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In the world of sale of perishable commodities without regulation, competition

causes cut-throat pricing and heavy discounts for the commodity. Even though this

is bene�cial to the customers, the companies that o�er the commodity have to

be careful to prevent the o�ered discounts and cut-throat pricing from cutting into

their pro�ts. The science of managing revenues in such scenarios is loosely termed as

Revenue Management (RM). RM holds its roots to the competition generated in the

American airline industry after deregulation. Since then, it has spread to virtually

all industries that deal with perishable commodities such as hotel and hospitality,

rental vehicles, and all forms of long distance public transportation, even freight

[23].

The commodities in these industries refer to the items for sale. In a hotel, it

may be rooms of di�erent classes and sizes; in vehicle rentals, cars; and in all forms

of long distance transportation, seating space. Perishability of these commodities

can be understood simply by the fact that after a certain date, a certain commodity



will not be available. In long distance transportation, it is easy to imagine that the

seats on a vehicle (plane, bus, train or ferry) will not be available after the vehicle

has departed on its way. Similarly rooms in a hotel or cars with a rental agency

will loose value the longer they are kept empty or unused. The goal of modern day

RM is, therefore, to ensure pro�table sales of such commodities, such that they are

priced at better rates than the competition.

This thesis attempts to apply the theory of Expectation Maximization (EM) to

the purchase data from railway industry in a attempt to better the existing pricing

logic. The EM algorithm used here was developed by Dr. Kalyan Talluri and Dr.

Gareth van Ryzin in their seminal paper published in 2004 [49]. In that paper the

authors develop the algorithm, derive the mathematics that powers it and apply

it to test data sets to prove that it out performs the current industry standard.

However, application of that method to a real dataset has never been done, which

is the goal of this thesis.

We �nd, and document herewith, the issues that resulted from applying the

EM algorithm directly to the data. Mainly, assumptions in the EM algorithm re-

quired heavy data clean up, after which it was found that the results were neither

satisfactory nor useful. The reasons for the failure of the model are examined in

detail, the primary reason being lack of identi�ability in the data. To conclude, the

EM algorithm needs substantial modi�cation or additional data in order to lose cer-

tain debilitating assumptions and make it more general or reduce the identi�ability

problem of the data.
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Chapter 1: Introduction

The foundations for Revenue Management was laid by Littlewood working

for British Airways (then British Overseas Airways Corporation) in late 1960s and

early 1970s [23]. Prior to that, RM was mainly restricted to overbooking control,

whereby companies tried to determine the exact number of seats to overbook such

that the target revenues were met on the day of the �ight [35]. British Airways

was the �rst company that began to calculate discounts to o�er on unsold seats to

attract latent demand and improve occupancy and revenues of �ights. American

Airlines, following the deregulation of airline industry in the US, took the British

Airways idea one step further by analytics and data driven inventory control which

they called Yield Management [18]. Since the early 1980s this practice of Yield

Management spread to other airlines and other industries such as the vehicle rental

and hospitality industries.

Ever since British Airways implemented discounted fares for passengers book-

ing early, two problems arose which are still being solved to this day. The �rst

problem was that of date: how late to close the early booking period. British Air-

ways had a 21 day policy wherein bookings occurring before 21 days from departure

were eligible for the discount fares, while patrons booking after 21 days before de-
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parture of �ight had to pay the full fare [35]. The second issue was that of capacity:

how many seats to allocate (protect) for the late booking customers who were willing

to pay the full fare. If too few seats were protected, the �ight would lose revenue, if

too many seats were protected, the �ight might �y with empty seats, again losing

revenue.

In order to overcome these two problems, many of solutions have been proposed

since the late 1970s. Many of them involved statistical techniques to estimate the

correct breaking point so as to maximize revenues. Littlewood devised a thumb rule

for solving the problems which stated that discount seats should be o�ered so long

as the revenue obtained from sale of discounted seats exceeded the revenue obtained

from sale of full fare tickets [28]. This rule had some issues in implementability as

it was never known up front how many full fare paying customers, and how many

cheap fare paying customers were expected.

In 1987, Belobaba proposed the Expected Marginal Seat Revenue (EMSR) al-

gorithm that most accurately implemented Littlewood's rule [5, 7]. Belobaba further

improved and revised the algorithm in 1989, calling it EMSR-b [6]. The EMSR-b al-

gorithm became the gold standard in Revenue Management, and is still widely used

today. These methods, still had some limitations, mainly that they only applied to

one leg of a journey, and were not easily extensible to industries like hospitality and

rental vehicles, where the horizon (time of expiry of commodities) is not sharply de-

�ned. In the intervening years between Littlewood's rulemaking, Belobaba's EMSR

algorithms and today the �eld of RM has vastly diversi�ed with researchers focusing

various aspects and problems of the proposed methods. Attempts have been made
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to expand a given method to multiple segments and fare classes, and also to develop

new methods.

Most of the methods, however, do not account for the passengers. It almost

seems assumed by all the methods that passengers are insensitive to price, and the

demand will be constant [49]. That is never the case in reality, and accounting for

passenger sensitivity and choice behavior will provide the most complete picture

for managing capacity. Ultimately, the decision to purchase a given ticket lies with

the customer, and understanding and factoring in the customer's choice preferences

might be the �nal key in unlocking the revenue streams. The seminal attempt to

factor in the customers' choice behavior has been made by Talluri and van Ryzin in

2004 (although some attempts have been made earlier).

Almost all research that came earlier to account for customer preferences in

purchasing tickets, have focused on buy-ups and buy-downs. A buy-up is when a

customer decides to buy a higher price ticket when discounts are not available, while

conversely, a buy-down is when a customer buys a cheaper ticket when discounts are

available. In a general discrete choice customer behavior framework, these decisions

are easy to explain, but outside of a well de�ned utility based framework it is

impossible to distinguish customers buying up or down from regular customers [49].

Work by Belobaba (1987) and Phillips (1994), although attractive because it allows

for buy-ups, does not scale to a network [5, 40]. Under the pressures of competition,

several airlines continued to research a robust solution, resulting in notable papers

by Andersson (1998) and Algers and Besser (2001) for Scandinavian Airline Systems

[2, 1]. However, it was only with the inclusion of choice behavior models that a new
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path around the obstacles was paved.

Choice behavior science, and consequently models, are very frail and heavily

dependent on conditions and assumptions. Therefore, combining choices with in-

ventory control is much more di�cult than initially apparent. Chie�y, inventory

companies seldom record visits to their booking system that do not result in a con-

�rmed purchase. The visits data is generally �lled with noise made by people with

no intent to buy at the time of visit, but who visit to track prices or explore options.

This causes missing data in that no-purchase decisions are not recorded. Choice

models in general require an exhaustive list of choices in the data. All items that

can be chosen must have been recorded in the data. Failing this, it is generally not

possible to �t a choice model.

The paper by Talluri and van Ryzin proposes a framework which is agnos-

tic to choice models, and can work with any model that provides probabilities as

output [49]. Within the framework, the customers' arrival are also estimated. The

estimated arrival acts as a proxy to the no-purchase records and enables estimating

an embedded choice model. In order to estimate both arrivals and choice model

parameters together, the framework relies on Expectation Maximization, where it-

eratively the current choice model parameters are used to estimate expected arrivals

in the expectation step, which in turn is used to �t the choice model and update

the parameters in the maximization step.

The idea of the EM algorithm is to iteratively �nd a stable point in the data

where the arrival rate and choice model parameters converge. Upon convergence, the

estimated parameters and arrival rate can be used to predict customer arrival, and
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ascertain customer sensitivities to price. Therefore, this algorithm a�ords real time

control over prices, such that various revenue targets can be met taking customer

choice behavior into account. It a�ords better overall control over the price of

the inventory, and can maximize sales easily. Moreover the parameters can be

estimated before hand, on past data from the same market segments operating at

the same times, and improved with each new datum, o�ering �exibility and updated

parameters.

However, as illustrated in this thesis, it is not without problems. EM algo-

rithms in general tend to be �nicky, and convergence is not always guaranteed.

Further, the problem examined in this thesis has an identi�ability issue. Identi�-

ability issues arise when a given segment of missing data cannot be identi�ed. In

this case, neither the complete population size of the visitors to the system, nor the

no-purchase rate for unit number of purchases is known. Therefore, there is a degree

of freedom in the model that allows for multiple values as solution. This causes the

EM convergence to become even more uncertain, and bounce between values far too

often, or for the objective function to be in�nitely decreasing with no minima.

Some of the issues identi�ed in this thesis can be corrected, but the argument

of using EM to solve the problem discussed in this thesis is challenged. When data

has an issue with identi�cation of missing values, EM is a poor choice as a solver.

However, as examined in the last section of this thesis, there may be ways to still

overcome the challenges and hurdles.

The following subsections clearly de�ne the problem statement, the research

scope and the contributions of this thesis.
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1.1 Problem Statement

This thesis attempts to solve missing data in a consumer demand framework

for managing inventory to maximize revenues. The problem deals exclusively with

data from a major public long-distance train operator, and all discussions henceforth

will be speci�c to that market. Customers deciding to not purchase a ticket on a

train are not recorded in the booking transaction data, which means there are no

data for a whole class of customers. Due to the exhaustive data requirements of

most choice behavior models, the missing data needs to be imputed.

A generic Expectation Maximization framework for jointly estimating choice

model parameters and the missing customer data was proposed by Kalyan Talluri

and Gareth van Ryzin in 2004. In their seminal paper, Talluri and van Ryzin, apply

their proposed method to synthetic data only. The literature that followed their

paper, to improve the method or propose rival methods also mainly demonstrate

results from synthetic data, or real data with additional information. There has

been no attempt in literature to apply the methods to real data without additional

information, and test �delity (see Section 2.3).

The problem statement of this thesis is two-fold: to solve for the missing data

problem, to apply the EM algorithm to real data, from a railway company, in the

absence of additional information about the data. In the process, the goals are to

understand the workings of an EM algorithm, and the issues that arise from it. If

the results of the EM are logical and sensible, the next step is an attempt to solve

the Bellman Equation by a dynamic program so that appropriate decisions about
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o�er price can be made. However, the results are neither correct nor rational, and

hence the dynamic program has not been solved.

1.2 Research Objectives and Scope

The main scope of this thesis is to implement and �t the EM algorithm pro-

posed by Talluri and van Ryzin. The algorithm is �rst �t to synthetic data created

similarly to the data Talluri and van Ryzin demonstrate in their paper. Then the

algorithm is �t to real data from a railway company, and the algorithm is studied

to examine all the points where it fails, and propose strategies to improve the weak

links.

This thesis attempts to thoroughly test the EM algorithm with real data. This

has never been documented in existing literature. The two objectives of this research

are to examine if the algorithm can be �t to real data in the naive form, and if it

works on railway data. In their paper, Talluri and van Ryzin, build the framework

with the idea that the data will be from airlines. However, the booking pattern

for railways is vastly di�erent from the booking patterns for airlines. Moreover, the

classes and prices o�ered by railway companies are di�erent from airline classes and

fares as well.

Railways can o�er many more classes, with a range of amenities to the pas-

sengers. Everything from seating location to in-seat service can be o�ered at var-

ious price points through out the booking period. However, the railway company

that provided the data for this thesis o�ers a single price for each class of tickets
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throughout the booking period. Nonetheless, the booking pattern of customers is

much di�erent from the booking pattern found on airlines: they cluster towards the

end of the period, just before the departure of the train (see Section 4.2).

Booking patterns seen with the railway data cause problems with the assump-

tions made while deriving the framework. The authors of the original paper assumed

that arrivals are uniformly distributed and represented by a univariate Poisson pro-

cess. However, the real data bookings cluster towards the end of the booking period,

which is not representative of uniform Poisson distribution. Moreover, the original

authors also restrict that only one customer arrival is permitted per time step, and

because bookings are clustered in the railway data, one arrival per time step requires

very �ne time windows, which cause overestimation of arrival rate.

Consequently, applying the EM algorithm to real data from a railway company

is challenging and di�cult.

1.3 Contributions

The research presented herein shows that the EM algorithm proposed by Tal-

luri and van Ryzin does work on synthetic well-behaved data, but fails to work on

real data. To enumerate, the major contributions of this thesis are as follows:

• Implement the EM algorithm on real data from a railway company, and test

it, in the process understand the EM framework.

• Understand and reveal the reasons the algorithm failed to produce credible

results.
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• Analyze the reasons the algorithm failed, and present the issues.

• Suggest improvements to be applied in the future to the algorithm to overcome

the shortcomings.

1.4 Thesis Organization

The rest of this document consists of literature review (chapter 2). Chapter 3

is an overview of the model and assumptions made, so that the remaining chapters �t

together in a seamless and confusion free manner. The data used and the method are

elaborated in chapters 4 and 5. Results are discussed in chapter 6, before conclusions

are drawn in chapter 7. The last chapter, 8, discusses future work where some of

the identi�ed limitations can be lifted.
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Chapter 2: Literature Review

In this chapter, the existing work, background information and the relevant

context is presented. This chapter is divided into subsections to discuss in detail

the various aspects that compose this thesis. The �rst section, Yield Management

presents the history of Revenue Management, and a rough overview of the existing

methods before tying it to the decision theory and choice models, which make up

the second section. Within the section of Choice Models, the primary issue with the

choice models is illustrated, namely the missing data. Finally, modern day revenue

management e�orts are shown.

2.1 Yield Management

When yield management was conceived by Littlewood more than �fty years

ago, it was a radical practice that transformed the way airline companies managed

the seats on their �ights. Prior to that, the companies mainly focused on overbook-

ing control wherein they tried to �x the number of seats to allow to be overbooked.

It only worked on segments with high enough demand to �ll more than one vehicle.

And, it did nothing to a�ect the prices, and seats remained expensive for a majority

of the population.
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Since British Airways began o�ering seats at a discount provided the booking

was done more than 21 days before departure of the �ight, they took advantage

of a latent demand which always existed but could not a�ord the seats at the full

price [35]. These discounted seats meant that segments of the �ight which �ew with

empty seats now got closer to a 100% occupancy rates. However, this practice soon

gave rise to two issues: the amount of discount to o�er and the period or capacity

for which to o�er the discount.

The question of the amount of discount to o�er is fairly easy to solve. The

discounted fare should ideally not fall below the marginal cost of transporting that

passenger. Computation of marginal costs of providing a service to one more cus-

tomer is well de�ned and studied in microeconomics [45]. Therefore, if a base fare

is �xed, the discount can drop as low as the marginal cost. Any lower value would

incur a loss. Very little research is actually focused on improving the o�ered dis-

counts, although the trade o�s between o�ered discounts and additional perks is an

interesting topic of research. This thesis similarly does not focus on the o�ered price,

but instead concentrates on the e�ects that given prices will have on the behavior

or prospective customers.

The other question is actually a two fold question of time and capacity, which

are intrinsically linked to each other because of customers' willingness to pay. The

problem is to de�ne a point in time and capacity such that discounts can be either

wholly or partially lifted upon meeting that point. In a 300 passenger airplane, for

example, the point would be to determine the date after which the discounts will

not be applied (21 days in the case of the original British Airways method) or the
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capacity that needs to be protected for higher paying customers.

Although they seem disconnected, they are linked because customers arriving

later in the booking period may have a higher willingness to pay. With a bit of in-

trospection, it becomes apparent that later arriving customers have a more pressing

need to travel, the reason for travel came up recently. If the capacity target has

not been met, and the booking is kept open at discounted fare rates well into the

later stages, the seats will be sold at lower prices to customers who are willing to

pay more thus loosing revenue for the airline. On the other hand, if discounts are

discontinued early in the booking period, and not a lot of customers are willing to

pay the higher fare, the vehicle will remain with empty seats. A universal solution

to this problem will have to be a function of time, capacity and demand.

The balancing rule for these two parameters was suggested by Littlewood, and

later came to be known as Littlewood's rule [28]. Littlewood simply stated that as

long as revenues from discounted fares exceeded the future expected revenue from

full fare sales, discounted bookings should be accepted. Most of the literature that

followed including Belobaba's EMSR algorithms, used this rule as foundation [5, 7,

6]. Attempts were made to develop better heuristic approaches that compute the

optimal capacity and time for di�erent discount levels, and to apply these approaches

to more than one leg of journey.

Subsequent attempts have thoroughly researched the problem of single-leg

models. In these models, demand is assumed to occur in non-overlapping periods,

and each segment of a global journey is treated as a separate entity. Works by

Curry (1990), Wollmer (1992), Brumelle and McGill (1993) and Robinson (1995),
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are notable in this area, and show that nested allocations can result in optimal

policies [19, 58, 10, 41, 49]. Similarly, a huge amount of work has been done in

solving the much harder multi-leg allocations that deal with a whole network. Key

papers in this area are Glover et al. (1982), Dror et al. (1988), Williamson (1988,

1992), Simpson (1989), Curry (1990), Talluri (1996), Talluri and van Ryzin (1998,

1999), and Cooper (2000) [22, 21, 57, 56, 44, 19, 50, 48, 47, 16]. See Barnhart and

Talluri (1996), and McGill and van Ryzin (1999) for more information [3, 35].

These approaches, however, just approached the problem from the view point

of �lling up seats. The passengers who made the decision to buy or not buy were not

considered in the equations. Models that aim to predict the customers' choices are

well known, extensively researched and applied, but there are not many integrated

approaches where inventory and customers are considered together, as outlined in

the following sections.

2.2 Choice Models

Choice models have been researched since at least 40 years ago [31]. The cor-

nerstone, however, of choice models is Dr. McFadden's Nobel prize winning work

in 1974 [34]. Traditionally choice models were constructed to have a simple binary

form, to which a logistic expression could be applied. This was made possible by

Luce's assumption of independence from irrelevant alternatives [31]. This assump-

tion allowed researchers to treat each choice as being independent of the others,

thus enabling logistic regression to solve for the parameters. McFadden showed
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that unobserved utility in a logit framework had an extreme value Gumbel type I

distribution, thus deriving a closed form expression [34].

Since then, choice models have expanded to include probit, and other gen-

eralized extreme value models to cater to situations where the independence from

irrelevant alternatives assumption breaks down, and a correlation exists between

the alternatives or the subjects in the choice experiment. Further, to account for

multiple choices, the logistic regression was replaced by multinomial logit (MNL)

formulations [8].

MNL models have been extensively applied to areas where people's choices

needed to be understood and forecasted. The most widespread use of choice models

is in the choice and options theory as it applies to stocks and consumer goods

industry. In transportation they are often used in predicting ridership of new lines

and service brackets, or development avenues [13, 14]. Investments in proposed

transportation options are often decided based on potential usage forecasts, which

are computed by applying MNL and other choice models to stated and revealed

preference surveys [30, 29].

Even though choice models are designed to predict the choices made by people

usually buying something, they were not that common in revenue management, until

recently. Researchers that deal with revenue management often work as if customer

demand is insensitive to the prices o�ered, and focus only on inventory control. In

reality this is never the case, with customers willing to go to di�erent lengths to suit

their individual travel requirements. Therefore incorporating choice behavior into

revenue management is the next step in improving revenue streams.

14



Choice models, unfortunately, have a few issues before they can be used with

revenue management. The �rst is the independence from irrelevant alternatives

assumption [51]. While this assumption will help in predicting if a customer will

use a personal car, or public transport to get to work, it hinders prediction when

the choice is between the same service o�ered at di�erent price points because the

alternatives in this case are not independent of each other. Additionally, choice

models require that the choice set is complete and exhaustive [51].

Exhaustive dependent variables actually are a necessity in any kind of regres-

sion analysis. In the case of Choice Models, the dependent variable are the choices,

which depend on independent variables such as characteristics of the individual,

including needs and wants, and o�ered amenities. Unless a given choice exists in

the dependent variable, it cannot be modeled. Therefore, all missing data will ei-

ther have to be accounted for, or the model speci�cations changed to exclude the

requirement of missing data.

2.2.1 Missing Data Problem

Missing alternatives is a big problem to discrete choice modeling. An alterna-

tive cannot be included in the model if there is no data for that alternative. The

decision maker must choose one of the available options, and nothing from outside.

Conceptually, it is easy to include all options in the choice set. For example, if three

fare classes are up for sale at di�erent price points, and the customer can buy any

one of them or none at all, then the choice set consists of four alternatives: the three
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fare classes and the option to not buy [51].

All ticketing systems record transaction data, but they usually only record the

transactions where a purchase or a cancellation was made. The visits to the system

made by customers who walked out on the available options are seldom recorded

[37]. This results in a missing or censored data problem, and logit models cannot

be directly calibrated on this data. Logit models need all possible choices as a part

of the choice set, or the dependent variable. If one or more of the available choices

are not part of the choice set, the model will have a `leak', and the coe�cients �tted

will not be meaningful [51].

Several attempts have been made to resolve the missing data issue. At the

outset, the solutions proposed in the literature can be divided into two factions:

those that require knowledge of the market shares, and those that dont. If mar-

ket shares (alternative speci�c constants) are known then the Weighted Exogenous

Sample Maximum Likelihood (WESML) method proposed by Manski and Lerman

(1977) can be used [32]. Similarly, the Conditional Maximum Likelihood (CML)

method developed by Manski and McFadden (1981) may also be used [33]. Note

that these works are from quite long ago, almost around the time when the logit

model was initially developed.

When the market shares are unknown, most of the models require an additional

source of information that can be used to estimate the model coe�cients. Di�erent

models need di�erent pieces of information from which to reconstruct the coe�cients

based on the observed parameters and the observed and unobserved choices. The

CML method from Manski and McFadden (1981) can be used for situations when
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market shares are unknown, with the CML coe�cients also estimated alongside the

parametric coe�cients [33].

Cases where market shares are unknown have only recently gained in popu-

larity, however, with the �rst set of papers being published in 2004. Talluri and van

Ryzin (2004) formulate an EM algorithm that uses Bayes Theorem to combine the

probability functions of customer arrival and choices [49, 25]. They show that this

method can produce better revenue than the well-established Expected Marginal

Seat Revenue (EMSR) algorithm. In this case, the customer arrival probability is

the external information needed for the model to work, which is estimated in the

maximization step of the algorithm.

Newman et. al. (2012) showed that when market shares are unknown, but

the total market size is assumed to be stable over time, then the market shares of

the missing choice can be estimated along with the logit model parameters [37].

This study stems from a development on the original idea by Talluri and van Ryzin

(2004) [49], conducted by Talluri (2009) [46]. Vulcano et. al. (2012) proposed a

method in which knowing just the market share of the missing choice is su�cient

[52].

Newman et. al. (2013a) further published papers showing that for Nested

Logit (NL) class of models, no outside information was necessary for certain nesting

orders [38]. Further, they showed � Newman et. al. (2013b) � that by including

covariance terms, parameters in�uencing market shares can be identi�ed for some

general models that are a part of the Generalized Extreme Value (GEV) family,

obviating the need for external data [36].
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2.3 Revenue Management with Choice Models

As mentioned, pricing and inventory control are two sides of the same coin.

Pricing determines the speed of sale of inventory. Cheaply priced inventory is more

likely to sold faster than same inventory available at a greater cost. However very few

studies were carried out with joint estimation of customer behavior and inventory

control before the 2000s. Since then a few studies have taken a complete view of

the problem, and attempted to combine customer behavior with sale of products.

2.3.1 Independent Demand Source

Studies outlined here use another model or dataset to source the demand.

There is no coupling such that set prices on seats a�ects the demand. For example,

if the demand were sourced from an Origin-Destination dataset on which a route

choice or a mode choice model has been applied, the resultant demand will be

una�ected by the prices being charged. In other words, these models have static

global demand, and work to improve market capture.

Kuyumcu and Garcia-Diaz (2000) were the �rst to study the joint problem of

pricing and seat allocation [26]. This study came directly after papers by Weath-

erford (1997) [53] and McGill and van Ryzin (1999) [35] wherein the argument for

a combined behavior and allocation models were �rst presented. In their study

Kuyumcu and Garcia-Diaz assumed no connection between o�ered fares and prod-

uct characteristics [26]. Price was therefore an exogenous variable to customers,

whose demand was assumed to be normally distributed with no cross talk between
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fare classes, or market segments. In other words, generated customer demand only

catered to a single fare class, and a single market segment.

Hood (2000) improved on a framework laid by Ciancimino, et. al. in 1999 that

allocates an optimal number of seats for a railway between a pair of stations [24].

Ciancimino, et. al. modeled demand as a truncated normal distribution [12], which

Hood used in a logit model to optimize pricing and timetable for the framework

Ciancimino et. al. developed. Similarly, yet di�erently, Bertsimas and de Boer

(2002) assumed demand was uncertain, but the expected demand was a function of

only the o�ered price [9]. They formulated a model for a network, and showed that

for some demand situations the model was convex and therefore had a solution for

large instances, and could lead to signi�cant revenue gains.

In a departure from integrated demand and revenue management, Cote, et.

al. (2003) modeled pricing and seat allocation in the presence of a competitor [17].

The moves of the competitor were assumed known, while the demand and price

were decoupled from each other. The main goal of this model was to make the best

decisions to beat competition. On the other hand, Whelan with Johnson in 2004

and with various authors in 2008 formulated a nested logit to estimate the impact

of prices on train overcrowding, without regard to revenues [54, 55]. The upper

level consisted of the choice of taking a train or not, which fed demand to the lower

level which chose between classes in a train. The demand for the upper level was

generated from an activity based model. Modeling demand similarly, by using an

activity based model, Li, et. al. (2006) used the nested logit to solve for optimal

dynamic pricing policies and overall network performance [27].
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Also using a nested logit model, but with the upper level modeling a choice

between the Japanese High Speed Railway (HSR) and domestic airline, Ongprasert

(2006), studied seat allocation policy for the HSR [39]. The lower level of the nested

logit model consisted of fare choices, which fed a seat allocation model with choice

data. Improvements in revenue were shown in the results of the study.

Chew, et. al. (2008) used a dynamic program to solve for seat allocation and

pricing in the current time step by modeling expected sales in the future based on

fare and customer demand [11]. Demand was modeled as a linear function of price,

which was in turn steadily increased as vehicle departure drew close. The model was

concave, and therefore a recursive method was used to optimize the model When

extended to multiple time periods, heuristic approaches were used to solve the model

which was no longer concave. Using a dynamic program, but with a nested logit

choice model similar to Whelan and Johnson (2004) [54], and Whelan, et. al. (2008)

[55], Sibdari, et. al. (2008) solved for dynamic pricing policy for Amtrak data [43].

They showed that the demand in Amtrak data could be modeled as an exponential

function, with almost no bookings beyond 30 days from departure. The goal of the

study was to model customer choice to buy up or down or to upgrade.

Cizaire (2011) developed an ensemble of methods to jointly estimate seat allo-

cation and customer choices [15]. Demand was generated as a function of the fares

predicted by the seat allocation algorithms. Heuristic and deterministic solutions

to the models were also presented in this study.

In all the above studies, the no-purchase alternative was conveniently modeled

as a di�erent entity, or a known demand process was used to simulate customers.
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For example, Cote, et. al. (2003), Whelan and Johnson (2004), Li, et. al. (2006),

Ongprasert (2006), and Whelan, et. al. (2008), pass the customers who do not pur-

chase to a competitor or another mode of transport respectively, avoiding imputing

data [17, 54, 27, 39, 55]. A full knowledge of customer demand is obtained either by

simulating customers from a known process, or from an activity based model. The

other papers mentioned above, all simulate demand from a distribution, and thus

avoid the identi�cation problem tackled in this thesis.

2.3.2 Combined Estimation of Demand and Choice Parameters

Studies that attempt to estimate demand and choice parameters, with the

complication of lack of no-purchase transactions are fewer and infrequent. Talluri

and van Ryzin (2004) � the seed paper for this thesis � proposed the �rst joint

optimization framework that estimated the demand, the choice parameters in the

light of missing data and then proposed optimal inventory control policies [49]. An

Expectation Maximization algorithm was used to estimate the expected demand

(expectation step) and then �nd the choice parameters that achieved the function

maximum (maximization step). This paper lay the foundation for other studies,

most of which focused on the missing data aspect and have been discussed above.

Other studies to stem from Talluri and van Ryzin (2004) catered to the com-

plete problem of demand, choice, and inventory control. These papers are mainly

authored by van Ryzin in collaboration with other researchers. In an attempt to

correct for the identi�cation problem and the degree of freedom in the original
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framework, Talluri (2009) presented a model with a �nite total population [46].

Newman, et. al. (2012) extended Talluri (2008) study to market segments where

total population size can be assumed to be constant over a large time window [37].

Stability in demand over a considerable span of time is a reasonable assumption, as

the daily variations in number of traveling passengers is averaged out, and the value

can be treated as a function of the location served by the transport station under

consideration.

Newman, et. al. (2012) estimated the missing data accurately, provided the

external information about population size was known to the model [37]. In 2013,

however, Newman, et. al. also showed that for certain nesting orders in a nested

logit framework, no additional information was necessary [38]. The study uses a

nested logit model, within an EM framework, and recovers both generic model

parameters and alternative-speci�c parameters at the same time. The improvement

of Newman, et. al. (2013a) over Newman, et. al. (2012) is that this study does not

require additional information, and any di�erences in observation are all attributed

to the Gumbel noise parameter. Essentially, the question of number of similar cases

that chose di�erent alternatives is posed and formulated, then solved by the EM

algorithm. Newman, et. al. (2013b) applies the same method for some Generalized

Extreme Value (GEV) models, and show that under certain conditions, additional

information is not necessary [36]. Further, they show that the results are consistent

with those obtained by other means, provided the sample sizes are large for certain

cases. CML is used in this study.

Note that Newman, et. al. (2012, 2013a, 2013b) are all studies that only
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estimate the choice models and customer demand, but do not delve into drafting

revenue management policies [37, 38, 36]. The understanding is that those studies

can be incorporated into any generic inventory control algorithm such as a dynamic

program� like the Bellman equations [4] � and used for drawing allocation policies.

The drawback of those studies, however, is the complexity of the models. EM

is �nicky by nature, requiring perfect conditions to converge; in fact, even initial

parameter values can be the di�erence between convergent and divergent solutions

[59]. Nested logit and GEV models are further complicated versions of MNL, in

which certain assumptions such as independence from irrelevant alternatives are

removed and solving these choice models is usually more di�cult than solving MNL

[51]. Therefore these proposed models can be very di�cult and unstable to estimate.

Most recently, in a paper selected to be published in Operations Research, van

Ryzin and Vulcano (2016) formulate a demand model that consists of well de�ned

classes of customers, each with an arrival probability given by a probability mass

function, and a discrete choice model [42]. They use EM to jointly estimate the

pmf of customers, and arrival rate. The assumption is that customers belonging to

a particular class have a list of preferred products in the order of greatest utility.

They buy the product that ranks the highest on their list, which might also be the

choice to not purchase. They show that the convergence of the model is better than

competing models.

23



2.4 Expectation Maximization

Expectation Maximization algorithm was �rst generalized, explained and named

by Dempster et. al. (1977), although it was used before that in specialized forms

[20]. EM algorithm is mainly used when a dataset used for �tting a function has

missing values. The EM algorithm works in two steps: the �rst step creates (or up-

dates) a log-likelihood function, and in the second step �nds the maximum solution

of the log-likelihood.

The initial values of the parameters are taken as the starting point. A max-

imum likelihood search of all values the missing data can take is then conducted,

with the missing values �lled by the best candidates. The best candidates are values

that maximize the log-likelihood of the objective function. This data, with the im-

puted missing values, is then used to �t the model and update the coe�cients. The

coe�cients are again used to update the candidates for the missing data, and the

cycle repeats till convergence. The EM algorithm works best on exponential func-

tions, where a log transformation will convert the likelihood function into a linear

function for easy maximization.

The EM does not guarantee that the likelihood obtained at the end of the

Maximization step is the maximum likelihood estimator of the objective function

[59]. Multimodal distributions can converge to a local optima, or the function may

never converge. Therefore, despite being a generic tool, the EM is not widely used

in all missing data situations. A specialized version of EM is used in this thesis to

�t the parameters of a choice model to data with missing values.
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Chapter 3: Overview and Assumptions

This section presents a quick overview of the method used in this thesis. The

EM algorithm proposed by Talluri and van Ryzin is used to �ll in missing data,

and obtain choice parameters that can be used in determining the optimal pricing

strategies.

This study caters to the analysis of railway data. Therefore further discussion

will focus solely on trains. We assume that trains in this case are run like airplanes,

in that they pick up passengers at an origin and drop them at a destination. In-

termittent boarding and alighting is not permitted in the current construct of the

problem; however this problem will be addressed in future research. In this study

it is assumed that time is backwards-indexed. That is at time = 0, the train de-

parts, and bookings are permitted only between 31 days and four hours in advance

of departure time. No sale of tickets on board is permitted.

The data collected by reservation companies often lack the information on

patrons who visited the system but did not purchase the tickets. This no purchase

choice is what gives rise to the missing data problem inherent in studying patron

behavior related to ticketing. The EM algorithm invented by Talluri and van Ryzin

is used to impute this missing data so as to enable further analysis. In its most
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naive form, the algorithm requires there to be at most one arrival per time step.

Therefore, in essence the number of time steps de�nes the maximum population of

patrons that can arrive at the system to purchase tickets. Each patron makes a

decision to buy one of the available fare classes, or not to buy at all.

The EM algorithm takes the data for all time steps in the dataset, and for

those time steps without any con�rmed booking attempts to compute an arrival

probability such that the product of the estimated arrival probability and the esti-

mated no-buy probability equal the true no-buy probability. This simple probability

relation is fostered by Bayes's theorem, which sits at the heart of the EM algorithm.

In a real world scenario, for each time step where a booking was not recorded, a

patron may have arrived, and chosen to not buy or may not have arrived. There is

no real way to recover this information, and therefore the best that can be done is

the product of the estimated probabilities of arrival and no-purchase.

Once initial no-buy and arrival probabilities are estimated, new choice coef-

�cients can be estimated using the imputed data. The new choice coe�cients are

then used to update the prior knowledge on arrival probability, and then the pur-

chase decision probabilities for each o�ered product, including the option to not buy.

This new data is then used to update the prior knowledge in an iterative manner till

convergence is reached. At convergence, the �nal model coe�cients o�er the choice

parameters under complete data.
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3.1 One Arrival per Time Step

The model assumes that time is monotonic and decreasing. That is it moves in

discrete steps of constant sizes towards zero, when the vehicle departs (or commodity

expires). Further, in it's naive form, the EM algorithm's permits only one arrival

per time step. This raises certain issues that are documented but unsolved in this

thesis. The major issue is that it �xes the population size to the number of time

steps. A �xed population size, with a �xed number of bookings in the booking

period makes the probability of bookings known.

A second issue, and more relevant to this thesis, is that during periods of

heavy bookings, the recording computer may not have su�cient time granularity to

accord each booking a unique timestamp. This in turn causes the need to massage

the data such that the assumption is not violated.

Both of these issues can be resolved by assuming a continuous function of

arrivals. However, this assumption will hugely complicate the Bayesian equation at

the center of the EM algorithm.
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Chapter 4: Data

This chapter describes the data used in the study. In order to ensure that the

methodology proposed by Talluri and van Ryzin has been correctly reproduced, the

�rst test was conducted with synthetic data. The algorithm was then applied as

is to the real data. The �rst section in this chapter deals with the details of the

data synthesis. The second section details the characteristics of the real data. A

subsection within each section discusses the preprocessing done to make it suitable

for the algorithm.

In all following discussions, note that one record in the dataset denotes one

time step. The two terms may be used interchangeably.

4.1 Synthetic Data

Synthetic data was constructed in order to ensure that the algorithm was cor-

rectly reproduced. The passenger arrival rate was �xed at 0.5, meaning a passenger

arrived at the system to book a ticket at least in half the time steps. This is done

simply by drawing from 0 and 1 with equal probability for each time step. 1 in-

dicates customer arrival, 0 indicates no arrival in the given time step. A total of

30,000 time steps are used, each representing a second, for a total duration of about
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8.5 hours. Four fare classes, available at all time steps, but priced di�erently are

included. An arriving customer then faces �ve choices: buy one of the four fare

classes, or no-buy.

The prices of the four fare classes increases in well de�ned steps as time runs

out, but not in proportion to each other. The closer the departure of the vehicle,

the higher the price. Using these prices, and setting the choice parameter coe�cient

to -0.015, the choices of passengers are simulated. To account for unobserved char-

acteristics of an individual, a random Gumbel distributed noise is added to each

utility function, and the option that maximizes utility is selected as the choice of

the customer.

In other words, the β in equation 5.5 is �xed at -0.015, while ε is drawn from a

Gumbel distribution for each alternative. The alternative with the maximum utility

is assumed to be chosen by the customer. Note that there are 5 alternatives available

to the customer: the option to not buy, and the four o�ered classes. This is done

for only those time steps in which the arrival process indicates that a customer has

arrived at the system.

From the table of choices, all records when no customer arrived or when a

customer chose to not buy anything were deleted. The resulting dataset had 8220

records (out of 30,000 total time steps). Figure 4.1 shows how the prices for the

fare classes vary with time. Note that time (on the x-axis) runs out at 0, and the

vehicle departs. Each point on the fare price line in �gure 4.1 represents a con�rmed

booking in that class. The legend shows (in parenthesis) the total number of tickets

booked in each class. The ordinate shows the price, the abscissa shows time steps.
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Figure 4.1: Synthetic Booking Prices by Time.

The price of a given class at a given time step can be easily read using this �gure,

and also the booking pattern inferred.

Table with descriptive statistics is not provided because �gure 4.1 provides all

information about the classes, purchases and fare prices in one place. A table would

not add any more information to this document. The following subsection presents

the processing done on the synthetic dataset.

4.1.1 Data Manipulation

In order to use the EM algorithm, a record per time step is necessary in the

dataset. In order to reconstruct the time steps that were deleted while synthesiz-
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ing the data (no purchases, and no arrivals), two approaches were used: the same

number of time steps were recreated and a di�erent number of time steps were

recreated.

The second scenario, when a di�erent number of time steps are created is

representative of the real world scenario. In the real world one will never know the

actual number of time steps that would most accurately capture the arrival process

in the booking period. The �rst scenario, with the correct number of time steps

reproduced, therefore represents the control case.

In order to recreate the time steps, the total number of time steps required

is decided �rst. Since 30,000 time steps were used initially, data is recreated with

30,000 time steps for the control case, and 45,000 time steps for the second scenario.

With the total number of time steps determined, time indexes are randomly and

evenly drawn from a list running from zero to the maximum time step. The con-

�rmed bookings are then placed in their rightful place in the random series of time

indexes.

Figures 4.2 and 4.3 show the resultant arrivals per 60 times steps after the

purchase dataset is expanded to 30,000 and 45,000 records respectively. As evi-

dent from the �gures, the �nal distribution of arrivals is equally random, and the

expansion has not a�ected the data in any way.

Again, since all necessary information is included in the �gures, an accompa-

nying data table is not provided.
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Figure 4.2: Synthetic Customer Arrivals by Time (Same Time Steps).
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Figure 4.3: Synthetic Customer Arrivals by Time (Di�erent Time Steps).

33



4.2 Real Data

The data used in this thesis was obtained from a passenger rail operator.

Nothing more about the source of the data can be disclosed, as the data is procured

under a strict non-disclosure agreement. An overview of �elds from the data used for

this study, and the pre-processing methods used to clean the data before applying

the EM algorithm are detailed in this section and other subsections below.

The data spans a period of two months and is a timestamped record of ticket

purchases and the price paid for the tickets. The records contain booking details

for journeys on various trains running between di�erent combinations of origin and

destination stations as well as departure times. After considerable deliberation, a

well patronized origin and an equally well patronized destination serviced by a direct

train were selected as the journey segment. The distance between the two stations

is about 400 kilometers (250 miles), and the train travels at a high speed to cover

the distance (including intermediate stops) in about 2.5 hours. The train competes

with air travel between the selected origin-destination pair, and almost always runs

�lled to capacity.

The data is �ltered to include only the journeys originating at the �rst selected

station, and terminating at the destination station. From this �ltered data, two

journey dates and times are selected, one falling on a Friday, and the other falling

on a Sunday. The tickets booked for departures on these dates are sub-selected

from the �ltered data, forming two independent tables. The following subsections

will elaborate further on the data from each date. However, a few common attributes
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are discussed below.

It is assumed that the train runs non-stop from the origin to the destination.

No boarding or alighting is permitted, except at the origin and destination sta-

tions. This assumption is required because the EM algorithm derived by Talluri

and van Ryzin applies to only a single leg of a journey. It is akin to imagining a

direct non-stop �ight between the origin and the destination stations. Dropping

this assumption is part of planned future work. Strictly in this case, the assumption

is not unrealistic, as less than 2% of the total train capacity boards or alights at

intermediate stations.

The data has no socioeconomic or demographic information about the passen-

gers. All that the data contains is time of booking, origin-destination, train number,

departure and arrival times, number of tickets booked and price paid along with var-

ious company codes and auxiliary information. Even then, there are avenues to add

increasing information in the choice models, and those will be dealt at a future time

as well. As of now, only the class of ticket booked, the amount paid for the ticket

per passenger, the time of booking and the departure time of the train are used.

The railway company uses variable number of fare classes depending on the

day. The current method of pricing is not dynamic within a fare class; each of

the fare classes have a �xed price, which varies by about 20 to 30 USD between

classes. The availability of the classes changes per a �xed schedule, with lower

priced classes closed earlier in the booking window. (Note that this system does not

take advantage of any revenue management policies or algorithms developed over

the years, it is just based on thumb rule.)
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After �ltering the data for the selected origin-destination pair and the date and

time of departure (weekday and weekend both), discounted sales records from the

data were removed. Discounted tickets are o�ered to passengers with army service

records, rewards programs, disabilities or age related factors (the company policy

dictates heavy discounts to students and the elderly). This was done to ensure

passengers enjoying discounted tickets would not bias the results of the estimation.

The records remaining are full fare transactions.

For all trains departing during weekdays, there are three main classes that

customers can book tickets in. In this document those classes are called Classes

A, B, and C. On weekends, two more classes are available, both cheaper and more

restrictive than Class C called Classes D and E. In addition, tickets can be purchased

at the station with the help of a clerk or an automated kiosk. These tickets are priced

more than the most expensive class (class A), and are categorized in Class K. Except

Class K, All the other fare classes are available for web-based purchase only. Note

that no purchases were recorded in Class K for the the weekend departure considered

in this study.

As a general rule, Classes K and A are available through out the booking

period. Class B is closed 24 hours prior to departure. Class C is closed 7 days prior

to departure, while the class D is closed 14 days prior to departure. In the data,

Class E appears to be open through out the booking period, as there are multiple

instances of very late bookings in Class E. It is not conclusive from the data whether

they are the consequence of the class reappearing due to cancellations, or capacity

not sold in other classes is o�ered in Class E, or both. Note that any class may be
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closed earlier if capacity for that class �lls up.

The most expensive class (Class A) is targeted at business travelers with

amenities like in-seat dining, work tables and extra-reclining seats with more leg-

room. Tickets booked in Class A are also eligible for full monetary refund of the

ticket amount if canceled anytime before the departure of the train, with less ad-

ministrative charges levied at cancellation time. A ticket purchased at the station,

under Class K also shares these amenities, but has a higher administrative charge

for the services of the clerk.

Intermediate priced classes o�er intermediate options, such as �exible cancel-

lation policy with 100% refunds up to 24 hours before train departure, and reserved

seats that recline less and have smaller leg room than the seats of the most expen-

sive classes. Seats sold under the cheapest class are the same as those sold with

intermediate prices, but unreserved, with seats available on a �rst come �rst serve

basis, provided they are not reserved by intermediate fare passengers. The cheapest

class of tickets are not eligible for a monetary refund upon cancellation, however a

limited time travel voucher will be issued for the ticket amount.

During weekdays, Class C is the cheapest class ticket, Class B is the interme-

diate class. Over weekends, however, Classes B and C are intermediate price tickets,

Class D is the cheapest class, while Class E falls in a special "web discount only"

category. Class E probably is also used to sell tickets that were not sold in other

classes after they are closed for bookings, and/or tickets that were canceled are of-

fered for resale at last minute on Class E. Class E shares characteristics with Class

D, and is unreserved, with a limited time travel voucher issued upon cancellation.
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The following subsections discuss the �ndings from the cleaned and �ltered

data in greater detail.

4.2.1 Weekday

Weekday data is extracted from Friday April 24 for a train departing at 6 PM.

This train has a good mix of business and leisure travelers looking to either return

back to the central business district of the destination metropolis after conducting

business all week, or looking to get away for the weekend. Note that both the origin

and destination cities are huge tourist attractions, with very old and historic relics

in addition to modern structures built to attract tourists.

Passengers traveling on Friday evening are mainly booked in 4 fare classes. The

most expensive class, Class K, is only available for purchase at kiosks or through

a clerk at the ticketing o�ce in the station. Therefore, all bookings in Class K

happen very close to the train departure. Class A is premier business class tickets,

will the best amenities. Class B is half way between Class A and Class C. Class B

is available to book up to 24 hours before departure. Class C is the cheapest fare,

with the least amenities, and can only be booked 7 days before departure, or till

available.

Figure 4.4 below shows the frequencies of bookings per hour for a period of

time 30 days from train departure. It can be clearly seen in the �gure that bookings

peak about 2 to 4 hours prior to departure. During this time, Classes B and C are

closed, and customers only have Classes A and K to book from. These bookings are
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Figure 4.4: Frequency of Bookings per Hour (Weekday).

likely performed for corporate executive travel, and therefore are quite insensitive

to higher fares. As an aside, note that there are only one or two bookings widely

scattered beyond the 30 day window shown in �gure 4.4.

In �gure 4.5, the prices paid by the customers (converted to USD) are shown

on the ordinate while the abscissa shows hours from departure. Zero on the X-axis

denotes train departure. The length of the colored line shows the availability period

of the respective fare class. Each of the colored markers on the lines represent a

booking record for that fare class. The total number of booking records in each class

are shown (in parenthesis) in the legend.

Figure 4.5 also leads to an interesting �nding: Class A does not have any

39



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Time Step Index (Days)

140

160

180

200

220

240

P
ri
ce

(U
S
D
)

Division 1 Division 2 Division 3

Price Variation and Bookings by Class
(Weekday Data)

Class C (bkd: 47)

Class B (bkd: 52)

Class A (bkd: 94)

Class K (bkd: 27)
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bookings till Class B is almost closed, but parallel bookings on Class K can be

observed. The reason for the former might be because passengers prefer the lower

fare of Class B over the perks of Class A. This behavior is understandable on short

journeys, where additional recline and leg-room are not as important. The few

bookings of Class A that do overlap with Class B might be explained by high-paid

executives traveling on business between the two metropolises.

The reason that Class K does not see bookings till very late into the booking

period could be because people booking at the station with the assistance of a clerk

are more likely to book the next available train, rather than a train in the future,

especially when the fares on both trains are equal. Additionally, it is observed that

Class A bookings cease about an hour before the last booking in Class K. This can

be attributed to the access times to the train. The people further away from the

station do not risk booking in Class A only to miss the train. But if they reach the

station in time, they either use the kiosk or allow the clerk to book their tickets

in Class K for a small extra amount. Further investigation reveals that the access

times to the origin station on Friday evenings tend to be half an hour to an hour

from the center of downtown serviced by that station. This �nding bolsters the

above surmise.

Bookings in Classes B and C are easily explained by the mindset of the normal

passenger whose primary intent is to save money. There are no bookings in Class

B till Class C is closed. Moreover, bookings in Class C occur at semi-random

intervals (more bookings during daylight hours than night hours), indicating leisure

travel booked well in advance to take advantage of the reduced fare. This leads
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to the surmise that Class C is patronized by average income passengers, mostly

on leisure, or semi-o�cial trips (for example self-funded trips to conferences, or

meetings arranged in advance).

Class B is more interesting than Class C, mainly because of the large gap in

booking activity which lasts from about 5 days to 7 days from departure. This

gap probably signi�es that leisure booking ends about 7 days prior to departure,

and business bookings begin about 5 days prior to departure. This conjecture is

supported by the fact that leisure and cost-conscious travelers tend to avoid booking

close to the departure date. Further, business schedules fall into place a few days

before journey necessitate later bookings.

Since �gures 4.5 and 4.4 provide complete information about the data, right

from class availability periods, distribution of bookings and number of tickets sold,

a data description table is not provided.

4.2.2 Weekend

To understand and process data from a weekend, where most travelers are

traveling for leisure, the journey departing at 4 PM on Sunday, April 26 was selected.

Bookings on the weekend service are concentrated mainly in 5 major fare classes,

instead of 4 like the weekday service. Also, fares for each corresponding weekday

class is lower on weekends. Classes A, B and C are similar to the classes found in

the weekday data, with the addition of Classes D and E to weekend classes.

There are no bookings in class K, the kiosk class, and a smaller percentage of
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the total bookings are in Class A. These can be easily attributed to lack of business

travel on a Sunday evening. Most passengers are probably returning from the origin

station after a weekend of leisure activities, such as sightseeing. The cheapest three

classes have the combined maximum bookings, while classes B and A make up the

rest of the total.

Bookings in Classes B does not start till Class C has closed, and bookings in

Class C does not start till classes D and E are closed. The inexplicable thing about

the D class is that it sees simultaneous bookings with Class E, probably by richer

leisure traveler. It also prompts the idea that there must be some di�erence in the

amenities of Classes D and E to justify paying more for Class D ticket. It is plausible

that Class D o�ers reserved seats, or window seats, or other such advantages, or it

may be a lower fare substitute for Class B.

It may well be that the fare of Class E is bumped up at 14 days prior to

departure to the price of Class C, and Class D fare is increased to the level of Class

B around the same time. Classes E and C will then share amenities with each

other, just like Classes B and D (for example, refer to synthetic data and �gure 4.1).

However, there is no indication in the company policy or in the data to suggest this

association, and therefore for this study they are treated as separate classes.

Figure 4.6 is similar to �gure 4.4 above, only for weekend data. It shows that

the bookings per hour for the weekend data are more evenly distributed than the

weekday data. Further, it also shows that customers prefer to book early, and take

advantage of lower fare classes, even though a peak before departure is observed.

Similarly, �gure 4.7 shows the booking frequencies and availability periods for
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Figure 4.6: Frequency of Bookings per Hour (Weekend).
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all classes. The length of the lines represent availability periods, while the markers

on them represent the time when a booking was done. Number of purchases in each

fare class is shown in the legend against the fare class (in parenthesis).

It is clear from �gure 4.7 that there is still some last minute bookings in class

A. These are probably corporate bookings, by customers with early Monday morning

meetings to attend.
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4.3 Data Manipulation

The only real manipulation of the data is perturbing the timestamps so that

the one arrival per time step assumption is honored. Other than that, the data

is only partitioned and some cleaning is applied to ensure the data is uniform and

unbiased. The latter two are explained in the following subsections.

4.3.1 Expanding

The records that represent the time stamps when a customer did not arrive, or

when a customer arrived but did not book the ticket need to be imputed in the data

set. Note that the weekday data has 220 observations while the weekend data has

173 observations. Essentially, expanding should ensure that each booking is placed

in a unique time step. Referring to �gures 4.4 and 4.6, it is directly inferred that

weekday will need a time granularity of one second or less, while weekend can use a

larger granularity of 30 seconds.

Based on the above observation, the weekday data was expanded using 1

second granularity to a total of 2,581,200 records (from three hours before train

departure, when all bookings cease to 30 days prior to departure). Weekend data

was expanded using 30 second intervals to 86,280 records.

4.3.2 Partitioned Expanding

The above subsection neatly illustrates that the expanded dataset is very huge.

Moreover, it is an overkill for the periods when there are lean bookings, as it does
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not justify the �ne granularity of the time steps. In the light of these arguments, it

was decided to vary the time step size. However since the time steps are assumed to

be monotonic, and all mathematics based on that assumption, having variable time

steps is not permissible. Therefore the data was partitioned such that a monotonic

time step could be assumed within each partition, and because a separate model

was �t to each partition, the time step sizes across the partitions can be varied.

The motivation for partitioning is obtained from the observation that very

�ne time granularity, required close to the departure, is not required earlier in the

booking period. The data was therefore sliced into three parts, the �rst one (closest

to departure) with time granularity of one second for weekday and 30 seconds for

weekend, the middle partition with a time granularity of 5 minutes during weekdays

and 10 minutes during weekends. The last partition, furthest from departure with

a time granularity of 30 minutes.

Figures 4.4, 4.5, 4.6 and 4.7 already show the partitions. As can be seen from

�gures 4.4 and 4.5, the �rst weekday partition lasts from the departure to 11 days

before departure, the second partition lasts from 11 to 18 days before departure,

while the third partition covers the time periods from 18 to 30 days before departure.

Similarly �gures 4.6 and 4.7 show that the �rst division of weekend data lasts from

train departure to 10 hours before departure, division two spans from 10 hours to

19 days and 12 hours before departure, while the rest of the booking space is taken

up by division 3.

Partitioning and taking di�erent sizes of time steps is justi�ed because the

data and human behavior does not indicate that people have visited the system
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frequently, only to not purchase a ticket. Therefore, in periods with low arrival

rates, larger windows of arrival times are permissible. It is loosely assumed that

purchase rate is directly proportional to arrival rate. In addition, the way the

model is set up, there is no clear indication of which time steps no customer arrived

versus the time steps when someone arrived but did not purchase. Both of arrival

probability and purchase choice can only be given individual probabilities, which

applies uniformly to all intervals of time. Therefore having many more intervals will

bias the model into thinking that the proportion of no-buy decisions are a lot higher

than buy decisions.

4.3.3 Perturbing

Timestamps reported in the source dataset are capped at the nearest minute.

Therefore, to satisfy the assumption of only one arrival per time stamp, the data

had to be slightly modi�ed. After expanding the data, either within partitions or

without, the overlapping records were slightly shifted to occupy nearby time steps.

It is like gently shaking a table with holes to ensure all marbles are properly seated.

Since the time steps are much �ner and more numerous than the number of bookings

per minute, no booking record was shifted by so much that it presented in another

minute.

Note that the above holds proportionately. That is, for records belonging in

divisions 2 and 3 in both datasets, the shift is by the smallest number which will

place overlapping records in adjacent time steps. Since arrivals and bookings are
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sparse in these time steps, it does not cause any impact on the distribution of the

data.

It is ensured that the distribution of the data does not change signi�cantly.

In the weekday data however, very close to the train departure when a horde of

tickets are booked very close to each other, slight change in the statistics of the

manipulated data can be observed. The di�erence is so small, however, that we do

not expect there to be any impact on the �nal results.

4.3.4 Cleaning

Cleaning of the dataset merely involves manipulating certain special situations.

For example, the system records multiple booked tickets under just one record. The

price paid by the customer is a multiple of the number of tickets booked, and price

per ticket. Such records are converted to price per ticket, to make the utilities similar

to those customers who booked just one ticket. The reasoning is that customers

decide based on the price of just one ticket.

Also, the company policy dictates that children under 12 years get a 50%

discount on their tickets, up to two kids per booking family. Therefore, a person

booking two tickets, one for an adult and another for a child will pay 75% of the

ticket price per ticket; or a person booking three tickets, two children and one adult,

will pay 66.67% of the price per ticket. With the 2 child tickets per booking limit,

66.67% of ticket price per ticket is the lowest price a person can pay for multiple

tickets.
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Applying this logic, for multiple ticket purchases a simple check will reveal if

tickets for child passengers were booked. Child tickets are then reset to full fare,

to keep the �nal price paid per ticket the same for all passengers in the model.

The reasoning is again that children are mandatory companions of an adult, and

therefore the purchase decision will be mainly based on the price adults pay for

themselves.

At the end of cleaning, each record will have only one purchase transaction,

and the fare amount paid will be reset to the base fare of the class the ticket is

booked in.

4.3.5 Model Coe�cients

The �rst experiments were conducted with a universal coe�cient for all classes,

similar to the synthetic data case. However, the real data model was not stable

with a single coe�cient. Therefore, a unique coe�cient for each choice set was used.

Not only did model stability improve, but also having a coe�cient for each choice

available with the customers o�ers better insight into the customer behavior. It

explains where customers are willing to spend money, and if there is any customer

bias. For example, if leisure travelers are few and far in between, it would make

more sense to increase the prices much sooner into the booking period, rather than

waiting till the last few hours, and vice-versa.
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Chapter 5: Method

The method used in this study is remarkably simple to understand. The

�rst step is to �ll in the data for the missing alternative: the no purchase choice.

This is accomplished under an Expectation Maximization framework, where the

coe�cients of the logit model are iteratively �tted. These parameters are then used

in the revenue management step where a Bellman equation is solved in order to

select the appropriate price point. The following subsections in this section will

further elaborate on the method. The �rst subsection introduces the variables and

explains what they stand for. The next subsection details the Bayes's theorem that

forms the heart of the EM algorithm. Third subsection shows the multinomial logit,

while the fourth ties them up together in the EM algorithm

5.1 Variable Declaration

The notations used in this paper are as follows:

• β is a vector of coe�cients for model parameters. β̂ is its estimate, computed

by the model.

• X are the model parameters, costs of ticket in each fare class.
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• t is the time index from departure of train. t = 0 is considered as the train

departure. t is monotonic and negatively indexed in the remaining time till

departure. Only one customer arrival is permitted per t, at most.

• T is a set of all time periods t.

• λ is the mean of the arrival probability in t. λ̂ is its estimate which is obtained

as the total arrivals divided by the total number of periods (see Equation 5.1).

• a(t) is the probability of arrival in time t. It is 1 when a con�rmed booking

has taken place in t, otherwise it is a distribution obtained by Bayes Theo-

rem (see Equation 5.3). When con�rmed booking has not taken place, the

corresponding a(t) is initialized to zero.

• D is a set of periods in T where a booking has been recorded. D̄ is its inverse,

the periods in T when a booking was not recorded.

• Pj is the probability of choosing j, which can be any of the o�ered fare classes,

or the choice to not buy.

λ̂ is given by the equation 5.1 below.

λ̂ =

∑
a(t)∈D +

∑
a(t)∈D̄

T
(5.1)

This equation is nothing but the sum of all arrivals divided by the total number

of time periods T. When con�rmed bookings have been made, a(t) is 1. When

bookings are not con�rmed, a(t) takes a value from the probability distribution

obtained using Bayes theorem (see Equation 5.3). At the start, when a(t)∈D̄ is
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initialized to 0 (practically, very close to 0) this is simply the ratio of all con�rmed

purchases to the total periods. This forms our prior distribution for the Bayesian

analysis further on.

5.2 Bayes' Theorem

The model relies on the Bayes theorem [25]. This theorem is useful when

combining probability distributions to get a conditional distribution. In this case,

the distributions that need to be combined are the arrival probability of customers to

purchase tickets and the no-purchase probability given by the logit model. Equation

5.2 below provides the generic form of the Bayes theorem.

P (A|B) =
P (B|A) · P (A)

P (B)
(5.2)

In this equation, P (A|B) is the conditional probability of hypothesis A, con-

ditioned on observations B. The probability P (B|A) is the likelihood of the obser-

vations B given the hypothesis A. This can be understood as a guess about the

observations needed to achieve the prior belief in the outcome of the trails. P(A) is

the prior belief, and P(B) is to normalize the equation.

An example will make it easier to understand the equation. Consider the

case of swatting a �y with a rolled up newspaper. The probability of successfully

swatting the �y is conditioned on the observation of its �ight or reaction as the

newspaper approaches. This probability is given by P (A|B) where A is the success

probability of the swatting, and B is the observation about the reaction of the �y.
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The Bayes theorem can be used to compute the probability of a successful swatting,

conditioned on the �ys reaction without actually swatting the �y.

Based on past successes in the act of swatting a �y, the necessary probability

distribution of the �ys reaction can be established. This is the conditional proba-

bility P (B|A). It basically means that if the �y has a reaction close to the mean of

B, then swatting will be successful. If the �y is jumpy, and so its reaction is further

from the mean of B, the swatting will fail. This probability is purely obtained from

past experiences.

The probability P (A) is the independent probability that the �y will be swat-

ted. This probability does not account for the �ys reactions. It can be thought of

as the aggregate probability obtained from repeated swatting of �ies, by dividing

the successful swatting with all attempted swatting. Since this probability is not

known, usually a prior assumption is made, which is updated with each successive

trial. P (B) normalizes the above product, and is the byproduct of transforming a

joint distribution to a conditional distribution. Readers interested in this further

are requested to peruse literature on Bayes' identity.

In the present context we are attempting to estimate the probability of cus-

tomer arrival to the ticketing system conditioned on the probability of no-purchase.

The arrival probability of the customers is masked because no-purchase transac-

tions are not observed. In this context P (A|B) is the probability that a customer

will arrive, conditioned on the observed no-purchase probability. The probability

of not buying can be obtained from the arrival process of customers, and is given

by P (B|A). In this context, P (A) is the probability of customer arrival; a prior
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assumption of which is made using the observed purchase decisions, and the total

number of periods (λ̂). While P (B) is the probability of not purchasing.

In the notations used in this paper, as described above, the Bayesian equation

is given in equation 5.3 below.

â(t)∈D̄ =
λ̂ · P0(β̂, X∈D̄)

λ̂ · P0(β̂, X∈D̄) + (1− λ̂)
(5.3)

Here, is the �nal conditional probability P (A|B), the probability that a cus-

tomer arrived to the system, given the no-purchase decision probability we observe

from the data. λ̂ is the estimate of the arrival process of the customers (P (A)), and

is the probability of no-buy (P (B)). The denominator normalizes it by appropri-

ately accounting for the probability of not arriving (1 − λ̂), and the probability of

arriving and not buying (λ̂P0(β̂, X∈D̄)).

5.3 Multinomial Logit

The multinomial logit (MNL) model used in this study is constructed to be

very simple. For the synthetic data, there is only one model coe�cient in the MNL,

as the data was synthetic with only one coe�cient. The real data, however, was

stable only when coe�cients for each choice were independently formulated. The

model otherwise is a simple case of the MNL, with very straightforward formulation.

Equation 5.4 gives the simple formula for computing the probability of choice using

MNL.
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Pi(β,X) =
eUi∑S
j=1 e

Uj

(5.4)

Here U stands for the utility of choosing alternative i. The denominator is

the sum of the utilities for each alternative in the alternative set S. In the context

of this thesis, S comprises of all fare classes and the option to not buy (5 choices

for the synthetic data and weekday data, 6 for weekend data). The utility of not

buying is assumed, without loss of generality, as zero. The utilities of other choices

are given by the generic Equation 5.5 below.

Uj = βj ·Xj + ε (5.5)

Equation 5.4 gives the probability of a customer choosing alternative j. Equa-

tion 5.5 gives the utility obtained (or lost) by choosing alternative j. Utilities for

each choice available with the customer is computed, and the choice with the maxi-

mum utility is chosen by the customer. Therefore, there is an equation 5.5 for each

alternative j. However, there may not be a distinct βj for each alternative (as in the

case of the synthetic data, there is only one β for all alternatives). Xj denotes the

cost of choosing alternative j. In all cases presented here, X is merely the cost of

the ticket. For no purchase alternative, X is 0, and therefore equation 5.5 evaluates

to 0.

The individual chooses the alternative that gives them the maximum utility.

The alternative that maximizes the utility also maximizes the probability in equation

5.4, thus ensuring that choosing the alternative with maximum utility is the most
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probable.

5.3.1 Multinomial Logistic Regression

The MNL model presented above needs to be worked backwards to obtain the

values of the coe�cients. The data contains the cost per ticket for each time step

(X), and the choice made by the passenger. Therefore, to obtain the coe�cients, a

logistic regression is performed on the choices. Regression in this thesis is performed

using an optimizer that �nds the minimum value of a function. The solver used in

the minimization is the Limited Memory Broyden�Fletcher�Goldfarb�Shanno with

Box constraints (L-BFGS-B) algorithm. It belongs to the quasi-Newton family of

methods.

L-BFGS-B is desirable because it uses a limited amount of computer memory

and the solver requires bounds to be set on all estimation parameters. Both of these

help limit the search space, making the convergence faster, and use less computer

resources. Additionally, the MNL function may have other minima outside the

search space, and therefore, if unconstrained, it might converge at a di�erent but

erroneous location.

The solver requires a single function value to be returned from the function

being optimized. The traditional method of �tting a logistic regression involves

a log-likelihood (LL). The LL makes it easier to solve the problem, because the

likelihood of equation 5.4 needs the solution of a product. The logarithm converts all

the product components into sum components, and then applies to the exponent in
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each component, reducing them to the linear form of equation 5.5. The return value

to the solver is the sum over all rows of this log of the probabilities, as demonstrated

in equation 5.6

T∑
t=0

ln(Pi(t)) (5.6)

Where t denotes the index of the time step, and i is the index of the choice

made in the said time step.

5.4 EM Algorithm

The algorithm involves recursive optimization till the estimated coe�cients

attain a constant value. The equation of the objective function of the algorithm is

given in equation 5.7 below.

max
β̂

{∑
t∈D

a(t) · ln
(
Pi(t)(β̂, X(t))

)
+
∑
t∈D̄

â(t) · ln
(
P0(β̂, X(t))

)}
(5.7)

Equation 5.7 essentially consists of two parts. For those time steps where a

booking is recorded (t ∈ D), the probability of MNL model is used to �t β as usual.

That comprises the �rst part of the equation. The second part deals with those time

steps when a booking has not been recorded. In these time steps(t ∈ D̄), the no-

purchase probability is the product of the arrival probability â(t) and the natural

logarithm of the purchase probability (logarithm because MNL equations are �t

using their loglikelihood). The �rst part also has the arrival probability component

a(t) but that can be safely ignored because its value is always 1.
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The �nal probability computed in the EM algorithm is the marginal probability

of the arrival probability and the probability of choice. The β̂ that maximizes this

probability is the desired coe�cient. Equation 5.7 is iteratively executed, and the

results of each data is stored for the next iteration till convergence is achieved.

Solving equation 5.7 yields an estimate of β. This estimate is used in equa-

tions 5.5 and 5.4 to compute the no-purchase probability for the time periods when

con�rmed bookings have not occurred. This no-purchase probability is used in equa-

tion 5.3 to estimate the arrival probability during periods of no buy. The arrival

probability estimate â(t) is used in equation 5.1 to better our guess about the over-

all arrival probability, and in equation 5.7 to get a better guess of β̂ in the next

iteration.

Note that for the �rst iteration, an initial value of â(t) must be supplied to

get a preliminary estimate of β. This initial value, for the purposes of this thesis

is set to 0.0001. The �nal algorithm has 3 major steps (1-3; 0 is the initialization

step, and will be run once only). They are enumerated below:

0. Assume prior distributions for â(t): Set a(t) = 1 when a con�rmed booking

has been made, and 0 otherwise. Use this assumption to estimate the initial

value of λ using equation 5.1.

1. Solve for β̂: Use equation 5.7 to �nd the best estimate of β using the current

values of a(t) and λ̂.

2. Update the value of â(t): Using the obtained value of β̂ in equation 5.3,

compute â(t) for time steps when con�rmed booking has not been made. Also
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update λ̂ using equation 5.1.

3. Convergence check: Check for convergence in the values of β̂ and λ̂. If

converged, stop, else repeat from step 1.

The �nal converged values from this algorithm can be used in forecasting

customer arrival patterns and behavior.

5.5 Revenue Management

Using the coe�cients obtained from above, and the MNL model �tted conse-

quently, a Bellman equation can be used to take the optimal decision for the current

time step. Solving the Bellman equation using a dynamic program will yield the

most optimal control decisions for the give time step. In essence the equation looks

at all the future time steps in the horizon and determines the total sale and revenue

potential. Based on that potential, a price is o�ered at the current time step for the

customer to choose.

However, the dynamic program was not implemented in this study, because

the model coe�cients from the real data are neither sensible nor reliable.
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Chapter 6: Results and Discussions

In this section, the results obtained by applying the EM algorithm to the data

are presented. The problem statement being addressed has a degree of freedom

and an identity problem both of which cannot be solved by just an EM algorithm.

The algorithm needs either external information, or strong assumptions that are

accurate.

If one keeps a track of and knows that a total of N people have arrived at the

system, of which M purchased the tickets, then the purchase probability is given

by p = M/N . However in the real world, neither N nor p is known, and M is the

only known. It is evident that a range of values of N and p can yield the observed

value of M . Therefore, this method has a degree of freedom that results in unstable

solutions.

Identi�cation problem arises because the time steps with no arrivals cannot be

distinguished from time steps with no purchases. The EM framework presented is

constructed to require a �xed number of time steps. It is also assumed that no more

than one customer arrives in a given time step. These two requirements �x the total

maximum population size of the system. Unless, the total number of time steps is

accurately close to the real population size, the time steps when no arrivals occur
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cannot be di�erentiated from the time steps when no purchases are made. In the

case when the number of time steps is accurately close to the real population size,

there are no periods when customers do not arrive, and the identi�ability problem

collapses.

This chapter �rst presents the results from the synthetic data, which forms a

foundation for the results from the real data. Only results from the EM algorithm

and model �tting are presented. The dynamic program has not been solved, and

no results are presented that involve the �nal revenue management steps. Due to

the two issues mentioned above, the results from the model �tting are not neither

accurate nor reliable. Therefore, no correct results from the dynamic program can

be expected.

All results below show the value of the coe�cients (including the arrival prob-

ability, λ) and the function optimal value at each iteration. The iteration number is

shown on the abscissa, while the values are shown on the ordinate. Legend contains

the �nal value of the coe�cients in parenthesis.

6.1 Synthetic Data

The results obtained by applying the method to the synthetic data are ex-

plained in the following sub-sections. Initially, the case where the dataset is ex-

panded to the correct number of time steps is presented, and it is shown that the

model works. Then the results from the case when a di�erent number of time steps is

used is shown, and the degree of freedom of the model is discussed. This discussion
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forms a stepping stone to discuss the results from the real data.

6.1.1 Same Time Steps

After expanding the synthetic dataset to 30,000 records, the algorithm is ap-

plied. Since the time steps is kept the same as the original the results obtained are

favorable and accurate. The plots in �gure 6.1 show the value of the parameters (β̂

and λ̂) and the function on the ordinate against each run of the EM algorithm on

the abscissa. The left subplot contains the coe�cient of the MNL model (β̂) and

the estimated arrival rate λ̂, while the function value is shown in the right hand side

subplot. The �nal values of the parameters and the objective function are shown

(in parenthesis) in the legend.

The �gure beautifully shows convergence at about 80 iterations of the EM

algorithm, and the initial parameters are fairly accurately recovered. The function

value is also shown to be steadily decreasing, which is what one expects as the �t

improves. This result leaves no doubt that the EM algorithm works as expected.

However, this result demonstrates a very special case, and not a general rule. The

special case being that the data passed to the EM algorithm has the exact same

number of time steps as the original synthetic data, collapsing the identi�ability

problem.

Changing the number of time steps, however, produces inaccurate results, as

demonstrated in the following subsection.
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Figure 6.1: Synthetic Data Results with Same Time Steps
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6.1.2 Di�erent Time Steps

Using the same synthetic choice probabilities, but di�erent number of time

steps is similar to not knowing the conditions of the original synthetic data. The

synthetic data was produced by assuming a total time period of 30,000 seconds.

However, if an analyst does not know that, and has to pick a number of time steps,

one may pick any arbitrary number. For illustration, let us assume 50% more time

steps.

Instead of 30,000 time steps, we now have 45,000. The placement of the

additional 15,000 time steps is uniformly distributed in the data. Obviously, no

purchases are recorded during any of these additional time steps, and thus they are

all either no-buy or no-arrive. Figure 6.2 below shows the resulting coe�cients in

a similar format as �gure 6.1 above. It is no surprise that the results are di�erent,

and the coe�cients have not been recovered as before. For all intents and purposes,

these results are meaningless and should be discarded.

The reason behind the incorrect results, however is of academic importance

and is the single most signi�cant contribution of this thesis. The issue is caused by

assuming one arrival per time step. This in essence �xes the total population size of

people that can arrive at the system. If, in reality, A people arrive at the system in

a T total periods, of which p purchase tickets, the purchase probability is given by

P (p) = p/A, and arrival probability is given by P (λ) = A/T . In the �rst equation,

only p is known to the analyst (it is obtained directly from the data, by counting

the number of purchases in the dataset). In the second nothing is known to the
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Figure 6.2: Synthetic Data Results with Same Time Steps
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analyst.

It is also clear that the purchase probability (P (p)) is related to the arrival

probability (λ) and the utility of purchase given by the choice model. The reason

the EM algorithm fails is because it deals with two nested indeterminacies: it can

neither identify no-purchases from no-arrivals nor control the degree of freedom.

From just p, it attempts to compute A and λ. However, in this system of equations,

knowledge of one other variable will �x the values of the other unknowns. In this

case that variable is T . When the value of T is accurately set to the original value,

everything works �ne, and λ is what one would expect. Missing the value of T even

by a little bit, however, produces incorrect values for λ (unless one is very lucky)

and therefore, useless coe�cients of the choice model.

A simple extrapolation of this discussion explains why the EM algorithm fails

horribly at recovering the parameters from the real data. In the real data, it is

next to impossible to guess the correct value of T , unless additional information is

supplied.

6.2 Real Data

As discussed above, application of the EM algorithm to real data is not useful

unless additional information informs one of the true value of T . However, for the

sake of completeness, the results from real data are presented below.
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6.2.1 Weekday

The results from applying the EM algorithm to the Weekday data is presented

in this subsection. First the results from the complete data is presented, then

the results from the partitioned data. It is seen that the EM algorithm does not

converge, and coe�cients quickly arrive at the bounds. Removing the bounds causes

unstable model that fails to produce results. Also the degree of freedom issue is

explored.

6.2.1.1 Complete Data

In this section the results from unpartitioned data are presented. The time

granularity is on one second in this case, and a total of 2.58 million time steps are

used in the model. The results are presented in �gure 6.3 below. The �gure is

similar in format to the other �gures above in this chapter.

Note that the coe�cient of βK is at bounds, and λ̂ is 0. Also, the function

value is increasing with each iteration instead of decreasing. This is due to the

identi�ability issue of the algorithm. Out of all 2.58 million time steps, it cannot

identify which time steps were no-arrivals and which ones were no-purchases. Also,

the oscillation of the coe�cients does not a�ect the value of the objective function,

which remains stationary. This is a classic case of freedom available to the model.
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Figure 6.3: Weekday Results Complete Data
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Figure 6.4: Weekday Results Division 1

6.2.1.2 Partitioned Data

The results from the partitioned data are presented below. Results from divi-

sions 1, 2 and 3 are presented in �gures 6.4, 6.5, and 6.6, respectively. Figure 6.4

is quite similar to �gure 6.3, from above. This is because the data in division 1 has

been expanded to 939,600 time steps, which is again far more than the number of

people expected to arrive at the system. Therefore it su�ers mainly from inability

to identify the time steps.

Figures 6.5 and 6.6 on the other hand look much di�erent from �gures 6.4 or

6.3. The reason for this is that the data is not expanded to a very large number of
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Figure 6.5: Weekday Results Division 2
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Figure 6.6: Weekday Results Division 3
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time steps (2,016 and 576 time steps respectively), and therefore the identity issue

is minimized. However, the coe�cients appear to be dancing all over the place,

with wildly di�erent numbers from one iteration to another. This jumping about

is a direct consequence of the degree of freedom. Note that the objective function

is constant, even though the coe�cient values are not, because multiple values of

the coe�cient can result in the same objective function value. The extra degree of

freedom consequently results in the EM never converging.

6.2.2 Weekend

Similar to the results from the weekday data above, the results from the week-

end data are presented in this section. The results from the complete data are

presented �rst, then the results from each of the partitioned datasets are shown.

Weekend data results are also similar to the weekday data results, and hence the

text is kept to a minimum to avoid repetition.

6.2.2.1 Complete Data

The results from complete data are shown in �gure 6.7. Note the coe�cient

at the bounds and the general waviness caused by the identi�ability and the degree

of freedom respectively. It is interesting to note that at about 650 iterations, the

coe�cients have dipped to almost half their stationary values, while the objective

function has barely dipped by 2 points, proving the adverse e�ects of the degree of

freedom in the formulation.
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Figure 6.7: Weekend Results Complete Data
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Figure 6.8: Weekend Results Division 1

6.2.2.2 Partitioned Data

Partitioned data results are presented in �gures 6.8, 6.9, and 6.10 for divisions

1, 2 and 3 respectively. Note that none of �gures 6.8, 6.9 and 6.10 resemble 6.7. The

main reason is the diminished identi�cation issue, because of the smaller number of

time steps. Division 1 only has 1,080 records compared with the 86,280 records of

the complete dataset, while divisions 2 and 3 have 2,748 and 504 respectively.

Despite the larger number of time steps (2,748) for division 2, note that it

also encompasses a large period of the booking window: from 10 hours to 19 days

and 12 hours prior to departure. This large period, and fewer number of time steps
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Figure 6.9: Weekend Results Division 2
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Figure 6.10: Weekend Results Division 3
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far reduce the problem of identi�cation. Consequently, division 2 is the most stable

result of all and converges with a decreasing objective function, as expected. The

�nal values of some coe�cients � shown in the legend (in parenthesis) � are also

reasonable and negative. However, coe�cients of β̂C and β̂B are positive, contrary

to intuition.
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Chapter 7: Conclusions and Contributions

This chapter presents the contributions made by this thesis. The conclusions

drawn from this study are presented in the second section in this chapter.

7.1 Contributions

In this thesis, the framework developed and proposed in Talluri and van Ryzin

(2004) was presented [49]. The framework is used to �t a logit model to a dataset

when some data is missing or censored. The application to missing data demon-

strated in this thesis involves data that is not recorded by the merchant providing

a perishable service. In particular, the no-purchase choice made by customers and

the customer arrival rate was deduced from synthetic data and real data obtained

from a railway operator.

The railway operator, like other public transportation service operators, does

not record the instances when customers arrived at their online or physical system

to query prices, and decided to not buy the o�ered choices. These data is missing

from the dataset, preventing the application of a choice model as discussed in this

thesis. The goal of the EM framework developed in Talluri and van Ryzin (2004)

is to handle such instances and impute the data with values to overcome the hurdle
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of the missing data [49].

The whole procedure of the data gathering, cleaning and manipulation has

been described in this thesis. The method to apply the algorithm to this data has

also been discussed in detail. Results from applying the EM algorithm to the test

datasets have been demonstrated. The primary takeaway from the results is the

identi�cation of the issues presented by the framework.

It was shown that the main issues with applying the method is that the missing

data cannot be identi�ed, and that there is a degree of freedom in the formulation

that allows for a wide range of values to satisfy the objective function.

7.2 Conclusion

Consequently, the conclusion drawn from this work is that the EM algorithm

by itself cannot solve the issues presented by missing data. The formulation is too

lenient and the missing data is too vague to be solved by EM. With the help of some

additional information, such as an accurate number of time steps, the EM algorithm

can be used. However it is not possible to account for an accurate number of time

steps. The number of arrivals to the system varies by market and by available

alternatives.

A holistic approach to the problem is required to solve for missing data with

any amount of accuracy. Firstly, the assumptions of one arrival per time step, and

the monotonicity of the time step size should be relaxed. This will allow for a

more natural modeling of the real world scenario. Then to solve for the identity
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of the missing data, additional information from other sources should be used. For

example, a trip planning model can be used to generate the commuters and get an

idea about the size of the market.

Relaxing the assumptions about customer arrival will also help solve the degree

of freedom in the model. By using a continuous function for time, for example, the

model can be designed to �t the distribution of time such that the observed rate

of purchases is maximally satis�ed. Further, modeling arrivals as per a Poisson or

similar process allows the �exibility of changing the arrival characteristics with time.

The ultimate takeaway from this thesis is that the EM algorithm cannot be

applied to any other situation except the synthetic data case without a certainty

in the results. If the model framework is su�ciently altered to address the issues

raised and demonstrated here, there may be valid and dependable results produced.
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Chapter 8: Future Work

In this chapter, certain recent developments are demonstrated. It was illus-

trated in the results chapter that the EM algorithm will not work unless the number

of time steps are assumed such that it is as close to the real number as possible.

(See �gure 6.2 for reminder.) In the real world scenario, it is almost impossible to

accurately get an estimate of the real number of time steps. In fact, even within a

day, the rate of bookings will vary widely, from the lull in the early pre-dawn hours

to the frenzy in the evenings or mornings, close to o�ce start and end times.

There is no natural way to take this uncertainty into account. The problem

statement posed in this thesis has an identi�ability problem that EM cannot solve

by itself. In fact, EM might not even be a good tool to solve this problem. Over the

period of history, since the seminal paper by Kalyan Talluri and Gareth van Ryzin,

many attempts have been made to correct for this de�cit, and somehow account

for identifying the population size (see Section 2.3). Below, a method is presented

which can potentially be used to resolve the problem.
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8.1 Fitting Demand to Purchase Data

It is not a far fetched assumption to make that demand will be directly propor-

tional to bookings. If the ratio of purchase transactions to total demand is assumed

to be a constant, or nearly constant across all time periods, then a better estimate

of the choice parameters can be achieved. This is not unlike Talluri (2009) and

Newman, et. al. (2012) [46, 37], but instead of a global demand constancy, we

argue that demand is equally proportional to booking transaction records even at

smaller time intervals.

In keeping true to the assumption of only one arrival per time step, the mono-

tonicity of the time step can be altered such that periods of lean bookings have

longer time steps, while periods of heavy bookings have smaller time steps � sim-

ilar to the partitioned data discussed above, but on much �ner timescales. The

process that created this data can be visualized as time walking from the start of

the booking window to the end of the booking window. The strides taken by time

on it's walk form the intervals for the data (also known as time steps).

Assume that time is taking strides of 30 minutes long from the tail end of the

booking period (furthest from departure) towards the departure time. As long as a

stride encapsulated one or fewer bookings, the stride length was unchanged. If more

than one bookings were engulfed in a stride, the stride was broken by the number

of bookings engulfed. For example, when taking strides of 30 minutes, if 3 bookings

are engulfed, then the stride is broken down into 10 minute long strides, with each

10 minute period containing a booking point. The 10 minute long strides are then
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continued towards departure, till more than one booking is covered in a single stride.

The minimum stride length is one second long. Bookings falling in the same second

(very rarely) were adjusted by moving them to the nearest unoccupied stride.

For weekend this resulted in much better results, with quick convergence and

overall parameter stability as shown in �gure 8.1. However, for weekday data, the

method failed to produce credible results, as illustrated in �gure 8.2. One expla-

nation for this is that weekday bookings reduce the stride lengths more drastically

than weekend data. That means that very soon, the time steps are quite small,

and the frequency of empty strides increases rapidly, proportionately increasing the

magnitude of the identi�cation problem. A potential �x is to lengthen the strides

when successive strides are empty. This raises the question of the length to elongate

the strides back to.

8.2 Issues

As illustrated in �gure 8.2, this method is not without problems. The problem

is re-lengthening the strides, a question that is more di�cult to answer than initially

apparent. For example, if the average arrival rate for a given hour is a customer

per �ve minutes, and two bookings occur 10 minutes apart, should the intervening

stride be 10 minutes long, or 5 minutes long? Since the arrival rate is unknown

before hand, it is not possible to implicitly answer the question.

Moreover, monotonicity of time steps is an assumption in Talluri and van Ryzin

(2004), violating which changes the underlying mathematics of the framework [49].
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Figure 8.1: Results of Future Research Plans on Weekend Data
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The arrival rate (λ) of the customers, and the arrival probability per time step (a(t))

is dependent on the time steps. Changing the time step size as a function of demand

changes the arrival rate also to a function of demand through time. Change in the

arrival rate a�ects the Bayesian equation (equation 5.3), which will no longer have

the form derived in Talluri and van Ryzin (2004) (and reproduced in equation 5.3).

Therefore, this alteration to the model blows up the mathematics, and the results

(presented in 8.1 and 8.2)are consequently incorrect.

The solution to these issues lies in changing the model, such that time is prop-

erly modeled as a function of demand, and the following mathematics is corrected.

A cursory glance at this �x indicates that the framework presented will need a com-

plete makeover. The best way forward seems to use a hierarchical Bayes model that

uses Bayes inference to solve for parameters. The required parameters are treated as

prior distributions with an assumed shape. These parameters are used in the formu-

lation of a probabilistic model which usually comprises of multiple levels, wherein

the prior distributions of the parameters are updated in the light of the given data.

Exploring the hierarchical Bayes models and improving the framework are part

of research planned for the future.
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