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tion constraints and other control system parameters. The effectiveness of the proposed

control law was evaluated in experiments and mathematical simulations.



SYMBOL-BASED CONTROL OF A BALL-ON-PLATE
MECHANICAL SYSTEM

by

Phillip Yip

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Master of Science

2004

Advisory Commmittee:

Assistant Professor Dimitrios Hristu-Varsakelis, Chair/Advisor
Professor Balakumar Balachandran
Professor Amr Baz



c©Copyright by

Phillip T. Yip

2004



DEDICATION:

To my family

ii



ACKNOWLEDGEMENTS:

I would like to give thanks to my advisor, Dr. Hristu, for his guidance, to my labmates

for their help along the way, and, of course, to my friends and family for their constant

and invaluable support.

iii



Contents

1 Introduction 1

1.1 Objectives and Contributions . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Work 5

2.1 Stability Without Attention . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Hybrid System Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Limited Communication Control . . . . . . . . . . . . . . . . . . . . . 8

2.4 Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 Language-Based control . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 A Mechanical “Ball-On-Plate” System 14

3.1 Plate Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Ball and Plate Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Restriction to One Dimension . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Experimental Setup 25

4.1 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Mechanical Construction . . . . . . . . . . . . . . . . . . . . . 25

4.1.2 PC-Based Controller . . . . . . . . . . . . . . . . . . . . . . . 28

iv



4.1.3 Computer Vision . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1.4 Language-Driven Motors . . . . . . . . . . . . . . . . . . . . . 29

4.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.1 Operating System . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.2 Overall Control Program Layout . . . . . . . . . . . . . . . . . 34

4.2.3 Image Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2.4 Ball Location Detection . . . . . . . . . . . . . . . . . . . . . . 37

4.2.5 Serial Communications . . . . . . . . . . . . . . . . . . . . . . 39

5 Control Strategy and Experiments 40

5.1 Stability for Unconstrained Switching . . . . . . . . . . . . . . . . . . 40

5.2 Communication Strategy and Control System Layout . . . . . . . . . . 42

5.3 Open-loop control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4 Proposed Control Algorithm . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Controllability . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4.2 Switching Regions . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.5.1 Instantaneous Switching with Minimum Dwell Time . . . . . . 53

5.5.2 Effects of Delayed Switching . . . . . . . . . . . . . . . . . . . 56

5.5.3 Non-instantaneous Switching with Dwell Time . . . . . . . . . 57

5.5.4 Implementation of Predictive Switching and Experimental Results 60

6 Conclusions and Future Work 67

A Mechanical Linkage Kinematics 69

Bibliography 73

v



List of Figures

3.1.1 Diagram of ball on plate with φ1 = φ2 = 0 . . . . . . . . . . . . . . . 14

3.1.2 Diagram of ball on plate with one rotation of −φ1 in the ı̂ direction as

shown in light blue. In configuration of the plate for φ1 = φ2 = 0 is in

yellow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.3 Diagram of ball on plate with a rotation of −φ1 in the ı̂ direction and
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Chapter 1

Introduction

Network-based components are quickly becoming the de facto standard for use in com-

plex, distributed electromechanical systems. Modeling these complex systems requires

the use of both continuous and discrete dynamics, since some components may trigger

discrete “switches” in the behavior of other components. The overall system is thus a

hybrid or switched system and cannot be studied effectively in the domain of classical

controls.

A defining characteristic of a networked control system is that continuous control

signal paths between components do not always exist. Signals flow between components

through a shared medium. Controllers must thus carefully allocate their “attention”, or

the portion of resources dedicated to communicate with other subsystems, to keep the

system’s performance within an acceptable bound. It follows that the attention that a

component receives is an important design parameter.

For example, consider a control system consisting of a person who is trying to jug-

gle three balls. Components of this control system include sensing elements (eyes), a

computing element (brain), and actuators (arms). A “low attention” control network has

very little communication between its components. For this example, “low attention”
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is akin to forcing the person to try to juggle while blindfolded. There is a very small

chance that this person can successfully juggle, but if the person knows exactly how to

throw each ball and how to catch each ball, it may be possible. However, if there are

any disturbances in their throw then they will be unable to compensate for them since

sensory data is not available. In a “full attention” control network, components have

continuous access to one another. There is no “full attention” solution to this problem

because the person lacks the sensing capabilities to track the location of all three balls at

once. If they focus their eyes on the location of only one of the balls, they will be unable

to ascertain the location of the other two balls. The only feasible solution in this case is

a limited attention configuration where the person divides their attention between each

of the balls and attends to each when they are about to catch it. When their eyes are

not focused on a ball, the brain estimates its position based on the knowledge available

the last time the person looked at that ball. Though the person is not able to throw and

catch each ball with the same precision that the “full attention” configuration offers, the

person can now juggle instead of just throw one ball and catch it.

There are two main approaches to dealing with attention constraints in a networked

control system. The designer can choose to schedule attention between components

in a way to allow the system to perform acceptably. If the communication network of

a control system simply consists of a multi-poled switch that connects different wires

at different times, the designer can schedule when each connection is allowed to be

made. The attention between components does not have to be divided uniformly. Some

components may be more demanding or susceptible to disturbances than others and

therefore will need to receive more attention.

Alternately, the designer could implement a language-based control scheme which

is akin to a coding policy that allows actuator signals to be communicated in short se-
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quences of bits. The use of language-based control can allow lengthy commands to be

shortened and frequently used sets of commands to be condensed to short symbols. This

motion description language may also be universal so that commands sent in one net-

worked control system will produce similar results in another. For example, any person

can be given three balls and asked to “juggle”. Issuing this command is much simpler

than issuing the series of commands required for one to juggle successfully. The lin-

guistic term, “juggle” must be interpreted by controller to generate appropriate actuator

signals.

In this thesis we will describe an electromechanical system that relies on a network

to close its feedback loop and cannot be controlled effectively without taking into ac-

count its communication constraints. We seek to understand how the performance of the

system is affected by the presence of communication constraints.

1.1 Objectives and Contributions

This aim of this thesis is to study the dynamics of a ball that rolls without slipping on

a plane with controllable orientation. This system cannot be asymptotically stabilized

due to its structural and communication constraints. This “ball-on-plate” system is an

extension of the classical “ball-on-beam” experiment that is often used to study various

types of control and stability problems. The objective of the problem remains the same:

to balance a rolling ball at the center of the surface the plate surface. As we shall

see, this system is not stabilizable with traditional feedback control techniques. We

accomplish this by sampling feedback data and by using language-based controllers

that draw commands from a finite set.

This thesis describes the mechanics and dynamics of a novel ball-on-plate system
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and a control strategy for containing the ball within a small region on the plate. We

showed that our proposed control scheme is “efficient” in the sense that balancing the

ball cannot be accomplished with “full attention” or “no attention”. We calculated our

system’s performance as a function of the communication rate of the system and param-

eters of the switching model.

1.2 Outline

The remainder of this thesis is arranged as follows: Chapter 2 consists of a review of

previous research on related topics including the control of hybrid and switched sys-

tems, limited communication control, and motion description languages. Chapter 3

describes the kinematics and equations of motion of the ball-on-plate system. Chapter

4 is a discussion of the experimental apparatus used and the communication constraints

that govern its operation. Chapter 5 proposes a control algorithm, presents a set of con-

tainability experiments using this algorithm and compares the results with theoretical

predictions. Chapter 6, presents the conclusions of the paper and ideas for future work.
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Chapter 2

Related Work

This section contains a brief summary of the research literature related to the problem

of stabilization with limited attention. We survey works from the areas of open loop

control, hybrid and switched systems, limited communication control, quantization and

language-based control.

2.1 Stability Without Attention

Perhaps the simplest way to stabilize a system involves “no attention”, or the use of

open-loop inputs without any feedback whatsoever. This principle was introduced in

[38]. A classical unstable system, the inverted pendulum, is shown to be stabilizable

at its upper unstable equilibrium point if sufficiently high frequency oscillations are in-

troduced at its pivot point. A properly chosen range of pivot excitation amplitudes and

frequencies force the pendulum to move upright because the average value of the torque

over one period is not zero. Of course, not all systems are vibrationally controllable

and in [38], [3] and [4], conditions for vibrational stability and controllability are estab-

lished.
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The work on the open-loop stabilization of the inverted pendulum was furthered in

[15] and [11]. The last work used the potential energy function of the pendulum as

a tool for determining the stability regions of the system. If a system is vibrationally

controllable then this effective potential function can be shaped to have local minima at

normally (unexcited) unstable points.

2.2 Hybrid System Stability

In a system with limited attention, components do not have access to one another all of

the time. The dynamics of the system “switch” when connections between components

are made or lost. The study of hybrid systems, or more specifically, switched systems,

describe this type of discontinuous dynamics. Switched systems are a special class

of hybrid systems where the discrete dynamics are simply changes in the continuous

equations of motion.

For example:

ẋ = Aσ(t)x (2.2.1)

where σ(t) : R → {1, ..., N} and A1, ..., AN ∈ Rn×n.

It may be difficult to asymptotically stabilize a hybrid system due to switches in its

dynamics or by discrete changes in the value of the state as a result of a switch. These

systems can switch between different sets of dynamics with or without supervisory in-

tervention. For example, a bouncing ball switches between sets of dynamics (free fall

or contact) and can do so without intervention. A model of a ball that is being dribbled,

however, is a switched system with supervisory and non-supervisory switches. It was

shown in [7] that such a switched system is stable if switching points are chosen such

that a Lyapunov function decreases at the system’s switching points. This total Lya-
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punov function is composed of other Lyapunov functions that are active for different

sets of dynamics.

Rather than pursue asymptotic stability, [40] explored the existence of perodic orbits

and limit cycles in hybrid systems that converge to a closed, periodic trajectory. This

is not asymptotic stability, however the size of the orbit may be small enough that the

system’s performance is acceptable. Conversely, some stable systems may have unde-

sirable transient properties under switching, so that the boundedness of a system (the

convergence to a fixed region after finite time), becomes a more useful criterion than

stability.

The notion of practical stability was introduced in [41]. Practical stability implies

that trajectories starting in an arbitrarily large neighborhood of the origin end up in an

arbitrarily small neighborhood of the origin.

An alternate definition of practical stability was introduced in [35], where a system

is practically stable if the state initially starts within a certain bound and stays within a

certain larger bound as it evolves. More formally,

A system, ẋ = f(t, x), x(t0) = x0, t0 ≥ 0 is practically stable if, given (λ, A) with

0 < λ < A, |x0| < λ implies |x(t)| < A, t ≥ t0 for some t0 ∈ R+. A system is

uniformly practically stable if the above holds for all t0 ∈ R+.

In [48], the notion of containability is described. A system as containable on Rn if

for any sphere N centered at the origin there exists an open neighborhood of the origin

M and coding and feedback laws such that any trajectory started in M remains in N for

all time. This requires that M be a subset of N .

Sufficient conditions for practical stability for switched systems where the switches

are not dependent on the state are developed in [50] and [39]. The authors show practical

stability for systems where certain bounds exist for an auxiliary function of the state that
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is similar to a Lyapunov function.

The authors of [40] introduce two notions of controllability for hybrid systems. The

first is state-controllability and has the same goal as classical controllability. The sec-

ond notion is mode-controllability, which is the having the ability to drive the system

to a certain mode (set of continuous dynamics) or to force the system to pass through

a sequence of modes. Conditions for state-controllability for hybrid systems in general

have not been developed but have for restricted classes of hybrid systems, as in [25] and

[45]. These two works limit their analysis to piecewise-linear hybrid systems. Numer-

ical tests to determine controllability for piecewise affine hybrid systems are given in

[5].

2.3 Limited Communication Control

The limited communication constraints in a control system are often the cause for a

system to appear hybrid or switched. The control of any device over a network is sub-

ject to limited communication constraints that may arise due to bandwidth limitations

of a shared communication channel. Additionally, communications and control using

wireless network protocols are sensitive to these problems as often there may be physi-

cal obstructions that block communication, or problems associated with the distance of

transmission and signal attenuation. Packets sent over a TCP/IP network are never guar-

anteed to arrive at their destination and may be lost if there are any computer problems

along their route. The addition of random and expected delays obviously affect system

performance.

If communication between a controller and other components is periodic, this in-

troduces periodicity in the closed loop dynamics. In [1] and [32] studied systems with
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periodic state feedback and found a practical method for assigning eigenvalues of the

closed-loop transformation matrix using the period of the state feedback as a parameter.

In such problems, it is often useful to create a Kalman filter that estimates the value

of the state while relying on periodic updates from the feedback sensor to reduce the

variance of the estimate of the state. This is done in [6], where additional necessary and

sufficient conditions for asymptotic stability are given.

In [8], the effects of a limited communication constraint on a networked system with

a central controller were studied. The authors studied how performance is affected by

the choice of switching sequences between components. The problem of scheduling

such sequences in networked control systems was researched in [47]. The authors im-

plemented a dynamic scheduler that established network connections while the system

ran and then determined its effects.

A set of feedback control systems subject to the constraint that only some subsys-

tems have access to their controller at any given time is examined in [27]. A condition

for Lyapunov stability of a switching sequence is developed that is a function of the

characteristics of the controller subsystems and the number of allowed simultaneous

network connections. It is also shown how stabilizing sequences can be chosen to mini-

mize network congestion.

In [51], the authors examine a networked control system and establish relationships

between stability regions, the sampling rate of the network and the time delay associated

with data transmission in the network. The authors discuss methods of compensating

for these communication problems by using an estimator. A Lyapunov measure was

also developed to check for the stability of systems with data loss.
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2.4 Quantization

While a limited communication control system has constraints in its communication

network, quantization in controls applies constraints to the input or output space of a

component. Quantization can reduce the communication bandwidth of a system by par-

titioning the input and output spaces of a control system into (possibly unbounded) cells

and assigning a control value. The study of the quantization of system feedback in [14]

showed that traditional feedback laws applied to open-loop unstable control systems

do not always asymptotically stabilize the system and can result in chaotic behavior.

In [18], the authors determine when a system with feedback quantization is stable by

determining the coarsest stabilizing quantizer.

Another way to analyze a quantized control system is to approach it as an estimation

problem. In [12], a certain amount of estimation error is assumed to be induced by

the quantizer as “round-off error” and the true value of the state is estimated given

knowledge of the nature of the quantization “noise” and feedback measurements.

An innovative approach to stabilizing a quantized linear system was proposed in

[10]. That method involved dynamically adjusting the resolution of the quantizer as

the system evolved. The approach was found to yield global asymptotic stability for

feedback-stabilizable linear time-invariant systems but required that the system be treated

as a hybrid system. In [19], the authors examine the effects of digital rounding in the

feedback loop of a closed-loop system, which is a form of quantization. They develop

an expression for the coarsest possible quantization of the feedback loop that would still

guarantee stability.
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2.5 Language-Based control

The use of language-based commands requires the formation of a command language

but can reduce the required communication bandwidth of a system. As stated earlier,

one simple command could substitute for a series of frequently performed commands in

a networked control utilizing a language-based control structure. These commands can

also be “universal” in that one could swap sensors and actuators with other compatible

devices and expect a similar level of performance from the system. For example, with a

PC as a supervisory controller, some printers are configured with a set of user-selectable

fonts defined in read-only memory. When printing, the user can expect the same printed

output regardless of which printer model is used.

Recent technological advances in system integration have allowed for control sys-

tems and related devices which are language-driven. The motors used to drive the

mechanical system described in this thesis are examples of such technology. Current

research topics include the establishment of an architecture for such systems and the

development of appropriate “control languages”.

The foundations of language-based control were put forth by [46] and then [30]

in the field of coding theory. For binary communication channels of finite capacity,

[46] proposed arranging the set of possible commands in order of their likelihood of

transmission and associating with each probability a binary number. The command

most likely to be sent is assigned “0” and for each less likely command, the binary

number symbol is incremented until it reaches the total number of possible commands.

Thus, commands that are more frequently sent are encoded as smaller binary numbers

to reduce the time it would take to transmit the command. This coding procedure is

not optimal but reaches optimality as the number of commands transmitted approaches
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infinity.

A similar encoding principle mentioned in [46] and [30] is used in language-based

control. Instead of transmitting a short binary number in place of a potentially long

command, in language-based control, a series of commands are represented by a single

language-based command. This has the same benefit of freeing up attention by reducing

the load on the communication channel.

A component in a networked control system may abruptly change its behavior upon

receipt of a command. This is done in [24] by quantizing the set of system dynamics,

implying a finite-length command set. The authors develop a control architechture for

such systems and investigates its use in motion planning. Rather than searching for

trajectories in an infinite-dimensional space, a “maneuver” library is constructed from a

set of “primitives”, which are then used to compose more complicated trajectories. In

their analysis, the authors seek to capture relevant characteristics of vehicle dynamics

and to examine the behaviors resulting from combinations of control primitives as well

as the required size of the set of these behaviors.

In [16], the authors attempted to define a metric for the command set of a language-

based control system. For a robot that moves in a complex, cluttered environment, the

authors established a metric for the number of commands that need to be issued to do

perform a task. They also developed a method for calculating the benefits of the resulting

reduced computational and communication overhead. The work in [17] found that the

use of feedback in the specification language-based commands could reduce the length

of the set of these commands.

The work in [8] describes MDL, a general motion description language for use in

computer controlled devices that interact with their environment. The author frames

issues involved in device-independent motion planning and attempts to formalize robot

12



programming by using kinematic and dynamic models of their motion and by construct-

ing “behaviors” from control primitives. Language parameters such as sampling rate

and instruction length are examined as well as methods of command translation.

MDL was later extended and as MDLe, or “extended MDL” in [36] [37], and [31].

The work in [29] combined these previous efforts in motion description languages into a

more formal language definition of MDLe. The implementation of MDLe in stochastic

environments was studied in [2] and the authors derived optimal control policies for

solving navigation problems using MDLe sequences.
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Chapter 3

A Mechanical “Ball-On-Plate” System

In this section we develop the kinematics and the equations of motion for a two degree

of freedom ball-on-plate system.

3.1 Plate Kinematics

Consider the rigid plate in Figure 3.1.1 that rotates along one space-fixed axis and then

again along a body fixed axis.

Figure 3.1.1: Diagram of ball on plate with φ1 = φ2 = 0

14



Let ı̂, ̂ and k̂ define an inertial reference frame with k̂ pointing in the vertical direc-

tion. Let ê1, ê2 and ê3 be a coordinate system fixed on the plate with ê3 in the direction

normal to the plate, and ê1 = ı̂, ê2 = ̂ when the plate is level.

When the plate undergoes the rotation φ2ê2 followed by φ1î, the space-fixed coordi-

nates of the body-fixed frame are:












ê1

ê2

ê3













=













cosφ2 sinφ1sinφ2 −cosφ1sinφ2

0 cosφ1 sinφ1

sinφ2 −sinφ1cosφ2 cosφ1cosφ2

























ı̂

̂

k̂













(3.1.1)

Figure 3.1.2: Diagram of ball on plate with one rotation of −φ1 in the ı̂ direction as

shown in light blue. In configuration of the plate for φ1 = φ2 = 0 is in yellow.

The inertial coordinates relative to the plate-fixed coordinates are:













ı̂

̂

k̂













=













cosφ2 sinφ1sinφ2 −cosφ1sinφ2

0 cosφ1 sinφ1

sinφ2 −sinφ1cosφ2 cosφ1cosφ2













−1 











ê1

ê2

ê3













(3.1.2)

In terms of rotation matrices, the transformation from {ê1, ê2, ê3} coordinates to
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Figure 3.1.3: Diagram of ball on plate with a rotation of −φ1 in the ı̂ direction and then

another of φ2 in the ê2 direction

{ı̂, ̂, k̂} is given by the orthogonal matrix:

Θ =













cosφ2 0 sinφ2

sinφ1sinφ2 cosφ1 −cosφ2sinφ1

−cosφ1sinφ2 sinφ1 cosφ1cosφ2













(3.1.3)

If the position of a ball on the plate is, in terms of the body-fixed coordinates with

basis {ê1, ê2, ê3}:

ρ =













r1

r2

R













(3.1.4)

Then its position in the spaced-fixed coordinates with basis
{

ı̂, ̂, k̂
}

is Θ · ρ.

3.2 Ball and Plate Dynamics

The position of the mass center of the ball at any time is:

ρ(t) = r1(t)ê1 + r2(t)ê2 + Rê3 (3.2.1)

where R is the radius of the ball.
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The angular velocity of the plate can be calculated by computing the matrices:

Ω1 = Θ̇ΘT (3.2.2)

Ω2 = ΘT Θ̇ (3.2.3)

Where Ω1 and Ω2 contain the components of the angular velocity in the space-fixed

and body-fixed frames, respectively. They are:

Ωi =













0 −ωa ωb

ωc 0 −ωa

−ωb ωa 0













(3.2.4)

We can compute the absolute angular velocity of the plate as:

ωp = φ̇1ı̂ + cosφ1φ̇2̂ + sinφ1φ̇2 (3.2.5)

ωp = cos φ2φ̇1ê1 + φ̇2ê2 + sinφ2φ̇1ê3 (3.2.6)

Taking the time derivative of the position of the ball and expressing its velocity

relative to the inertial reference frame:

ρ̇ = ṙ1ê1 + ṙ2ê2 + ωp × ρ (3.2.7)

ρ̇ =
(

φ̇2R + ṙ1 − φ̇1r2sinφ2

)

ê1 +
(

ṙ2 + φ̇1(−Rcosφ2 + r1sinφ2)
)

ê2 +
(

−φ̇2r1 + cosφ2r1φ̇1

)

ê3 (3.2.8)

Alternatively, ρ̇ could be calculated by:

ρ̇ =
d

dt
(Θρe) (3.2.9)

where ρe is the ball’s location in the {ê1, ê2, ê3} coordinate system.
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The rolling without sliding constraints for the ball are:

−Rω1 = ṙ2 (3.2.10)

Rω2 = ṙ1 (3.2.11)

where ω1 and ω2 are the angular velocities of the ball in the ê1 and ê2 directions,

respectively.

The angular velocity of the ball relative to the space-fixed frame is equal to the sum

of the angular velocity of the ball relative to the plate and the angular velocity of the

plate.

Therefore,

ωb = ω1ê1 + ω2ê2 + ω3ê3 + ωp (3.2.12)

Using the Lagrangian formulation with no external forces nor constraints:

L = K − V (3.2.13)

(
d

dt
D2L(q, v) − D1L(q, v)) · u = αe · u (3.2.14)

where K is the kinetic energy, V is the potential energy, αe = 0 are the external

forces, and the test vector u is u = (u1, u2, µ1, µ2)
T .

The kinetic energy of the ball is given by:

K =
m

2
(ρ̇ · ρ̇) +

1

2
ωb · Jb · ωb (3.2.15)

where

Jb =













2mR2

5
0 0

0 2mR2

5
0

0 0 2mR2

5













(3.2.16)

18



Substituting,

K =
m

10
[2(ω1 + cosφ2φ̇1)

2R2 + 2(ω2 + φ̇2)
2R2 + 2(ω3 + sinφ2φ̇1)R

2 +

5[(cosφ2r2φ̇1 − r1φ̇2)
2 + (−r2sinφ2φ̇1 + Rφ̇2 + ṙ1)

2 +

((−Rcosφ2 + r1sinφ2)φ̇1 + ṙ2)
2]] (3.2.17)

The potential energy of the ball is given by:

V = mg[r1cosφ1sinφ2 + r2sinφ1 + Rcosφ1cosφ2] (3.2.18)

Substituting known values, the Lagrangian is:

L =
m

10
[2(ω1 + cosφ2φ̇1)

2R2 + 2(ω2 + φ̇2)
2R2 + 2(ω3 + sinφ2φ̇1)R

2 +

5[(cosφ2r2φ̇1 − r1φ̇2)
2 + (−r2sinφ2φ̇1 + Rφ̇2 + ṙ1)

2 +

((−Rcosφ2 + r1sinφ2)φ̇1 + ṙ2)
2]] −

mg[r1cosφ1sinφ2 + r2sinφ1 + Rcosφ1cosφ2] (3.2.19)
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Evaluating appropriate derivatives:

d

dt

∂L

∂ṙ1

= m[−cosφ2r2φ̇1φ̇2 − sinφ2φ̇1ṙ2 − r2sinφ2φ̈1 + Rφ̈2 + r̈1] (3.2.20)

d

dt

∂L

∂ṙ2

= m[φ̇1(cosφ2r1φ̇2 + sinφ2(Rφ̇2 + ṙ1)) +

(−Rcosφ2 + r1sinφ2)φ̈1 + r̈2] (3.2.21)

d

dt

∂L

∂ω1

=
2

5
mR2(ω̇1 − sinφ2φ̇1φ̇2 + cosφ2φ̈1) (3.2.22)

d

dt

∂L

∂ω2

=
2

5
mR2(ω̇2 + φ̈2) (3.2.23)

d

dt

∂L

∂ω3

=
2

5
mR2(ω̇3 + cosφ2φ̇1φ̇2 + sinφ2φ̈1) (3.2.24)

∂L

∂r1

= m[gcosφ1sinφ2 + sinφ2(−Rcosφ1 + r1sinφ2φ̇
2
1 + r1φ̇

2
2 +

φ̇1(−cosφ2r2φ̇2 + sinφ2r2)] (3.2.25)

∂L

∂r2

= −m[gsinφ1 − r2φ̇
2
1 + cosφ2r1φ̇1φ̇2 + Rsinφ2φ̇1φ̇2 +

sinφ2φ̇1ṙ1] (3.2.26)

To find the equations of motion,

(
d

dt
D2L(q, v) − D1L(q, v)) · u = Λu1

u1 + Λu2
u2 + Λµ1

µ1 + Λµ2
µ2 + Λµ3

µ3 (3.2.27)

where

Λu1
=

d

dt

∂L

∂ṙ1

− ∂L

∂r1

= −m[gcosφ1sinφ2 + sinφ2(−Rcosφ2 + r1sinφ2)φ̇
2
1 +

r1φ̇
2
2 + 2sinφ2φ̇1ṙ2 + r2sinφ2φ̈1 − Rφ̈2 − r̈1] (3.2.28)

Λu2
=

d

dt

∂L

∂ṙ2

− ∂L

∂r2

= m[gsinφ1 − r2φ̇
2
1 + 2Rsinφ2φ̇1φ̇2 + 2sinφ2φ̇1ṙ1 −

Rcosφ2φ̈1 + r1(2cosφ2φ̇1φ̇2 + sinφ2φ̈1) + r̈2] (3.2.29)

Λµ1
=

d

dt

∂L

∂ω1

=
2

5
mR2[ω̇1 − sinφ1φ̇1φ̇2 + cosφ2φ̈1] (3.2.30)

Λµ2
=

d

dt

∂L

∂ω2

=
2

5
mR2[ω̇2 + φ̈2] (3.2.31)

Λµ3
=

d

dt

∂L

∂ω3

=
2

5
mR2[ω̇2 + cosφ2φ̇1φ̇2 + sinφ2φ̈1] (3.2.32)
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The rolling without slipping constraint is applied to the test vector. If the rolling

without slipping constraint were to be applied to the variables that become a part of the

Lagrangian, the resulting equations would be incorrect due to the nonholonomic nature

of the constraints.

Applying the rolling constraint to the test vector and simplifying,

µ1 =
−u2

R
(3.2.33)

µ2 =
u1

R
(3.2.34)

The time derivative of the rolling constraint yields two more equations for substitution:

r̈1 = Rω̇2 (3.2.35)

r̈2 = −Rω̇1 (3.2.36)

After these substitutions:

Λu1
+

Λµ2

R
=

2

5
mR[ω̇2 + φ̈2 − m(gcosφ1sinφ2 +

sinφ2(−Rcosφ2 + r1sinφ2)φ̇
2
1 + r1φ̇

2
2 + 2sinφ2φ̇1ṙ2 +

r2sinφ2φ̈1 − Rφ̈2 − r̈1] (3.2.37)

Λu2
− Λµ1

R
=

m

5
[5gsinφ1 − 5r2φ̇

2
1 + 12Rsinφ2φ̇1φ̇2 + 10sinφ2φ̇1ṙ1 −

7Rcosφ2φ̈1 + 5r1(2cosφ2φ̇1φ̇2 + sinφ2φ̈1) + 7r̈2] (3.2.38)

Solving for r̈1 and r̈2,

r̈1 =
1

7
[5gcosφ1sinφ2 + 5sinφ2(−Rcosφ2 + r1sinφ2)φ̇

2
1 + 5r1φ̇

2
2 +

10sinφ2φ̇1ṙ2 + 5r2sinφ2φ̈1 − 7Rφ̈2] (3.2.39)

r̈2 =
1

7
[−5gsinφ1 + 5r2φ̇

2
2 − 12Rsinφ2φ̇1φ̇2 − 10sinφ2φ̇1ṙ1 + 7Rcosφ2φ̈1 −

5r1(2cosφ2φ̇1φ̇2 + sinφ2φ̈1)] (3.2.40)
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Assume that the mass of the ball is much smaller than the mass of the beam. The

moment of inertia of the plate is assumed to be Jplate and the same in the r1 and r2

directions. Linearizing about the origin:

r̈1 ≈ 5

7
gφ2 − 7R

u2

Jplate

(3.2.41)

r̈2 ≈ −5

7
gφ1 + 7R

u1

Jplate

(3.2.42)

where u1 and u2 are torque inputs. We have chosen to linearize this system about the

origin. Not that if φ1 = φ2 = 0 then there are an infinite number of equilibrium points

for the system as long as the appropriate external torques are applied. In the special case

of r1 = r2 = 0, no external torques are needed to maintain the system’s equilibrium.

3.3 Restriction to One Dimension

When the dynamics of the ball on a tilt-plate are restricted to the one dimensional beam,

the resulting equations of motion are similar to those found in the literature.

e

Figure 3.3.1: Diagram of ball on beam

Let ρ describe the location a ball of radius R on a one-dimensional beam at a distance

of r from the center of the beam. The beam is rotated by an angle, φ2. Let ê1 and ê3 be

22



the basis vectors of a right-handed coordinate system fixed on the beam, with ê1 oriented

along the axis of the beam and ê3 normal to the beam.

Setting φ̈1 = φ̇1 = φ1 = ṙ2 = 0 in Equation 3.2.39:

r̈1 =
1

7

(

5gsinφ2 + 5r1φ̇2
2 − 7Rφ̈2

)

(3.3.1)

Linearizing about the origin yields 3.2.41. It should be noted that the 7R u2

Jplate
term

in 3.2.41 is not included in discussions of the ball-on-beam problem in [33] and [43] for

example.

3.4 Linearization

The following are the linearized equations of the entire system about the equilibrium

point:














































ṙ1

ṙ2

r̈1

r̈2

φ̇1

φ̇2

φ̈1

φ̈2















































=















































0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 0 5
7
g 0 0

0 0 0 0 −5
7
g 0 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





























































































r1

r2

ṙ1

ṙ2

φ1

φ2

φ̇1

φ̇2















































+















































0

0

−7Ru2

J2

7Ru1

J1

0

0

u1

J1

u2

J2















































(3.4.1)

If the tilt angles of the plate are considered to be the inputs to the control system, the

equations of motion of the system can be represented as:
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

















ṙ1

ṙ2

r̈1

r̈2



















=



















0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0





































r1

r2

ṙ1

ṙ2



















+



















0

0

5
7
gφ2

−5
7
gφ1



















(3.4.2)

Defining

γ1 ,
5

7
gφ2 (3.4.3)

γ2 ,
5

7
gφ1 (3.4.4)

reduces Equation 3.4.2 to



















ṙ1

ṙ2

r̈1

r̈2



















=



















0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0





































r1

r2

ṙ1

ṙ2



















+



















0

0

γ2

−γ1



















(3.4.5)
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Chapter 4

Experimental Setup

This chapter describes the details of a mechanical ball-on-plate system including a de-

scription of its mechanical design and software that is used to control the system.

4.1 Hardware

We chose to model our system after the assembly of Figure 4.1.2 that includes an inner,

gimballed plate and an outer platform. This configuration allowed our tilt-plate to reach

the angles specified in the kinematics section.

The rest of the hardware used in the experiment consists of an Intel-based PC run-

ning RTLinux, an overhead camera, a frame grabber card, smart motors, and the plate

assembly. The experimental setup is shown in Figure 4.1.1.

4.1.1 Mechanical Construction

Aluminum braces for the plate were fabricated from hand drawings. The plate itself is

1/8”’ thick Lexan. Lexan was one of many possible materials that were chosen for their

stiffness to weight ratio. Aluminum braces were placed on the underside of the tilt-plate
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Figure 4.1.1: Photograph of tilt-plate hardware assembly

to prevent possible warping and nonlinearities arising from a plate that is not perfectly

flat. The tilt-plate is shown in Figure 4.1.3 and the braces are shown in Figure 4.1.4.

The plate is square and 16 inches in length.

The entire plate assembly consists of an inner and outer platform. As shown in

Figure 4.1.2, this inner plate is gimbaled by the outer platform, which is actuated by a

smart motor via a chain drive (see Figures 4.1.5 and 4.1.12). The plate is supported by

four aluminum blocks that served to hold the aluminum braces against the underside of

the platform, to gimbal the inner plate to the outer platform, and to connect the plate

with the mechanical linkage that is used to adjust its angle. Two short shafts with radial

bearings at each end connect to two of the aluminum blocks to the outer platform (see

Figure 4.1.6).
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InnerOuter

Figure 4.1.2: Annotated photograph of a tilt-plate assembly with an inner plate and an

outer platform. Double arrows indicate axes of rotation.

One of the aluminum blocks is directly connected to the mechanical linkage (see

Figure 4.1.7). A bearing fitted inside of the block is connected by a short shaft and

an adapter to a yoke and clevis joint to approximate a ball joint. This configuration

was selected over a traditional ball joint due to decreased friction and increased range

of motion. Another aluminum block supports the aluminum braces and serves as a

counterweight to balance the platform.

The outer platform of the assembly is supported on two ends by two short shafts that

are free to rotate by use of bearings. One of these supports is shown in Figure 4.1.7.

The mechanical linkage consists of two yoke and clevis joints and the required shafts

and couplers. The yokes were threaded onto one of the shafts for adjustability (see

Figure 4.1.8). The linkage was coupled to the motor shaft via a right angle coupler

designed to transmit motion with a minimum amount of play (see Figure 4.1.9).
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Figure 4.1.3: Photograph of tilt-plate with aluminum mounting blocks

4.1.2 PC-Based Controller

The computer used in the experiment is an Intel Pentium 4 1.6GHz computer with

1024MB of RAM. A patched Real-Time Linux operating system is used to ensure

hard real-time capabilities. The use of RTLinux ensures that processes designated as

real-time will not be superceded by other non-real-time processes despite software con-

figuration changes or load increases. The PC serves at the central controller for the

experiment, accessing both a vision system and two motors, described next.

4.1.3 Computer Vision

The camera used in the experiment as seen in Figure 4.1.10, is an Elmo TEB-4404 Black

and White CCD camera with 570x350 resolution. The camera is configured to use the

NTSC standard, providing interlaced data at 60Hz, alternating between odd-numbered

and even-numbered horizontal image lines. The camera is fitted with a 3.5-8mm lens

that has manual focus and zoom control with an automatic iris to regulate the amount of
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Figure 4.1.4: Photograph of braces on the underside of the tilt-plate

light the sensor receives. A cable with a BNC plug at the camera end is connected to the

frame grabber via an RCA plug. The camera provides feedback for the control system

and is accessible by the PC via a frame grabber.

An Arvoo PCI-2SQ frame grabber is used for image acquisition. A number of other

frame grabbers were considered, but the Arvoo frame grabber was selected for its RT

Linux compatibility and support. The frame grabber supports multiple video formats

(NTSC, PAL, and SECAM, with composite CVBS or Y/C S-video connectors) and

accepts two digital inputs which were unused in the experiment. It can accept up to four

inputs (multiplexed) however, in this case, only one was needed.

4.1.4 Language-Driven Motors

The tilt-plate was actuated using two QuickSilver Controls SilverMax 23-5 motors. One

is shown in Figure 4.1.11. These motors were chosen for their high torque (255 oz-in

peak), integrated design, and digital input capability. The motors have built-in encoders

and controllers that can be tuned to suit the application. String-based commands, rather
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Figure 4.1.5: Photograph of the outer platform supports and of the chain drive

Figure 4.1.6: Photograph of an aluminum support block with shaft and bearing

than voltages and currents, are sent to the motors. The command set includes parameters

for tuning the internal controllers. The motors’ internal controllers run a frequency of

8.33kHz.

The mounts of the motors adhere to the NEMA 23 standard. The motors require a

36V DC power supply for motion and 5V DC power supply for logic purposes. One

motor actuates the plate via a mechanical linkage and the other motor actuates the outer

platform using a 1:1 chain drive as shown in Figure 4.1.12.

A RS-232 to RS-485 interface allows the two motors to be accessed by one serial

port (see Figure 4.1.13). An example of a command to a motor is:
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Figure 4.1.7: Photograph of an aluminum support block connected to a mechanical

linkage and of the outer platform support

Figure 4.1.8: Photograph of yoke and clevis joint with shaft and coupler

@17 176 200 100 1000 0 0

The “‘@”’ symbol signifies the start of a command. Each motor can be identified

by an 8-bit number. In this case, the motor was configured for the number 17. The

number 176 is shorthand for the motor command “‘Move Absolute - Time Based”’

which tells the motor to accept a position command with parameters specified by the

numbers following the 176. The parameters for the move specify a rotation of 200

counts (4000 counts are in a revolution) with an acceleration time of 100 ticks (120 µs

per tick) and with 1000 ticks being the total time of the motion. The last two numbers

of the command are for interrupts and are not used in the experiment.
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Figure 4.1.9: Photograph motor with right angle coupler

The motors have built-in controllers that accept digital position and velocity com-

mands over an 8-bit serial connection. The PC locates the ball based on images obtained

from the frame grabber and issues a command to the motors as necessary. The control

loop runs at 14Hz (limited by the speed of image acquisition) and alternates between

sending commands to each of the motors.

4.2 Software

The software used in this project was developed using the C language on a Real-Time

Linux operating system.

4.2.1 Operating System

Most multi-tasking operating systems attempt to fairly balance the CPU load between

numerous separate processes. RT Linux enables the user to write programs that have

priority over all other processes. This enables hard real-time capabilities as timing can

be specified to within 12 nanoseconds in some cases. The hard real-time nature of RT

Linux removes most of the timing unpredictability that sometimes comes from having a
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Figure 4.1.10: Photograph of overhead camera

computer-controlled system.

The Linux operating system was chosen due to the fact that it is open source and

that the software used in this experiment was available for use, free of charge. The

use of Linux also allows for more flexibility in configuring the computer. RT Linux

allows for both real-time and non-real-time programs to run together, though the real-

time component receives priority. Memory buffers can be shared between both real-time

and non-real-time components for data access.
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Figure 4.1.11: Photograph of one SilverMax motor

4.2.2 Overall Control Program Layout

The control loop can be summarized as follows:

1. Load necessary drivers (serial communications, video card, RT Linux).

2. Load real-time program component (Starts loop when non-real-time component

sends “start” command). This component runs in hard real-time and thus its tim-

ing is much more precise than the non real-time program component.

3. Start non real-time component which will eventually trigger the real-time program

component.

(a) Allocate memory buffers for data storage.

(b) Send “start” command to real-time component.

4. Real time component loop

(a) Acquire 8-bit bitmap image pixel data in the form of a long array.
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Figure 4.1.12: Photograph of chain drive

(b) Apply a threshold filter to the image. Any pixel darker than a certain value

is set to the color black. Anything lighter is set to be white.

(c) Determine the image location of the ball using ball location detection algo-

rithm described below.

(d) Compute the actual location of the ball, accounting for plate tilt. Since the

camera sees a two-dimensional projection of the plate and ball, changes in

the plate angle could result in the apparent motion of the ball to the camera,

even if the ball is held fixed.

(e) Estimate the velocity of the ball based on its position at the last cycle and the

time elapsed since the last cycle.

(f) Calculate motor command parameters.

(g) Alternate between each motor and send command to motor to move, if nec-
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Figure 4.1.13: Photograph of RS-232 to RS-485 interface in use

essary.

(h) Receive and interpret motor response (check for errors, etc.).

(i) Output relevant data to the console for troubleshooting purposes.

(j) Go back to the beginning of the loop.

The loop runs at about 14Hz, limited mainly by the time it takes to transfer an image

buffer from the frame grabber to the PC’s memory.

4.2.3 Image Acquisition

Due to the interlaced nature of the NTSC standard, the frame grab ber can produce an

updated, full 640 pixel by 480 image at the rate of 30Hz. Half of the image (alternating

between odd and even horizontal lines) is delivered at the rate of 60Hz. To speed up

the control loop, each odd or even frame is examined rather than the entire 640 by

480 frame. This reduces the effective resolution of the camera to 640 by 240 but can

potentially double the speed of the control loop. A border around the image was ignored

so that the braces for the plate did not interfere with the ball location detection algorithm.

This yielded a final effective resolution of 500 by 200 pixels. The image covers a 10
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inch by 10 inch area of the plate and therefore yields a 50 pixel/inch resolution in one

direction and a 20 pixel/inch resolution in the other.

The image received via the frame grabber starts as an 8-bit greyscale bitmap image.

The color data for all pixels is extracted into a one-dimensional array consisting of 8-bit

elements.

4.2.4 Ball Location Detection

Figure 4.2.1: Diagram of image thresholding. Top: Acutal camera image. Bottom:

thresholded image

A threshold filter is applied at a preselected level to simplify the pixel data, with the

goal of making the ball black and everything else white.

The ball location detection algorithm starts by looking for clusters of 3 black pixels.

If the ball had been successfully located during the previous cycle, only a portion of the
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image is scanned to search for the ball. The 3-pixel clusters are noted and then, with

knowledge of the size of the ball in a camera image, the number of black pixels in a

surrounding 10 by 10 pixel area is counted. This step is repeated for a 20 by 20 pixel

area and a 40 by 40 pixel area.

Figure 4.2.2: Ball location algorithm boxes

If the blackened area is too large (compared to the size of the ball), the pixel count

for that area will be too high. These results are discarded. The potential guess for the

location of the ball is also discarded if the black pixel count for an area is too low. The

center of the ball is designated as the center of the 10 by 10 region that qualifies. If the

ball is located, the next search is conducted by scanning only 50% of the total image

area to avoid excess computation. This reduced image area is centered at a predicted

location of the ball using position and velocity data from the previous cycle. If the ball

is not located and if only a portion of the image was scanned, the search is reset, this

time with the algorithm scanning the entire image.
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4.2.5 Serial Communications

The rt com software module is used in the experiment as a serial port interface. This

allows data to be read and written to the serial port in the same way that data is read or

written to a file. With the aid of the RS-232 to RS-485 converter, the host PC is able to

communicate with both addressable SilverMax motors. Serial communications occurs

at speeds up to 57600 bits per second. At 10 bits per character, commands consisting of

25 characters can be sent at a rate of 230.4Hz. Since the clock speed of the processor in

each motor runs at 8.33kHz, the highest frequency at which commands can be sent and

executed is 224Hz for 25-character commands.
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Chapter 5

Control Strategy and Experiments

We go on to explore the possibility of open-loop (“no attention”) stabilization of the ball-

on-plate system, as well as a feedback control law that uses inputs drawn from a finite

set. We chose to limit the control system inputs to reduce the network’s communication

bandwidth. First, we show that the system can be asymptotically stabilized if its angles

are set to ±γ1 and ±γ2, where γ1 and γ2 are arbitrary. By quantizing the space of

plate angles, we can ease the communication requirements of the system. Our choice of

angles does not allow φ1 or φ2 to be equal to zero. With our choice of angles, there are

no stable equilibrium points for the ball on the plate.

5.1 Stability for Unconstrained Switching

The ball-on-plate system can be made asymptotically stable if as few as four position

inputs are used, and if we assume that switches can be made instantaneously and without

any dwell time.

Let the time varying Lyapunov function, V = f(r(t), ṙ(t)) be given by:

V (t) = r2(t) + ṙ2(t) (5.1.1)

40



where r(t) is restricted to one dimensional ball-on-beam problem from Equation

3.4.5. Since the equations for r1(t) and r2(t) are not coupled, each direction can be

treated independently.

Substituting time equations,

V (t) = γ2t2 + 2ṙ(0)γt + ṙ2(0) +
γ2t2

4
+

γt3ṙ(0)

2
+

γt2r(0)

2
+

ṙ2(0)t2 + ṙ(0)r(0)t + r2(0) (5.1.2)

and

V (0) = ṙ2(0) + r2(0) (5.1.3)

V (t) − V (0) is the change in the value of the Lyapunov function after t seconds.

Substituting,

V (t) − V (0) = (γ2t2 +
γ2t2

4
+ ṙ2(0)t2 + ṙ(0)r(0)t) + (2γṙ(0)t +

γt3ṙ(0)

2
+

γt2r(0)

2
) (5.1.4)

V (t) − V (0) =
γ2t4

4
+

γṙ(0)t3

2
+ (γ2 +

γr(0)

2
+ ṙ2(0))t2 +

(2γṙ(0) + ṙ(0)r(0))t (5.1.5)

Let ∆V (t) = V (t) − V (0). If ∆V (t) is negative for some t > 0 then we can select a

switching time, t, that would decrease the value of the Lyapunov function.

∂∆V

∂t
=

1

4
t(γt + 2ṙ(0))(γ(4 + t2) + 4r(0) + 2tṙ(0)) (5.1.6)

The roots of ∂∆V
∂t

= 0 are:

t1,2 =
−ṙ(0) ∓

√

−2γ2 − 2γr(0) + ṙ2(0)

γ
(5.1.7)

and

t3 =
−ṙ(0)

γ
(5.1.8)
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t3 > 0 as long as the proper γ is chosen. Calculating ∆V (t3) yields:

∆V (t3) = −(γ + r(0))2 (5.1.9)

which is always less than or equal to zero. This shows that there always exists a

t > 0 and γ such that the Lyapunov function will not increase after time t. Of course,

this system is not physically possible as it will take a finite amount of time to switch γ.

Introducing finite-time switching or a dwell time into the simulation model will more

closely approximate the reality of the ball-on-plate problem.

Since we must choose γ1 and γ2 in Equation 3.4.2 to be greater than zero, the ball

will roll away from the origin if the initial condition is at the origin. Thus, without

instantaneous switching, the ball can never be forced to stay at the origin. In our control

algorithm, we shall seek to aim for containability by driving the ball towards the origin

after every switch has been completed.

5.2 Communication Strategy and Control System Lay-

out

Of course, instantaneous switching is impossible and therefore we can not expect asymp-

totic stability. Constructing an observer or using full-attention feedback control via the

PC is infeasible due to the low speed (14Hz) of its control loop, which is slowed while

interpreting sensor information. The PC would not have been able to effectively send

torque commands to the motors while interpreting information from the overhead cam-

era. Though the high-frequency (8.33kHz) internal motor controllers are capable of

issuing torque commands, they are incapable of communicating with the overhead cam-

era.
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Despite these constraints, the use of integrated language-driven motors enables us to

use the idea of backstepping to contain the ball. Backstepping is, generally, the idea of

letting some states function as controls for other states. We consider the position of the

motor shafts, rather than the torque that the motors apply, as the control inputs for the

ball-on-plate problem. This assumption can be made due to the fact that the integrated

motor controllers operate at a much higher frequency than the decision-making PC. The

PC controls the motors via a set four of language-based position commands (see Figure

5.2.1).

Figure 5.2.1: Control system block diagram. The inner loop consists of the motor and tilt

plate assembly and Ki a variable (indicated by an arrow) feedback controller integrated

into the motor that receives language-based commands from the PC. The outer loop is

what a casual observer would see if they were to view the system. The configuration of

the motor/plate assembly drives the ball dynamics. The camera functions as a sensor to

retrieve the location of the ball. The PC interprets this data and issues a language-based

command to the variable controller.
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5.3 Open-loop control

The complexity of the control system for the ball-on-plate problem would be minimized

if open-loop stabilization were possible. The effective potential method (see [15] and

[11]) of open-loop oscillatory control was explored to see if the ball-on-plate system

could be stabilized in this fashion. If the effective potential function can be shown to

contain a local minima based on acceptable input parameters, then the system can be sta-

bilized using high frequency oscillations without state feedback. The calculations lead-

ing to an expression for the effective potential energy function of the one-dimensional

ball on beam setup follow.

We illustrate ths by restricting the system to the familiar ball-on-beam problem. The

equations of motion for the ball are given by Equation 3.2.41.

The potential function can be found by U = − dFi

dr
(r) where Fi = mr̈ is the inertial

force applied to the ball.

U = −5m

7
(Rφ̈2r +

r2φ̇2
2

2
− grsinφ2) (5.3.1)

dU

dr
= −5m

7
(Rφ̈2 + rφ̇2

2 − gsinφ2) (5.3.2)

d2U

dr2
= −5m

7
φ̇2

2
(5.3.3)

The potential function has an extremum at

r =
−Rφ̈2 − gsinφ2

φ̇2
2 (5.3.4)

with a second derivative that is always decreasing. This implies that the only extreme

for the potential function is a maximum. Even if φ2 is sinusoidal in nature, the system

cannot be stabilized using this method of open-loop control. Figure 5.3.1 shows the

general shape of the potential function.
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Figure 5.3.1: The general shape of the potential function with respect to r. A local

minimum indicates a stable point.

5.4 Proposed Control Algorithm

The control algorithm used to contain the ball in a small area on the plate assumes that

backstepping is used and that the tilt-plate is controlled by position commands. Note

that the dynamics of each degree of freedom of the ball (r1 and r2 in 3.2.41 and 3.2.42)

are decoupled, and therefore we can address the control of each direction independently.

For each direction, we seek to steer the ball to the origin in minimum-time in a method

similar to bang-bang control. Since the ball will overshoot the origin due to our switch-

ing and communication constraints, we will repeat this process ad infinitum.
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Theorem 5.4.1. Given:

i. An upper triangular system of the form:

ẋ =







A1 A2

0 A3






x + Bu (5.4.1)

with

x =







x1

x2






∈ Rn and u ∈ Rm (5.4.2)

ii. The upper system, x1 is controllable with x2 ∈ {v1, ..., vp}

iii. The transient of x1 is bounded: ‖x1(t) − x1f‖ ≤ K ‖x10 − x1f‖ ∀ x10, x1f ∈ Rn

such that ∃ a time T and a sequence of vi that steer x1(0) = x10 to x1(T ) = x1f .

iv. There exists a control u(t) that steers the lower system, x2, from any xa to any xb

with bounded error: ‖e(t)‖2 < α and e2(t) → 0 faster than max Re(λ(AT A))

Then there exists a constant β and a u(t) such that, we can steer the upper system

from any initial state to any final state in finite time, given the error function e2(t),

K ‖xo − xf‖ → K ‖xo − xf‖ + β and xf → xf + β.

Proof.

x(t) = eAtx0 +

∫ t

0

eA(t−σ)Bu(σ)dσ +

∫ t

0

eA(t−σ)Be(σ)dσ (5.4.3)

= x∗(t) + E(t) (5.4.4)

where x∗(t) is the value of the state in the absence of the error term.
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‖E(t)‖ ≤
∫ t

0

∥

∥eA(t−σ)
∥

∥ · ‖B‖ · ‖e2(σ)‖ dσ ≤ (5.4.5)
∫ t

0

∥

∥eη(t−σ)
∥

∥ · ‖B‖ · ‖e2(σ)‖ dσ ≤ (5.4.6)

β (5.4.7)

where η = maxλ(AT A). The integral converges for finite t = T or ‖e2(t)‖ ≤ κeγt

with γ < −η and some constant κ.

Thus,

‖x0 − xf‖ ≤ (K + β) ‖xo − xf‖ + β (5.4.8)

xf = xf∗ + β (5.4.9)

Equation 3.4.2 shows that the ball-on-plate system in this experiment satisfies as-

sumption i of the theorem. Assumption iii can be confirmed by measurement of the

performance of the motors and the error of assumption v can be internally configured

as the motors’ “anti-hunt” tolerance. The controllability requirement of assumption ii is

covered in the next section and the state boundedness requirement of assumption iv can

be seen in the following section on switching regions.

5.4.1 Controllability

In this section, the controllability of the ball-on-plate system with a finite number of

control inputs is established. It is easier to establish the controllability of the one-

dimensional case and then extend it to the two-dimensional case. Equation 3.4.5 reduced

to the one-dimension is:
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





ṙ1

r̈1






=







0 1

0 0













r1

ṙ1






+







0

γ2






(5.4.10)

Suppose that the magnitude of γ2 is fixed and that switches occur that limit γ2 to be

only ±5
7
gφ2. Also suppose that no switches occur in the system for time, Ti. Equation

5.4.10 can be rearranged as a discrete-time system:

Let

r̂k =







rk

ṙk






(5.4.11)







rk

ṙk






= fi(γ2, ˆrk−1, Ti) =







1 Ti

0 1













rk−1

˙rk−1






+







γ2
Ti

2

2

γ2Ti






(5.4.12)

for k = {1, 2, 3...}.

Suppose for this system, γ2 > 0 for time T1 and the angle is switched afterwards for

time T2. then

r̂k = f2(−γ2, ˆrk−1, T2) ◦ f1(γ2, ˆrk−1, T1) (5.4.13)

If the order of the switches is reversed,

r̂k = f1(γ2, ˆrk−1, T2) ◦ f2(−γ2, ˆrk−1, T1) (5.4.14)

Theorem 5.4.2. Given the system 5.4.12 and switching order of 5.4.13 or 5.4.14, the

system is controllable for the choices of either 5.4.13 or 5.4.14 and T1 and T2 subject

to:

T2 ≥ ˙rk−1 +

√

2γ2rk−1 + ˙rk−1
2 + 2γ2rT (5.4.15)
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or

T2 ≤ ˙rk−1 −
√

2γ2rk−1 + ˙rk−1
2 + 2γ2rT (5.4.16)

and

T1 > − ˙rk−1 + ṙT + γ2T2 (5.4.17)

for T1, T2 ≥ 0.

Proof. Let

f1,2 = f2 ◦ f1 (5.4.18)

then,

f1,2 =







rk−1 + ˙rk−1T1 + γ2
T1

2

2
+ ˙rk−1T2 + γ2T1T2 − γ2

T2
2

2

˙rk−1 + γ2T1 − γ2T2






(5.4.19)

The system is controllable if 5.4.19 can be driven to any arbitrary value in R2. Solv-

ing 5.4.19 for the arbitrary value (rT , ṙT ) yields the following constraints on T1 and

T2:

T2 ≥
˙rk−1 +

√

2γ2rk−1 + ˙rk−1
2 + 2γ2rT

γ2

(5.4.20)

or

T2 ≤
˙rk−1 −

√

2γ2rk−1 + ˙rk−1
2 + 2γ2rT

γ2

(5.4.21)

and
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T1 >
− ˙rk−1 + ṙT + γ2T2

γ2

(5.4.22)

for T1, T2 ≥ 0.

Since γ2 > 0, Equations 5.4.20 through 5.4.22 can be reduced to Equations 5.4.15

through 5.4.17. This process may be repeated for the case of f2,1 to complete the proof.

5.4.2 Switching Regions

Given a one dimensional plate, the phase portrait can be divided into certain switching

regions based on the current position γ, the magnitude of γ, and the dynamics of the

system. The switching planes (if the trajectory of the ball crosses a switching plane, it

is best for the ball to switch) are found by solving for the trajectories that intersect with

the origin, a minimum-time solution.

3.4.5 can also be integrated to yield the position of the ball as a function of time:

ṙ(t) = γt + ṙ(0) (5.4.23)

r(t) =
γt2

2
+ ṙ(0)t + r(0) (5.4.24)

To find solutions that pass through the origin, set ṙ(t) = 0 and r(t) = 0. This gives

the equation:
ṙ2(t)

2γ
= r(t) (5.4.25)

This equation tells us that if at time t its left and right sides agree with configuration

γ then the ball will come to rest at the origin.

Setting 5.4.23 and 5.4.24 equal to zero and substituting yields:

r(t) =
−ṙ2(t)

2γ
(5.4.26)
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Figure 5.4.1: Trajectories of the phase portrait for the one-dimensional ball on beam

problem. Dashed lines are trajectories for γ > 0 and travel in the −ṙ direction. Dashed-

dot lines are trajectories for γ < 0 and travel in the +ṙ direction.

In general, and as shown in Figure 5.4.1, the trajectories of the ball on the phase

portrait are:

r(t) =
−ṙ2(t)

2γ
+ c (5.4.27)

where

c =
−ṙ2(0)

2γ
+ r(0) (5.4.28)
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The switching plane is

r(t) =























−ṙ2(t)
2|γ|

ṙ > 0

ṙ2(t)
2|γ|

ṙ < 0

(5.4.29)
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Figure 5.4.2: Phase portrait switching curves for the one dimensional ball on beam

problem

The switching curves are shown in Figure 5.4.2. When the trajectory crosses one of

these curves, the system should switch to reach the origin.

For γ > 0, it is best to switch to γ < 0 whenever the location of the ball on the

phase portrait to the left of the switching plane. For γ < 0, it is best to switch to γ > 0

whenever the location of the ball on the phase portrait is to the right of the switching

plane.
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If γ > 0 then there should be a switch when:

r(t) <











ṙ2(t)
2|γ|

r(t) > 0

−ṙ2)t)
2|γ|

r(t) < 0
(5.4.30)

and if γ < 0 then there should be a switch when:

r(t) >











ṙ2(t)
2|γ|

r(t) > 0

−ṙ2)t)
2|γ|

r(t) < 0
(5.4.31)

5.5 Simulation Results

5.5.1 Instantaneous Switching with Minimum Dwell Time

We constructed a simulation based on the assumption that switches for the angles φ1 and

φ2 happen instantaneously but the tilt-plate is subject to a minimum dwell time after a

switch takes place. Thus, if φ1 is switched at t0, the angle φ1 is fixed for the dwell time

of T seconds, during which φ2 is free to switch if φ2 has not been switched in the last T

seconds.

We found that the ball could be kept within a bounded area whose size and shape are

dependent on the assumed delay time, T , and the plate angles, ±γ. A point (rs, ṙs) is in

the region if the following hold:

ṙ2
s

2 |γ| − |γ|T 2 < rs <
−ṙ2

s

2 |γ| + |γ|T 2 (5.5.1)

−2γT +
√

2γ(r + γT 2) < ṙ < 2γT −
√

2γ(r + γT 2) for r < 0

−2γT +
√

2γ(−r + γT 2) < ṙ < 2γT −
√

2γ(−r + γT 2) for r > 0
(5.5.2)

The region enclosing the ball, as shown in Figures 5.5.1 and 5.5.2 was determined

by examining the worst case scenario that would drive the ball the furthest from the

origin. The worst possible time for a switch is when the ball is at the origin of its phase
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portrait, because the ball cannot be steered any closer to the origin. The ball is forced to

roll away from the origin for T seconds under our switching assumption.
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Figure 5.5.1: Simulated phase portrait of ball trajectory in the x direction with stability

region under the first switching assumption: instantaneous switch followed by a finite

time hold

If the switching strategy is followed correctly, the ball should come to rest at the ori-

gin in one switch. The reason for this is that there was no previous switch and therefore

there is no time delay T to prevent a switch from being made. This switching strat-

egy does not allow a switch to be made “early” if the ball is headed towards the origin,

since an “early” switch will always push the ball farther from the origin after T seconds.

The only possible time for a switch is a “late” switch that is made after the ball passes

through the origin. This “late” switch occurs when the angle of the plate is held due to
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Figure 5.5.2: Simulated phase portrait of ball trajectory in the y direction with stability

region under the assumption: instantaneous switch followed by a minimum dwell time

the system’s dwell time.

Most of the bounding region in Figures 5.5.1 and Figures 5.5.2 was created by a

switch at the origin. Following a switch at the origin, the ball will reach either the upper-

right cusp or the lower-left cusp of the boundary region as the plate’s dwell time expires.

The location of these cusps are given by (±γT 2

2
, ±γT

2
). Another switch then occurs,

tracing the parabola on the right or the left side of the boundary region until. Under our

control algorithm, the plate switches again, 3T seconds after the original switch at the

origin, and 2T seconds after the previous switch. We computed the remainder of the

boundary region by analyzing the results of “late” switches. Four unstable limit cycles

form under this switching assumption. Two of these cycles form when a switch is made

55



T
2

seconds before and after the ball crosses the origin. The other two form when a switch

is made T seconds before and after the ball crosses the origin.

We superimposed a simulation of the trajectory of the ball with dynamics adhering

to our control algorithm and actual experimental results in Figures 5.5.1 and 5.5.2. A

random initial location was chosen for the experiment and we attempted to match this

location with the initial conditions in our simulation. The results of the experiment

appear to correlate well with the simulated results and stay within the boundary region

for the most part.

5.5.2 Effects of Delayed Switching

In an attempt to refine our model, we made an alternate assumption: The decision to

switch an angle of the plate could be made at any time but the actual switch could not

take place until T seconds after the decision was made.

The shape of the limit cycle appeared to be the intersection of those trajectories that

intersect the ṙ axis T seconds after the switching curve is crossed. We confirmed this

analytically. The intercepts on the ṙ axis of the limit cycle are ±2γT +
√

2γT and the r

axis intercepts of the limit cycle are γT 2(3 + 2
√

2). The orbit is symmetric along the ṙ

axis and the r axis, and appears to be stable. A diagram that illustrates this limit cycle

is shown in Figures 5.5.3 and 5.5.4.

The simulated results under this delayed switching assumption showed a much larger

containment region than that observed under our previous instantaneous switching as-

sumption and did not correlate well with experimental results. The delayed switching

assumption is much too conservative.
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Figure 5.5.3: Phase portrait of ball trajectory in the x direction with stability region

superimposed under the assumption of time-delayed actuation

5.5.3 Non-instantaneous Switching with Dwell Time

A third more refined switching model was postulated. As in the previous case, the

decision to make a switch may occur at any time, but a switch cannot occur until T

seconds after the decision is made. This time, however, a switch is made when the state

at t + T crosses the desired switching curve. The prediction of the state at time t + T

is made by assuming a constant plate velocity while the s witch is being made, though

in the simulation, it is still assumed that the switch is made instantaneously T seconds

after the decision to switch is made.
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Figure 5.5.4: Phase portrait of ball trajectory in the y direction with stability region

superimposed under the assumption of time-delayed actuation

The equations of motion during the switch are:

ṙ(t) =
5gTcos(αs − 2αst

T
)

14αs

− 5gTcosαs

14αs

+ ṙ(0) (5.5.3)

r(t) =
−5gT 2sin(αs − 2αst

T
)

28αs
2

+
5gT 2sinαs

28αs
2

+
5gT tcosαs

14αs

+

ṙ(0)t + r(0) (5.5.4)

where αs is the angle the plate achieves upon completion of the switch, and ṙ(0), r(0)

are the values of the state right before the switch. To find the location of the state after

the switch, set t = T :

ṙ(T ) = 0 (5.5.5)

r(T ) =
5gT 2sinαs

14αs
2

− 5gT 2cosαs

14αs

+ ṙ(0)T (5.5.6)
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The switching algorithm is thus modified so that the decision to switch is based on

when this r(T ) crosses the switching plane. When this switch is done correctly, the ball

will be on its way to the origin of the phase portrait. Eventually, the system will settle so

that a switch will be made at the origin. When this is the case, the bounds of the phase

portrait are:

r(0) = r(T ) = ±5gT 2

14αs

(
sinαs

αs

− cosαs) (5.5.7)

ṙ(T/2) = ± 5gT

14αs

(1 − cosαs) (5.5.8)

From the equation r̈(t) = − 5
7
gsin(2αst

T
− αs), one can see that the maximum of ṙ

is at t = T
2

. The phase portrait settles here because r(t) = 0 is the only point where

−ṙ(t) = ṙ(t) (the evolution of ṙ after a switch) and the switching planes intersect. If

the initial conditions are ṙ(0) = 0 and r(0) = 0 then after a switch, the ball will end up

at ṙ = 0 and r = 5gT 2

14αs
( sinαs

αs
− cosα). If these coordinates are, in turn, used as initial

conditions, the ball will end up back at the origin, according to Equations 3.2.42. This

forms a limit cycle.

There is no chance that the system will “switch early” because the switching algo-

rithm does not allow for it. If, however, due to a lengthy switching delay, the system

cannot follow the switching curve to the origin, then the trajectory of the ball on the

phase portrait will be characterized by a series of orbits offset by ṙ(0)T . These orbits

will continue to drift by this amount until a switch will bring the ball back to the origin.

If this is the case, the orbits will slightly exceed the aforementioned bounds in the ṙ

direction. The bounds in the r direction should continue to hold.

The resulting Matlab simulations are shown in Figures 5.5.5 and 5.5.6. The bound-

ing region developed from the instantaneous switching with minimum dwell time as-

sumption are superimposed for comparison.
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Figure 5.5.5: Simulated phase portrait of ball trajectory in the x direction with stability

region under assumption of non-instantaneous switching with minimum dwell time

5.5.4 Implementation of Predictive Switching and Experimental Re-

sults

After observing the results of the predictive switching algorithm employed in the the-

oretical simulation, we applied the same algorithm to the experiment. For the exper-

iment, the magnitudes of the angles of the platform were chosen to be 25 counts. At

4000 counts per revolution, a 25 count angle is equivalent to a 2.25 degree angle. The

amount of time that it took to switch the plate was assumed to be 0.781 seconds. This

was computed by averaging measured switching times in the experimental data.

In Figure 5.5.7 one can clearly see that predictive switching contained the ball to
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Figure 5.5.6: Simulated phase portrait of ball trajectory in the y direction with stability

region under assumption of non-instantaneous switching with minimum dwell time

a smaller region near the origin. Similarly, the phase portraits, position time response

and velocity time response plots also show a smaller containment region consistent with

what was expected from simulation results (see Figures 5.5.8 through 5.5.13).

For the experimental data, the velocity and acceleration were calculated simply:

V elocity =
∆Position

∆T ime
(5.5.9)

Acceleration =
∆V elocity

∆T ime
(5.5.10)

Sensor noise and or slight errors in the computation of the location of the ball were

thus magnified in the velocity and acceleration data (see Figures 5.5.12, 5.5.13, 5.5.10,

and 5.5.11). Equation 3.4.5 shows that for φ1 = ±α1 and φ2 = ±α2 for some fixed,
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Figure 5.5.7: Overhead x-y trajectory plot of the ball with and without predictive switch-

ing.

arbitrary α1 and α2, the acceleration plots should be square in shape, the velocity plots

should be triangular, and the position plots should be parabolic. The curves of the phase

portrait also appear parabolic, as predicted in Equation 5.4.28. These predictions appear

to hold true although the noise in the velocity and acceleration data makes this harder to

see.

Since the only differences between the experimental results for the predictive switch-

ing and non-predictive switching plots are the switching times, the magnitudes of the

acceleration plots should be similar. The slopes of the velocity plots should also be

similar. These predictions also appear to hold true.

The acceleration of gravity in pixels/s2 was calculated to be 7717 pixels/s2 in the
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x direction and 19291 pixels/s2 in the y-direction, based on the size of the plate and

the effective resolution of the camera. In Equation 3.4.5, based on these values for the

acceleration of gravity, γ1 = ±540pixels/s2 and γ2 = ±216pixels/s2.
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Figure 5.5.8: Phase portrait of ball trajectory in x direction with and without predictive

switching
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Figure 5.5.9: Phase portrait of ball trajectory in y direction with and without predictive

switching
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Figure 5.5.10: Position of ball in x direction with respect to time with and without

predictive switching
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Figure 5.5.11: Position of ball in y direction with respect to time with and without

predictive switching
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Figure 5.5.12: Velocity of ball in x direction with respect to time with and without

predictive switching
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Figure 5.5.13: Velocity of ball in y direction with respect to time with and without

predictive switching
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Chapter 6

Conclusions and Future Work

We described the design and construction of a two degree of freedom ball-on-plate sys-

tem. The task of balancing the ball on the rotating plate was accomplished using a

language-based controller that transmits controls rather than continuous or discrete time

actuator signals. The controller relied on an overhead camera to monitor the state of the

ball and chose controls from a small finite set. This had the result of limiting the plate to

a choice of two fixed angles for each of its degrees of freedom. The outward simplicity

of the controller was a compromise that resulted in lower precision for the position of

the ball on the plate. The use of language-based control implied a type of controller

quantization that did not allow the system to be asymptotically stable but did allow us

to contain the state of the ball witin a small region on the plate. This region depends on:

i) the magnitude of the rotation angles of the plate and ii) the amount of time that it took

to switch between plate angles. We showed that the ball could not be stabilized using

open-loop oscillatory inputs or traditional observer-based or feedback-based methods,

and therefore a limited attention scheme was the only reasonable alternative. We pre-

sented simulations of the resulting closed loop system under a variety of assumptions

for the process of switching between controller commands, and compared the results
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with the experimental data.

It would be interesting to generalize the proposed control strategy to a broader class

of dynamical systems and explore other language-based control strategies. We will seek

to expand our result on containment and find what sufficient conditions a linear system

must satisfy if it is to also satisfy the assumptions of our main theorem. Other important,

but open as of yet questions involve optimizing the set of language-based commands

used for control and expanding the idea of language-based control to include estimation

problems.
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Appendix A

Mechanical Linkage Kinematics

One of the axes of rotation of the plate is connected to a motor via a mechanical linkage,

while the other is connected to a second motor via a chain drive. The mechanical linkage

is unique in that its members are not confined to a single plane. Two of the joints, A and

B (see Figure A.0.1), have two degrees of freedom. These added degrees of freedom add

significant complexity to the kinematics of the linkage. This diagram is superimposed

over the actual linkage in the experiment in Figure A.0.2.

L2

L1

L3B

A

C

D

L4

Figure A.0.1: Diagram of inner linkage of plate assembly
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Figure A.0.2: Diagram of inner linkage of plate assembly superimposed over a photo-

graph of the experimental assembly

Let a side view of the linkage be described by a rectangle, ABCD, as shown in Figure

A.0.1.

Point C is the center of the plate on which the ball rolls. Point D is the location of

the motor shaft, directly below point C. Point B where the linkage meets the edge of the

plate, and point A is an intermediate joint between arms of the linkage. The lengths of

the members are l1 = DA, l2=AB, l3=BD and l4 = CD.

Let {ı̂, ̂, ĵ} be the unit vectors of an orthonormal, space-fixed coordinate frame

whose origin is D, with x pointing to the right, y pointing into the page, and z pointing

upwards. The coordinate system is shown in Figure A.0.3. Let (xa,ya,za) denote the

coordinates of A, and so on for B, C and D. Points C and D are fixed, and the link DA

can only move within the XZ plane. Point B is thus confined to a set of points which can

be described by the intersection of two spheres centered at A and C as seen in Figure

A.0.3. The equations for the spheres are:

(xb − xa)
2 + (yb − ya)

2 + (zb − za)
2 = l2

2 (A.0.1)

(xb − xc)
2 + (yb − yc)

2 + (zb − zc)
2 = l3

2 (A.0.2)
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where xc = 0, yc = 0, zc = l4, ya = 0, l1 = l3, l2 = l4, and ya = 0 so that

(xb − xa)
2 + y2

b + (zb − za)
2 = l2

2 (A.0.3)

x2
b + y2

b + (zb − l2)
2 = l3

2 (A.0.4)

The locations of C and D are known and because link DA is directly connected to

the motor underneath the plate, the location of A can be readily computed. Let θ and φ2

be the motor input angles and let φ1 and φ2 be the angles of rotation about the ̂ and the

ı̂ axes, respectively. Let α2 be the angle between the link AB and the k̂ axis (see Figure

A.0.3). Then we can write:

sinφ1 =
zb − l2

l1
(A.0.5)

sinα2 =
xa − xb

l2
(A.0.6)

xa = −l1cosθ (A.0.7)

za = l1sinθ (A.0.8)

xb = −l2sinα2 + xa (A.0.9)

yb = l2cosα2sinφ2 (A.0.10)

zb = l2cosα2cosφ2 + za (A.0.11)

Solving Equations A.0.3 through A.0.8 and A.0.10 simultaneously, we have:

φ1(θ, φ2) = sin−1(2cosθ
√

η + l2(l2 − l1sinθ)2(−l1(3 + cos2θ) + 4l2cos
2φ2sinθ −

2l1cos2φ2sin
2θ) (A.0.12)

where

η = l2
4cos2φ2(l2 − l1sinθ)2(l1

2 − 2l2
2 + (l1

2 + 2l2
2)cos2φ2 − l1

2(−3 + cos2φ2)cos2θ +

8l1l2sin
2φ2sinθ (A.0.13)
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Figure A.0.3: Three-dimensional depiction of linkage annotated with angles θ, φ1, φ2,

and α2. The dotted line between the spheres indicates the possible path of travel of point

B.

Thus, given motor angles φ2 and θ, we have the angles of the plate, φ1 and φ2. If

Equation A.0.12 is linearized about φ2 = θ = 0:

φ1 ≈ θ (A.0.14)

which justifies our assumption.
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