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In recent years, increasing evidence indicating numerous health benefits asso-

ciated with the intake of probiotic bacteria has created a big market of probiotic

foods worldwide. However, maintaining high numbers of viable cells in probiotic

food products during the shelf life of the product and during gastrointestinal transit

is a challenge. The goal of this research is to develop a novel microencapsulation

system using xanthan gum and chitosan polyelectrolyte complex gels in order to

protect the probiotic cells against adverse environmental conditions, and to increase

their recovery rates.

The extrusion method was used to form the xanthan-chitosan microcapsules.

The effects of initial polymer concentration and chitosan solution pH on the crosslink

density of the capsule network were investigated by swelling studies and modulated

differential scanning calorimetry (MDSC) analysis. Once the capsule formulations

resulting in a highly crosslinked network structure were determined, P. acidilactici

cells were successfully encapsulated using these formulations. Efforts were made to



study the release kinetics of probiotic cells from these capsules in gastrointestinal

conditions. Cell release was found to be negligible in simulated gastric juice. In

simulated intestinal conditions, the release was relaxation controlled and complete

cell release was achieved in at least 5 hours. After exposure to simulated gastric fluid

(pH=2.0), encapsulation with xanthan gum and chitosan provided up to six-log and

four-log preservation of the freeze-dried probiotic cells over free suspending cells for

1 and 2 hours, respectively.

These results suggest that xanthan-chitosan capsules have a good potential

for delivery of probiotic cells to the intestines in high numbers where the cells can

release and colonize to benefit the consumer.
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Chapter 1

Introduction

1.1 Significance

Life style and eating habits play an important role in overall health of in-

dividuals. In recent years, increasing evidence indicating numerous health benefits

associated with the intake of probiotic bacteria has created a big market of probiotic

foods worldwide [1]. The biggest challenge in the development of probiotic prod-

ucts is to maintain the adequate number of viable cells during the shelf life of the

product as well as during the gastrointestinal (GI)-tract transit after consumption,

so that the claimed health benefits can be delivered to the consumer [2–5]. Con-

sequently, there has been a growing interest in developing techniques to enhance

the survival of probiotic bacteria particularly during the GI-tract transit of the

cells [6–14]. Microencapsulation of probiotic bacteria in hydrocolloid beads is one of

the recent techniques studied to improve the viability and activity of the cells under

unfavorable conditions by entrapping the bacteria within a bead matrix [15–18].
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Na-Alginate and κ-carrageenan, alone or combined with other polymers and cry-

oprotectants, are the most commonly used hydrocolloids for the encapsulation of

microorganisms [17, 19–21]. However, each system has its own limitations such as

susceptibility to ions, lack of mechanical strength and scale-up difficulties [22, 23].

For this reason, there remains an important need for an effective capsule design

that ensures the proper delivery of probiotics to the target destination and enables

the complete release of the cells at desired conditions to benefit from the health

promoting effects of probiotic bacteria.

1.2 Objectives

The ultimate goal of this work was to develop a novel microencapsulation

system using polyelectrolyte complex gels formed by xanthan gum and chitosan

to effectively sustain the viability of probiotics that are known to provide health

benefits to human and animals. The purpose was to protect the encapsulated cells

against harsh environmental conditions, particularly against the highly acidic gastric

conditions, and to establish a release mechanism so that the bacteria can colonize

in the gut to improve the intestinal microbiota. Specifically, emphasis was placed

on the effects of complexation conditions on the capsule network structure, the

release kinetics of the cells under GI-tract conditions, and the protective effects of

the xanthan-chitosan capsules on probiotics during GI-tract transit.
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Chapter 2

Literature Review

2.1 Microencapsulation of probiotic bacteria

Probiotics are defined as live microbial food supplements that benefit the host

by improving its intestinal microbial balance [24]. Lactic acid bacteria are among

the most important probiotic microorganisms (Table 2.1) associated with the human

gastrointestinal (GI)-tract [25]. Known health benefits of probiotic bacteria include

suppressing the growth of undesirable microorganisms in the colon and small in-

testine [26, 27], controlling serum cholesterol levels [28], reducing the risk of colon

cancer [29], stimulating the immune system [30], improving lactose utilization [31],

and controlling the allergic inflammation associated with food allergy [32].

To act as probiotics, bacteria must arrive in intestines alive and in sufficient

numbers which is suggested at 106-107 cfu/g product [26, 33]. However, signifi-

cant reduction of the number of viable and active cells in a food product occurs

inevitably due to the environmental changes such as pH, temperature, and dis-
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Table 2.1: Microorganisms considered as probiotics.

Lactobacillus
species

Bifidobacterium
species

Other lactic acid bacteria Non-lactic acid bacteria

L. acidophilus B. adolescentis Enterococcus faecalis∗ Bacillus cereus var. toyoi∗
L. amylovorus B. animalis/B. lactis Enterococcus faecium Escherichia coli strain nissle
L. casei B. bifidum Lactococcus lactis Saccharomyces boulardii
L. crispatus B. breve Leuconostoc mesenteroids Saccharomyces cerevisiae
L. rhamnosus B. infantis Pediococcus acidilactici∗ Propionibacterium
L. gallinarum∗ B. longum Sporolactobacillus inulinus∗ freudenreichii∗
L. gasseri Streptococcus thermophilus
L. johnsonii
L. paracasei
L. plantarum
L. reuteri
L. delbrueckii
subsp. bulgaricus

∗ Main application for animals Adopted from [25]

solved oxygen [2–5]. Freeze drying of the probiotic cells during initial manufactur-

ing [16, 34]; the processing conditions of food carriers, especially the low pH and

low temperature in fermented and frozen products; as well as the transportation

and storage requirements [14, 35, 36] are some of the main reasons causing the loss

of cell viability. Moreover, after their consumption, probiotic cells are subjected to

various hydrolytic enzymes, acidic conditions of the stomach, and bile salts in the

GI-tract [37, 38]. Various approaches such as addition of different growth promot-

ers [6, 7, 9, 12, 13], manipulation of fermentation and storage conditions of the food

carriers [8, 10, 11, 14], careful selection of the culture organisms according to their

interrelationships and acid-bile resistance [14], and recently, using microencapsula-

tion technology to reduce the cell loss [15–18] have been investigated to improve

the survival rates of active cells arriving in the intestines. Microencapsulation of

probiotics in hydrocolloid beads has been found to improve the viability and activ-

ity of probiotics in food products and the intestinal tract by entrapping the cells

within a bead matrix, thus, segregating them from adverse environmental condi-
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tions, as well as protecting them against bacteriophages [21, 33, 39]. There are two

common techniques applied to the microencapsulation of probiotic bacteria: The

extrusion (droplet) method [40–43] and emulsion (two-phase) system [16,21,42,44].

Both systems achieve survival rates as high as 80-95%, but the extrusion method is

simpler and cheaper [33]. Alginate is the most commonly used hydrocolloid for the

entrapment of cells due to its simple and low cost gelling mechanism [19], excellent

biocompatibility [20], and the reversibility of the immobilization [21]. However, al-

ginate gels are unstable with phosphate and lactate ions as these ions can displace

the calcium ions that stabilize the alginate gels [44]. Recent studies showed that

Ca-alginate encapsulation does not significantly improve the survival of the cells in

gastric conditions [15,38,45]. On the other hand, κ-carrageenan capsules have been

reported to provide better protection against refrigeration temperatures than Ca-

alginate beads [17]. However, with κ-carrageenan, flexible gels can only be formed in

the presence of locust bean gum [44]. The formation of κ-carrageenan-locust bean

gum capsules requires potassium ions, which can damage the probiotic cells [46].

Another approach was to use Ca-pectate gels as carriers since they are less suscep-

tible to decalcifying and acidification than Ca-alginate gels [47]. Combining other

polymers (starch, pectin, etc) and/or whey proteins with these common hydrocol-

loids has been shown to offer better protection of cells under low temperature and

pH than when these gums are used alone for the encapsulation [41, 48, 49]. More-

over, different coating materials to coat the beads as well as some additives such as

cryoprotectants were used to overcome the aforementioned disadvantages [39, 50].

However, all of these approaches have had varying degrees of success and the costs
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of operation remain a concern. The main problems of bacteria encapsulation with

Ca-alginate and κ-carrageenan gels can be summarized as susceptibility to ions,

lack of mechanical strength and scale-up difficulties [22, 23]. Some other methods

to encapsulate bacteria such as spray drying with starch reportedly did not offer

any protection against acidic conditions [15]. Sun and Griffiths [51] reported that

a mixture of gellan and xanthan gum, both of which are microbial exopolysaccha-

rides, serves as a better encapsulating agent than Ca-alginate when the cells are

exposed to the same environmental conditions. Produced by microorganisms and

secreted to the environment to serve as a protection against desiccation, bacterio-

phage attacks, variations in temperature, cell wall degrading enzymes, and osmotic

stress [52–56], microbial exopolysaccharides may be suggested as promising agents

for encapsulation of probiotic bacteria.

2.2 Xanthan Gum

2.2.1 Source, structure and applications

Xanthan gum (Figure 2.1) is a microbial exopolysaccharide consisting of a

cellulosic backbone with side chains of two mannose and one glucuronic acid on

every second glucose residue [57, 58]. In nature, the plant pathogenic bacterium

Xanthomonas campestris produce highly viscous xanthan gum which attaches to

cabbage and protects itself against dehydration and access of harmful substances, or

as a way of binding and neutralizing bacteriophages [52,54]. Presently, commercial
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Figure 2.1: Pentasaccharide repeating unit of xanthan gum.

xanthan gum is produced from glucose by batch fermentation of X. campestris. The

molecular weight of xanthan gum can reach up to 6 million Daltons, which makes

it possible to create extremely viscous solutions at very low concentrations [59, 60].

Pyruvate and acetate substitution may vary strongly depending on the par-

ent bacterial strain and the growth conditions of the bacteria [61]. Side chains

of xanthan gum represent a very high proportion of the molecule (60%). Due to

the side chains, the polymer completely hydrates in water [62]. In addition, enzy-

matic resistance of xanthan gum is thought to be due to the arrangement of the

side chains which prevents the enzymes from attacking the β-(1-4) linkages in the

backbone, thereby preventing depolymerization by enzymes, acid and alkali [63].

In aqueous solution, the stable conformation of xanthan is double helical below a

transition temperature [64]. Solution studies on the conformation of xanthan gum

suggest a rod-like structure with some degree of flexibility, depending on the molec-

ular weight [65–67]. In addition to its enzymatic resistance, xanthan gum is stable
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over a wide range of temperatures and pH, which finds many applications in food,

pharmaceutical, cosmetic, and oil-drilling industries [68–72]. Xanthan gum was ap-

proved by the U.S. Food and Drug Administration (FDA) in 1965 and became the

most widely used thickening agent in food products.

2.2.2 Rheological properties

In aqueous solution, high molecular weight xanthan molecules form a semi-

flexible wormlike structure and develop a weak-gel network due to intermolecular

interactions [66,67,73,74]. These intermolecular associations such as hydrogen bond-

ing, electrostatic and hydrophobic interactions play a crucial role in the changes of

rheological properties of the xanthan solutions [74,75]. Since the junctions between

the ordered chain sequences in the gel network of xanthan gum are weaker than

those in the true gel networks, they can be easily broken down under stress allowing

the system to flow which gives xanthan the shear-thinning behavior [76]. Due to the

presence of glucuronic acid and pyruvate in its side chains, xanthan is considered

to be an anionic polyelectrolyte [77]. However, the response of xanthan solutions to

increasing ionic strength differs from other polyelectrolytes in that they maintain a

high solution viscosity as ionic strength increases due to the increase in hydrody-

namic radius [78,79]. At low salt concentrations (up to 0.05 M), the viscosity of the

xanthan gum solutions slightly decreases and beyond this, no significant effect on

the steady shear and dynamic properties is observed [79, 80]. In addition, xanthan

viscosity does not change significantly with temperature in the presence of salt and
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the ordered conformation exists at room or elevated temperatures [77,78,81].

2.3 Chitosan

2.3.1 Source, structure and applications

Chitosan (Figure 2.2), poly-β-(1 4)-D-glucosamine, is the only natural cationic

polysaccharide and is produced by alkaline deacetylation of chitin [82, 83]. Chitin

is the second most abundant natural polysaccharide which is present in crustacea,

insects and yeasts. The molecular weight of chitin and chitosan ranges between

several hundred thousands to 1 million Daltons [84]. As one of the major by-products

of the crabbing and shrimp canning industry, chitin is also the major source of

surface pollution in coastal areas [85]. Studies on chitin and chitosan have increased

since the 1990’s to find value-added uses of these polysaccharides that show excellent

biological properties such as biocompatibility, biodegradability, lack of toxicity, and

adsorption, as well as relatively high percentage of nitrogen [82,86–88]. The degree

of acetylation (DA) is a very important property of chitosan molecules since DA

affects biodegradation capability, solubility, gelling and reactivity of chitosan [89].

The unique properties of chitosan arise from its amino groups that carry pos-

itive charges at pH values below 6.5, enabling it to bind to negatively charged

materials such as enzymes, cells, polysaccharides, nucleic acids, hair and skin [90].

Being a linear polysaccharide, chitosan has both reactive amino groups and hydroxyl

groups that can be used to alter its physical and solution properties [90]. Chitosan
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Figure 2.2: Chemical structure of chitosan.

is insoluble at alkaline and neutral pH but soluble in inorganic and organic acids

such as hydrochloric acid, acetic acid, lactic acid and glutamic acid. Water solu-

ble chitosan can be formed when hydrogen-bond formation is prevented by partial

re-acetylation of chitosan molecules by several means [87,91].

Chitin and chitosan are being extensively used in the pharmaceutical industry

(cosmetics, contact lenses, artificial skin, wound dressing), paper making, photogra-

phy, solid state batteries, waste water treatment, chromatography, dietary supple-

ments and animal feed [83,92]. Considerable amount of research has been conducted

to use chitosan as a drug delivery vehicle, especially for the treatment of colon dis-

eases, such as ulcerative colitis and Crohn’s disease and as a dietary supplement

for lowering cholesterol and controlling overweight [84, 87, 89, 93]. Chitosan for oral

administration to humans is generally recognized as safe and approved for food use

in Italy, Norway, and Japan [94,95]. In the U.S., chitosan is yet to be approved as a

food additive by the U.S. Food and Drug Administration (FDA) but was approved

in 1985 by Association of American Feed Control Officials (AAFCO) for its use in

10



animal feed, as long as the level does not exceed 0.1% of the feed [96,97].

2.3.2 Rheological properties

Concentrated chitosan solutions exhibit shear-thinning behavior and the vis-

cosity of dilute chitosan solutions are independent of shear rate [98]. Due to strong

intermolecular hydrogen bonding even at low concentration, chitosan molecules have

a tendency to entangle and form a network [99]. As a polyelectrolyte, the confor-

mation of the chitosan molecule is affected by the electric charge density [100]. For

this reason, the rheological properties of chitosan depend on factors such as pH,

ionic strength, solvent selection, concentration, molecular weight, DA, and the dis-

tribution of the acetyl groups [101]. When the pH of the solution is increased, the

intermolecular and intramolecular electrostatic repulsions between cationic charges

are reduced and chitosan chains come closer together, lowering the hydrodynamic

volume of the chitosan molecules. Such an effect may enhance the interchain and

intrachain hydrogen bonding. Similarly, as the ionic strength increases, the intrinsic

viscosity decreases due to shielding effect of counterions [85]. The apparent vis-

cosities of chitosan solutions were found to be different even at the same pH when

different types of acids were used to adjust the pH of the solution. The apparent

viscosity of chitosan was higher when dissolved in organic acids than it was when

hydrochloric acid was used. This can be attributed to the overall effect of screening

and steric effects exerted by different anions on the conformation and chain stiffness

of the chitosan molecules [98,102].
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2.4 Microencapsulation with xanthan gum and

chitosan

2.4.1 Polyelectrolyte complex (PEC) gels by xanthan gum

and chitosan

Polyelectrolytes are macromolecules having many ionizable groups such as pro-

teins and biopolymers. They fall apart into charged polyions and many oppositely

charged counterions when dissolved in polar solvents like water [103]. Their size

and shape depends on the charge and interaction with counterions. With increas-

ing charge, the flexible chain changes its shape from a contracted random coil to a

fully extended one since the charges attached to the polymer repel each other [104].

When the polyelectrolyte chain stretches out, it occupies more space and the solu-

tion becomes more viscous. On the other hand, addition of low-molecular weight

salt causes a decrease in the range of the intramolecular coulomb force and polymer

becomes a random coil again [103]. In general, the configuration of the polyelec-

trolytes depends on several factors such as pH, ionic strength, type of the solvent,

concentration, molecular weight and distribution of the charged group. This con-

figuration determines the dynamic response of the polyelectrolyte solution and the

resultant rheology [105].

Polyelectrolyte complex (PEC) gels formed by the electrostatic attractions be-

tween two oppositely charged polyelectrolytes mixed in an aqueous solution [106]

are known to exhibit unique physical and chemical properties as the electrostatic in-

12



teractions are considerably stronger than most secondary binding interactions [107].

A variety of polyelectrolyte complexes can be obtained by changing the chemical

structure of the components such as molecular weight, flexibility, functional group

structure, charge density, hydrophilicity, hydrophobicity, and stereoregularity, as

well as changing reaction conditions such as pH, ionic strength, polymer concentra-

tion, mixing ratio, and temperature [85].

In the last decade, there has been an increasing interest in the use of PEC

gels formed by chitosan and polyanions, such as alginate, carrageenan, pectin,

poly(acrylic acid), carboxymethylcellulose (CMC), and xanthan gum as carriers for

drug delivery and in immobilized systems [108–113]. Xanthan gum and chitosan

form a three dimensional network formed by reversible ionic linkages that can ab-

sorb much more water than their own weight [113,114]. As polyelectrolyte hydrogels,

xanthan-chitosan complexes were suggested as promising candidates for targeted de-

livery and controlled release of encapsulated products for oral administration due

to the fact that only nontoxic metabolites are produced during degradation and the

complex has relatively high enzymatic resistance and pH-sensitive swelling charac-

teristics [115–117]. Xanthan-chitosan PEC gels were studied as microcarriers mostly

for encapsulation of enzymes [116–119] and the studies on the applicability of the

system for bacterial cells are scarce [116].
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2.4.2 pH-sensitive swelling characteristics of xanthan-chitosan

gels

Chitosan-xanthan hydrogels are suggested as a potential candidate for targeted

delivery since the pH-sensitive swelling allows the slow release of the encapsulant

in the intestines while providing protection against acidic GI-tract conditions [117].

The swelling behavior of the xanthan-chitosan hydrogels is influenced by polymer

properties such as molecular weight and DA of chitosan as well as the complexa-

tion conditions such as chitosan solution pH and complexation time, all of which

determines the crosslink density of the complex [113, 118]. In weak acid-weak base

polyelectrolyte complexes as in the case of xanthan-chitosan, the number of elec-

trostatic bonds varies with the ambient pH because of the change in the degree

of dissociation [85]. The xanthan-chitosan complex swells in the range of pH =

10-12 in NaOH solution, with a maximum equilibrium swelling ratio (defined as

[Equilibrium diameter/Initial diameter]3) at pH = 10, and also at pH=0 in HCl

solution. In the presence of NaCl, maximum swelling can be achieved at pH = 8

since the presence of ions weakens the ionic interactions and increases the osmotic

pressure difference between the ambient solution and inside of the gel [115]. The ion-

izable groups of the xanthan gum and chitosan, which are a carboxyl group and an

amino group respectively, are oppositely charged and are electrostatically attracted

to each other during the gel formation. When the pH of the solution is increased,

amino groups start to deionize while carboxyl groups hold the negative charge which

will cause the electrostatic linkages to disappear (Figure 2.3). Meanwhile, the car-
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boxyl groups attract Na+ ions and water diffuses into the complex. Both of these

phenomena increase the osmotic pressure of the gel and consequently, the complex

swells. However, equilibrium swelling ratio decreases in NaOH solution at pH values

higher than 10 since too much increase in Na+ concentration decreases the difference

of osmotic pressure between the gel and ambient solution. Similarly, the swelling

in acidic solutions can be explained by the neutralization of the negative charges of

xanthan while the amino groups of chitosan hold their positive charge, resulting in

the swelling of the gel complex [115].

Swelling capsules formed by xanthan-chitosan complexation can be described

as hollow spheres that expand until equilibrium is reached in the release solution.

Determination of the effective diffusion coefficient of hydrogels is very complex since

their properties are affected by many parameters. Due to the swelling and destruc-

tion of the linkages between two polymers, the radius of the capsules and the amount

of the impermeable segments (obstruction effect) change with time which makes the

calculations more complex. However, effective diffusion coefficient is expected to

increase with the increased swelling and decreased polymer fraction [120].
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Figure 2.3: pH-sensitive swelling of xanthan-chitosan complex: (a) In alkaline pH (10 to 12), amino
groups deionize and electrostatic linkages disappear; whereas (b) attraction of Na+ ions increases
osmotic pressure difference and causes swelling of the gel where addition of salt helps achieve the
swelling at a lower pH such as pH 8.
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Chapter 3

Effects of Complexation

Conditions on Xanthan-Chitosan

Polyelectrolyte Complex Gels

3.1 Introduction

Polyelectrolyte hydrogels formed by xanthan gum and chitosan can be used

for encapsulation and controlled release of food ingredients, cells, enzymes, and

therapeutic agents. A variety of xanthan-chitosan PEC gels can be obtained by

changing the molecular properties of the xanthan and chitosan polymers, such as

molecular weight, degree of acetylation of chitosan, and pyruvic acid content of

xanthan, as well as changing the complexation conditions, such as chitosan solution

pH, polymer concentration, complexation time, and mixing ratio [113,118,119,121].

This study addresses the importance of polymer concentration and chitosan
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solution pH in the complexation of xanthan gum and chitosan in the form of cap-

sules. The swelling degree of the microcapsules formed by different combinations of

xanthan and chitosan was studied as an indication of the crosslink density of the

hydrogel membrane. Crosslink density is an important factor determining the sta-

bility, pH-sensitive swelling behavior (thus the release properties), as well as the me-

chanical strength of hydrogel networks. [113, 122–124]. An increase in the crosslink

density restricts the degree of swelling and reduces the pH-sensitivity by improv-

ing the stability of the network. Hence, by controlling the amount of crosslinking,

xanthan-chitosan microcapsules suitable for targeted release of probiotics can be

prepared.

3.2 Materials and methods

3.2.1 Preparation of chitosan and xanthan solutions

Chitosan from crab shells with a minimum deacetylation amount of 85% and a

molecular weight of 370 000 (reported by the supplier) was purchased from Sigma-

Aldrich Chemicals (St. Louis, MO). A known amount of chitosan was dissolved

in 1 N HCl by heating and agitating. The desired solution pH was adjusted by 1

M NaOH and DI water was added to bring it to the final volume. Xanthan gum

with a molecular weight of 1.02 million (TICAXAN r) was kindly supplied by TIC

Gums (Belcamp, MD). A predetermined amount of xanthan gum was dissolved in

DI water under heating and agitation. Both solutions were autoclaved before use.
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3.2.2 Capsule formation and Inverted microscopy

In this study, the extrusion (complex coacervation) method was used. Capsules

were formed by dropwise addition of a solution of xanthan (50 mL) into a solution

of chitosan (300 mL) using a manually operated syringe with a 0.7-mm cannula

(Becton-Dickinson, Franklin Lakes, NJ). The chitosan solution was agitated con-

tinuously for 40 min to allow crosslinking and avoid coalescence of capsules. The

capsules were filtered through a 160 µm Millipore nylon filter, washed twice with

DI water, and then freeze-dried for 24 hours.

NHS-Fluorescein labeled chitosan, prepared according to Yi et al. [125], was

kindly obtained from Dr. Payne’s lab in the Center of Biosystems Research at

University of Maryland, College Park. Fluorescently-labeled capsules were examined

under Axiovert 200 Inverted microscope (Carl Zeiss, Inc, Oberkochen, Germany).

3.2.3 Determination of the swelling degree

The effect of three complexation parameters, namely initial xanthan solution

concentration (0.5, 0.7, 1.0, and 1.5% w/v), initial chitosan solution concentration

(0.7 and 1.0% w/v) and chitosan solution pH (4.5, 5.5, and 6.2) on the degree

of swelling of the resulting capsules were studied. Ten freeze-dried capsules were

weighed and suspended in DI water overnight for each combination. The capsules

were filtered, blotted to remove surface water, and weighed. The swelling degree

(SD) values were calculated using the following equation:
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SD (%) =
Ws −Wd

Wd

× 100 (3.1)

where Ws and Wd are the weight of swollen capsules and that of dry capsules,

respectively. The averages of four replicates for each combination were reported.

3.2.4 Differential Scanning Calorimetry (DSC) measurements

Differential scanning calorimetry (DSC) measurements were carried out on

a TA Instruments Q100 DSC device (New Castle, DE). The cell resistance and

capacitance calibrations were performed in two steps. The first step was heating

an empty cell and the second step was heating the cell with equal weight sapphire

disks on the sample and reference platforms. The cell constant and temperature

calibrations were performed with an indium standard.

Standard DSC was used for the first heating and cooling runs. Approximately

5 mg of dry capsules were placed in sealed aluminum pans in small pieces. Each

sample was heated up to 160� at a rate of 10�/min and cooled back to 40� at

a rate of 5�/min to erase the thermal history of the polymers and eliminate the

effect of moisture. Modulated DSC curves were obtained from the second heating

run at 2�/min. Samples were heated from 100� to 175� with a modulation period

of 60 seconds and modulation amplitude of 0.318�. A nitrogen purge was applied

for all experiments. The reversing signal was used to compare the glass transitions

of the samples. In addition, chitosan in flakes and xanthan in powder form were

subjected to the same experimental procedure to determine their glass transition
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temperatures.

3.2.5 Statistical analysis

Statistical analyses were conducted using SAS 9.1.2 Software (Cary, NC). Fac-

torial analysis of variance was used to analyze the effect of xanthan concentration,

chitosan concentration, and chitosan solution pH on the swelling degree of the cap-

sules. Differences in least square means were used for pairwise mean comparison.

Analyses were performed using mixed procedure of SAS.

3.3 Results and discussion

3.3.1 Capsule formation

By extruding the xanthan solution into moderate concentrations of chitosan

(0.7 and 1.0% [w/v]), no stable capsules could be formed while xanthan concen-

trations were below 0.5% (w/v). Xanthan concentrations exceeding 1.5% (w/v)

resulted in formation of amorphous capsules (Figure 3.1-a, Figure 3.1-b). The pH

of chitosan solution was controlled, ranging from 4.5, where the ionization degree of

chitosan is unity, to 6.2, since chitosan precipitates above its pKa value of approxi-

mately 6.3.

Capsules formed by xanthan-chitosan complexation can be described as hol-

low spheres. Figure 3.1-c shows a xanthan-chitosan capsule prepared by NHS-

Fluorescein labeled chitosan under inverted microscope.
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(a)

2mm

(b)

(c)

Figure 3.1: Xanthan-chitosan capsules formed when initial xanthan concentration is (a) greater
than 1.5% (w/v); (b) less than 1.5% (w/v); (c) Inverted microscopy image of a 2 mm-diameter
xanthan-chitosan capsule prepared with fluorescently labeled chitosan.

3.3.2 Effect of complexation conditions on the swelling de-

gree of xanthan-chitosan capsules

The swelling degree of microcapsules formed by different combinations of xan-

than and chitosan was studied as an indication of the crosslink density of the hydro-

gel membrane. The degree of swelling decreased by approximately 50% when using

0.7% (w/v) xanthan solution instead of 0.5% (w/v)(Figure 3.2). Therefore capsules

formed from xanthan solutions at concentration of 0.5% (w/v) were not included in

the statistical analysis and DSC studies.
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Figure 3.2: Swelling degree of xanthan-chitosan capsules formed by using 0.5% (w/v) and 0.7%
(w/v) xanthan solutions.

The xanthan concentration was found to have a very significant effect on

the swelling degree of xanthan-chitosan capsules at both chitosan concentrations

(P < 0.0001) (Table 3.1). However, this effect was found to be dependent on chi-

tosan concentration and pH. When 0.7% (w/v) chitosan was used, the high the

xanthan concentration yielded a lower swelling degree under all conditions studied

except when xanthan concentration was increased from 1.0% to 1.5% (w/v) at pH

6.2. On the other hand, with 1.0% (w/v) chitosan, increasing xanthan concentration

resulted in significantly lower swelling degrees only when xanthan concentration was

increased from 1.0% to 1.5% (w/v) at pH 4.5 and 5.5 (P < 0.05) and no signifi-

cant difference was observed at other conditions. At both chitosan concentrations,

the decrease in the swelling degrees of the capsules with the increase in xanthan
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concentration was more pronounced when chitosan solution pH was 5.5 and least

significant at pH 6.2.

Table 3.1: Swelling degrees of xanthan-chitosan capsules in DI water

Chitosan (w/v)

0.7% 1.0%

Xanthan (w/v) pH 4.5 pH 5.5 pH 6.2 pH 4.5 pH 5.5 pH 6.2

0.7% ∗29i 40 21m 24bgi 27cg 17dm

1.0% 21j 30 13an 22bhj 26ch 12dn

1.5% 13ek 16el 15aeo 16fk 11fl 15dfo

Mean values with same letter are not significantly different at P=0.05 level.

* Swelling degree/100

The effect of chitosan solution pH on the degree of swelling was more significant

when the chitosan solution concentration was 0.7% (w/v) (P < 0.0001) than when

it was 1.0% (w/v) (P < 0.005) (Table 3.1). With 1.5% (w/v) xanthan concentra-

tion, the increases in pH had no significant effect on the swelling degree (P > 0.05),

whereas at other xanthan concentrations, the degree of swelling decreased signifi-

cantly when chitosan pH was increased from 4.5 to 6.2. Such significant decreases

in swelling degree with increasing chitosan pH could be attributed to the changes

in the chain flexibility of chitosan polymer with the changes in the solution pH.

The ionization degree of chitosan decreases from 1.0 to 0.5 as pH increases from 4.5

to 6.2 [126], which means that amino groups become less charged as pH increases.

As a result, one may expect that fewer ionic linkages would occur between the two
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polymers, resulting in higher swelling degrees as the pH approaches to its pKa value.

However, since the charge density of the chitosan molecule is reduced by almost 50%

as pH approaches 6.2 from a value of 4.5, the polymer chains become less extended

with a smaller radius of gyration. This might result in a higher diffusion coefficient

for chitosan chains at pH 6.2, consequently enhancing diffusion of chitosan into the

xanthan-chitosan network and forming more linkages during the specified reaction

time. This result suggests that since the formation of the xanthan-chitosan network

is instantaneous upon contact, the diffusion of chitosan chains in the bulk solu-

tion through this network plays an important role to achieve a highly crosslinked

structure with a small swelling degree.

Intriguingly, when 0.7 and 1.0% (w/v) xanthan solutions were extruded into

0.7% (w/v) chitosan solution, increases of chitosan pH from 4.5 to 5.5, first signifi-

cantly increased the degree of swelling before it reached the lowest swelling degree at

pH 6.2. This significant increase in the swelling degree when chitosan pH was raised

from 4.5 to 5.5 might be associated with the slight decrease in the charge density of

chitosan (ionization degree ca. 0.9) that lessens the ionic linkages between the two

polymers, rendering higher swelling degrees. Magnin et al. [113] have demonstrated

similar results where the swelling degree of xanthan-chitosan matrix continued to

increase with increasing chitosan solution pH from 3.5 to 5.8 in bulk form by us-

ing 0.65 wt% chitosan and 0.65 wt% xanthan solutions. Moreover, our results also

showed that when 1.0% (w/v) chitosan concentration was used, pH change from 4.5

to 5.5 chitosan solution had no significant effect on the swelling degree, suggesting

that the swelling degree was less affected by the decrease in the charge density of the
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chitosan chains as pH approaches to 5.5 when chitosan concentration is increased.

The effect of chitosan solution concentration on the swelling degree of capsules

was less pronounced than the effect of xanthan solution concentration and chitosan

solution pH. Increasing chitosan concentration from 0.7 to 1.0% (w/v) significantly

decreased the degree of swelling only when chitosan pH was 5.5 and at xanthan

concentrations of 0.7 or 1.0% (w/v). No significant difference was observed at other

conditions. These findings indicate that the parameters studied cannot be viewed

as independent parameters, as the effect of one parameter on the degree of swelling

depends on the other two parameters. While swelling studies were capable of iden-

tifying the combined effect of polymer concentration and chitosan solution pH on

the crosslink densities of xanthan-chitosan hydrogel capsules, further investigation

is needed to understand the differences in the membrane structure as influenced by

the xanthan-chitosan hydrogel preparation conditions. Therefore, DSC analysis was

performed to compare the changes in thermal transitions in order to elucidate the

changes in the crosslinking density of the capsule network.

3.3.3 DSC analysis of xanthan-chitosan capsules

Conventional DSC was used for the first heating and cooling runs. The first

heating run of each sample gave single endothermic peak at about 100�, which

was attributed to the absorbed water. Samples were cooled back to 40� before the

second heating. The modulated differential scanning calorimetry (MDSC) technique

was used for the second heating. MDSC applies two simultaneous heating rates to
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the sample. The linear heating rate provides total heat flow as conventional DSC and

sinusoidal (modulated) heating rate provides the heat capacity-related (reversing)

component of the total heat flow. The reversing signal was used to quantify the glass

transition since it separates the glass transition completely from other non-reversing

processes [127,128]. The transition enthalpies were calculated by integration of the

peaks on the reversing heat capacity (Rev Cp) curves as is usually done for first-order

phase transitions [129].

The small glass transitions observed for both chitosan and xanthan can be

explained by the fact that both polymers are partially crystalline (Figure 3.3). The

inflection points of the peaks on the Rev Cp curves correspond to the glass transition

temperature (Tg) of the samples. The Tg of chitosan was determined to be approx-

imately 148� and the enthalpy of this transition (H) was calculated as 0.016 J/g.

The Tg for xanthan gum was found to be at approximately 143� with a transition

enthalpy of H=0.01 J/g.

Representative reversing heat flow curves from the second heating runs of

the freeze-dried hydrogel capsules are shown in Figures 3.4 and 3.5. The transition

enthalpies and the glass transition temperatures were determined as described above.

It is evident from these data that the polymer complex shows weak transitions as

expected in physically crosslinked networks. For this reason, the transition enthalpy

of xanthan gum, 0.01 J/g, was selected as the threshold enthalpy to differentiate

the noise from the actual transitions appearing on the MDSC curves of the hydrogel

capsules.

Figure 3.4 shows the effect of initial xanthan concentration on the capsule
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(a)

(b)

Figure 3.3: MDSC curves of (a) chitosan; (b) xanthan gum.
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(a)

(b)

Figure 3.4: MDSC curves of xanthan-chitosan capsules showing the effect of initial xanthan con-
centration on the resulting capsule network structure. (a) Chitosan: 0.7% (w/v) pH=6.2; (b)
Chitosan 1.0% (w/v) pH=4.5.

29



network structure. In Figure 3.4-a, the MDSC curves of capsules made from 0.7%

(w/v) chitosan solution at pH 6.2 are shown. When the xanthan solution was 0.7%

(w/v), two glass transition temperatures at approximately 144� and 149� were

observed. This indicates the presence of uncrosslinked xanthan gum and chitosan

in the network. However, these transitions disappeared in the samples formed using

1.0% (w/v) xanthan, which may indicate complete crosslinking of both polymers.

This increase in crosslink density explains the significant decrease in the swelling

degree of capsules when the initial xanthan concentration was increased from 0.7%

(SD = 2049) to 1.0% (SD = 1305). On the other hand, increasing xanthan con-

centration to 1.5% (w/v) did not result in a significant difference in the degree of

swelling (SD = 1520) since the network was already completely crosslinked when

1.0% (w/v) xanthan was used.

Figure 3.4-b shows the MDSC curves of capsules prepared from 1% (w/v)

chitosan solution at pH 4.5. The transitions appeared approximately at 147� and

148.5� in the 0.7% and 1.0% xanthan curves, respectively, can be attributed to

the glass transition of chitosan and the transition appeared in 1.0% (w/v) xanthan

curve at approximately 143� corresponds to the glass transition of xanthan gum.

This suggests the presence of uncrosslinked polymer chains in both networks. When

xanthan concentration was increased to 1.5% (w/v), no transitions were observed

suggesting a completely crosslinked network. These results are in good agreement

with the swelling study, since there was no significant difference in the swelling

degree when xanthan concentration was increased from 0.7% (w/v) (SD = 2375)

to 1.0% (w/v) (SD = 2164) and with further increase in xanthan concentration to
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1.5% (w/v), the degree of swelling decreased significantly (SD = 1573).

The effect of pH on the network structure of the capsules made from 1.0%

(w/v) chitosan and 1.0% (w/v) xanthan solutions is shown in Figure 3.5. Both

transitions from xanthan gum and chitosan observed at pH 4.5 were eliminated when

the pH was increased to 6.2. This result might suggest an incomplete crosslinking

between the two polymers at pH 4.5 and a complete crosslinking at pH 6.2. The

swelling data also shows that there is a significant decrease in the degree of swelling

when pH is increased from 4.5 (SD = 2164) to 6.2 (SD = 1187), which can be

explained by the increase in the crosslink density.

Figure 3.5: MDSC curves of xanthan-chitosan capsules showing the effect of initial chitosan solution
pH on the resulting capsule network structure. Xanthan: 1% (w/v), Chitosan: 1% (w/v).
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3.4 Conclusions

Characterization of factors contributing to the crosslink density of xanthan-

chitosan network is important in developing hydrogels with particular mechanical

and controlled release properties. Results from the swelling degree and DSC experi-

ments showed that the crosslink density of xanthan-chitosan network was dependent

on the complexation conditions employed in the present study. Xanthan concen-

tration was found to be the most critical parameter in xanthan-chitosan network

formation. The hydrogel capsules were completely crosslinked at all conditions stud-

ied when initial xanthan solution concentration was at 1.5% (w/v). The increase in

xanthan concentration significantly affected the degree of swelling of the hydrogel at

both chitosan concentrations. On the other hand, the effect of chitosan solution pH

on the degree of swelling was more pronounced at 0.7% (w/v) than at 1.0% (w/v)

chitosan concentration. The swelling degree was less dependent on chitosan con-

centration than xanthan concentration and chitosan solution pH. Conformational

changes of chitosan polymer chains, which is dependent on the solution pH, were

critical in determining the crosslinked network structure that affects the swelling

degrees of resulting gels. Results from this study showed that pH and concentration

effects on the xanthan-chitosan network properties are dependent on each other.

It can be concluded that, the xanthan-chitosan network properties can be easily

modulated by changing operationally controllable parameters, especially xanthan

concentration and chitosan solution pH.
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Chapter 4

The Release Kinetics and Swelling

Behavior of Xanthan-Chitosan

Capsules

4.1 Introduction

Xanthan-chitosan hydrogels swell in response to changes in pH, temperature,

and ionic strength of the aqueous environment. In swelling controlled systems,

the molecular structure as well as the nature of the polymer system control the

mechanism by which a solute may be released from a polymer network [130] . At

high or very low pH values, the electrostatic linkages between xanthan gum and

chitosan start to disappear, allowing the network to expand and imbibe water [115].

The release of probiotic cells by such a pH-sensitive swelling-controlled mechanism

is related to the macromolecular chain relaxation and to the diffusion of the cells
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through the polymer membrane under countercurrent diffusion of water or biological

fluids into the capsules.

It is important that the encapsulation system developed in this study keeps the

cell release to a minimum until the capsules reach the small intestines where the rapid

release of the cells is desirable for their colonization. For this reason, the kinetics of

cell release under different conditions need to be studied in order to understand the

response of the system to environmental changes, particularly variations in ambient

pH. The main goal of this study was to characterize the swelling and release behavior

under simulated GI-tract conditions.

4.2 Materials and Methods

4.2.1 Calibration curve

Pediococcus acidilactici (MA18/5M, National Collection of Microorganism

Culture, Pasteur-France) was kindly provided by Imagilin Technology LLC (Po-

tomac, MD). One gram of bacterial powder was hydrated in 9 mL of DI water for

30 min by shaking at 260 rpm. One mL hydrated bacteria was inoculated to 99

mL MRS broth and incubated for 24 hours at 35�. To construct the calibration

curve, a 25 mL sample was taken from MRS broth, centrifuged at 3000 rpm for 30

minutes and washed with sterile distilled water under the same conditions. After

necessary dilutions, OD values at 600 nm were recorded by a Heβ IOS Spectropho-

tometer (ThermoSpectronic, Rochester, NY) and the corresponding samples were
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oven dried overnight for mass determination.

4.2.2 Microencapsulation of P. acidilactici

One milliliter of hydrated P. acidilactici cells was inoculated into 99 mL MRS

broth and incubated at 35� for 24 hours. Actively growing cells were recovered from

MRS broth by centrifuging at 10000 rpm for 10 minutes and then were washed twice

with sterile phosphate buffered saline (PBS) solution under the same centrifugation

conditions. DI water was added to the cell pellet and vortexed. Xanthan and

chitosan solutions were prepared as described in section 3.2.1. Encapsulation was

achieved by dropwise addition of xanthan and P. acidilactici mixture (9:1 v/v)

into chitosan solution using a manually operated syringe with 0.7-mm cannula. The

chitosan solution was agitated continuously for 40 min to allow crosslinking and to

avoid coalescence of capsules. The capsules were filtered through a 160µm Millipore

nylon filter, washed twice with DI water, and then freeze-dried for 24 hours.

4.2.3 Kinetics of cell release

A known amount of freeze-dried capsules were suspended in release solutions,

namely simulated gastric fluid (Fisher Chemicals, Suwanee, GA), simulated intesti-

nal fluid (Fisher Chemicals, Suwanee, GA), and DI-water. The cell concentration

in the solutions was monitored over time. A 1 mL sample was taken periodically

in order to monitor the changes in OD values at 600 nm by using a HeβIOS Spec-

trophotometer (ThermoSpectronic, Rochester, NY). Consequently, 1 mL of release
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solution was added after each sample is taken in order to avoid any errors in calcula-

tions. Dilutions were performed when necessary. The calibration curve of the strain

was used to relate the OD values to cell concentration. Averages of two replicates

for each sample were reported. Cell release kinetics were studied in deionized water

for 72 hours at room temperature (under 150 rpm); in simulated intestinal fluid

(composed of pancreatin, KH2PO4 and NaOH ) at pH=6.8 for 24 hours at room

temperature (under 150 rpm); in simulated gastric fluid (composed of pepsin, NaCl

and HCl) at pH=1.0 and pH=2.0 (37� under 150 rpm); and finally in simulated

intestinal fluid after 2 hour exposure to simulated gastric fluid at pH=2.0 (37�

under 150 rpm).

The cell release data were analyzed according to the Higuchi equation [131],

eqn (4.1); Korsmeyer-Peppas equation [132], eqn (4.2); and Peppas-Sahlin equation

[133], eqn (4.3) using MATLAB version 6 R13 (MathWorks Inc, Natick, MA). Non-

linear least squares fitting method was used to determine the parameters in each

equation.

Mt

Mf

= k′t1/2 (4.1)

Mt

Mf

= ktn (4.2)

Mt

Mf

= kdt
m + krt

2m (4.3)

where Mt is the concentration of the cells released at time t, Mf is the concentra-

tion of the cells released at equilibrium, k and k′ are constants incorporating the

structural and geometric characteristics of the hydrogel, and n is the release expo-

nent describing the mode of the transport mechanism, and m is the purely Fickian

36



diffusion exponent for a system of any geometrical shape.

4.2.4 Dynamic swelling behavior

Ten freeze-dried capsules were weighed and placed in simulated gastric fluid

followed by simulated intestinal fluid. The capsules were carefully removed from

the solutions, blotted for the removal of surface water and weighed at specified time

intervals. The swelling ratio, q, was calculated as follows:

q =
Ws

Wd

(4.4)

where Ws is the weight of swollen capsules and Wd is the weight of the dried capsules.

The averages of three replicates for each combination were reported.

The water absorption data was analyzed according to the Higuchi equation,

eqn (4.1); Korsmeyer-Peppas equation, eqn (4.2); and Peppas-Sahlin equation, eqn

(4.3) using MATLAB version 6 R13. Non-linear least squares fitting method was

used to determine the parameters in each equation.

4.3 Results and Discussion

4.3.1 Calibration curve

The optical density of the cells in suspension was found to be related to cell

concentration by a factor of 4.0773 (Figure 4.1).
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Figure 4.1: Calibration curve of P. acidilactici.

4.3.2 Kinetics of cell release

In swelling-controlled-release systems, solute transport through the polymer

network is controlled by several physico-chemical phenomena such as polymer water

uptake, gel layer formation, and polymeric chain relaxation [134, 135]. Delivery of

the entrapped cells from hydrogel networks is a mass-transfer controlled process and

depend on environmental factors such as pH, temperature, and ionic strength. The

xanthan-chitosan capsules with different combinations were exposed to simulated

gastric and intestinal fluid to study the cell release kinetics of the capsules under

GI-tract conditions.

Figure 4.2 shows the cell release from xanthan-chitosan capsules (prepared

from 0.7% [w/v] chitosan solution at pH 6.2 and 1% [w/v] xanthan solution) in DI-

water, in SIF and in SGF at pH=1.0 and 2.0. The negligible release in DI-water for

72 hours (only first 26 hours is shown) indicates that capsules are stable in DI-water.
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In SIF, the release from the capsules was very slow in the beginning and the release

rate increased after 8 hours. Maximum release of the cells from the capsules was

achieved after 24 hours in SIF. When capsules were suspended in SGF at pH=2.0,

the cell release was in negligible amounts for 2 hours. However, cells were released

rapidly in SGF at pH=1.0 and the OD values started to decrease after 2.5 hours,

indicating cell death due to low pH. These results suggest that the pH of the SGF

solution is more critical in determining the release properties of xanthan-chitosan

capsules than the presence of enzyme (pepsin). The enzymatic resistance of the

complex can be explained by the conformational changes that occur in chitosan after

complexation with enzymatically resistant xanthan gum. These changes might make

the sensitive sites of chitosan less accessible to hydrolytic action of the media [117].

Figure 4.3 shows the cell release profiles from xanthan-chitosan capsules for

four different matrix formulations. Capsules were kept in SGF at pH 2.0 for 2 hours

prior to be suspended in SIF at pH 6.8. For all combinations, the cell release in SGF

was negligible. A time lag was observed in the early phase of the cell release from

the capsules in SIF, indicating a highly-crosslinked network structure [136]. The

time lag was longer for the capsules prepared from chitosan solution at pH 6.2 (60

min) than at pH 4.5 (30 min). Complete release of the encapsulated cells in SIF was

achieved after 5.5 hours and 5 hours of exposure when initial chitosan solution pH

was controlled at 6.2 and 4.5, respectively. Longer time lag and longer release time

observed in the case of capsules prepared from chitosan solution at pH 6.2 suggests a

more crosslinked hydrogel network compared to the membrane network of capsules

prepared from chitosan solution at pH 4.5. These results are in agreement with the
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(a)

(b)

Figure 4.2: The release of P. acidilactici cells from xanthan- chitosan capsules (Chitosan: 0.7%
(w/v), pH=6.2; Xanthan: 1.0% (w/v)) in (a) DI water and SIF; (b) in SGF at pH=1.0 and pH=2.0.
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swelling degree experiments reported in Chapter 3.

Table 4.1: Analysis of cell release data from xanthan-chitosan capsules using Higuchi eqn,

Korsmeyer-Peppas eqn, and Peppas-Sahlin eqn.

Capsule Higuchi eqn∗ Korsmeyer-Peppas eqn∗ Peppas-Sahlin eqn∗

combinations k′ r2 n k r2 kd kr r2

with 0.7% Ch (min−0.5) (min−n) (min−0.43) (min−0.86)

pH=6.2; X=0.7% 0.2374 0.7888 2.043 0.03598 0.9924 -0.5222∗∗ 0.473 0.9936

pH=6.2; X=1.0% 0.0432 0.8704 1.233 0.00098 0.9467 -0.044∗∗ 0.0116 0.94881

pH=4.5; X=0.7% 0.3304 0.9459 1.082 0.2422 0.9954 -0.1275∗∗ 0.3724 0.9946

pH=4.5; X=1.0% 0.1954 0.8878 1.284 0.1001 0.9959 -0.1646∗∗ 0.2624 0.9951

∗k′ (min−0.5), Higuchi kinetic constant; k (min−n), Korsmeyer-Peppas kinetic constant; kd (min−0.43), diffusional

constant; kr (min−0.86), relaxational constant; r2, correlation coefficient.

∗∗The negative values obtained for kd should be interpreted in terms of a diffusion process insignificant compared

to the relaxation mechanism [137].

The portion of the cell release curve with a fractional release (Mt/Mf) between

0.1 and 0.6 was analyzed according to the Higuchi equation in (4.1); Korsmeyer-

Peppas equation in (4.2); and Peppas-Sahlin equation in (4.3). The Higuchi model is

applicable if the release is largely governed by diffusion through water-filled pores in

the matrix. A good fit to Kormeyer-Peppas equation indicates the combined effect of

diffusion and relaxation mechanisms for the release. For spherical systems, n = 0.43

indicates Fickian (diffusion controlled) transport, 0.43 < n < 0.85 indicates non-

Fickian (anomalous) transport and n = 0.85 implies Case II, zero-order (relaxation-

controlled) transport [133,138]. Values of n higher than 0.85 for release from spheres

are considered to be Super Case II kinetics [132]. The relative contribution of the

diffusion and relaxation processes to the release mechanism can be analyzed by

Peppas-Sahlin equation. The purely Fickian diffusion exponent, m, for xanthan-

chitosan microcapsules corresponds to a value of 0.43 since spherical matrices present
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(a)

(b)

Figure 4.3: Fractional release of P. acidilactici cells from xanthan-chitosan capsules in SGF at
pH=2.0 and in SIF at pH 6.8. (a) Chitosan: 0.7 % (w/v), pH=6.2; Xanthan: 0.7% (w/v) and
1.0% (w/v); (b) Chitosan: 0.7% (w/v), pH=4.5; Xanthan: 0.7% (w/v) and 1.0% (w/v).
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an aspect ratio of 1 [133]. The main parameter values from different equations are

summarized in Table 4.1 to describe the mode of transport mechanism.

A good fit to Korsmeyer-Peppas (n > 0.85) and Peppas-Sahlin (kr À kd)

equations suggests that the cell release from xanthan-chitosan capsules in SIF (af-

ter 2 hrs exposure to SGF) is controlled by polymer relaxation (Table 4.1). Since

Higuchi model is only applicable to diffusion-controlled release mechanism, the re-

lease data showed a poor fit to this equation. The n values higher than 0.85 reveals

a Super Case II transport mechanism for the release of cells from xanthan-chitosan

capsules regardless of the combination used. Super Case II transport mechanism

might result from an increased plasticization at the relaxing boundary (gel layer)

due to a reduction of the attractive forces among polymeric chains [139,140].

4.3.3 Dynamic swelling behavior

Xanthan-chitosan hydrogels exhibit pH-sensitive swelling characteristics due to

the deionization of the functional groups in the hydrogel which significantly affects

the penetrant transport mechanism of the polymer networks [115, 130]. Highly

swollen hydrogels contain large amounts of unbound water which allows greater

solute release [135]. The objective was to study the dynamic swelling behavior of

xanthan-chitosan capsules under simulated GI-tract conditions.

Figure 4.4 shows the dynamic swelling of xanthan-chitosan capsules, prepared

from 0.7% (w/v) chitosan at pH=6.2 and 0.7% (w/v) or 1.0% (w/v) xanthan in SGF

at pH=2.0 and in SIF. The swelling ratio, q, was constant in SGF and increased
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(a)

(b)

Figure 4.4: (a) Dynamic swelling ; (b) water absorption curve of xanthan-chitosan capsules (pre-
pared from 0.7% [w/v] chitosan at pH=6.2 in combination with 0.7% and 1.0% [w/v] xanthan) in
SGF at pH=2.0 and in SIF at pH 6.8.
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rapidly for the first two hours in SIF for both combinations. This rapid swelling

observed in the early stage of swelling also supports the findings in Section 4.3.2

suggesting that the rate-limiting factor for the cell release is chain relaxation. The

capsules swelled to at least 80 times of their dry weights at equilibrium. While

capsules with 1% (w/v) xanthan reached the equilibrium swelling ratio after two

hours, at least 6 hours was needed for the capsules to reach equilibrium for capsules

with 0.7% (w/v) xanthan gum.

The water absorption data was analyzed according to the Higuchi equation,

eqn (4.1); Korsmeyer-Peppas equation, eqn (4.2); and Peppas-Sahlin equation, eqn

(4.3). The main parameter values from different equations are summarized in Ta-

ble 4.2. A good fit to Higuchi model, the low n values determined by Korsmeyer-

Peppas equation and significantly higher values obtained for kd compared to kr by

Peppas-Sahlin equation suggests that the swelling of xanthan-chitosan capsules in

SIF (after 2 hrs exposure to SGF) is diffusion-controlled for both combinations.

Table 4.2: Analysis of dynamic swelling data for xanthan-chitosan capsules using Higuchi eqn,

Korsmeyer-Peppas eqn, and Peppas-Sahlin eqn.

Capsule Higuchi eqn∗ Korsmeyer-Peppas eqn∗ Peppas-Sahlin eqn∗

combinations k′ r2 n k r2 kd kr r2

with 0.7% Ch (min−0.5) (min−n) (min−0.43) (min−0.86)

pH=6.2; X=0.7% 0.0536 0.9792 0.3966 0.0094 0.9926 0.0863 -0.0007∗∗ 0.9971

pH=6.2; X=1.0% 0.0911 0.9537 0.326 0.1889 0.9826 0.158 -0.0057∗∗ 0.9859

∗k′ (min−0.5), Higuchi kinetic constant; k (min−n), Korsmeyer-Peppas kinetic constant; kd (min−0.43), diffusional

constant; kr (min−0.86), relaxational conctant; r2, correlation coefficient.

∗∗The negative values obtained for kr should be interpreted in terms of a relaxation mechanism insignificant com-

pared to the diffusion process [137].
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4.4 Conclusions

In swelling-controlled systems, the coupling of diffusion and macromolecular

relaxation control the release mechanism. The xanthan-chitosan capsules were found

to be stable in DI water. The pH of SGF was critical in determining the release

properties of the capsules. The cell release in SGF at pH 2.0 was negligible suggesting

that xanthan-chitosan capsules have a good potential for delivery of probiotic cells

to intestines. The cell release from xanthan-chitosan capsules in SIF after 2 hr

exposure to SGF at pH 2.0, exhibited a Super Case II transport mechanism (n >

0.85) regardless of the formulation used. The complete release of the cells from

the capsules was achieved in at least 5 hours. Xanthan-chitosan capsules were

found to swell by a diffusion-controlled mechanism. The rapid swelling observed

also supported the findings that the cell release is relaxation-controlled (kr À kd).
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Chapter 5

Protective effects of

Xanthan-Chitosan Encapsulation

on P. acidilactici cells

5.1 Introduction

For probiotic bacteria to be beneficial to the host, they should be able to

survive gastric transit and reach the small intestine in sufficient numbers [26, 33].

The harsh environment of the GI-tract (the low pH conditions of the stomach and the

presence of bile in the intestines) adversely affect the viability of probiotic cultures

[37, 38]. In this study, Pediococcus acidilactici cells were encapsulated in xanthan-

chitosan PEC gels to increase the survival rates during GI-tract transit.

Among the available techniques for encapsulating bacterial cells, entrapment

in xanthan-chitosan capsules has not been used for the encapsulation of probiotic
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bacteria. The only application of xanthan-chitosan PEC gels as microcarriers for

bacterial cells was reported by Chu et al. [116] for the encapsulation of Corynebac-

terium glutamicum, a Gram (+) soil bacterium. The immobilization was carried out

by mixing xanthan-chitosan PEC solution with the cell suspension and adding this

mixture to distilled water through a syringe.

In this work, a simple and cost-effective extrusion method was used to en-

capsulate the probiotic cells. The goal was to determine the protective effects of

encapsulation with xanthan gum and chitosan on P. acidilactici cells against freeze-

drying and simulated gastric fluid at pH 2.0.

5.2 Materials and Methods

P. acidilactici cells were encapsulated as described in Section 4.2.2. Fifty

milliliters of cell-xanthan mixture were dropped into 200 mL of chitosan solution

by using a manually operated syringe to form the capsules. Freeze-dried capsules

were subjected to simulated gastric fluid (SGF) at pH 2.0 for 1 hour and 2 hours

at 37� under 150 rpm. Two different combinations (chitosan: 0.7% [w/v], pH 6.2;

xanthan: 1.0% [w/v] and chitosan: 1.0% [w/v], pH 6.2; xanthan: 0.7% [w/v]) were

used to encapsulate the bacteria. Capsules were filtered from SGF solution and

suspended in SIF solution for 5 hours at 37� under 150 rpm to release the cells

from the capsules. One milliliter aliquots from the release solutions were serially

diluted and 3 replicates for each dilution were plated on MRS agar and incubated

for 48 hours at 35�. The experiments were repeated twice for each combination.
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Smaller capsules were prepared by spraying the xanthan gum solution at 0.7%

(w/v) through a 0.7 mm nozzle (Büchi B-290 Spray Dryer, Flawil, Switzerland)

into chitosan solutions at 3 different concentrations (0.4, 0.7, and 1.0 % [w/v]) and

2 different pH values (4.5 and 6.2). Moreover, the effect of increasing xanthan

concentration from 0.7 to 1.5% (w/v) on the protective properties of the capsules

was studied. Capsules were subjected to SGF at pH 2.0 for 1 hour and cells were

released from capsules in SIF solution. One milliliter aliquots from the release

solutions were serially diluted and 3 replicates for each dilution were plated on MRS

agar and incubated for 48 hours at 35�. The experiments were repeated three times

for each combination.

Free cells were mixed with 10% (w/v) skim milk (9:1 v/v), transferred to

freeze-drying flask and frozen in dry ice before connected to the freeze dryer (Ther-

moSavant, Holbrook, NY). Freeze-dried cells were suspended in SGF for 1 hour and

2 hours under 150 rpm. One milliliter samples from free-cell solution were serially

diluted and 3 replicates for each dilution were plated on MRS agar and incubated

for 48 hours at 35�.

5.3 Results and Discussion

P. acidilactici are used in dietary supplements and in animal feed for their

probiotic effects. They can produce large amounts of lactic acid that helps keep a

proper balance of microflora in the digestive system [141]. Nevertheless, to act as

a probiotic, the bacteria must survive in acidic stomach conditions and arrive in
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the intestines in high numbers. Gastric juice has a very low pH of 0.9 in healthy

adults. However, the presence of food may raise the pH value to 3.0 and it takes 2

to 4 hours for stomach to empty after ingestion of food [142]. In this work, free and

encapsulated P. acidilactici cells were subjected to SGF at pH=2.0 for 1 hr or 2

hours at 37� with moderate shaking to evaluate the effect of encapsulation on the

survival of P. acidilactici cells in stomach conditions.

Two different combinations based on the swelling degree and DSC studies

(Chapter 3) were chosen to encapsulate the bacteria in the capsules prepared by us-

ing a syringe. The capsules formed with these combinations were highly crosslinked

with relatively small swelling degrees (Table 3.1). Xanthan-chitosan capsules pre-

pared from 0.7% (w/v) chitosan at pH 6.2 and 1.0% (w/v) xanthan showed six-log

preservation of P. acidilactici cells over free suspending cells after exposed to SGF

(pH=2.0) for 1 hr and over four-log retention when exposure time was 2 hours (Fig-

ure 5.1-a). The protection effect of the capsules prepared from 1.0 (w/v) chitosan

at pH 6.2 and 0.7% (w/v) xanthan was more than five logs and three logs after 1hr

and 2 hours in SGF, respectively (Figure 5.1-b).

The resistance of lactic acid bacteria to freeze-drying and low pH is strain

specific. It has been reported that survival rates of P. acidilactici in simulated

gastric juice (SGF) is similar to the survival rates of Lactococcus lactis subsp. lactis

and slightly lower than Lactobacillus casei subsp. casei [143]. Xanthan-chitosan

microcapsules were found to provide better protection to P. acidilactici cells against

freeze-drying and SGF than the protection provided by alginate capsules to L. casei

cells [144,145].
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(a)

(b)

Figure 5.1: Protective effects of encapsulation on the viability of P.acidilactici cells against freeze-
drying and SGF (pH=2.0) exposure (n=2) using (a) 0.7% and 1.0% chitosan.
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The higher protection observed with the capsules prepared from 0.7% (w/v)

chitosan at pH 6.2 and 1.0% (w/v) xanthan might be attributed to higher con-

centration of xanthan gum used compared to the other combination. Xanthan

gum is known to be enzymatically resistant and is stable at low pH in contrast

to other gums possessing carboxylic acid function, which are greatly influenced by

pH [70, 71, 117, 146]. Sun and Griffiths [51] also reported that encapsulation of

bifidobacteria in xanthan-gellan capsules increased their tolerance of high acid en-

vironments compared to alginate encapsulation.

Smaller size capsules were prepared by using a 0.7-mm nozzle to see the effect

of capsule size on the protective properties of xanthan-chitosan capsules (Figure

5.2).

Figure 5.2: Relative size of capsules prepared by using a syringe and a nozzle.

Although encapsulation in smaller capsules provided some protection against

freeze-drying and low pH, protective effects observed in the case of smaller capsules

(Figure 5.3-a) were significantly lower than that of provided by larger capsules (Fig-

ure 5.1). For instance, when capsules were prepared from 1.0% (w/v) chitosan at pH

6.2 and 0.7% (w/v) xanthan gum, encapsulation in larger capsules improved the cell
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(a)

(b)

Figure 5.3: Protective effect of xanthan-chitosan capsules prepared by using a 0.7-mm nozzle on
the viability of P. acidilactici cells against freeze-drying and SGF exposure for 1 hr. (a) Effect of
initial chitosan solution concentration and pH (Xanthan= 0.7 % (w/v), n=3), (b)Effect of initial
xanthan gum concentration (Chitosan=0.7 % (w/v) & pH 4.5, n=3).

53



viability at least three logs compared to the encapsulation in small capsules. Simi-

lar results have been reported by other researchers. Lee and Heo [45] reported that

survival of bacterial cells under in vitro gastric conditions decreased with decreasing

capsule size (diameter 1-2.6 mm). Sheu and Marshall [21] indicated that larger bead

diameters provided more protection for Lactobacillus bulgaricus in frozen desserts.

Moreover, it has been reported that small beads of size less than 100 µm did not

significantly protect the probiotic bacteria in simulated gastric juice compared to

free cells [147]. Finally, the effect of increasing initial xanthan concentration on

the protective properties of xanthan-chitosan capsules was studied for the capsules

prepared by nozzle. It was found that increasing initial xanthan gum concentra-

tion from 0.7 to 1.5% (w/v) only slightly improved the cell viability when chitosan

solution concentration and pH were 0.7% (w/v) and 4.5, respectively (Figure 5.3-b).

These results suggest that xanthan-chitosan hydrogels have a promising pro-

tective mechanism for probiotic preservation.

5.4 Conclusions

Encapsulation of probiotic bacteria in capsules composed of xanthan gum and

chitosan increased the survival rate of the cells during freeze-drying and in simulated

gastric fluid compared to non-encapsulated cells. The viability of freeze-dried P.

acidilactici cells in simulated gastric conditions was found to increase with increased

capsule size. This approach might be useful in delivery of probiotic cultures to the

GI-tract in high numbers to benefit from the health promoting effects of probiotic
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cells.
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Chapter 6

Conclusions

In this dissertation, a microencapsulation system using polyelectrolyte com-

plex gels formed by xanthan gum and chitosan was developed to sustain the viability

of probiotic bacteria in simulated gastrointestinal tract conditions. First, the effects

of initial polymer concentration and chitosan solution pH on the crosslinking density

of the capsule network were investigated by swelling studies and modulated differen-

tial scanning calorimetry analysis. Xanthan concentration was found to be the most

critical parameter in xanthan-chitosan network formation. Conformational changes

of chitosan polymer chains as pH approaches to 6.2 were critical in determining

the crosslinked network structure. Swelling degree was less dependent on chitosan

concentration than xanthan concentration and chitosan solution pH. Results from

this study showed that when initial xanthan concentration was 1.5% (w/v) complete

crosslinking can be achieved at all conditions studied. However, it was also possi-

ble to obtain a completely crosslinked network at 1% (w/v) xanthan when chitosan

solution pH was 6.2.
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In the second part of this dissertation, kinetics of cell release from highly

crosslinked xanthan-chitosan capsules was studied under different conditions. It

was found that xanthan-chitosan capsules were stable in DI water and cell release

was negligible in simulated gastric fluid (SGF) at pH 2.0 for 2 hrs. These findings

suggest that xanthan-chitosan capsules have a good potential for the delivery of

probiotic cells to intestines with minimum damage to the cells in stomach conditions.

The cell release from xanthan-chitosan capsules in simulated intestinal fluid (after 2

hrs exposure to SGF at pH 2.0) was found to be relaxation-controlled and exhibited

Super Case II transport mechanism. The maximum cell release was achieved at least

in 5 hrs. This rapid release in intestinal conditions was desirable for the colonization

of the cells in the intestines.

Finally, the protection effects of capsules on probiotic cells against freeze-

drying and simulated gastric fluid at pH 2.0 were investigated. Capsules with high

crosslinking densities were chosen to encapsulate P. acidilactici cells. Xanthan-

chitosan capsules showed up to six-log and four-log preservation of probiotic cells

in SGF after 1 hr and 2 hrs, respectively. The viability of the cells was found to

increase with the increase in capsule size.

In conclusion, encapsulation of probiotic bacteria in xanthan-chitosan capsules

might be useful in delivery of probiotic cultures to the intestines in high numbers

to benefit from their health promoting effects. Based on the results reported in

this study, capsules prepared from 0.7% (w/v) chitosan at pH 6.2 and 1.0% (w/v)

xanthan gum might be suggested as the optimum combinations to encapsulate the

probiotic cells.
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