
ABSTRACT

Title of dissertation: STATISTICAL ANALYSIS OF
ONLINE EYE AND FACE-TRACKING
APPLICATIONS IN MARKETING

Xuan Liu, Doctor of Philosophy, 2015

Dissertation directed by: Professor Michel Wedel
Department of Marketing
Robert H. Smith School of Business

Eye-tracking and face-tracking technology have been widely adopted to study

viewers’ attention and emotional response. In the dissertation, we apply these two

technologies to investigate effective online contents that are designed to attract and

direct attention and engage viewers emotional responses.

In the first part of the dissertation, we conduct a series of experiments that

use eye-tracking technology to explore how online models’ facial cues affect users’

attention on static e-commerce websites. The joint effects of two facial cues, gaze

direction and facial expression on attention, are estimated by Bayesian ANOVA,

allowing various distributional assumptions. We also consider the similarities and

differences in the effects of facial cues among American and Chinese consumers.

This study offers insights on how to attract and retain customers’ attentions for

advertisers that use static advertisement on various websites or ad networks.

In the second part of the dissertation, we conduct a face-tracking study where

we investigate the relation between experiment participants’ emotional responses



while watching comedy movie trailers and their watching intentions to the actual

movies. Viewers’ facial expressions are collected in real-time and converted to emo-

tional responses with algorithms based on facial coding system. To analyze the data,

we propose to use a joint modeling method that link viewers’ longitudinal emotion

measurements and their watching intentions. This research provides recommenda-

tions to filmmakers on how to improve the effectiveness of movie trailers, and how

to boost audiences’ desire to watch the movies.
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Chapter 1: Introduction

Effective online content is designed to attract viewers’ attention and engage

their emotional response. Modern technologies such as eye-tracking and face-tracking

enable advertisers and marketing researchers to measure consumers’ attention and

emotion during exposure to commercial stimuli in a nonintrusive way and help them

gain insights for producing effective advertisements.

1.1 Eye-tracking and Face Tracking

Eye-tracking

Eye-tracking technology has been widely adopted in various disciplines includ-

ing psychology, cognitive science, medical research and marketing research. When

visual information is being processed, the human brain directs the eyes to the area

that contains the information. Therefore, we can observe the path of the observer’s

attention by tracking his or her eye movements.

Eye movements include fixations and saccades. Fixations happen involuntarily

when eye gaze is focused on a certain location. During fixation, neurons in the early

visual areas of the brain are continuously stimulated to maintain visibility of the
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stimuli and the fovea delivers the visual information. Fixations on average last

200 milliseconds for linguistic text and 350 milliseconds for a scene. Saccades are

the rapid eye movements from location to location, which can be both voluntary

and involuntary. When a saccade happens, the eyes move as fast as they can.

The speed of the movement cannot be controlled consciously. It usually last 200

milliseconds to prepare a saccade to the next location. A series of fixations and

saccades form a scanpath. Information about the stimuli is obtained mostly during

the fixations rather than saccades. Therefore, to understand what information has

been processed, we can examine the locations of fixations in a scanpath.

An eye tracker is a device that measures eye positions, gaze directions and eye

movements. There are several types of eye trackers: Some measure eye movements

via a special contact lens attached to the observer’s eyes that records the movement

of the lens; Some measure electric potentials by electrodes placed around the eyes.

Modern eye trackers use a much less obtrusive and cost effective method called pupil

center corneal reflection eye tracking by applying fundamental principle of corneal

reflection (CR). Figure 1.11 is an illustration of an eye tracker from Tobii, one of the

world leading eye tracking companies. The eye tracker is installed at the bottom

of the computer scene. During the eye-tracking experiment, the eye tracker emits

infrared/near-infrared light to create corneal reflection. A camera on the computer

captures the image of viewers’ eyes. The eye-tracking software identifies the darkest

region in the eye as the pupil, and the lightest spot as the corneal reflection. As

gaze direction changes, the relative positions between the center of the pupil and

1http://www.tobii.com/en/about/what-is-eye-tracking/
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Figure 1.1: Eye-tracking system (Tobii)

the corneal reflection change accordingly. The location of these two are captured

to compute the fixation point on the computer scene. Other measurements such as

pupil size and pupil dilation, which could be indicators of excitement, can also be

measured during the eye tracking process.

In marketing research, usage of eye-tracking technology has grown rapidly in

the last decade. Advertisers and researchers use it to getting insights for optimizing

advertisements. For example, Wedel and Pieters [2008, 2014][1, 2] investigate the

effectiveness of advertisements by examining how viewers distribute their attention

as they scan the online commercial contents.
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Face-tracking

Facial expressions are strongly associated with emotional state. Face-tracking

technology analyzes viewers’ facial expressions and identifies their emotions using

the Facial Action Coding System (FACS) developed by Ekman and Friesen (1987).

Through facial movements, FACS can anatomically measure facial expressions of a

human being.

The fundamental component of observable facial movements is called an Action

Unit (AU), which contains a contraction or relaxation of one or more muscles. A

total of 46 AUs were defined by Ekman and Friesen to describe the independent

facial muscle movements. They also defined a few Action Descriptors (ADs), which

involve actions of several muscle groups. Letter A-E were used as the intensity scores

of the AUs (A: Trace of the action, B: Slight evidence, C: Marked or pronounced,

D: Severe or extreme and E: Maximum evidence). For example, AU 5B means there

is slight evidence of Action Unit 5. Table 1.1 shows AUs for the 6 basic emotions

(Happiness, Sadness, Surprise, Fear, Anger and Disgust) ([3]). The description of

AUs involved in these emotions and their underlying facial muscles are described in

Table 1.22.

FACS is a common standard to recognize emotions. Ekman and Friesen pub-

lished the FACS manual in 1978, which describes in detail how to categorize facial

expressions based on facial muscle actions. The manual guides human coders to

learn the technique to deconstruct facial muscle movement into AUs and manually

2http://www.cs.cmu.edu/ face/facs.htm
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Table 1.1: Facial actions for six basic emotions (FACS Manual [3])

Emotion Action Units Example Image

Happiness 6 + 12

Sadness 1 + 4 + 15

Surprise 1 + 2 + 5B + 26

Fear 1 + 2 + 4 + 5 + 7+ 20 + 26

Anger 4+ 5+ 7+ 23

Disgust 9 + 15 + 16

identify emotions based on the combinations of AUs. To identify an emotion, at

least two independent certified FACS encoders have to agree on a conclusion, for

subjectivity and accuracy issues. The training and manual coding process could be

very time consuming and not cost efficient.

Novel technologies provide researchers facial imaging systems that automati-

cally detect and produce emotion profiles from faces in videos ([4, 5]). Specialized

emotion recognition software makes it possible to process real-time video data at a

rate of four images per second([1]). The advantages of facial imaging using artificial

intelligence include consistency, scalability and repeatability of the measurements.

Figure 1.2 provided by nViso, a facial imaging technology company, shows

the mechanism of how the facial imaging system works. The emotion recognition

software superimposes a “spider web” mask that contains 143 points to linked to the
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Table 1.2: List of Action Units and the underlying facial muscles (FACS Manual)

AU Description Facial Muscle Example Image

1 Inner Brow Raiser Frontalis, pars medialis

2 Outer Brow Raiser Frontalis, pars lateralis

4 Brow Lowerer Corrugator supercilii, De-

pressor supercilii

5 Upper Lid Raiser Levator palpebrae superi-

oris

6 Cheek Raiser Orbicularis oculi, pars or-

bitalis

7 Lid Tightener Orbicularis oculi, pars

palpebralis

9 Nose Wrinkler Levator labii superioris

alaquae nasi

12 Lip Corner Puller Zygomaticus major

15 Lip Corner Depressor Depressor anguli oris (a.k.a.

Triangularis)

20 Lip stretcher Risorius w/ platysma

23 Lip Tightener Orbicularis oris

26 Jaw Drop Masseter, relaxed Tempo-

ralis and internal Pterygoid
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Figure 1.2: Facial imaging mechanism (nViso)

key muscles on a human face. Facial muscle movements result in location changes in

these points on the mask which are captured in real-time by the computer. Machine-

learning tools are then applied to analyze the facial actions in response to stimuli

and categorize them into the six basic emotions based on FACS ([6]).

Due to the essential role emotions play in our daily life, face tracking has a

broad range of applications in many areas including education, behavioral science,

mental health and deception detection. It has also been applied to marketing re-

search as a robust and nonintrusive tool to measure consumer responses to various

marketing stimuli, such as static advertisement and video commercials.

This thesis includes two studies. The first is an eye-tracking study of static

e-commerce websites to investigate the joint effect of facial expression and gaze

direction. The other is a face-tracking study of the impact of emotional responses

to online video content.

7



1.2 Bayesian Statistical Models for Eye and Face Tracking Data

In this dissertation, we apply Bayesian statistical models to analyze eye and

face tracking data. Bayesian statistics assumes parameters to be random variables

that have their own distributions. It utilizes Bayes’ rule to estimate posterior param-

eter distributions given observed data. Instead of numerical integration to obtain

posterior distributions, the Markov Chain Monte Carlo (MCMC) method provides

an alternative way of drawing samples from posterior distributions. Software, such

as BUGS and JAGS have been developed to make the implementation of MCMC

much easier.

To increase accuracy, eye tracking experiments often use repeated measure-

ment designs. Data hierarchies need to be considered. Missing data, due to failure

of calibration, interruption of the experiment and measurement error, can also cause

potential problems in classical ANOVA methods. What’s more, data collected from

eye-tracking studies usually have varying distribution properties. For example, three

main responses are measured in a typical eye-tracking study: (1) Fixation count

(measuring attention retention) in each AOI: The count data follows a Poisson dis-

tribution. However, if an AOI have a higher probability of not being fixated on, the

distribution of fixation count will be zero-inflated. (2) Fixation duration (measuring

depth of processing): Duration time is a continuous non-negative measurement. (3)

Time to first fixation (measuring attention selection): when an AOI is never fixated

on, time to first fixation will not be recorded or will be right censored to the total

dwell time on the image. Adopting Hierarchical Bayesian ANOVA model solves all

8



these problems in eye-tracking experiment at once. Hyper-priors are imposed to

account for individual heterogeneity. Missing data are treated as extra parameters.

We can also specify the special distributions for different dependent variables.

Face-tracking experiments is marketing research usually generates two types

of data: emotion data collected while participants watching video contents, and bi-

nary or multinomial data related to participants purchase intentions or rating data

collected from questionnaires. There are many classical approaches for analyzing

these data separately, including linear mixed effects models for the emotion data,

and generalized linear mixed effects models for the intention data. However, it might

be more appropriate to use a joint model for making statistical inferences, as partic-

ipants emotion while watching video contents is likely to correlated with purchase

intentions. The key in the joint model is to connect these two separated models

through a latent Gaussian process. Traditional maximum likelihood estimates can

be obtained via the EM algorithm, but the implementation is rather complicated.

The Bayesian approach to the joint model enables us to make full posterior inference

for the parameters, and the implementation of the approach in BUGS or JAGS in

fairly clear. In addition, when it comes to comparing different structures for the

latent Gaussian process, the Bayesian approach with the DIC criterion makes it

easy to test different structures without the need to change the likelihood function

every time.
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1.3 Facial Expression and Gaze Direction in Commercials

The booming of global e-commerce has brought a growing challenge to online

retailers: in the face of increasing competition and decreasing consumer attention

spans they need to attract customers to their websites and entice them to look at

their products and brands. To accomplish this, e-tailers have focused on website

design elements that attract and retain consumers attention. Human touch factors,

in particular human models, have been popular and appear in a wide range of e-

commerce websites, prints, video and TV ads, including those for apparel, perfumes,

cosmetics and accessories. Images of models have been demonstrated to attract

visual attention ([7]), improve the perceived social presence ([8]), and promote trust

([9]). Especially the human face has been shown to capture attention more readily

than other stimuli ([10, 11]), and is often used as a means to attract attention to

products sold on websites. Indeed, the presence of faces in print advertisements has

been found to positively affect attitudes towards the ad and the brand, as well as

purchase intentions ([12]). Moreover, facial cues may enhance the impact of human

faces on the viewer. Gaze direction and the facial expression of emotion are the most

important facial cues, and are the two key dimensions of non-verbal communication

([13]). They are also the focus of the present research.

First, a persons gaze direction communicates her current focus of attention and

provides clues about which objects are important to her, and about her interests

and intentions towards them ([14, 15]). This has been shown to cause viewers to

automatically orient their attention to the target of another persons gaze ([16]). As a

10



consequence, gaze cueing is finding its way into marketing practice as a tool to direct

attention. Website designers have capitalized on the tendency of viewers to orient

towards the product that a model on a website is looking at. However, research on

the effectiveness of this practice is scarce. In the only study in marketing to date,

Hutton and Nolte (2011) [17] demonstrated that gaze cueing through simultaneous

eye, head and body position had a positive effect on attention to print ads and the

products shown in them.

Second, individuals facial expressions are a reliable indication of their emotions

([18]). On websites, the use of a models facial expression capitalizes on the idea that

the emotion depicted may carry over to the product shown on the site. Despite the

extensive research on facial expressions in psychology, there have been only a few

studies looking at their effect in marketing. For example, Cho and Norbert (2006)

[19] found that the preference for (ones own) smiling face on a website can cause

a higher liking of the product displayed on that site, and Small and Verrochi [20]

showed that the use of emotional expressions in charity advertising positively affects

consumers attitudes towards the ads in question.

In our first study, we are interested in the joint effects of these two basic facial

cues on attention. Intuitively, one could expect that, for example, a happy face

looking at a product would have a stronger effect on directing viewers attention

than a face with a neutral expression. It would provide information about not only

the location of the product of interest, but also about its emotional significance:

a smiling face looking at a product would inform the observer that the model is

looking at something enjoyable. However, although basic research has addressed

11



this question, the verdict on whether the two facial cues have this joint effect is

still out ([21, 22]). In addition, there has been little research effort directed at

systematically exploring the joint impact of these two facial cues in naturalistic

contexts. Yet this is important, because while in most prior research faces are

shown in isolation, in naturalistic contexts such as websites they are shown against

a background scene along with other objects that compete for viewers attention,

which may reinforce or inhibit their impact. This study aims to fill that gap in

our knowledge by examining the joint attention effect of gaze direction and facial

expression of models on e-commerce websites.

While such research has obvious implications for the design of e-commerce

websites, with the global reach of most of these websites it becomes critical to

understand commonalities and differences in the perception of facial cues between

cultures. Many e-tailers adapt their websites to the local culture, not only through

the language and imagery of product descriptions, but also through the models

displayed and their facial cues. Indeed, it has been shown that there are differences

in the eye movements made by people in different cultures while viewing a human

face ([23]), and that people’s perception of emotional expressions is influenced by

their cultural background ([24]). Also, perceived ethnic similarity of the model and

the viewer has been shown to result in more positive evaluations ([25]). In the first

study we use eye tracking to investigate the joint effects of facial expression and gaze

direction on eye movements among American and Chinese consumers. In addition,

we study the effect of the ethnic match of the viewer and the model.

This study intends to make the following contributions. First, it empirically

12



explores the joint effects of facial expression and gaze direction of models on a wide

range of indicators of consumers attention in the naturalistic context provided by

e-tailer websites. Second, it investigates similarities and differences in the effects

of facial cues among American and Chinese consumers. Third, it investigates the

effects of the ethnicity of the model, and the extent to which it moderates the effect

of the facial expression of the model. This research thus intends to offer new insights

into the effects of facial cues with the aim of providing recommendations for website

design on how to take advantage of them to attract and retain customers attention.

In the next section we provide a review of the relevant literature. The details of

three eye tracking experiments are described in the following sections. The final

section provides a general discussion of the results and the implications, and future

research directions.

1.4 The Impact of Emotional Responses in Movie Trailers

Movies are of great importance in global economy. According to the 2012 the-

atrical statistics summary conducted by the Motion Picture Association of America

Inc. (MPAA), global box offices across the world are $34.7 billion in 2012 alone.

The United States has one of the oldest film industries and is one of the largest

markets for movies by box office. The domestic box office in 2012 was $10.8 billion.

In 2013, 225 million people, 68% of the U.S./Canada population (Ages 2+), went

at least once to a movie theater. About 13% percent of these go to the theatre at

least once per month.

13



In the motion picture industry, the success of a movie is highly unpredictable.

To reduce the uncertainty by promoting movies, the most popular marketing tool

used to advertise a film is the movie trailer, or movie preview. A movie trailer

usually has time length up to 2 minutes and 30 seconds, as regulated by the MPAA.

However, there is no restriction on the duration of Internet or home video trailers.

Movie trailers have been shown to be the most influential factor on the intentions

to watch a movie ([26]).

National advertising campaigns of movies are aired in theatres, on television,

on the Internet and in various home video formats, weeks or months prior to the

release of the movie. Distributors usually pay the cost of movie advertising and the

budget is normally set as a fixed percentage of the movies production cost ([27]).

The cost of making a movie trailer therefore ranges from $300,000 to $600,000 ([28]).

According to PricewaterhouseCoopers (PwC)s 2013 entertainment report3, cinema

advertising spending was $741 million in U.S and $2.6 billion worldwide in 2012

alone ([29]).

Effective video movie trailers are designed to induce desirable emotional re-

sponses with the purpose of making consumers want to watch the movie. Our re-

search uses web-based face-tracking to study viewers real-time emotional responses

when watching online video trailers and links them with viewers intentions after

watching the contents. Since watching intention includes not only theater tickets

purchase intention but also home DVD or blue-ray purchase and renting intention,

it is a reasonable and comprehensive measure in our study of movie trailers, and one

3PwC is a multinational professional serves network
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that is widely used in practice. The aim is to predict these measures of intention to

watch the movie in order to facilitate optimization of trailers. For this purpose, a

joint hierarchical Bayesian model is developed, which consists of linked sub-models

for the moment-to-moment emotional responses and the intention of watching a

movie, respectively.

To study the continuous moment-to-moment (MTM) emotion response data,

previous research has mainly focused on the effects of the aggregated emotions, such

as average emotion intensity, linear trends of changes in emotions, and peak and

end emotion levels ([30]). Elpers et al. [2002] [31] examined the effects of weighted

averages of emotions of a sample of participants obtained by functional data analysis

of zapping behavior of TV commercials. Their results show that higher levels and

higher velocities of pleasantness decrease the zapping rate for TV commercials. Hui

et al. [2014] [32] also adopted functional linear models and revealed that the last

quantile of the contents of a TV show is weighted more than the first quantile, while

peak and trough patterns do not have significant effects on overall evaluation of the

show.

In our study, we develop a new joint model to simultaneously examine the

emotion changes over time and the relationship between emotion and the overall

decision. Joint models have been widely used in the areas of medical statistics to

analyze longitudinal and time to event data. In general, there are two sub-models

combined in a joint model, one for the longitudinal data and the other for end-point

data. These two sub-models are connected through one or more subject-specific ran-

dom effects ([33]). Prior applications involve those by Tsiatis and Davidian [2004]
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[34], and Wang et al. [2012] [35]. A joint model allows inferences for three aspects

simultaneously: the effect of covariates on longitudinal processes, the association

between the longitudinal process and end-point variables and the effects of the co-

variates on the end-point variables. The covariate effects on end-point measures

thus include two parts: the direct covariate effect on the end-point measure and

the indirect treatment effect on end-point measures through the latent longitudinal

process.

1.5 Outline of the Dissertation

In this dissertation, we investigate the problem of how to design effective

online contents, including static e-commerce website and online video contents. Eye-

tracking and face-tracking tracking technologies are applied in these two studies

to examine viewers’ attention and emotion engagement. The findings in the first

study can help e-tailers to design websites among viewers from different cultural

background to efficiently direct their attention to the product or brand. The second

study provides insights to filmmakers in how to place the emotion-inducing contents

in comedy movie trailers to attract the audiences to watch the movie.

Chapter 2 describes three eye tracking experiment to investigate the joint

effects of facial expression (neutral/happy) and gaze direction (direct/averted) of

models on websites on visual attention among American and Chinese participants.

They reveal that among both cultures a gaze cue primes initial attention to the

product or brand and show that positive affect from the happy expression when
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a model looks at the viewer carries over to the product or brand. For American

participants, a model that looks at the viewer with a happy expression draws more

attention to the brand, while for Chinese participants a model that looks at the

product with a happy expression draws more attention to the brand. These differ-

ences are explained from a cultural difference in using the eyes and mouth as cues to

recognize and interpret smiles in Asian and Western cultures, respectively. Further,

the racial match between a model and the viewer exacerbated the attention effects

of facial expression.

Chapter 3 proposes a joint statistical model to study the longitudinal emotion

data collected online while viewers are watching a movie trailer and the viewers’

intention to watch the movie. We calibrate the model using experimental data

collected from participants facial responses while watching comedy movie trailers

on the web and relate diagnostic emotion-inducing scenes to the viewers decision

of watching the movie afterwards. Our findings show a significant positive effect

of joy-inducing content at the peak and end scene on watching intention. Negative

emotion-inducing content placed at the beginning of the trailer has a negative effect.

High music volume at the peak and low volume at the beginning also increase

watching intention. The proposed method and results allow filmmakers to optimize

the effectiveness of movie trailers, so that they can increase peoples desire to watch

the movie by balancing the amount of highly emotion-inducing content shown in

order to maximize interest, while not giving away too much of the story in the

trailer.

Chapter 4 concludes our findings in the e-commerce websites and comedy
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movie trailer studies. It summarizes the contributions and makes suggestions to

online retailers and filmmakers based on results from these two studies. It also

points out the limitations of these studies and directions of future research.
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Chapter 2: Facial Cues, Gaze Direction and Attention Patterns in

Different Cultures

2.1 Introduction

Gaze Direction

In recent years, the perception of eye gaze direction has emerged as critical in

face processing ([36]). For example, Senju and Hasegawa (2005) [37] showed that

the detection of a target in the periphery of vision is impeded when observers fixate

on a face that is looking directly at them, compared to fixating a face with averted

eyes. Thus, it appears that direct eye gaze captures and retains attention to the

face (see also Bindemann et al. 2005 [38]). Averted eyes, on the other hand, have

the ability to shift a viewers attention and lead to a faster classification of targets

in the direction of the perceived gaze (e.g., Driver et al. 1999; Friesen, Moore and

Kingstone 2005; Friesen and Kingstone 1998; Kingstone et al. 2004; Langton, Watt

and Bruce I 2000 [39, 40, 16, 41, 42]). Research has revealed specialized regions

in the human visual brain that are responsive to eyes, eye movements, and gaze

direction (Superior Temporal Sulcus; STS), some neurons in these regions being

sensitive to orientations of body, head and eyes simultaneously, others to only one
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of these ([14]). Hutton and Nolte (2011) [17] investigated simultaneous eye, head and

body direction cues of a model in a print advertisement and found that participants

looked longer at the product and brand regions of the advertisement as well as at

the entire advertisement when the models gaze was directed towards the product

rather than towards the viewer.

Based on these findings, we hypothesize that the gaze direction of models on

websites promotes customers attention to a product present in the direction of the

perceived gaze, and that this increased attention may spill over to the brand and

the text containing the product description.

Facial Expression

A facial expression is caused by contraction of facial muscles and conveys

the emotions of an individual to the viewer. The amygdala plays a central role

in processing these facial expressions of emotions ([22]). The so called “contagion

theory” postulates that viewers automatically mimic facial expressions, and that

proprioceptive feedback from this behavior affects the emotional experience of the

viewer ([43, 44]). Research has confirmed that individuals spontaneously mimic

emotional facial expressions in static pictures and experience subsequent emotional

contagion ([45, 46, 43, 47]), even when they are unconsciously exposed to these facial

expressions ([46]). Moreover, it was shown that the contagion effect causes facial

expressions to attract attention to the face ([48]). Angry faces have the capability

to inhibit attention disengagement causing longer gaze, but the effect for happy
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faces is less strong ([49, 22]). In the present research we focus on expression of

happy emotions, because these are by far the most frequently used on e-commerce

websites. Based on the research reviewed above, we hypothesize that the facial

expression of models on websites positively impacts consumers arousal, and that

this will positively affect attention to the face of the model, which carries over to

the product/brand.

The Joint Effect of Facial Expression and Gaze Direction

Gaze direction plays a critical role not only in orienting viewers attention but

also in viewers perception of emotions. On the one hand, Coss, Marks and Rama-

krishnan (2002) [50] argued that staring can be perceived as aggressive, and Nichols

and Champness (1971) [51] accordingly found that it led to increased galvanic skin

response compared to averted eye gaze. On the other hand, it has been argued

that gaze direction can act as a signal of attraction between people. But there

is some disagreement about this. While Mason, Tatkow and Macrae (2005) [15]

found no difference, Ewing, Rhodes and Pellicano (2010) [52] found that people find

direct gaze more attractive. Schilbach et al. (2006) [53] found that participants felt

more engaged with a virtual agent that looked at them directly, as compared to one

that looked at another person. Thus, there is no unique view on the effect of gaze

direction on viewers emotional experience. In addition, the emotional experience

caused by gaze direction cues may interact with that caused by facial expression

cues.
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Research has shown that gaze direction and facial expression have interactive

effects on emotion recognition ([21, 54]), perceived attractiveness of faces ([55, 56]),

object preference ([57]), and attention orienting ([58]). Specific areas in the visual

cortex (STC and amygdala) have been shown to play a role in the analysis of both

facial expression and gaze direction ([22]). This makes interactive effects of facial

cues possible, although it has also been argued that facial cues are processed in-

dependently ([22]). For example, researchers found that angry faces are recognized

as expressing more anger with a direct than with an averted gaze, whereas fearful

faces are recognized as expressing more fear with an averted than with a direct

gaze ([54]). Adams and Kleck (2003) [21] provided an overarching framework ex-

plaining these effects: approach-oriented emotions (anger and happiness) are better

recognized with direct gaze, and avoidance-oriented emotions (fear and sadness)

are better recognized with averted gaze. Jones et al. (2006) [56] found that faces

with direct gaze are perceived as more attractive when smiling than when holding a

neutral expression, whereas faces with averted gaze are less attractive when smiling

than when holding a neutral expression (see also Conway et al. 2008 [55]).

Importantly, Bayliss et al. (2007) [57] reported that the objects gazed at with

a happy expression were liked more than objects one gazed at with a disgusted

expression, but objects that were not gazed at were liked equally for both expres-

sions. In addition, the results of Ozono, Watabe and Yoshikawa (2012) [58] support

the hypothesis about avoidance behavior: when someone is observed looking in a

particular direction with a fearful expression, the observer tends to avoid that direc-

tion. But they did not find evidence to support approach behavior: when someone
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is observed looking in a particular direction with a happy expression, the observer

would not tend to look in that direction more.

Thus, the findings on the joint effect of gaze direction and facial expression

are still somewhat inconclusive. In line with this, six experiments, Hietanen and

Leppanen (2003) [22] did not show evidence to show that facial expression affects

the attention orienting triggered by gaze direction. Contrary to the conclusions of

Adams and Kleck (2003) [21], Bindemann, Burton and Langton (2008) [36] found

that averted eye gaze slows the categorization of any facial expression, rather than

having a selective impact on specific emotions. They suggested that gaze direction

affects the analysis of facial expression via an intermediate process, namely the

allocation of visual attention to the target face. Facial expressions might only affect

attention (dis)engagement, as argued by Fox, Russo and Dutton (2002) [49]. Thus,

the verdict on whether these two facial cues have a joint effect is still out, and there

is a need to further investigate the joint attention effects of gaze direction and facial

expression.

Culture Differences in Effects of Gaze Direction and Facial Expression

Facial expressions have long been considered the universal language of emotion,

being the same across cultures ([59, 60]). Yet, there is evidence that the perception

and recognition of emotional expressions is influenced by the cultural background

of the viewer. Importantly, it has been shown that Western participants weigh fa-

cial expression cues displayed in the mouth more when judging emotions, whereas
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Asian participants have been found tend to weigh cues in the eyes more ([61]). In-

deed, using eye-tracking technology, Jack et al. (2009) [62] reported that Western

participants distributed their fixations evenly across the face, whereas Asian par-

ticipants persistently fixated the eye region more (see also Blais et al. 2008 [23].

Further, Jack, Caldara and Schyns (2012) [24] revealed cultural differences in the

expectations of facial expressions: Westerners expectations predominantly involve

the mouth, whereas Asians show a preference for expressive information in the eye

region.

The smile is the most common and universal human facial expression ([59]),

and this is the facial expression we focus on in this study. Smiles can be classified

as Duchenne or non-Duchenne. Non-Duchenne smiles involve only the (zygomatic

major) muscles around the mouth area, while Duchenne smiles also involve the

(orbicularis oculi) muscles around the eyes ([63]). The interpretation of the meaning

of any of these two smiles depends on whether eyes or mouth are used as a source

of information ([64]). In Western cultures, the mouth is most crucial diagnostic

feature in identifying and interpreting smiles ([65, 66, 67, 68]), but Asians rely to

a larger extent on information from the eyes ([64]). In line with this, Ozono et

al. (2010) [69] found that Asian participants found faces with greater upper-half

(eyes) smile intensity more trustworthy, but American participants found faces with

greater lower-half (mouth) smile intensity more trustworthy.

Although no research has yet looked at cultural differences in the effects of

gaze cues on attention, several studies have found differences between cultures in

gaze behaviors during face-to-face communication. Bond and Komai (1976) [70]
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reported that Asians felt uneasy when being gazed at directly. Consistent with

this, Pierson and Bond (1982) [71] found that Chinese conversational partners dont

usually look at directly at each others eyes, whereas Westerners do ([72]). These

studies support the idea that perceived gaze direction may have different effects in

Asian and Western cultures.

Based on the above research we hypothesize that the effect of facial cues on

attention patterns will be different in different cultures. Asians, paying more atten-

tion to the eyes, may be more sensitive to gaze direction and show a more prominent

gaze following effect, while Westerners, paying more attention to the mouth, may

be more sensitive to emotional expressions of happiness. The latter also suggests

that facial expressions moderate the effect of gaze cues differently in Western and

Asian cultures.

Ethnic Similarity Effects

Ethnicity is an integral part of consumers’ perceptions of a spokesperson or

model (Huston, D’Ouville and Willis 2003) ([73]). Theories of similarity attraction

and in-group bias have been used to explain the role of ethnicity in social interac-

tions. Similarity attraction theory posits that a users perception of similarity with

another on attributes such as ethnicity increases interpersonal attraction and liking

([74]). In-group bias theory ([75]) proposes that people behave more favorably to-

wards in- group than towards out-group members. Ethnicity, as a readily observable

physical cue, is readily used to classify other people as either in-group or out-group
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([76]).

There has been extensive research examining the effect of the ethnicity of mod-

els displayed in advertising. This research has demonstrated that perceived ethnic

similarity results in more positive ad evaluation ([77, 25, 78]), higher perceived

trustworthiness of spokespersons ([79]), and higher likelihood of purchase ([80, 81]).

Recently, a few studies have shown that a match of the ethnicity of viewers and on-

line models positively affects the viewers evaluative responses in e-commerce settings

([82, 83]). Kareklas and Polonsky (2010) [84] revealed that model-viewer ethnic sim-

ilarity is most important for Hispanic participants, followed by black participants,

then by Asian participants, and least so for white participants.

In addition, it has been shown that the perception of emotional expressions

can be influenced by the perceivers feeling of belonging to the same (in-group) or

a different ethnic group (out-group) ([85]). Brown, Bradley and Lang (2006) [86]

found that people had stronger affective responses when viewing pictures of ethnic

in-group as compared to ethnic out-group members. Krmer et al. (2013) [85] found

that when a model gazed directly at the viewer, participants from the ethnic out-

group tended to perceive emotions as more pronounced than participants from the

ethnic in-group. Based on this literature, we hypothesize that the ethnic match

between a model and the viewer not only positively affects attention to the face and

product information, but also moderates the effect of the models facial expression

to become stronger.
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This Research

We test our predictions in three eye-tracking experiments. In the first exper-

iment, we manipulate the gaze direction (direct/averted) and the facial expression

(neutral/happy) of models on e-commerce websites in a study among American

participants, and investigate the effects on multiple indicators of attention to the

face, eye, product, brand logo, and text, as well as the webpage as a whole. In the

second experiment, we replicate this study among Chinese participants. We focus

on Chinese and Americans, because these are some of the worlds largest popula-

tions. Because we need to adapt the details of the experimental designs to the local

conditions in the United States and China, we analyze and report these two exper-

iments separately, rather than jointly. In the third experiment, we manipulate the

facial expression (neutral/happy) and the ethnicity (Caucasian/Asian) of models on

e-commerce websites in a study among Chinese participants, to examine the effects

of viewer-model ethnicity match on several indicators of attention to the webpage

as a whole and its various elements. In these three experiments, while gaze direc-

tion is manipulated through the eyes of the model, facial expression is manipulated

through the mouth. This enables us to investigate differences in the effects of these

two facial cues between American and Chinese participants.

2.2 Experiment with American Participants and Caucasian Models

This experiment used a 2× 2 between-subject design, with two levels of facial

expression (neutral versus happy) and two levels of gaze direction (direct: looking

27



straight ahead versus averted: looking at the product). The experimental conditions

were obtained through digital manipulation of images of faces. This allows us to

control for other features of the face, by changing only very specific facial cues in

the eyes and mouth.

Stimuli

We obtained from the internet 22 images of female Caucasian fashion models

shown above the shoulder, facing the camera, and with a neutral facial expression.

Adobe Photoshop digital imaging software was used to manipulate the mouth and

eyes in the original images, to produce happy faces or faces with averted gaze. In a

pretest, 20 participants were asked to rate the images on attractiveness, naturalness,

and feelings about the smile. Based on the results 16 images were chosen as stimuli.

Manipulation checks among 126 participants in the main study (see below) revealed

a significant difference (t = 2.013, p = 0.046) in perceived smile between the images

with a happy face (mean = 4.11, SD = 1.78) and a neutral face (mean = 3.44,

SD = 1.93), and a significant difference (t = 6.77, p = 0.000) in perceived gaze

direction between images with a direct gaze (mean = 5.66, SD = 1.39) and those

with averted gaze (mean = 3.55, SD = 2.03).

To simulate an online US cosmetics store, we created 16 webpages that consist

of the manipulated images integrated with the packshot1 and a brand logo, textual

product information, and other product related information such as price, product

rating etc. The latter components were all identical across the four conditions of the

1A image of a product, which usually includes the packaging and labeling of the product.
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(a) Direct Gaze and Neutral Expression (b) Averted Gaze and Neutral Expression

(c) Direct Gaze and Happy Expression (d) Averted Gaze and Happy Expression

Figure 2.1: Examples of the stimuli for experiment 1, with American participants

and American fashion models.

study. The webpages were designed with Microsoft Visual Studio 2008. We used

two product categories, cosmetics and perfumes, that usually employ human faces

on their websites and that the participants are very familiar with. Examples of the

stimuli are presented in Figure 2.1.
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Participants

We recruited a total of 130 American participants from undergraduate pro-

grams at a major U.S. university. They participated in the experiment for course

credit or were paid $10 for their participation. Four participants could not be used

because they failed to be calibrated in the eye tracking test. Participants were ran-

domly assigned to one of the four treatment conditions. Among the 126 participants,

64 were male and 62 were female, and they had an average age of 21 years. Ninety-

three percent of the participants had online shopping experience and 61 percent of

the participants shopped online at least once or twice per month.

Experimental procedure

Participants were screened to ensure normal or corrected to normal vision;

those wearing hard contact lenses or eye glasses were excluded. The stimuli were

presented on a 19 inch monitor with a resolution of 1024× 768 pixels. Participants

sat individually in a cubicle in front of the monitor at a distance of approximately 60

cm. Eye movements were collected with a Tobii 1750 binocular infrared eye tracker

at a frequency of 50 Hz. The eye tracker allows participants to freely move their

head in a virtual box of around 30× 30× 30 centimeters.

Participants were calibrated, then looked at a fixation cross on a blank page

for one second (to get a baseline measurement of pupil size), and were shown an

introduction page explaining the task. Then, they were instructed to freely view the

web pages: “Imagine that you want to buy some gifts for a female friend and you
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are freely browsing an online gift store, which sells various kinds of cosmetics and

perfumes. A series of product web pages will be presented. Please look through these

pages at your own pace.” The web pages exactly occupied the entire screen, scrolling

was neither needed nor allowed. Each participant viewed 16 pages in a random

order, for as long as they desired. After viewing all pages, participants were asked

to complete a survey with questions on perception of facial cues, and information

on age, gender, and online shopping experience. Completing the experiment took

approximately 15 minutes per participant.

Measures

On each of the webpages, we defined five areas of interest: the face of the

model, the eyes, the packshot, the brand logo, and the text ([2]). For each AOI,

three fixation indicators were computed: fixation counts (reflecting attention capture

and engagement [87], and semantic importance [88]), average fixation duration (in

msec., reflecting depth and effort of cognitive processing, [89, 90, 88]), and time to

first fixation (in msec., reflecting attention selection [91], and conspicuity [88]). The

analyses of time to first fixation yielded no significant effects and are not presented

in the Results section. We also computed the total dwell time (reflecting overall

interest [92, 88]) and the average pupil diameter (reflecting emotional arousal [93],

and/or mental workload [88]) for each webpage for each participant. Pupil diameter

was averaged across both eyes and computed relative to a baseline measure obtained

from a blank page.
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Analyses

We used a Bayesian approach to ANOVA [1] to analyze the eye tracking data.

Compared to standard ANOVA, Bayesian ANOVA offers the well-known advantages

that it provides exact inferences for finite samples of participants, accommodates

specific distributional properties of the various eye tracking measures, and includes

unobserved differences between participants. Let i = 1, . . . , I denote participants

and j = 1, . . . , J denote webpages (I = 126, J = 16). We modeled the various eye

tracking measures with the following distributions.

Fixation count data

The fixation count, yi,j, indicates attention retention of individual i watching

each AOI of jth webpage. It was described with a zero-inflated Poisson distribution,

yi,j ∼ ZIP (pi, λi,j), introduced by Lambert(1992):

f(yi,j, λi,j, pi) = piPois(0) + (1− pi)Pois(λi,j), (2.1)

where pi is the probability of a structural zero (indicating attention capture), with

logit(pi) = ηi,2. Nonzero fixation count is assumed to follow a Poisson distribution

with fixation rate λi,j ∼ LN(ηi,1, σ
2
1), accommodating a log-Normal heterogeneity

distribution across participants.
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Average fixation duration and total dwell time

The average fixation duration, fi,j, which indicates depth of processing, was

described by a log-normal distribution:

fi,j ∼ LogNormal(µi,j, τ
2), (2.2)

where the mean µi,j ∼ N(ηi,3, σ
2
2) accommodates unobserved differences between

participants.

The model for the total dwell time, gi,j, as a function of ηi,4 was similar.

Time to first fixation

Time to first fixation, ti,j, was right censored data. If the AOI in question is

not fixated at all, time to fixation is not observed. Instead we recorded tij as ≥

total dwell time. We modeled it with a Weibull distribution:

ti,j = min(t∗i,j, gi,j) and t∗i,j ∼Weibull(ρ, vi,j), (2.3)

where t∗i,j is the true time to first fixation data without censoring. When t∗i,j is

smaller than the total dwell time gi,j, it is observable and ti,j = t∗i,j. Otherwise,

it is right censored at gi,j. The parameter vi,j ∼ LN(ηi,5, σ
2
3) models individual

differences.

33



Average pupil diameter

Finally, average (of two eyes) pupil diameter, di,j, indicating level of arousal,

was modeled with a Normal distribution:

di,j ∼ N(κi,j, τ
2), (2.4)

where κi,j ∼ N(ηi,5, σ
2
4) models individual differences. We imposed non-informative

prior N(0, 100) on all σs.

We modeled the between-participant effects of the factors gaze direction (D),

facial expression (E), and the D × E interaction on each of the p = 1, . . . , P measures

described above (P = 5), for each of the AOIs. We include the effect of gender

(G) as well, because we want to control for differences between men and women

and because these effects are also of some interest in their own right. We use the

following three-way ANOVA model:

ηi,p = θ0p + θGp,ki + θDp,mi
+ θEp,ni

+ θDEp,mi,ni
(2.5)

The parameters θGp,ki represent the effects of gender, where ki is the gender k

(woman/man) of participant i. The parameters θDp,mi
represent the effects of gaze

direction, where mi is level m (straight/averted) for participant i. The parameters

θEp,ni
represent the effects of facial expression, where ni is level n (neutral/happy)

for participant i. Finally, the parameters θDEp,mi,ni
represent the interaction effect of

gaze direction and facial expression. Because we set θDp,1 = 0, θEp,1 = 0, θDEp,mi,1
= 0

and θDEp,1,ni
= 0, all effects are relative to the original image with a face with direct
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gaze and a neutral expression, represented by the parameter θ0p.

The models were estimated with JAGS2, simulating two chains with a burn-

in of at least 20,000 and standard methods to check convergence. We report the

posterior means and standard deviations of the parameters and compute Bayesian

p-values to indicate statistical significance.

Results

The results of the analyses are shown in Table 2.1. Gender had a significant

effect on attention to the product and the eye: females tended to have higher fixation

counts, and longer fixation durations on the product and the eyes, which may be

because the products on the websites were typical female products.

There were no significant effects on attention to the face, for any of the mea-

sures. There were significant main effects and significant interaction effects of gaze

direction and facial expression on fixation counts and fixation durations on the

brand. There was a higher probability that the brand was selected when the model

had a neutral expression and averted gaze, compared to a neutral expression and

direct gaze. The probability of looking at the brand was also higher for a model with

averted gaze and a happy expression, compared to a model with direct gaze and a

happy expression. Fixation durations were longer for averted than for direct gaze

(neutral expression), and were longer when the model had happy expression than

when it had a neutral expression (direct gaze). A model with a happy expression

and direct gaze resulted in longer fixation durations on the brand than a model with

2http://mcmc-jags.sourceforge.net/

35



a happy expression and averted gaze.

For the duration of fixations on the text, there was a significant main effect of

gaze direction and a significant interaction effect between gaze direction and facial

expression. A model with averted gaze resulted in shorter fixation durations on the

text than one with direct gaze (neutral expression). Compared to a model with a

direct gaze and happy expression, a model with averted gaze and a happy expression

resulted in longer fixation durations on the text.

The results for the metrics for the webpage as a whole are shown in Table

2.2. Gender had a significant effect on overall dwell time: compared to female

participants, males spent more time looking at each webpage. We also found that

males had a larger pupil size overall. This is likely because female models were

displayed on the websites.

There was a significant main effect of facial expression on pupil size: partici-

pants had a larger pupil size when the model has a happy expression (with direct

gaze). There was a significant interaction between gaze direction and expression

on pupil size: participants’ pupil was wider when the model had a direct gaze and

happy expression as compared to one with averted gaze and a happy expression.

Discussion

In this study among American participants we found support for joint effects

of facial expression and gaze direction. First, we found that when a model looks

at the product with a neutral expression this resulted in a higher probability of
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Table 2.1: Results for American (study1) and Chinese (study 2) participants: effects

of gaze direction and facial expression on fixation count and fixation duration. The

posterior mean and standard errors (in parentheses) are reported. Estimates that

have a Bayesian p-value less than 0.05 are in bold

Variable American Chinese

Fixation Count Fixation Duration Fixation Count Fixation Duration

Selection Engagement Selection Engagement

Face

Intercept -13.980 (1.927) 1.501 (0.133) 5.043 (0.065) -11.382 (3.988) 1.186 (0.142) 4.935 (0.104)

Direction (D) -4.830 (7.859) -0.234 (0.170) -0.036 (0.086) -7.648 (6.944) -0.064 (0.186) 0.056 (0.136)

Expression (E) -4.236 (8.072) -0.073 (0.169) 0.023 (0.085) 7.218 (3.683) 0.095 (0.187) -0.383(0.136)

D*E -2.293 (8.977) 0.311 (0.241) 0.167 (0.121) -4.104 (8.033) -0.097 (0.271) 0.326 (0.195)

Gender -4.784 (7.684) -0.091 (0.121) -0.009 (0.061) 2.450 (2.118) -0.102 (0.136) -0.332(0.098)

Eye

Intercept -3.418 (1.087) 0.789 (0.174) 4.258(0.117) -12.072 (6.072) 0.139 (0.244) 3.303 (0.154)

Direction (D) -6.689 (5.215) -0.199 (0.225) -0.180 (0.152) -4.865 (7.796) 0.081 (0.317) 0.341 (0.202)

Expression (E) -2.590 (4.030) -0.027 (0.223) 0.047(0.150) -2.795 (8.257) -0.281 (0.319) -0.660(0.203)

D*E 5.274 (7.775) 0.262 (0.319) 0.173(0.213) -1.420 (9.213) 0.153 (0.460) 0.238 (0.294)

Gender -1.919 (4.848) -0.313 (0.160) -0.240 (0.107) -5.140 (7.546) -0.184 (0.234) 0.040 (0.146)

Product

Intercept -9.908 (5.218) 0.842 (0.136) 4.803(0.114) -7.602 (3.936) 0.517 (0.236) 3.900 (0.152)

Direction (D) -7.615 (7.038) -0.105 (0.175) 0.196(0.145) -8.497 (6.288) -0.238 (0.310) -0.152(0.198)

Expression (E) -2.758 (6.513) -0.114 (0.176) -0.082 (0.148) -5.388 (6.383) 0.011 (0.309) -0.052(0.201)

D*E -2.109 (8.735) 0.191 (0.248) 0.038(0.208) -1.123 (8.938) 0.151 (0.448) 0.280 (0.287)

Gender 0.668(7.106) -0.350 (0.127) -0.685 (0.103) 4.514 (4.646) -0.317 (0.228) -0.508(0.147)

Brand

Intercept -3.041 (0.326) 1.614 (0.117) 4.907 (0.073) -6.917 (1.160) 1.942 (0.101) 5.358 (0.066)

Direction (D) -6.899 (4.049) -0.101 (0.151) 0.263 (0.096) 1.654 (1.051) 0.036 (0.132) -0.121(0.086)

Expression (E) -0.433 (0.416) 0.014 (0.149) 0.201 (0.094) 2.451 (0.976) -0.087 (0.132) -0.311(0.086)

D*E 6.418 (4.076) 0.080 (0.213) -0.394 (0.134) -3.658 (1.554) 0.149 (0.192) 0.608 (0.124)

Gender 0.056 (0.367) -0.052 (0.107) 0.028 (0.069) 2.398 (0.667) -0.131 (0.097) -0.311(0.063)

Text

Intercept -3.811 (0.346) 3.140 (0.133) 5.262(0.047) -3.608 (0.417) 2.977 (0.154) 5.333 (0.050)

Direction (D) 0.085(0.429) -0.193 (0.173) -0.154 (0.062) -0.713 (0.736) -0.263 (0.203) -0.154(0.065)

Expression (E) -0.719 (0.516) 0.022 (0.172) 0.065(0.060) -1.394 (0.869) 0.265 (0.203) 0.078 (0.065)

D*E -0.286 (0.768) 0.078 (0.245) 0.189(0.087) 0.935 (1.337) 0.031 (0.294) 0.235 (0.094)

Gender 0.243(0.361) 0.013 (0.122) 0.061(0.043) -1.151 (0.728) -0.046 (0.147) -0.022(0.047)
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Table 2.2: Results for American (study 1) and Chinese (study 2) participants: effects

of gaze direction and facial expression on dwell time, pupil diameter, blink rate and

recall rate. The posterior mean and standard errors (in parentheses) are reported.

Estimates that have a Bayesian p-value less than 0.05 are in bold.

American Chinese

Overall Dwell Time Pupil Diameter Overall Dwell Time Pupil Diameter

Intercept 9.526 (0.029) 3.773 (0.022) 9.481 (0.037) 3.435 (0.039)

Direction (D) -0.071 (0.038) -0.008 (0.029) -0.135 (0.048) 0.072 (0.051)

Expression (E) -0.007 (0.038) 0.170 (0.029) 0.033 (0.048) 0.070 (0.050)

D*E interaction -0.013 (0.053) -0.087 (0.042) 0.061 (0.068) -0.214 (0.074)

Gender 0.089 (0.027) 0.079 (0.021) -0.046 (0.035) 0.154 (0.038)

Blink Probability Blink Frequency Recall Rate

Intercept -15.87 (3.938) -1.449 (0.206) 0.101 (0.157)

Direction (D) 7.490 (3.054) -0.173 (0.271) 0.483 (0.202)

Expression (E) -7.920 (7.030) 0.042 (0.269) 0.237 (0.199)

D*E -5.249 (7.861) -0.475 (0.391) -0.033 (0.292)

Gender 7.306 (2.954) -0.363 (0.201) -0.028 (0.15)

selecting the brand and deeper processing of the brand. This finding is consistent

with our hypotheses and supports the large body of previous research which has

demonstrated that gaze cues can effectively orient viewers attention ([39, 40, 41, 42]).

It is important to note, however, that the present findings indicate a conceptual

rather than perceptual cuing effect ([94, 95]). The brand region in the website is

located opposite of the location cued by the model’s gaze (Figure 2.1), but in spite

of that participants looked more often at the brand when the physical product was

cued ([96, 95]). Hutton and Nolte (2011) [17] found a similar conceptual cuing

effect to the brand element in an advertisement. Previous findings that to Western

participants cues from the eyes are less important may partially explain the absence

of a perceptual gaze cueing effect ([64]). The finding that gaze cueing has an effect
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on fixation durations is new, and suggests that it stimulates the viewer to process

the brand deeper when it is cued.

Second, we found that when a model looks at the viewer with a happy ex-

pression rather than a neutral one, the resulting average fixation duration on the

brand was longer. When a model looks at the product with happy expression (as

compared to a neutral expression), the brand received shorter fixation durations.

This result is counter to the reinforcement hypothesis of the moderation of gaze

cueing by facial expression (for example, Bayliss et al. 2007, [57]). According to

Jones et al. (2006) [56] a face looking at the viewer is perceived as more attractive

when its’ expression is happy than when it is neutral, but the reverse holds for a face

with averted gaze. This suggests that in this experiment among American partici-

pants, a higher perceived attractiveness of a smiling model that looks at the viewer

led to more attention to and to deeper processing of the brand. This supports the

contagion theory ([43, 44]).

However, this occurred only for the brand element of the website, while the

positive affect caused by a smiling face with direct gaze reduced depth of processing

of the product information contained in the text. We speculate that the direction of

the emotional contagion effect may depend on the facts/feelings information mode

of the description/brand elements, respectively ([97, 98, 99]).

Third, and supporting the above result, we found that while for a neutral

expression there is no effect of gaze direction on pupil dilation, for happy expression

the pupil is wider if the model looks directly at the participant. This indicates a

higher level of excitement if the model smiles and looks directly at the participant.
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Previous research has shown that approach-oriented emotions such as happiness are

better recognized with direct gaze than with averted gaze ([21]), and that faces that

look at the viewer with a happy expression are perceived as more attractive ([56]).

Thus, the present results indicate that a model looking at the respondent with a

smile elicits positive affect and increases the participants level of arousal, leading to

deeper processing of the brand.

In this experiment, we investigated the effects of facial cues for American

participants. However, prior research has demonstrated that the perception of emo-

tional expressions (e.g. Jack, Caldara and Schyns 2012; Ozono et al. 2010 [24, 69])

and gaze behavior (Pierson and Bond 1982; Bond and Komai 1976 [71, 70]) are influ-

enced by cultural background. To evaluate differences between Western and Asian

cultures, we conducted an experiment in China that replicated the design of exper-

iment 1, but with Asian rather than Caucasian models. Moreover, we added two

new measures, brand recall and blink rate. It has been shown that lower blink rates

are associated with higher levels of arousal produced by a picture with pleasurable

content ([100, 101]), and that blinks occur less frequently when attentional focus

is higher ([102]). We added these measures to provide more insights into mental

workload, attentional focus and information retention.

2.3 Experiment with Chinese Participants and Chinese Models

In experiment 2, we replicated experiment 1 in China with Chinese participants

and Chinese stimuli, using a 2 (facial expression) × 2 (gaze direction) between-
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subject design.

Stimuli

We obtained from the internet 20 images of female Chinese fashion models

shown above the shoulder, facing the camera, and with a neutral facial expression.

Adobe Photoshop digital imaging software was used to manipulate the mouth and

eyes in these images, respectively, to produce smiling faces and faces that look at the

product. In a pretest, 20 participants were asked to rate the images as in experiment

1 and based on the results, 16 images were chosen. Manipulation checks among 80

participants in the main study (see below) revealed a significant difference (p <

0.001) in perceived smile between images with a happy expression (mean = 5.33,

SD = 1.545) and a neutral expression (mean = 3.66, SD = 1.622). There also was

a significant difference (p < 0.001) in perceived gaze direction between images with

direct gaze (mean = 2.39, SD = 1.829) and those with averted gaze (mean = 5.28,

SD = 1.820).

To simulate an online Chinese cosmetics store, we created 16 webpages that

consisted of the manipulated images of the faces, integrated with the packshot, brand

logo, textual product information, etc.. Text was translated and back-translated into

Mandarin Chinese. Examples of the stimuli are presented in Figure 2.2.
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(a) Direct Gaze and Neutral Expression (b) Averted Gaze and Neutral Expression

(c) Direct Gaze and Happy Expression (d) Averted Gaze and Happy Expression

Figure 2.2: Examples of the stimuli for experiment 2: with Chinese participants and

Chinese fashion models.
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Participants

Eighty Chinese college students took part in the experiment. The participants

were recruited from an online discussion forum affiliated with a university in southern

China. Participants were paid $5 for their participation. Exclusion criteria were

similar to those in experiment 1. There were 43 females and 37 males, with an

average age of 22.8. All participants had online shopping experience and 74 percent

of the participants did online shopping at least once or twice a month. The 80

participants were randomly assigned to four treatment conditions.

Experimental procedure

The procedures in experiment 2 were identical to those in experiment 1. The

eye tracking device used in this experiment was the SMI Hi-Speed iView X infrared

monocular eye-tracker, with a sampling rate of 500 Hz. The experimental websites

were presented on a 19 inch monitor with a resolution of 1024× 768 pixels, scrolling

was not needed. Participants heads were stabilized using a chin rest at a distance

from the monitor of about 60 cm.

The AOIs and eye-tracking measures were the same as in experiment 1. The

blink rate was computed as well (measuring mental workload or maintained con-

centration, Holmqvist et al. 2011, p. 411). The memory test for brand names was

added after the survey. Participants were presented with 32 brand names in random

order (16 valid brands and 16 invalid brands), and were asked to identify the brand

names that they had previously seen. The recall score was calculated by counting
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the number of correct identifications.

Analysis was done with the Bayesian ANOVA described above. The ZIP model

was used for the blink rate (using total view time as an offset), and a Binomial

distribution was used for the recall score. The analyses of time to first fixation

yielded no significant effects, and are not presented.

Results

The results of the analyses of fixation counts and fixation durations are shown

in Table 2.1. First, we found several gender differences: men had a lower probability

of selecting the face and the brand, and shorter fixation durations on the face, the

product, and the brand. We conjecture that these effects are caused by the product

being a “female product”, which may lead to a lower level of interest among men.

Gaze direction had significant effects on attention to the product. A model

with averted gaze resulted in a higher probability of fixating on the product, indica-

tive of a gaze cueing effect.

Facial expression had a significant effect on attention to the face. Relative to a

neutral expression, a smiling expression resulted in a lower probability of fixating on

the face and shorter fixation durations. Facial expression also had a significant effect

on attention to the eyes: a happy expression resulted in shorter fixation durations.

Facial expression interacted with gaze direction to affect fixation counts and

fixation duration. For a face with direct gaze and a happy expression, there was

a lower probability that the brand was fixated on and the brand received shorter
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fixation durations, compared to a neutral expression and direct gaze. However,

compared to a face with direct gaze and a happy expression, a face with averted

gaze and a happy expression resulted in a higher probability of the brand being

fixated on and longer fixation durations on it.

Gaze direction and facial expression also had interactive effects on attention

to the text. A face with a neutral expression and averted gaze resulted in shorter

fixation durations compared to one with a neutral expression and direct gaze. A

face with averted gaze and a happy expression had longer fixation durations on the

text, as compared to one with direct gaze and a happy expression.

The results of the analysis of overall dwell time, pupil size and blink rate on

the webpage as a whole are shown in Table 2.2. There was gender effect on pupil

size and blink rates: men had larger pupil sizes and a lower probability of blinking

while looking at the webpages than women. We conjecture that this is caused by a

higher level of excitement when looking at the faces of female models.

Gaze direction had a significant effect on overall dwell time: a face with averted

gaze resulted in shorter overall gaze duration than one with direct gaze.

There was a significant interaction effect between gaze direction and facial

expression on pupil size. A face with direct gaze and a happy expression causes a

larger pupil size than one with an averted gaze and a happy expression. In addition,

a face with averted gaze resulted in a lower probability of blinking.

Finally, there was a significant effect of gaze direction on recall: a face with

averted gaze resulted in a higher recall rate of the brand than one with direct gaze.
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Discussion

In experiment 2, we found evidence of the gaze direction cue. As predicted,

when a model looks at the product, Chinese participants had a higher probability

of fixating on the product, a lower probability of blinking (showing a high level

of focus), and a higher level of brand recall. It is likely that Chinese participants

orientation of gaze towards the product combined with a higher level of focus led

to improved brand recall. These are new results on gaze cueing, and they support

and extend the large body of previous research reviewed above. We found no effects

on time to first fixation and on fixation counts (indicating engagement), however.

Thus, it seems that gaze direction did not affect the speed with which the product

was selected for those viewers that look at it, nor the amount of attention paid to

it once it was selected. Rather, the gaze cue affected the probabilities with which

product and brand information were selected. It thus appears from our results that

gaze cues prevent the object towards which gaze is oriented being missed, but do

not cause more engagement with it.

With regard to facial expression, we found that a model with a happy expres-

sion causes Chinese participants to have a lower probability to look at the face and

the brand. It also resulted in shorter fixation durations on the face, the eyes and the

brand. These shorter fixation durations led to a shorter overall dwell time on the

website as a whole. It seems that a happy expression for Chinese participants causes

less deep processing of most elements of the website. To understand this finding,

recall that in this study images with a happy expression were created by editing
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the mouth. Previous research has shown that Asian participants rely strongly on

information from the eyes to process smiles ([64]). We speculate that the manip-

ulation of non-Duchenne smiles may have led to lower confidence in the displayed

emotion among Chinese participants ([69]), which caused less deep processing of

most elements on the website, in particular of the face and the eyes.

We also found support for a joint effect of facial expression and gaze direction.

First, we found that for a neutral expression neither the probability of selecting

the brand, nor the duration of fixations on the brand, nor the pupil diameter, were

different between a model looking at the product or at the viewer. However, a model

looking at the product with a smiling face resulted in a higher probability of selecting

the brand and longer fixation times on the brand. In this case the fixation duration

on the text was also slightly longer. A possible explanation for these findings is that

direct gaze facilitates the detection of the non-Duchenne smile ([54]), which leads to

lower confidence in the displayed emotion, a weaker contagion effect and less deep

processing of brand information. Among Chinese participants, the contagion effect

of the smile ([57]) emerges most strongly with an averted gaze.

Comparison of Effects of Facial Cues between American and Chinese

Participants

Experiments 1 and 2 revealed attention effects of facial cues that are common

across American and Asian cultures. If a models gaze was directed at the product,

American and Chinese participants had a higher probability to select the brand
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and/or the product. This confirms predictions based on gaze cueing and is in line

with previous research. We also found that facial expression moderated the effect

of gaze direction on attention to the text, in a similar way for both Chinese and

American participants. Specifically, a model with a neutral expression that looks

at the product produces shorter fixation durations at text, indicating less deep

processing of product information. A model with a happy expression looking at

the product, resulted in longer fixation durations on the text. These results are

new, and suggest a contagion effect of the facial expression on affect towards the

product and brand. This is important given the lack of joint effects in some prior

studies ([22]). Finally, there were no effects of face cues on attention engagement

and time to first fixation among both Asians and Americans, revealing that the gaze

cue mostly prevents the object that was cued (the product or brand) being missed

by the viewer, but that there is no effect of gaze direction and facial expression on

attention engagement or disengagement in either culture ([49, 22]).

We also found several differences across the two cultures. First, strictly speak-

ing, we found somewhat different gaze cueing effects across different cultures. Chi-

nese participants showed both a perceptual and a conceptual gaze cuing effect

whereas American participants showed a conceptual gaze cueing effect only. A

possible explanation is that compared to Westerners, Asians focus more on the eyes

([64]), thus are more likely to directly follow the gaze direction of the models.

Second, the effects of facial expression are very different between American and

Chinese cultures. When the model on the website smiles, American participants pay

more attention to the brand. However, for Chinese participants a smiling face caused
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a lower probability of selecting the brand, and resulted in less deep processing of most

elements on the website. Again, this can be explained because Asian participants

preferentially fixate and take cues from the eye region ([62]). This was confirmed

by our results: the intercept of the fixation indicator for the models eyes was much

more negative in experiment 2 compared to experiment 1 (by almost a factor of

four, see Table 2.1), which shows that Chinese compared to Americans have a much

higher probability to look at the eyes. To American participants the mouth is

the most crucial diagnostic feature in identifying and interpreting smiles ([65, 66,

67]), while Asian participants rely strongly on information from the eyes to detect

and interpret smiles ([64, 61]). In our two experiments, images of models with a

happy expression were purposely produced by digital editing of the models mouth,

producing a non-Duchenne smile ([63]). The second experiment showed that Chinese

participants had shorter fixation durations on the eyes of a smiling model, indicating

that they processed the information less deeply. Thus, we speculate that American

participants paid more attention to the product or brand when the model on the

website smiles, because the mouth region of the non-Duchenne smile elicited stronger

positive affect, which carried over to the brand. But Chinese participants showed

less attention to the brand and processed the information less deeply, because they

were less confident about the non-Duchenne smile, taking mostly cues from the eyes.

This reversed the contagion effect.

Third, the extent to which facial expression moderates the effect of gaze di-

rection on attention to the brand was different between Americans and Asians. For

American participants, a model that looked at the product with a neutral expression
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drew more attention to the brand than one that looked directly at the viewer, while

for Chinese participants there is no difference. For Chinese participants, a model

that looked at the product with a happy expression resulted in more attention to the

brand. For American participants, taking stronger cues from the mouth, a model

looking directly at the viewer with a happy expression elicited a more positive affect

towards the model which carried over to the brand. However, for Chinese partici-

pants, taking stronger cues from the eyes, it is easier to detect the non-Duchenne

smile with direct gaze, which will lead to more uncertainty about the emotion and

less attention to the brand.

The comparison between experiment 1 and 2 showed that the most important

cultural differences were found were in the effects of facial expression. However, while

we used Caucasian models in experiment 1, we used Asian models in experiment

2. According to the research reviewed above, a match between the ethnicity of

the model and the viewer might impact the latter’s perception and evaluation of

the website. Thus, we further investigate whether the differences with Chinese

participants that we found are caused by the use of Asian models. Therefore, in

experiment 3 we use both Asian and Caucasian models with Chinese participants,

to investigate the joint effects of the models facial expression and ethnicity.
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2.4 Experiment with Chinese Participants and Various Fashion Mod-

els

This experiment was conducted in China with Chinese participants and used

a 2 × 2 between-subject design, with two levels of facial expression (neutral versus

happy) and two levels of models ethnicity (Asian versus Caucasian).

Stimuli

We obtained from the first two experiments 32 images of female Western and

East Asian fashion models. In a pretest, 13 participants were asked to rate the

images on attractiveness, the degree of naturalness, and feelings about the smile.

Based on the results, 20 images were chosen as stimuli, which included 10 Caucasian

and 10 Asian models. Similar to experiment 2, we created 10 web pages for each

condition.

Participants

Sixty Chinese college students took part in the experiment. The participants

were recruited from an online discussion forum affiliated with a university in southern

China. Participants were paid $5 for their participation. Exclusion criteria were

same as those in experiment 2. There were 27 females and 33 males, with an average

age of 23.5. All participants had online shopping experience and 95 percent of the

participants did online shopping at least once or twice a month. The participants
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were randomly assigned to the four experimental conditions.

Experimental procedure

The procedure in experiment 3 was identical to that of the first two experi-

ments. The eye-tracking device used was same as that in experiment 2. On each of

the web pages, we defined the same five areas of interest as in experiments 1 and

2, and used the same eye-tracking measures. Analyses were done with the Bayesian

ANOVA, as described above, with the ethnicity of model and emotional expres-

sion as between-subject factors. The analyses of time to first fixation yielded no

significant effects, and are not presented.

Results

The results of the analyses of fixation counts and fixation durations are shown

in Table 2.3. Gender affected the fixation count on the eye significantly, males

having less fixations than females.

There were no significant effects for any of the eye movement measures on

the face and the brand. There was a significant main effect of models ethnicity,

a marginally significant main effect of models facial expression and a significant

interaction between the models ethnicity and facial expression on attention to the

product. Compared to an Asian model, a Caucasian model with a neutral expression

resulted in a lower probability of fixating on the product. A Caucasian model with

a happy expression resulted in longer fixation durations on the product compared
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to a neutral expression. However, an Asian model with a happy expression resulted

in a shorter fixation duration on the product than a neutral expression. There was

a significant main effect of the models ethnicity on attention to the text: Caucasian

models resulted in a lower probability of fixating on the text.

The results of the analyses of overall gaze time, pupil size and blink rate on the

webpage as a whole are shown in Table 2.4. The models ethnicity had a significant

effect on blink rate and pupil size. Asian models resulted in a lower rate of blinking

and a larger pupil size. Facial expression also had a significant effect on pupil size.

Compared to a model with a neutral expression, a model with a happy expression

caused a larger pupil size.

Discussion

In experiment 3, we found that among Chinese participants, relative to a

Caucasian model an Asian model produced a higher probability of fixating on the

product and text, elicited a lower rate of blinking and a larger pupil size, and

resulted in a longer time browsing the web page. The results seem to indicate that

Chinese participants considered content from a website with an Asian model (in-

group) was personally relevant and targeted to them, which led to more attention

to product information and the webpage as a whole. These findings are consistent

with our prediction and support previous research that has demonstrated positive

racial in-group effects ([82, 77, 79, 25, 78, 80, 81]).

Further, we also found that the models ethnicity moderated the effect of her
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facial expression. An Asian model with a happy expression resulted in shorter fixa-

tion durations on the product, as compared to a neutral expression, indicating less

deep processing of information. This is consistent with the findings in experiment

2. We speculated that a non-Duchenne smile may have led to lower confidence

in the displayed emotion among Chinese participants ([69]). Brown, Bradley and

Lang (2006) [86] found that people had stronger affective responses when viewing

pictures of ethnic in-group as compared to ethnic out-group members. Chinese

may thus have had lower confidence in the displayed emotion when viewing web

pages with Chinese models with a non-Duchenne smile (ethnic in-group) than with

Western models (ethnic out-group). This would have led to less deep processing

of product information on websites that contained Chinese models with a happy

expression.

2.5 General Discussion

The findings reported in this paper make several theoretical contributions.

First, this research empirically explores the joint effects of facial expression and

gaze direction of online models on a wide range of indicators of consumers attention

in an e-commerce context. Although many studies in psychology have investigated

the effects of these two facial cues ([46, 43, 14, 15, 47]), there has been little re-

search effort directed at systematically exploring their joint impact in naturalistic

contexts, and it remained unclear whether joint effects existed. First, the present

studies added to previous research on gaze cueing by showing that the cuing effect
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of gaze direction appears to operate via attentional selection, rather than through

engagement. It appears from the results that the gaze cue mostly primes initial

attention to objects in the visual field that might otherwise be missed. Further, the

studies revealed evidence of interactive effects between facial expression and gaze

direction of online models, which is important given the discrepancy in findings

between prior studies ([21, 36, 22]). The present findings support the contagion

theory ([43, 44]), and show that positive affect from the happy expression when a

model looked at the viewer carried over to the product or brand. This caused more

attention to these elements of the website.

Second, this study established similarities and differences in the effects of fa-

cial cues among American and Chinese consumers ([23, 62, 24, 64]). Among both

American and Chinese participants, a model with direct gaze and a happy expres-

sion causes a larger pupil size than one with an averted gaze and a happy expression,

indicating that this combination of facial cues elicits a higher level of excitement.

Among both cultures, there was evidence of both perceptual and conceptual gaze

cueing, where gaze directed at the product on the website promoted attention to

the product and the brand. Facial expression moderated the effect of gaze direction

on attention to the text containing product information, in a similar way for both

Chinese and American participants. There were also differences between the two

cultures. For American participants, a model that looked at the viewer with a happy

expression drew more attention to the brand, while for Chinese participants a model

that looked at the product with a happy expression resulted in more attention to

the brand. These differences are caused by cultural difference in using the eyes and
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mouth as cues to recognize and interpret smiles in Asian and Western cultures, re-

spectively. Further, the racial match between a model on a website and the viewer

exacerbated the attention effects of facial expression (see Brown, Bradley and Lang

2006 [86]).

Third, compared to prior eye-tracking research ([9, 17, 7]) we examined the

effects of facial cues on attention to a wider range of regions of interest, and used

a wider range of indicators of visual attention. This provides more comprehensive

insights into the simultaneous effects of facial cues on multiple processes, including

attention selection and engagement, depth of processing, attentional focus, affect,

and memory. Importantly, among Chinese participants, our research first revealed

memory effects of gaze cueing.

The findings of this study have important practical implications for the design

of e-commerce websites. Many of these websites display models with the inten-

tion to attract attention and direct it to the product, especially for categories such

as apparel, fragrances, accessories, cosmetics and other beauty products. A small

content analysis of about fifty web sites shows that compared to Western websites

for beauty products, Asian websites employ human images much more frequently,

and most models are Asian. On Asian websites for cosmetics, most models have

averted gaze, but dont direct their gaze at the product in question. Taking apparel

as another example, models with gaze directed at the viewer are more common on

Western than on Asian websites. However, the gaze cueing effects demonstrated in

this research suggest that a models gaze, when directed at the product, can be used

to orient viewers attention to the product or brand in both cultures. In addition,

56



the practice of using smiling faces is different across different websites. Take ap-

parel as an example: almost three quarters of the models on eBay’s website shows

a neutral expression, whereas over three quarters of the models on Macys website

displays a happy expression. Hence, there does not appear to be a consensus on

the best choice of models facial expressions. The present results show, however,

that for American participants, a smiling model causes more excitement and draws

attention to the brand. Moreover, this study suggests that online retailers need to

consider interactive effects between these facial cues. For example, online retailers

can elicit consumers interest in the content and lead them to process the textual

product information deeper, by using models with a happy expression looking at

the product.

Further, the current research suggests that online retailers need to consider the

impact of facial cues in relation to culture. It is known that websites adapted to the

local culture have the potential to make consumers remain longer at the site ([9]).

Adapting websites to the preferences of users with different cultural background,

therefore, may greatly increase the effectiveness of the website in question, especially

given the escalating numbers of global online shoppers. With the development of

technologies such as website morphing, automatically changing the characteristics

of a website to match culture and demographics has become feasible and practical

([103, 104]). Online retailers can customize their websites by changing the models

ethnicity and facial cues to match consumers cultural background when they interact

with the website. For example, if the IP address identifies a viewer as Asian, the

website can automatically present Asian models with a smiling face looking at the
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product to elicit more positive affect and more attention to the brand. Gaze cueing

can have even more pronounced effects if rather than a static cue, the cue is dynamic

by moving the models eyes in the direction of the product.
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Table 2.3: Results for Chinese participants (study 3): effects of ethnicity (race)

and facial expression on fixation count and fixation duration. The posterior mean

and standard errors (in parentheses) are reported. Estimates that have a Bayesian

p-value less than 0.05 are in bold.

Variable Fixation Count Fixation Duration

Selection Engagement

Face

Intercept -13.555 (5.861) 1.353 (0.169) 4.815 (0.304)

Race (R) -2.532 (7.870) -0.02 (0.203) 0.099 (0.367)

Expression (E) -3.281 (7.625) 0.152 (0.205) 0.281 (0.368)

R*E Interaction 0.705 (9.167) -0.051 (0.288) -0.173 (0.519)

Gender -3.465 (7.328) -0.079 (0.146) -0.072 (0.265)

Eye

Intercept -11.081 (5.88) -0.153 (0.323) 2.949 (0.492)

Race (R) -5.075 (7.922) 0.048 (0.393) -0.007 (0.593)

Expression (E) -0.692 (8.540) 0.258 (0.393) 0.262 (0.596)

R*E Interaction -2.686 (8.853) -0.080 (0.550) 0.229 (0.838)

Gender -4.942 (7.501) -0.588 (0.279) -0.777 (0.430)

Product

Intercept -10.066 (4.202) 0.412 (0.312) 4.126 (0.524)

Race (R) 6.315 (3.503) 0.052 (0.378) -0.879 (0.632)

Expression (E) -4.803 (7.194) -0.564 (0.381) -1.094 (0.636)

R*E Interaction -2.402 (7.705) 0.674 (0.534) 2.058 (0.892)

Gender 2.643 (3.232) -0.019 (0.27) -0.084 (0.459)

Brand

Intercept -9.508 (4.334) 2.212 (0.202) 5.532 (0.28)

Race (R) -3.095 (7.214) -0.003 (0.243) -0.077 (0.339)

Expression (E) 4.058 (4.341) -0.351 (0.246) -0.381 (0.340)

R*E Interaction -4.143 (7.905) 0.084 (0.346) -0.061 (0.480)

Gender 1.287 (3.234) -0.044 (0.180) -0.413 (0.244)

Text

Intercept -10.097 (3.919) 2.950 (0.257) 5.595 (0.276)

Race (R) 7.154 (3.92) 0.015 (0.313) -0.429 (0.333)

Expression (E) -8.061 (7.223) -0.159 (0.318) -0.409 (0.334)

R*E Interaction -5.546 (7.968) 0.231 (0.447) 0.756 (0.470)

Gender -0.386 (0.904) -0.096 (0.224) -0.226 (0.240)
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Table 2.4: Results for Chinese participants (study 3): effects of ethnicity (race) and

facial expression on dwell time, pupil diameter, and blink rate. The posterior mean

and standard errors (in parentheses) are reported. Estimates that have a Bayesian

p-value less than 0.05 are in bold.

Variable Blink Rate Dwell Time Pupil Diameter

Probability Frequency

Intercept -10.784 (5.436) -2.313 (0.353) 9.571 (0.129) 3.718 (0.074)

Race (R) -5.39 (6.964) 0.961 (0.423) -0.284 (0.155) -0.225 (0.086)

Expression (E) -6.081 (6.774) 0.377 (0.424) -0.032 (0.156) 0.180 (0.086)

R*E Interaction 1.169 (9.508) -0.507 (0.593) 0.299 (0.22) -0.060 (0.121)

Gender 1.574 (7.006) 0.167 (0.303) 0.166 (0.112) 0.023 (0.064)
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Chapter 3: Impact of Emotions on Watching Intention in Comedy

Movie Trailers

3.1 Introduction

A movie trailer is a mini-movie that usually contains its own narrative and its

own score. It usually contains highly condensed series of selected footage from the

movie it is promoting ([105, 106]). By selecting and showing actual scenes from the

movie, it signals the quality of the movie and purports to attract viewers. These

fragmentary scene cuts allow the audiences to build expectations and imagine the

actual film plot ([107, 108]). Voice-over narration is used in movie trailer to explain

the story therefore helps audiences to understand the movie better. Trailer music,

also called signature music, is often not from the movies soundtrack itself since

trailers are usually released long before the score of the movie is composed. The

main purpose of trailer music is to provoke or support an emotional reaction to the

trailer from the audience. Trailer music has been claimed to be under-appreciated,

as only one fourth of the trailers produce their own original score. The others, to

save money and time, commonly use the score of other movies, or use classical music,

pop songs, or library music ([109]).
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Comedy is the leading genre in term of total gross revenue from 1995 to 2014.

In this time period, a total of 2,032 comedies have been produced, which is the

second most productive genre, after drama, which has about 3,744 movies. The

total box office gross of comedy is around $38 billion and the average gross is about

$20 million per movie. Comedy has a market share of over 20%, larger than the

market share of any other genre. Clearly, the main goal of comedy movies is to

amuse and elicit laughter from the audience. There are many comedy subgenres,

for example, slapstick, spoof film, black comedy, and romantic comedy, as well as

many hybrid genres, such as action comedy, horror comedy, fantasy comedy, and

sci-fi comedy.

The movie industry and box office success has seen ample research in market-

ing. Studies conducted by Litman [1983] [110], and later by Litman and Kohl [1989]

[111] have confirmed the relationships between box office success and determinants

such as time of release, distributor, movie genre, production costs, and Academy

Awards. Sharda and Delen [2006] [112] showed that the success of a movie is deter-

mined by the number of screens (on which the movie was shown during the initial

launch), special technical effects and superstars. Reviews from critics have also been

shown to play a role in influencing the box office ([113]. Conflicting results have

been reported for the effect of film ratings. Ravid [1999] [114] found that MPAA

ratings of G and PG movies have a positive effect on movie success, while studies

by Litman [1983], Austin [1984], Austin and Gordon [1987] [110, 115, 116] showed

no significant correlations. Levene [1992] [117] showed that theatre trailers and

television advertising were the two most important determinants of box office per-
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formance. Faber and OGuinn [1984] [26] confirmed the effect of movie previews and

movie excerpts, rather than film advertising, word-of-mouth and critics review, on

movie going behavior. Eliashberg et al. [2007] [118] demonstrated further that the

scripts in spoilers could be used to forecast a movies return on investment (ROI).

Movies elicit a wide range of strong emotions, including happiness, sadness,

surprise, anger, disgust, and fear ([119, 120]). They provide the audience the con-

centrated experience of these powerful emotions that are not often encountered in

day-to-day occasions. Researchers in marketing have studied emotions and shown

their impact on decision-making (for example, Isen and Patrick [1983], Lerner et

al. [2004], Lerner and Keltner [2000] [121], [122], [123]). Comedies provide the

pleasurable experience by using comic devices in the movie, such as jokes, parody,

exaggerated behaviors and so on. Like the movies they promote, comedy trailers are

targeted at inducing positive pleasurable emotions such as happiness and surprise

from their audience. Happiness, as a positive pleasant emotion usually comes from

encountering unexpected positive events ([124]). Surprise is a startle-response when

an unexpected event occurs, and it can have a negative or positive valence, and

thus can enhance or reduce attraction ([125]). However, comedies may also contain

offensive and unpleasant humors, for example, slapstick, sarcasm, prejudices and

bathroom humor. They can sometimes induce emotions such as disgust. In a study

conducted by McGraw and Warren [2010] [126], they showed that benign moral

violations tend to elicit mixed emotions of amusement and disgust.

Measuring emotions has been a complex problem ([127]). The most widely

used method to measure the subjective emotion experiences is self-report ([128]).
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Researchers also have used other objective methods to measure the peripheral phys-

iological autonomic nervous system (ANS) responses of emotions, and have used

Electroencephalography (EEG), functional magnetic resonance imaging (fMRI) and

positron emission tomography (PET) techniques to measure central physiological

(CNS) responses ([129, 130, 131, 132]). Whole bodily posture measures, facial ex-

pression and other emotional expression including vocal characteristics are most

common ways in psychology to study the complex behavioral responses of emotions

([133, 134]).

The connection between emotions and facial expressions in humans and ani-

mals was first studied by Darwin, in 1872. A century later, in 1978, Ekman and

Friesen [135] continued the study in facial expression by developing the Facial Ac-

tion Coding System (FACS) to systematically categorize emotions by coding instant

facial muscular changes ([135]). Facial behaviors can be measured by trained coders,

who use images of the face and identify human emotions by detecting facial muscle

movement, following the FACS Manual. More accurately, facial Electromyography

(EMG) is used to detect the electrical activity produced by facial muscles ([136]).

Moreover, nowadays specialized automated detection software makes it possible to

process real-time video data at a rate of four times per second ([1]).

In previous studies, Teixeira et al. [2012] [4] examined the effects of joy and

surprise on concentrating attentions and retaining viewers in online video ads. In

a lab experiment, they used eye-trackers to monitor the concentration of attention

during exposure to video ads. Facial expression footage was collected and then

analyzed by the emotion detection software. Zapping behavior was recorded as a
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measurement of viewer retention. They found that the surprise level has a stronger

effect on attention concentration than joy. The changes in joy impacted viewer

retention more than surprise, however. The level of joy improved retention more

over time, while the level of surprise improved retention less over time. Teixeira et

al. [2014] [5] conducted a large-scale field study on TV advertisements by using a

web-based face tracking system. Their study confirmed the linear relationship be-

tween entertainment level and viewing interest. It also revealed an inverted U-shape

relationship between entertainment level and purchase intent, which shows that too

much entertainment could potentially hurt purchase intent. Furthermore, the re-

sults also suggested that when entertainment comes after the brand this increases

purchase intent, while when the entertainment comes before the brand it does not.

Our study is the first web-based face tracking field study on movie trailers. Our

main goal is to investigate happiness induced by movie trailers and its downstream

effects on the intentions to watch the movie. To that end, we use automated video

analysis data collected with nViso, a marketing research company specialized in web-

based emotion recognition. nViso captures facial movements passively via a webcam

in participants own home or workplace, while they are watching movie trailers.

These moment-to-moment emotion data were collected by cloud computing using

an automated facial expression recognition system. This experiment provides data

on participants natural reaction to movie trailers, in a setting where they would

normally watch them. While multiple emotions measures were collected, in this

study we focus on happiness, surprise and disgust, as the key intended emotions of

trailers for comedy film. Pleasurable emotions elicited during exposure to multiple
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long comedy trailers are less intrusive compared to negative emotions, and thus

these trailers can be used in studies that last longer periods of time, in the present

case up to 45 minutes.

3.2 Experiment Setup and Variable Description

During the experiment, participants were asked to view a webpage that con-

tains a series of 12 comedy movie trailers. Their facial expressions during the ex-

posure were recorded remotely through the webcams. Participants were asked to

answer questions about their evaluations of all the trailers and movies as well as

their intentions of watching movies.

3.2.1 Participants and Stimuli

A total of 122 paid participants were recruited online by two major north-

eastern Universities. This group of participants had a mean age of 24 and range

from 18 to 68, with 28% males. Each participant received $5 in the form of an

Amazon Gift Card if they completed the experiment. To make the experiment

incentive-compatible, the participants also had a 1 in 10 chance of winning a free

online movie from the movies that he/she chose in the final questions. The eligible

participants must have access to a personal computer with a webcam and high-speed

Internet connection, have perfect or near-perfect vision without glasses, or use con-

tact lenses. No eyeglasses were allowed. In addition, male participants with large

amount of facial hair (full mustache or beard) may not be eligible to participate.
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Stimuli were comedy trailers selected from a pool of 100 comedy trailers

through a balanced incomplete block design. One randomly selected 2012 comedy

trailer was used as a control stimulus, which was shown to all participants at the be-

ginning of the experiment. The webpage of the experiment was designed by nViso.

All comedy movie trailers were taken from public access video channels. The movie

trailers included green band and red band versions, according to Motion Picture

Association of America (MPAA) standards. A green band trailer shows an all-green

graphic at the head of the trailer. It indicates that MPAA had approved the trailer

for appropriate audience. A red band trailer is for R-rated, NC-17-rated or unrated

movies, viewing by restricted or mature audiences, and may not be appropriate for

children. Different versions of trailers for the same movie were included, which re-

quires the participants to be at least 18 years of age. Overall, 100 trailers for 50

comedies were used in the study (49 of them were from 2012 movies, 1 from 2011

to make the number 50). Each participant was only exposed to one version of the

trailer for the same movie. Thirteen comedy subgenres were selected in the study,

including 9 drama comedies, 8 animation comedies, 7 action comedies, 7 romantic

come- dies, 4 horror comedies, 4 indie comedies, 4 parodies, 2 black comedies, one

for each of political comedy, sci-fi comedy, slapstick, sports comedy and late night

comedy. The sets of comedy movie trailers provided enough opportunities for the

viewers to be exposed to different levels and types of sub-genres of humor through

the trailers.
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3.2.2 Procedure

The participants were told that the purpose of the study is to discover fea-

tures of good comedy trailers. All participants must have a computer that has a

functioning webcam. To guarantee the quality of the facial reaction video data, the

participants needed to be in a well-lighted space to finish the experiment. Ideally,

the participants should be at least 60cm (2ft) away from their webcams. All other

applications on their computer such as email, instant message, other browser win-

dows, etc., needed to be closed during the experiment. Further, the participants

should refrain from eating, chewing, drinking or talking during the recording pro-

cess. The participants were told that the compensation would be contingent upon

them closely following these instructions.

The participants were asked for consent to participating in the experiment and

being recorded via webcam, completing it in one sitting and allowing researchers to

use the webcam video for research purposes. After the participants signed the online

informed consent form, they clicked on the link to get to the webpage containing the

comedy trailers. Each individual was shown a series of 12 trailers randomly selected

from a list produced by balanced incomplete block design. This design tried to

minimize the spillover effects by randomizing the order of the trailers shown to each

participant. The length of each trailer was between 1 to 3 minutes. After each

trailer, the participants were asked 5 questions about their previous exposure and

their evaluation of the trailer and the movie, and also their intent of watching the

movie. After all trailers were shown to the participants, they were asked to answer
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questions about their age, gender, income, their preference of movie and comedy

and their usual movie going behavior. The questions are shown in Table 3.1. By

the end of the experiment, the participants were offered a raffle in which they had

a one in ten chance to win a free DVD. The participants would choose one or more

movies from any of movies they had just watched in the experiment. If they won,

one movie was selected from the choices they made. An Amazon gift card for the

amount needed to purchase that movie was emailed to the participants. The whole

experiment took up to 45 minutes.

3.2.3 Data Description

The videos with facial reaction recorded were analyzed by nViso, which pro-

vides cloud computing and real-time operations to measure consumers emotion re-

actions in their online experimental environment. Machine learning algorithms were

used to classify the second-by-second facial muscle movement into seven emotions

based on Ekmans Facial Action Coding System ([6]). An emotional profile for each

participant, containing the measures of happiness, surprise, sadness, fear, anger,

disgust and neutral, was created. The output for each emotion at each time point

is a probability indicating the emotion intensity.

We collected two sets of data, one for the online questionnaire responses (see

3.1) and one for the emotion measurements. Some of the collected data did not

qualify due to participants relatively poor compliance with instructions (e.g. dark

lighting, sitting too close to the camera, interruption during the experiment and
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Table 3.1: Questionnaire Measurements

Variable Question Measurements

Questionnaire 1

SeenTrailer Have you seen this movie trailer before? Binary, “no” or “yes”

SeenMovie Have you seen this movie before? Binary, “no” or “yes”

RateTrailer How much do you like this movie trailer? 7-point scale, anchored by “not at all” to

“extremely”

RateMovie How would you rate the movie based on this trailer? 7-point scale, anchored by “not at all” to

“extremely”

WatchIntention Would you like to watch this movie? 7-point scale, anchored by “not at all” to

“extremely”

Questionnaire 2

Age Age Integer

Gender What is your gender? Binary, “female” or “male”

GenrePreference What genres of movie do you enjoy? 9 categories of movie genres

SubgenrePreference What subgenres of comedies do you enjoy? 11 categories of comedy subgenres

Inference What influences you the most when you are trying to figure out whether

or not to see a movie?

5 categories ( “trailer”, “stars”, “director”,

“review” and “family/friend”)

DVD You could win a DVD of one of the movies you just watched. Check all

applied.

12 categories of all movies watched

failure to complete the whole experiment). There were 122 unique respondents in

the online questionnaire data and 104 unique respondents in emotion data sets.

There were 90 common respondents in the merged data, which means that only 90

of the participants completed the entire questionnaire and had a qualified emotion

profile. After merging with control data from the calibration trailer, there were 86

respondent IDs left. One of respondent was eliminated from the analysis due to

abnormal emotion measurements in the calibration trailer (the happiness curve is

flat). Eventually, only 85 respondents were included in the final data set, which was

about 70% of the initially recruited participants.

Dependent Variables Four dependent variables were measured in this study:

• The first two dependent variables, the evaluation of trailer and movie (LikeTrailer,
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RateMovie) are 7-point scale measurements of overall liking of the trailer and

a rating of the movie. These two variables are highly correlated at a level of

0.899, confirming the effect of trailer as a signal of the quality of the movie.

• Watching intention (WatchMovie) is also measured on a 7-point scale, indicat-

ing how much participants would like to watch the movie (in the theater or on

DVD and Blue-Ray) after they have been exposed to the trailer. The watch-

ing intention is also highly correlated with the evaluation of trailer and movie

(0.870 between WatchMovie and LikeTrailer, 0.892 between WatchMovie

and RateMovie). The quality of the movie is the main factor in determin-

ing whether participants want to see the movie.

• The final dependent variable is the DVD choice (DVD) that participants entered

during the raffle. The participants either choose to enter the raffle with a

chance to win the DVD or not. The correlation between the DVD choice

and the evaluation and watching intentions were 0.441,0.452, and 0.484 for

LikeTrailer, RateMovie and WatchMovie, respectively.

Due to the high correlations between the four dependent variables, currently

we only focus on watching intention in our study. The rest of the variables can be

analyzed in the same manner.

Movie Trailer Content The movie trailer content was analyzed in terms of the

image data and audio data. This yielded the following variables.

• Scene cut: One of the generic features of movie trailer is montage. A trailer
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usually contains multiple scene cuts from the movie. Figure 3.1 illustrates the

scenes captured every second by iMovie from a sample trailer: “Men in Black

3”. In this study, scene cuts in the movie trailers are detected automatically

using the Scene Detector1, which is an advanced software utility that detects

the scene boundaries based solely on the frame image data. The total number

of scenes and the average length of scenes across each trailer are calculated.

The location of the longest scene relative to overall number of scenes in the

trailer is recorded.

• Audio Volume: We included two types of volume data: (1) Total Volume Data:

The MP4 video files are first converted to MP3 audio files. Then the amplitude

data are extracted every millisecond using sound processing software SoX2.

The averages of the absolute values are calculated within each second. (2)

Music Volume Data: By removing vocals (as well as drums and bass) utilizing

SoX, music throughout each trailer is separated from the audio files, and its

volume is calculated as described above. The two types of volume data from

the video is relative volume in the trailer video files, which are the same

across people, not the self-controlled volume that the participant is listening.

For both of the total volume data and music volume data, we calculated the

average volume, the slope of volume across the time, the average volume in the

start and end scene, and also the scene with highest total and music volume,

respectively. Figure 3.2 shows an example of total volume and music volume

1http://www.scene-detector.com
2http://sox.sourceforge.net
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Figure 3.1: Scene cuts from sample trailer (Men in Black 3)

from the same movie trailer with vertical dash line indicating the scene cuts

identified in the last step.

Emotion Measures Emotion intensities for each participant were measured on a

second by second basis. The levels of fear and anger are relatively low during expo-

sure to comedy trailers. Also sadness is highly negatively correlated with happiness

level. Therefore we only consider three emotions: happiness, surprise and disgust

in our analysis. Figure 3.3 shows an example of emotion curves containing these

three emotions for each participant watching the sample trailer: Men in Black 3.

Among these three emotions, the focus of this study is the happiness level due to

the high levels cross all trailers. Aggregated emotion measures across the trailer are

calculated as follows 3.4:

• Average: We use area under curve (AUC), which is the integrated area under
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Figure 3.2: Total and music volume. Black line indicates the total volume. Red line

is the music volume with vocal removed. Vertical dash lines indicate the scene cuts.

the emotion curve for each individual i watching trailer j to calculate the

average emotion.

• Slope: A linear straight line is fit to each emotion curve. The slope of each

emotion over time indicates the rate of emotion progress.

• Peak: The scene with the highest average emotion levels is considered to be

the peak scene. The average emotion within this scene and the location of

the scene relative to the overall number of scenes in the trailer are recorded.

The number of spikes and duration of spikes in the emotion curve that exceeds

75% of its peak value is calculated.

• End: Often times, the last scene of the trailer contains montage of strong

emotional cuts from the movies. Therefore we also include the average emotion
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during exposure to the last scene.

• Start: The average emotions during exposure to the first scene in the trailer

are also included in our analysis.

Control Variables Previous exposure to the trailer and movie might lead to differ-

ent emotional responses during the experiment. Personal preference for the movie

could affect both emotional response and watching intention after exposure to the

trailer. Previous research has demonstrated that men and women differed in movie

attendance ([137]) and genre preferences ([138]). Age has also been reported to

have an inverse relationship with movie attendance ([137]). Therefore, we use the

following control variables:

• SeenTrailer: Previous exposure to the trailer (0 = not seen, 1 = seen).

• SeenMovie: Previous exposure to the movie (0 = not seen, 1 = seen).

• GenrePreference: Preference of movie genres (0 = not preferred, 1 = preferred).

• SubgenrePreference: Preference of comedy subgenres (0 = not preferred,

1 = preferred)).

• InfluenceTrailer: Whether the participant consider movie trailer to be the

most important factor in determining to watch a movie. (0 = no, 1 = yet).

• Gender: (1 = male, 2 = female).

• Age: Individuals age in years.
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Figure 3.3: Emotion curve for sample trailer (Happiness, surprise and disgust).

Darkness of the emotion curve indicates the watching intention for each individual.

As watching intention increases, the emotion curve is darker. Vertical dash lines

indicate scene cuts.
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Figure 3.4: Happiness profile for one individual. Vertical dash lines indicate scene

cuts. The red shaded area is the region of happiness peak scene. End and start

scene are shaded in blue. The red horizontal line indicates 75% of the peak value.

Regions above the line are considered to be the spike regions. The blue line is a

linear fit of emotion curve, containing information of the intercept and slope.
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• Income: Personal income numeric categories.

We also obtain control variable data for movies from the “Internet Movie

Database” (IMDb) and “The numbers”, which are online databases of films, TVs

and video games. Specifically, we include release time (whether the movie is re-

leased during summer or Christmas holiday season), director productivity (numeric

measures of total number of movies directed by the same director) and star pop-

ularity (numeric measures of total number of movies played by the same main ac-

tor/actress).

3.3 Model

The statistical methodology used in this paper is a joint model that consists of

a Bayesian longitudinal model for emotion measures, and a generalized linear mixed

model describing the discrete intention to watch the movie, accounting for individual

heterogeneity. We first applied a Bayesian variable selection (BVS) method to select

the key predictors of watching intention. Then we conducted model selection to

select the random effects that link the emotion model and watching intention model.

Finally, we compared the model with separate model components with the joint

model that includes the selected predictor variables.
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3.3.1 Model Components for Emotion and Intention

3.3.1.1 Longitudinal Model for Emotion Data

We used a generalized linear mixed effects model for the continuous emotion

measures. The logit function of happiness probability measurement for individual i

watching trailer j at time t is denoted as hijt, which is modeled as:

hijt = θijt + εijt, (3.1)

where the error terms εijt are assumed to be independently normally distributed.

The underlying emotion trajectory θijt is expressed as

θijt = W1i(t) + X1
ijβ + ζ1Sjt + ζ2Vjt + ζ3Mjt, (3.2)

where W1i(t) = cT1i(t)Ui are subject-specific random effects, and may include ran-

dom effects for both the intercept and the slope over time. The matrix X1
ij includes

individual and trailer specific information described above, including an individuals

preference of comedy subgenres and previous exposure to the movie or trailer. The

term Sjt represents the index of the scene at time t. The term Vjt represents the

volume of movie trailer j at time t, and Mjt represents the volume of only mu-

sic after vocals are removed from the video. Let Hij = (hij1, hij2, . . . , hijT ) and

Ui = (ui1, ..., uiq). The likelihood for the emotion model is:

LHij
(Hij|Uij) =

T∏
t=1

p(hijt|Ui), (3.3)

where p(hijt|Ui) ∼ N(θijt, σ
2
h).
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3.3.1.2 Model for Watching Intentions

An ordered logit model is used for the watching intentions, which are measured

on a scale from 1 to 7, with 7 being the highest intention to watch the movie. Let

yij be individual is intention of watching the movie j. A censored latent variable y∗ij

is introduced and modeled as follows:

y∗ij = X2
ijα + W2i, (3.4)

yij =



1 y∗ij < τ1

d τd < y∗ij < τd+1, d = 1, ..., D − 1

D y∗ij > τD,

(3.5)

where W2i = dT1iUi contains the subject-specific effects that are similar to the form

of W1i(t). The matrix X2
ij consists of fourteen predictor variables selected from

the Bayesian variable selection procedure, including aggregated emotion measures,

and the volume and music data extracted from the movie trailers. The threshold

parameters satisfy the order constraint: τ1 < τ2 < ... < τD, where D = 7.

The probabilities of each intention category are modeled as:
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Pr[yij = 1] = Pr(y∗ij < τ1) = Pr(X2
ijα + W2i < τ1) = Φ

(τ1 −X2
ijα

σW2i

)
, (3.6)

Pr[yij = d] = Pr(τd < y∗ij < τd+1) = Pr(τd < X2
ijα + W2i < τd+1)

= Φ
(τd+1 −X2

ijα

σW2i

)
− Φ

(τd −X2
ijα

σW2i

)
, (3.7)

Pr[yij = D] = Pr(y∗ij > τD) = Pr(X2
ijα + W2i > τD) = 1− Φ

(τd −X2
ijα

σW2i

)
(3.8)

where W2i ∼ N(0, σ2
w), and Φ is the CDF of the standard normal distribution and

d = 1, , D − 1. Let N be the total number of observations, and Nd be the number

of individuals who select category d to indicate their watching indention. Then the

likelihood for the intention model can be expressed as:

L(yij|Ui) =
[
Φ
(τ1 −X2

ijα

σW2i

)]N1

(
D−1∏
d=1

[
Φ
(τd+1 −X2

ijα

σW2i

)
− Φ

(τd −X2
ijα

σW2i

)]Nd

)
[
1− Φ

(τd −X2
ijα

σW2i

)]ND

. (3.9)

3.3.2 Joint Model Specification

The joint model consists of the two sub-models described earlier, for the lon-

gitudinal emotion data and watching intention data. These two models are linked

through stochastic dependence between W1i(t) and W2i, which are the random ef-

fects that capture unobserved subject-specific characteristics. We include random

effects for the intercept and the slope to account for the subject-specific emotion

baseline and the speed of emotion change. Specifically, W1i(t) and W2i can be
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expressed as

W1i(t) = u1i + u2it

W2i = v1u1i + v2u2i + u3i.

(3.10)

The random effects for the intercept and the slope are denoted ui1 and ui2, and

both are assumed to follow a Normal distribution: N (X3
i γ, σu), where X3

i contains

age and gender for each subject. The parameters v1 and v2 in the intention model

measure the association between the two sub-models. The random term ui3 also

follows a Normal distribution with mean 0. We assume that all measurements for

a single individual are independent, conditional on the random effects Ui. We can

then write down the full likelihood of the joint model as:

p(Hij, yij,Ui) = L(Hij|Ui)L(yij|Ui)p(Ui) (3.11)

where

L(Hij|Ui) =
T∏
t=1

p(hijt|Ui) (3.12)

L(yij|Ui) =
[
Φ
(τ1 −X2

ijα

σW2i

)]N1

(
D−1∏
d=1

[
Φ
(τd+1 −X2

ijα

σW2i

)
− Φ

(τd −X2
ijα

σW2i

)]Nd

)

·
[
1− Φ

(τd −X2
ijα

σW2i

)]ND

. (3.13)

We apply uninformative prior distributions on all parameters in the joint

model. For all components in α, β, γ, ζ, τ , v1 and v2, a prior normal distribu-

tion N(0, 100) is imposed. The inverse of a gamma distribution Gamma(0.01, 0.01)

is used for all variances σ.
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3.3.3 Bayesian Variable Selection

To identify a parsimonious intention model, we need to select a limited set of

predictors. However, using standard model tests based on the log-marginal density

(LMD), the number of models to be considered is quite large. In particular, because

we have k = 45, then the marginal likelihood of a total of 245 = 3.52× 1013 models

has to be estimated. Therefore, we need algorithms that efficiently search the model

space. Researchers have proposed several MCMC methods for variable selection,

including Kuo & Mallick’s method ([139]), Gibbs Variable Selection (GVS) ([140]),

Stochastic Search Variable Selection (SSVS) ([141]), Reversible jump Metropolis

([142]) and Adaptive shrinkage ([143, 144]).

In the watching intention model there are 45 predictors in total, including

24 aggregated emotion measurements. We apply Gibbs Variable Selection (GVS)

developed by Dellaportas et al. [2000] [140] to estimate the posterior probability for

all possible models ([145]). The goal is to find coefficients that are small enough to

be insignificant and shrink them towards 0. In the GVS approach, the coefficients

of the regression model are assumed to have prior distributions with a mixture of a

point mass at 0 and a diffuse distribution elsewhere.

An auxiliary indicator variable Ik is introduced, with Ik = 0 indicating absence

of the covariate k in the model and Ik = 1 indicating presence. The regression

coefficient δk is then defined as the product of this indicator variable and the effect
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size parameter αk: δk = Ikαk. Thus, we have:

δk =


0 if Ik = 0 (spike)

αk if Ik = 1 (slab)

(3.14)

where k = 1, 2, ..., K = 45.

The intention model for watching the movie in equation (3) can then be mod-

ified as follows:

y∗ij = X2
ijδ + u3i. (3.15)

The Gibbs variable selection method allows for dependence between αk and Ik.

Therefore, the joint density is calculated as P (Ik, αk) = P (αk|Ik)P (Ik). The effect

size parameter αk is assumed to have a mixture prior: P (αk|Ik) = (1−Ik)N(µ̃, τ 2)+

IkN(0, σ2), where (µ̃, τ 2) requires tuning such that the values of αk proposed when

Ik = 0 is appropriate. The parameter σ2 is the prior variance of αk, which is fixed.

A Bernoulli distribution Bern(0.5) is imposed on the indicator Ik.

Posterior distributions of the parameters are obtained by Markov Chain Monte

Carlo (MCMC). The model fitting is implemented utilizing JAGS. The MCMC runs

are monitored using the package “runjags” implemented in the R-language3. We

run two parallel MCMC chains with over-dispersed initial values. We discard the

first 10000 iterations as burn-in, and use another 10000 iterations to obtain the

posterior distribution of the parameters. The Gelman-Rubin diagnostic is used to

check convergence of the model ([146]). Posterior mean, standard deviation (SD),

3http://cran.r-project.org
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95% credible intervals and Bayesian p-values are calculated.

3.4 Experiment Results

3.4.1 Results on Bayesian Variable Selection

We perform Bayesian variable selection on the standardized data for the watch-

ing intention model. Table 3.2 shows the posterior mean and standard deviations

for all the selection indicator variables Ik. If the frequency of the variable selection

indicator in the posterior distribution p(Ik|yij) exceeds a preset cutoff, we consider

including the kth predictor in the X matrix into the intention model. Otherwise, it is

excluded from the model. Before running the variable selection, the full GVS model

consists of a total of 45 predictors. Among these 45 predictors, 24 are from the ag-

gregated emotion measurements, such as the average level of emotion, the slope of

emotion progress over time, emotion peak measurements and emotion levels in the

first and last scene. Two participant-related variables, income and whether trailer

influences the decision to watch a movie, are obtained from the questionnaire and

included as well. We also added 19 trailer-related data consisting of scene, volume

data from each trailer and movie information extracted form IMDb , such as scene

number, average scene length, music volume measures, movie release time, star and

director, as described above in Section 3.

Mean values of the indicator variables, which represent probabilities of cor-

responding variables to be selected in the model, are estimated (Table ??). Some

variables are almost never included (Mean < 0.05), such as DisgustPeakIndex,
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Table 3.2: Bayesian variable selection results. The posterior means of indicators are

reported. Estimates that are greater than the cutoff 0.2 are in bold.

Variable Parameter Mean Variable Parameter Mean

DisgustPeakNum I1 0.45450 noVocalMean I24 0.27370

HappinessPeakNum I2 0.01560 volumeMean I25 0.01450

SurprisePeakNum I3 0.03930 DisgustPeak I26 0.05330

DisgustPeakDuration I4 0.04160 HappinessPeak I27 0.58940

HappinessPeakDuration I5 0.05680 SurprisePeak I28 0.18140

SurprisePeakDuration I6 0.31020 DisgustPeakIndex I29 0.01890

sceneNum I7 0.05300 HappinessPeakIndex I30 0.02490

DisgustAvg I8 0.03500 SurprisePeakIndex I31 0.03220

HappinessAvg I9 0.07000 DisgustEnd I32 0.01220

SurpriseAvg I10 0.13250 HappinessEnd I33 0.47220

DisgustCoef I11 0.01330 SurpriseEnd I34 0.06280

HappinessCoef I12 0.78530 DisgustStart I35 0.98520

SurpriseCoef I13 0.01010 HappinessStart I36 0.08930

volCoef I14 0.84130 SurpriseStart I37 0.03240

Influencetrailer I15 0.06540 VolumePeak I38 0.01260

Income I16 0.00710 VolumePeakInd I39 0.04310

SceneLenAvg I17 0.21710 VolumeEnd I40 0.02790

SceneLongestInd I18 0.98350 VolumeStart I41 0.44040

Summer I19 0.13700 MusicPeak I42 0.31210

Holiday I20 0.16380 MusicPeakInd I43 0.09840

Director I21 0.00650 MusicEnd I44 0.02560

Star I22 0.05240 MusicStart I45 0.30030

SoVocalCoef I23 0.30560
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HappinessPeakIndex, SurprisePeakIndex, HappinessPeakNum, SurprisePeakNum,

SurpriseCoef, DisgustCoef, SurpriseStart, DisgustPeakDuration, DisgustAvg,

DisgustEnd, Income, Director, VolumeMean, VolumePeak, VolumePeakInd, VolumeEnd

and MusicEnd. This result suggests that factors including where the emotion peak is

located at, how many positive emotion spikes, how much surprise change over time,

all measurements of disgust expect the number of peaks, personal income, director

of the movie, the average, peak and end of total volume and the music volume in

the last scene do not affect the intention of watching a movie at all. Others have

high probability of being included (Mean > 0.5), such as HappinessCoef, VolCoef,

SceneLongestInd, HappinessPeak, Disguststart, which indicates the significant

roles these variables might play in determining the watching intention.

To include most of the important factors while maintaining a reasonable size

of the intention model, we choose 0.2 as the cutoff for variable selection in Table

3.2, and based on that decide to include the following 14 predictors in the intention

model: the highest happiness level within the scene (HappinessPeak), number of

emotion peaks that exceed 75% of the maximum value of disgust (DisgustPeakNum),

duration of surprise level exceed 75% of the maximum (SurprisePeakDuration),

slope of happiness level (HappinessCof), disgust level in the first scene (HappinessStart),

happiness level in the end scene (HappinessEnd), the average scene length (SceneLenAvg),

location of the longest scene (SceneLongestInd), slope of total volume (VolCoef),

slope of trailer music (MusicCoef), average of music volume (MusicMean), the high-

est music volume within the scene (MusicPeak), and the average total and music

volume in the first scene (VolumeStart, MusicStart).
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3.4.2 Joint Model Selection

Using the model with 14 predictors, we test several nested versions of the

model. We use the Deviance Information Criterion (DIC) as the model selection

criteria. The DIC is defined as DIC = pD + D̄ . The expectation D̄ = Eθ[D(θ)]

measures how well the model fits the data, and the effective number of parameters is

calculated as pD = D̄−D(θ̄) , where the deviance D(θ) = −2 log f(y|θ) + 2 log h(y)

and f(y|θ) is the likelihood function for the observed data y given the parameter θ.

As the number of parameters in the model increases, pD also increases. However,

D̄ will decrease instead, which indicates better fit. Overall, the model with smaller

total DIC is preferred.

Table 3.3 shows the DIC scores for joint models with different random effect

terms W1i(t) and W2i. We run two parallel MCMC chains with 10,000 burn-in

iteration period and 10,000 iterations in JAGS for all models. The total DIC scores

for all the joint models are calculated. The models differ in the random effects

that are included, and that link the emotion and the watching intention model

components. We examine 10 models in total. Model I is a separated model with no

random effects at all. We then introduce a random intercept in W1i(t) to build a

separated model (Model II) and a joint model with association through the random

intercept (Model III). The next seven models in the tables introduce a random slope

term in W1i(t). Model IV is a separate model in which emotions and intentions

are independent. Association between the two sub-models is introduced through

random intercept (Model V), random slope (Model VI) and both (Model VII). The
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final three models (Model VIII, IX and X) repeat the same pattern as Model V, VI

and VII, with an extra random effect component in W2i. The last model (Model X)

is the joint model with full complexity, while Model IV is the reduced model with

no association between two sub-models.

In the sequel, we let

W1(t) = (W11(t),W12(t), ...,W1N(t))T ,

W2 = (W21,W22, ...,W2N)T ,

um = (um1, um2, ..., umN)T

where m = 1, 2, 3 and N is the total number of individuals in the analysis.

We start with Model I with no random effects in either of the two sub-models,

which has the largest DIC score (432817.622). When we add separate random effects

into both sub-models, this dramatically decreases the DIC score to 263807.815, as

shown for Model II in Table 3.3. In Model III, we link W1i(t) and W2i through

a common random intercept, which results in a slight increase in total DIC scores

(263892.612). When we introduce the random effect for the time-slope in Model IV,

this further decreases the DIC score to 260045.538. Models I to IV are independent

models, in the sense that there are no random effects in the level or slope of the

emotions that link the emotion model with the intention model. Associating the

two sub-models through a common random intercept (Model V) or a random slope

(Model VI) alone does not bring down the DIC score (260122.899 and 260154.729,

respectively). Linking two sub-models through both random intercept and slope

(VII) at the same time results in a slightly smaller DIC score (260122.823), which is
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Table 3.3: Joint Model Selection Results.

Model W1(t) W2(t) DIC

I 0 0 432817.622

II u1 u3 263807.815

III u1 v1u1 263892.612

IV u1 + u2t u3 260045.538

V u1 + u2t v1u1 260122.899

VI u1 + u2t v2u2 260154.729

VII u1 + u2t v1u1 + v2u2 260122.823

VIII u1 + u2t v1u1 + u3 260037.397

IX u1 + u2t v2u2 + u3 260044.718

X u1 + u2t v1u1 + v2u2 + u3 260037.103
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still higher than Model IV. However, if we keep the random effect in the intention

model, but also link W1i(t) and W2i through the random intercept (Model VIII)

or the slope (Model IX), the DIC score decreases to 260037.397 and 260044.718,

respectively, which is a better fit compared to Model IV. This suggests that the

association between two sub-models in random intercept and slope is important.

The DIC achieves its lowest value (2660037.103) when the two models are associ-

ated by both random intercept and slope (Model X), although it is only slightly

smaller than the DIC of model VII. We select Model X as our final joint model for

emotion and intention data. To summarize, this model has 14 predictor variables,

and has a linking random intercept and slope linking the longitudinal emotion data

and intention data. It indicates the intention to watch a movie is related to two

individual-specific emotion patterns, their initial emotion level and rate of emotion

changes.

3.4.3 Comparison of the Joint Model and the Reduced Model

After selecting the best joint model, we compare the estimates of the reduced

model (Model IV) and the joint model (Model X) (see Table 3.4). The joint model

has smaller DIC (260037.103) compared to the reduced model (260045.538), which

indicates better fit to the emotion and intention data. The posterior estimates for

the reduced model and joint model are similar, with some minor differences in the

effects and their P-values. Specifically for the emotion model, coefficient estimates

and significances do not seem to change. In the intention model, the peak number of
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Table 3.4: Posterior mean of parameters and Bayesian p-values for both the joint

model and the reduced model.

Joint model Reduced model

Variable Parameter Mean (SD) P-value Mean (SD) P-value

SubGenreMatch β1,1 0.033(0.004) 0 0.033(0.004) 0

Seentrailer β1,2 0.008(0.006) 0.1757 0.008(0.006) 0.1818

Seenmovie β1,3 0.157(0.008) 0 0.157(0.008) 0

Scene ζ1 -0.002(0) 0 -0.002(0) 0

Volume ζ2 -0.087(0.055) 0.102 -0.09(0.053) 0.0947

Music ζ3 -0.133(0.084) 0.1209 -0.13(0.083) 0.123

DisgustPeakNum α1 0.036(0.014) 0.0088 0.034(0.014) 0.0158

SurprisePeakDuration α2 0.004(0.002) 0.08 0.004(0.002) 0.0495

HappinessCoef α3 3.894(9.967) 0.704 4.208(9.868) 0.6688

VolCoef α4 -1.867(9.952) 0.8482 -1.6(9.923) 0.8622

SceneLenAvg α5 0.005(0.004) 0.27 0.004(0.004) 0.3539

SceneLongestInd α6 0.025(0.01) 0.0081 0.027(0.01) 0.0075

NoVocalCoef α7 0.316(9.883) 0.9719 0.496(9.987) 0.9575

NoVocalMean α8 -12.061(6.608) 0.0664 -12.7(6.531) 0.0498

HappinessPeak α9 2.012(0.659) 0.0011 1.25(0.667) 0.0585

HappinessEnd α10 4.19(0.762) 0 3.493(0.823) 0

DisgustStart α11 -10.753(3.41) 0.0026 -12.857(3.697) 0

VolumeStart α12 -2.287(2.814) 0.4313 -2.419(2.882) 0.3636

MusicPeak α13 6.305(2.691) 0.0176 6.598(2.752) 0.0177

MusicStart α14 -10.418(5.05) 0.0368 -10.348(5.082) 0.0511

Intercept γ1 0.001(0.01) 0.8853 0.001(0.01) 0.8622

Age γ2 0(0) 0.8768 0(0) 0.8756

Gender γ3 0(0.004) 0.9769 0(0.004) 0.9632

RandomIntercept v1 -0.821(0.184) 0 – –

Randomslope v2 1.504(9.744) 0.8743 – –
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disgust and location of the longest scene have very similar posterior estimates with

more than 95% of the posterior mass away from zero. The posterior estimates of the

happiness level in the end scene has a higher mean in the joint model compared to

the reduced model, both with almost 100% of it posterior mass away from zero. The

posterior mean estimate is higher for disgust level in the first scene and lower for

music peak value, compared to the reduced model (all with more than 95% posterior

mass away from zero).

Moreover, we observe differences in the intention model on the significance

between the reduced model and the joint model. For example, the peak duration

of surprise is “significant” in the reduced model, while the Bayesian p-value is 0.08

for the joint model and it would thus not be statistically significant there according

to standard criteria. Similarly, the Mean music volume is significant in the reduced

model, but only marginally so in the joint model; the posterior mean estimate of its’

negative effect is also lower in the joint model. The happiness peak, however, has no

statistically significant effect in the reduced model, but is strongly significant and

higher estimated mean value in the joint model. Similarly, while music volume at

the start of the trailer is marginally significant in the reduced model, it is significant

in the joint model. But the posterior mean estimate is lower in the joint model.

This shows that linking the emotion and intention components of the model results

in statistically and substantively different findings.

In the longitudinal emotion model, the preference of comedy subgenre (SubGenreMatch)

has a significant positive effect on emotion. If the individuals preference matches

with the trailer subgenre, the happiness level of the viewer is higher. Previous expo-
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sure to the movie (SeenMovie) also plays a significant role in determining emotion.

If an individual has watched the movie before, which suggests that their liking of

the movie is already higher compared to movies they did not decide to watch, the

happiness level while watching the trailer is higher. The happiness level generally

decreases as the trailer continues. Total volume and music volume do not seem to

have significant effects on emotion, which suggests that simply making the trailer

louder does not increase audiences emotional engagement.

In the watching intention model, the peak and end of happiness level (HappinessPeak

and HappinessEnd, respectively) both have positive effects on watching intention.

This suggests that instead of the average level, it is the peak and end of a positive

emotional experience that contribute to the watching intention afterwards. Also

there is a significant negative effect of the disgust levels in the first scene on the

watching intention, which suggests that a person that experiences a negative feeling

the beginning of the trailer is unlikely to watch the movie. The total number of

disgust peaks has a positive effect on watching intention, however. It could indicate

that a mix of different types of emotion responses may increase the watching inten-

tion of a movie. When the longest scene is placed later in the trailer, the watching

intention increases. Watching intention is also higher when the music is louder at

its peak or when the music volume in the first scene is lower. Higher music volume

at its peak will enhance the audiences response to the trailer. However, a starting

scene with loud music does not seem to be appealing and will hurt the watching

intention afterwards.

Finally, the effect of the random intercept on watching intention is negative
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and significant, which confirms the association between the emotion model and

intention model. It suggests that the individual-specific baseline level (intercept) of

happiness negatively affects the watching intention.

3.5 Discussion

In this paper, we use non-intrusive face-tracking systems to capture the moment-

to-moment emotional response to comedy trailers and jointly analyze the longitu-

dinal emotion model subject to dependent final watching intention model. We use

a large set of explanatory variables to explain emotions and watching intentions,

and a Bayesian variable selection model to test for variable inclusion that improves

model fit. Two random effects representing the individual-specific baseline emotion

level and emotion progression are introduced to link together these two models.

The first interesting finding in our analysis is that several emotion peak, end

and starting values are selected by Bayesian variable selection to enter the watching

intention model, while the average emotions are not. This result supports the Peak-

end theory proposed by Fredrickson and Kahneman [1993] [147], which described

the phenomena that people judge their experience predominantly by its most intense

point and its end, not by the average or total sum of every moment of the experience.

In our study, the peak and end of the pleasurable feeling of happiness have a positive

effect on watching intention of comedy movies. The peak volume level of the music

also was found to increase the watching intention.

The second discovery is that the start point of the experience also plays a role
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in people’s overall evaluation of the experience. If an unpleasant feeling, such as dis-

gust, is higher at the beginning, the watching intention decreases. Similarly, a loud

music volume at the beginning might catch the audiences attention, but will actually

decrease their watching intention for the movie. Moviegoers have complained about

the movie trailers being “too loud” ([107]) and our findings confirms the negative

effect of loud music at the beginning of the trailer on the watching intention of the

movie.

We also find that the longest scene that could contain more details and allows

the audiences to fully understand the story in the trailer is better placed towards

the end. Perhaps surprisingly, more peaks in disgust have a positive effect on the

watching intention. This might be due to the fact that disgust, even though an

unpleasant feeling could be induced by different types of humor and jokes, such

as slapstick, sarcasm, prejudices and “bathroom” humor, and more if this type of

humor is appreciated by the audience.

By understanding the effects of different aspects of the design of comedy trail-

ers on the success of the movies, studios can create movie trailers more efficiently

by putting the most emotionally intense scenes in a better place and adjusting the

music volume of the trailer. To summarize, we suggest filmmakers to consider the

following while making trailers for comedy movies:

• At the beginning: avoid starting trailers with scenes or jokes that might induce

negative feeling or make audiences uncomfortable, since bad first impression

hurts watching intention for the movie. Also, scenes with lower music volumes
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are preferably used in the beginning.

• In the middle: include scenes with different types of humors if possible, for

instance, slapstick, sarcasm and prejudices. One scene that has high music

volume but within audiences comfort level should be included in the middle

of the trailer.

• At the end: choose one of the funniest scenes from the movie and use it for the

end of the trailer. It would be even better if the last scene were long enough

to intrigue audiences.

In addition, we believe that using the joint model is beneficial for market-

ing research institutes or companies such as nViso to analyze longitudinal emotion

response data and the overall evaluation including watching intention, rating and

purchase intention.
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Chapter 4: Conclusions and Future Research

In this dissertation we examine how to effectively design two types of online

contents, e-commerce website and movie trailer videos. We first analyzed three eye-

tracking experiments on static e-commerce websites to examine the joint effects of

facial expression and gaze direction of models on viewers attention. Then we analyze

a face-tracking study in comedy movie trailer videos and investigated the association

between emotional responses and viewers watching intention. The findings in these

two studies provide online retailers and filmmakers insights to attract and direct

viewer’s attention and emotion engagement.

In Chapter 2, we concluded that a model gaze, when directed at the product,

can be used to orient viewers attention and that positive effect from happiness

expression when a model looks at the viewer carries over to the product or brand,

for both American and Chinese cultures. Due to the culture difference in using the

eyes and mouth as cues to recognize and interpret smiles, a model that looks at

the viewer with a happy expression draws more attention to the brand for American

participants, while a model that looks at the product with a happy expression draws

more attention to the brand for Chinese participants. The racial match between a

model and the viewer also exacerbated the attention effects of facial expression.
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These findings suggest that online retailers need to consider the impact of facial

cues in relation to culture by adapting websites to users with different cultural

background.

As with any research, the study in this chapter has limitations that suggest

directions for future research. First, we focused only on cosmetic and perfume

products in this study. A wider range of products could be investigated in future

research to help generalize the present findings. Second, we only used female models

in our experiments (the product categories studied were targeted at women). We

did find effects of the gender of participants, although this was not the primary

focus of the present research. The gender of the model employed in a website and

its interaction with the gender of the viewer may be relevant in its own right and

could be studied further. Third, we focused on two facial expressions which are

common on e-commerce websites: neutral and happy, where especially we employed

non-Duchenne smiles in this study. From the small content analysis of a sample

of Western and Asian websites for apparel and cosmetics, it appeared that around

half of the websites uses models with non-Duchenne smiles. Thus, although the

non-Duchenne smile is very common, future research, could study Duchenne smiles,

and other less common facial expressions, such as surprise.

In Chapter 3, we jointly analyzed the longitudinal emotional responses and

dependent final watching intention. We confirmed the “Peak-end” effect of positive

emotions and musics on the watching intention. We also found that a negative start

point of the experience decrease the intention. A mixed types of emotion could

potentially boost the overall experience.
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There are also limitations this study that shed light on the future study, we

analyze the content of movie trailer videos in two aspects: one is the scene cut,

which was derived based on the similarity in visual image of the frames in the

trailers. The second one is sound volume, including total volume and music volume.

The advantage of these content variables is that they can automatically be derived

using available software, without human intervention. However, one could also do a

content analysis on the script of movie trailer, which might require natural language

processing (NLP) or human editors. This would enable one to investigate questions

such as, how smooth the story is in the trailer and how well the narratives go along

with the music. Further study should look into these factors of movie trailers to

give filmmakers a more complete suggestion on how to improve trailer design.

Another possible extension of this study is to use a follow-up study on actual

movie going behavior of the individuals that participated in the study. Nevertheless,

even though movie trailer is the main source of influencing movie-going behavior and

was shown to have a positive and significant effect on expected revenues ([148]), a

good trailer does not always guarantee the success of the movie. Long-term box office

is determined by many other factors such as production cost, star power, volume and

valence of online reviews, release time, sequels, genre, age-rating, competition and

distribution company ([149, 150]), while some research has suggested that spending

money on advertisements/trailers is effective only for high quality movies ([27]).

These variables would need to be included in such a follow-up study.

We investigate the impact of emotional response to comedy trailers, which

aims at provoking laugher and joy from the audiences. Future research could extend
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the present research to other movie genres, including action, drama, documentary,

horror, music, sci-fi and fantasy, etc. Emotions other than happiness should then

also be focused on. For example, fear is the most effective emotional response during

exposure to horror movies. Whether our conclusions on which variables affect the

production of an effective trailer for a comedy movie applies to other movie genres

as well, would require further investigation.

Finally, future research could also investigate other dimensions of responses

to movie trailers that cannot be measured by facial muscle movement, such as

arousal, which could be measured by skin conductance (SC) and heart rate (HR)

and attention, which could be captured by eye-tracking. We hope the present study

provides a good starting point for such future research.

Overall, in these two eye-tracking and face-tracking studies, we investigate

viewer’s attention and emotional responses to online stimuli. We learn the joint effect

of model gaze direction and facial expression on attention in a static e-commercial

website in the first study and the effect of moment-to-moment emotional responses

on watching intentions of video trailers in the second study. We gave constructive

suggestions to online retailers and filmmakers on how to make effective websites

and comedy trailers, respectively. The methods applied in these two studies can be

extended to investigate a much wider range of online contents in marketing research.
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