as each retailer can focus on preferred segments. 

 

Table 4.6.2: Designs for Duopoly Identical Retailers 

Interesting results can also be found when comparing the two duopoly cases.  As 

was expected, when the retailers are differentiated the results lead to different retail 

margins and identical retailers lead to identical retail margins.   The pricing model that 

we employ offers each retailer the same wholesale price and retail prices are 

subsequently selected. When retailers are identical it appears that price competition is 

particularly fierce with the lowest retail margins observed for all cases.  Differentiation 

by retailers in terms of which segments they appeal to the most allows both retailers to 

retain higher margins than the identical case (Table 4.6.2 and Table 4.6.3).   
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Table 4.6.3: Designs for Duopoly Differentiated Retailers 

4.6.3 ANALYSIS OF EXCLUSIVE STRATEGY 

In addition we have developed strategic case for the exclusive retail channel 

arrangement that is growing increasingly frequent.   This is especially appropriate for our 

case study as exclusivity is common in the tool industry where, for example, Home Depot 

exclusively sells Husky hand tools and Ryobi power tools (Han Shih, 2005). To set up 

the exclusive retail channel we selected one of the two retailers as a “channel partner” 

who has exclusive rights to carry the new tool (Tool A) along with Tools B to D.  The 

remaining retailer or “competing retailer” in the subsequent figures carries the original 

assortment (Tools B-E).  Tool E is the design in place prior to optimization.  We selected 

retailer one as a fixed choice for the exclusive relationship although in principal the 

selection of the retailer could easily be made a design variable with the use of binary 

variable.   

The exclusive channel (Case 4) is compared to the most relevant example from 

the previous cases, duopoly with identical retailers (Case 2), which included optimal 
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designs A4 to A6.  For this comparison all retailers are considered equal in attractiveness 

to each segment.  They only differ by the content of their assortment.    The previously 

termed Duopoly (identical) case will now just be referred to as the “Non-exclusive Case”.     

 

Table 4.6.4: Designs for Exclusive Case (Identical Duopoly) 

In comparing the two cases we see that the under the exclusive channel the 

channel partner (retailer selected to carry the optimized tool) benefits greatly as the 

profits for the entire Pareto Set dominate those of the non-exclusive case. In contrast the 

manufacturer loses the possibility of achieving the highest profit (Figure 4.6.2).  If we 

compare the manufacturer’s optimal design under the non-exclusive case (A6) to the 

optimal design under exclusivity (A12) we see potential profits erode by $80M.  In 

contrast the channel partner’s profits rise from $111.4M (recall Table 4.6.2 is the sum of 

2 identical retailers) to $218.1M or increase by $106.7M.    Thus $26.7M in net value has 

been added to the channel which anecdotally explains the existence of exclusive retail 

relationships.  Given that the retailer’s still have strategic dominance in this situation due 

to their control of market access, one can consider the exclusive offering as an incentive 
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to a retailer to achieve shelf space similar to a slotting allowance.  For a cash-strapped or 

risk-averse manufacturer the exclusive offering may be much more attractive than a 

slotting allowance.  This risk is due to the high outflow of cash for a slotting allowance in 

the present period with no guarantee of sales volume. The profits of the model are still a 

prediction whereas a slotting allowance is an immediate deterministic outflow of cash.   

In addition the exclusive contract can provide greater manufacturer profit than some of 

the non-exclusive Pareto designs.  For example, A12 is preferred by the manufacturer to 

A5 and A4.  A12 is also preferred by the channel partner, which in effect coordinates the 

two channel member’s objectives.   
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Figure 4.6.2: Exclusive Channel Comparison 

 

4.6.4 OPTIMAL ENGINEERING DESIGNS 
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There are some trends that can be observed in the designs themselves in 

comparing the channel structures and location along the Pareto frontier.  First, the most 

profitable designs for the focal manufacturer (A3, A6, A9, A12) are in general less 

powerful than their less profitable counterparts.  It is costly for the manufacturer to 

produce a tool with greater power to weight ratio yet the consumers value this attribute.  

Regardless of the strategic case analyzed this appears to be the case.  In comparing the 

strategic environments we see that along the entire Pareto frontier the manufacturer 

develops lighter tools for the monopoly (5.15 to 5.33lbm) with a smaller girth (1.79 to 

1.82 in).  As global observation we see that the designs under a monopoly channel are 

also far less diverse than the other channel structures.  For example, weight under the 

differentiated duopoly case varies by nearly 5 lbm and only varies by a few ounces under 

the monopoly.  We believe this is a facet of the monopoly being able to dictate which 

attributes will best fit the current assortment as defined by the segment utilities.  The 

lighter tool is more costly to produce based on our cost predictions which significantly 

erodes the manufacturer profit as shown in Figure 4.6.1.  Still the amperages for the 

monopoly tools are in the lower quality range.    This has important implications for 

manufacturers as it may not be possible to design high quality tools, (as perceived by 

customers with regard to amperage) for the monopolist, that have positive wholesale 

margins.   

The differentiated duopoly appears to offer the highest wholesale prices and 

allows the manufacturer to design the highest amperage tools.  Because the retailers are 

not competing entirely on price in the differentiated case, retail prices can be adjusted 

higher for segments that prefer a particular retailer.  These higher retail prices provide the 
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manufacturer with the opportunity to search a larger design space and provide a more 

diverse set of designs (including higher performance models) that still generate the 

greatest profits (Figure 4.6.1).  Thus the manufacturers would prefer the differentiated 

case to persist in reality.  Finally, in the exclusive case we see the manufacturer again 

isolates his strategy to a relatively narrow set of product attributes in terms of weight and 

amperage.  This is similar to the monopoly case where it appears that the retailer is better 

able to dictate acceptable model design for the assortment.  Of course a fifth tool is 

present under this case so it may be that this is also the best position to compete against 

the original assortment (now including Tool E.) 

 
  Monopoly 

 
Duopoly  

(Identical) 
Duopoly  

(Differentiated) 
Exclusive 

 
 New Design ID A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 
Design Variables Units             
Armature wire turns  Nc (# of turns) 196 205 205 204 205.6 208 216 171 172 259 259 263 
Stator wire turns     Ns  (# of turns) 110 139 110 160 177.7 154 144 179 176 143 149 132 
Stator outer radius  Ro (m) 0.01 0.01 0.01 0.022 0.018 0.024 0.016 0.017 0.017 0.019 0.017 0.020
Stator thickness  t (m) 0.012 0.012 0.012 0.005 0.005 0.005 0.026 0.007 0.028 0.002 0.002 0.003
Gap thickness  lgap (m·10-4) 4.6 1.8 4.6 3.9 5.0 14.8 26.4 20.5 8.0 29.2 20.1 23.7 
Current  I (amps) 5.01 6.15 5.06 6.69 6.73 5.62 8.72 6.67 5.20 5.92 6.01 5.41 
Stack Length  L (m) 0.072 0.081 0.09 0.146 0.198 0.155 0.162 0.169 0.139 0.147 0.141 0.197
Gear Ratio  r 2.87 2.17 2.87 4.98 3.36 3.47 3.09 4.54 2.96 2.88 3.07 3.12 
Pinion Pitch Diameter  Dp (cm) 0.012 0.012 0.012 0.013 0.015 0.012 0.023 0.047 0.049 0.019 0.019 0.019
Girth  (cm) 4.62 4.55 4.55 6.96 6.12 7.39 5.66 5.84 5.84 6.50 6.17 6.55 
           (in) 1.82 1.79 1.79 2.74 2.41 2.91 2.23 2.30 2.30 2.56 2.43 2.58 
Weight  (kg) 2.34 2.38 2.42 4.60 4.32 5.03 3.56 5.66 4.36 4.36 4.09 4.48 
             (lbm) 5.15 5.24 5.33 10.14 9.53 11.08 7.84 12.48 9.62 9.62 9.02 9.87 
  

Table 4.6.5: Pareto Designs 

 The important take-away from the above table is that the optimal designs are quite 

different for the different channel structures considered.  Virtually none of the Pareto 

Designs predicted by this model would have been developed by a traditional engineering 

model which would search for different objectives: lowest cost, highest amperage and 

lightest tool for example.  The fatal flaw for such an approach is that some consumers 

prefer heavier tools (Table 3.5.1) which would allow the manufacturer to design less 

costly, Eq. (8), yet optimal tools in some cases (e.g., 7.8 to 12.48 lbm for the Duopoly 
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cases).  Additionally, ignoring pricing changes by competitors within segments might 

result in negative revenue if profitable wholesale prices are unachievable because of the 

strategic landscape. 

Additionally, there are significant variations in the design variable values for the 

manufacturer’s optimal designs A3, A6 A9 and A12 most importantly with respect to 

stack length, stator radius, current, gear ratio and pinion pitch.  These variables in turn 

impact the performance and cost (price) of the tool, which the market is concerned with.  

While, from a qualitative perspective this difference is to be expected given the intuitive 

pricing pressures from different channel structures, our methodology provides a 

systematic manner to incorporate the impact of channel structures and strategy into the 

product design process.  Overall we observe a tendency for the manufacturer to fill a 

niche in the lower cost, low to medium amperage and heavier (except for the monopoly 

situation) category which is currently underserved by the assortment (Table 4.5.1).  The 

manufacturer appears able to capture a significant market share (30% to 40%) with all 

Pareto designs due to the weakness of the competing products.  This, of course, is a 

function of the attributes of the competitive offerings that we have considered in the case 

study. However, it is clear from the results our methodology provides a very efficient 

way to consider the competitive positions in the market, their potential reactions and the 

retailer reactions. 

4.7 SUMMARY 

Considerable effort in the design community has produced methodologies that 

significantly improve customer satisfaction and quality.  These methods frequently ignore 

the reality that customers interact principally with dominant retailers for many product 
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categories and have no access to the manufacturer.  The approach presented in this 

chapter takes into account these channel dominating retailers through a game theoretic 

price setting model at the wholesale and retail level.  Several cases of channel structures 

are presented and we observe that the optimality of designs vary markedly as the 

structure changes and as the threat of shelf space denial goes up.  Under a heightened 

threat of shelf space denial our approach provides a Pareto set of designs to choose from 

that can mitigate this risk.    In addition to the variance in designs, channel structures 

appear to affect retail and wholesale margins to a great deal.  The monopolist retailer is 

able to drive wholesale prices to the lowest level while differentiated retailers and 

exclusive arrangements are able to improve profitability for both members of the channel.  

Additionally, our approach shows that manufacturers may be able to make their offer 

significantly more attractive with an exclusive contract.  Our results provide anecdotal 

evidence that while the manufacturer is limited to lower profits under an exclusive 

relationship the exclusive relationship provides significant motivation for channel 

acceptance and may be preferable to choosing a higher retailer profit under the non-

exclusive arrangement.    The strategic dominance of retailers presented here may provide 

some insight as to the recent large migration of manufacturing operations to less 

expensive and arguably lower quality workforces such as those in China.  Facing a 

monopolist retailer a manufacturer would have little choice but move off shore if a 

competitor does so as well.  The downward pressure on wholesale prices demands it.   

In the next chapter, design of product bundles is modeled with its impact on 

multiple product categories.  That is, several products are designed simultaneously with 

the possibility of selling two or more for a single price.  Additionally, a preliminary 
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probing of the assumptions of pricing equilibrium (Nash Equilibrium) is investigated 

along with other sources of uncertainty to determine their affect on optimal (robust) 

design for channel markets.   
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CHAPTER 5:      MULTI-CATEGORY DESIGN OF BUNDLED 

PRODUCTS FOR RETAIL CHANNELS CONSIDERING 

DEMAND DEPENDENCIES AND UNCERTAINTY IN 

COMPETITIVE RESPONSE 

In this chapter, multi-category and bundled product design is explored as well as 

an approach to designing for uncertainty in the channel structure.  A prevalent approach 

to increasing both retailer and manufacturer revenues is to improve the attractiveness of a 

product offering by bundling related items together for one price. To be most effective, 

bundled products should be developed with an integrated design approach that seeks to 

achieve utility for the end customer as well as cost efficiencies through measures such as 

using common parts.  We propose a bundled product design approach that endogenizes 

the profit maximizing prices set by the channel controlling (monopolist) retailer similar to 

the monopolist framework of Chapter 4.  The approach extends the previous chapter to 

account for demand dependencies between the product categories and thus the impact of 

the bundle and cross-category competition on proposed engineering designs is known.  

Additionally, an approach that simultaneously considers uncertainty in 

engineering design tolerances, competing manufacturer product attributes, customer 

preferences, to ensure acceptable product profitability and market share under interval 

uncertainty is presented in this chapter.  A bundled product design case study is presented 

for two complimentary power tools which rely on the case study developed in Chapter 3 

along with the modifications necessary to make the tools cordless.  Manufacturer profit 

and market share are optimized both deterministically and under uncertain intervals.  We 



 111

find that considering demand dependencies can create optimal bundle and individual 

product designs that increase profits for both retailers and manufacturers.    

The rest of the chapter is organized as follows.  After the introduction in Section 

5.1, an overview of the proposed framework along with model assumptions and 

justifications is provided in Section 5.2. In Section 5.3, we provide the specific case study 

modifications necessary for the bundled product design relative to that presented in 

Chapter 3. Section 5.4 details the optimization approach used with the results presented 

in Section 5.5 and a summary in Section 5.6. 

5.1 INTRODUCTION 

In this chapter, we narrow the focus to the increasingly pervasive practice of 

product bundling in the retail sector which has been studied by economists and marketing 

researchers (Salinger, 1995), (Mulherne and Leone, 1991), (Pierce and Winter, 1996), 

(McAfee et al., 1989).  Bundling is a practice where value is added to the product 

offering by combining multiple complimentary products for a single price which directly 

impacts any demand model used to design the product.  Two sub-categories of bundling 

exist: (1) price bundling and (2) product bundling (Stremersch and Tellis, 2002). Price 

bundling is simply the offering of two or more separate and possibly independent 

products for one price.  Product bundling, on the other hand, requires some level of 

product integration and dependency.  Price bundling can be easily achieved by retailers 

while product bundling requires action on the part of manufacturers to integrate the 

products at the design stage.  Researchers generally agree that product bundling provides 

the greatest opportunity for increased profits (Mulhearne and Leone, 1991), (Stremersche 

and Tellis, 2002) and is therefore a prime candidate for design consideration.  
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Extant literature has addressed coupling engineering design for a single product 

category with discrete choice models such as the multi-nomial logit (Besharati et al., 

2006), (Luo et al., 2007).   Because bundled products present a new category in and of 

themselves we extend these approaches to investigate competing product category 

designs within a Nested Multi-Nomial Logit (NMNL) formulation (Anderson et al., 

1992), (Kannan and Wright, 1991).  The NMNL formulation for large choice sets (e.g., 

multiple categories) helps avoid violations of the irrelevant alternatives (IIA) assumption 

(Ben-Akiva, 1973) (McFadden, 1978).  This assumption essentially requires that original 

pair wise decisions remain in tact as additional alternative choices are added (Lourviere 

et al., 2004).   Bundle choice models (BCM) fall under the larger genre of multi-category 

models (Seetharman et al., 2003) and thus the evaluation of high level bundle attributes 

with choice models is not without precedent (Chung and Rao, 2003).  Kopalle et al., 

(1999) have shown that pure bundling (offering a bundle only) is never the equilibrium 

strategy (profit maximizing for multiple players) under the NMNL formulation.  As such,  

we investigate a mixed bundling strategy within NMNL formulation as a significant 

improvement in accuracy is possible over previous approaches where cross category 

effects are ignored (Williams et al., 2006) or when bundles are simply evaluated within 

existing product categories (Williams et al., 2007).   

Although examples abound in the retail marketplace, the extant literature has not 

considered the role of bundling early in the product design process.  Ideally, a design 

process would take into account the possibility of bundling by incorporating efficiencies 

of quantity and scope (i.e., costs) from the bundle as well as any market share gained 

from the added value to customers.  Less obviously, the design approach should also take 



 113

into account the effects of design integration on the individual products design, the 

cannibalization of sales between products, and the effect of the bundle on the retailer’s 

profit.  Finally, regardless of the bundling strategy a retailer chooses to use, if products 

are made more complementary in the design stage itself both manufacturers and retailers 

can benefit from higher sales, which may make it easier for the manufacturer to convince 

the retailer to carry its products.  

Additionally of concern, retailers now exert significant pressure on manufacturer 

wholesale prices as the largest retailers (e.g., Wal Mart) strive to continuously provide 

value to customers through price reductions (Fishman, 2006).    Realizing that 

manufacturers do not interact directly with end customers but rather propose product 

offerings to retailers who price the product and might accept or reject the design based on 

their own objectives, a new methodology is needed.  Retailers wish to maximize profit 

(see e.g., Simpson et al., 2001, Wagner et al., 1989, and Shipley, 2001)   which is an 

objective that does not necessarily align with the manufacturers profit maximization 

objective  (i.e., the retailer and manufacturer do not necessarily cooperate).  Some recent 

and relevant work in the engineering literature has sought to analyze non-cooperative 

behaviour (objectives are not aligned) between engineering disciplines within a 

manufacturing firm (Chanron and Lewis, 2005), (Xiao et al., 2005) (Marlar and Arora, 

2004).  The new approach proposed here will consider a non-cooperative externality: the 

retailer.  In that vain, the profit maximizing objective of the manufacturer has been 

modelled simultaneously with the retailer’s objective of maximizing category profits 

(Luo et al., 2007) (Williams et al., 2006) but in this work we extend approach to the 

multi-category assortment that includes the possibility of product bundles.  In our 
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approach the retailer is essentially an important stakeholder (Donaldson et al., 2004) who 

makes decisions on prices and shelf space while the manufacturer makes decisions on the 

rest of the product attributes. We limit our scope to a monopolist pricing model, from the 

retailer’s point of view, for multi-category profitability. 

While the manufacturer-monopolist retailer relationship can be readily modeled 

as a non-cooperative game, the relationship between the focal manufacturer and 

competing manufacturers is much more complicated. Game theoretic approaches to 

modeling simultaneous competitor reactions require strict-quasiconcavity of all 

competitor profit functions with respect to their own strategies in the case of 

deterministic games (Osborne and Rubinstein, 1998) and the super-rationality of players 

in the case of Bayesian games (Harsanyi, 1967).  These are rather strict criteria and 

difficult to prove for a multidisciplinary engineering design problem with discrete 

variables, and non-convex objective functions.  Additionally, players have repeatedly 

proven to be irrational (i.e., make responses that are not best responses to a competitors 

action, see e.g., Binmore et al., 2001) and incapable of identifying the Nash Equilibrium 

(Nash, 1951), (Haruvy and Stahl, 2005).  These aspects make it difficult to incorporate 

manufacturing competitor actions in a game theoretic framework.  Rather than focusing 

on the question of “which designs are optimal for our focal manufacturer given all 

manufacturers converging to a competitive equilibrium?” we reframe the question as 

“which designs are optimal for a bundle given that all competitor strategies and uncertain 

events (within an interval of uncertainty) conspire against him?”  Therefore, the one of 

the objectives of this paper is to develop a flexible design methodology that allows 
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manufacturers to manage uncertainty in the design, pricing and marketing of multiple 

products.     

5.2 APPROACH TO MULTI-CATEGORY DESIGN WITH BUNDLES 

 We approach this problem from the perspective of the manufacturer who is 

considering the design of multiple individual products and their possible bundle.  Each 

individual product and the bundle of all products are modeled as product categories.  The 

approach is formulated to evaluate demand for an engineering design in light of the 

possibility of substitution between product categories.  Our approach is formulated with 

four key goals in mind: (1) the effect of bundled product designs should be accounted for 

in calculating all product category market shares and profits (e.g., cross category effects), 

(2) the approach should be capable of optimizing product designs for multiple 

manufacturer firm objectives (e.g., profit and market share), (3) the design should take 

into account retail prices dictated by the monopolist retailer, and (4) designs should  be 

robust or have acceptable objective variation under uncertainty (e.g., uncertainty in 

competitor product attributes, uncertainty in  wholesale price, or uncertainty in an 

engineering parameter like material’s property).   

 Our framework is aimed at addressing these goals and is built up in a multilayered 

fashion where design decisions, retailer reactions, and consumer choices are sequenced in 

an order that mimics reality as shown in Figure 5.2.1.   
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Figure 5.2.1: Multi Layered Design Framework 

 As shown Figure 5.2.1, the innermost layer, Layer 1, is for the determination of 

the market shares for each product as designed (see the darkest block).  Market shares can 

only be determined once the retail price for the assortment in each category is set since 

price is a major component of customer utility.  The demand model (Layer 1) we employ 

will be presented in Section 5.2.1.  The next layer, retailer pricing layer (Layer 2), will be 

explicated in Section 5.2.2.  This layer of the model is depicted as the medium grey toned 

region allows the retailer to set prices that maximizes profits across all product 

categories.  Finally, engineering design (Layer 3) is the outermost layer (light grey tone) 

and must ensure the feasibility of the designs while simultaneously predicting monopolist 

price setting at the retail level (see Section 5.2.3).   This basic model provides the basis 

for the more detailed aspects of the remainder of Section 5.2.   
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5.2.1 LAYER 1:  DISCRETE CHOICE MARKETING MODEL  

 Manufacturers are concerned with profit which is a function of production costs, 

wholesale price, and market share.  In the context of a bundled product the manufacturer 

is concerned with the profit generated by the original unbundled products as well as that 

of the bundle which can be addressed with the NMNL formulation.  In our 

implementation of the NMNL formulation we use a nest for each product category.  For 

example for two products there would be a nest for product 1, a nest for product 2 and 

then a nest for a bundle of the two products.   

 The NMNL approach is very flexible and capable of analyzing multiple 

categories along with the no-choice option which is presented in Figure 5.2.2. 

I1 IBundle

U11, U21 …U 1

Il IL

U1l, U2l … U1L,U2L… U1B,U2B  ...

…

1N U 2l2N U LLN U BBN

…

 

Figure 5.2.2: Discrete Choice Design for Product Bundling 

 Each of the l=[1,2,…,L,B] nests or categories has an attraction or inclusive utility, 

Il that determines the overall market share of the product category. B represents the 

bundle nest while individual product competition is represented with (1,2,…,L).  This 

representation in Figure 5.2.2 assumes that any bundle B must be made up of all 

individual products [1,2,…,L] for a manufacturer offering a bundle.  That is one product 
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from each individual nest must make up the bundle.  To analyze the situation where n of 

L individual products are offered as bundles requires an additional bundle nest for each 

combination of categories.        

The inclusive utility Il of nest l is essentially a function of the utilities Uil for each 

of i=1,2,…,Nl products within the lth category Gl, as shown in Eq. (5.1)  (Anderson et al., 

1992): 

2
2

ln exp
l

il
l

i G

UI µ
µ∈

 
=  

 
∑             (5.1) 

where µ2 is a scaling parameter within the nest which is estimated using conjoint analysis 

of consumer surveys.  The probability of a consumer selecting the category nest Gl is 

approximated with the nest scaling parameter µ1: 
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 In the second stage conditional probability of selecting the ith product given the 

category nest Gl is: 
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Thus the probability at the outset of selecting any one product competing within such a 

cross category environment is a function of product utilities in all of the categories.  The 

market share m of product i in category Gl is then: 
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This NMNL market share calculation forms the cornerstone for rest of the bundle design 

approach as the innermost layer but relies on some preparatory work including shelf 

surveys (i.e., what are the competitor attributes?) and consumer surveys for each category 

(i.e., what do consumers want in terms of product attributes?).   

 To perform this task, we assume that first, manufacturers will collect customer 

preference data from likely users using a conjoint analysis (Green and Srinivasan, 1990) 

based on the alternatives in each of the two categories and the bundles (e.g., 1, 2, and the 

bundle). Customers are provided choice sets, each with an alternative from product 

category 1, an alternative from product category 2, and an alternative from the bundle 

category. Each choice set also has a no-choice option. Based on the choice data from 

customers across the many choice sets, customer value or utility that customer places on 

the various attributed of the products and the bundle are estimated. Recent estimation 

techniques allow estimation of utilities at the individual level using Bayesian techniques 

(Rossi and Allenby, 2003, or at the segment level using finite-mixture model techniques 

(Kamakura and Russell, 1989). Based on the conjoint data, customer’s probability 

estimates for choosing one or the other category or the bundle can be estimated at the 

segment level.  Commercially available marketing software (e.g., Sawtooth Software 

Market Research Tools) (Sawtooth, 2001) can be used to perform these conjoint utility 

estimates for each market segment and is a suggested methodology to support this 

framework.  The customer choices from the conjoint survey are decomposed into j 
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attribute utilities using maximum likelihood estimation and ultimately used to calculate 

market share.  Attribute utilities u=[u1,u2,…,uj] are functions of high level customer 

relevant product attributes y=[y1,y2,…,yj].  To estimate the total utility Uil for a product i 

within a category Gl, we sum the attribute utilities uijl: 

∑=
j

ijlil uU              (5.5) 

The market share calculations presented in this section culminate in a monopolist retailer 

setting retail prices so as to maximize profit of all categories. When products in a 

category within the NMNL formulation have market shares of less than an arbitrarily 

small number, 0.5%, due to low utility we can interpret such a situation as the product 

being denied shelf space.  The setting of retail prices is presented in the next subsection. 

5.2.2 LAYER 2:  RETAIL PRICING MODEL  

At this point we expand the original framework to demonstrate the internal 

workings of the retailer pricing model to calculate retailer profit π as he/she sets profit 

maximizing prices for all categories given a set of product designs, as shown in Figure 

5.2.3. 
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Figure 5.2.3: Retailer Pricing Layer 
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In the expanded section of Figure 5.2.3 the retailer pricing model is presented.  

The retailer observes the attributes of his own assortment and has a conjoint model of 

customer utilities before setting retail prices for each product, i, in the multiple 

categories, l: 
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P11 signifies the retail price of the first product in the first nest/category. Each nest has Nl 

products and thus the retail price matrix may not necessarily be square or symmetric.  

These retail prices will be iteratively set to maximize the profit of the retailer.  Each 

iteration consists of setting a retail price, calculating market share and retailer pricing, 

and then determining if retail profit is optimal as shown in Figure 5.2.3.   If profit is 

optimal the retail price is then known and the algorithm can proceed to the engineering 

layer.  To implement this we must first fully characterize the retailer’s profit function 

within the context of multiple categories, bundles and NMNL.  Given that there are a 

corresponding set of wholesale prices Wil assumed in the model for every retail price Pil 

and the possibility consumers may prefer not to select any product (i.e., no choice) Unc, 

the retailers profit objective becomes:   
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It is important to note that Il  and Uil are functions of retail price which is a customer level 

product attribute (i.e., y∈ilP ).  Utility for a product is downward sloping in price which 

means that customers (given two identical products) prefer the less expensive alternative. 

As such the utility for the retail price attribute takes the form: εββ ++−== oRilRj Pu / , 

where the price elasticity (i.e., customer response to price increases) is estimated in terms 

of a negative slope -1/βR, an intercept βo and an error term ε.  In turn Uil is a function of 

this uj=R as well as ultimately the attractiveness of the nest Il.  Thus the retailer (regardless 

of monopoly power) cannot freely increase retail prices.  As retail prices approach 

infinity the market share of all products drops to zero and customers turn to the no 

purchase or no choice option Unc.  Thus even a monopolist must strategically select prices 

for customer evaluation. 

Under certain conditions (i.e., strictly quasiconcave profit functions in a 

manufacturers own wholesale prices) Wil can be estimated using a game theoretic 

framework (see, e.g., Luo et al., 2007) but a reasonable approximation can also be found 

by observing actual retail prices and reducing the price by the retailer’s gross margin 

estimated from annual reports.  The latter interpretation is used in this work as the strict 

quasi-concavity of profits cannot be guaranteed for multiple manufacturers whose profit 

functions we discuss in the next section.    

Ultimately, this pricing model allows the retailer to maximize profits across 

related categories and to take into account the cross category effects of cutting prices on 

one manufacturer’s product to see the relative inclusive utility altered for all products and 

categories.  We believe such an approach more accurately models the decision 

framework of modern channel controlling retailers as department managers will 
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inherently seek to maximize departmental profit (multiple related categories) rather than 

each individual category.     

5.2.3 LAYER 3:  MANUFACTURING ENGINEERING AND PRICING MODEL  

We limit our decision model to a single focal manufacturer and as mentioned 

previously estimate wholesale prices at competing manufacturers from annual reports and 

shelf surveys.  We make no assumption on wholesale prices for the focal manufacturer 

and rather allow wholesale price to be a design optimization variable.  The manufacturer 

assumes the static wholesale prices of his competitors from retail prices discounted by a 

margin approximated from annual reports and then tries to maximize profit by setting 

optimal wholesale prices.  If he sets wholesale prices too high the monopolist retailer 

reacts by raising prices to the point of negligible market share for the focal 

manufacturer’s products.  The optimization algorithm ensures that the manufacturer sets 

prices with foresight of the retailer’s reactions.   

  Even after bounding our pricing framework in this manner a sizeable problem 

remains due to the nature of the multidisciplinary decisions that must take place for the 

manufacturer to optimize profit.  The complexity of product category dependencies in 

bundles along with the strategic response from the monopolist retailer requires that 

manufacturers develop their product line very carefully.  In our approach, the 

manufacturer begins by developing engineering models with inputs x.  These models 

serve two purposes: (1) high level product characteristics (e.g., weight, power) valued by 

customers are estimated through engineering design computations, and (2) product design 

feasibility in terms of design constraints such as maximum temperatures and stresses in a 

gear box are estimated.   In the extant methods that consider demand models only one 
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product’s design variables need to be generated since only one category exists.  In our 

approach we are tackling multiple categories/products at once with design dependencies 

amongst the products due to bundling.  As such, more design variables are required.  We 

concatenate the design variables for the different products which are then passed in to the 

intermediate computations as shown in the lower left of Manufacturer’s Bundle Design 

Framework (Figure 5.2.4). 
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Figure 5.2.4: Manufacturer's Bundle Design Framework 

When L individual product categories are incorporated into the engineering design 

simulation, each product category set Gl will have a set of design variables 
lGx and 

wholesale prices W for the focal manufacturer.  The manufacturer also develops a set of 

bundle design variables 
BGx  if the bundle is to differ from the individual product designs.  

Finally, the manufacturer can specify which design variables must be common or shared 

amongst the individual products and/or the bundle with the vector xShared.  This is key to 

achieving a product bundle as opposed to simply offering two products for one price 
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since some level of product integration is imposed by the shared variables. For each 

category that the manufacturer wishes to consider in the design optimization wholesale 

prices W=[W1, W2,…,WL,WB]  should be selected as well.  When x and W are sent to the 

next stage we refer to these vectors together as a candidate design.    

 The next step is performed in the “Intermediate Engineering Computations” block 

of Figure 5.2.4.  Here engineering design model takes inputs from the lowest level design 

variables x and simulate higher level (customer relevant) product attributes y.  The 

functions that take place in this stage can be anything from simple mathematical 

functions that predict an attribute like horsepower to highly detailed finite element 

simulations that predict stiffness of a power tool’s housing.  Additionally, the engineering 

simulations are responsible to check the limitations of the design.  That is a function g(x) 

is calculated and measured relative to a maximum value b. If g(x)>b then the candidate 

design is rejected and a new design selected.    

 If the design is feasible, the customer level product attributes y and wholesale 

prices W are passed to the retail pricing layer and demand model after which ultimately 

emerges the market share mil of each product which is a critical component of the 

manufacturer’s profit objective and obviously any market penetration objective.   Thus 

the manufacturer is able to influence market share in a couple of different ways.  Design 

variables can be tuned (through optimization) to better address customer preferences in 

light of the assortment or the manufacturer can reduce wholesale prices to encourage the 

retailer to reduce retail prices on the focal manufacturer’s product.   

 The last key to the manufacturer’s design selection is computing production costs 

which are of course a critical component of the profit function and takes place in 
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“Compute Production Costs” block of Figure 5.2.4.  Competitor wholesale prices and 

production costs for all manufacturers are estimated using the parametric approach 

detailed in Chapter 3.  That is wholesale prices and production costs are estimated from 

wholesale and retail margins found in annual reports and a multi-regression of product 

attributes currently found in the dominating retailers’ assortments.  

 The estimation of market share, production costs, and proposed wholesale price 

culminates for the manufacturer at the decision node in Figure 5.2.4 “Optimal 

Manufacturer Profit?”  We can write the manufacturers profit function as the sum of 

profits derived from each of the product categories (including the bundle category). For 

the first objective, first we sum the profit in each nest Gl but of course only those i 

products belonging to the focal manufacturer’s (FM) offering FM
lGi∈ .  As before (see 

retailer profit Eq. 5.7) we sum the profit across all nests (See Eq. 5.8.1). Several 

researchers (see, Stremersch and Tellis, 2002, for a comprehensive summary) have 

pointed out that in addition to profit, market share (or market penetration) may be equally 

important in new product introductions.  Therefore, we sum the market shares of the 

manufacturer offerings and determine market penetration Ф (Objective 2, Eq. 5.8.2) as a 

second objective: 
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 Subject to: (1)         ( ) bg ≤x                   (5.8.3) 

                 (2)         newold ππ ≤                     (5.8.4)     

      Initially it is not obvious that the two objectives are competing because their 

forms are similar.  The greatest difference between the two lies in the fact that if 

wholesale prices are set below production costs profit (Objective 1) will be negative and 

market share (Objective 2) may be extremely high as the retailer senses an opportunity to 

increase profit by directing consumers to the low wholesale price product through 

incentives such as low retail price.  While counterintuitive, these negative margins have 

been observed for several product introductions (see, e.g., Hesseldahi, 2005, who 

examines the X-box video game console) where maximum market share was the primary 

consideration.  This so called “loss leader” approach is implemented in anticipation of 

future profits on accessory sales (e.g., software/games).  The optimal design for this loss-

leader strategy can be found using our multi-objective approach.  These profit and 

penetration formulas Eq. (5.8.1-5.8.2) are flexible in that a manufacturer can offer 

multiple products within a nest/category as we sum over FM
lGi∈  and also the cross 
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category effects are taken into account with the NMNL calculation.  Thus the 

manufacturer has the ability to assess changes in design variables as they impact the 

entire product line.  Moreover, as discussed previously, the manufacturer faces physical 

constraints Eq. (5.8.3) and highly consolidated retailer power Eq. (5.8.4) that requires that 

the retailers new profit πnew be greater than the old πold in order to achieve access to 

consumers.  So, in essence, the previous methods (e.g., Williams et al., 2006) have been 

extended to multiple categories and bundles through an initial calculation of Eq. (5.7) that 

determines the retailer profit with the existing assortment or πold  as shown in Figure 

5.2.5. 
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Figure 5.2.5: Nested Optimization 

 Any proposed set of new products (individual products and bundles) must 

increase the retailers profit or the manufacturer faces rejection.  Thus we provide an 

additional constraint for the multi-category model that constrains the new retailer profit to 

being higher than the retailer’s prior profit, see Eq. (5.8.4).  If the model were extended to 

consider multiple retailers one would simply add additional constraints for those retailers 

but the pricing layer becomes much more complicated as multiple retailers must reach a 

competitive equilibrium in pricing rather than a simple maximization.    
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 In total, Figure 5.2.5 makes up the mathematical formulation of the engineering 

layer shown in Figure 5.2.4 as well as the retail pricing layer. Given that many design 

variables are discrete and the desire to find a global optimum for objectives that may not 

be convex we recommend a genetic algorithm and specifically a multi-objective genetic 

algorithm (see, e.g., Deb, 2001) to optimize the engineering layer.  The retailer profit can 

be found through a gradient based algorithm because of the quasi-concavity of the 

NMNL formulation.           

5.2.4 MULTIDISCIPLINARY UNCERTAINTY 

 We propose robust optimization as a method to solve for a focal manufacturer’s 

strategy under uncertainty.  Robust optimization, pioneered by Taguchi (1978), seeks to 

find designs with minimal variation in design’s (objective) performance due to variation 

in uncertain parameters. Although robust optimization has principally been applied to 

models with variation in engineering parameters (e.g., dimensional tolerances) we believe 

it is equally amenable to multi-disciplinary sources of uncertainty (e.g., consumer 

preferences, wire thickness etc.) as demonstrated in (Besherati et al., 2006).  We extend 

the scope of uncertainty to included strategic sources such as competitor reactions in 

choosing product attributes that might not be strictly quasi-concave (in own profit) 

decisions. 

 Uncertain intervals can be constructed from defined probability distributions 

based on confidence intervals (Besharati et al., 2006) or the decision maker can specify 

an interval range of uncertainty for parameters before optimization.  This can be used to 

model strategic options of a competitor as an uncertain interval whereby we believe that a 

competitor might select a product attribute between some lower and upper limits of the 
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attribute.  In the context of bundling one can specify a range that the bundle product 

attributes might deviate from the existing individual product attributes since the cost 

function for retooling the bundled product is unknown.  These strategic options are 

essentially modeled as uncertain parameters which can be accounted for in robust 

optimization as will be discussed subsequently.  

 While not computationally trivial, the Multi-Objective Robust Optimization 

(MORO) technique developed by Li et al. (2006) has many properties that are amenable 

to finding solutions that are optimal given an acceptable level of objective variation.  This 

approach is capable of finding designs that are multi-objectively robust (i.e., the 

uncertainty considered does not cause variation outside of a range specified for each 

objective).  This range is called the Acceptable Objective Variation Range (AOVR) and 

is defined by the decision maker. The MORO approach has convenient properties in that 

objective functions need not be convex in parameter uncertainty since a genetic algorithm 

is used to probe the candidate design for robustness.   

 MORO is most easily described graphically but first a few definitions are in order.  

Uncertain input parameters p=[p1, p2,…,pG] are assumed to vary by an amount 

±∆p=[±∆p1, ±∆p2,…,±∆pG] around a nominal parameter value of p0 =[p0,1, p0,2,…,p0,G] 

and form a parameter tolerance region as shown in the left of Figure 5.2.6(left).   
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Figure 5.2.6: MORO: Robust Optimization 

 If the parameter tolerance region were exhaustively mapped to objective space we 

would see regions of uncertainty surrounding each design which is called the objective 

sensitivity region (OSR) (grey areas on the right side).  In this case we present a set of 

designs that are multi-objectively optimal with respect to profit and market share on the 

right side of Figure 5.2.6.  In order to define robustness we must first define a range of 

objectives that the decision maker would find acceptable.  The approach has the decision 

maker define ranges ±∆f=[±∆f1, ±∆f2,…,±∆fM] for each of the objective functions f=[f1, 

f2,…,fM]  which are first normalized.  These ranges make up a hypercube termed the 

AOVR.  The simplest definition for robustness is to say that if AOVR encloses OSR then 

the design is robust as is the one in the exploded view shown in Figure 5.2.6.  

Equivalently if we find the Euclidian distance to the worst case of the OSR Rfnew is less 

than the normalized distance to the tangency of the AOVR (RI)  then the design is also 

robust.  For completeness a design that is multi-objectively optimal in a nominal sense 

yet is not robust per this definition is shown at the top of Figure 5.2.6.  This design would 
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be rejected for excessive uncertainty.  A simplified inner-outer optimization approach is 

shown in Figure 5.2.7 to accomplish the task of robust optimization.  In cases where 

robust optimization is unable to find a feasible solution (including the robustness 

constraint) the decision maker can expand the AOVR incrementally.  The reader is 

directed to Li et al., (2006) for further details and detailed comparisons with other 

approaches. 
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Figure 5.2.7: Robust Optimization Topology 

  In Section 5.3 this approach will be applied to a case study with multi 

disciplinary sources of uncertainty that are of consequence to the design of bundled 

products.   

5.3 CASE STUDY:  CORDLESS ANGLE GRINDER AND RIGHT ANGLE 

DRILL 

5.3.1 NESTED LOGIT DEMAND MODEL 

 A bundled product engineering design for notional customer segments was 

developed based on historical data as a case study for our approach.   A product bundle of 

a cordless angle grinder and a cordless right angle drill is proposed as a bundle that is 
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likely of interest to customers. The customer preferences for these products and the 

bundle are estimated using the NMNL model (see Table 5.3.1 and Table 5.3.2).  The 

grinder and drill are each treated as categories (Table 1) that compete with the bundle 

category (grinder plus drill in Table 5.3.2) within the NMNL model.  Each product comes 

with a battery pack and charger when sold separately and share a battery/charger when 

sold together in a drill/grinder bundle.  Segment specific product attribute utilities uijl are 

given in tables one and two along with the nest scaling parameter µ1. 

Segment Two Three Four Segment Two Three Four
Share 24.8% 12.1% 25.3% Share 21.2% 34.4% 22.0%

µ 1 0.82 1.02 0.85 1.10 µ 1 0.92 0.94 1.06 0.89

Price
$99.00 3 2 2 2 3 2 3

$199.00 0.1 0.1 0.1 0.1 0.1 0.1 0.1
$299.00 -3 -2 -2 -2.1 -3.1 -2.1 -3.1

Volts
10 -0.45 -1.5 -0.5 -2.25 -1.45 -2.5 -2.5
25 0.1 -0.65 -0.38 -0.13 -0.1 -0.65 -0.38
40 1 2.13 2.82 2.38 1.55 3.15 2.88

4 -1.4 -1.71 -0.8 -0.8 -0.5 -0.7 -1.2
10 0.5 -0.82 0.74 -0.3 -0.5 0.2 0.3
16 0.9 2.53 1.54 1.1 1 0.5 0.9

Girth
Small -2.5 1.5 -0.6 1.5 1.4 0.5 -0.8
Large 2.5 -1.5 0.6 -1.5 -1.4 -0.5 0.8

Weight
16lbs -0.3 -0.5 -1.5 -2.3 -1.8 -2.5 -1.5
9 lbs -0.5 -0.1 0.5 -0.5 -1.2 -1.5 -0.5
6 lbs 0.8 0.6 1 2.8 3 4 2

No Choice -2 -2 -2 -2 -2 -2 -2-2 No Choice

0.4 9 lbs
0.8 6 lbs

Weight
-1.2 16lbs

0.7 Small
-0.7 Large

1.57 16
Girth

-1.12 4
-0.47 10

1.2 40
Life (min)-operating time Life (min)-operating time

-1.25 10
0.13 25

-4 $299.00
Volts

4 $99.00
0.1 $199.00

37.8% 22.4%

Price

Grinder Category Utility Estimates Drill Category Utility Estimates
One One

 

Table 5.3.1: Grinder and Drill Category Utilities 

 For motivation it is worth explaining that, an angle grinder is a tool commonly 

used in many trades for removal of material or cutting while a right angle drill is 

frequently used for drilling in cramped spaces due to its reduced horizontal clearance.  A 

bundle of these tools would be especially attractive to plumbers, electricians, or even the 
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weekend hobbyist and requires design integration of the common battery and voltage 

specifications. The user can expect to receive a reduced price by using the same 

supporting components (battery pack and charger in Figure 5.3.1).   

 This complicates the design optimization as the battery pack design must consider 

the preferences of the shoppers of all three categories (drill, grinder, and drill+grinder)  

Cordless angle grinders are operated for long periods (minutes at a time) at high RPM 

(10,000 RPM) while drills are operated for much shorter periods at higher torque (up to 

600 in-lbs) and lower RPM (less than 1,750).   Due to the nature of these two operating 

environments one can expect the voltage requirements (directly impacts torque) for each 

tool and battery capacity (amp-hrs) to be somewhat different for each tool.  For example, 

buyers of angle grinders want longer battery life due to the high RPM and longer tasks 

while the users of drills are particularly interested in light weight designs.   
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Segment Two Three Four Segment Two Three Four
Share 21.5% 35.5% 18.3% Share 21.5% 35.5% 18.3%

µ 1 1.26 1.04 1.09 1.01 -2 -2 -2 -2
Combined Attributes

1 2 1 2 -0.3 -1.2 -0.5 -0.5
0.1 0.1 0.1 0.1 -0.5 0.4 -0.1 -0.5
-1 -2 -1 -2 0.8 0.8 0.6 1

-1.75 -1.45 -1.48 -2.00
0.00 -0.10 -0.28 -0.52
1.75 1.55 2.08 2.51

Pure Attributes (bundle context)

-0.80 -0.46 -0.67 -1.18 4 -1.37 1.17 -1.66 -0.76
-0.25 -0.48 0.22 0.35 10 0.55 0.48 -0.77 0.76
1.05 0.94 0.45 0.83 16 0.82 -1.65 2.43 0.00

Drill Girth Grinder Girth
1.52 1.42 0.52 -0.77 Small 1.25 0.98 0.75 -0.61
-1.52 -1.42 -0.52 0.77 Large -1.25 -0.98 -0.75 0.61

-2.27 -1.80 -2.46 -1.46 16lbs -0.29 1.21 -0.48 -1.48
-0.46 -1.19 -1.47 -0.49 9 lbs -0.47 -0.36 -0.07 0.51
2.74 2.98 3.93 1.95 6 lbs 0.76 -0.85 0.55 0.97

No Choice

Grinder Life (min)-operating time 

Grinder Weight

8 lbs

One
24.7%

Bundle Weight   
26lbs
16 lbs

9 lbs
6 lbs

Drill Weight      
16lbs

Small
Large

16

4
10

40

Drill Life (min)-operating time 

10
25

$299.00
Volts

$99.00
$199.00

24.7%

Price

Bundle Category Utility Estimates
One

 

Table 5.3.2: Bundle Category Utilities 

  We assume that all three categories make up a market size of 20 million 

units although the exact size of each category is unknown until the shares of the nests are 

calculated in the NMNL model.  The focal manufacturer updating his offering of 1 of 3 

drills in the monopolist retailer’s  assortment as well as 1 of 3 grinders and 1 of 3 bundles 

in the retailer’s assortment. The new offering must be more profitable than the assumed 

assortment pre-existing on the retailer’s shelf.  The conjoint analysis of bundle attributes 

contains more product attributes because each of the tools in the bundle will be evaluated 

in the context of the nest or category.  In addition, the bundled tools have combined 

attributes such as voltage, price,  and combined weight because the bundle has one less 

battery and will be evaluated as a whole when one considers the contractor who must 
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carry the tools to and from the jobsite as a set.  The grinder and drill individual product 

weight will each be evaluated with the battery attached.   

 The differing values placed by the product category segments on product 

attributes will be important in selecting an optimal design since the nests do not value 

attributes equally.  For example a tension exists between the grinder category that wants 

long battery life and the tool category that prefers light weight.   The engineering design 

must take this into account in providing all three category designs since the battery design 

will affect all three categories differently.  Product attributes from the left side of Table 

5.3.1 and Table 5.3.2 will be computed in the next section.   

5.3.2 ENGINEERING PERFORMANCE MODEL 

 The general universal motor and bevel gear design methodology from Chapter 3 

was adapted for the cordless right angle drill and angle grinder.  In designing the two 

individual tools and the bundle the proposed approach was restricted offering the 

individual tools as a bundle a logical cost savings approach through commonality of 

components.   In the design of electric power tools we have identified 9 design variables 

that impact higher level attributes that are then translated into utility.   Because we are 

designing two different motors (one for each the grinder and the drill) we have 18 design 

variables related to motor and bevel gear (Figure 5.3.1).  There are also two shared design 

variables that affect all category offerings from the manufacturer: voltage (volts) and 

battery size (amp-hrs). Finally, three wholesale prices were also set as design variables, 

one for the grinder, drill and bundle.   
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Note:  motor variables *, bevel gear variables ** 

Stator outer radius Ro (in)* 
Current I (amps)* 
Armature wire turns Nc (# of turns)* 
Stator wire turns Ns  (# of turns)* 
Stator thickness t (in)* 
Stator Gap thickness lgap (in)* 
Motor Stack Length L (in)* 
Pinion Pitch Diameter Dp (in)** 
Gear Ratio r** 

Stator outer radius Ro (in)* 
Current I (amps)* 
Armature wire turns Nc (# of turns)* 
Stator wire turns Ns  (# of turns)* 
Stator thickness t (in)* 
Stator Gap thickness lgap (in)* 
Motor Stack Length L (in)* 
Pinion Pitch Diameter Dp (in)** 
Gear Ratio r** 

Battery/Charger Design Variables (2) 
Voltage V (volts) 
Battery Size Cap (amp-hrs) 

Wholesale Price Design Variables (3)
Grinder/Drill Bundle Price ($) 
Grinder Price ($) 
Drill Price ($) 

Grinder Design Variables (9)Drill Design Variables (9)

**Bevel Gear 
*Universal Motor  

 

Figure 5.3.1: Design Variables 

 The engineering design variables were transformed to intermediate customer 

relevant variables that are then transformed to utility using linear interpolation of the 

customer level attributes utilities in Table 5.3.1 and Table 5.3.2 just as we did for one tool 

in Chapter 3.  One of the simplest examples of this transformation is the operating time or 

battery life of the tool: 

I
CapLife ×= 7.0(min)      (5.9) 

where I is the design variable for motor current and Cap is the Battery size and an 

efficiency factor of 0.7 is applied (Hurricks, 1994).   Similarly the girth attribute G of the 

design is : 

)5.(2)( +×= oRinG   (5.10) 

where Ro is the outer radius of the stator in inches and ½ inch is added to the radius to 

account for the plastic body of the tool and an air gap for cooling the motor.  The weight 

of the tool is a somewhat more complicated approximation from the design variables and 
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is presented in Table 5.3.3.  This intermediate attribute also has a complicated affect on 

market share as it affects each category’s overall utility differently.   

Density  Steel ρ s (lbm/ in3) ρ s =0 .283(lbm/ in3)
Density of Copper ρ copper (lbm/ ρ copper = 0.297(lbm/ in3) 
Face Width b (in) b=0.3 in
Gear Pitch Diameter Dg (in) rDD pg ⋅=

Armature Diameter lr (in) lr =2(Ro-t-lgap) 
Wrap length lrw (in) Lll rrw 22 +=

Stator Mass M s  (lbm) steeloos LtRRM ρππ ⋅⋅−−= ))()(( 22  
Armature Mass M a  (lbm) sra LAM ρ⋅⋅=

Windings Mass Mw  (lbm) copperwscrww ANNlM ρ⋅+= )2(  
Motor Mass Mm  (lbm) wasm MMMM ++=

Pinion Mass Mp (lbm) 4/)( 2
steelpp bDM ρπ ⋅⋅⋅=

Gear Mass Mg (lbm) 4/)( 2
steelgg bDM ρπ ⋅⋅⋅=

Bevel Gears Mass Mbg (lbm) gpbg MMM +=

Battery Mass Mbat (lbm) 5.0+= CapM bat

Fixed Mass Mf (kg) )(2.1.... lbmMMM Arborcommutarf =+=  
Total Mass Mt  (kg) Mt=Mbg+Mm+Mf+Mbat 

Table 5.3.3: Cordless Tool Mass Computations 

 The mass of the battery Mbat is an approximation based upon a survey of 

commercially available replacement batteries for power tools.  It is important to note that 

the battery capacity impacts two performance attributes in the design (weight and battery 

life) which affect each category differently as shown in Table 5.3.1 and Table 5.3.2 utility 

estimates. 
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Integer Turns int, =sc NN
Length to Diameter Ratio 5/ ≤GL
Flux Density armature Br (Tesla) TeslalB rr 5.1)4/)/(( 2 ≤⋅= πφ  
Flux Density Stator Bs (Tesla) TeslalLB rs 5.1)2/( ≤⋅⋅= φ  
Flux Density Air Gap Bg (Tesla) TeslalLB rg 5.1)/( ≤⋅= φ

Armature Heat Flux Ks (A/m) 10000≤
⋅
⋅

=
r

c
s l

INK
π

Stator Heat Flux Ks (A/m) 10000
)(
≤

+
⋅

=
tl

INK
r

s
s π

Contact Stress σf (Pa) MPa
Dd

DdFKKZZ
vv

vvima
eHf 720

)(
)(
≤

+
=σ  

Bending Stress σb (Pa) MPaJmFKK imab 145)/()( ≤⋅=σ
Armature Tip Velocity va )/(10000 sftlNv rmotora ≤⋅⋅= π  

Table 5.3.4: Common Constraints 

 A set of constraints is implemented for each class of power tool though the 

universal motor and bevel gear overall design is general in nature.  This is because the 

usage scenario of each motor is far different (e.g., high torque necessary for drill, high 

RPM necessary for grinding).  The common constraints (Table 5.3.4) are implemented 

for each design while Table 5.3.5 constraints are individual product specific. In total there 

are 24 constraints for the overall engineering design 

( ) ( ) ( )( ) 2422102 =++⋅ grinderdrillcommon .  If the bundle products were not forced to follow 

the individual product category designs an additional set of engineering constraints would 

be necessary.  Due to space constraints it was not possible to demonstrate all intermediate 

computations.  For details on calculating the following intermediate design variables 

(flux φ , module (pinion) m, motor RPM Nmotor, torque T, gear cone depth Dv, pinion cone 

depth dv,   tooth loading intensity Fi , zone factor ZH) and selection of design constants 

(Ze,Ka, Km, J) see Chapter 3.   

 For the grinder, two unique constraints were implemented to ensure safe operating 

speeds and adequate grinding RPM.  The range of output RPM was limited from 8000 to 

10000.  10000 RPM is the upper limited allowed by the manufacturers of the grinding 

disks that are commonly sold for the angle grinder while 8000 RPM under no-load 
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conditions ensures adequate operation for material removal.  Right angle drills are used to 

bore large holes through wall studs for routing plumbing and electrical services.  The 

large drill bits require significant torque so the output was constrained to greater than 500 

lbf-in which is appropriate for high quality consumer grade power tools.  In addition, the 

no-load output RPM was limited to 1750 to ensure a reasonable operating range for 

drilling in wood.    

Motor RPM Nmotor 40000≤motorN

Grinding Wheel RPM Nout-grinder 10000)/(8000 ≤=≤ − rNN motorgrinderout
 

Drill Torque T (lbf-in)  )(500 inlbfT −≥

Drill Output RPM Nout-drill 1750/ ≤=− rNN drillout

Table 5.3.5: Grinder and Drill Performance Constraints 

 Finally, a battery cost model was added to the motor-bevel gear cost model 

(Section 3.5) based upon a market survey of battery costs and a simple multi-regression 

of two coefficients: voltage and battery size.   

 )(3.10)(51.1($) hrsAmpeBatterySizVoltsVtBatteryCos −⋅+⋅=     (5.11) 

The battery design (cost) is then very important and affects three attributes as the 

customer segments are sensitive to the performance (i.e., voltage and battery life) as well 

as have significant utility for lower prices. The tension between these performances 

attributes, engineering design constraints, and strategic interplay makes for an interesting 

case study and test bed for our proposed methodology.  
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5.3.3 CASE STUDY SOURCES OF UNCERTAINTY 

 For this case study, it is assumed that the manufacturer wishes that his profit, and 

market penetration be maximal but also wants the projected profit and penetration results 

to be insensitive to uncertainty.  Using the MORO approach discussed previously we set 

the AOVR of the objectives ±∆fM  to ±10%.  That is, if the projected profit or market 

share of the candidate design varies by more than 10% the design is rejected.  Some may 

argue that simply maximizing the expected value of profits and market share is sufficient 

but firms can be placed at a serious disadvantage if they under-perform earnings forecasts 

significantly.  Our use of robust optimization helps ensure that forecasts are closer to 

targets under the uncertain parameter intervals considered.  Additionally, one might 

question why an upper limit on profit or market share variation need be enforced.  

Consider the case of extremely strong demand where a manufacturer cannot fulfil orders 

due to capacity limitations.  In such a case the powerful retailer may penalize the 

manufacturer by a degraded evaluation of ability-to-deliver for future product 

transactions or even through a contract instrument that financially penalizes non-

performance.  Thus both underestimating and overestimating performance have negative 

implications regardless of the expected value.  The MORO is one approach to reducing 

the inaccuracy of objective estimates through engineering design.  

 As discussed in Section 5.2 we can use MORO to mitigate the affect of the 

multiple sources of uncertainty in a product design optimization.   Sources of uncertainty 

in the case study come from 3 disciplines: strategic uncertainty (competitor attributes), 

manufacturing tolerances, and cost model projections.  Since it is not possible to consider 

all sources of uncertainty we limit our focus to a few candidates from each discipline.  
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The first three parameters considered will endogenize the possibility that a competing 

manufacturer may cut his/her wholesale prices to suboptimal levels with respect to the 

firm’s own profit.  Thus the wholesale prices of the grinder, drill and bundle for a 

competitor (WPgrinder, WPdrill, and WPBundle) are allowed to vary during robust 

optimization by ±30% from their nominal value.  The nominal value of the wholesale 

price is estimated using multi-regression and annual reports as formulated in Section 3.5.  

The competitor might also change other important product attributes such as voltage and 

battery size.  As such, we also allow these values to vary by ±30% during robust 

optimization from the value observed for the competitor in the shelf survey.  If the ±10% 

variation in objective functions cannot be met the decision maker can reduce uncertainty 

in the model inputs or expand the scope of the acceptable variation and then rerun the 

robust optimization. 

 Next, we include considerations for manufacturing tolerance uncertainty.   The 

stator outer radius Ro and the stack length L were allowed to vary for the focal 

manufacturer by ±1% which is a considerable tolerance region.  This uncertainty impacts 

strategic positioning by affecting the mass of the tools but also the ability of the tool to 

carry voltage and current or to stay within pre-defined operating limits (i.e., motor RPM 

in Table 5.3.4).  Thus the method insures that constraints are met under uncertainty and 

that changes in attributes do not cause too great of variation in profit or market share.  

Additionally, these attributes impact the production cost function as weight impacts the 

cost function significantly.  Lastly, we address uncertainty in the cost function estimate 

itself by assuming that the power/weight ratio cost coefficient in (Williams et al., 2006) is 

allowed to vary within its 95% confidence interval estimated during the multi-regression.      
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 These uncertain intervals (5 strategic, 2 manufacturing, and 1 cost = 8 total) that 

make up the parameter tolerance region can be expanded or contracted along with the 

AOVR in accordance with the risk aversion of the decision maker for the focal firm.  In 

addition, the number of sources of uncertainty considered can be expanded as the risk 

aversion of the firm increases.  Ultimately though, a balance must be struck between the 

size of the AOVR and the uncertainty intervals as no feasible results can be found with an 

extremely small AOVR and large uncertainty intervals.   

5.4 OPTIMIZATION APPROACH 

We used Matlab’s Genetic Algorithm and Direct Search (GADS) Toolbox to 

develop a MOGA to simultaneously optimize market share and profit for the subject 

manufacturer using a non-dominated sorting algorithm for design ranking (Deb, 2004).  

The 23 design variables were encoded in a binary format with lower and upper bounds 

specified.  The wholesale prices were allowed to increase to $2,000 each as a method to 

eliminate any unprofitable product from the manufacturer’s product line.  Such a price 

would result in a miniscule market share that would be truncated from consideration by a 

decision maker.  The design variables were encoded as 12 bit binary strings and run with 

a population size of 200 for 200 generations.  Additionally, the MOGA was set to 

terminate if objective function values change less than 10-6 over 50 generations or change 

less than 10-6 or a time period of 600 seconds.  Constraints were handled using the 

“Feasible Over Infeasible Approach” (Deb, 2001) where violated designs are set equal to 

the worst function call plus a penalty.  Additionally, a crossover fraction of 0.6, a 

mutation rate of 0.1 and an elite fraction of 1/3rd were used.  The inner optimization in 

Figure 5.2.5 for retail price setting is strictly quasi-concave (Anderson et al., 1992) for 
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monopolies.  As such, we implemented this in Matlab’s minimization routine “fmincon” 

where retail prices were constrained to being greater than wholesale prices.  As 

mentioned previously, the robust optimization approach used was MORO and 

implemented as described in Li et al., (2006) which has an inner optimization that uses a 

genetic algorithm to find the expected global solution.  

5.5 RESULTS AND DISCUSSION 

One case was run for both the nominal or non-robust monopoly case and the 

robust-monopoly case for bundled product design.  Figure 5.5.1 shows Nominal Pareto 

Design frontier (non-dominated solutions) with squares and the Robust Pareto Design 

frontier as diamonds.  Robust solutions are plotted at the uncertain parameter’s nominal 

value so one can think of the position on the graph as being unable to move greater than 

10% in any direction under the tolerance region considered. Both results show that a wide 

range of optimal market penetration and profit results are possible along the Pareto 

frontier although a much larger range of possibilities exists for the robust design 

approach.  These plots confirm that a tension exists between market share and profit as 

objectives as suspected.   Market share can be gained at the expense of profit and vice 

versa.  We also see that market share and profit can only be traded against one another to 

a limited extent by varying the product design.   

 Interestingly, the practice of offering products at a loss to achieve market 

penetration (e.g., X-box, inkjet printers) is confirmed in the negative profit regions of the 

Robust Pareto Designs on Figure 5.5.1 where the market share realized nearly reaches 

60% or 12M units at a $272M loss  This result is possible because the customers are 

sufficiently elastic (sensitive) to price and the wholesale pricing was allowed to reach 
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values far below marginal cost which encouraged the retailer to lower prices and direct 

market share to the focal manufacturer.  This result can also be achieved by designing 

extremely high quality goods (i.e., greater utility) and offering these goods at below cost.  

It need not be a situation where a mediocre good is offered at an extremely low price.  

Both types of solutions exist along the Robust Pareto Designs.  This is a business model 

akin to that employed for the X-box and inkjet printers where manufacturers accept 

losses to achieve future revenue streams on software and ink.   

 Finally, we are able to see the impact that the decision making structure has on the 

profitability of designs along the Pareto Frontier by overlaying the Pareto curves on 

Figure 5.5.1.  By virtue of the fact that robust design optimization requires an additional 

robustness constraint relative to the original problem it is observed that the robust 

solutions are dominated by the nominal solutions.     
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Figure 5.5.1: Robust/Nominal Pareto Comparison 
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  To demonstrate how designs along the Pareto curve can be achieved we 

present 6 designs (as indicated on Figure 5.5.1) in Table 5.5.1.  Design 1 is highly 

unprofitable yet captures high levels of market share by offering better attributes at 

higher production costs yet with low wholesale prices or a negative margin.  The 

profitable designs (2, 3, 4, 5 and 6) have much lower voltages and lower battery 

capacities in general which results in a lower production cost.  It appears that given 

consumer price elasticity from the conjoint estimates that low cost/lower performance 

strategies are better for the focal manufacturer given the assumed strategic framework 

(monopoly) and competitor assortment.   

Grinder Drill Grinder Drill Grinder Drill Grinder Drill Grinder Drill Grinder Drill
N c  (turns) 130.73 118.43 130.00 121.24 118.96 133.99 101.01 92.08 110.19 96.30 98.90 114.58
N s (turns) 42.33 15.30 38.86 15.77 39.04 15.06 28.23 16.71 26.48 16.82 43.24 16.72
R o (in) 0.59 0.62 0.59 0.62 0.59 0.61 0.64 0.44 0.53 0.45 0.47 0.44
T (in) 0.22 0.28 0.22 0.28 0.28 0.32 0.14 0.14 0.17 0.18 0.13 0.14
l gap  (mil) 3.78 2.28 3.27 2.76 1.69 2.87 0.12 3.19 0.24 3.19 0.35 3.15
L (in) 2.68 2.57 2.67 1.89 2.60 2.06 2.79 2.73 2.78 1.66 2.80 2.73
r (ratio) 1.99 2.56 2.65 2.62 2.66 2.07 2.01 4.37 2.01 3.39 2.01 4.37
D p (in) 1.25 0.69 1.25 0.68 1.24 0.66 1.51 0.65 1.39 0.83 1.51 0.64
V  (Volts)
Cap  (amp-hrs)
Girth (in) 2.17 2.23 2.17 2.22 2.18 2.22 2.27 1.88 2.27 1.90 2.18 1.88
Mass (lbm) 5.87 5.54 6.41 5.37 6.21 5.27 6.84 5.76 6.11 5.40 6.22 5.79
Duration (min) 2.21 2.28 2.92 2.23 2.36 1.83 2.46 1.51 3.26 1.51 2.46 1.93
Prices
Pure Price $76.16 $98.18 $76.35 $92.13 $76.54 $90.81 $82.14 $96.91 $98.18 $90.91 $79.04 $96.88
Bundle Price
Market Share
Pure Share 5.92% 19.12% 5.30% 32.58% 8.10% 17.24% 38.03% 12.05% 24.94% 10.16% 22.17% 8.40%
Bundle Share

21.58 15.44
1.43 1.23 1.26 1.10 1.10 1.11

41.79 31.13 17.07 23.75

Robust Monopoly Nominal Monopoly
Design 1 Design 2 Design 3 Design 4 Design 5 Design 6

10.82% 11.57% 7.21% 5.50%

$115.44 $116.95 $129.10 $122.72 $110.22 $122.62

20.75% 16.40%  

Table 5.5.1: Sample of Optimal Designs 

 It is worth noting that retailer profits benefit from the design optimization of the 

product bundle.  Otherwise the designs would be rejected by the retailer who can reject a 

design by raising the price to high levels and therefore eliminate market share.  Further 

evidence of the improvements offered by bundle design optimization can be seen in the 

market shares estimated by the approach.  The bundle products share significant market 
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share with the individual product categories for many of the optimal designs.  Overall the 

robust offerings from the focal manufacturer tend to have more attractive bundles as 

evidenced by the higher market shares for the bundle versus the non-robust designs.  This 

observation is an additional motivation for pursuing bundle design for manufacturers.  

Lastly, we see a slight shift from the manufacturer emphasizing the grinder design to the 

drill design as he/she attempts to make the designs more robust.   The emphasis is shifted 

by reducing the wholesale price of the drill, reducing the weight of the Drill through 

engineering design changes, and most importantly by increasing the voltage which is 

highly valued by drill shoppers.  This somewhat unexpected trend demonstrates the 

importance of considering the categories simultaneously in the NMNL formulation.  

Making these engineering design decisions without such a model would lead to 

suboptimal cross category profit cannibalization for the manufacturer which is of great 

concern considering the number of manufacturers offering bundles and products in 

multiple categories. 

5.6 SUMMARY 

 This chapter has presented a new approach to developing bundled product designs 

within a retail channel setting.  The NMNL approach considers demand dependencies 

amongst the product bundle and individual product categories while our nested 

optimization of retail prices accounts for the increasing clout of retailers in the market 

place.   The case study demonstrates the effectiveness of this new methodology on a 

bundle-relevant product category in optimizing profitability and market share.   

Considering the bundle and individual products simultaneously has important design 

implications as shown in the power tool case study where each individual tool and bundle 
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relies upon the same battery pack and voltage that would likely be suboptimal for either 

tool in isolation.   Additionally we have shown that robust optimization can account for 

multiple sources of uncertainty including the competitor strategies and that hedging 

against such strategies requires design consideration (i.e., optimal robust designs are 

different than nominally optimal designs). Our approach is distinct as a design 

methodology in that we take into account monopolist pricing as developed in Chapter 4 

as well as a retailer acceptance criterion established in Chapter 3 which we demonstrate 

are important factors in calculating profit and market share.  

 This concludes the main body of this dissertation.  In the next chapter, concluding 

remarks about all three research thrusts will be made.  Additionally the primary 

contributions of this work will be discussed along with possible future areas of research 

and extensions.   
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CHAPTER 6:      CONCLUSIONS 

This dissertation has focused on engineering design optimization of products for 

retail channels.  The powerful downstream position of retailers from manufacturers 

allows them to unilaterally make two decisions that greatly impact manufacturer profit.  

The two retailer decisions are: (1) whether to commit or deny shelf space to a product and 

(2) what prices should be set for the assortment.  These are the fundamental issues of this 

dissertation as ultimately these decisions affect the success of any engineering design. 

  After introductory material and terminologies in Chapters 1 and 2, Chapter 3 

(Research Thrust 1) is focused on developing a framework for answering the 

manufacturer’s first decision: “will this design make it to market?” under myopic or non-

strategic conditions which in reality means “does the profit improve the retailer’s 

profitability?”  If so, it the product is likely to make it to market.  Additionally, marketing 

considerations such as slotting allowances and a switching cost threshold are considered 

in concert with engineering design.  Chapter 4 (Research Thrust 2) extends the design 

methodology from Chapter 3 to consider retailer and manufacturer price setting to answer 

the manufacturer’s second question: “what design will perform well assuming prices 

reach equilibrium at the wholesale and retail level?” under strategic considerations.  This 

means that the focal manufacturer expects all other players (manufacturers and retailers) 

to play their best response to all other best response functions and his design should be 

optimal under that scenario.  Chapter 5 (Research Thrust 3) addresses the first question 

but reframes the second question to “what design is optimal if uncertain strategies and 

outcomes go against me?”  This means he wishes to consider in advance how other 

player’s strategies and even events might make his design suboptimal.  Additionally the 
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approach in Chapter 5, extends the prior approaches to multiple products sold separately 

and in a bundle.  Robust optimization is applied as an approach to consider multi-

disciplinary sources of uncertainty.   

In this chapter, conclusions and highlights about each of the Research Thrusts are 

provided in Section 6.1.  The main contributions of the dissertation are discussed in 

Section 6.2 and possible future research directions are presented in Section 6.3. 

6.1 CONCLUDING REMARKS 

 A subsection is devoted below to concluding remarks for each of the Research 

Thrusts. 

6.1.1 ENGINEERING PRODUCT DESIGN OPTIMIZATION FOR RETAIL 

CHANNEL ACCEPTANCE 

In this first research thrust the dominance of the channel dominating retailer was 

established with significant evidence from news reports (Frontline, 2004), academic 

journals (Singh, 2006), annual reports (Annual Reports, 2006) and even books devoted to 

channel dominating retailers (Fishman, 2006).  Although modern design methodologies 

do take into account the preferences of the end consumer the extant approaches have 

neglected the preferences of the retailer and in particular neglected the engineering design 

considerations.  The strong evidence of channel control which dictates a need to develop 

designs that have a high probability of acceptance to the retailer was the impetus for this 

research thrust.   

While typical design methodologies attempt to maximize customer utility they do 

not address the metric by which retailers measure a product:  assortment profitability 

(Simpson et al., 2001).  The impact of a new product design on retailer’s assortment 
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determines its likelihood of acceptance.  If the design provides significant profit 

improvements for the retailer one would expect that the design would readily have access 

to shelf space.  This concept of requiring that designs improve retailer profitability or 

provide an improved value proposition is the basis of research thrust one.   

The manufacturer can improve retailer profitability and gain access to the market 

in one of three ways:  (1) providing low wholesale prices for improved retailer margin, (2) 

designing products with increased customer utility to allow increased retail prices or an 

alternative for those customers not currently purchasing a product, or (3) providing a 

slotting allowance to the retailer.  The first method is obvious and directly reduces the 

profitability of the manufacturer’s product which is our focus along with attaining 

channel acceptance.  The second and third approaches are used simultaneously in this 

research thrust to increase profitability of the retailer while simultaneously ensuring 

channel acceptance.   

To model retailer acceptance and increase profitability, a discrete choice model 

consisting of latent class segments is employed.  This approach allows one to consider 

the preferences of like customers separately to determine how a potential design fits the 

market.  This is key to assessing the impact on the retailer’s assortment with regard to 

profitability and thus acceptability.  Through a careful translation of engineering design 

variables into higher level customer relevant product attributes one can estimate the 

segment share attained by any given engineering design.  This estimation of segment 

share leads to an estimate of market share which directly contributes to the 

manufacturer’s profitability and along with retail margins determine retailer acceptance.   
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To model the retailer acceptance criteria a chance constraint is employed.  This 

chance constraint takes into account the uncertainty in customer preferences along with 

the effect of slotting allowances which is added as a deterministic quantity.  The chance 

constraint provides a convenient framework to assess the probability of acceptance of the 

design given uncertain segment preferences and allows the manufacturer to 

simultaneously tailor his slotting allowance to achieve a probability of retailer acceptance.  

 In this research thrust, it is demonstrated that both improved design and slotting 

allowances can increase manufacturer profitability and the probability of retail channel 

acceptance.  Additionally, it is demonstrated that a wide variety of designs are optimal (in 

a multi-objective sense) depending upon the level of profit and probability of acceptance 

required by the manufacturer.  Finally, this research thrust provided the groundwork for 

profit estimation, channel acceptance criteria, and the case study that were used heavily 

in the subsequent thrusts.       

6.1.2 STRATEGIC ENGINEERING PRODUCT DESIGN FOR 

MONOPOLISTIC AND DUOPOLISTIC RETAIL CHANNELS 

This research thrust extends the effort to considering pricing reactions at the 

retailer and manufacturer levels.  Given that retailers attempt to maximize the profit of 

their assortment, one would expect them not to passively accept the manufacturers’ 

suggested retail price and rather act strategically to optimize profits.  This is, of course, 

another departure from the extant literature that assumes that the manufacturer interacts 

directly with the end customer. 

To implement such an extension a strategic pricing framework is developed that 

allows manufacturers and retailers to anticipate the strategic moves of their competitors 
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and downstream channel partners under a variety of channel structures.  The framework 

allows the focal manufacturer to generate and evaluate designs in the context of the 

channel structure and therefore optimize designs taking into account the strategic pricing 

of wholesale competitors as well as the ensuing price competition that takes place at the 

retail level.  An existence proof for a unique Nash equilibrium is provided in Appendix B 

for the retailers and manufacturers.  A unique equilibrium is necessary for the 

manufacturer to accurately assess the optimality of any of his/her engineering designs. 

Several channel structures are investigated and compared in this research thrust.  

They include: manufacturer oligopoly – retailer monopoly, manufacturer oligopoly – 

non-differentiated retailer duopoly, manufacturer oligopoly – differentiated retailer 

duopoly, and manufacturer oligopoly -  retailer duopoly with exclusive contracts.  In all 

of the cases, a multi-objective genetic algorithm is used to simultaneously optimize 

manufacturer and retailer profit.  This provides an alternative approach to ensuring 

channel acceptance.  Designs on the Pareto frontier with high retailer profits would very 

likely achieve greater retailer acceptance than those only marginally better than the 

current assortment.   

In comparing the various channel cases one can conclude that different designs 

are optimal dependent upon the channel case and the manufacturer’s commitment to 

improving retailer profitability.  Consistent with economic theory (Osborne and 

Rubinstein, 1994) the monopolist achieves the greatest profits for the retailer and the least 

profitability for the focal manufacturer.  The manufacturer appears to be able to take 

advantage of the differentiated duopoly to specifically tailor products that better fit the 

two retailer’s assortments than when the retailers are identical.   The exclusive contract 
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between manufacturer and retailer is becoming more common in industrial practice and 

for good reason.  It appears that by creating a design specifically for his channel partner 

the manufacturer is able to raise that retailer’s profits substantially.  The downside is that 

the manufacturer loses access to the other retailer and forgoes significant profits through 

reduced market share. 

Ultimately, this research thrust has demonstrated the need for manufacturers to 

not only take into account pricing reactions of competitors but also the channel structure 

itself.  It also provides manufacturers with a framework to pursue exclusive contracts as 

an alternative to slotting allowances as they substantially improve the retail partner’s 

profits.    

6.1.3 MULTI-CATEGORY DESIGN OF BUNDLED PRODUCTS FOR RETAIL 

CHANNELS CONSIDERING DEMAND DEPENDENCIES AND 

UNCERTAINTY IN COMPETITIVE RESPONSE 

This research thrust extends the analysis of retail channels to consider multiple 

product categories and the bundle of products from those categories.  Because, to some 

extent, products from different categories can act as substitutions for products in other 

categories demand dependencies exist between the categories.  Additionally, a product 

bundle acts as a substitution for any of the individual products.  This is of concern to the 

retailer and manufacturer alike as cross category substation will affect category profit 

which is the metric that retailers use to accept or deny manufacturer product offerings. 

Realizing these demand dependencies exist, a design optimization formulation has 

been demonstrated that allows a manufacturer to consider the impact of offering bundled 

products along side individual products.  A NMNL formulation is used to estimate 
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market shares for all products from within the different product categories where bundles 

are treated as an additional nest along side the individual products.  In this formulation, as 

a product design becomes more attractive it increases the utility of the corresponding nest.  

That nest or category increases in inclusive utility which increases the overall market 

share of the nest at the expense of other nests or categories.  Using this approach the 

manufacturer is thus able to measure to the cross category effect and therefore able to 

optimize designs for profit across multiple categories.   

Demand estimation is just a portion of the overall multi-category product 

optimization framework.  Additionally, this approach considers that a design dependency 

exists between the products.  A design dependency means that products from different 

categories must share design variables.  In the example provided, the tools must share the 

same voltage level and battery pack.  The approach used in this research thrust treats 

these design dependencies as common or shared design variables in the MOGA.  That is 

the voltage and the battery capacity of the individual products and the bundle must be the 

same.  The selection of shared variables in the multi-category framework then becomes 

extremely important as they impact the desirability of all individual products as well as 

the bundle.   

Similar to Research Thrust 2, this research thrust considers that retailers will set 

profit maximizing retail prices after a manufacturer offers a design.  Instead of assuming 

that wholesale prices shift to a Nash equilibrium as well this research thrust assumes that 

manufacturers have imperfect information, may not act rationally (maximize profit), or 

may have different objectives (market share for example).  The uncertainty in 

manufacturer responses is treated similar to machine tolerances or environmental 
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uncertainty in formulating a robust optimization of the multi-category design framework.  

We assume intervals of uncertainty for these multi-disciplinary sources of uncertainty 

and show that all can be managed at one time using a deterministic robust optimization 

approach.   

A case study is developed for two power tools that operate off of the same battery 

pack and optimized under the pricing framework of a monopolist retailer.  A multi-

objective optimization is performed for profit and market share which are shown to be 

competing objectives.  Additionally, a robust optimization considering uncertainty in 

competitor response at the wholesale level, manufacturing tolerances and cost is 

performed.  The nominal optimum solutions dominate the robust solutions as is to be 

expected considering the additional constraint imposed (profit and market share must 

vary by less than 10%).  Most importantly, one can observe that the optimal design 

characteristics change depending upon the focal manufacturer’s objectives and tolerance 

for uncertainty in the objective functions.  Robust designs are significantly different than 

nominally optimal designs.   For example, robust designs exhibit much higher voltages 

and lower wholesale prices.  Finally, the retailer reacts favorably to the bundled products 

by pricing them in a way that it attracts significant market share in competing against the 

individual products.  Ultimately, this effort has provided a much more rich and realistic 

framework for manufacturers to simultaneously design products and product bundles for 

multiple categories consistent with actual industrial practice.    

6.2 MAIN CONTRIBUTIONS 

 Several new product design optimization approaches have been developed in this 

dissertation that specifically tailored for the emerging clout of channel controlling 
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retailers.  Each of the research thrusts provides a step forward in terms of discipline 

integration with engineering design relative to the extant approaches.   

 In research thrust one several contributions are made that make the rest of the 

dissertation possible: 

• A design acceptance criterion is established based upon the profitability of 

the retailer’s assortment.  This criterion mimics the reality of the retailer 

decision making process and is modeled in a chance constrained 

formulation that allows the manufacturer to gauge the probability of 

acceptance for any candidate design.  This improvement allows 

manufacturers to simultaneously quantify profit and risk for a design 

decision. 

• Slotting allowances are incorporated in an engineering design framework.  

This extends the engineering design approach to include a very realistic 

marketing consideration.  Additionally, the approach mimics reality by 

having the manufacturer pay a deterministic quantity to offset the 

uncertainty in the retailer’s profit. It is shown how a designer can use 

slotting allowances for any given design to achieve a probability of 

acceptance.  This may be a good alternative to changing the design to 

improve acceptability since it is possible to achieve higher profits for a 

given level of acceptability by offering a slotting allowance as compared 

to changing the optimal design. 

• Cost and market share are modeled and optimized simultaneously with 

respect to engineering design.  Costs are predicted with financial analysis 
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and multi-variable regression while market share predicted through a 

discrete choice analysis that includes latent consumer segments. 

• An optimization approach is presented to allow a manufacturer to trade 

profitability versus the probability of retailer acceptance.  The approach 

uses the uncertainty in a conjoint estimate to develop a chance constraint 

that bounds the feasible region for engineering design.   The objectives are 

traded against one another using the constraint epsilon approach.     

 Research Thrust 2 builds on the work of Research Thrust 1 with the primary focus 

on manufacturer and retailer strategies: 

• The primary contribution of this research thrust was to integrate the 

pricing structure in retail channels in the design process.  Prior approaches 

assumed that both manufacturer competitors and retailers were passive 

upon the entry of a new product. 

• Several pricing structures are developed that allow the manufacturer to 

more accurately gauge the positioning of a design within the marketplace.  

These structures are the most common in channel environments and all 

assume that an oligopoly of manufacturers provides products at a price to: 

a monopolist retailer, identical duopolistic retailers, differentiated 

duopolistic retailers, and duopolistic retailers with exclusive contracts.  

• Proof of a vertical Nash equilibrium is provided for multi-product retailers 

supplied by single product manufacturers.   

• In this research thrust, profit of both the focal manufacturer and retailers is 

optimized simultaneously.  This provides the manufacturer with a new 
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way to gauge retail acceptability of a candidate design.  A risk-averse 

manufacturer can forego profit for the retailers sake to improve 

acceptability by choosing a design along the Pareto frontier. 

• The approach allows us to quantify the value of providing an exclusive 

contract to a retailer which it turns out is substantial.   

• Under each of the pricing structures a variety of optimal designs are 

demonstrated which provides credence to the belief that the channel 

environment should be taken into account by designers. 

In Research Thrust 3 the overall approach is extended to consider multiple 

product categories (including bundles) along with uncertainty in competitive response: 

• The extant engineering design literature has not considered demand 

modeling for multiple product categories which is the foundation of this 

thrust.  Multiple product category demand is estimated using a NMNL 

formulation.  This provides the means to evaluate any candidate design’s 

affect on the in-category assortment as well as the related category 

assortments since some degree of substitutability exists across categories. 

• Product bundles are increasingly pervasive in retail markets and the new 

approach offered in this thrust allows retailers and manufacturers to 

evaluate the attractiveness of product bundles to end consumers as well as 

the impact of the bundle on the individual product’s profitability.   

• The design of product bundles is formulated for simultaneous evaluation 

next to the manufacturer’s individual products.  The approach allows 
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manufacturers to create products that are both optimal when sold as a 

bundle and optimal when sold as individual products. 

• Due to the fact that game theory cannot predict all strategic actions an 

alternative design framework is developed to consider the actions of 

competitors.  Uncertainty in strategic actions is very large at the 

manufacturer level where production costs, varying objectives, and 

multiple strategic dimensions (price, quality, color weight for example) 

make it impossible to conclusively prove equilibrium in strategy amongst 

competing manufacturers.  To overcome this, an established robust 

optimization technique is used to optimize multiple categories and bundles 

under uncertain intervals of model parameters in multiple disciplines.  The 

approach is implemented for uncertainty in competitor strategies, focal 

manufacturer production costs and engineering design tolerances 

providing a mechanism to account for the wide berth of uncertainties in 

product design for retail channels. 

6.3 FUTURE RESEARCH DIRECTIONS  

The multidisciplinary nature of this dissertation provides many avenues to further 

research.  Given that, the extensions and improvements with the greatest promise will be 

the focus of this section. 

6.3.1 IMPROVEMENTS IN THE RETAILER ACCEPTANCE CRITERION 

The chance constrained retailer acceptance criterion presented in Research Thrust 

1 can be extended in many ways.  First, the case of many channel retailers that must all 

be satisfied with multiple chance constraints can be investigated.  One could require that 
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a subset of retailers be satisfied with use of binary variables to select retailers as channel 

partners.  Thus the manufacturer could avoid developing products that satisfy retailers 

that are less appealing to a profitable customer segment than other retailers.  

Additionally, the formulation could be extended to include acceptance criterion for 

multiple products offered at one time or the option for the retailer to select n of N 

products in the lineup.  

Simplifications allowed us to exclude the affect of time but future work under this 

framework could include changing consumer demand profiles through the use of the net 

present value and other emerging models including the use of an option theory (Hull, 

2006).  Changing consumer demand profiles or utilities might be approximated using a 

time series of conjoint data and linear regression or standard forecasting techniques.  As 

an example, consider the case where customer preferences are changing rapidly in the 

automotive sector to prefer more fuel efficient cars or novel designs such as crossover 

vehicles.  One could measure the affect of econometric data (e.g., current gasoline price) 

on these changing utilities and couple these observations with an econometric forecast 

(e.g., gasoline price forecast) to predict the changes in future customer segment utilities.  

Clearly these, changing preferences would affect the solution, especially when a 

relatively low discount rate is applied to future cash flows, and is an area open for 

research.  

6.3.2 IMPROVEMENTS IN STRATEGIC INTERACTIONS 

 In the future it would be useful to extend the strategic actions of the 

methodologies developed in Research Thrust 2 to take into account competitor strategies 

in other attributes (amperage, weight etc.) as we have only considering reactions in the 
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short term which is limited to price.  This would be a very difficult task as noted in the 

motivation for robust optimization in research Thrust 3.   To do this it would be necessary 

to prove profit quasi-concavity in all competitor design variables.   

 Second, it would also be useful to consider that the manufacturer may have 

multiple products within channel segment.  With slight modifications, the proof in 

Appendix B can be extended to a multi-product manufacturer in a differentiated retail 

monopoly, duopoly, or oligopoly.    Under such a formulation the manufacturer could 

attempt to optimize a line of products competing within the same product category.  Such 

an extension could also be used to optimize individual products competing with bundles 

in multiple product categories.  A proof of existence of a vertical Nash equilibrium for 

the NMNL formulation would be useful for this extension.   

 Finally, our strategic interactions have not considered the possibility of the retailer 

offering an “in-house” brand.  In-house brands can be outsourced to external 

manufacturers or developed by a division owned by the retailer.  In either case, the 

retailer has strategic control over the product attributes beyond the pricing considering in 

this dissertation.  More importantly, the retailer’s profit function will change to include 

the wholesale margin when the product is produced within the corporation.  This fact 

may change the solution to pricing equilibrium, as well as access to shelf space (see e.g., 

Amrouche and Zaccour, 2007) and adds additional strategy variables for the retailer 

making the problem more complex.   

6.3.3 PRODUCT LINE FORMULATION 

 A product line refers to two or more products offered by a firm within a product 

category.  Product lines and more specifically product families have recently received 
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attention in the engineering design literature (see e.g., Simpson, 1998) as manufacturers 

attempt to manage costs through commonality of design.  Product families share common 

features or components and offer the greatest opportunity for extensions of the present 

work in retail channels.  Commonality of design for the product family or line can 

produce economies of scope or scale which of course contributes to profits for a 

manufacturer.  A flexible core design or designs for can increase agility in adapting to 

changing customer needs which would be a competitive advantage in retaining value 

through optionality (Jiao et al., 2006).   

 Given these attributes and the prevalence of product families in retail channels an 

extension to that end would be an appropriate application of the methodologies developed 

in this dissertation.  First and foremost it would be important to understand the retailer’s 

acceptance criterion in light of the entire product line or family.  The retailer pricing and 

assortment selection decision has been theoretically modeled (Villas-Boas, 1998) for 

simple demand models where the retailer has discretion to select any portion of the 

product line to maximize profits for the assortment.  Actual industry input is difficult to 

come by but it would be very useful to know whether or not retailers accept or reject 

entire product lines or fractions thereof.  Absent this information it should still be 

possible to extend the present formulation to include several aspects relevant to product 

lines.    

 First the manufacturer can take into account the retailer acceptance criterion 

(Research Thrust 1) and pricing for his/her product line as it spans across multiple 

product categories (including bundles) using the nested logit formulation demonstrated in 

Research Thrust 3.  This extended formulation could be used in concert with an improved 
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cost model that considers design commonality to optimize profits across the entire 

product line.  Such a formulation should be able to capture design trends in improving 

retailer acceptance for the product line as well as profitability for a product line.  

 Additionally, the extent to which design integration between products contributes 

to product line success might be modeled as in the bundling approach presented in 

Chapter 5.  For example, a manufacturer that offers a highly integrated or dependent 

product line that customers value might find greater success.  An example might be how 

a power tool line that operates off of a common inexpensive battery and a proprietary 

quick change chuck system (portion of the tool that holds bits) might experience greater 

acceptance for the entire product line due to design integration.  The end customers 

perceive value in the optional use of common parts for subsequent tool purchases for 

emerging requirements. 

 More obviously, the product line can be optimized to best fit the existing 

assortment and underserved customers which are of primary importance to the retailer.  

Villas-Boas (1998) suggests that manufacturers should increase product line diversity to 

mirror the targeting strategy of retailer.  This would be accomplished again through the 

nested logit formulation with customer segments who are presently more or less served 

by the existing assortment.  

 

 



 165

APPENDIX 

APPENDIX A 

This is a regression of product attributes to predict cost of an Angle Grinder cited in 

Section 3.5.2. 

SUMMARY OUTPUT  
       

Regression Statistics  
Multiple R 0.886063     
R Square 0.785107     
Adjusted R Square0.759826     
Standard Error 9.405603     
Observations 20     
  
ANOVA       

  df SS MS F Sig F  
Regression 2 5494.5 2747 31.055 2.1E-06  
Residual 17 1503.9 88.5   
Total 19 6998.4       
  

  Coeff. Std Err t Stat P-valueLow 95% Up 95% 
Intercept -29.2941 9.3861 -3.12 0.0062 -49.097 -9.49117
Amps (A) 3.616034 0.6987 5.18 8E-05 2.14188 5.09019
P/W (watts/lbf) 0.186567 0.0416 4.48 0.0003 0.09873 0.2744

Multiple Regression of Angle Grinder Cost Predictors 
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APPENDIX B - PROOFS 

B.1 PREPARATORY MATERIAL 

LEMMA 1 

 If f is quasiconcave, then any strict local maximum is a strict global solution 

(Wolfe P., 1970) 

Proof of Lemma 1 by Contradiction (WolfStetter, 2000) 

Assume that the contrary is true, i.e., a strict local maximum x* is not a global maximum 

for a quasiconcave function f.  For x* to not be a global maximum there must exist some 

point y where ( ) ( )*xfyf ≥  (see  Figure    B1). 

                           

y 

x* 

f 

X ' 

y 

x* 

f 

 

Figure    B1:   Lemma 1 

 

 All points X’ in the local neighborhood of x* must lie below f(x*) by the definition 

of a strict local maximum yet if the function is quasiconcave all points between x* and y 

must be greater than f(x*) (the minimum of the two).   A contradiction exists and  f(y) 

cannot lie above f(x*) for f to be quasiconcave.  Thus all points of a quasiconcave 

function must lie below f(x*).  A strict local maximum x* of a quasiconcave function is 

therefore a global maximum.    
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B.2 THEOREM 1 – RETAILERS’ MULTIPRODUCT NASH EQUILIBRIUM 

A Nash equilibrium in prices exists for a retailer carrying an assortment of n products in a 

category of N products carried by all retailers. 

Proof of Theorem 1: 

A retailer with n products seeks to maximize the sum of the n profits subject to similar 

profit maximizing responses from other retailers.  For a Nash price equilibrium to exist 

the profit function must then be quasiconcave in the prices Pn.  For a unique price 

equilibrium to exist the profit function must be strictly quasiconcave in prices.  The 

general structure of the proof will be to first show that the profit function is quasiconcave 

and then to show that the stationary point(s) are strict local maximum  (Lemma 1).   

Nomenclature for Proof: 

mi Market Share of Product i in the focal retailer’s assortment 

mj Market Share of Products j=1,2,..n in the focal retailer’s assortment  

Utot Represent eU where U represents the total utility of all products at other retailers 

and the no choice option. 

Wi Wholesale price of Product i 

Wj Wholesale price of Products  j=1,2,..n 

Pi Retail price of Product i 

Pj Retail price of Products j=1,2,..n  

Ui Utility of non-price attributes Product i 

Uj Utility of non-price attributes of Product j 

µ Scaling factor for price utility 

The multinomial market share variables are defined as: 
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The profit for the focal retailer is then the sum of the two products 
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The first derivatives of market share that will be useful are: 
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Using the above simplifications the first derivative of π with respect to price of product i 

is: 
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Thus the retailer’s margin (Pi-Wi) on product i can be determined in terms of all other 

products and the customer price scaling factor µ. 

 Now we look to see if by symmetry the absolute margin or markup is the same for 

any other product in the focal retailer’s assortment n.  We change the product index to 

any arbitrary value γ in the assortment where γ≠i  to see if all products in n must have the 

same absolute margin at stationary points:  

Replacing i with the arbitrary product γ in Eq. B2.1- B2.10 shows that the absolute 

markup on γ is also a function of all products in the retailers assortment (Eq. B2.10).   

Thus the absolute markup is equivalent and all products in n have equal markups at 

stationary points for the focal retailer: 

( ) ( )γγ WPWP ii −=−                 (B2.11) 

 This result allows us to introduce the markup variable θ=Pi - Wi  as a substitute for 

the multiple price variables Pi which we’ve shown is valid for all products at stationary 

points for the retailer of interest (Eq. B2.6).   This new variable transforms the 

optimization to a single variable optimization.  The constant markup assumption although 

not pervasive in the modeling literature is not without precedent (Sudhir, 2001).  Our 

application of the single variable transformation is important because the more obvious 

approach of analyzing quasi-concavity for multiple variables with a bordered Hessian 

fails to guarantee quasi-concavity.   

 Additionally, for this assumption to be valid we only need to assume that profit is 

maximized at a stationary point as the set of constant markup solutions represents all 

stationary points.  We know that profit function does not increase asymptotically at prices 

equal to infinity (market share goes to zero at the limit) or at prices at their lowest level 
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(wholesale prices) and thus the maximum must at least be at a stationary point satisfying 

the first order condition.  This does not prove quasi-concavity for the entire profit 

function though using the first derivatives and the second derivatives to create the 

bordered Hessian (sufficient condition) can show that the profit function is at least quasi-

concave for large regions of price.  

 Instead, we use the result of constant markups at stationary points to transform the 

original problem and prove that the entire function is quasi-concave.  The new profit 

function now becomes: 
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Let k be the sum of the market shares for n products: 
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The profit function simplifies to: 

Nkr θπ =      (B2.14) 

The first derivative of the market share sum is: 
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Therefore the first derivative of profit with respect to markup is: 
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Solving the first derivative for stationary points yields: 
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 Interestingly, this result shows that as the retailer becomes nearly a monopolist (or 

dominates k) the margin will go up which seems to agree with overall economic 

interpretation of monopoly pricing and greater consolidation of power.  Recall that the 

first derivative of profit with respect to markup is: 
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Clearly if θ (markup) is increased from the solution to the first order condition Eq. 

(B2.20)  then the slope is always negative (or profit is decreasing) because k-1 is always 

negative as the sum of market shares cannot exceed one (see Eq. B2.21).  If θ (markup) 

which is non-negative is decreased then the slope is always increasing from zero and is 

thus positive (Eq. B2.21).  Thus the profit function is at least quasi-concave in the non-

negative markup variable. 

 Quasiconcavity proves that a Nash equilibrium exists but does not prove that a 

unique Nash equilibrium exists.  It is necessary to prove that the function is strictly 

quasiconcave.             

The second derivative of profit with respect to markup θ is computed as follows: 
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Evaluating the second derivative Eq. B2.32 at the solution to the first order condition (Eq. 

B2.21) shows that the profit function is negative definite at all stationary points and thus 
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unique Nash equilibrium exists (Lemma 1).  This solution takes nearly the same form as 

the single product per retailer equilibrium developed by Anderson, De Palma, and Thisse 

(1992).     

 The constant margin result of this proof can easily be shown numerically without 

enforcing the constant margin.  For a wide range of utility inputs and wholesale prices we 

were able to reach first order solutions where the margin on the products within the 

retailers assortment was identical even though each price was considered a design 

variable in the numerical optimization of first derivatives.  One cautionary note, is that it 

is possible for prices to diverge toward infinity as the first order conditions numerically 

satisfied when k falls extremely low due to high prices.  This difficulty is easy to 

overcome though by constraining prices to less than some large unreasonable value (e.g., 

$10000 for an angle grinder) 

B.3 THEOREM 2 – MANUFACTURER’S SINGLE PRODUCT NASH 

EQUILIBRIUM 

A Nash equilibrium in wholesale prices exists for a manufacturer selling products 

through a differentiated-retail-duopoly. 

 

 

Proof: 

A manufacturer with 2 retailers seeks to maximize the sum of the profits from the 2 

retailers subject to similar responses from other manufacturers.  For a Nash price 

equilibrium to exist the profit function must then be quasiconcave in the prices Wri.  For a 

unique price equilibrium to exist the profit function must be strictly quasiconcave in 
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prices.  The general structure of the proof will be to first show that the profit function is 

quasiconcave and then to show that the stationary point(s) are strict local maximum  

(Lemma 1).  We assume that the retail margins θi are known from Theorem 1.   

Nomenclature: 

mri Market Share of Product i at retailer r 

Пi Manufacturer Profit 

Wri Wholesale price of Product i at retailer r 

Uri Utility of non-price attributes Product i at retailer r 

 

The multinomial market share variables for two retailers are defined as: 
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The profit for the focal retailer is then the sum of the two products 

( ) ( )NCWmNCWm iiiiiii −+−=Π 2211     (B3.2) 

The first derivatives of market share that will be useful are: 
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Using the above simplifications the first derivative of πr with respect to price of product i 

is: 
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Thus the manufacturer’s margin (W1i-Ci) at retailer 1 on product i can be determined in 

terms of the characteristics of both retailers (see m1i and m2i) and the price scaling factor 

µ. 

Taking the 1st derivative with respect to the wholesale price for retailer 2 yields the same 

result: 

( ) ( ) ( )iiiiiiii CWCWmCWm −=−++− 22211 µ    (B3.11) 

The left sides of Eq. B3.10 and Eq. B3.11 are equivalent and thus the markup of all 

products in are equal at all stationary points for the focal manufacturer: 

( ) ( )iiii CWCW −=− 21              (B3.12) 

 This result allows us to introduce a wholesale markup variable ωi=Wri - Ci  as a 

substitute for the multiple wholesale price variables Wri which we’ve shown is valid for 

all products at stationary points for the manufacturer of interest (Eq. B3.12) .   This new 

variable transforms the optimization to a single variable optimization similar to Theorem 

1.  We assume that the manufacturer’s profit will be maximized at a stationary point and 

proceed with the now transformed single variable optimization.  This constant markup for 

the manufacturer means that given identical production costs and transaction costs the 
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wholesale price charged to each of the retailers will be the same.  If a retailer is more 

costly to work with (delays payments, many customer returns etc.) the assumption that Ci 

is not constant for all retailers can be changed to include the disparity in retailer 

performance. 

 The new manufacturer profit function now becomes:  
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Let k be the sum of the market shares at the 2 retailers: 
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The profit function simplifies to: 

Nki ω=Π       (B3.15) 

The first derivative of the market share sum is: 
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Therefore the first derivative of profit with respect to markup is: 
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Solving the first derivative for stationary points yields: 
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 Like Theorem 1,  this result shows that as the manufacturer becomes nearly a 

monopolist (or dominates k)  the margin will go up.  Recall that the first derivative of 

profit with respect to markup is: 
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Clearly if ω (markup) is increased from the solution to the first order condition Eq. 

(B3.21)  then the slope is always negative (or profit is decreasing) because k-1 is always 

negative as the sum of market shares cannot exceed one (see Eq. B3.22).  If ω (markup) 

which is non-negative is decreased then the slope is always increasing from zero and is 

thus positive (Eq. B3.22).  Thus the profit function is at least quasi-concave in the non-

negative markup variable. 

 Quasiconcavity proves that a Nash equilibrium exists but does not prove that a 

unique Nash equilibrium exists.  It is necessary to prove that the function is strictly quasi-

concave.  Because k and П take the same form as Theorem 1 the rest of the proof is 

omitted for redundancy.  Equation (B3.21) is therefore a strict global maximum.   
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APPENDIX C:  COMPUTATIONAL ISSUES 

 The computation of the strategic cases as posed requires a tri-level optimization as 

shown in Figure 4.4.1.   Initially, the engineering module selects designs to populate the 

first generation of a Multi Objective Genetic Algorithm (Deb, 2001).  Each design is sent 

to the wholesale pricing level where prices are selected using Matlab’s gradient based 

constrained optimizer fmincon.  At the third level retail prices are set using fmincon.    

 For the monopoly case each objective function call (profit maximization) at the 

retail level requires just one retailer profit calculation (RPC).  Matlab’s fmincon proceeds 

iteratively (RI=retailer iterations) to find the global maximum profit with respect to retail 

price through a typical gradient based optimization.  Thus the time to find retail prices 

given a wholesale price is of the order (RI×RPC).  Retail prices can only be selected after 

each of the wholesale prices is  known for the n manufacturers.  It is assumed that 

manufacturers are operating as a small oligopoly with perfect information.  As such we 

find wholesale prices by minimizing the sum of the square of profit derivatives for all 

manufacturers (Eq. 4.5).  This requires a baseline function call of wholesale profits 

(Wholesale Profit Calculation) and a finite difference calculation for each manufacturer 

meaning that wholesale profits must be computed n+1 times for all iterations of the 

constrained minimization.  Assuming the constrained minimization takes a number of 

iterations (WI=Wholesale iterations) the computational complexity at the wholesale level 

will be dependent upon the number of manufacturers and will thus be (n+1) ×WI×WPC.   

 The WPC time is almost entirely dependent upon the retail price calculation.  This 

is because the retail prices can take 30 to 40 seconds to converge for a monopoly but 

once known the market shares are trivial in comparison.  Thus, the time complexity of 
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WPC is of the order: RI×RPC.   The time complexity for the monopoly wholesale price 

equilibrium for each design is of the order  (n+1) ×WI× RI×RPC.  Given a generation of 

size N each generation in the genetic algorithm requires approximately:   

Genmonopoly=N (n+1) ×WI× RI×RPC 

 The time complexity of the duopoly is similar except that additional function calls 

are required to find the Nash equilibrium at the retail level.  Each retailer r must set prices 

on the n products that are best responses to their competitor’s prices.  Much like the 

wholesale level we solve for retail prices by minimizing the sum of the squares of the 

first derivatives (Eq. 4.2).  The computation of the first derivatives is performed with 

finite differences and therefore requires a baseline profit function call and n additional 

function calls for each retailer r.  Thus, the time complexity at the retail level now 

becomes (1+r×n)RPC.  In our case we investigate 4 manufacturers and two retailers so 

the retail level iterations take approximately 8 times longer than the monopoly case.  The 

duopoly generations require a time approximation of: Genduopoly=N (n+1) ×WI× 

RI×(1+r×n)RPC.    

 Empirically, these approximations are born out by the evidence that each 

wholesale price for a given design required approximately 30 seconds for the monopoly 

case and 4 minutes for the duopoly case.   

 While the wholesale and retail profit functions are strictly quasi-concave it is 

numerically necessary to use constrained minimization because the slope of the 

multinomial logit (MNL) profit function approaches zero as prices approach infinity (See 

Figure    C1) 
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Figure    C1:   MNL Profit Function 

 If one examines point A in Figure    C1 it is clear that a gradient based optimizer 

searching for stationary points (Eq. 4.2 and Eq. 4.5) is equally likely to find the 

maximum and the minimum of the MNL profit function if left unconstrained.   As such, 

we require the Nash equilibrium solutions for both the retail (Duopoly) and wholesale 

levels to satisfy the following constraints: (1) Hessian must be negative definite; (2) Price 

must be less than $X.  ($2 for the example above).  If characteristics of the MNL function 

are relatively stable across all designs considered it is possible to limit the required 

constraints to just constraint 2.  For example, if the designer knows that the transition 

from a negative definite Hessian to a positive definite Hessian (approximately point A) is 

always greater than $X then constraint 2 can be used alone to eliminate the computational 

requirements of the Hessian. 
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