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Abstract. We present a new scale-invariant cost function for non-orthogonal

joint-diagonalization of a set of symmetric matrices with application to

Independent Component Analysis (ICA). We derive two gradient mini-

mization schemes to minimize this cost function. We also consider their

performance in the context of an ICA algorithm based on non-orthogonal

joint diagonalization.

1 Introduction

Simultaneous or Joint Diagonalization (JD) of a set of estimated statistics matrices is

a part of many algorithms especially for ICA both in its standard and non-stationary

formulations. Historically, the first methods developed for JD were those that assume

the joint diagonalizer to belong to the compact Lie group of orthogonal matrices

O(n)[5] and see also [1]. Accordingly the JD problem is defined as a minimization

of a function like:

J1(Θ) =
n∑

i=1

∥∥ΘCiΘ
T − diag(ΘCiΘ

T )
∥∥2

F
(1)

where {Ci}N
i=1 are the set of symmetric matrices to be diagonalized and Θ ∈ O(n) is

the joint diagonalizer sought. We remind that due to compactness of O(n) we know
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in advance that J1(Θ) has a minimum on O(n). Different methods for minimization

of this cost function in the context of Jacobi methods [5],[3] and optimization on

manifolds have been proposed among them [11],[13].

In many cases it is believed that non-orthogonal JD is more efficient in the context

of noisy ICA. In fact for the standard ICA model:

xn×1 = An×nsn×1 + n (2)

with n a Gaussian noise vector, we know that all the cumulant slices of x of order

higher than two are diagonalizable by an un-mixing matrix in congruence manner.

Here by un-mixing matrix (with some abuse of terminology) we mean any matrix

B such that BA = ΠΛ where Π is a permutation and Λ is a non-singular diagonal

matrix. If {Ci}N
i=1 is a subset of cumulant matrix slices of x of order higher than two

(which are symmetric n × n matrices) and B is an un-mixing matrix belonging to

the Lie group of non-singular matrices GL(n) then BCiB
T ’s all are diagonal. The

celebrated JADE algorithm [5] uses this fact for the whitened signal for which the

un-mixing matrix is forced or assumed to be orthogonal.

Defining a suitable cost function for non-orthogonal JD seems to be difficult due

to non-compactness of GL(n). For a suitable cost function J(B) we expect scale-

invariance that is: J1(ΛB) = J1(B) for any non-singular diagonal matrix Λ. Note

that mutual information also has this property: for any random vector xn×1 and

Λxn×1 have the same mutual information. In [14] and [15] a cost function of the

form

J2(W, {Λi}N
i=1) =

N∑
i=1

∥∥Ci − WΛiW
T
∥∥2

F
(3)

is introduced where Λi are diagonal and W is the estimated mixing matrix. Note

that the minimization would be over W and Λi, therefore n2 + Nn variables are

involved whereas the original problem is in fact a search in n2 − n variables (i.e.
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finding the un-mixing or mixing matrix up to row scaling). This cost function

encompasses the scale-invariability by introducing diagonal Λi. In fact in the se-

quel we will follow the same path, but we will choose a special Λi. Note that the

single term
∥∥Ci − WΛiW

T
∥∥2

F
is minimized when W is a diagonalizer of Ci and

Λi = diag(W−1CiW
−T )(see (6) below). In [1] and [2] we consider using the same

cost function as J1(B) with B ∈ GL(n) for non-orthogonal JD. The problem with

J1(B) is that it is not scale-invariant and in fact can be reduced as ‖B‖ → 0. We

showed that J1(B) has no stationary point when Ci’s do not have an exact joint

diagonalizer. Based on this observation we provide some measures to deal with this

issue which essentially results in a gradient flow of the form:

Ḃ = −∆B, B(0) = In×n (4)

where ∆ can be derived from H =

( ∑N
i=1

(
BCiB

T − diag
(
BCiB

T
))

BCiB
T

)
by

either equating diagonal of H to zero or by equating ∆ = H−tr(H)/n. Note that in

both cases tr(∆) = 0. The first choice is equivalent to identifying ΛB and B for non-

singular Λ and the second one is equivalent to identifying αB and B for α ∈ R−{0}.
The reader is referred to the companion paper [1] for further discussions.

In [16] also J1(B) is used and a heuristic minimization method based on the idea

multiplicative updates is developed which uses the idea of zero-diagonal in the up-

dates. In [12] the cost function:

J3(B) =

N∑
i=1

log
(det diag(BCiB

T )

det BCiBT

)
(5)

is introduced where Ci are required to be positive definite. Note that in the case

of high-order cumulant slices this is not the case. Note that J3(ΛB) = J3(B) hence

it is scale-invariant. This cost function is derived based on the maximum likelihood

estimation of correlation matrices of Gaussian vectors [12].
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In the light of (3) and (5) and the discussions above we introduce this cost function:

J4(B) =
N∑

i=1

∥∥B−1
(
BCiB

T − diag(BCiB
T )

)
B−T

∥∥2

F
=

N∑
i=1

∥∥Ci − B−1diag(BCiB
T )B−T

∥∥2

F
(6)

Note that J4(ΛB) = J4(B) and there is no condition on Ci’s needed. Needless to

say that this cost function is formed merely on two basis; first, scale-invariance and,

second that in the case that Ci’s have an exact joint diagonalizer the J4 can become

zero. Therefore its applicability and further justification should be investigated.

Note that the first formulation for J4 shows somehow a ”normalized” version of

J1(B) and the second formulation relates to J2 with a specific Λi and using the un-

mixing matrix instead of the mixing matrix. One immediate problem that seems to

be unavoidable is the presence of B−1 in J4(B) which might make the computations

costly. Note that J3 also includes terms that are not easy to compute but in [12] an

approximation is used to avoid this direct computation. In the remainder we will

derive a gradient flow for minimization of J4(B). In section (3) we also derive an

adjoint equation for minimization of J4(B) with respect to B−1, based on this we

suggest a discrete algorithm for minimization of J4(B) that does not require explicit

computation of B−1 at each step. In section (4) we will use the derived JD algorithms

in an ICA algorithm introduced in [2] and consider some numerical results.

Notation We already used the notation diag(A) as the diagonal part of A. ‖A‖F

denotes the Frobenius norm of matrix A. tr(A) is the trace of the matrix A. ẋ

shows the time derivative of the variable x. TpM represents the tangent space to the

manifold M at point p. In×n is the identity matrix of dimension n × n. All random

variables are in boldface small letters.
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2 Gradient Flow for Minimization of J4(B)

We consider GL(n) as a Riemannian manifold with the Riemannian metric (also

known as Natural Riemannian metric [8]):

〈
ξ, η

〉
B

= tr((ξB−1)T ηB−1) = tr(B−T ξTηB−1) = tr(η(BTB)−1ξT ) (7)

for ξ, η ∈ TBGL(n). Employing the relation ˙B−1 = −B−1ḂB−T we can show that

the gradient flow for minimization of J1(B) with respect to this Riemannian metric

is:

Ḃ = −∆B = −
( N∑

i=1

(
Ψidiag

(
BCiB

T
)−diag

(
Ψi

)
BCiB

T
))

B, B(0) = In×n (8)

where:

Ψi = B−T
(
Ci − B−1diag(BCiB

T )B−T
)
B−1 =

(BBT )−1
(
BCiB

T − diag(BCiB
T )

)
(BBT )−1 (9)

It is interesting to note that the term ∆ in (8) which in fact belongs to the Lie

algebra of GL(n), i.e gl(n) is such that diag(∆) = 0. We recall that in order to use

J1(B) for non-orthogonal JD we forced the diagonal of the corresponding ∆ to be

zero (See (4) and [1] or [2]) whereas using J4(B) as a cost function we naturally

reach to a flow that has this property and in fact is a flow on the group of n × n

matrices with unity determinant i.e. SL(n).(we remind that the Lie algebra of SL(n)

is the set of n × n matrices with zero trace)

The Euler discretization of (8) with small enough step size results in the steepest

descent algorithm. This can demonstrated as:

Bk+1 = (I−µk∆k)Bk =

(
I−µk

N∑
i=1

Ψikdiag(BkCiB
T
k )−diag(Ψik)BkCiB

T
k

)
Bk (10)
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where Ψik = (BkB
T
k )−1

(
BkCiB

T
k − diag(BkCiB

T
k )

)
(BkB

T
k )−1 and B0 = In×n. The

step size µk should be such that at each update the cost function is reduced and

det(Bk) is almost unity. Note that for a steepest descent algorithm on a linear space

there is no restriction on the step size as long as it is such that the cost is reduced

but in this case which is in fact constrained or equivalently is such that the answer is

confined to the manifold SL(n) the step size should be such the updates stay on the

manifold to a good extend. In [1] and [2] we proposed a discretization scheme based

on the LU decomposition of B that keeps the updates on SL(n) by construction

which can be applied to the present case too. Here, however we choose to pick a

small and fixed step size for discretization. Of course adaptive step-size methods

with an eye on keeping the updates on SL(n) will result in faster algorithms. The

pseudo code for this algorithm is:

Algorithm 1

1. Set µ and ε.

2. Set B0 = In×n or to a good initial guess.

3. While ‖Xk‖F > ε do Bk+1 =
(
I − µ∆k

)
Bk

if ‖Bk+1‖F is ”big” then reduce µ and goto 2.

4. End

3 An Inverse-Free Algorithm

In implementing the discretized expression (10) we ought to compute B−1
k or (BkB

T
k )−1

which can be costly. However, one should notice that in the context of ICA the num-

ber of matrices Ci i.e. N is quite large compared to n and in fact if all the fourth

order cumulant slices are used N = n2. Even when a subset of cumulant slices is

used usually N � n. Therefore the cost of computing B−1
k is comparable (in order

of magnitude) to that of the rest of (10). In the case N = n2 the complexity of com-
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puting (10) is of order O(n4) whereas the complexity of computing B−1
k is of order

O(n3). Hence we may conclude that in the context of JD for ICA, the computation

of inverse is not a significant burden compared to the rest of computations required

in (10). Still we may find it interesting to develop a scheme for minimization of J4

which is free of computing inverses. To this end here we propose a method of adjoint

equations. It is possible to show that the gradient flow for minimization of J4(B)

with respect to B−1 is:

˙B−1 = −B−1∆ (11)

where ∆ is as in (8). This flow is derived with respect to a Riemannian metric

defined as:

〈
ξ, η

〉
B

= tr((B−1ξ)T B−1η) = tr(ξTB−T B−1η) = tr(η(BBT )−1ξT ) (12)

The reason for selecting this metric is that considering J4 as a function of B−1

we expect J4(B
−1Λ) = J4(B

−1), so at the point B−1 a tangent vector of the form

B−1∆ is suitable. Notice that this flow can found from (8) via the equation d
dt

B−1 =

−B−1ḂB−1.

We consider the Euler discretization of (11):

B−1
k+1 = B−1

k (I + µk∆k), B−1
0 = I (13)

where ∆k has the same expression as in (10). The idea then is to use (10) to update

B2k−1 and (13) to update B−1
2k . In practice this leads to an update for the inverse

that is not exactly equal to inverse of Bk therefore for clarity we replace B−1
k with

Qk in the expressions. It was noted in practice that the second formulation for Ψi in

(9) performs better than the first one therefore in the algorithm the former is used.

Here is a pseudo code for this algorithm:

Algorithm 2

Consider the set {Ci}N
i=1 of symmetric matrices.
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1. Set µ and ε.

2. Set B−1 = Q−1 = B0 = Q0 = In×n.

3. do{
Ψi2k+1 = QT

2kQ2k

(
B2k−1CiB

T
2k−1 − diag(B2k−1CiB

T
2k−1)

)
QT

2kQ2k

∆2k+1 =
∑N

i=1 Ψi2k+1diag(B2k−1CiB
T
2k−1) − diag(Ψi2k+1)B2k−1CiB

T
2k−1

B2k+1 =
(
I − µ∆2k+1

)
B2k−1

Ψi2k+2 = QT
2kQ2k

(
B2k+1CiB

T
2k+1 − diag(B2k+1CiB

T
2k+1)

)
QT

2kQ2k

∆2k+2 =
∑N

i=1 Ψi2k+2diag(B2k+1CiB
T
2k+1) − diag(Ψi2k+2)B2k+1CiB

T
2k+1

Q2k+2 = Q2k(I + µ∆2k+2) }
if ‖B2k+1‖F or ‖Q2k+2‖F is ”big” then reduce µ and goto 2.

While ‖∆2k+1‖F or ‖∆2k+2‖F > ε

4. End

4 Simulations

Here we consider the performance of the developed non-orthogonal JD methods in

the context of an ICA algorithm introduced in [2] which its salient feature is that

although it whitens the data it does not confine the search space afterwards to O(n).

Consider the data model (2) A simplified version of that algorithm is:

1. Whiten x, let W be the whitening matrix, compute y = Wx.

2. Estimate C = {Ci}N
i=1 a subset of the fourth order cumulant slice matrices of y.

3. Jointly diagonalize C = {Ci}N
i=1 by a non-orthogonal matrix BJDN (using any

algorithm like Algorithms 1 or 2) and set B = BJDNW .

4. Compute x̂ = Bx

Example: Consider

x = Asn×1 + σn (14)
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where n is zero mean Gaussian noise with identity correlation matrix then σ2 indi-

cates the power of noise. We consider n = 5 sources all of them uniformly distributed

in [−1
2
, 1

2
]. The matrix A is randomly generated and truncated to integer entries:

A =

⎡
⎢⎢⎣

8 −3 6 −16 5

12 6 11 2 2

−15 8 −12 −10 −9

−14 7 0 14 −21

5 12 −1 −8 0

⎤
⎥⎥⎦

We generate T = 3500 samples of data and mix the data through A. Next we

run four ICA algorithms. Three algorithms NH-JD [2] and Algorithm 1 and Al-

gorithm 2 in addition to the standard JADE are applied to the data. N = n2

fourth order cumulant matrix slices are used. The NH-JD algorithm is basically

the above ICA algorithm whose JD part is the implementation of minimization of

J1(B) via the flow (4) with the nonholonomic constraint ∆ = H − diag(H). The

discretization of the JD part in NH-JD has exactly the same structure as Algo-

rithm 1. For NH-JD, Algorithm 1 and Algorithm 2, µ = .01 and ε = .01 are used.

These values are not optimal, they were chosen based on few tries. Implementations

all are in MATLAB� code and the MATLAB� code for JADE was downloaded

from:“http://tsi.enst.fr/c̃ardoso/icacentral/Algos”. The performance measure used

is the distance of the product of the estimated un-mixing and the mixing matrix,

i.e. P = BA, from essential diagonality:

Index(P ) =

n∑
i=1

(

n∑
j=1

|pij|
maxk |pik| − 1) +

n∑
j=1

(

n∑
i=1

|pij|
maxk |pkj| − 1) (15)

For each value of σ the experiment is run k = 100 times and the performance mea-

sure is averaged over the trials. Figure (1) shows the results. We can see that the

introduced algorithms all have almost the same performance and out-perform the

standard JADE in high level Gaussian noise. The run-time for these algorithms (in

MATLAB� code) is much higher than JADE’s, although we expect faster perfor-
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Fig. 1. Average in-noise-performance index (every point is averaged over 100 trials) of different JD based ICA algorithms.

The average Index(P ) is plotted versus σ.

mance in low-level codes or DSPs. Part of this slower convergence can be attributed

to the nature of gradient based methods which have linear convergence.

5 Conclusion

We introduced a new scale-invariant cost function for non-orthogonal JD. We also

derived a gradient minimization scheme for that cost function. To avoid computing

matrix inverses we introduced an inverse-free version of the algorithm developed.

We examined the performance of the developed JD in the context of an ICA algo-

rithm introduced in [2] and compared the performance with JADE’s. The developed

methods out-perform JADE in high level Gaussian noise.
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