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Chapter 1

Introduction

String theory is a physical field theory in which point particles are replaced
by 1-manifolds called strings. The 2-manifold representing the time evolution of a
string is called the string worldsheet. Strings can either be closed, meaning that
their worldsheets are closed surfaces, or open, meaning that their worldsheets have
boundary. The simplest string theory is known as the bosonic string theory. This
theory, however, is not realistic since it contains only bosons (particles with integer
spin) and not fermions (particles with half-integer spin). To obtain a physically rel-
evant theory, we must include fermions in the theory. String theories with fermions
and supersymmetry (which is a symmetry relating fermions and bosons) are called
superstring theories. There are five superstring theories: type I, type IIA, type IIB,
SO(32) heterotic and Fg x Fg heterotic. While the focus of this dissertation will be
on the five superstring theories and the relations between them, it is useful to first
look at the bosonic string theory to define the bosonic fields and then add in the
fermionic fields.

This chapter will begin by giving a brief overview of string theory, assuming
the reader has some knowledge of quantum mechanics and general relativity. For
more detail on the subject, the reader is referred to [7, 60, 61, 94, 39]. Sections 1.1

and 1.2 will mainly follow [7]. This chapter will then go on to describe some of the



known dualities in string theory. There will then be a brief overview of K-theory and
the chapter will conclude by describing how K-theory is relevant to string theory
and its dualities.

Chapters 2 and 3 contain the original content in this dissertation. In chapter
2 we will explore the K-theoretic aspects of a duality between the type I superstring
theory on T* and the type IIA superstring theory on a K3 surface. Chapter 3 will
focus on classifying stable D-branes on orientifolds and how the classifications relate

to string dualities.

1.1 Bosonic String Theory

Let us parameterize the worldsheet by ¢° = 7 and ¢! = o such that ¢ parame-
terizes the spatial dimension of the string and 7 parameterizes the time dimension of
the worldsheet. Furthermore, let us choose our parameterization so that the entire
length of the string is traversed as o goes from 0 to . Let the functions X*(7,0)
where = 0,1,...,d be embeddings of the worldsheet into the spacetime manifold
with total spacetime dimension D = d + 1. Note that if a string is closed then
XH(7,0) = XH(r, ).

Let g,, be the metric on the spacetime manifold. The worldsheet then inherits
a metric,

hab = gw,aaX“ﬁbX”, (11)

where a,b = 0,1 and 0, = %. We can determine the equations of motion for the

string using the variational principle.



1.1.1 The Bosonic String Action

Relativistic point particles move along geodesics, so the action of a relativistic
point particle is proportional to the invariant length of the particle’s trajectory. This
way, when we minimize the action we are stating that particles travel along paths
of least distance, geodesics. Similarly for strings, their motion will be such that the
area of their worldsheet is minimized. Therefore, in units where A = ¢ = 1, the

string action takes the form
Sng = —T/dA, (1.2)

where T is the string tension and d A= \/—hdrdo, with h = det hy,. This is known

as the Nambu-Goto action and is the simplest string action. Note that in order

mass
length *

for the action to be dimensionless, 7" must have dimensions of length™2 =
The presence of the square root makes the Nambu-Goto action difficult to quantize.
Therefore we will instead use the string sigma model action, which is classically
equivalent to the Nambu-Goto action, but easier to quantize. The string sigma

model action is given by

Sy = —%T / drdoy/—hh™9,X - 0, X, (1.3)

where h®* = (hy) ™t and Y - Z = g, Y+ Z".

In Minkowski spacetime S, is invariant under Poincaré transformations:
SXF=a'X"+V, a, =—a,, and O0h" =0, (1.4)

reparametrizations:

0" — (o) (1.5)



and Weyl transformations:
hay — €?Thy and  SX* = 0. (1.6)

The induced worldsheet metric hg, is symmetric, so it has only three indepen-
dent components. Plugging a reparametrization transformation (1.5) into equation

(1.1), we see that hg, transforms as

ofcof?
halo) = 22 I h (o))

under reparametrizations. Therefore, we may choose two of the components of
ha, because of reparametrization invariance. Invariance of the action under Weyl
transformations allows us to fix the one remaining independent component of h.

Since we can completely gauge fix hg,, we can choose

-1 0
hab = TNab = ) (17)
0 1

as long as there are no topological obstructions (meaning the Euler characteristic
of the worldsheet is 0). Since no kinetic term of hg, occurs in the action 1.3, the

equation of motion for h% implies the worldsheet energy-momentum tensor,

2 0L,

Tpp = ——e 2
b /=R ohab

where S, = /dzaLg, (1.8)

vanishes. Once the worldsheet metric has been gauge fixed, we can write S, as

T [ o vo 2
S:§/da(X - X)), (1.9)

’ 1 © .
where X# = % and X" = %. Since we have gauge fixed hg,, we must now add

its equation of motion, T,, = 0, as a constraint.
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1.1.2 Equations of Motion and Mode Expansions

Solving for the equations of motion for X* from the action (1.9), we find that

X*#is governed by the wave equation

02 0?

Adding in the constraint T, = 0, we obtain

Toy=To = X-X'=0

1 .
Too =T = 5()(2+)<’2) =0. (1.11)
When we vary the action with respect to X* we obtain a boundary term
—T/dT(XL(SX“L,:,T — XL(SX“L,:O). (1.12)

The boundary term must vanish in order for the variation of the action to be zero.
For closed strings, the boundary term automatically vanishes, since a string being
closed implies the embedding functions are periodic, X*(7,0 + ) = X*(7,0). For
open strings there are two ways to make the boundary term vanish.

The first is to impose what are called Neumann boundary conditions:
X! |oo.x = 0. (1.13)

This means that no momentum travels through the string endpoints, since the mo-
mentum normal to the worldsheet boundary is zero. Under Neumann boundary con-
ditions the string endpoints can move freely in directions tangential to the boundary.

Neumann boundary conditions are Poincaré invariant in D-dimensional spacetime.



The second way to make the boundary term vanish is to impose Dirichlet

boundary conditions:

5 X" p—0.x = 0. (1.14)

Under Dirichlet boundary conditions the string endpoint is fixed. We could have any
combination of Dirichlet and Neumann boundary conditions, but Dirichlet boundary
conditions are not Poincaré invariant. If we have Dirichlet boundary conditions for
u=1...,D—p—1and Neumann boundary conditions for the other dimensions,
Xt for p = 1,...,D —p — 1 will be constant at the end points. The other p
spatial dimensions that obey Neumann boundary conditions define submanifolds
of the spacetime manifold with p-spatial dimensions, called D,-branes, located at
XH"|s—o and X*|,—,, on which the string endpoints are free to move. Note that as
a D,-brane moves in time it defines a (p + 1)-dimensional worldvolume. D,-branes
are an important part of this dissertation that we will return to in more detail in
sections 1.3 and 1.4, but we will start by assuming Neumann boundary conditions
for all coordinates in order to preserve Poincaré invariance. We will see in section
1.3 that Dirichlet boundary conditions (hence D,-branes) will arise naturally in the
theory.

To solve the equations of motion and constraint equations it is useful to use

worldsheet light-cone coordinates,

o =1+o0. (1.15)



In these coordinates,

1 N++ T4— 1| 01
0y = 5(87 +0,) and = — . (1.16)
n—+ nN—— 10

The wave equation for X* in light-cone coordinates is
0;0_-X" = 0. (1.17)

The most general solution to equation (1.17) can be written as the sum of right-

movers and left-movers,
XH(1,0) = Xi(r — o)+ X[ (T +0). (1.18)

We are looking for solutions for equation (1.17) that are real and obey the constraint
equations,

(0_Xg)*=(0,X1)* =0, (1.19)

coming from the constraint T,;, = 0.
The most general of such solutions satisfying the closed string boundary con-

dition is

1 1 Z 1 —2in(t—o
Xp = §x“ + §l§p“(7 —0)+ 5152 Eage Zin(r—0)
n;ﬁO
1
X = 5:5“ lsp T+0) —ZSZ —ale2in(rto), (1.20)
n;éO

where z# is the center of mass position and p* is the total string momentum. [, is

called the string length scale and is related to the string tension by



The string excitation modes are represented by the exponential terms. The con-
straint that X* be real implies that x* and p* are real and the positive and negative

modes are conjugate to each other,

(o))" =oZ, n

The left and right-moving modes combine to form standing waves in the gen-
eral solution to equation (1.17) for an open string obeying Neumann boundary
conditions. The general solution under the constraints 7T,,=0 is

1 )
XH(r,0) = 2" + Ep'T +ils E —abe™™" cos (no). (1.21)
n#0 n

The canonical momentum conjugate to X* is

PH(1,0) = 5% =TXH, (1.22)

I

where S = [ d?c L. Plugging the mode expansions into the classical Poisson brackets
for canonical coordinates, we can solve for the Poisson brackets of the modes. After
quantization, the Poisson brackets are replaced by i times the commutator. We

would find that the modes obey the following commutation relations:

[O&é‘n, O‘vuz] = [d;‘n, &rVL] = mﬁ”"5m+n,o
(1.23)
[, aq] = 0.
We can define modes
al = Tozfn and o'l = %a’im for m >0, (1.24)
m m
that satisfy the algebra defined by
[a" ,a"t] = [a", @] = "6, for m,n > 0. (1.25)

8



This is almost the algebra of raising and lowering operators for the quantum mechan-
ical harmonic oscillator, except the commutators of time components are negative.
Therefore, we can treat ! as raising operators and a” as lowering operators for
m > 0. The spectrum is built by applying raising operators to the ground state,
|0), which by definition is killed by all lowering operators. When writing a general
state |¢), we can also specify its eigenvalue of the momentum operator, k*, the

momentum of the state. Therefore a general state can be written as

0) = atnfase -t

0; k). (1.26)

The presence of the negative sign in the time component of equation (1.25)
gives rise to negative norm states (any state with an odd number of time-component
raising operators will have negative norm). We cannot have negative norm states in
the physical spectrum because it would break unitarity. It can be shown (see section
2.4 of [7]) that the negative norm states decouple from all physical processes and
all physical states have positive norm if the spacetime manifold has total dimension

26.

1.2 Superstring Theory

The bosonic string theory described in the previous section is unrealistic, since
it does not contain fermions. String theories that contain fermions are more man-
ageable when they include supersymmetry. The are two ways to formulate su-
persymmetric string theory. The Ramond-Neveu-Schwarz (RNS) formulation was
developed from the 1971 papers [64] and [54]. The RNS formalism has supersym-

9



metry on the string worldsheet. The other approach to including supersymmetry
in string theory is the Green-Schwarz (GS) formalism. It has supersymmetry in
10-dimensional Minkowski spacetime and can be generalized to other spacetime ge-
ometries. In 10-dimensional Minkowski spacetime, the two formulations are equiv-
alent. The GS formalism was developed by Green and Schwarz between 1979 and
1984. We will begin with the RNS formulation, since with it, many of the features
we are interested in are easier to derive. We will discuss the GS formulation later
when we want to generalize to other background spacetimes.

For the RNS formulation, in addition to the bosonic fields, X*(r,0), dis-
cussed in the previous section, we add fermionic partners ¢*(7,¢). The fermionic
fields are spinors on the 2-dimensional worldsheet, but transform as vectors under
Lorentz transformations of the D-dimensional spacetime. Therefore, they should be
Majorana fermions that belong to the vector representation of the Lorentz group
SO(D —1,1)[7]. In addition to the action (1.3) for the bosonic fields, we include the
standard Dirac action for free massless fermions to the total action. Therefore, in

the conformal gauge, the action is

S = _g /d%(&aX“a“X“ + PH " O thy)- (1.27)

The p® are the generators of what is known in the mathematics literature as the
2-dimensional Clifford algebra, and in the physics literature as the 2-dimensional

Dirac algebra. They obey the anticommutation relations

{0 0"} = 20, (1.28)

10



We can choose a basis so that

P’ = and p' = . (1.29)

—_
o
—_
[a]

The spinor fields, ¢*, have two components,

"
YH = b= . (1.30)
i

The conjugate of a spinor is defined to be

O =it pl, (1.31)

Classically, the fermionic fields are made of real Grassmann numbers in this repre-

sentation of the Dirac algebra. Therefore, they obey the relations

{¢“7wy} = 07
Wr=1p and gf =yl

(1.32)

In the worldsheet light-cone coordinates, the fermionic part of the action (1.27)

can be written as
Sy =T / P 1y (D40 + D). (1.33)
The equations of motion for ¢)_ and ¥, are
oyt =0 and O_¢f =0. (1.34)

This is the Dirac equation and describes left-moving and right-moving waves. Equa-
tion (1.34) is also the Weyl condition for spinors in two dimensions. Therefore,
1y are Majorana-Weyl spinors, which to mathematicians means “they belong to

11



two inequivalent real one-dimensional spinor representations of the two-dimensional
Lorentz group Spin(1,1)”[7]. Since ¢! are solutions to the Dirac equation, after

quantization the fermionic fields will obey the canonical anticommutation relations

{Va(7,0),45(7,0')} = i dapd(0 — o'), (1.35)

where A, B = +.

The action (1.27) is invariant under the transformations
SXH =" and SYF = pid,X"e, (1.36)

where ¢ is an infinitesimal Majorana spinor. These symmetry transformations mix
the worldsheet fermionic and bosonic fields and are known as worldsheet super-
symmetry. This is a global symmetry of the theory because ¢ does not depend on
7 or 0. When the transformations are written out in components, the symmetry
is not manifest. To make the symmetry manifest and write the transformations
in a non-component form, we must reformulate the action (1.27) using superfields.
Superfields are fields defined on superspace, an extension of spacetime including ad-
ditional anticommuting Grassmann coordinates. For a full description on how this
is done see [7].

We still have the vanishing of the energy momentum tensor as a constraint
obtained by varying the action with respect to the worldsheet metric. In worldsheet
light-cone coordinates, the energy-momentum tensor is

Tyy =0, X0, X* + 504040,

T =0 X, 0 XF+ "9 4, (1.37)



We can also obtain the worldsheet supercurrent, the conserved current associated to
the worldsheet supersymmetry, using Noether’s method. The worldsheet supercur-

rent is
1
T3 = 5 (00" 0 X" (1.38)

Superconformal symmetry implies the vanishing of the supercurrent. For details see

section 4.3.4 of [33].

1.2.1 Mode Expansions and Spectrum

The mode expansions for the bosonic fields are the same as for the bosonic
string theory described in the previous section. Varying the fermionic part of the

action (1.33) with respect to ¥ gives a boundary term proportional to

/ AT { (00 — 0P ) g — (V10U = 09" )50 }- (1.39)

The action is minimized when the equations of motion (1.34) are satisfied and the
boundary term vanishes.
For open strings, the term (¢4,00% — ¢_,0¢") must vanish at each endpoint

separately. This means that at each endpoint,
P = .
The overall sign of * is a matter of convention, so we can choose
P lo=0 = P ]5=0. (1.40)

Then the relative sign at the other endpoint becomes important.

13



The choice

wi|az7r = wﬁ|azﬂ (141)

is known as Ramond (R) boundary conditions. Fermionic fields with R boundary
conditions are said to be in the R sector and have the form

Y (r,0) = deﬂ —in(r=0) (1.42)

neL

Vi(ro) = =3 dten e, (1.43)

nEZ
Since ! are real, d*t = d", .

The other choice

(i P ] P (1.44)

is known as Neveu-Schwarz (NS) boundary conditions. The mode expansion for

fermionic fields in the NS sector is

P (r,0) = Z peir(r=o) (1.45)

TEZ+1/2

Y (r,0) = e~ir(r+o), (1.46)
TEZ+1/2

Sl

Sl

Again, b4 = b" .
For closed strings, the left and right-moving modes are independent. The
boundary term (1.39) will vanish if the left and right-moving fields obey periodic

(R) or antiperiodic (NS) boundary conditions,

V(o) = £ (o + 7). (1.47)

The periodicity conditions for the right and left-movers can be chosen independently.

14



Therefore, the mode expansion for the right movers can be either

o) = Z dte=™™=9) " for R boundary conditions, (1.48)
nez
or
V! (7, 0) Z ble —ir(r=2) " for NS boundary conditions. (1.49)
reZ+1/2

And the mode expansions for the left-movers can be either

(T, 0) Z dte™™9) " for R boundary conditions, (1.50)
nez
or
YR (T, 0) Z bre~"("+9)  for NS boundary conditions. (1.51)
reZ+1/2

We can have any combination of R and NS boundary conditions with left and right-
movers, so there are four individual sectors in the closed string spectrum. They are
the NS-NS, R-R, NS-R and R-NS sectors.

After quantization, the anticommutation relations for the modes d* and d¥
can be determined from the canonical anticommutation relations for the fermionic

fields (1.35). The fermionic modes satisfy

(00} = 06,050 and  {d™, d”} = 0" S ino. (1.52)

r)Us m’'n

The bosonic modes satisfy the same commutation relations as for the bosonic string
given in equation (1.23). We now look at the spectrum for open strings first, since
we can build the spectrum for closed strings by combing our results for open strings

with both left and right-movers.
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The ground states in the two sectors |0) g and |0) yg are killed by the lowering

operators in their respective sectors, that is
ab|0)r =dl0)p =0 for n>0 (1.53)

and

Oé‘;t|0>NS = bf‘O>N5 =0 for n,r > 0. (154)

The spectrum is built by acting on the ground state with raising operators (negative
modes). Raising operators increase the mass of the state.

In the R sector, the operators dfj are neither raising nor lowering operators.
They can act on a state without changing the mass, as we will see later. Therefore,
the ground state is degenerate. By equation (1.52), we know the dfj satisfy the

algebra

{do, dg} = n"". (1.55)

Except for a factor of 2, this is the same as the Dirac algebra
{TH, TV} = 2nt. (1.56)

Therefore, the set of ground states must give a representation of the Dirac algebra.

The degenerate ground state can be written as |a), where a is a spinor index and

R
dila) = —Th) (1.57)

We see that the R sector ground state is a spacetime spinor, so it is a fermion. All

of the modes are spacetime vectors, so all of the states in the R sector (obtained by

acting on the ground state with negative modes) are also spacetime fermions.

16



In the NS sector there is no fermionic zero mode, so there is a unique ground
state. The ground state is a spin 0 particle which corresponds to a scalar field.
Therefore all of the states in the NS sector are spacetime vectors, hence bosons.

After quantization, the constraints coming from the vanishing of the energy
momentum tensor and the worldsheet supercurrent must be altered. The modes of

the energy momentum tensor are

1.
L,=~ / doe™ T, = LY + L. (1.58)
L
Classically,
1
L® = 5 % O+ Oy (1.59)

where off = l;p*. In the quantum theory, the Lg,l;) are defined to be normal ordered,

1
(b) — = . . .
LY = 22 Qg O - (1.60)
nez
The normal ordering operation, : - :, is defined so that raising operators always

appear on the left of lowering operators. Therefore,
SOy Oy =0y Oy =y, -, fOor mo> 0. (1.61)

The only mode of the energy momentum tensor for which normal ordering is im-

portant is Ly;

e e}

1 1, <
=23 cainon=gad+ Y oo (162)
n=1

n=—00
Because of the ambiguity in choosing the normal ordering, we must assume an

arbitrary constant can be added to L(()b). This alters the Virasoro algebra normally

satisfied by the L,, to a Virasoro algebra with central extension equal to the total
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spacetime dimension, D (see equations (1.71-1.76) below). While we have quantized

only L,(qb), the same prescription holds for quantizing LY and the modes of the

supercurrent. Therefore, I will only state the results in the quantum theory. We
will see that normal ordering only matters for the Ly terms.
In the NS sector

n
LP == > (r+ ) b bagr n e 7. (1.63)

reZ+1/2
The modes of the supercurrent are
VT !
G, =— doe'’ J, = “nbrgn 7+ —. 1.64
. /;W ge + Z [0} + r e + 2 ( )

neL

The only operator for which normal ordering matters is Ly and it can be written as

1

Ly = §ag + Ng, (1.65)
where Npg is the number operator,
NR:Za_n-an+ Z rb_, - b,. (1.66)
n=1 r=1/2

Again, note that an arbitrary constant can be added to this.

In the R sector

1
LY = §Z(k+g) vd_y-dniy  nEZ, (1.67)
keZ

and the modes of the supercurrent are

2 [T .
E, = %/ doe™J =Y a_g-dy  neL (1.68)
- kEZ

Ly is the only operator where normal ordering matters and it can be written as

1
Ly = 5043 + Nns, (1.69)
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where

Nyg = ia_n SOy, + f:nd_n-
n=1 n=1

dy,.

(1.70)

The algebra satisfied by the modes of the energy momentum tensor and the

supercurrent is called the super Virasoro algebra. It can be determined from equa-

tions (1.35) and (1.52) and the definitions of the modes given above. In the NS

sector, the super Virasoro algebra is

D
[Lin, L] = (m —n) Ly + gm(m2 —

m
[Lmv Gr] = (5 - T)Gm-l-r

D 1

Y (7“2 - _)57’+s,0~

GT’7GS :2Lr s
{ } +s T 5 1

In the R sector it is

1)6m+n,07

D
[Lma Ln] = (m - n)Lm+n + _m36m=n,07

8

m
[Lm> FN] = (5 - n)Fm—i-n

D
{Fma Fn} = 2Lm+n + 5m25m+n,0~

(1.71)
(1.72)

(1.73)

(1.74)
(1.75)

(1.76)

Classically, the vanishing of the energy momentum tensor and supercurrent means

the modes must vanish. That would be incompatible with the super Virasoro alge-

bra. In the quantum theory, the constraint (which is the condition for a state to be

physical) is altered to require only the positive modes to annihilate physical states.

Therefore the physical state conditions in the NS sector are

Glg)=0 >0,
La¢)=0  n>0,

(L(] — aNs)‘¢> = 0
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In the R sector, the physical state conditions are

Fol¢)=0  n>0, (1.80)
Loy =0  n>0, (1.81)
(Lo — ar)|¢) = 0. (1.82)

ays and agr are constants due to the normal ordering ambiguity discussed earlier.
Equations (1.79) and (1.82) are the mass shell conditions. The relativistic mass
shell condition is M? = —p,p*. Using this as well as the definition of Ly (equations

(1.65) and (1.69)), equations (1.79) and (1.82) imply
o M? = N, — ay, (1.83)

where b = R, NS. M is the mass of the state |¢) and N, is its eigenvalue under the

number operator. o is the Regge slope parameter which is defined as
/ 1 2

The negative sign on the right-hand side of the time component of equations
(1.35) and (1.52) leads to states with negative norm, as was the case in the bosonic
string theory. It can be shown that the negative norm states decouple from the

physical states if ag = 0, ays = 5 and D = 10 (see section 4.5 of [7]). So we see

2
that all realistic superstring theories have ten total spacetime dimensions.

As we will see later, the closed string spectrum contains one or two gravitinos.
This implies that the theory must have spacetime supersymmetry and not just
worldsheet supersymmetry as we currently have. Additionally, the NS sector ground

state is a tachyon (has imaginary mass) due to the value of ayg being % To fix
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these problems we must perform what is known as GSO projection, named after
Gliozzi, Scherk and Olive who introduced it in [32]. Before describing what the
GSO projection is, it is useful to define the light-cone gauge.

In analogy with the worldsheet light-cone coordinates defined earlier, we can

define spacetime light-cone coordinates as

i_i 0 D-1
X _\/§(X + XP, (1.85)

The two null coordinates, X*, and the D — 2 transverse coordinates X' make up
the D total spacetime coordinates, X*. In these coordinates the flat metric has the
nonzero components

g =g_+=—1 and g; =1 (1.86)

The Virasoro algebra appears because we have not fully gauge fixed the repara-
metrization symmetry. The action is still invariant under reparametrizations that

are also Weyl rescalings. This additional symmetry allows us to choose a gauge in

which
af =0 for n#0, (1.87)
SO
XT(r,0)=a" +1%pTT. (1.88)
We can also choose
vH(r,0)=0 (1.89)

in the NS sector. In the R sector we need to keep the zero mode, which is a Dirac

matrix. It can be shown that X~ and ¢~ are not independent degrees of freedom
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using the Virasoro constraints. Therefore, in this gauge (called the light-cone gauge),
the independent physical excitations in the spectrum can be created by acting on
the ground state with negative transverse bosonic and fermionic modes.

In order to define GSO projection we must introduce an operator, GG, called

G-parity. In the NS sector
G = (=1)Ft = (=1)ZFy bt (1.90)

The eigenvalue of F' is the number of b-oscillator excitations a state has. Therefore
a state has positive or negative G-parity depending on if the state has an odd or

even number of b-oscillator excitations. In the R sector
G =Ty (—1)Enm dndn, (1.91)
I'17 is the product of the ten Dirac matrices in 10 dimensions,
Iy =Tl ---To. (1.92)

If a spinor satisfies
Tuy =+, (1.93)

it is said to have positive or negative chirality. Weyl spinors have a definite chirality.
In the NS sector, we keep only states with positive G-parity under the GSO
projection, while eliminating the states with negative G-parity. So after GSO pro-
jection the NS sector consists of states with an odd number b-oscillator excitations.
We can project onto states with positive or negative G-parity in the R sector de-
pending on our choice for the chirality of the ground state, which is a matter of
convention. We keep states with the same G-parity as the ground state.
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After GSO projection, the old ground state in the NS sector, the tachyon, is
eliminated from the spectrum and the new ground state is the lowest state that

survives the GSO projection,

V" 510} . (1.94)

The ground state in the NS sector is a massless vector boson with eight transverse
degrees of freedom. The ground state in the R sector is a massless Majorana-Weyl
spinor. The fact that there exist spinors that obey the Majorana and Weyl spinor
conditions is due to Bott periodicity and the fact that we are have 10 total spacetime
dimensions. A general spinor in 10 dimensions has 32 complex components. The
Majorana condition implies that all of the components are real and the Weyl con-
dition further cuts the number of components in half. So a Majorana-Weyl spinor
has 16 real components. Since the ground state is a solution to the Dirac equation,
this further cuts the number of components in half. Therefore the ground state in
the R sector also has 8 degrees of freedom. There are the same number of on-shell
bosonic and fermionic degrees of freedom in the massless spectrum. These form
two inequivalent real representations of Spin(8). While this is strong evidence for
spacetime supersymmetry, it is not a proof. The full proof that the GSO projection
gives spacetime supersymmetry was given by Green and Schwarz in [34].

Now let us look at the massless closed string spectrum. Massless states in the
closed string spectrum are tensor products of massless left and right-moving states.
The different ways we combine which sector the left and right-movers are in give

four distinct closed string sectors: R-R, R-NS, NS-R and NS-NS.
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As we saw above, the GSO projection in the R sector depends on the choice
of chirality of the ground state. This allows us to define two different closed string
theories. The left and right moving ground states in the R sector are chosen to have
the same chirality in the type IIB theory. Since the choice of chirality is a matter of
convention we will choose both the left and right-movers to have positive chirality.
We will denote the positive chirality ground state in the R sector as |+)g, where
we have suppressed a spinor index. Similarly, we will denote the negative chirality
ground state by |—)g. In the type IIA theory the left and right-movers have opposite
chirality. As we will see below, both type II string theories have two gravitinos, so

they have N = 2 supersymmetry.

1.2.2 Type IIB Superstring Theory

The massless closed string states in the type IIB theory are

|+ R ® |+) R, (1.95)
[+)r @b, 5|0) N, (1.96)
b1 5|0) s @ |+) s (1.97)
b1 5|0) s ® by 15]0) s (1.98)

|4+)r is an eight component spinor and b" | /o 18 an eight component vector, so there
are a total of 64 states in each sector.

In the R-R sector, when the two Majorana-Weyl spinors are tensored together
the two half integral spins combine to give a state with integral spin, a bosonic state.
Since the two Majorana-Weyl spinors have the same chirality, the tensor product
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can be decomposed as the sum of a scalar gauge field (1 state), a 2-form gauge field
(28 states) and a 4-form gauge field with a self dual 5-form field strength (35 states).
In both the NS-R and R-NS sectors the 64 states split as a spin % fermion (56
states) called the gravitino, and a spin % fermion (8 states) called the dilatino. For
the type IIB theory, the two gravitinos have the same chirality.
In the NS-NS sector the spectrum decomposes as a scalar (1 state called the
dilaton), an antisymmetric 2-form gauge field (28 states) and a symmetric traceless

rank 2 tensor (35 states) called the graviton.

1.2.3 Type ITA Superstring Theory

In the type ITA theory the left and right-movers have opposite chirality, so the

massless closed string states are

|=)r @ [+)R, (1.99)
=) r @ b, 5[0 ns, (1.100)
b1 5|0) s @ |+) s (1.101)
b1 l0)vs @ by 15]0) s (1.102)

Just as in the type IIB theory there are 64 states in each sector. The spectrum
in the NS-NS sector is exactly the same as in the type IIB theory. The spectrum
in the NS-R and R-NS sectors is almost the same except the two gravitinos have
opposite chirality in the type ITA theory. In the R-R sector of the type ITA theory,
we are tensoring two Majorana-Weyl spinors with opposite chirality. This results in
a vector gauge field (8 states) and a 3-form gauge field (56 states).
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1.2.4 Type I and The Heterotic Superstring Theories

The type I superstring theory can be obtained as a projection of the type 1IB
theory. Strings in the type IIB theory are oriented, so their worldsheets must be

orientable surfaces. Consider the worldsheet parity transformation
Q20— —o. (1.103)

This transformation reverses the orientation of the worldsheet and interchanges the
left and right-moving modes of the bosonic and fermionic fields. The worldsheet
parity transformation is a symmetry of the type IIB theory because the left and
right-moving fermions have the same chirality. In the type IIA theory, the left
and right-moving fermions have opposite chirality, so worldsheet parity is not a
symmetry of the theory. The type I theory is obtained from the type IIB theory by
keeping only states that are even under the worldsheet parity transformation. So
states in the type I theory are projections of states in the type IIB theory under the
projection operator

P:%(1+Q). (1.104)

P projects onto the left-right symmetric part of a state, so closed strings in the type
I theory are unoriented. As we saw in equation (1.98), the NS-NS massless closed
string states in the type IIB theory are given by the tensor product of two vectors.
The projection keeps only states that are symmetric in the two vectors. Therefore,
only the dilaton and the graviton survive the projection, while the antisymmetric
B-field is projected out.

Worldsheet parity interchanges |+)r ® b’ »|0)ns and I;i_l/Q\O>N5 ® |+)r, so
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only their sum survives the projection. Therefore, the type I theory has only 1
gravitino and 1 dilatino, giving a total 56 + 8 = 64 fermionic degrees of freedom.
The fact that there is 1 gravitino means that the type I theory must have N/ =1
supersymmetry (half as much supersymmetry as the type IIB theory).

We can determine which R-R sector states survive the projection by requiring
there be 64 total bosonic degrees of freedom to match the fermionic degrees of
freedom under supersymmetry. We already saw that there are 35 + 1 = 36 bosonic
degrees of freedom in the NS-NS sector coming from the graviton and dilaton. This
means we must have 28 bosonic degrees of freedom coming from the R-R sector.
Under this requirement, we see that only the R-R 2-form gauge field survives the
projection, while both the scalar and 4-form gauge fields are projected out.

We also get open string states in the type I theory coming from strings whose
endpoints lie on the fixed points of ¢ — —o. Since they must also be even under the
worldsheet parity transformation, open strings in the type I theory are unoriented
as well. Since the endpoints of open strings must lie on D-branes, the presence of
open strings in the type I spectrum shows that there must be spacetime filling Dy-
branes in the theory. The type I theory itself is inconsistent. To make it consistent,
it must be coupled to a super Yang-Mills theory with an SO(32) gauge group. We
will see in section 1.3.3 how this gauge group arises by including additional degrees
of freedom on the endpoints of strings called Chan-Paton degrees of freedom.

We will not go into great detail about the heterotic string theories as they will
not be a big topic in this dissertation. In chapter 2 we will discuss a duality that
passes through the heterotic theory, so for the sake of completeness we will give a
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brief definition of the heterotic theory. The two heterotic superstring theories are
closed oriented superstring theories built by giving the left-movers the degrees of
freedom of the 26-dimensional bosonic string theory and giving the right-movers the
degrees of freedom of the 10 dimensional superstring. The right-moving currents of
the string carry the supersymmetry charges, whereas the left-moving currents carry
conserved charges of a Yang-Mills gauge symmetry. Quantum consistency requires
that the gauge symmetry be locally either SO(32) or Eg x Eg. As we will see in
section 1.5 the weakly coupled SO(32) heterotic is equivalent to the strongly coupled
type I theory (and vice versa), so when working with the SO(32) heterotic string

theory we will often consider the type I theory instead.

1.3 T-duality

As we have seen, there are five different superstring theories. This might seem
discouraging at first when trying to determine a unified physical theory, but it turns
out that the different theories are related to one another by dualities. When we say
two theories are dual to one another, it means there is a transformation between
the two theories that leaves the observable physics unchanged.

One of the most important and best understood dualities in string theory is
known as T-duality. The simplest version of T-duality relates a spacetime with a
dimension compactified on a circle of radius R to a dual spacetime with a dimen-

o

sion compactified on a circle of radius %. Multiple T-duality transformations can

be performed on spacetimes with multiple compact dimensions. T-duality can be
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generalized to the case when the spacetime is fibered by circles but doesn’t split as
a product. We will not deal with this generalization until section 1.4.4.

Let us first look only at what happens to the bosonic fields under a T-duality
transformation. Due to the worldsheet supersymmetry in the RNS string, the
fermionic fields will have to transform in the same way as the bosonic fields. Return-
ing to the conformal gauge, let’s consider closed strings in 9-dimensional Minkowski
space cross a circle of radius R (R®! x S'). So if we give R®! x S! coordinates z*,

0<pu <9, and let 2° be the coordinate in the S! direction, then

2 ~ 2 + 27 R. (1.105)

This introduces new closed string states. In a spacetime with no compact dimen-
sions, all closed strings can be continuously deformed to zero size. In spacetimes
with compact dimensions there exist closed strings that wrap around the compact
dimension, so can’t be continuously deformed to zero size. These additional string
states can be differentiated by the number of times they wrap around the compact
dimension (and in what direction if we are dealing with an oriented string theory,
as both type II theories are).

The winding number of a closed string is best understood in the universal cover
of the spacetime manifold. A closed string that wraps the compactified dimension

lifts to an open string in the universal cover, where

X7, 7) = X°(7,0) + m(27R). (1.106)

m is called the winding number. This gives the periodic boundary condition in the
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spacetime manifold,
X (r,0+7) = X(1,0) + m(27R). (1.107)

This can sometimes seem confusing if the string wraps more than once around the
compact dimension because then 2, or more, different points on the string occupy
the same point in the spacetime manifold. The important thing to remember is that
for a closed string, only the endpoints are identified. The interior of the string can
intersect or wrap around itself, but each value of o gives a different point of the
string.

The quantum mechanical wave function contains a factor of e’ and should
be single valued on the circle. In order for the wave function to be invariant under

a change of 2° by a multiple of 27 R, p° must be quantized as
, ke Z. (1.108)

k is known as the Kaluza-Klein excitation number.

The components of the bosonic fields in the noncompact dimensions remain
unchanged. In the compact direction, however, not only does the momentum become
quantized but we must add a term linear in ¢ to account for the boundary conditions

(1.107). The mode expansions for the bosonic field in the compact dimension are

1 k 7 1 :
9 I 9 _ ~9 /_ _ _ _ - 9 —2zn(7'—cr) 11
Xy 2(:): 7)) + (o 7 mR)(T — o) + 215 nééo Qe ) (1.109)
1 k ) 1 .
X9 — (9 ~9 v - = ~9 _—2in(1+0) 1.11
7 2(x —l—a:)+(aR—l—mR)(T—I—a)jLngnéonane , ( 0)

9 is a constant that cancels in the sum X = X + X;. We can see that this

where T
is the same as for the bosonic field in noncompact dimensions except that the zero
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modes are now defined to be

V2alag = o/% —mR, (1.111)
1~9 /k
2d/ay = « I + mR. (1.112)

All nonzero modes remain unchanged. The zero modes in the compact dimension

add a contribution to the mass squared of

(%)2 N (”;f?)z (1.113)

It can also be shown from the mass-shell condition that

NR—NL:mk, (1114)

where Np 1, are the number of right and left-moving excitations. Equations (1.113)
and (1.114), and hence the spectrum, are invariant under the simultaneous inter-
change of m and k, and R and R = %. This symmetry between a spacetime with a
dimension compactified on a circle of radius R and one compactified on a circle of
radius R and momentum and winding interchanged is known as T-duality.

From equation (1.111), we see that the zero modes in the compact direction
transform as

g — —Qp and d() — d() (1115)

under a 7T-duality transformation. Note for later, that due to this duality in the
R — 0 limit the n = 0 states with all w form a continuum and the compact
dimension reappears.

Before the T-duality transformation, a coordinate, x, parametrized the original
circle with periodicity 2w R. After the transformation, x is replaced by a coordinate,
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Z, that parameterizes the dual circle with periodicity o7 R and conjugate momentum,
p=mR/o’ =m/R. From this it is clear that the right-moving part of the bosonic
field must switch sign under a T-duality transformation, while the left-moving part
remains the same. Therefore, the bosonic field in the compact direction in the dual

theory is

X(r,0) =X, + Xg (1.116)

= X1 — Xg. (1.117)

The fermionic fields must transform in the same way as the bosonic fields due
to the worldsheet supersymmetry. Therefore, the fermionic fields in the compact

direction transform as
V) —p] and Y — —h (1.118)

under a T-duality transformation. A T-duality transformation switches the chiral-
ity of the right-moving R sector ground state. This changes the relative chirality
between the left and right-moving ground states since the left-moving ground state
remains unchanged. Since the type ITA and IIB theories are distinguished by the
relative chirality of the left and right-moving R sector ground states, a T-duality
transformation interchanges the type IIA and type IIB theories. If there was more
than one compact direction we could perform 7-duality transformations in each of
the different compact directions. An odd number of T-duality transformations in-
terchanges the type ITA and IIB theories, while an even number leaves the type of

string theory invariant.
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1.3.1 T-duality of Open Strings

When we compactify a spatial dimension in a theory containing open strings,
the situation is a little different. We get no new open string states. Since the string
end points aren’t identified all open strings can be continuously deformed to zero
size. That is, all open strings are homotopic to a point, so no matter how many
times you wrap it around the compact dimension you can always unwrap it without
tearing and continuously deform it to a string that does not wrap the compact
dimension.

Since there are no new open string states, in the R — 0 limit we do not get a
continuum of new states, as in the closed string case, and the compactified dimension
disappears leaving a (D — 1)-dimensional system. This would seem to be a paradox
since all open string theories must also contain closed strings, which we saw earlier
live in a D-dimensional system after the R — 0 limit, but can be explained by the
fact that the endpoints of an open string are different than the interior. The interior
of an open string is just like a closed string and lives in D-dimensions. The string
endpoints are however confined to live on a (D — 1)-dimensional hyperplane.

We saw the mode expansion for an open string with Neumann boundary con-
ditions in equation (1.21). We can split this into left and right-moving parts to

obtain

_ i / 1 ,
Xp(r—o)="2 5 L alp(r— o) + iy % > a0, (1.119)

n#0

8 - ] ‘
Xp(t+0) = :):—gx +a/p(1T +0) —i—i\/% g Eane_m(”"). (1.120)
n#0
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Performing a T-duality transformation on the compact direction gives
XR—>—XR and XL_)XL- (1121)
Therefore, the dual coordinate in the compact direction is

. 1 ,
XQ(T, o) = X% — X% =3 4+ 2a'p0 + E —offle_”” sin (no). (1.122)
n
n#0

Equation (1.122) is the mode expansion for an open string coordinate obeying Dirich-

let boundary conditions. To see this, note that at ¢ = 0,7 the oscillatory terms

vanish and since there is no term linear in 7, X? is fixed. Using p° = %, we see that
at the endpoints

. . ook .

X(r,0)=% and X(r,m) =7+ 22" — 74 27kR. (1.123)

This string has no momentum in the compact direction since there is no term
linear in 7 in (1.122). This means the string only has oscillatory motion in the com-
pact direction. The string does, however, wrap the dual circle nontrivially £ times.
The string’s winding cannot be continuously deformed away without breaking the
string because the string endpoints are fixed by the Dirichlet boundary conditions.
The submanifold defined by X = 7, is called a D-brane. A D-brane is defined to
be a submanifold of the spacetime manifold on which open strings can end. As we
will see, D-branes are dynamical, physical objects in the spectrum of string theory
and not just a specified location. We have seen that T-duality changes a string with
momentum, no winding and Neumann boundary conditions into a string with no
momentum, nontrivial winding and Dirichlet boundary conditions. The converse is
also true since T-duality is an order 2 symmetry.
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A D-brane is normally specified by the number of spatial dimensions the sub-
manifold has. A D,-brane denotes a D-brane with p spatial dimensions and a
(p + 1)-dimensional worldvolume. Note that from equation (1.123), we see that the
two endpoints end on the same Dg-brane in the case of a single T-dualized compact
direction. The case of Neumann boundary conditions in all directions, as with the

string we started with, is the case of a space filling Dgy-brane.

1.3.2 T-Duality and Background Fields

So far we have left out many of the possible background fields. Three of
the most important background fields are the metric, g,,(X), the NS-NS sector,
antisymmetric 2-form gauge field, B = B, (X)dz" A dx”, and the dilaton, ®(X),
also appearing in the NS-NS sector. The metric occurs as a background field in the

part of the action we have considered so far,

1
 4nad

Sg

/ d*0 Vhh®g,, (X)0, X 0, X" . (1.124)

So far we have only considered the case where g, = 7),,. This can easily be gener-
alized to a more general spacetime metric in the obvious way.

The NS-NS sector antisymmetric 2-form gauge field, B, is called the B-field.
The B-field is defined locally. It is not necessarily closed or globally defined. For
most purposes, the fact that B is only defined locally doesn’t matter, since strings
are so small we only need to deal with things locally. When we need to look at global
phenomena, we can use the H-fluz, which is locally H = dB. H is a closed globally

defined 3-form on X. The B-field contributes to the action a term proportional to
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the pullback of B along the spacetime embedding of the worldsheet integrated over
the worldsheet. That means the contribution is

1

4o

Sp

/ d*0 € B,,0,X"0,X", (1.125)

where €% is the antisymmetric tensor density with components normalized to 1.

€ = ﬁe“b transforms as a tensor. This above term is only present in oriented
string theories, such as both type II theories. If we project onto strings that are
invariant under orientation reversal, due to its antisymmetry, the B-field vanishes
from the spectrum, as we saw was the case for the type I theory in section 1.2.4.
For later use, note that if we denote the string world sheet by 3, the spacetime
manifold by X, the embedding of the worldsheet into the spacetime manifold by
¢ X — X and let M be any 3-manifold in X bounded by ¢(X), then by Stokes’

Theorem,

[oo-f
b oM
= dB = / H. (1.126)
M M
In the above expression, ¢* B is the pullback of B. We could redo the above formula

using a different 3-manifold, M’, bounded by (X) and use the fact that e** should

not depend on our choice of manifold bounded by (%) to obtain

1 1
/ H = H (mod 27Z). (1.127)
M

dma’ Cdwdd S
This means that the H-flux corresponds to an integral cohomology class.
In a T-duality transformation, the metric and B-field transform via the Buscher
rules, which were determined by Buscher in [19] and [20]. The Buscher rules mix
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the metric and B-fields. Equation (1.125) can be thought of as a generalization of
the coupling between a 1-form Maxwell field and the worldline of a charged particle
to the coupling of a 2-form field and the worldsheet of a charged string. So B,
defines a string charge in the same way a Maxwell field defines a particle charge.
We will discuss this later in more detail.

The dilaton is related to the string coupling constant as
gs =e”. (1.128)
The dilaton adds a term to the action of
Sy = i / o VRD(X)R (h), (1.129)

where R (h) is the scalar curvature of the worldsheet. To determine how ® trans-
forms under a T-duality transformation it is easiest to look at how the string coupling
constant transforms. Before doing that, let’s first look at the significance of ®.

If ® is constant then equation (1.129) is a total derivative. Its value only
depends on the worldsheet topology and does not contribute to the classical field

equations. In this case equation (1.129) is
Py (X), (1.130)

where x(X) is the Euler characteristic of the worldsheet X. The type II theories have
only oriented closed strings, so worldsheets in the type II theories must be closed
oriented Riemann surfaces. The Euler characteristic of a closed oriented Riemann
surface is entirely determined by the genus of the surface, which corresponds to the
number of string loops.
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To determine how the string coupling constant changes under a T-duality
transformation, it is easiest to look at the low energy effective action in the NS-
NS sector. In the low energy limit, we can replace string theory by a supergravity
theory that only describes the interactions of the massless modes. We can ignore
the massive modes because they are too heavy to observe. The only result that
we will need about the low energy effective actions is that for the type IIA theory
compactified on a circle the low energy effective action in the NS-NS sector takes

the form

2T R

2 dgx ENSv (1131>
9s

and in the type IIB theory it takes the form

2R

g2

d’r Lys. (1.132)

LS is the low energy effective action in the NS-NS sector. Since this is the only
result we will need on this topic, we will not go into more detail about the explicit
formula for £Lyg and instead refer the reader to chapter 8 of [7]. Equations (1.131)
and (1.131) should be equal by T-duality when RR = «’. This implies that under a

T-duality transformation

i
R

Js = gs- (1.133)

1.3.3 Chan-Paton Factors and Wilson Lines

An additional non-dynamical degree of freedom can be added to the endpoints
of the string since it is consistent with spacetime Poincaré invariance and worldsheet
conformal invariance. The extra degree of freedom is known as a Chan-Paton charge.
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Paton and Chan originally introduced these extra degrees of freedom in [57] to try
to describe the global SU (2) isotopic spin symmetry between a quark and antiquark
located at opposite ends of a string. It was later pointed out by Neveu and Scherk
in [53] that Chan-Paton charges lead to a local gauge symmetry. In fact, we will see
that including the Chan-Paton degrees of freedom will lead to a U(N) Yang-Mills
theory. The modern interpretation of Chan-Paton charges was first described, 27
years after they were first introduced, by Witten in [91]. We now understand the
Chan-Paton degrees of freedom to label which of N coincident D-branes a string
endpoint lies on. As this is a crucial ingredient to using K-theory to describe string
theory we will go through how this works now.

In addition to the usual Fock space label for a string state, we must also include
a label, 7,7 = 1,..., N, for the Chan-Paton charge at each end of the string. The
Hamiltonian for the Chan-Paton charges vanishes, so they are non-dynamical. This
means that once the Chan-Paton charge at a string endpoint is known, it will never
change. Therefore we can decompose an arbitrary string state in terms of a basis
|, k,ij) with coeflicients given by an N x N hermitian matrix, A = (\;;), as

N
6.k, 0) = D 16,k ij)Ay;. (1.134)
ij=1

The individual wave functions appearing on the right-hand side of the above equation
are known as the Chan-Paton factors.

Consider an interaction between n oriented strings, whose tree level diagram

is shown in figure 1.1. The scattering amplitude is obtained by summing over all
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Figure 1.1: A scattering of n oriented open strings with Chan-Paton charges labeling
each endpoint.

basis elements, so it picks up an overall factor of

N

N
Z o Z )\2'11j1)‘122j2 e )\?njn (1'135)

i1,j1=1 in,jn=1

The ¢ = m endpoint of the kth string must have the same Chan-Paton charge as
the 0 = 0 end of the k+1 (mod n)th string, since the Chan-Paton charges are non-
dynamical. Therefore we must include an additional factor of §71%2 . .. §n-tin§init jn

the scattering amplitude. This makes the overall factor

5j1i2 . 5jn71in6jn7:1 >\1 )\2 e )\n

11J1 7 2]2 injn

= Tr(A'---A"). (1.136)

Such traces (and therefore all open string amplitudes) are invariant under the U(N)

transformation

A— UNUL (1.137)

Under such transformations, the ¢ = 0 endpoint transforms as the fundamental

40



representation of U(N), N, and the 0 = 7 endpoint transforms as the antifunda-
mental (or conjugate) representation, N. From this and equation (1.134), we see
that string states are matrices that transform in the adjoint representation of U(N).
The Chan-Paton factors, |¢, k,ij), transform with charge +1 under U(1); and charge
—1 under U(1);.

While this is only a local symmetry, it is raised to a global gauge symmetry
of spacetime. Globally, the Chan-Paton factors define an N-dimensional bundle on
the D-branes and the U(N) gauge field is a connection on the bundle.

Even if the gauge potential, A, is flat (has vanishing field strength, F' =
dA+ANA = 0), it can have physical effects in a spacetime with compact dimensions.
When the gauge potential in the compact direction has nonzero constant values it

introduces a holonomy or Wilson line,
W = ¢io" Avda® (1.138)

A can be diagonalized by a constant gauge transformation, so that it may be written
as

Lo
A= —mdlag(el,é’%...,@]\f). (1139)

The Wilson line shifts the momentum of a state |¢, k,ij) in the compact direction

to

ko 0,—0;
9 __ _ J
P =5 o ke Z. (1.140)

After a T-duality transformation, the dual ij open string is expanded as

> ~ ~ ‘9 - ‘9@
X, =Ty +0;R+2Ro (k + jo) + oscillator terms. (1.141)
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Equation (1.141) shows us that the ¢ = 0 end of the string is located at &y + 6;R
and the o = 7 endpoint is located at Ty + Qjé. In this way, we can interpret the
Chan-Paton charges as labeling which of N coincident space filling Dg branes the
string endpoint lies on (similarly, there are N coincident space filling anti-branes,
denoted as a Dy-brane, with negative Chan-Paton charge interpreted as the Chan-
Paton bundle having negative dimension). The N coincident Dg-branes transform
to N Dg-branes with the ith brane located at the angular position 6; on the dual
circle. Therefore, the string wraps the dual circle an integral number of times only
if 6; = 0;, otherwise it wraps the dual circle a fractional number of times.

The shift in the momentum caused by the inclusion of the Wilson line creates
a corresponding shift in the mass spectrum. Therefore the only massless states
when all of the 6,’s are different are the ones that represent strings that start and
end on the same brane (so §; — 6; = 0) and don’t wrap the compact direction (so
k = 0). This means that the diagonal states (states with ¢ = j) with k& = 0 define
N different massless U(1) vectors when none of the branes coincide. This breaks
the U(N) symmetry present when all of the branes were coincident to a U(1)Y
symmetry. In general, if there are m coincident branes and [ branes that do not
coincide, with m + [ = N, then the U(N) symmetry is broken into a U(m) x U(1)!
symmetry. The massless open string states create fluctuations in the geometry of
the D-branes, showing that D-branes are actual dynamical objects [59].

For unoriented strings, such as type I strings, the gauge group changes. The
Chan-Paton factors were originally extended to to the case of unoriented strings
by Schwarz in [42] and Marcus and Sagnotti in [47]. For unoriented strings, the

42



representation at the two endpoints must be the same. N = N implies that the

fundamental representation of the symmetry group must be real. If the massless

N(N—1)

5 such

vectors are antisymmetric under orientation reversal then there are

states and the symmetry group is SO(N). If the massless vectors are symmetric

N(N+1)
2

under orientation reversal, however, then there are such states and the sym-
metry group is Sp(/N). This group only exists for NV even since symplectic matrices

are even-dimensional.

1.4 K-Theory and D-brane Charges

We saw in the previous section that D-branes are actual dynamical objects. It
turns out that they can carry charge. By charge and energy conservation a charged
D-brane is stable. This section will begin by describing how D-branes carry charge.
We will then give a brief overview of K-theory and describe how K-theory can be

used to classify D-brane charges.

1.4.1 D-brane Charges

As we have seen, the different superstring theories contain numerous massless

antisymmetric n-form gauge fields. We will denote a general n-form gauge field by

1
A, = _|A,U«1H2"'Hnd$'u1 ANdxH? A - Ndxhr. (1'142>
n.:

Let us also define its (n + 1)-form field strength to be

Fop = dA,. (1.143)
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Since a Dp-brane, W, has a (p + 1)-dimensional world volume it can cou-
ple electrically to a (p + 1)-form gauge field, A,;;. This is a generalization of
the Maxwell field, A;, that couples electrically to a point particle, which has a
1-dimensional worldline, to higher dimensions. Ordinary electromagnetism is de-

scribed by Maxwell’s equations
dFy = xJ,, and dx*F =%/, (1.144)

where J = J,dx" is the 1-form magnetic (or electric) charge and current density and
* denotes the Hodge dual. When we generalize this to higher dimensions the coupling
contributes an interaction term to the action similar to the lower dimensional case
given by

Sint = ,up/ Ap+17 (1'145>
w

where p, is the charge of W. By Gauss’ Law, p,, can be calculated as

= [ +Fpia (1.146)

The above integral is performed over a (D — p — 2)-sphere in D total spacetime
dimensions, because F', being a p 4 2-form, implies its Hodge dual is a (D — p — 2)-

form,

gH1k2: kD
7FHD7 —1""HD"
2v/—g P

There is a dual brane with magnetic charge given by

(*F)HIHQ'”HD—p—Q —

(1.147)

/Fp+2, (1.148)

where the integral is performed over (p + 2)-sphere surrounding the brane. In D
dimensions a (p + 2)-sphere can surround a (D — p — 4)-brane. Therefore in 10
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dimensions the magnetic dual of a D,-brane is a Dg_,,-brane. The Dirac quantization
condition generalizes to

Pplle—p € 2T L. (1.149)

Note that in the case of D = 4 dimensions and p = 0 we obtain ordinary electro-
magnetism.

Charged D-branes are stable due to energy and charge conservation. On the
other hand, uncharged D-branes can decay, so only D-branes that couple either
electrically or magnetically to a gauge field will be stable. We saw previously that
in the R-R sector the Type ITA theory has n-form gauge fields for n = 1,3. This
means that in the type IIA theory there are stable, electrically charged D,-branes for
p = 0,2 and magnetically charged D,-branes for p = 4,6. Under certain conditions
it is also possible to have stable Dg-branes, so there are stable D,, branes for p even
in the type ITA theory.

In the type IIB theory there are n-form gauge fields in the R-R sector for
n = 0,2,4. So there are stable D,-branes that are electrically charged forp = —1,1, 3
and magnetically charged for p = 3,5, 7. The D_;-brane is called a D-instanton and

is localized in both time and space. The 5-form field strength is self dual,

«Fy = Fy, (1.150)

so the 4-form gauge field couples both electrically and magnetically to the same
Ds-brane carrying an electric charge and its self-dual magnetic charge. There can
also be space filling Dg-branes under certain conditions, so type IIB string theory
has stable D,-branes for p odd.
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1.4.2 A Brief Overview of K-theory

The purpose of this section is to define K-theory and describe the properties
we will need for the rest of this dissertation. A more detailed development of K-
theory can be found in [36, 4, 3, 14]. We will state results in this section without
proof. Proofs for any of the theorems in this section can be found in any of the
above references.

While we have already used the term without giving a definition, we will be
begin our discussion of K-theory by defining a vector bundle. Let X be a locally
compact Hausdorff space. A vector bundle over X is described by a continuous open
surjective map

T FE—X (1.151)

with the following conditions. F is a locally compact Hausdorff space with vector
addition and scalar multiplication maps, £ xx £ — E and C x ' — FE, that make
E, = 7 !(x) into a vector space for each z € X. E, is called the fiber of the bundle
over x. The above conditions define a family of vector spaces over X. Families
of vector spaces over X define a category with morphisms given by commuting
diagrams

E,

d E,, (1.152)

X
where ¢ is linear on the fibers. A vector bundle is a family of vector spaces over
X with the added condition that there exists an open covering, {U;}, of X such

that E|y, = U; x C" in the category of families of vector spaces over U; for each
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J, i.e., for all j there exists a homeomorphism, ¢; : 7=1(U;) — U; x C", such that
po(e) = w(e) for all e € 7~1(U;), where p is the obvious projection of U; x C"
onto U;. The homeomorphism ¢; along with the open set U; is known as a local
trivialization of the vector bundle. The rank of the fibers must be locally constant
because of the local trivializations. Therefore, the rank of the fibers is constant on
each connected component of X. If the rank is constant on all of X, it is called the
rank of the vector bundle.

The local trivializations of a vector bundle must vary continuously. Let 7 :
E — X be trivialized by the open covering {U;}. Over the intersection of two sets

U; and Uj;, the map
wjop;t (U;NU;) x C") — (U;NU;) x C" (1.153)
is well defined and obeys
pio e (e,v) = (e gi(e)v), (1.154)

where g;; : U;NU; — GL,(C) is a continuous map. The g;;’s are known as transition

functions and satisfy the cocycle identities:

9i595i = 1,
9ij9ikgki =1 on U; N U; N Uy. (1.155)
The transition functions determine how the different local trivializations are

glued together and thus determines the topology of the total space, E. The trivial

bundle is the bundle X x C* — X. If every transition function were of the form
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Gij = hihj_l with h; : U; — GL,(C), then we could change the local trivializa-
tion functions, ¢; : 7~ 1(U;) — U; x C" from ¢j(e) = (u,v), with w(e) = u, to
@;(e) = (u,h;v). Doing this would make all of the local trivializations match on
their intersections, giving the trivial bundle. Conversely, the transition bundles for
any bundle isomorphic to the trivial bundle can be written in the form g;; = h,-hj_l.
From this we see that isomorphism classes of vector bundles can be classified by
cocycles {g;;} modulo coboundaries {g;; : gij = hsh;'}; this is just H'(X;GL,(0)),
the first cohomology group of X with coefficients in the sheaf of continuous functions
with values in GL,,(C).

When discussing vector bundles, it is useful to define the pull back of a vector
bundle over a continuous function. Let E —"= X be a vector bundle and f :
Y — X be a continuous function. The pull back along f, f*(F), is defined by the

commutative diagram

fE) - -k (1.156)
frm g
-

In order for the above diagram to be commutative, we see that f*(E) = {(y,e) €
Y x E : f(y) = w(e)}, f*r is projection onto the first factor and f is projection
onto the second factor. We can now use the pull back to define the direct sum and
tensor product of two vector bundles.

Let B} —= X and Fy—= X be vector bundles of rank n;, and nsy respec-
tively. Then m X w9 : E; X Fy — X X X is a vector bundle of rank n;, +ny. The pull
back of this bundle along the diagonal map X — X x X gives a rank n; + ny bundle
over X denoted by E; & Fy and called the Whitney sum of Ey and E,. Similarly, we
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can define the tensor product of two vector bundles, E; ® Es, which is a rank nin»
vector bundle over X.

The direct sum operation makes the set of isomorphism classes of vector bun-
dles over X (which we will denote by Vect(X)) into an abelian additive monoid with
addition defined by [E] + [F] = [E @& F], where [E] denotes the isomorphism class
of the vector bundle E. An abelian monoid is a set that obeys all of the axioms
for an abelian group except for maybe the existence of inverses. K(X) is the group
completion of the monoid Vect(X) for X compact. It is defined to be the set of

formal differences of isomorphism classes of vector bundles over X,

[E] — [F], (1.157)

under the equivalence relation

[E] - [F] = [E') - [F'] & 3H € Vect(X) st. E@ F @ H2E & Fa H. (1.158)

When the monoid is the set of isomorphism classes in an additive category, as is the
case here, the group completion K (X) is known as the Grothendieck group. K(X)
is an abelian group under addition and can be made into a commutative ring by

defining

([E] = [F]) ([E'] = [F) =[E®E|+[FQF|-[EQF|-[F®FE']. (1.159)

K(X) is a contravariant functor since a continuous map f: Y — X induces a
homomorphism f*: K(X) — K(Y) on K-theory. This comes from the pull back of

f that we saw earlier and results in f*: Vect(X) — Vect(Y).
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We can extend K-theory to compact pairs (X, A), where X is compact and

A C X is closed. This done by defining
K(X,A) = K(X/A) = coker ¢* : K(pt) — K(X/A), (1.160)

where ¢ : X/A — pt is the constant map. K is known as reduced K -theory. By the
definition of K (X) and the fact that K (pt) = Z (which we will see shortly) it can
be shown that K (X) = K(X)® Z. K(X,A) can be regarded as the Grothendieck

group of virtual vector bundles over X of rank 0, with a fixed trivialization over A.

From this perspective,

K(X,A) = {[E,€5] — [F,&r] : B, F € Vect, (X) and

(gt Ela—=AxC" ,&p: Fla—=AxC"}, (1.161)

where Vect,,(X) is the set of isomorphism classes of rank n vector bundles over X.
Note that [E, £] = [E', ¢'] if and only if there exists an isomorphism of vector bundles
over X, F — F’ that sends one trivialization to the other.

We can also extend the definition of K (X) to spaces that are locally compact

by defining the K-theory with compact support to be

K(X)=K(X") =keri*: K(X") — K(pt), (1.162)

where X is the one-point compactification of X and 7 : pt — X is the inclusion

of the point at infinity into X . Note that if X is compact then
K(XT) = K(X [[{oc}) = K(X) & K({o0})

and K(X) = K(X*) agrees with our original definition of K (X) for X compact.
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We define K77(X) = K(X x R/). We can make sense of K7(X) for j positive

by Bott periodicity.

Theorem 1. (Bott Periodicity). Let X be a locally compact space. Then there

exists a natural isomorphism K(X) — K(X x R?).

Bott periodicity shows that K*(X) is Zs graded, so there are only two different
groups, K%(X) = K(X) and K'(X) = K1(X) = K(X x R).

After extending K-theory to compact pairs, the functor X — K*(X), where
X is a compact space, obeys the Filenberg-Steenrod axioms except for the dimension

axiom.

Theorem 2. Let X,Y be compact Hausdorff spaces and A C X, B CY be closed

subspaces.

(1) If f,g : (X,A) — (Y,B) are homotopic maps then they induce the same

homomorphism on K-theory, f*=g*: K"(Y,B) — K"(X, A) for all n.

(2) If U is any subset of X whose closure is contained in the interior of A then the
inclusioni : (X —=U, A=U) — (X, A) induces an isomorphismi* : K™(X, A) —
K" (X —U,A-U) for all n.

(3) There exists a long exact sequence

sk

D KX, A) L K(X) e K (A) — % KX A) —

where i and j are the inclusions A — X and (X,0) — (X, A) and § is called

the boundary map.
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The above theorem means that the functor X — K*(X) on the category of
compact Hausdorff spaces is a generalized cohomology theory. This is also true in
the category of locally compact spaces with all maps proper because of the extension
of K-theory to locally compact spaces.

To describe the relationship between K-theory and ordinary cohomology, we
must first define Chern classes. For the definition of a Chern class we will use the
main theorem about Chern classes. The theorem contains all of the features of a

Chern class, which can be taken as axioms.

Theorem 3. (Chern Classes). There exists a unique sequence of functions ¢; :

Vect(X) — H%(X;Z) such that, for any complex vector bundles E, F — X,
(1) ci(E) = ci(F) if [E] = [F].
(2) ci(f*(E)) = f*(ci(E)) for any pullback f*(E).
(3) ¢i(E) =0 if i > dim E.

(4) ¢(E® F) = c(E)Uc(F), where U is the cup product and ¢(E) =1+ ¢1(E) +

eo(E) + -+ € H*(X:Z).

(5) c1(E) is the usual generator of H*(CP>®;Z) for the tautological line bundle

E — CP°.

¢; is the ith Chern class and ¢ is the total Chern class. Condition (1) simply
states that ¢; only depends on the isomorphism class of E. The tautological line
bundle over CP" is defined to be the bundle F—>CP"* where F = {(z,v) €
CP" x C"*! : v € 2} and v is the obvious projection. Condition (5) is a nontriviality
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and normalization condition. Without it ¢; = 0 for all ¢+ would be possible and if
c; satisfied conditions (1) — (4) so would k'c; for a constant k € Z. Condition (3)
ensures that ¢ = 14-¢; +co+- - - only has finitely many nonzero terms and so does in
fact lie in H*(X;Z). We can determine the nth Chern class of E@® F' from condition
(4) to be

G(E®F)= Y c(E)Ug(F), (1.163)

i+j=n

where ¢y = 1.

Chern classes behave well under direct sums but not under tensor products.
For this reason, it is useful to introduce another function called the Chern character,
but before this we need to describe vector bundles that can be decomposed as the

direct sum of line bundles.

Lemma 1. (Splitting Principle). Let X be a compact Hausdorff space and E be a
rank n vector bundle over X. Then there exists a compact Hausdorff space F(E)
and a map f : F(E) — X such that the induced maps, f*, on both K-theory
and cohomology are injective and f*(E) splits as the direct sum of line bundles;

ff(EYZLi® @ L,.

The space F'(E) together with the map f : F(E) — X is called the flag bundle
associated to the vector bundle E — X. The flag bundle is a fiber bundle over X,
which is a generalization of a vector bundle where the fiber is no longer required to
be a vector space. The definition of a fiber bundle is the same as for a vector bundle,
if we replace the fiber C" for a vector bundle with an arbitrary space F. The total

space of the flag bundle, F'(E), is the set of all n-tuples of linearly independent lines
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in £, for all x € X. The map f sends an n-tuple of orthogonal lines in F, to x.
From this we see that the fiber is the flag manifold, F'(C"), which is the set of all
n-tuples of linearly independent lines through the origin in C". From condition (2)

of theorem 3 we see that
(L1 @@Ly, = f(a(F)) (1.164)

and by the splitting principle f* is injective on cohomology so the Chern classes of
and L1 @®---@® L,, are in one-to-one correspondence. This splitting of a rank n vector
bundle into the direct sum of n line bundles is what broke the U(N) symmetry into
the U(1)" symmetry that we saw in section 1.3.3.

We can now define the Chern character; for a line bundle L, the Chern char-

acter is

Ch(L) = e =14 ¢y(L) + %cl(L)z e (1.165)

Note that Ch(L) € H*(X;Q) because the power series has non-integer coefficients.

For a direct sum of line bundles, the Chern character is defined to be
Ch(Ly @@ Ly) = > Ch(L;). (1.166)
j=1

This along with the splitting principle defines the Chern character for a general rank

n vector bundle. With this definition the Chern character satisfies
Ch(E @ F) = Ch(F) @ Ch(F), (1.167)
Ch(E ® F') = Ch(E) Ch(F). (1.168)
Due to the Chern character’s behavior over direct sums and tensor products it ex-

tends to a ring homomorphism Ch : K(X) — H*(X;Q). A much stronger condition
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can be shown.

Theorem 4. Ch: K*(X)®Q — H*(X;Q) is an isomorphism of cohomology theo-
ries that sends products in K(X) to cup products in H*(X; Q). It can be decomposed

as
Ch: K(X)®Q — H""(X;Q),
Ch: K'X)®Q — HX;Q).
While this gives us a very powerful tool for relating K-theory to cohomology,
the torsion in K*(X) can differ from the torsion in H*(X;Z). In practice we will

often want to calculate K*(X), including the torsion, from H*(X;Z). To do this we

will need the Atiyah-Hirzebruch spectral sequence

Theorem 5. (Atiyah-Hirzebruch). There is a spectral sequence with
By = HP(X, K(pt))

(K9(pt) = Z for q even and 0O for q odd) that converges to K*(X). The first nonzero
differential is d3 : HP(X;Z) — HPT3(X;Z) and is equal to the Steenrod operation
Sq.

A spectral sequence is a sequence of bigraded abelian groups { 7} along with
maps d, : EP9 — EPTT4+1 (called differentials since d,.d, = 0) such that E,,; is

the cohomology of E,. with respect to d,. That is
EPd = ker(dP?)/ image(d?—"9t" ). (1.169)

For the Atiyah-Hirzebruch spectral sequence E?? = 0 if ¢ is odd, so only differentials
d, with r odd can be nonzero. This shows F3 = Ey, F5 = Ej, etc. If there exists
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N such that E,,; = E, for all r > N then we call the stable value of E,., E..
For the Atiyah-Hirzebruch spectral sequence, F., gives K*(X) up to extensions of
abelian groups. This provides us with a powerful tool to compute K-theory from
cohomology that we will use throughout this dissertation. The next two corollaries of

the Atiyah-Hirzebruch theorem simplify the results when X is a finite CW complex.

Corollary 1. Let X be a finite CW complex. If H*(X;7Z) is torsion-free, then so

is K*(X), and K(X) & H®(X;Z) and K'(X) & H°™(X:Z) as groups.

Corollary 2. Let X be a finite CW complex. The order of the torsion subgroup of
K°(X) is less than or equal to the order of the direct sum of the torsion subgroups
of the H*(X;Z) and the order of the torsion subgroup of K'(X) is less than or
equal to the order of the direct sum of the torsion subgroups of the H**1(X;Z).
Moreover, if all of the torsion in H*(X;Z) is p-primary for some prime p, then all

of the torsion in K*(X) is also p-primary.

For later use, we will now introduce the twisted K-theory of X, K*(X, H),

where H € H3(X;Z). The defining characteristics of twisted K-theory are:
e if H =0 then K*(X, H) = K*(X).
e K*(X, H) is a module over KY(X).
e there is a cup product homomorphism

KP(X,H)® KX, H') — KP*(X, H + H').

Twisted K-theory is contravariant, so if f : Y — X is continuous then it induces a
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homomorphism
foKY(X,H) — K*(Y, f*H).
Furthermore, if f : X — Y is a smooth K-oriented map between compact manifolds

then there is a homomorphism
f! : K*(Xa f*H> - K*-H(K H)v

where | = dim(X) — dim(Y’). We can still use the Atiyah-Hirzebruch spectral
sequence to calculate K*(X, H), with the only change being that d3 is changed so

that ds(a) = Sq*(a) + H Ua.

1.4.3 Classifying D-brane charges by K-theory

Before describing how K-theory classifies D-brane charges, let us first look at
the case of a single D,-brane and a single D,-brane wrapping the same submanifold
W of X (meaning they are coincident). Let us now label the Chan-Paton charges at
the ends of a string by p if it ends on the D,-brane and p if it ends on the anti-brane,
so the charges live in a 2-dimensional quantum Hilbert space. We can consider the
p state to be bosonic and the p state to be fermionic so that the GSO operator,

(—=1)¥, acts on the Chan-Paton factors by

(—1)F = : (1.170)

The Chan-Paton wave functions for p-p and p-p open strings are even under (—1),
since they are diagonal, so we obtain the usual GSO projection on the oscillators.
The p-p and p-p open string states, however, are odd under (—1) since the wave
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functions are off-diagonal. Therefore, the GSO projection is reversed, so the massless
vector multiplet is projected away and the tachyon is kept. The tachyon represents
a flow towards annihilation of the coincident brane and anti-brane. For a suitable
expectation value the brane and anti-brane would annihilate each other and we
would obtain the vacuum state without the pair.

We can extend this more generally to the case of N Dg-branes and N D,-
branes all wrapping the same submanifold of X. Let E be any U(/N) Chan-Paton
gauge bundle on the D,-branes. If the D,-branes have the same Chan-Paton bundle
then the total system will have no D-brane charge and the branes and anti-branes

will annihilate each other.

1.4.3.1 Classifying D-brane Charges in the Type IIB Theory

Let us first consider N space filling Dgy-branes and N space filling Dy-branes in
the type IIB theory. The quantum theory requires complete cancellation of D-brane
charges, so N = N. There is a U(N) Chan-Paton gauge bundle, F, on the D-branes
and a U(N) Chan-Paton Gauge bundle, ', on the D-branes. As in the last section,
we consider the bundle E to represent bosonic Chan-Paton states and F' to represent
fermionic Chan-Paton states. Note that the worldvolume of space filling branes and
anti-branes is the entire spacetime manifold X, so £ and F' are bundles over X.
This configuration of branes and anti-branes is determined by the pair (E, F'). Two
configurations of branes and anti-branes, (E, F') and (E’, F”), should be equivalent

to each other if they can be related by the creation or annihilation of M Dg-branes
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and M Dg-branes that have the same U(M) Chan-Paton gauge bundle, G, on them.

That means, (F, F') ~ (E', F') if there exists a U(M) bundle, G, such that
(E,FY=(EaG,Faq), (1.171)

or vice versa. But this is just K (X). The requirement that N = N forces E and F
to have the same rank, so brane anti-brane configurations that are consistent with
the quantum theory modulo creation and annihilation of brane anti-brane pairs are
classified by the reduced K-theory of X, K (X). In most physical applications the
total spacetime manifold will not be compact, so we will need to use K-theory
with compact support. K-theory with compact support is indistinguishable from
the reduced K-theory in this case. For this reason I will be purposefully vague
about what type of K-theory is being used and just say that type IIB D-brane
configurations are classified by K (X) with the precise definition of K-theory needed
depending on the situation.

We saw already that gauge fields living on the worldvolume of a single D-
brane can couple electrically or magnetically to the D-brane, defining a charge. In
the case of N coincident D-branes and N coincident D-branes, the Chan-Paton
bundles interact with the gauge fields. The interaction terms allows us to relate the
gauge fields to the Chan-Paton bundles and determine D-brane charges in terms of
the Chan-Paton bundles. We already stated in section 1.3.3 that the gauge fields
are connections on the Chan-Paton bundles. Let us now be more precise. Let A
be the U(N) gauge field living on the worldvolume of the D-branes and A’ be the

U(N) gauge field on the worldvolume of the anti-branes. A and A’ are connections
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on E and F respectively. The tachyon field is a map
T: F— E. (1.172)

It can also be viewed as a section of £ ® F™*, where F* is the dual of the bundle F'.

Then all of the worldvolume field content can be put together into a superconnection

AT
A= . (1.173)
T A
For complete annihilation to occur the tachyon field should be such that the tachyon
potential energy is a true minimum. The minimum value of the tachyon potential
energy must be negative and completely cancel the branes’ energy density.
In [51], Minasian and Moore showed that for a D-brane wrapped around W

with embedding f: W — X and Chan-Paton bundle £ — X, its charge, @, is

given by

Q = ch(AE) A(TX), (1.174)

where T'X is the tangent bundle of X and
ch(E) = Trye?r. (1.175)

In the above expression F = F — f*B where F' is the Hermitian field strength of
the U(V) gauge field that lives on the brane and f*B is the pullback of the B-field
along f.

The interaction between the Chan-Paton bundles and the gauge fields intro-
duces an anomaly. An anomaly is an inconsistency in the theory that is usually
caused by a topological invariant not vanishing. Therefore, anomaly cancellation
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usually involves some topological constraints. To describe the anomaly in the world-
sheet path integral of type II superstring theory with D-branes we will follow [28].

Let ¥ denote the worldsheet (which must be an oriented surface in the type
IT theory) and let ¢: ¥ — X be the embedding of the worldsheet into spacetime
such that it it maps 0% to W, an oriented submanifold of X. So we are considering
the type IIB string theory with a single D-brane, W. The worldsheet path integral

contains the factors

pfaff(D) - exp(i %2 A) - exp(i /2 B), (1.176)

o

where pfaff(D) is the pfaffian (square root of the determinant) of the worldsheet
Dirac operator D and the second term is the holonomy of the brane gauge field A
around the boundary of X. We will begin our discussion of the anomaly by assuming
the B-field is trivial and ignore the last term in equation (1.176) until later.

The worldsheet left and right-movers have separate spin structures. Theorem
4.6 of [28] shows that our final result will not depend on the spin structures, so
we may assume the left and right-movers have the same spin structure. Under this
assumption, D, and thus pfaff(D), is real. The absolute value of pfaff(D) is well
defined, but its sign is not.

To determine the ambiguity in the sign of pfaff(D), consider a one-parameter
family of ¥’s parameterized by the circle S*. Our embedding into spacetime is now
given by a map

¢: L xSt = X, (1.177)

such that ¢(9%X x S') € W. Freed and Witten showed that after going around the
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circle, pfaff(D) transforms as
pfaff(D) — (—1)* pfaff(D), (1.178)

where
o :/ P wa(W). (1.179)
T xS
In the above expression, ws (W) is the second Stiefel-Whitney class of W. If wo (W) #
0 then pfaff(D) is not well defined. Note that we(W) = 0 implies that W is spin.
We can reformulate the anomaly condition (equation (1.179)) in terms of the normal
bundle v to W in X.
X must be spin since we need to be able to define spinors on the spacetime
manifold. Therefore w;(X) = wy(X) = 0. In the type II theory, W must be

oriented, so wy (W) = 0. The Whitney sum formula,

wn(X) = Z wi(W) Uw;(v),

shows that wy(r) = 0 and we(v) = we(W). Therefore equation (1.179) can be
written as
a= / P wa(v). (1.180)
oL x S
If pfaff(D) is not well defined, then the second term in equation (1.176) must
change sign whenever pfaff(D) does in order for the string theory to be well defined.
Therefore, A is not a globally defined U(1) gauge field, since its holonomy around a
loop is not a well defined element of U(1). By looking at the Levi-Civita bundle on
W, w, we can show that A must be a Spin® connection.
The structure group of w is SO(n), where n is the dimension of W. The trace of
the holonomy of w in the spin representation of the double cover of SO(n), Spin(n),
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is only well defined up to sign because there are two ways to lift an element of SO(n)
to Spin(n). It changes sign in the same way has the holonomy of A around 0% when
going around a one-parameter family of loops parameterized by S*. Therefore the
trace of the product of the holonomy of w and the holonomy of A is well defined,
making the worldsheet measure well defined. The product of the holonomies is the
holonomy from going around a loop 0% for spinors with charge 1 relative to A.
Spinors on W can be understood as sections of the spin bundle of W, S(W), the
space of all spinors on W. Letting £ denote the line bundle that A is a connection
on, we see that neither S(W) nor £ are globally defined, but S(W) ® L is. The
bundle S(W) ® L defines a Spin® structure on W. The global anomaly is due to the
fact that A is not a connection on a globally defined U(1) bundle, but w + A is a
connection on S(W)® L. The anomaly implies that W must be Spin® and the Spin®
structure can be determined by the Levi-Civita connection and the gauge field A.

The fact that D-branes can only wrap submanifolds of X, W, if W admits a
Spin® structure allows us to show that the classification for stable Dy-brane configu-
rations in the type IIB theory with trivial B-field by K (.X) includes stable D,-branes
for p < 9. A stable D-brane configuration that is wrapped on W C X is classified
by K(W). It can be pushed forward to K(X) along f: W — X by the Gysin map
fiif W and X have Spin® structures which f preserves.

We can rewrite the condition that W admits a Spin® structure in terms of

topological invariants. The short exact sequence

Zs 0, (1.181)
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induces the long exact sequence on cohomology,
e H2(W,Z) —5 HY(W; Zy) 2 HY W Z) — -+ - . (1.182)

3 is the Bockstein map and [(wqo(W)) = W3(W) € H3*(W;Z) is the third integral
Stiefel-Whitney class of W. The second Stiefel-Whitney class wy(W) is the image
under ¢* of an element in H*(W;Z) if and only if W3(W) = 0. There is only one
Spin® structure on W at each preimage of ws(W) under ¢*. So W has a Spin®
structure if and only if W5(1W) = 0. Note that this is equivalent to v having a
Spin® structure since wy(W) = wq(v). In [92], Witten arrived at the same result by
describing lower dimensional branes as bound states of coincident Dy and Dy-branes.

When we include a nontrivial H-flux, the requirement for a D-brane to be able

to wrap a submanifold W is no longer W3(W) = 0. The anomaly condition becomes
Ws(W)+HUW =0. (1.183)

In [92], Witten describes how the relation between W3(W) and H U W implies that
the gauge bundle on a Dy-brane in the type IIB theory can be described by transition
functions on U; N U; N Uy, satisfying

9595k Gki = Nijk, (1.184)

where h;ji, is a cocycle with values in the nth roots of unity representing the lift of

H to H*(W;U(1)) induced by the short exact sequence

0 Z R U(l) 0.

n is the order of H € H3(W;Z). This implies that in the presence of a nontrivial
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H-flux, stable D-brane configurations in the type IIB theory are classified by the

twisted K-theory, K (X, H).

1.4.3.2 Classifying D-brane Charges in the Type I and Type IIA
Theories

The classification of stable D-brane configurations in the type I superstring
theory is very similar to the one in the type IIB theory. Strings in the type I theory
are unoriented and must be invariant under the parity transformation. The parity
transformation interchanges branes and anti-branes, so it sends Chan-Paton bundles
to their conjugate. For this to be a symmetry, we see that the Chan-Paton bundles
for open strings in the type I theory must be real. Furthermore, as we saw in section
1.3.3, Chan-Paton bundles in the type I theory are locally SO(N) gauge bundles.
If £ is an SO(N) bundle over the world volume of N coincident D-branes and F
is an SO(N’) bundle over the worldvolume of N’ coincident anti-branes, tadpole
cancellation in the type I theory requires N’ = N mod 32. Therefore stable D-
brane configurations are classified by a pair of real vector bundles (E, F'), where E
is an SO(N) bundle, F' and SO(N’) bundle and N’ = N mod 32. Furthermore, a
D-brane configuration classified by (E, F') is a equivalent to a D-brane configuration
described by (E’, F') if and only if there exists an SO(M) bundle G, for some M € Z,
such that

(B, F)=(E®G,F®G), (1.185)
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or vice versa. This means stable D-brane configurations in the type I theory are
classified by the K-theory of real vector bundles over X, KO(X). KO is similar
to K except it is defined in terms of real vector bundles. KO is also a generalized
cohomology theory, but it has Bott periodicity of order 8. Note that there is no
B-field in the type I theory because it is unoriented. Therefore, we do not need to
worry about any twisting due to the H-flux.

Classifying stable D-brane configurations in the type ITA theory is a little more
complicated than in the IIB theory since the worldvolume of a D-brane configuration
has odd codimension in the type IIA theory. This problem is resolved by looking
at bundles over S' x X rather than over X. If a brane wraps an odd dimensional
submanifold, W, of X, we identify it with a submanifold W’ = z x W of S x X,
where z is any point in S'. The worldvolume of W’ has even codimension in S x X,
so it can be shown that stable D-brane configurations in the type ITA theory are
classified by elements of K(S' x X, H) that are trivial when restricted to X. That

is, stable D-brane configurations in the type IIA theory are classified by K'(X, H).

1.4.4 A K-theoretic Description of T-duality

We saw earlier that the type IIA and IIB theories are related to each other
by T-duality when the spacetime splits as a product X x S'. This can be extended
to case when X is fibered by circles but doesn’t split as a product by looking at
the effect of T-duality on K-theory. Alvarez, Alvarez-Gaumé, Barbén and Lazano

first looked at this generalization of T-duality in [1]. Their work was generalized by
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Bouwknegt, Evslin and Mathai in [16, 15]. Since the physics in two spacetimes that
are related by T-duality should be indistinguishable, stable D-brane configurations
in one theory should map to a stable D-brane configuration in the other theory
under a T-duality transformation. Therefore, the groups that classify stable D-
brane configurations in the two different theories should be isomorphic. This along
with the work of Bouwknegt, Evslin and Mathai led to the belief that there should
be an axiomatic construction of the topological aspects of T-duality.

In [18], Bunke and Schick constructed a universal theory satisfying the follow-

ing axioms:

(1) There is a suitable class of spacetimes X; each with a principal S'-bundle

X = Z
(2) On each X there can be any H-flux H € H3(X;Z).
(3) There exists an involution (X, H) — (X, H) that keeps the base, Z, fixed.

(4) For X = Z x S and H =0, (X, H) is topologically equivalent to (Z x S*,0)
and for Z = S? and (X,H) = (53,0), X = S% x S and H is the usual

generator of H3(S? x SY;7Z) & Z.

(5) Let p: Z' — Z and (X, H) be a pair over Z. Then for the pullback diagram

o(X) -~ x (1.186)
|
|
L
A Z,

the T-dual of (¢*(X),$*(H)) as a pair over Z' is the pull back of (X, H)
constructed over Z.
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(6) K*(X,H) =~ K*"(X, H).

In the above set of axioms (X, H) denotes the T-dual of (X, H). In the Bunke-Schick
construction, T-duality can be viewed as an isomorphism between the twisted K-
groups that classify stable D-brane configurations in 7-dual theories. The shift in
dimension of the K-groups is due to the fact the T-duality maps the type IIA theory
to the IIB theory and vice versa. Consider an oriented S'-bundle 7: X — Z with
H-flux H € H3(X;Z). Tt is characterized by its first Chern class ¢;(X) € H*(Z;Z).
X gets mapped by T-duality to an oriented S'-bundle! 7#: X — Z with H-flux

H € H3(X;Z) such that

c(X)=7.(H) and ¢ (X)=m.(H). (1.187)

.. H¥(X) — H*Y(Z) is the push forward map defined by integration of X along
the fiber in terms of de Rham cohomology. This was generalized to higher dimen-
sions, i.e., to spacetimes X with a principal T"-bundle 7: X — Z by Mathai and
Rosenberg in [49] and Bunke, Rumpf and Schick in [17].

Let us now look at circle bundles X over an oriented 2-manifold with genus
g, Z, as an example. In this example the K-groups will be completely determined
by the Atiyah-Hirzebruch spectral sequence and it is enough to look only at the

differential d3 = Sq®+H. Sq® is trivial for this example, so ds is just the cup

IHere S! denotes the dual circle of radius %.
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product with H. The twisted K-groups can be computed as:

ker(HU : Hev*"(X) — H°% (X))

KX, H) = 70 I : (1.188)
1 _ ker(HU : H*(X) — H**"(X))
K'(X,H)= O Hoor(X) (1.189)

In the above and for the remainder of this section H*(X) denotes the cohomology

of X with integer coefficients. E is completely classified by its first Chern class
a(E)=F e H*Z) =1,

where F' is the cohomology class of the curvature of the bundle. So topologically,
circle bundles are classified by an integer j, where j = 0 corresponds to the trivial
bundle. If X is the trivial bundle, we can calculate its cohomology by the Kiinneth

formula as:

H*(X) = Z*", H}(X)=12Z. (1.190)

H*(X)=17% & Z,, H*(X)=17. (1.191)

The H-flux is classified by an integer k, since H € H*(X) = Z. The cup
product with H increases degree by 3, so is can be nonzero only with elements

of H°(X) and is essentially multiplication by k. Therefore, we see from equation
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(1.188) that when the H-flux is trivial the untwisted K-groups are

(
0 0 2 %, 7=0
K%(X) = H'(X) ® H*(X) = (1.192)
7,29+1 s Zj, ] 7& 0

\
(

Z2g+2’ ] =0
K'X)=H'(X)® H*(X) = (1.193)

Z2g—1—17 j 75 0.

\

When H = k # 0 times the usual generator of H3(E) then the twisted K-groups

are:

Z2§+1, ] =0
KX, H) = H*(X) = (1.194)
Z2g S Zja ] 7£ 0
Z2g+1 P Zka ] — 0
KYX,H)=H'X)® H*(X)/kH*(X) = (1.195)
Z2g © Zk7 j % 0
T-duality interchanges j and k, which results in the relevant twisted K-groups being

interchanged.

1.5 Other Dualities in String Theory

While so far we have only discussed T-duality, there are many other dualities in
string theory. A good general overview of dualities in string theory is [69]. Another
important duality that we will need in this dissertation is called S-duality. S-duality
relates a string theory with a strong string coupling constant to a weakly coupled
string theory. S-duality is important to string theory because many calculations can
only be done in the perturbative theory, where everything is expanded as a power
series of the string coupling constant. The string coupling constant must be small
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for such power series to converge. This makes many computations impossible in a
strongly coupled theory. Relating a strongly coupled theory to a weakly coupled one
allows us to use perturbation theory to perform calculations in the weakly coupled
theory and then relate them back to the strongly coupled theory via S-duality. This
makes S-duality into a strong computational tool.

The best known example of S-duality is the S-duality between the type I
theory and the SO(32) heterotic theory. That is, the weakly coupled type I super-
string theory is dual to the strongly coupled SO(32) heterotic superstring theory
[38, 90, 87, 21, 41, 62]. For this reason we will generally consider the type I theory
in place of the SO(32) heterotic theory.

The focus of this dissertation will be on U-dualities between the type I su-
perstring theory and the two type II theories. U-duality is a combination of S and
T-dualities. The combination of the two dualities is more complicated than either of
the individual dualities and the effect of U-duality on the K-theoretic description of
stable D-brane configurations is unknown. In the next two chapters we will explore
the K-theoretic aspects of U-dualities in the hope of defining some of the building
blocks necessary to determine a K-theoretic description of U-dualities between the

type I and type II theories analogous to the Bunke-Schick construction of T-duality.
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Chapter 2
K-Theoretic Matching of Brane charges in a Type IIA /Type I

Duality

As we have seen, the five superstring theories are all related through various
dualities: T-duality, S-duality, and a combination of both, known as U-duality [41].
The main purpose of this dissertation is to develop the building blocks necessary to
give a K-theoretic description of dualities between the type II string theories and
the type I theory, as well as gain a greater understanding of the problems that arise
and possible solutions. To this end, we will start with a known duality between the
type IIA theory and the type I theory and try to give a K-theoretic description of
the duality with the hope that we can then extend what we learn to more general
examples. Note that since the type IIA and IIB theories are related by T-duality,
it is enough to look only at type I/type ITA dualities when studying more general
type I/type II dualities.

Sometimes the explicit dualities between the different superstring theories are
unclear. By putting together the known duality between type I and the SO(32)
heterotic string theories with the one between the SO(32) heterotic and type ITA
string theories, one obtains an example of a U-duality between type I and type ITA
string theories.

It is conjectured that type IIA string theory on K3 is dual to the SO(32)
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heterotic string on the 4-torus, T* [40], [90, §4], [73], [8], [83], [7, p.- 424]. The
SO(32) heterotic string is believed to be equivalent to type I string theory via S-
duality [38], [88], [21], so this gives a duality between type I string theory on T* and
type IIA string theory on K3. (This chain of equivalences is mentioned explicitly
in [69, p. 258].)

We can determine a lot about possible dualities by looking at stable D-brane
configurations. Stable D-branes in one theory should map to stable D-branes in any
dual theories. So dual string theories should have equivalent D-brane configurations.
(Equivalent here means, for instance, that it should be possible to match up the D-
brane charges in the two theories, and thus these charges should live in isomorphic
groups.) The stable D-brane configurations in a given theory depend only on the
topology of the spacetime and can be classified by K-theory [52, 92, 93, 55]. We have
seen such an isomorphism of the groups classifying D-brane charges with T-duality,
and would now like to extend this idea.

Stable D-brane charges are classified by KO(X) in type I string theory [92, 65],
and by I~((X) (resp., K~'(X)) in type IIB theory (resp., type ITA theory) [92, 93, 7].
Since it is conjectured that type I string theory on T* and type IIA string theory
on K3 are dual to each other, they should have the same possible stable D-brane
charges. Therefore we would expect to see an isomorphism between KO*(T*) and
K~'(K3). The puzzle is that this is very far from being true, since KO*(T*) contains
2-torsion and K°(K3) = Z**, while K~'(K3) = 0, so that there wouldn’t appear to
be any stable D-brane charges at all in type-ITA theory compactified on K3! Even
in IIB theory on K3, it appears there is no room for torsion brane charges! We
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show that if one first removes the sixteen isolated singularity points of an orbifold
blow-down of K3, such an isomorphism is close to being achieved, albeit in a very

nontrivial way. Thus this calculation provides an interesting test of S- and U-duality.

2.1 Classifying Stable D-brane configurations in Type I Compacti-

fied on T*

We work throughout with K-theory with compact support. Recall that for a
locally compact space X which is not compact, KO*(X) is identified with If(\é*(X ),
where X = X U {oo} is the one-point compactification of X (e.g., (R")* = S™).
As we saw in section 1.4.2, KO* is a generalized cohomology theory. From the

Eilenberg-Steenrod axioms (theorem 2), we can derive the formula
KOF(X x 81 =2 KO¥(X) @ KO*1(X). (2.1)

KO™(T*) can be computed from

Z, i=0 (mod 4)

KO™'(pt) = { Z,, i=1,2 (mod 8)

0, otherwise,
\
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by iterating equation (2.1). Thus we obtain:
KO™{(TY) = KO™(T%) @ KO~ (T?)
~ KO™(T?) @ 2KO~(T?) @ KO~ +2(T?)
=~ KO(T) ® 3KO~"(T) @ 3KO~")(T) @ KO~ +3)(T)
~ KO~ '(pt) @ 4KO~ " (pt) @ 6 KO~ (pt) @ 4KO~ 0+ (pt)
® KO~ (pt).
Since type I string theory is a ten-dimensional theory, the actual spacetime manifold

for type I string theory compactified on T* is T* x RS. Stable D-brane charges in

type I string theory on T* x RS are thus classified by
KO (T* x R%) =2 KO %(T*) = 6Z @ 5Z,. (2.2)

However, this may not be the end of the story. Let ¢: YPH! < T4 x RS be
the inclusion of a (proper) Dp-brane in T* x RS. Strings in the type I theory are
unoriented, so the type I theory does not support a B-field. For anomaly cancellation
in the type I theory, Y should be spin. The Gysin map in KO-theory gives a map

u: KO(Y) — KO*P(T*) obtained as the following composite:

P.D.

KO(Y) Y25 KO, (V) 45 KO, (T'xRS) P21 go10-04D) (T4 ROY & [ O37(TY).

Here P.D. denotes the Poincaré duality isomorphism, (P.D.)~! is its inverse and ¢,
is the map induced by ¢ on KO-homology. A Chan-Paton bundle with orthogonal
gauge group gives a class in KO(Y), and thus via the Gysin map ¢ a D-brane
charge in KO37P(T*). This is KO™5(T*) = 6Z @ 5Zy when p =9 or 1. (Recall that
real K-theory satisfies Bott periodicity with period 8.) Similarly, a Chan-Paton
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bundle with symplectic gauge group gives a class in KSp(Y) = KO*(Y) (since real
and symplectic K-theory agree after a dimension shift by 4), and thus via the Gysin
map ¢ a D-brane charge in KO"?(T*). This can again be identified with KO~5(T*)
when p = 5. The 9-branes and 1-branes with real Chan-Paton bundles, along with
the 5-branes with symplectic Chan-Paton bundles, account for all the usual BPS-

branes of type I superstring theory [7, p. 223]. But as pointed out by many authors,

p | bundle type | BPS? | Charge group

9 0] yes | KO 9(T*) 2 6Z @ 5Z,
9 Sp no | KO(T*) X 6Z & Zy
8 0] no | KO3(T*) 2 4Z & Z,
8 Sp no | KOY(T*) =2 4Z @ 5Z,
7 0] no | KO™(T*) ~2Z

7 Sp no | KO°(T*) ~2Z & 10Z,
6 0 no | KO-3(T%) =47,

6 Sp no | KOYT*) ¥ 4Z & 10Z,
5 0] no | KO2(T*) X 6Z & Zy
5 Sp yes | KO*(T*) = 6Z @ 5Z»
4 0] no | KONT*) = 4Z & 5Z,
4 Sp no | KO¥TY) ¥ 4Z& Z,

3 0 no | KOY(TY) = 27 & 10Z,
3 Sp no | KOYT*) =27

2 0 no | KOY(TY) = 47 @ 10Z,
2 Sp no | KO(T*) = 4Z

1 0] yes | KO*(T*) = 6Z @ 5Z»
1 Sp no | KOS(T*) =~ 6Z & Z,

0 0 no | KOYTY) = 4Z & 7,

0 Sp no | KO'(T*) X 4Z & 5Z,
-1 O no | KOYT*) =27
-1 Sp no | KO¥T*) = 2Z ® 10Z,

Table 2.1: Groups of Dp-brane charges for type I compactified on T*
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e.g., [81, 82, 92, 9, 13, 2|, there can be additional D-brane charges coming from
non-supersymmetric, but still stable, branes with other values of p. Such charges
(for type I superstring theory compactified on T*) are summarized in the following
Table 2.1. The various kinds of branes are hypothetical; not all of them actually
occur. Also note that after inverting 2, KO and K Sp are the same, so the nature

of the Chan-Paton gauge group only affects the 2-torsion.

2.2 K3 Surfaces

The string theories we have looked at so far do not make sense physically.
Superstring theories on 10-dimensional Minkowski spacetime, while useful for for
defining the fields involved, do not make sense since since we can only observe 4
spacetime dimensions. This problem is rectified by compactifying 6 of the dimen-
sions on an internal manifold, whose size is small enough to have avoided detection
so far. To be more precise, if the spacetime manifold is X% x R*! where X is a
6-dimensional compact manifold of size [x, then the compact dimensions will be un-
observable at energies £ < 1/lx. Only at high energy will the compact dimensions
become apparent and affect interactions; therefore, at low energies the 4 noncompact
dimensions define our 4-dimensional spacetime for the purposes of particle physics.

We have already looked at superstring theories compactified on circles and tori.
Compactifying any of the superstring theories on a 6-torus, to obtain an effective
4-dimensional theory, does not break any of the supersymmetry. Superstring theory

compactified on T® has either N' = 4 or N' = 8 in 4 dimensions. Extensions of the
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D = 4 standard model that include supersymmetry must have the supersymmetry
broken at some scale. Imposing supersymmetry introduces constraints on the theory
that make it unrealistic for N > 2. For A/ = 1 the constraints make calculations
easier, but do not make the theory unrealistic. Therefore, we would like to com-
pactify string theory on an internal manifold that gives N' = 1 supersymmetry in 4
dimensions and we see that compactifications on a 6-torus are unrealistic.
Superstring theories are often compactified on Calabi- Yau manifolds since they
do not have the isometries that a torus has and thus break some of the supersym-
metry. Before we can define a Calabi-Yau manifold, we must first define a Kdahler

manifold.

Definition 1. Let X be a complex manifold with a hermitian metric g;;. We can

define a (1,1)-form w = 1g,;dz* Adz on X. X is called Kihler if w is closed, dw = 0.

Definition 2. A Calabi-Yau n-fold, X, is an n-dimensional Kéhler manifold satis-

fying one of the following equivalent conditions:
e The canonical bundle of X (the bundle of (n,0)-forms) is trivial.

e X has SU(n) holonomy.
e The first Chern class of X is 0 as an integral cohomology class.

There are many more equivalent definitions, but for our purposes, this will
suffice. As a consequence of the definition, Calabi-Yau manifolds have vanishing
Ricci curvature, which is another reason why they are so appealing for applications
to physics.
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Compactifying on a (simply connected) Calabi-Yau 3-fold breaks three fourths
of the supersymmetry leaving N = 1 supersymmetry for the heterotic and type
I theories in 4 dimensions and A/ = 2 for the type II theories. In fact, it can
be shown that (see section 9.3 of [7]) the heterotic theory will only have NV = 1
supersymmetry if it is compactified on a Calabi-Yau 3-fold. While compactifications
on Calabi-Yau 3-folds are the most physically realistic, it is informative to look
first at compactifications on complex n-folds for n < 3. The only Calabi-Yau 1-
folds are C and T?. We have already looked at these examples. There are only 2
compact Calabi-Yau 2-folds. They are T* and K3 manifolds. Let f be any degree 4
homogenous polynomial in the coordinates (21, 29, 23, 24) € C1. A K3 surface is the

submanifold of CP? defined by

f(21, 22, 23, 24) = 0, (2.3)

assuming f is chosen so that the surface is smooth. Using a different quartic poly-
nomial will give another K3 surface that is diffeomorphic to the manifold defined
by f, but has a different complex structure.

Since all K3 surfaces are diffeomorphic they all have the same Betti numbers:
1,0,22,0,1. Furthermore, the integral cohomology of K3 contains no torsion, so the
Betti numbers completely define the cohomology of K3. Note that H*(K3) = 0, so
K3 surfaces cannot support a nontrivial H-flux. We can use Corollary 1 to calculate

the K-theory of K3 to be
K°(X) = HY(X;7Z) = 7*, (2.4)

KYX) =~ HYX;7Z) 0. (2.5)
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It becomes immediately obvious that we don’t just want to use K3 as a possible
dual topology to type-I theory on T*, because the complex K-theory of K3 contains

no torsion, and K~1(K3) = 0, so could not possibly match KO~5(T%).

2.2.1 K-Theory of a Desingularized K3

Instead of K3, a Zs, orbifold quotient of T, which is a singular limit of K3, is
often used in string theory because the Ricci-flat metric can be explicitly determined
(7, 89.3]. For the purposes of string theory we can define an orbifold as follows. Let
X be a smooth manifold with a discrete isometry group G. The G orbifold quotient
of X is defined to be the quotient space X/G, where for z,y € X, x = y in X/G
if and only if there exists ¢ € G such that z = gy. Points in X with nontrivial
isotropy under the action of G are called singular. If there are no singular points,
the orbifold is itself a smooth manifold. Orbifold background geometries affect the
physical spectrum. Orbifolds (and more general orientifolds) will be the topic of the
next chapter. We need to define the term for what follows, but will delay further
details until the next chapter.

Consider T* as C? under the equivalence relation

Za ~ Zg + 1,

2o ™ Zg + 1, (2.6)

for a = 1,2. Then T* has a Z, isometry group generated by

(21, 22) = (=21, —22). (2.7)
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The 16 points given by z; and z, taking one of the four values 0, %, and

1 14i
7272

D) are

invariant under the Z, isometry. Therefore, the orbifold T*/Z, has 16 isolated
singular points. To define what it means for T*/Z; to be the singular limit of K3,
we must first describe a process known as blowing up the singularities.

We can remove the 16 singular points by first removing 16 open balls in T*
surrounding each of the singular points. We then divide out by the Zs action on
T* minus the 16 open balls to obtain a smooth manifold (with boundary), N. The
boundary of N is 16 copies of S®/Z, = RP3. Since K3 is a Calabi-Yau manifold, we
would like to replace the missing balls with a smooth Kéhler manifold with vanishing
Ricci curvature whose boundary is RP3. The unique manifold with these properties
is called an Eguchi-Hanson space, which topologically is the unit disk bundle of the
tangent bundle of S? = CP!. Glueing 16 copies of an Eguchi-Hanson space onto N
along their common boundary creates a manifold with the same topology as K3.

The metric on the Eguchi-Hanson space is

2 ayt\ ™ 2 1, a\* 2, L o0
ds? = (1— (—) dr? + 2 (1 - (—) (dip + cos 0 dg)® + ~r?dQ2,  (2.8)
r 4 r 4
where d2% is the area element of the 2-sphere, v has period 27 and the radial
coordinate has a domain of a < r < oo for an arbitrary constant a. So blowing up
the singularities gives a manifold with the same topology as K3 for a > 0, but in
the @ — 0 limit we get back the orbifold T*/Z,. This is what is meant by saying
T*/Z, is the singular limit of K3.

In the physics literature, T*/Z, with the singularities blown up is usually used

instead of K3 because it is a manifold with the same topology as K3. An explicit

81



form of the metric is known on the blow up of T*/Z,, but it must be smoothed to
give a Calabi-Yau geometry. The blow up using Eguchi-Hanson spaces cannot be the
correct manifold for our purposes of matching with the type I theory on T* because
again its cohomology (and thus its K-theory) contains no torsion. Since the original
K3 has no singularities, we do not want to allow for any physical effects from the
singularities!. Therefore, physically, we are only interested in fields that approach
a constant value at the singularities, and it makes more sense simply to collapse
the singularities and deal with the singular quotient space (T*/Z,)/(singularities) =
N/ON. Since this space is the one-point compactification of the interior of N, we
have K*(N/ON) = K*(N,ON), the relative K-theory of the manifold N rel its
boundary. So this is what we shall compute.

To compute K*(N,0N) we will first need to compute the homology of N. Let
M be T* — (16 open balls), which is the double cover of N. Since N is obtained from
M by dividing out by a free Zy-action, there is a spectral sequence H,(Zq, H,(M)) =
H,.,(N). (See for example [50, Theorem 8".9].) So we must first determine the
homology of M as a Zs-module. The homology of M is torsion free, so this will
split as a direct sum of copies of two standard Zs-modules: the trivial module Z,
and Z with the non-trivial Zs-action (where the generator of the group acts by
multiplication by —1). We call this latter module Z to distinguish it from Z with

the trivial Zy-action. First of all, note that the cohomology ring of T* is an exterior

algebra on 4 generators. Each of these generators is sent to its negative under

'We will see in the next chapter that orbifold singularities, like D-branes, are sources for R-R

charges.
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the Zs action, so Zs acts trivially on the even exterior powers and non-trivially on
the odd exterior powers. So H'(T*) = H,(T*) = H3(T*) = Hs(T*) = Z*, while
H?(T*) = H,(T*) = Z° Now by a simple transversality argument, removing 16
balls from T* does not change the fundamental group, so 7 (M) = m(T*) = Z*.

Therefore H,(M) = Z*. To obtain Hy(M) we can use the Mayer-Vietoris sequence:

2(M N 16B%) — Hy(M) ® Hy(16B*) — H,(T*) — Hy(M N 16B%)

Hy(M)

Here B* is the closed 4-ball, so M N 16B* = 1653. So we see Ho(M) = Z5. We can
determine H3(M) from the long exact sequence of pairs, using the pair (M, M),

where OM = 1653. The part of the long exact sequence we are interested in is

Hy(M) — Hy(M,0M) — Hs(16S%) — Hs(M) — H3(M,0M) — Hy(165%).

H,(M) = 0 since M has a nonempty boundary. By Poincaré duality Hy(M,0M) =
HO(M) 2 Hy(M) = Z. And similarly, Hy(M,0M) = HY(M) = FH,(M) &
THo(M) = Z* Finally, H5(16S%) = Z' (the Z, action is trivial since it pre-
serves orientation on S®) and H,(165%) = 0. Putting this all together, the long

exact sequence becomes

0—7Z— 7% — Hy(M) — Z* — 0.
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This shows us that Hs(M) = Z* @ Z'®. Putting this all together we see

/

Z, i=0
Z47 Z_l
Hi(M) = 7, 1=2

v o7, i=3

0, otherwise.
\

We can now determine H,(N) from the spectral sequence with E = Hp,(Zy, Hy(M)).

Recall that Hy(Za, Z) = 7 and Hy(Za, Z) = Zs, S0

(

L, q=0
Z247 q:1

E§ = Ho(Zo, Hy(M)) =< 76

ZlS @ Z247 q= 3

0, otherwise.

\

For p > 0, E7  is all torsion, so the free part of Hy(NN) is the same as for £ . And

we see that the Betti numbers of N are

p

15, =3

0, otherwise.
\

First we know that Hy(IN) = Z since N is connected. We also know Hy(N) = 0

because N has a nonempty boundary. Now H3(N) = H'(N,0N) = FH,(N,ON) ®
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THy(N,0ON), and THyo(N,0ON) = 0. So H3(N) is free, and thus isomorphic to
Z'®. We can use Mayer-Vietoris with N and 16 Eguchi-Hanson spaces, E, since

N Uygrps 16 = K3, to show that Ho(N) = Z°, since we have an exact sequence
o — Hpy 1 (K3) — Hp(16RP?) — Hy(N) @ H(16E) — Hu(K3) —

Furthermore, E has the same homotopy type as S?, since it is the unit disk bundle of
the tangent bundle of S2. The part of the Mayer-Vietoris sequence we are interested
in is:

H N) @ 716 722

From this we see that H2(N ) injects into a free group and thus must be free. We

have shown that only H;(N) can have any torsion.

We can calculate Hy(N) from the spectral sequence H,(Zy, H.(M)) = H.(N).
E} o = Hy(Zy, Hy(M)) = Zs.

And no non-zero differential hits it or leaves it because we have a first quadrant
spectral sequence.

E§y = Ho(Zy, Hi(M)) = Z5*.
Again no differential hits it since E3, = Hy(Zy,Z) = 0. Therefore Hi(N) is an
extension of Zs by Z,*. Also H{(N) is a quotient of 7' as can be seen from

Mayer-Vietoris:

H(N)

ZglG
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so all of its torsion is of order 2. Therefore the extension is trivial and Hy(N) = Z,°.

Putting this all together, we see that

0, otherwise.

\

By Poincaré duality for manifolds with boundary (also known as Alexander-Lefschetz

duality), the cohomology of N relative to its boundary is thus

0, 1=0
ZYB, i=1
. 78, i=2
H'(N,ON) = Hy_;(N) =
ZQS, 1=3
Z, i1=4
0, otherwise.

\

The K-theory is then computed from the Atiyah-Hirzebruch spectral sequence

HP(N,0N; K(pt)) = KP*(N,ON),

but all differentials vanish since the first differential is the Steenrod operation Sq?,
which must vanish, and there is no room in this case for any higher differen-
tials. Since the spectral sequence collapses at E,, KY(N,ON) = H?*(N,ON) @
H*(N,0N) 2 Z" and K~'(N,0N) = H'(N,0ON)® H*(N,ON) = Z* ©7Z,°. Finally,
the stable D-brane charges in type-ITA string theory on (N/ON) x R® are classified
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by K~'((N/ON)xRS) = K~'(N/ON) = K~'(N,ON)& K~ '(pt) = Z'* ®Z," (since

K=(pt) 2 0).

2.3 Conclusions and Future Research

We have seen that the group that classifies the BPS D-branes in type I super-
string theory compactified on T*, KO(T* x R®), is isomorphic to Z8 @ Z,”, which
injects into K~ ((N,0N) x RY) = Z' & Z,” with an isomorphism on the torsion.
The extra Z summands in the latter group could possibly correspond to other non-
supersymmetric branes in type I on T4, since these would have K-theoretic charges
living in the other groups listed in Table 2.1. For example, Dg-branes with real
Chan-Paton bundles should have charges living in KO(T*) & 47Z. Tt is unknown
which non-BPS branes in the type I theory transform to BPS branes in the type ITA
theory. Further research into this phenomenon needs to be done before completing
the classification. A correct classification of the BPS brane charges on the type ITA
side is a powerful tool when studying non-BPS branes that map to BPS branes. Re-
quiring the classification of all branes (both BPS and non-BPS) in the type I theory
that map to BPS branes in the type IIA theory to match with K~!((N,0N) x R®)
gives constraints on which non-BPS branes are allowed. That is the classification
for a non-BPS brane in the type I theory that maps to a BPS brane in the type ITA
theory must be free of rank< 9.

While showing the stable D-brane configurations in the two theories match

does not prove the two theories are dual, it does add further evidence to the already
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conjectured duality. This particular example also illustrates how first ensuring stable
D-brane configurations match is a useful first step in checking a possible duality. By
looking at the stable D-branes in this case, we saw immediately that we did not
want to use K3, but rather a desingularized version of the orbifold blow-down, as
matched with our physical intuition. Since NV is only the same as K3 away from the
singularities, it is possible that the including the contribution from the singularities
can explain the difference of our two classifications. For this reason, we will look
at classifying D-brane charges on orbifolds (taking into account the effect of the

singularities rather than excising them) in the next chapter.
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Chapter 3

Type II Superstring Theory Compactified on an Orientifold

As we saw in the previous chapter, the different superstring theories are often
compactified on Calabi-Yau manifolds to reduce the total supersymmetry of the
theory. Another way to reduce the supersymmetry is to compactify on an orientifold.
An orientifold is a generalization of a orbifold that we will define shortly. Orbifolds
are often used in string theory instead of Calabi-Yau manifolds because (as we
saw with K3) the explicit form of the metric on most Calabi-Yau manifolds is
unknown, but the class of orbifolds contains singular limits of Calabi-Yau manifolds
on which the metric is known. Additionally, compactifying on orientifolds has proven
promising for relating the type I theory to the type II theories. In fact, we have
already seen in chapter 1 that the type I superstring theory can be defined as an
orientifold projection of the type IIB theory. In this chapter we will focus on the
orbifold limit of K3, T*/Z,, as well as the more general orientifold case of T"/Z,
for arbitrary n, where again the Z, action is multiplication by —1. We will discuss
the importance of this class of orientifolds to type I/type II dualities after giving a
precise definition of an orientifold and describing how D-brane charges are classified

on one.
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3.1 Superstring Theory on an Orientifold

An orientifold is the quotient of an oriented orbifold by the action of an in-
volution. Put more simply, an orientifold is an orbifold in which we allow the local
isotropy group to reverse orientation. An orbifold is an orientifold with the trivial
involution. Note than when n is even T" can be described as C% /Z[i]Z and the
action (z1,...,22) — (—21,..., —2n) preserves orientation. If n is odd, however,

T™ is described as R™ under the equivalence relation

ZL’dN[L’a—I—l, (31)
where @ = 1,...,n. Since there are an odd number of coordinates, the action
(x1,...,2,) — (—x1,...,—x,) reverses orientation. Therefore T"/Zy, where the Z,

action is multiplication by —1, is an orbifold for n even and an orientifold for n odd.

3.1.1 The String Spectrum

Performing an orientifold projection reduces the previous spectrum of allow-
able states, but also introduces new states. If the symmetry group reverses orienta-
tion (i.e., we take an orientifold projection rather than an orbifold projection) then
when we mod out by the action we will obtain unoriented strings. Therefore we
will concentrate only on the effect of performing an orbifold projection and keep
in mind that we have the additional constraint that strings should be unoriented if
the involution reverses orientation. There are two types of states that exist on an
orbifold X/G. They are known as the twisted and untwisted states.

A state on the orbifold should be G-equivariant, so it transforms under the
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action by G as

gV =0(9)Y, (3.2)

where o(g) is a character of G. Untwisted states are states ¥ whose transformation
is given by the trivial character.
Untwisted states are states that exist on X and are invariant under the action

by G. So a state ¥ in X is a state in X/G if and only if
g =V (3.3)

for all g € G. If G is finite, we can construct a G-invariant state, V¢, from any

state ¥ in X as

1
Ve = el > v, (3.4)

geG

So all untwisted states in T"/Zy can be written as
1
5 (¥ +g7), (3.5)

where U is a string state on T™ and ¢ acts as multiplication by —1 on the internal
coordinates. Note that there are less states in the untwisted sector of X/G than in
X.

Performing an orbifold projection introduces new closed string states. A
twisted state is a state on the orbifold that transform as equation (3.2) where o
is a nontrivial character. Twisted states correspond to open strings in X that sat-
isfy

X (o +2m) = gXH(0), (3.6)
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for some g € G. Since X* = gX* in X/G this describes new closed strings in the
orbifold that do not exist in X. g = 1 gives the untwisted closed string states. There
are actually various twisted sectors corresponding to the different conjugacy classes
of G. This distinction only matters if G is nonabelian, which we will not deal with.

In our example of T, the twisted states correspond to strings in X satisfying
X*(o +27m) = —X"(0). (3.7)

Since twisted string states come from strings that connect a point to its image
under G, after performing the orbifold projection the resulting closed string state

must enclose a fixed of the G-action, that is an orbifold singularity.

3.1.2 Supersymmetry Breaking

To describe how compactifying on an orbifold breaks some of the supersymme-
try we will use the example of C"/Z; described in section 9.1 of [7]. This example
is useful for us because all of the results hold true for the compact case T?"/Zy.
To define the orbifold C"/Z; consider C™ with coordinates (21, ..., z,) and let the
generator of the Z; action, «, be the isometry that performs a simultaneous rotation
around each axis

o 2y — €%z, (3.8)

where a = 1,...,n and ¢, is an integer multiple of 27”

To describe the effect of this of this orbifold projection on supersymmetry we
must first introduce the generator of the supersymmetry transformations. Since su-
persymmetry is only manifest in the GS formalism, the generator of supersymmetry
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can only be defined in the GS formalism of string theory that we alluded to earlier.
Therefore, we will now give a brief overview of the features of the GS formalism we
require here.

The GS formalism uses an extension of spacetime called superspace that in-
cludes additional anti-commuting Grassmann coordinates. So in the GS formalism

we use super-worldsheet coordinates (0, 604), where

6.
0= (3.9)

0

is a Majorana spinor and the individual components, #,, A = +, are the anticom-
muting Grassmann coordinates. Fields defined on superspace are called superfields.

The most general superfield can be written as a series expansion in 6 as

V(0 0) = X*(0") + G (o) + %HOB”(U“). (3.10)
Any terms with more powers of # would vanish as a result of the anticommutation
relations satisfied by the Grassmann coordinates and a term linear in # would be
equivalent to the term linear in @ since for Majorana spinors 81 = 1. Introducing

the supercovariant derivative,
Dy=—+ (p“é’)Aaa, (3.11)
we can write the action in the GS formalism as
s="1 [ @od20 Dy*DY 12
= Z g e (3 )
Note that for Berezin integration over two Grassmann coordinates the only nonzero
integral is
/d29 06. (3.13)
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Expanding the action (3.12) out in component form and performing the Grassmann
integration gives

S = —g / d7 (0, X, 0° X" + " p* gt — B, B"). (3.14)

Solving the equations of motion for B* gives B* = 0, under which the above action
reduces to the same action we saw in RNS formalism (equation (1.27)). So we see
that B* is an auxiliary field that does not affect the physics, but allows for manifest
supersymmetry of the theory as we will see below. The above action also shows
that X*# and " play the same role in the GS formalism as they did in the RNS
formalism.

The generators of supersymmetry transformations are called super charges and

are given by

0
= — “0) 40,. 3.15
Qa =557 +(0"0)a (3.15)
They act on the superfield as
OYH =[eQ,YH] =eQYH, (3.16)

where ¢ is a constant Majorana spinor. Expanding this out in components, we find

that the supersymmetry transformations are

IXH = eyt (3.17)
oYt = p*0,X"e + Ble, (3.18)
IB* = gp*0,y". (3.19)

The super charges and supercovariant derivatives anticommute, so DY* transforms
the same way under a supersymmetry transformation as Y*. Therefore, the variation
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of the action under a supersymmetry transformation is

T

05 1

/ d*od’ £Q(DY"DY,). (3.20)

There are two terms in the definition of @) (equation (3.15)). One gives a total
derivative in terms of ¢ and the other a total derivative in terms of #. There is
no # boundary term, but there can be nontrivial ¢ boundary terms. Therefore,
with suitable o boundary conditions there is worldsheet symmetry (equation (3.20)
vanishes), but different ¢ boundary conditions can break the supersymmetry. Note
that if include the field equation B* = 0 then equations (3.17)-(3.19) reduce to
the supersymmetry transformations in the RNS formalism, equation (1.36). So
including the field equation B* = 0 reduces the GS formalism to the RNS formalism
and manifest supersymmetry is lost.

Let us now return to our example of C"/Z; and look at what happens to the
supersymmetry after performing the orbifold projection. The components of the
supercharge ()4 on C" that are invariant under the group action give the unbroken
supersymmetries on the orbifold. Therefore, determining the unbroken supersym-
metries is equivalent to determining how a spinor changes under the group action,
which in this case is a rotation. Spinor representations of a rotation generator in 2n
dimensions have weights of the form (+3,...,+3) with a total of 2" states. This
divides the exponent in equation (3.8) in half, which is due to the fact that a spinor
reverses sign under a rotation by 27. Irreducible spinor representations of Spin(2n)
have dimension 2"!. An even number of negative weights gives one representation

while an odd number gives the other representation. Under the rotation given in
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equation (3.8), @4 transforms as
a: Qa — exp (iZafg&) Qa, (3.21)
a=1
where €4 is a spinor weight. If we choose the ¢ so that
! Xn: " =0 dN (3.22)
— =0 mo .
27 —

(which can always be done), then the components of () 4 that will be invariant under
« are the components whose weights have the same sign for all n components, so
that > e%¢® = 0. For each component of the supercharge that is not invariant

under o the amount of unbroken supersymmetry is broken in half.

3.1.3 Classifying D-brane Charges on an Orientifold

As we have seen, D-brane charges are determined by their Chan-Paton bun-
dles. Therefore, to classify stable D-brane charges on orientifolds we need to look
at what happens to the Chan-Paton bundles under an orientifold projection. We
will begin by looking at orbifold projections and will see, as originally proposed
by Witten in [92], that stable D-brane charges on an orientifold are classified by
equivariant K-theory. In this section, we will mainly be following [44], [31] and [35].

D-brane configurations in the orbifold X /G should come from D-brane config-
urations on X that are globally invariant under G. The pair of bundles (E, F') that
classify a brane/antibrane configuration in X can be constructed in a G-invariant
way, so we can consider G as acting on the pair (B, F'). A D-brane configuration

represented by the pair of bundles (E, E') can be created or annihilated if the tachyon
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field is G invariant, which means that G must act on both copies of E in the same
way. To be more precise, let 7, be the representation of ¢ € GG in the Chan-Paton
gauge group (for type II string theories this is U(/N)) and let f be some fields with

Chan-Paton factor A. The action of G on the Chan-Paton factors is given by [55]

g-fA) = f(A). (3.23)

The tachyon field transforms in the adjoint representation and the action of G is
given by

g T(x) =7T(g" x)y, " (3.24)
The tachyon field must be invariant under the above action to allow for creation

and annihilation. D-brane charges on X/G are classified by pairs of vector bundles

(B, F') with a G action modulo the relation
(B,F)=(B®E,F®E), (3.25)

where F is any G-bundle on X. A G-bundle on X is a vector bundle on X,

E——= X with a G action such that

m(g-e) =g-m(e) (3.26)

for all e € E and

g: E, — Eg, (3.27)

is a homomorphism of vector spaces.
The equivalence classes of pairs of vector bundles (B, F') modulo the equiv-

alence relation in equation (3.25) form the group K¢ (X) called the G-equivariant
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K-theory of X. Therefore, stable D-brane charges on an orbifold X/G are classified
by Kg(X). To be more precise they are classified by K¢ (X) in the type IIB theory,
KL(X) in the type ITA theory and by KOg(X) in the type I theory. Equivariant K-
theory is a generalization of K-theory for which many of the basic properties, such
as Bott periodicity, hold. A useful theorem for equivariant K-theory [68] shows that
if G acts freely on X then

Ka(X) 2 K(X/Q). (3.28)

Another result from [68] that we will need later is that
Ka(pt) = R(G), (3.29)

where R(G) is the representation or character ring of G. Since there is a natural

map from X to a point, K¢(X) is a R(G) module for general X.

3.2 Classifying D-brane Charges in type II Superstring Theory on
T"/Zs

Throughout this section let G = Z/2 and identify T™ with R"/Z" on which G
acts by —1. We choose to look at this example because as Polchinski pointed out
in [58], if you start with the type II theory compactified on a (10 — p)-torus, where
10 is the total spacetime dimension, containing 16 D,-branes in the noncompact
dimensions and then take the R — 0 limit, you obtain the type I string. Further
evidence of the importance of this example to studying type I/type II dualities can

be found in [22]. In their paper they classify type IT orientifolds on T?7 x RP*! for
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p=9,87,6 and give a partial description for p = 5,4. Through their description
there is further evidence that this class of Type II orientifolds should be able to be
matched with some type I theory. The greatest piece of evidence is that in the case
of p =9, the only supersymmetric Z, orientifold is type I on R,

As we saw in the last section, classifying stable D-brane configuration in X/G
comes down to calculating Kg(T"). This has been computed as an abelian group
in [29]. We will present a more general formulation where K (T") is computed as

an R(G)-module.

3.2.1 Zo-Equivariant K-Theory of T"

For the remainder of this section, let G = Z; and R = R(G) = Z[t]/(t* — 1),
where ¢ represents the nontrivial character of G. Let [ = (t — 1) and J = (¢ + 1).
These are prime ideals with R/I = R/J = Z, and R = R;) = Q.

A prime ideal, g, of R has support {1} if and only if p D I. So I has support
{1} and J has support G. Given the identification of T" with R™/Z™ on which
G acts by —1, G has 2" fixed points. By noting K/ (pt) = R, all in degree 0, by
equivariant Bott periodicity and using the Segal localization theorem, we can obtain

a preliminary result:
K&(T") () = K&(T™)9) () = K&(2" points) sy = 2" Ry), (3-30)

all in degree 0. In order to prove a more general formula for K(T"), without

localization, we will need the following lemma.

Lemma 2. Hompg(J, R/J) =0, Exty(R/J, R) =0, and Exty(R/J,R/J) = 0.
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Proof. Note that I - J =1INJ =0and I = R/J, J = R/I (as R-modules). A
homomorphism J — R is determined by the image of ¢t 4+ 1, which must lie in the
ideal annihilated by ¢ — 1, which is J itself. So Hom(J, R) = J. Now R/J = I, so a
homomorphism J — R/J is the same thing as a homomorphism J — R with image
in /. This is 0 since I N J = 0.

Next, consider the short exact sequence
0—J—=R—R/J—DO, (3.31)
and apply the functor Hompg(__, R) to it. We get

0 — Hompg(R/J, R) — Hompg(R, R) — Hompg(J, R) — Exts(R/J, R) — Exth(R, R) = 0.
(3.32)
We have Hompg(R, R) = R, and by the above, Hompg(J, R) = J = R/I. Similarly,

Hompg(R/J, R) = Hompg(I, R) = I. So (3.32) becomes the sequence
0—1I—R— R/l — Extp(R/J,R) — 0, (3.33)

and Extp(R/J, R) = 0. Similarly, if we apply Homg(__, R/.J) to the short exact

sequence (3.31), we get:
0 — Homg(R/J,R/J) — Hompg(R, R/J) — Hompg(J, R/J)
— BExth(R/J,R/J) — Extp(R, R/J) =0. (3.34)
But Hompg(J, R/J) = Homg(J, 1) = INJ =0, so Exty(R/J,R/J) = 0. O

Theorem 6. Let G act on T" = R"/Z™ via multiplication by —1 on R™. Then
K:(T™) is entirely concentrated in even degrees, and Kg(T™) = 2"~ 1. R®2" 1. (R/.J).
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Proof. Throughout this proof we will be using the result from [68]: If C' is a closed

G-invariant subspace of a locally compact G-space X then the sequence

KAU(X—C) — KA&(X) = K2(C) = KLX-C) — KL(X) = KL(C) = KQ(X—C) — -+
(3.35)
is exact. Here the last part was gotten using Bott periodicity, KZ(X — C) =

K2(X — (). We will also use the result from [25]:
K2(pt) = KL(R*) = R, if k is even
K%(RY) = R/J, if kis odd (3.36)

KL(pt) = KL(RY) = 0.

A fundamental domain for T" is F' = {(z1,...,x,) : |2;| < 3}/ ~, where —1 ~ 1.
Define:
n n—k+2 n—k+1
= J U U@ 2):
lp—k=in—k—1+1 tg=i1+1 d1=1

1 1
T, ::t§ for 1 <1< (n—k)and |z;] < 3 if g #£4}/ ~. (3.37)

So Y} is the set of all n-tuples where at least n — k coordinates are exactly :t%. Note
that Y} is (Z) copies of T* whose pairwise intersection is T*~!'. The union of all the
pairwise intersections is Y;_;. Now by induction on k& we will show that K2 (V%) is

given by

(Z)RGB(kﬁl)R/J@(kTQ)R@”'@G)R/J@R,

if k is even, and is given by

(Z)R/J@ (kﬁl)R@ (kg)R/J@---@ (?)R/J@R,
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if & is odd. We will also show that K}(Y;) = 0 in both cases.
Note that Yy = pt, so K (Yy) = R all in degree 0. Let us now look at the
case of kK = 1. Yj is the one-point union of (Tll) = n 1-tori. The point of intersection,

,...,E3), is a closed G-invariant subset of Y7, so by (3.35) we get an

1
2

N[

exact sequence
EKe(Yi\{y}) — Ke(Y1) — Keg(pt) — Ke(Yi\{y}) — Kg(Y1) — Kg(pt)

Y1\{y} is the disjoint union of n copies of R. Using this and the above exact sequence
we can see immediately that K}(Y;) = 0 since both K}(R) and K} (pt) are 0 by

(3.36). And we get a short exact sequence

0 —=nR/J—= K%(Y;) —= R——>0,

which splits since R is free. So K%(Y1) =nR/J & R.

Now let us look at the inductive step. Assume the above formula for K (Y%)
holds for all k¥ < m. Let us also assume m is even. Y,,_; is a closed G-invariant
subset of Y,,. Y, \Y,_1 & (Z)Rm, since it is the set of all n-tuples with n — m
components exactly ﬂ:% and m components with absolute value strictly less than %
Therefore K& (Y, \Yn-1) = () R all in degree 0, by (3.36) since m is even. Also, by
the inductive assumption and since m—11is odd, K7 (Y1) = (mril) R/J® (mﬁz)R@
(,")R/J®---&(])R/J® R all in degree zero. By (3.35) we see that K;(Y,,) =0

and we get a short exact sequence:

0— Kg(Ym\Ym_l) — Kg(Ym) — Kg(Ym_l) — 0.
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By lemma 2, the exact sequence splits and we see that

KEa(Yon) 2 Ka(Y\Yi ) OKE (Y1) & (:1) R® (m”_ 1) R/J& <m7i 2) Re-- & (g‘) R/J®R,

all in degree 0. The inductive step for m odd follows the same form. Note that Y,

is the entire space T", so by the above inductive proof we have shown:

Re(")R/Je(")R®---d(MR/J D R, if nis even
copm = | 7O LEIRIIE (R0 (e

R/J& (" )R (,",)R/J® & (})R/J &R, if nis odd.
(3.38)

X (e £, (oo

7<n even j<n, odd

Note that 0= (1 —=1)" =3>", cven (7) — D i<n odd (?), which implies

2" =(1+1)" =300 (?)
= i<n oven (?) + D j<n odd (7;)
=2 j<n even (5)-
Therefore we see that Y-, cen (7) = 2j<p oaa (j) = 2"7". Putting this into (3.38)

gives us our final result:
KTy =2 Re 2" - (R/J),
all in degree zero. U

As we will discuss in the next section, when n is even, Theorem 6 classifies
stable D-branes on the orbifold T"/Zs.
To observe that this is consistent with our previous result of the Segal local-

ization theorem (3.30), observe:

Lemma 3. (R/J)) = R(j.
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Proof. Recall that R is the result of inverting everything in R that is not in J.
Thus we invert all prime numbers p € Z as well as everything in I (except for 0).
Since I - J =0, J;y = 0 and the quotient map R — R/J becomes an isomorphism

after localization. O

So we see that
KH(M)y=2"" Ry ®2" ' - (R/J)y = 2" Ry ®2" - Ry = 2" - Ry,

all in degree zero, which agrees with (3.30).

3.3 Conclusions and Future Research

The K-groups given in Theorem 6 only make sense as a classification of stable
D-brane configurations in the type II theory if n is even. When n is odd, the
action of Zy on T™ reverses orientation, as we saw in section 3.1, so we cannot
define an oriented string theory on T"/Z,. In order to get a consistent string theory
we must also mod out by the action of the worldsheet parity operator, to obtain
unoriented strings. When this is done, the singularities are planes, called orientifold
planes, that can couple to R-R gauge fields just like D-branes. Therefore stable
D-brane configurations are classified by K R-theory, which is a generalization of
K-theory that combines both KO-theory and K-theory, as described by Witten in
[92]. While K R-theory is not a topic of this dissertation, it is an interesting topic for
future research, since not only would it extend the classification of stable D-branes

on T"/Zs to the case of n odd, the end result of modding out by the action of the
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worldsheet parity operator will result in the type I theory. Many interesting K-
theoretic aspects of the stable D-brane configuration in type I theories constructed
as an orientifold projection of the type IIB theory are shown in [55]. While [55]
describes how to construct the type I theory from the type IIB theory and the effect
on K-theory, it does not describe actual dualities between type I and type II theories
with indistinguishable spectra. It appears that for an unoriented orientifold, we only
get a consistent string theory in the type I theory, which is built from the type IIB
theory but not necessarily dual to a type II theory. When X/G is an oriented
orbifold, however, it should be possible to define a type II theory on it.

Returning to the case of n even, T"/Z, is an oriented orbifold, so Theorem 6
classifies stable D-brane configurations on T™/Z, in the two type II theories when
the H-flux is trivial. Note that the Z, equivariant K-theory of T*, when viewed
as an abelian group, is the same as the K-theory of K3. We believe that this is
evidence that we can match stable D-brane configurations in the type II theory
on T*/Z, with D-brane configurations in the type I theory on T? if we include a
twisting by the H-flux. However, on an orientifold X /G, it is unclear what is meant
by the H-flux. It does not make sense for H to live in H*(X;Z) since to make any
sense on the orbifold, H would have to be GG invariant. Recent work by Distler,
Freed and Moore in [24] proposes using more exotic twistings involving equivariant
cohomology, but the precise definition of the H-flux on an orientifold remains an
open problem.

Once the H-flux on an orientifold is defined, it will be possible to com-
pletely classify stable D-brane configurations in the type II theories on the orbifold
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T™ x R9~" where the orbifold action is multiplication by —1. Afterwards we can
determine any possible dual type I theories by looking for any isomorphisms between
K}, (T" x R'™™) and KO of some dual spacetime. Once a K-theoretic isomorphism
is found, the spectra in the two theories need to be computed to see if there is an
actual physical duality. After completing this classification, it would be interesting
to extend to the case of T*/Z, x R® with more general Z, actions, to complete the
classification of D-brane configurations on Z, orientifolds of T4 x RS started in [22].
This is the simplest case in which every possible type of orientifold plane is apparent.

We are currently working on a project motivated by the fact that if X is locally
compact then

KO(X x (CP? — {pt})) = K(X). (3.39)

If dim X = 6, this suggests the possibility of a duality between the type I theory on
X x (CP? — {pt}) and the type IIB theory on X x R* = X x (S* - {pt}). Regarding
CP? as S°/ U(1), we see that CP? can be viewed as U(1) orbifold of S®, where the
action of U(1) on S° has no fixed points so the orbifold is a smooth manifold. This
could be a useful example to the research presented in this dissertation, since if it
does describe a duality, any general rules determining the K-theoretic aspects of
dualities between the type I theory and the type II theories on G orbifolds should
include the above example when the action of G is constrained to be free.

To summarize, we saw that classifying stable D-brane configurations in the
singular limit of K3, taking the effect of the singularities into account, successfully

recreates the classification of stable D-brane configurations on a smooth K3 surface.
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Furthermore, with further research, it should be possible to define a nontrivial H-
flux on the orbifold limit, whereas it is not possible on a smooth K3 surface since
H3(K3;Z) = 0. This, along with previous work by Polchinski describing the type
I theory as an orientifold projection of the type IIB theory, shows that looking at
the K-theoretic classification of D-brane configurations on orientifolds is a promising
area to continue research into U-dualities between the type I and type II superstring

theories.
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