
Representing and Integrating Multiple Calendars �Sarit Krausy Yehoshua Sagivz V.S. Subrahmanian x
AbstractWhenever humans refer to time, they do so with respect to a speci�c underlying calendar.So do most software applications. However, most theoretical models of time refer to timewith respect to the integers (or reals). Thus, there is a mismatch between the theory and theapplication of temporal reasoning.To lessen this gap, we propose a formal, theoretical de�nition of a calendar and show howone may specify dates, time points, time intervals, as well as sets of time points, in terms ofconstraints with respect to a given calendar. Furthermore, when multiple applications usingdi�erent calendars wish to work together, there is a need to integrate those calendars togetherinto a single, uni�ed calendar. We show how this can be done.�This work was supported by the Army Research O�ce under Grants DAAH-04-95-10174 and DAAH-04-96-10297,by ARPA/Rome Labs contract F30602-93-C-0241 (ARPA Order Nr. A716), by an NSF Young Investigator awardIRI-93-57756, NSF Grant No. IRI-9423967 and by the Army Research Laboratory under Cooperative Agreement No.DAAL01-96-2-0002.yDept. of Mathematics and Computer Science, Bar-Ilan University, Ramat Gan, 52900 Israel, and Institute forAdvanced Computer Studies, University of Maryland, College Park, MD 20742 E-Mail: sarit@cs.biu.ac.ilzDept. of Computer Science, Ross Building Hebrew University, Givat Ram, Jerusalem, Israel. E-Mail:sagiv@cs.huji.ac.ilxDept. of Computer Science, Institute for Advanced Computer Studies, Institute for Systems Research, Universityof Maryland, College Park, MD 20742, USA. E-Mail: vs@cs.umd.edu1

Contents1 Introduction 32 Preliminaries 43 Specifying Time w.r.t. a Calendar 144 Using Constraints to De�ne Calendars 174.1 Realizing Validity Predicates Through Constraints : : : : : : : : : : : : : : : : : : : 174.2 Realizing Successors Through Constraints : 185 Solving Temporal Constraints 195.1 Incorporating Validity : 205.2 Eliminating Successor : 215.3 Subtracting Time Points of Periodic Calendars : 225.4 Eliminating TPCL Atoms : 226 Combining Multiple Calendars 236.1 What Does It Mean to Combine Two Calendars? : 246.2 Combining Hierarchies : 266.3 Combining Calendars : 316.4 Realizing Linking Functions via Constraints : 346.5 Realizing the Validity Predicate of a Combined Calendar : : : : : : : : : : : : : : : 366.6 Realizing the Successor of a Combined Calendar : 376.7 Combining non Compatible Calendars : 397 Combining Calendars with Di�erent Top Time Units 418 Related Work 449 Conclusions 472

1 IntroductionThe need to represent and reason with time is critical to the success of several real life problems,both in the arti�cial intelligence arena, as well as in the database arena. For example, AI planningand scheduling systems often need to check whether the state of the world satis�es some conditionat time t and may just as often assert that some action must be performed at time t. Such aplanning system may, for instance, be required to execute the action notify fire dept within 5minutes of a �re alarm going o� provided that a cursory 2-minute check by its sensors reveals nosystem malfunction. Similarly, a personalized intelligent agent may be provided with the followinginstruction: Remind Mary on the �rst Sunday of each month that she needs to pay the phone bill.To date, most formal work in this area has assumed that a time point is either a natural numberor a real number. However, it is extremely cumbersome and unnatural to represent time as asingle point on some time-scale. Most human beings would have a hard time expressing the 15thof March, 1994, as the time point 2,777,802,116 or something equally confusing. One reason whyhuman beings have no problem reasoning with time is because they always refer to a particularcalendar when discussing time. A formal framework for expressing and manipulating calendarswould allow AI/DB systems to succinctly and intelligibly express the results of their temporalcomputations to a human being. At the same time, the human being could represent his/her needsto the system using a calendar that he/she is familiar with.Now, consider another scenario where two intelligent agents, one a planning agent, and another,a database agent, are cooperating in the solution of some problem. The database agent may providea facility whereby any other agent may ask queries using a single query language (e.g. SQL). Whenanswering a query, the database agent may not access just one database, but rather access a varietyof relational, object oriented, geographic, terrain, and other databases. The planning agent, on theother hand, may have (as usual) a set of planning operators|these could be in the form of STRIPSor HTN operators. At various points in time, the planning agent tries to see if certain conditionsare true in the battle�eld. Depending on which of those conditions is true, the planning agent infersa goal to be accomplished and constructs a plan to accomplish it, if possible.Suppose the planning agent asks the database agent a query of the form: Find all tuples inthe relation troop movements showing movements of Iraqi troops towards the Kurdish lines duringthe interval 1000 hours on August 5, 1996, and 1800 hours, August 9, 1996. If we ignore thenon-temporal components of this query, we notice that the notion of time used by the planningagent in its query refers to the concepts of hours (of a day), days, months and years. For thedatabase agent to successfully answer the query, it must be able to comprehend the temporal partof the planning agent's query.However, this problem may be compounded if the database agent uses a di�erent granularity torepresent time. For example, the database agent may specify time in terms of hours (of a month),months and years. For the database agent to understand the query, it must be able to map the3

temporal component of the query (expressed in the time granularity used by the planning agent)to the representation of time that it uses internally.In each of the above cases, two salient features emerge:1. Each agent involved is specifying time according to a di�erent calendar. Thus, techniquesare needed to represent multiple calendars. This paper provides a framework for representingwidely varying types of calendars.� We show how constraints may be used to represented calendars (these include not onlythe standard Gregorian Calendar, but others, such as the Hebrew calendar, as well),� We provide a formal mathematical de�nition of what it means for two calendars to becompatible, and� We provide algorithms to manipulate calendars by manipulating the constraints thatrepresent them.2. When two agents need to communicate with each other about time, they need to somehowensure that time speci�ed according to the �rst agent's calendar \makes sense" according tothe second agent's calendar. Instead of using ad-hoc means of converting time-points in onecalendar to time-points in another calendar, we will show how two calendars (represented inour framework) may be neatly combined using a very general and robust technique. Eachof the agents involved in the communication may then understand what the other is sayingby examining this \combined calendar". Furthermore, the construction of this combinedcalendar, as well as techniques for agent A1 to \understand" what agent A2 is saying, arealso automated.2 PreliminariesDe�nition 2.1 (time unit) A time unit consists of a name and a time-value set. The time-valueset has a linear order, denoted <T , where T is the name of the time unit. The time unit is either�nite or in�nite, depending on whether the time-value set is �nite or in�nite; an in�nite time-valueset is assumed to be countable. For simplicity, we assume that a time unit is uniquely identi�ed byits name; that is, there are no distinct time units that have the same name, but di�erent time-valuesets. 2Day, month, and year are all examples of time units. Formally, we use the names day, monthand year for these time units. The time-value set of day consists of the integers 1 through 31.Similarly, the time-value set of month consists of the 12 months of the year, i.e., January, February,etc. For year, the time-value set is in�nite and consists of all integers.4

De�nition 2.2 (linear hierarchy of time units) A linear hierarchy of time units is a �nite col-lection of distinct time units with a linear order < among those time units. The greatest time unitaccording to < is called the top of the hierarchy and it must be an in�nite time unit, while all othertime units in the hierarchy must be �nite. 2If we de�ne the order day < month < year on the time units day, month and year, we get alinear hierarchy of these time units.De�nition 2.3 (time point of a linear hierarchy) Suppose T1 < � � � < Tn is a linear hierarchyH of time units. A time point is an n-tuple (t1; : : : ; tn), such that ti is a value of the time-value setof Ti (1 � i � n). Time points are ordered according to the lexicographic ordering <H , which isde�ned in the usual way; that is, (t1; : : : ; tn) <H (s1; : : : ; sn) if there is an i (1 � i � n), such thatti <Ti si and tj = sj for j = i+ 1; : : : ; n. 2In the above de�nition, note that <Ti denotes the ordering on the time-value set of the timeunit Ti, while <H denotes the lexicographic ordering on time points of the hierarchy H . If Ti or His clear from the context, we may simply write <.Given the linear hierarchy day < month < year, both (30;February; 1996) and (13;March; 1996)are time points, and (30;February; 1996)< (13;March; 1996). We call this hierarchy, the Gregorianlinear hierarchy. However, if this linear hierarchy is supposed to represent the Gregorian Calendar,then (30;February; 1996) is not a valid time point. Therefore, we de�ne a linear calendar in thefollowing way.De�nition 2.4 (linear calendar) A linear calendar consists of a linear hierarchy H of time unitsand a validity predicate, which is usually denoted as validH (or just as valid if H is clear fromcontext). The validity predicate speci�es the valid time points; that is, validH(t) is true if t is avalid time point. 2The Gregorian Calendar can be represented by the linear hierarchy day < month < year anda suitable validity predicate that states, for example, that (13;March; 1996) is a valid time point,while (30;February; 1996) is not. An important question is how to represent the validity predicate.Our approach, as will be discussed later (De�nition 4.1), is to represent the validity predicate in asuitable constraint language.Instead of representing a time point by specifying the day of the month, the month and theyear, as in the Gregorian Calendar, we may choose to represent it by specifying the day of theweek, the week of the month, the month and the year. Formally, the alternative Gregorian linearhierarchy is dow < week < month < year (where dow means \day of the week") and the time-valuesets are as follows. 5

� The time-value set of dow consists of the seven days of the week, i.e., Sunday, Monday, etc.� The time-value set of week is f0; 1; 2; 3; 4; 5g. This requires some explanation. A month mayhave 3 or 4 weeks that are fully contained in that month, and 1 or 2 weeks that are partiallycontained in that month. Week 1 of the month is always the �rst week that is fully containedin the month. Week 0 of the month exists if the �rst day of the month is not a Sunday; in thiscase, the month starts in the middle of a week, which is referred to as week 0 of the month.� The time-value set month consists of the twelve months of the year.� The time-value set of year is the set of all integers.The Alternative Gregorian Calendar (AGC) consists of the alternative Gregorian linear hi-erarchy and a suitable validity predicate. For example, both (Thursday; 0;December; 1995) and(Friday; 0;December; 1995) are time points of the alternative linear hierarchy, but only the latter is avalid time point (since Friday is the �rst day of December, 1995). Similarly, (Sunday; 1; September; 1996)is a valid time point that denotes the �rst Sunday in September, 1996, while (Sunday; 0; September; 1996)is not a valid time point (and, in fact, (Sunday; 0; September; X) is not a valid time point, regardlessof what X is).Remark 2.1 (notation) If C is a calendar with a linear hierarchy H , then we will use C and Hinterchangeably as subscripts of the orderings < and <. In other words, both <C and <H denotethe lexicographic ordering on time points, while both <C and <H denote the ordering on the timeunits of the calendar. 2Since both the Gregorian Calendar and the AGC are intended to represent the same set ofvalid time points, these two calendars are compatible. The concept of composability is formallyintroduced in the next two de�nitions.De�nition 2.5 (compatible linear hierarchies) Two linear hierarchies, H1 and H2, are com-patible if both have the same ordering among their common time units. In other words, if timeunits T1 and T2 appear in both H1 and H2, then T1 <H1 T2 holds if and only if T1 <H2 T2 holds. 2Proposition 2.1: If H1 and H2 are compatible linear hierarchies that share a time unit T and Tis the top of H1, then T is also the top of H2.Proof: Follows from the fact the top of a hierarchy is the only in�nite time unit of the hierarchy.2De�nition 2.6 (compatible linear calendars) Suppose C1 is a calendar with a linear hierarchyT 11 <C1 � � � <C1 T 1m, and C2 is a calendar with a linear hierarchy T 21 <C2 � � � <C2 T 2n . The linearcalendars C1 and C2 are compatible if their linear hierarchies are compatible and there is a bijectionf from the valid time points of C1 to the valid time points of C2, such that6

� If (t11; : : : ; t1m) and (�t11; : : : ; �t1m) are valid time points ofC1, such that (t11; : : : ; t1m) <C1 (�t11; : : : ; �t1m),then f((t11; : : : ; t1m)) <C2 f((�t11; : : : ; �t1m)), and� If T 1i is the same time unit as T 2j and (t11; : : : ; t1m) is a valid time point of C1, such thatf((t11; : : : ; t1m)) = (t21; : : : ; t2n), then t1i = t2j .Intuitively, the �rst condition means that f is order preserving, and the second condition meansthat f is the identity on the time units that are common to both calendars. 2Proposition 2.2: If f is a bijection satisfying the conditions of the above de�nition, and (t11; : : : ; t1m)and (�t11; : : : ; �t1m) are valid time points of C1, then the following holds.(t11; : : : ; t1m) <C1 (�t11; : : : ; �t1m)() f((t11; : : : ; t1m)) <C2 f((�t11; : : : ; �t1m))Proof: One direction follows from the de�nition. To prove the other direction suppose (t11; : : : ; t1m)and (�t11; : : : ; �t1m) are valid time points of C1, such that f((t11; : : : ; t1m)) <C2 f((�t11; : : : ; �t1m)). Since fis bijective, (t11; : : : ; t1m) and (�t11; : : : ; �t1m) are distinct and, hence, either (t11; : : : ; t1m) <C1 (�t11; : : : ; �t1m)or (�t11; : : : ; �t1m) <C1 (t11; : : : ; t1m) must hold. However, if (�t11; : : : ; �t1m) <C1 (t11; : : : ; t1m), then theabove de�nition implies that f((�t11; : : : ; �t1m)) <C2 f((t11; : : : ; t1m)), contradicting the assumption thatf((t11; : : : ; t1m)) <C2 f((�t11; : : : ; �t1m)). Therefore, (t11; : : : ; t1m) <C1 (�t11; : : : ; �t1m). 2Not every calendar can be represented as a linear calendar. For example, we may want to addthe time units dow and week to the Gregorian Calendar, and there is no natural linear hierarchy ofthe 5 time units day, month, year, dow and week. Therefore, we de�ne a hierarchy of time units asfollows.De�nition 2.7 (hierarchy of time units) A collection of distinct time units T1; : : : ; Tn with apartial order < (on the time units) forms a hierarchy if there is a tree T , such that� The nodes of T correspond to the time units T1; : : : ; Tn,� The root of the tree, called the top of the hierarchy, is an in�nite time unit, while all othernodes are �nite time units, and� Tj is an ancestor of Ti in tree T if and only if Ti < Tj . 2Figure 1 shows two hierarchies. A time point of a hierarchy is de�ned similarly to a time pointof a linear hierarchy.De�nition 2.8 (time point of a hierarchy) Suppose T1; : : : ; Tn are the time units of a hierar-chy H . A time point is an n-tuple (t1; : : : ; tn), such that ti is a value from the time-value set ofTi (1 � i � n). The projection of the time point (t1; : : : ; tn) on the time units Ti1 ; : : : ; Tik is thek-tuple (ti1 ; : : : ; tik). 27

yearmonth weekday dow yearmonth weekdayA BFigure 1: Two hierarchies.Writing the time units of a hierarchy as a sequence T1; : : : ; Tn is convenient, since it showshow to associate the values of a time point (t1; : : : ; tn) with the time units. However, the sequenceT1; : : : ; Tn does not de�ne a linear order among the time units; in a hierarchy, there is only a partialorder among the time units and we will usually show this partial order as a tree (e.g., Figure 1). Inorder to make explicit the association between values and time units, we may sometimes write a timepoint as (T1 : t1; : : : ; Tn : tn), e.g., (day : 1; dow : Thursday;week : 0;month : February; year : 1996)is a time point of the hierarchy shown in Part A of Figure 1.In the next de�nition, we de�ne a calendar as a combination of one or more linear calendarsand some additional time units (which are not necessarily part of a linear calendar). The de�nitionuses the following terminology. Given a tree T (representing a hierarchy), a complete path is anypath from the root to some leaf.De�nition 2.9 (calendar) A calendar consists of a hierarchy T of time units and one or moreembedded calendars, where an embedded calendar is a linear calendar over a linear hierarchy thatcoincides with some complete path of the hierarchy T . Furthermore, if there is more than oneembedded calendar, then any two embedded calendars are compatible.In addition, a calendar has a validity predicate that satis�es the following conditions.� If t is a valid time point of the calendar, then the projection of t on any embedded calendarE is a valid time point of E,� If te is a valid time point of an embedded calendar E, then there is exactly one valid timepoint t of C, such that the projection of t on E is te, and� If t is a valid time point of the calendar, such that t1 and t2 are projections of t on twoembedded calendars E1 and E2, respectively, then f(t1) = t2, where f is the bijection fromE1 to E2. 8

2Proposition 2.3: Let E be an embedded calendar of some calendar C. If t1 and t2 are two validtime points of C that are equal on all the time units of E, then t1 and t2 are identical.Proof: Follows from the second bullet item of De�nition 2.9. 2We can combine the Gregorian Calendar and the AGC into one calendar that has the hierarchyshown in Part A of Figure 1. The combined calendar has both the Gregorian Calendar and the Alter-native Calendar as embedded calendars. The time point (day : 1; dow : Thursday;week : 0;month :February; year : 1996) is a valid time point of the combined calendar, since (1;February; 1996) is avalid time point of the Gregorian Calendar, (Thursday; 0;February; 1996) is a valid time point ofthe Alternative Calendar, and these two time points denote the same date.As another example, consider the calendar that has the hierarchy shown in Part B of Figure 1and has the Gregorian Calendar as the only embedded calendar. If day, month and year are assignedvalues that form a valid time point of the Gregorian Calendar, then there is a unique value for week,such that all four values form a valid time point of the whole calendar. However, values for week,month and year do not determine a unique value for day.De�nition 2.10 (projection/de-projection) Let C be a calendar having a hierarchy H and anembedded calendar E. For a valid time point tc of C, the projection of tc on the time units of Eis denoted as pr(tc; E). For a valid time point te of the embedded calendar E, the de-projectionof te w.r.t. the calendar C, denoted dpC(te), is the unique valid time point tc of C, such thatpr(tc; E) = te. If C is clear from the context, we may write dp(te) instead of dpC(te). Also, notethat dpC(t0) is well de�ned whenever t0 is a time point over a subset S of the time units of C, suchthat S contains all time units of E. 2The reason projections and de-projections are needed is to ensure a smooth transition betweentime points in a calendar and time points in its embedded calendar.Proposition 2.4: If tc is a valid time point of C andE is an embedded calendar, then dpC(pr(tc; E)) =tc.Proof: Follows from De�nition 2.9. 2De�nition 2.11 (linear order on valid time points) Suppose C is a calendar and E is anembedded calendar of C. Given two valid time points t1 and t2 of C, we write t1 <C t2 ifpr(t1; E) <E pr(t2; E). 29

Note that the linear order is well de�ned, since any two (linear) embedded calendars are com-patible. Next, we de�ne a linear order on all time points of C that extends the one de�ned aboveon the valid time points.De�nition 2.12 (linear order on all time points) Let E be an embedded calendar of C witha linear hierarchy H . A pseudo-linear hierarchy P of C is a linear hierarchy T1 <P � � �<P Tn of allthe time units of C, such that for some i, the linear hierarchy H coincides with Ti <P � � � <P Tn.Given time points t1 and t2 of C, we de�ne t <C t0 if t1 <P t2. 2Note that the order on all time points may depend on the choice of H and the choice of thepseudo-linear hierarchy for the given H . However, the order on all time points extends the onede�ned previously on the valid time points.The de�nition of a linear order on valid time points induces a natural notion of the successorof a valid time point.De�nition 2.13 (successor of a time-value) Consider a time unit T . Given a time value t1from the time-value set of T , we say that t2 is the successor of t1 if either one of the followingholds.� t1 <T t2 and there is no t0 in the time-value set of T , such that t1 <T t0 <T t2, or� t1 is the maximal value of the time-value set of T (i.e., T must be �nite) and t2 is the minimalvalue of the time-value set of T .The ith successor of t1 in T is denoted as t1 +T i. 2The successor of the value 4 in the time unit day of the Gregorian Calendar is 5 and the successorof 31 is 1.De�nition 2.14 (successor of a valid time point) Let C be a calendar with a hierarchy H .Given a valid time point t1 of H , we say that t2 is the successor of t1 if t1 <H t2 and there is novalid time point t0 of H , such that t1 <H t0 <H t2. The ith successor of t1 in H is denoted ast1 �H i (or simply as t1 � i if H is clear from the context). 2In the Gregorian Calendar, the successor of (13;March; 1996) is (14;March; 1996) and the successorof (29;February; 1996) is (1;March; 1996). As we shall see below (Proposition 2.5), it turns outthat the concept of successor can be propagated from a calendar to its embedded calendars in anatural way. 10

Proposition 2.5: Let C be a calendar with an embedded calendar E. Let �C and �E denotethe successor operators in C and E, respectively. For all valid time points t of C, the followingequalities hold. t �C 1 = dp(pr(t; E)�E 1)pr(t; E)�E 1 = pr(t �C 1; E)Proof: Suppose t �C 1 = t0. Since E is an embedded calendar of C, De�nition 2.11 implies thatpr(t; E) <E pr(t0; E). If there were a valid time point t2 of E, such that pr(t; E) <E t2 <E pr(t0; E),then De�nition 2.11 would imply that dp(pr(t; E)) <C dp(t2) <C dp(pr(t0; E)), or equivalently,t <C dp(t2) <C t0 (since, by Proposition 2.4, dp(pr(t; E)) = t and dp(pr(t0; E)) = t0). But t <Cdp(t2) <C t0 contradicts the assumption that t�C1 = t0. Therefore, we can conclude that pr(t; E)�E1 = pr(t0; E) and, hence, dp(pr(t; E)�E 1) = dp(pr(t0; E)) = t0 = t�C 1.The second equation can be proved in a similar way. 2We are now in a position to de�ne what it means for two calendars to be compatible. Intuitively,compatibility of two calendars means that there is a smooth way of converting time points in onecalendar to time points in the other calendar, without any loss of temporal information.De�nition 2.15 (compatible calendars) Two calendars C1 and C2 are compatible if some em-bedded calendar of C1 is compatible with some embedded calendar of C2. 2Recall that embedded calendars are linear, and that compatibility of linear calendars was de�nedearlier in De�nition refclc-def. For example, the Gregorian Calendar and the AGC are compatible.Before describing how we specify time w.r.t. a calendar, we prove some results concerning thesuccessors of compatible calendars. First we will consider compatible linear calendars.Proposition 2.6: Suppose C1 and C2 are linear calendars that are compatible via the bijection from C1 to C2. Let �1 and �2 denote the successor operator in C1 and C2, respectively. For allvalid time points t of C1, (t�1 1) = (t)�2 1:Proof: Note that since C1 and C2 are linear calendars, each serves as its own embedded calendar,respectively.Suppose t0 = t �1 1. By De�nition 2.6, (t) <C2 (t0). If there were a valid time point t2of C2, such that (t) <C2 t2 <C2 (t0), then De�nition 2.6 would imply t <C1 �1(t2) <C1 t0,contradicting the assumption that t0 = t�1 1. Therefore, there is no such t2 and, hence, (t)�2 1 = (t0) = (t�1 1). 211

The above result says that the notion of successor is preserved by any bijection that establishescompatibility between linear calendars. We now extend the above result to general calendars,removing the restriction to linearity.Proposition 2.7: Suppose C1 and C2 are compatible calendars. Let E1 and E2 be embeddedcalendars of C1 and C2, respectively, and let be the bijection from E1 to E2 that shows thecompatibility. Let �C1 and �C2 denote the successor operators in C1 and C2, respectively. For allvalid time points t of C1,dpC2((pr(t�C1 1; E1))) = dpC2((pr(t; E1)))�C2 1:Proof: Suppose �E1 and �E2 denote the successor operators of E1 and E2, respectively. Proposi-tion 2.6 implies that (pr(t; E1)�E1 1) = (pr(t; E1))�E2 1 and since E2 is an embedded calendarof C2, we get the following equation.dpC2((pr(t; E1)�E1 1)) = dpC2((pr(t; E1))�E2 1) (1)The second equation of Proposition 2.5 implies thatpr(t; E1)�E1 1 = pr(t�C1 1; E1): (2)Let t2 = (pr(t; E1)); note that t2 is a valid time point of E2. Let t0 = dpC2((pr(t; E1))). Notethat t2 = pr(t0; E2). Since t0 = dpC2(pr(t0; E2)), the �rst equation of Proposition 2.5 implies thatdpC2(pr(t0; E2)�E2 1) = dpC2(pr(t0; E2))�C2 1: (3)Since pr(t0; E2)) = t2 = (pr(t; E1)), we getdpC2((pr(t; E1))�E2 1) = dpC2((pr(t; E1)))�C2 1: (4)We can now substitute in Equation (1) as follows. In the left-hand side according to Equation (2)and in the right-hand side according to Equation (4). The result isdpC2((pr(t�C1 1; E1))) = dpC2((pr(t; E1)))�C2 1: (5)2The Gregorian calendar is a good example of a calendar that is periodic { a concept that wede�ne formally below. Intuitively, a periodic calendar is whose structure \repeats" over time.De�nition 2.16 (periodic calendar) Let C be a calendar with a hierarchy H consisting of timeunits T1; : : : ; Tn. We say that C is periodic if there is an integer p > 0, such that for all time points(t1; : : : ; tn) of the hierarchy H , the time point (t1; : : : ; tn) is valid for C if and only if (t1; : : : ; tn+Tnp)is valid for C (note that Tn is the top time unit). The smallest p satisfying this de�nition is calledthe period of the top time unit. 212

De�nition 2.17 (the period of a periodic calendar) Suppose C is a periodic calendar witha hierarchy H consisting of time units T1; : : : ; Tn. Let p be the period of the top time unit. Let(t1; : : : ; tn) be a time point of C. The period of C is de�ned to be the number of valid time pointst, such that (t1; : : : ; tn) �C t <C (t1; : : : ; tn +Tn p). 2For example, the period of the Gregorian Calendar is (365 � 4 + 1) days. The period ofthe calendar that combines the Gregorian Calendar and the Alternative Gregorian Calendar (itshierarchy is given in Part B of Figure 1) is (365� 28 + 7) days.Proposition 2.8: The period of a periodic calendar C is well-de�ned, i.e., the period does notdepend on the choice of (t1; : : : ; tn) in De�nition 2.17.Proof: Suppose T1 <P � � � <P Tn is the pseudo-linear hierarchy of C. Let t denote a time point(t1; : : : ; tn) of C. We write t +Tn k as an abbreviation for (t1; : : : ; tn +Tn k). For an integer k � 1,let S(t; k) denote the set of all time points s of C, such that t �C s <C t+Tn k.Let p be the period of the top time unit of C and consider an integer h � 1. Consider thebijective mapping �h on time points of C that is de�ned as follows.�h((s1; : : : ; sn)) = (s1; : : : ; sn +Tn hp)Clearly, the image of S(t; k) under �h is S(t +Tn hp; k). An easy induction on h shows that �h isvalidity preserving; that is, t is a valid time point of C if and only if �(t) is a valid time point ofC. Therefore, we get the following fact.Fact 2.1: Let p be the period of the top time unit of C and consider an integer h � 1. The setsS(t; k) and S(t+Tn hp; k) have the same number of valid time points.Next we will show that the sets S(t; p) and S(t +Tn d; p), where 1 � d < p, have the samenumber of valid time points. Consider the following three disjoint subsets.1. S(t; d).2. S(t+Tn d; p� d).3. S(t+Tn p; d).Note that the union of the �rst two is equal to S(t; p), and the union of the last two is equal toS(t+Tn d; p). Moreover, �1 maps the �rst subset to the third one. Therefore, we have shown thefollowing.Fact 2.2: Given 1 � d < p, where p is the period of the top time unit of C, the sets S(t; p) andS(t+Tn d; p) have the same number of valid time points.13

To complete the proof of the proposition, consider the sets S(t; p) and S(t +Tn b; p), and letd = bmod p and h = b bpc; that is, the second set can be written as S(t+Tn (d+hp); p). If d is zeroor h is zero, then Fact 2.1 or Fact 2.2, respectively, implies that S(t; p) and S(t +Tn (d + hp); p)have the same number of valid time points. If both d and h are nonzero, then Fact 2.1 implies thatS(t; p) and S(t +Tn hp; p) have the same number of valid time points, and Fact 2.2 implies thatS(t+Tn hp; p) and S(t+Tn (d+ hp); p) have the same number of valid time points. 2Proposition 2.9: Suppose C is a periodic calendar and p is the period of the top time unit. Fora time point (t1; : : : ; tn), let m denote the number of time points t, such that (t1; : : : ; tn) �C t <C(t1; : : : ; tn +Tn p). If C has some valid time points, then the length of any contiguous sequence(according to <C) of invalid time points is bounded by m.Proof: First note that m depends only on p, but not on (t1; : : : ; tn), since <C is a lexicographicorder according to the pseudo-linear hierarchy of C. Second, if there is contiguous sequence of mor more invalid time points, then De�nition 2.17 (together with Proposition 2.8) implies that Chas no valid time points. 23 Specifying Time w.r.t. a CalendarLet us consider any application that refers to an arbitrary, but �xed calendar C. The applicationdeveloper must be able to specify time points, intervals and sets of intervals w.r.t. calendar C. Forinstance, when we consider the example of Mary from the Introduction, we need to specify a set oftime points, viz. the �rst Sunday of every month. Constraints provide a convenient and succinctrepresentation of such sets of time points. For example, the constraint(t:week = 1& t:dow = Sunday)captures all time points t that denote the �rst Sunday of any month. The variables in the aboveconstraint are t.week and t.dow, and they range over values from the time-value sets of week anddow, respectively. As another example, to say that time point t1 occurs at least 3 days before timepoint t2, we might write the constraint t1 � 3 � t2:In this constraint, the variables involved are t1 and t2 and they range over time points. Thus,di�erent kinds of constraints have di�erent types of variables that potentially could range eitherover members of time-value sets or over time points. In general, writing constraints over time pointsis often syntactically much more convenient and intuitive for the user. In particular, a human userwill �nd it very cumbersome (the reader is invited to try it!) to specify the constraint t1 � 3 � t2in terms of variables that range over values of time-value sets.14

Consequently, we will de�ne two constraint languages. The �rst is TUCL (Time Unit ConstraintLanguage) which allows us to express constraints using variables that range over values of time-value sets. The second language is TPCL (Time Point Constraint Language) and it is for expressingconstraints using variables that range over time points.De�nition 3.1 (TPCL|time point constraint language) Let C be a calendar with a hierar-chy H of time units T1; : : : ; Tn.� TPCL Variables: There is an in�nite set of variable symbols t; t0; t1; t2; : : : that range overtime points of C.� TPCL Constants: Every time point is a constant symbol.� TPCL Atoms: x<y, where < 2 f<C ;=g, is a TPCL atom if at least one of x and y is a TPCLvariable, say ti, and the other is either (i) a TPCL constant symbol, (ii) a TPCL variable tj ,or (iii) of the form tj �C n for some natural number n > 0.� TPCL Constraints: A TPCL constraint is any boolean combination of TPCL atoms con-structed using the logical connectives ^, _ and : (sometimes we use & instead of ^). 2For example, t1 < (1; January; 1995), t1 = t2 � 1 and t2 = (3;February; 1996) are TPCL atomsw.r.t. the Gregorian Calendar. The conjunction t1 = t2 � 1 ^ t2 < (1; January; 1995) is a TPCLconstraint that intuitively refers to any two consecutive days before 1995.De�nition 3.2 (TUCL|time unit constraint language) Let C be a calendar with a hierarchyH of time units T1; : : : ; Tn. Let Vi denote the time-value set associated with Ti.� TUCL Variables: If t is any TPCL variable, then t:Tj is a TUCL variable of type Tj thatranges over values of Vj .� Constants: Every member of V1 [� � � [Vn is a TUCL constant symbol.� TUCL Atoms: x<y, where < 2 f<Tk ;=g, is a TUCL atom of type Tk if at least one of x andy is of the form ti:Tk and the other is either (i) a TUCL constant symbol from the set Vk, (ii)a TUCL variable of the form tj :Tk, or (iii) of the form tj :Tk +Tk n for some integer n > 0.� TUCL Constraint: A TUCL constraint is any boolean combination of TUCL atoms con-structed using the connectives ^, _ and : (sometimes we use & instead of ^).A TUCL constraint 	 is said to be associated with the TPCL variable ti if all TUCL variablesappearing in 	 are of the form ti:Tj (1 � j � n). 215

For example, t:week = 1 is a TUCL atom that has one TUCL variable, namely t:week. Anexample of a TUCL constraint in the Gregorian Calendar is t1:day = 1 ^ t1:month = March, whichis associated with t1 and intuitively refers to the �rst of March (of all years). Similarly, the TUCLconstraint (t1:month = May _ t1:month = June) ^ t1:year <year 1990 intuitively refers to theMay{June period of any year before 1990.The reader should note that variables of the form t:week (or more generally t:Ti) may onlyappear in TUCL atoms, but not in TPCL atoms. Furthermore, the symbol �C may occur in TPCLatoms but not in TUCL atoms. In contrast, the symbol +Ti may occur in TUCL atoms, but not inTPCL atoms.De�nition 3.3 (solution of TPCL constraints) A solution, �, to a TPCL constraint � is anassignment of a time point to each TPCL variable in �, such that when each occurrence of eachTPCL variable V in � is replaced with �(V), the result is true. We say that two TPCL constraintsare equivalent if they have the same set of solutions. 2For example, t1 = (2;February; 1990) and t1 = (5;March; 1980) are solutions to the constraintt1 < (1; January; 1995).De�nition 3.4 (solution of TUCL constraints) A solution, �, to a TUCL constraint � is anassignment of a time point to each TPCL variable t occurring in �, such that when each occurrenceof each TUCL variable t:Ti in � is replaced with �(t:Ti), the result is true. We say that two TUCLconstraints are equivalent if they have the same set of solutions. 2For example, ft1:month = January; t1:day = 1; t1:year = 1995g is a solution to the constraintt1:month <month February ^ t1:day <day 3. Note that ft1:month = January; t1:day = 2g is not asolution, since t1:year is not assigned a value.Example 3.1: Suppose we return to the example concerning Mary. In this example, the action\Remind Mary to send out her phone bill" is �red for each solution of the constraint(t:week = 1& t:dow = Sunday) :This constraint has many solutions. For example,�1 = ft:dow = Sunday; t:week= 1;t:month = January; t:year = 1997gis a solution.Notation: Suppose 	 is a conjunction of constraints involving a temporal (i.e., TPCL or TUCL)variable t and further suppose that t0 is either a constant or a temporal variable. We use thenotation 	[t=t0] to denote the expanded constraint 	 ^ ft = t0g.16

In addition to the TUCL and TPCL constraint languages, we de�ne below a hybrid constraintlanguage that combines both of the above. This hybrid language provides the
exibility of express-ing temporal constraints using both time-unit based atoms and time-point based atoms.De�nition 3.5 (hybrid constraint language) An HCL constraint is any boolean combinationof TPCL and TUCL atoms constructed using the connectives ^, _ and : (sometimes we use &instead of ^). 2For example, t1 = t2 � 1 ^ (t1:month = June _ t1:month = January) is an HCL constraint thatintuitively refers to any two consecutive days, where the �rst day is either in June or January ofany year.4 Using Constraints to De�ne CalendarsSuppose C is a calendar and 	 is a constraint w.r.t. C. Solutions to this constraint merely assigntime points to the temporal variables appearing in the constraint. However, the resulting timepoint may or may not be valid. Thus far in the paper, we have merely assumed the existence ofa validity predicate that tells us which time points are valid. In this section, we will show thatvalidity predicates may be elegantly and succinctly expressed in terms of constraints. Furthermore,it turns out that solving constraints that only contain variables with respect to some time units,e.g., TUCL constraints, can be done using well known techniques. Therefore, we consider validitypredicates that can be expressed using such constraints.4.1 Realizing Validity Predicates Through ConstraintsRecall that in any calendar, only the top time unit is in�nite. Therefore, it is possible to representthe validity predicate of a calendar by a set of pairs of constraints (;�), such that:If the values t1 : : : ; tn�1 of the �nite time units T1; : : : ; Tn�1 of the calendar satisfy theconstraint 	 and if the value tn of the top time unit of the calendar is a solution of theconstraint �, then (t1 : : : ; tn�1; tn) is a valid time point.Thus, 	 only involves the variables t:T1; : : : ; t:Tn�1, while � only involves the variable t:Tn.We leave open the possibility that the language for expressing the constraint 	 on the �nite timeunits is di�erent from the language for expressing the constraint � on the top time value. The topconstraint is any TUCL constraint whose only variable is of the form t:Tn, where t is a TPCL variableand Tn is the top time unit. For example, in the case of the Gregorian Calendar, t:yearmod 4 = 0is a top constraint. Note that in this example, the language in which � is expressed includes the\mod" operator. Other calendars may or may not require this operator and, therefore, we leave17

open the precise choice of the language for expressing the top constraint. The constraint 	 on the�nite time units will be expressed as a TUCL constraint that has a single TPCL variable.De�nition 4.1 (realization of a validity predicate via constraints) Let C be a calendar witha hierarchy H of time units T1; : : : ; Tn, where Tn is the top time unit. A set f(1;�1); : : : ; (m;�m)g of pairs of constraints is said to realize a validity predicate if� 	i is a TUCL constraint that has a single TPCL variable t and only the TUCL variablest:T1; : : : ; t:Tn�1 (but not t:Tn) may appear in 	i,� �i is a top constraint involving only the TUCL variable t:Tn,� For all 1 � i < j � n, the TUCL constraints 	i and 	j have no common solutions, and� (t01; : : : ; t0n) is a valid time point of C if and only if there is a pair (k;�k), such that t:T1 =t01; : : : ; t:Tn�1 = t0n�1 is a solution of 	k and t:Tn = t0n is a solution of �k (in other words,(t01; : : : ; t0n) is a solution of the conjunction 	k ^ �k). 2The Gregorian Calendar can be realized by the constraints f(1;�1); (2;�2)g, where	1 = (t:day <day 29) _ (t:day <day 31& t:month 6= February) _(t:day = 31& (t:month = January _ t:month = March _ t:month = May _ t:month = July _t:month = August _ t:month = October _ t:month = December))�1 = 0 � t:year	2 = (t:day = 29& t:month = February)�2 = t:yearmod 4 = 0For example, the pair (2;�2) says that if the day �eld is 29 and the month �eld is February,then the year �eld must be a multiple of 4. Notice, in particular, that the language of �2 issomewhat more complex than that used for �1|it involves the use of some arithmetic through themod operator.4.2 Realizing Successors Through ConstraintsRecall that TPCL constraints are allowed to contain the successor operator �. In this section, weshow how we may specify the successor of a time point t through the use of constraints. The reasonwe need to specify successors using constraints is that adding 1 to the lowest time unit and handlingthe carries appropriately (which may seem adequate, prima facie) is not adequate in general. Thisis because not all combinations of time values are valid time points. For example, adding 1 to Feb.28, 1993, leads (naively) to the syntactically correct, but invalid date of Feb. 29, 1993. As thevalidity predicate itself is realized through the use of constraints, we continue to use constraints tospecify the notion of a successor. 18

De�nition 4.2 (realization of a successor via constraints) Let C be a calendar with a hier-archy H of time units T1; : : : ; Tn, where Tn is the top time unit. A set f(�1;�1); : : : ; (�m;�m)g ofpairs of constraints is said to realize a successor if� �i is a TUCL constraint that has a single TPCL variable t, and the TUCL variables t:T1; : : : ; t:Tnmay appear in �i,� �i is a TUCL constraint that has exactly two TPCL variable t and t+, and the TUCL variablest:T1; : : : ; t:Tn and t+:T1; : : : ; t+:Tn may appear in �i,� For each valid time point t0, there is exactly one �i (1 � i � n), such that t = t0 is a solutionof �i, and� If t = t0 is a solution of �i, then �i[t=t0] must have exactly one solution t+ = t00 and t00 is thesuccessor of t0 in C. 2Intuitively, the successor speci�cation allows us to �nd the successor of a given time p pointas follows. First, determine if the time point p is valid. If the time point p is not valid, thenit does not have a successor. Otherwise, determine which of the �i has the solution t = p.Next, �nd the solution t+ = p0 of �i[t=p], and p0 is the desired successor. For example, theset f(�1;�1); (�2;�2); (�3;�3)g realizes the successor in the Gregorian Calendar, where�1 = (t:day <day 28) _ (t:day <day 29& t:month 6= February) _(t:day = 30& (t:month = January _ t:month = March _ t:month = May _ t:month = July _t:month = August _ t:month = October _ t:month = December)) _(t:day = 28& t1:month = February& t:yearmod4 = 0)�1 = t+:month = t:month& t+:year = t:year& t+:day = t:day+day 1�2 = (t:day = 31& (t:month = January _ t:month = March _ t:month = May _ t:month = July _t:month = August _ t:month = October)) _(t:day = 30& (t:month = April_ t:month = June _ t:month = September _ t:month = November)) _(t:day = 28&t:month = February&t:yearmod4 6= 0)�2 = t+:month = t:month+month 1& t+:year = t:year& t+:day = 1�3 = t:month = December& t:day = 31:�3 = t+:month = 1& t+:day = 1& t+:year = t:year+year 15 Solving Temporal ConstraintsIn general, given an HCL constraint, we would like to check if there exists a valid solution of thatconstraint. We emphasize the point that viewing HCL constraints as ordinary constraints over the19

integers is not enough, because the special nature of the validity predicate may cause some solutions(over the integers) to represent invalid time points. In this section, we describe the following threeaspects of determining existence of valid solutions of temporal constraints:1. First, we show how we can convert a temporal constraint �, into a new constraint �0 suchthat �0 has a solution (over the time points) i� � has a valid solution over the time points.2. Second, we show how we can eliminate all occurrences of � from �0.3. Finally, we show that as a consequence all TPCL-atoms can be eliminated as well, whilepreserving satis�ability.The above transformations allow us to determine satis�ability of the resulting constraint byusing standard constraint solving techniques over �nite domains and the over the integers [12]. Infact, if we consider only TPCL-constraints over periodic calendars, then it turns out that � andsubtraction of time points can be solved in polynomial time.5.1 Incorporating ValiditySuppose C is a calendar and � is a constraint. We wish to create a constraint �0 such that: � is asolution of �0 i� � is a valid solution of �. This is because an HCL constraint � may have solutionsthat are not valid. However, as we are only interested in valid solutions of �, we create a newconstraint, �0, by adding some validity criteria to the constraint �. The following de�nition showshow �0 may be de�ned for this purpose.De�nition 5.1 (extension of a constraint to handle validity) Consider a calendar C whosevalidity predicate is realized via a set of pairs f(1;�1); : : : ; (m;�m)g with the variable t. Letvalid(t) denote the following formula:(1(t) ^ �1(t))_ � � � _ (m(t) ^ �m(t)):Suppose � is an HCL constraint with variables t1; : : : ; tk (note that t does not occur in �). Theextension of � with respect to the validity predicate of C is the following formula.� ^0@ ^1�i�k valid[t=ti]1A 2Proposition 5.1: � is a solution of � ^ �V1�i�k valid[t=ti]� if and only if � is both a solution of� and a valid time point of C.Proof: Follows from De�nition 4.1. 220

5.2 Eliminating SuccessorIn this section, we show how to eliminate all occurrences of � from a constraint � by iterativelyadding conjuncts to � based on the constraints that realize the successor.Algorithm 1 (Elimination of �) Let C be a calendar whose successor is realized via the set ofpairs f(�1;�1); : : : ; (�m;�m)g, where t and t+ are the variables occurring in these constraints. Weuse succ(t; t+) to denote the following formula.(�1(t) ^ �1(t; t+)) _ � � � _ (�m(t) ^�m(t; t+))Suppose � is an HCL constraint, such that neither t not t+ occurs in �. The elimination of � isachieved by rewriting � according to the following two rules until no rewriting is possible.1. If v � 1 occurs in �, then do the following. First, replace all occurrences of v � 1 in � with anew variable v+ that does not occur in �. Second, replace � with� ^ succ[t=v; t+=v+]2. If v � b occurs in �, where b > 1 is an integer, then do the following. First, replace alloccurrences of v � b in � with vc + (b� 1), where vc is a new variable that does not occur in�. Second, replace � with � ^ vc = v � 1Proposition 5.2: Let �0 be the result of rewriting � according to the above rules. � is a solutionof �0 if and only if the restriction of � to the variables of � is a solution of �.Proof: Follows from De�nition 4.2 by an induction on the number of applications of the rewritingrules. 2Even if � has only one occurrence of a term of the form v� b, the rewriting needed to eliminate� is exponential in the binary representation of b. However, most (if not all) calendars in daily useare periodic (in the sense of De�nition 2.16) and the following lemma holds for such calendars.Lemma 5.1: Suppose C is a periodic calendar, and let p be the period of the top time unit and cbe the period of the calendar. Then for all valid time points (t1; : : : ; tn) and all integers c � 1, thefollowing is true, where d = b mod c and h = b bcc.(t1; : : : ; tn)� b = (t1; : : : ; tn +Tn hp)� dProof: Follows from De�nition 2.16, De�nition 2.17 and Proposition 2.8. 221

When the above lemma holds, we may replace a term of the form v � b by the term v0 � d andadd the following conjunctionv0:T1 = v:T1 ^ � � � ^ v0:Tn�1 = v:Tn�1 ^ v0:Tn = v:Tn + hpwhere v0 is a new TPCL variable. Thus, the process of eliminating v � b requires at most O(p)applications of the rewriting rules (since d � p). Since p is �xed (i.e., it depends only on the givencalendar, but not on �), the elimination of v � b can be done in linear time in the size of �.5.3 Subtracting Time Points of Periodic CalendarsIn order to solve constraints e�ciently, we may need to subtract one time point from another.Subtraction of time points can be done e�ciently if calendars are periodic. Suppose C is a periodiccalendar, such that p is the period of the top time unit and c is the period of the calendar. Lett �C s be two valid time points of C, where t = (t1; : : : ; tn) and s = (s1; : : : ; sn). Computingthe non-negative integer a, such that s = t � a, can be done as follows. First, let b = sn � tn,d = b mod p and h = b bpc. By the de�nitions of p and c, it follows that a = a0 + hc, where a0satis�es (t1; : : : ; tn)� a0 = (s1; : : : ; tn +Tn d):Now, let d0 = tn mod p and h0 = b tnp c. By De�nition 2.17 and Proposition 2.8, a0 also satis�es(t1; : : : ; d0)� a0 = (s1; : : : ; d0 +Tn d):Since d0 and d are nonnegative and bounded by c, and c is a constant that depends only on thecalendar, we may compute a0 in polynomial time.5.4 Eliminating TPCL AtomsIn this section, we show how we may iteratively eliminate TPCL atoms from a constraint �.Algorithm 2 (Elimination of TPCL Atoms) Let E1,: : : ,Ek be the embedded calendars of Cwhere T j1 < : : : < T jnj is the linear hierarchy of the embedded calendar Ej, 1 � j � k. Foreach constraint atom A in � do:1. If A is of the form t = (v1; : : : ; vn) then replace it by:t:T1 = v1 ^ t:T2 = v2 ^ : : :^ t:Tn = vn2. If A is of the form t1 = t2 then replace it by:t1:T1 = t2:T1 ^ t1:T2 = t2:T2 ^ : : : ^ t1:Tn = t2:Tn22

3. If A is of the form t1 <H t2 then replace it by t1 <E1 t2 ^ : : : : ^ t1 <Ek t2.4. If A is of the form t <H (v1; : : : ; vn) then replace it by t <E1 (v11 ; : : : ; v1n1) ^ : : : ^ t <Ek(vk1 ; : : : ; vknk) where (vj1; : : : ; vknj) is the projection of (v1; : : : ; vn) on Ej.5. If A is of the form t <Ej (vj1; : : : ; vjnj) replace it by(t:T j1 > vj1 ^ t:T j2 = vj2 ^ t:T j3 = vj3 ^ : : : ^t:T jlj = vjnj _(t:T j2 > vj2 ^ t:T j3 = vj3 ^ : : : : ^ t:T jnj = vjnj) _� � � _(t:T jnj > vjnj)6. If A is of the form t1 <Ej t2 replace it by(t1:T j1 > t2:T j1 ^ t1:T j2 = t2:T j2 ^ t1:T j3 = t2:T j3 ^ : : : ^t1:T jlj = t2:T jnj _(t1:T j2 > t2:T j2 ^ t1:T j3 = t2:T j3 ^ : : : ^ t1:T jnj = t2:T jnj) _� � � _(t1:T jnj > t2:T jnj)Based on the techniques described thus far, it is easy to de�ne both a concept of a temporal normalform, and procedure that can be used to convert any constraint � into a temporal normal formconstraint �0 such that � has a valid solution i� �0 has a solution. (The technical report versionof this paper [15] provides an appendix consisting of such a normal form, and a transformationprocedure, but is omitted here to avoid lengthening the paper.) Furthermore, there is a closecorrespondence between solutions of � and �0 { if VALIDSOL(�) denotes the set of valid solutionsof �, then:V ALIDSOL(�) = f� j �0 is a solution of �0 and � is the restriction of�0 to the variables of�g:6 Combining Multiple CalendarsEarlier in the paper, we stated that we can combine the Gregorian Calendar and the AGC intoone calendar that has the hierarchy shown in Part A of Figure 1. However, this statement was aninformal one|we stated what it means for two calendars to be compatible with each other, but wedid not formally state what it means to combine two arbitrary calendars.Multiple calendars may arise naturally in a vast number of settings. For instance, consider thecase where an agent must access two data sources, one of which uses a calendar with the hierarchydow < week < month < yearwhile the other uses calendar with the hierarchyday < month < year:23

In this case, the agent must be able to reason with both calendars by constructing a new calendarthat combines the two. The purpose of this section is to de�ne what constitutes such a validcombination, and to develop techniques to compute these combinations.6.1 What Does It Mean to Combine Two Calendars?Any notion of a combination of two calendars must satisfy certain intuitive requirements. In thissection, we will describe a number of examples and, in each case, we will de�ne what intuitivelyconstitutes a valid combination. This will enable us to specify various criteria that should besatis�ed by a combined calendar.Suppose C1 and C2 are two calendars that we wish to combine. In other words, we want to �nda calendar C that \captures" calendars C1 and C2. There are three parts involved in any methodfor creating C:1. Hierarchy Construction: Given the hierarchies associated with C1 and C2, we should beable to de�ne a hierarchy that will be associated with the calendar C. In other words, weshould be able to merge the trees associated with C1 and C2 into a new tree T that preservessome of the ancestor relationships of the original trees.2. Selecting Embedded Calendars: Once we have computed the tree T of the hierarchyassociated with the combined calendar, we need to identify (at least) one complete path inthis tree and designate it as an embedded calendar.3. Merging Validity Speci�cations: Finally, we must merge the validity speci�cations asso-ciated with C1 and C2 into a new validity speci�cation that guarantees that the embeddedcalendars selected in the preceding step satisfy the conditions in De�nition 2.9.We now present some examples illustrating the above steps.Example 6.1: Suppose we wish to combine the Gregorian calendar and the AGC. We need to gothrough the following steps.1. Hierarchy Construction: In this step, we need to construct a hierarchy that preserves theancestor relationships of both the Gregorian Calendar and the AGC. Figure 1(A) shows onesuch hierarchy that preserves the desired ancestor relationships. Figure 2 also preserves theancestor relationships. However, the hierarchy of Figure 2 includes an ordering constraint,viz. day < dow, that is not required by either the Gregorian calendar or the AGC. Therefore,we should prefer the more conservative hierarchy shown in Figure 1(A).2. Select Embedded Calendars: We now need to examine all the complete paths in Figure 1(A)and select some of these paths as embedded calendars. There are two possibilities, in this24

yearmonthweekdowdayFigure 2: A Non-conservative hierarchy construction.simple example, corresponding to the Gregorian calendar and the AGC, respectively. Sincethese calendars were compatible, we can safely designate both as embedded calendars of thecombination.3. Merging Validity Speci�cations: We now need to construct a validity predicate, keeping inmind the choice of the hierarchy made above (i.e., Figure 1(A)) and the choice of the embeddedcalendars. In particular, we want to ensure that if t is a valid time point of the combinedcalendar (that we are constructing), then the projections of t on both the Gregorian Calendarand the AGC are valid w.r.t. the validity predicates of the Gregorian Calendar and the AGC,respectively. In addition, we need to specify the \link" between the AGC and the GregorianCalendar. In e�ect, this means that we specify, given values for year, month, week and dow,how to obtain the corresponding value for day, and vice-versa. In order to realize the validitypredicate of the combined calendar, we need to manipulate the constraints that realize thevalidity predicates of the Gregorian calendar and the AGC.Example 6.2: Now consider a slightly more complicated example, where we have two very simplelinear calendars C1 and C2 whose hierarchies are shown in Figure 3 Part (a) and Part (b), respec-tively. There are exactly three ways of constructing a hierarchy that merges them and these aredepicted in Figure 3 Parts (c), (d) and (e). Of these, only Figure 3(c) is conservative and doesnot introduce any new ancestor relationships. There are two complete paths in this case that arecandidates for being embedded calendars. However, in contrast to the preceding example, the twooriginal calendars C1 and C2 are not compatible. Intuitively, we know that values for year anddoy uniquely determine the month. The converse does not apply, since given the year and themonth, we cannot uniquely specify a doy. Therefore, it is preferable to select the complete pathyear{doy as the embedded calendar of the combination. The complete path year{month will thenbe a secondary calendar of the combination. 25

yeardoy yearmonth yeardoy month yeardoymonth yearmonthdoy(a) (b) (c) (d) (e)Figure 3: Possible hierarchy constructions.Finally, to realize the validity predicate of the combined calendar, we need to explicitly specifythe link between the year and the doy, on one hand, and the month, on the other hand; i.e., weneed to state how the month may be computed from the year and the doy.Example 6.3: Consider the calendars Ca and Cb, whereCa : day < month < yearCb : hour < day < month < year:In this case, the hierarchy construction leads to the same hierarchy as that of Cb. Consequently, Cbcan be the only embedded calendar, and the validity predicate must coincide with that of Cb.Finally, we consider a case where the calendars cannot be combined.Example 6.4: Suppose Ca and Cb are as given below.Ca : month < year:Cb : woy < year:Here, woy stands for \week of the year." There is one hierarchy that most conservatively mergesthe hierarchies of Ca and Cb. The two complete paths of this combined hierarchy correspond toCa and Cb, respectively. In the preceding example, we showed how we could use the time units ofone embedded calendar to determine uniquely the values of the other time units. However, in thiscase, neither of the two can be designated as the embedded calendar, because neither one of themuniquely determines the other.6.2 Combining HierarchiesIn this section, we �rst specify declaratively what it means to construct a hierarchy that combineshierarchies from two di�erent calendars. 26

De�nition 6.1 (hierarchy combination) Suppose C1 and C2 are two calendars with hierarchiesT1 and T2, respectively. The hierarchy T is said to be a hierarchy combination of T1 and T2 if1. The set of time units of T is the union of the sets of time units of T1 and T2,2. If Ti <Tk Tj , where k 2 f1; 2g, then T1 <T T2, and3. If Ti <T Tj, then either Ti <T1 Tj or Ti <T2 Tj . 2Intuitively, a hierarchy combination merely ensures that the orderings on the time units, from thetwo calendars being combined, are preserved in the most conservative possible way.Proposition 6.1 (uniqueness of hierarchy combination) Suppose C1 and C2 are two calen-dars with the hierarchies T1 and T2, respectively. There exists at most one hierarchy T that is ahierarchy combination of T1 and T2.Proof: Suppose there are two distinct trees T and T 0, such that each one is a hierarchy combinationof T1 and T2. First, note that Ti <T Tj if and only if Ti <T 0 Tj . In proof, if Ti <T Tj , then by thethird part of De�nition 6.1, either Ti <T1 Tj or Ti <T2 Tj ; in either case, Ti <T 0 Tj follows from thesecond part of De�nition 6.1. The other direction is proved similarly.Since T and T 0 are distinct, there is a pair of time units Ti and Tj , such that in one of these twotrees, say in T , time unit Tj is the parent of Ti (implying Ti <T Tj), but Tj is not the parent of Ti inthe other tree, T 0. However, since Ti <T Tj , we must also have Ti <T 0 Tj ; that is, Tj is an ancestor(but not the parent) of Ti in T 0. Let Tk be the parent of Ti in T 0. Therefore, Ti <T 0 Tk <T 0 Tjand, so, we must also have Ti <T Tk <T Tj , contradicting the assumption that Tj is the parent ofTi in T . 2De�nition 6.2 (combinable hierarchies) Suppose T1 and T2 are two hierarchies of time units.We say that T1 and T2 are combinable if1. T1 and T2 share the same top time unit,2. If time units Ti and Tj appear in both T1 and T2, then Ti <T1 Tj holds if and only if Ti <T2 Tjholds,3. If Ti <Tm Tj and Tj <Tp Tk, where m; p 2 f1; 2g, then either Ti <T1 Tk or Ti <T2 Tk.4. If Ti <Tm Tj and Ti <Tp Tk, where m; p 2 f1; 2g, then either Tj <Tq Tk or Tk <Tq Tj for someq 2 f1; 2g. 27

All the hierarchies of the calendars in the examples of Section 6.1 are combinable. The resultbelow states that if the hierarchies of the calendars C1 and C2 are combinable hierarchies, thenthey uniquely determine a hierarchy combination.Theorem 6.1 (existence of hierarchy combination) Suppose C1 and C2 are two calendarswith hierarchies T1 and T2, respectively. If T1 and T2 are combinable hierarchies, then there existsexactly one T that is a hierarchy combination of T1 and T2.Proof: Let T consists of the time units of T1 and T2, and let <T be de�ned as the transitiveclosure of <T1 [<T2 . We claim that if Ti <T Tj holds, then either Ti <T1 Tj or Ti <T2 Tj must alsohold. In proof, by the de�nition of <T , if Ti <T Tj, then there is a sequence Ti1 ; : : : ; Tim of timeunits, such that Ti1 = Ti, Tim = Tj and for all 1 < j � m, either Tij�1 <T1 Tij or Tij�1 <T2 Tij .Therefore, an easy induction, using the third part of De�nition 6.2, shows that for all 1 < j � m,either Ti1 <T1 Tij or Ti1 <T2 Tij must hold.It thus follows that <T satis�es all the conditions of a hierarchy combination. It also followsthat <T is indeed a partial order. In other words, there is no time unit Ti, such that Ti <T Ti(since if there were such a Ti, then either Ti <T1 Ti or Ti <T2 Ti would hold, contradicting the factthat both <T1 and <T2 are partial orders).It remains to be shown that the partial order <T coincides with a tree, as required by the thirdbullet item in De�nition 2.7. We will now show how to construct the tree T . The root of T is thetime unit that is the top of both T1 and T2 (by the �rst part of De�nition 6.2, T1 and T2 sharethe same top time unit). For every other time unit Ti of T , we de�ne the parent of Ti as follows.First, we de�ne the set A(Ti) = fTj j Ti <T Tjg; note that this set is not empty, since Ti is smallerthan the top time unit. According to the fourth part of De�nition 6.2, every two elements of theabove set are comparable according to <T and, therefore, that set has a least element. We de�nethe least element of A(Ti) to be the parent of Ti.We will now show that the tree constructed above satis�es the third bullet item in De�nition 2.7;that is, Tj is an ancestor of Ti if and only if Ti <T Tj. The \only if" direction is true, since byde�nition, Tj is a parent of Ti only if Ti < Tj . The \if" direction follows by an easy induction, oncewe show that A(Ti) � fTjg = A(Tj), where Tj is the least element of A(Ti). To show that, notethat if Ti <T Tk (k 6= j), then Tj <T Tk (since Tj is the least element of A(Ti)) and, therefore,A(Ti)�fTjg � A(Tj). To prove the other direction of the containment, note that if Tj <T Tk thenTi <T Tk (since Ti <T Tj) and, hence, A(Ti)� fTjg � A(Tj).Finally, the uniqueness of T follows from Proposition 6.1. 2Example 6.5: Consider the calendars having the following hierarchies:Ca : T3 < T2 < T128

Cb : T2 < T3 < T1:These two hierarchies cannot be combined, because T3 < T2 holds in Ca, while T2 < T3 holds in thesecond.Proposition 6.2: Suppose C1 and C2 are two calendars with hierarchies T1 and T2, respectively.If there is a hierarchy combination T of T1 and T2, then Conditions 1, 3 and 4 of De�nition 6.2must hold.Proof: Suppose hierarchy T is a hierarchy combination of T1 and T2. Condition 1 of De�nition 6.2follows from the fact that a hierarchy has exactly one in�nite time unit.To show that Condition 3 of De�nition 6.2 is true, suppose that Ti <Tm Tj and Tj <Tp Tk,where m; p 2 f1; 2g. By Condition 2 of De�nition 6.1, Ti <T Tj and Tj <T Tk must hold and, bythe transitivity of <T , it follows that Ti <T Tk. By Condition 3 of De�nition 6.1, either Ti <T1 Tkor Ti <T2 Tk must also hold.To show that Condition 4 of De�nition 6.2 is true, suppose Ti <Tm Tj and Ti <Tp Tk, wherem; p 2 f1; 2g. By Condition 2 of De�nition 6.1, Ti <T Tj and Ti <T Tk must also hold and, hence,both Tj and Tk are ancestors of Ti in T . Therefore, either Tj <T Tk or Tk <T Tj must hold and,so, Condition 3 of De�nition 6.1 implies that either Tj <Tq Tk or Tk <Tq Tj must hold for someq 2 f1; 2g. 2Parts (a) and (b) of Figure 4 show two hierarchies that satisfy Conditions 1, 3 and 4 of com-binable hierarchies (De�nition 6.2). The hierarchy combination of these two hierarchies is shownin Part (c) of Figure 4. The one complete path in the hierarchy of Part (c) appears neither in Part(a) nor in Part (b). Therefore, none of the embedded calendars of the two original hierarchies isan embedded calendar of the combined hierarchy and, therefore, the combined hierarchy cannot becompatible with either one of the two original hierarchies. The next proposition shows that if allfour conditions of De�nition 6.2 are satis�ed, then the situation shown in Figure 4 cannot occur.Proposition 6.3: Suppose T1 and T2 are combinable hierarchies, and T is a hierarchy combinationof T1 and T2. Let } be any complete path in T . Then } is a complete path in either T1 or T2.Proof: Consider the complete path } of T . We claim that either T1 or T2 contains all timeunits appearing on }. Suppose not. Therefore, there is a time unit Ti on } that is not in T1 and,similarly, there is a time unit Tj on } that is not in T2. Since both Ti and Tj are on the same pathof T , one of the two, say Tj , is an ancestor of the other, Ti. Thus, Ti <T Tj . By Condition 3 ofDe�nition 6.1, either Ti <T1 Tj or Ti <T2 Tj . But this is impossible, since neither T1 nor T2 containsboth Ti and Tj . Thus, we have shown that one of the two original hierarchies, say T1, contains allthe time units appearing on the complete path }.We will now show that } is also a complete path of T1. So, consider a pair of time units Ti andTj , such that Tj is the parent of Ti in } and, hence, Ti <T Tj . By Condition 3 of De�nition 6.1,29

T1T2T3 T4 T1T3T4 T1T2T3T4(a) (b) (c)Figure 4: Hierarchies that their combination include a new embedded path.either Ti <T1 Tj or Ti <T2 Tj and, by Condition 2 of De�nition 6.2, Ti <T1 Tj . So, Tj is an ancestorof Ti in T1. Suppose the parent of Ti in T1 is Tk, where k 6= j. Therefore, Ti <T1 Tk <T1 Tj and, byCondition 2 of De�nition 6.1, Ti <T Tk <T Tj , contradicting the assumption that Tj is the parentof Ti in }. Therefore, we have shown that if Tj is the parent of Ti in }, then Tj is also the parentof Ti in T1.It remains to be shown that the leaf, Tm, of the complete path } is also a leaf of T1. Supposenot. Therefore, there is a node Tp that is a child of Tm in T1 and, hence, Tp <T1 Tm. By Condition2 of De�nition 6.1, Tp <T Tm, contradicting the fact that Tm is a leaf of T . 2Proposition 6.4: Suppose T1 and T2 are combinable hierarchies, and T is a hierarchy combinationof T1 and T2. If a complete path } of T1 is not a complete path of T , then it must be a completepath of T2.Proof: By Proposition 6.5, all the nodes of } lie on some path }0 of T . If }0 and } are notidentical, then }0 cannot appear in T1 and, by Proposition 6.3, }0 must be a complete path of T2.2 We end this section with a description of how to construct a hierarchy combination T of thecombinable hierarchies T1 and T2. Essentially, the construction was given in the proof of The-orem 6.1, where it was shown that the root of T is the in�nite time unit that is shared by T1and T2, and for every other time unit Ti, the parent of Ti in T is the least element of the setA(Ti) = fTj j Ti <T Tjg. The following proposition shows what that least element is.Proposition 6.5: Suppose T1 and T2 are combinable hierarchies, and T is a hierarchy combinationof T1 and T2.� Let Ti be a �nite time unit (i.e., Ti is not the top time unit). If Ti appears in both T1 andT2, then Ti has the same parent Tj in both.30

� The parent of Ti in either T1 or T2 is also the parent of Ti in T .Proof: Let Ti be a node of T1 and suppose Tj is the parent of Ti in T1. Therefore, Ti <T1 Tj and,by Condition 2 of De�nition 6.1, Ti <T Tj . Now suppose that Tk, where k 6= j, is the parent of Ti inT . Therefore, Ti <T Tk <T Tj . By Condition 3 of De�nition 6.1 and Condition 2 of De�nition 6.2,Ti <T1 Tk <T1 Tj , contradicting the assumption that Tj is the parent of Ti in T1. Therefore, wehave shown that if Ti appears in T1, then it has the same parent in T1 and in T . It can be shownsimilarly that if Ti appears in T2, then it has the same parent in T2 and in T . 2If Condition 2 of De�nition 6.2 is not satis�ed (as in the case of Figure 4), then Ti may havedistinct parents in T1 and T2 and, in this case, the parent of Ti in T is the least one (accordingto <T) among its two original parents. More speci�cally, if there are two distinct parents in theoriginal hierarchies, then one of the two hierarchies must impose an order among those parents.6.3 Combining CalendarsIn this section, we will describe how to combine two calendars. In addition to constructing thehierarchy combination of the two calendars, as discussed in the previous section, we also need amapping that links time points of C1 with time points of C2, as de�ned next.De�nition 6.3 (linking function) Let C1 and C2 be a pair of calendars with combinable hier-archies T1 and T2, respectively. A linking function from C1 to C2 is a mapping f from the validtime points of C1 to valid time points of C2, such that� If t and t0 are valid time points of C1 and t <C1 t0, then f(t) �C1 f(t0), and� If t is a valid time point of C1 and the time unit Tj is in both C1 and C2, then the time pointst and f(t) have the same value for Tj.Intuitively, the �rst condition means that f is order preserving, and the second condition meansthat f is the identity on the time units that are common to both calendars. 2The above de�nition is similar to the de�nition of compatible linear calendars (De�nition 2.6)as well as to the de�nition of compatible calendars (De�nition 2.15). However, there is also animportant di�erence; that is, f is not required to be a bijection (in particular, it may neither besurjective nor injective).Proposition 6.6: Let C1 and C2 be two calendars with combinable hierarchies T1 and T2, respec-tively. Suppose all the time units of some embedded calendar E2 of C2 also appear in C1. If thereis a linking function f from C1 to C2, then it is unique and satis�es the following condition. Givena valid time point t1 of C1, the equality f(t1) = t2 holds if and only if t2 is the unique valid timepoint of C2, such that t1 and t2 are equal on E2.31

Proof: Suppose t1 is a valid time point of C1. By De�nition 6.3, t1 and f(t1) are equal on E2.Since E2 is an embedded calendar of C2, the second bullet item of De�nition 2.9 implies that thereis exactly one valid time point t2 of C2, such that t1 and t2 are equal on E2. Thus, f(t1) = t2 ifand only if t2 is the unique valid time point of C2, such that t1 and t2 are equal on E2. 2De�nition 6.4 (combination of calendars) Let C1 and C2 be calendars with combinable hier-archies T1 and T2, respectively, and let T be the hierarchy combination of T1 and T2. Suppose f isa linking function from C1 to C2 and there is an embedded calendar E of C1, such that the linearhierarchy of E forms a complete path of T . The combination of C1 and C2 is a calendar C de�nedas follows.1. The hierarchy of C is T .2. Every embedded calendar E 0 of C1, such that the linear hierarchy of E0 forms a completepath in T , is an embedded calendars of C. (Note that E is one such embedded calendar).3. The validity predicate of C, denoted validC, is de�ned byvalidC(t) � validC1(pr(t; C1))^ validC2(pr(t; C2))^ f(pr(t; C1)) = pr(t; C2)where validC1 and validC2 are the validity predicates of C1 and C2, respectively. 2Note that the de�nition assumes the existence of a complete path } in T , such that } is also anembedded calendar E of C1 (in general, this assumption does not necessarily hold). The embeddedcalendar E is an embedded calendar of C.Proposition 6.7: De�nition 6.4 is correct, i.e., C is a well-de�ned calendar.Proof: By Theorem 6.1, the hierarchy of C is well de�ned. We need to show that the validitypredicate of C satis�es the three bullet items of De�nition 2.9. The �rst and third items are satis�ed,since the embedded calendars of C are also embedded calendars of C1 and validC1(pr(t; C1)) mustbe true when validC(t) is true.To show that the second item is satis�ed, suppose te is a valid time point of an embeddedcalendar E of C. Since E is also an embedded calendar of C1, the second item of De�nition 2.9implies that there is exactly one valid time point tc1 of C1, such that pr(tc1 ; E1) = te. Moreover,there is exactly one time point t of C that satis�es both pr(t; C1) = tc1 and pr(t; C2) = f(tc1); notethat t exists, since f is the identity on the time units that are common to C1 and C2, and t isunique, since f(tc1) is unique for a given tc1 . By the de�nition of a linking function (De�nition 6.3),f(tc1) is a valid time point of C2. Therefore, validC(t) is true. Thus, we have shown that there isexactly one valid time point t of C, such that pr(t; E) = te. 232

Proposition 6.8: Suppose C1 and C2 are two calendars with combinable hierarchies T1 and T2,respectively, and validity predicates validC1 and validC2, respectively. Let calendar C be thecombination of C1 and C2. If all the time units of some embedded calendar E2 of C2 also appearin C1, then validC(t) is equivalent to the conjunction validC1(pr(t; C1))^ validC2(pr(t; C2)).Proof: Follows from De�nition 6.4 and Proposition 6.6. 2Proposition 6.9: If calendar C is the combination of calendars C1 and C2, then C is compatiblewith calendar C1.Proof: Follows since C and C1 have the same embedded calendars. 2Proposition 6.10: Suppose calendar C is the combination of calendars C1 and C2. If the linkingfunction f is bijective, then C is compatible with calendar C2.Proof: Let E1 be an embedded calendar of C (and, hence, E1 is also an embedded calendar of C1),and let E2 be an embedded calendar of C2. Consider the mapping f 0 de�ned as follows (intuitively,f 0 is the restriction of f to E1 and E2). Given a valid time point te1 of E1, we de�ne f 0(te1) = te2if f(tc1) = tc2 , where tc1 is the unique valid time point of C1, such that pr(tc1 ; E1) = te1 , andpr(tc2 ; E2) = te2 .We will show that f 0 satis�es the conditions of De�nition 2.6. First, f 0 is a bijection from thevalid time points of E1 to the valid time point of E2, since f is a bijection and for every valid timepoint tei (i 2 f1; 2g) of Ei, there is exactly one valid time point tci of Ci, such that pr(tci ; Ei) = tei .Second, f 0 is the identity on the time units that are common to E1 and E2, since f is theidentity on the time units that are common to C1 and C2.Third, suppose te1 and t0e1 are valid time points of E1, such that te1 <E1 t0e1 . Since E1 is anembedded calendar of C1, De�nition 2.11 implies that tc1 <C1 t0c1 , where tc1 and t0c1 are the uniquetime points of C1, such that pr(tc1 ; E1) = te1 and pr(t0c1 ; E1) = t0e1 , respectively. Since f is a linkingfunction and bijective, f(tc1) <C1 f(t0c1). Since E2 is an embedded calendar of C2, De�nition 2.11implies that pr(f(tc1); E2) <C2 pr(f(t0c1); E2). By de�nition of f 0, it follows that f 0(te1) <C1 f 0(t0e1).Thus, the function f 0 is a bijection showing that E1 and E2 are compatible linear calendarsand, hence, C1 and C2 are compatible calendars. 2Finally, it turns out that if C is the combination of two periodic calendars C1; C2 w.r.t a bijectivelinking function, then C itself is periodic. In other words, when combining two periodic calendarsusing a bijective linking function, the combination is guaranteed to be periodic as well.Proposition 6.11: Suppose C1; C2 are two periodic calendars that are combinable and have com-bination C. If the linking function f is bijective, then C is also periodic.33

Proof: Suppose T1; :::; Tn are the time units of C, and p1, p2 are the periods of the top timeunit of C1 and C2 respectively. We denote by p, the least common multiple of p1 and p2. We willshow that a time point t = (t1; :::; tn) is valid for C if and only if tp = (t1; :::; tn +Tn p) is valid inC. Since C is the combination of C1 and C2, according to de�nition 6.4 it enough to show thatvalidC1(pr(t; C1))^ validC2(pr(t; C2)) ^ f(pr(t; C1)) = pr(t; C2)i� validC1(pr(tp; C1)) ^ validC2(pr(tp; C2)) ^ f(pr(tp; C1)) = pr(t; C2). Since Tn is the top time value of both C1 and C2 and p is a multiple of the periods of thetop time unit of C1 and C2, it is easy to see that validC1(pr(t; C1)) i� validC1(pr(tp; C1)) andvalidC2(pr(t; C2)) i� validC2(pr(tp; C2)).It is left to show that f(pr((t1; :::; tn); C1)) = pr((t1; :::; tn); C2) i� f(pr((t1; :::; tn+Tn p); C1)) =pr((t1; :::; tn+Tnp); C2). Since Tn is a time unit of both C1 and C2, the value of Tn in pr((t1; :::; tn); C1)and pr((t1; :::; tn); C2) is the same (i.e., tn), and similarly the value of Tn is the same for bothpr((t1; :::; tn+Tn p); C1) and pr((t1; :::; tn+Tn p); C2) (i.e., tn +Tn p). Furthermore, since p is a mul-tiple of p1, the number of valid time points of C1 with the value tn of Tn is equal to the numberof valid time points of C1 with the value tn +Tn p. Similarly, for C2. As f is a linking function,and thus satis�es the �rst bullet of De�nition 6.3 and as f is bijective, we can conclude thatf(pr(t; C1)) = pr(t; C2) i� f(pr(tp; C1)) = pr(t; C2). 26.4 Realizing Linking Functions via ConstraintsAs already stated earlier, the combination of two calendars depends upon the existence of a link-ing function specifying the semantic relationship between the two calendars. Usually, a linkingfunction cannot be inferred automatically from the syntax of the original calendars; it must bespeci�ed explicitly by the user or agent that wishes to combine the two calendars. It turns out thatconstraints form a natural way of expressing linking functions. In fact, we will show that if calendarC is the combination of calendars C1 and C2, then we can automatically obtain the realization ofthe validity predicate of C from the realizations (via constraints) of the linking function and thevalidity predicates of C1 and C2.De�nition 6.5 (restriction of a linking function) Suppose f is a linking function from C1 toC2, and E1 and E2 are embedded calendars of C1 and C2, respectively. The restriction of f to E1and E2 is a linking function from E1 to E2 that is de�ned as follows: f 0(te1) = te2 if f(tc1) = tc2 ,where tc1 is the unique valid time point of C1, such that pr(tc1 ; E1) = te1 , and pr(tc2 ; E2) = te2 . 2The following proposition shows that for the purpose of realizing the validity predicate of C, itis su�cient to realize the restriction of f to E1 and E2.34

Proposition 6.12: Let validC, validC1 and validC2 be the validity predicates of the calendars C,C1 and C2, respectively, that are mentioned in the above de�nition. ThenvalidC(t)() validC1(pr(t; C1))^ validC2(pr(t; C2)) ^ f 0(pr(t; E1)) = pr(t; E2)Proof: By De�nition 6.5 and Proposition 2.3, if f(pr(t; C1)) = pr(t; C2), then f 0(pr(t; E1)) =pr(t; E2). Thus,validC(t) =) validC1(pr(t; C1))^ validC2(pr(t; C2)) ^ f 0(pr(t; E1)) = pr(t; E2)Conversely, if the conjunctionvalidC1(pr(t; C1)) ^ validC2(pr(t; C2))^ f 0(pr(t; E1)) = pr(t; E2)is true, then by De�nition 6.5, f(pr(t; C1)) = pr(t; C2), since pr(t; Ci) (i 2 f1; 2g) is the unique validtime point of Ci that is equal to pr(t; Ei) on Ei. 2De�nition 6.6 (realizing a linking function via constraints) Suppose calendar C is a com-bination of calendars C1 and C2, according to a linking function f . Let T1; : : : ; Tn be all the timeunits that appear in either C1 and C2, where Tn is the top time unit that is shared by both C1 andC2. A set f(�1;�1); : : : ; (�m;�m)g of pairs of constraints is said to realize the linking function fif � �i is a TUCL constraint that has a single TPCL variable t and only the TUCL variablest:T1; : : : ; t:Tn�1 (but not t:Tn) may appear in �i,� �i is a top constraint involving only the TUCL variable t:Tn,� For all 1 � i < j � n, the TUCL constraints �i and �j have no common solutions, and� f(pr(t0; C1)) = pr(t0; C2) if and only if there is a pair (�i;�i) (1 � i � m), such that theassignment t = t0 is a solution of �i ^�i. 2Example 6.6: A very simple example showing how to realize a linking function is given below.Consider the two calendars: C1 : doy v yearC2 : month v year:As these calendars are linear, each one is also its own embedded calendar. Intuitively, we wouldlike to construct a linking function from C1 to C2, because the day of year uniquely determines the35

month, but not the other way round. Thus, we can realize this linking function using a set of 23pairs of constraints f(�1;�1); : : : ; (�23;�23)g. The �rst three pairs are given below.�1 = 1 � t:doy � 31 ^ t:month = January:�1 = t:year � 0�2 = (32 � t:doy � 59) ^ t:month = February:�2 = t:year � 0�3 = t:doy = 60^ t:month = February�3 = t:year mod 4 = 0:The other pairs may be similarly expressed, building upon (�1;�1), (�2;�2) and (�3;�3).6.5 Realizing the Validity Predicate of a Combined CalendarSuppose calendar C is a combination of calendars C1 and C2. In this section, we show how toconstruct a realization (according to De�nition 4.1) of the validity predicate of C from realizationsof the linking function from C1 to C2 and the validity predicates of C1 and C2. Note that byProposition 6.12, it is su�cient to use a realization of the restriction of f to some embeddedcalendars E1 and E2 of C1 and C2, respectively.Theorem 6.2 (realizing the validity predicate of a Combined Calendar) Suppose calendarC is a combination of calendars C1 and C2, according to a linking function f . Let T1; : : : ; Tn denotethe time units of C, where Tn is the top time unit, and let validC, validC1 and validC2 denote thevalidity predicates of C, C1 and C2, respectively. Suppose f is realized by the setf(�1;�1); : : : ; (�k;�k)gand validCi (i = 1; 2) is realized by the setf(i1;�i1); : : : ; (imi ;�imi)g:Moreover, suppose that (by an appropriate renaming, if necessary) all of the above realizations usethe same TPCL variable t. Then the following set of pairs realizes validC.f(1u ^	2v ^�w ; �1u ^ �2v ^ �w) j 1 � u � m1; 1 � v � m2; 1 � w � kgProof: We need to show that the four conditions of De�nition 4.1 hold.1. Since 	1u, 	2v and �w are all TUCL constraints involving only the TUCL variables t:T1; : : : ; t:Tn�1,so is (1u ^	2v ^�w). 36

2. Since �1u, �2v and �w are all top constraints (involving only the TUCL variable t:Tn), so is(�1u ^ �2v ^�w).3. We need to show that (1u1 ^	2v1 ^�w1) and (1u2 ^	2v2 ^�w2), where either u1 6= u2, v1 6= v2or w1 6= w2, have no common solutions. It is true, since none of the following pairs can havecommon solutions.� 	1u1 and 	1u1 , where u1 6= u2.� 	2v1 and 	2v2 , where v1 6= v2.� �w1 �w2 , where w1 6= w2.4. Suppose t0 = (t01; : : : ; t0n) is a valid time point of C; that is, validC(t0) is true. By de�nitionof validC, it follows that validC1(pr(t0; C1)), validC2(pr(t0; C2)) and f(pr(t0; C1)) = pr(t0; C2)are all true.� Since validC1(pr(t0; C1)) is true, there is a u, such that t = pr(t0; C1) is a solution of	1u ^ �1u.� Since validC2(pr(t0; C2)) is true, there is a v, such that t = pr(t0; C2) is a solution of	2v ^ �2v.� Since f(pr(t0; C1)) = pr(t0; C2) is true, there is a w, such that t = t0 is a solution of�w ^ �w.Therefore, there are u, v and w, such that t = t0 is a solution of 	1u ^	2v ^�w ^�1u ^�2v ^�w .Conversely, suppose t = t0 is a solution of 	1u ^	2v ^�w ^ �1u ^ �2v ^�w. Then the followingmust hold.� t = pr(t0; C1) is a solution of 	1u ^ �1u and, hence, validC1(pr(t0; C1)) is true.� t = pr(t0; C2) is a solution of 	2v ^ �2v and, hence, validC2(pr(t0; C2)) is true.� t = t0 is a solution of �w ^�w and, hence, f(pr(t0; C1)) = pr(t0; C2) is true.Therefore, validC(t0) is true. 26.6 Realizing the Successor of a Combined CalendarIn order to complete the realization of calendar C that combines calendars C1 and C2, we need torealize the successor of C. As the following propositions shows, the realization of the successor ofC can be constructed from the realization of validC and the realization of successor of C1.The following result will be helpful in realizing successors. Suppose t is a time point in thecombined calendar, and suppose (without loss of generality) that the embedded calendar of the37

combination is originally from C1. Then we may project t onto C1 and �nd the successor (in C1) ofthis projected time point. We may then de-project this time point back to the combined calendarand obtain the successor of t. The following result says that this claim is indeed correct.Proposition 6.13: Suppose calendar C is the combination of calendars C1 and C2. Then thefollowing equality holds. t �C 1 = dp(pr(t; C1)�C1 1):Proof: Let E1 be an embedded calendar of C (and, hence, also of C1). Consider a valid timepoint t of C. By the �rst equality of Proposition 2.5,pr(t; C1)�C1 1 = dpC1(pr(t; E1)�E1 1)since pr(t; C1) is a valid time point of C1 and pr(pr(t; C1); E1) = pr(t; E1). By applying de-projectionto both sides of the above equality, we get the following:dpC(pr(t; C1)�C1 1) = dpC(dpC1(pr(t; E1)�E1 1)):By the second bullet of De�nition 2.9,dpC(dpC1(pr(t; E1)�E1 1)) = dpC(pr(t; E1)�E1 1);since both sides of the equality have the same projection on the embedded calendar E1. From thelast two equations, we get the following:dpC(pr(t; C1)�C1 1) = dpC(pr(t; E1)�E1 1):By the �rst equality of Proposition 2.5,t�C 1 = dpC(pr(t; E1)�E1 1);and from the last two equations, we get the following.t �C 1 = dpC(pr(t; C1)�C1 1) 2We are now able to state how the successor function of a combined calendar is realized.Theorem 6.3 (realization of a successor of a combined calendar) Suppose calendar C is acombination of calendars C1 and C2, according to a linking function f from C1 to C2, and T1; : : : ; Tnare the time units of C, where Tn is the top time unit. Letf(�1;�1); : : : ; (�k;�k)g38

be the set of pairs that realizes the successor of C1 (according to De�nition 4.2). Similarly, letf(�1;	1); : : : ; (�m;	m)gbe the realization of the validity predicate of C. Moreover, suppose that (by an appropriaterenaming) the TPCL variable in each pair (�i;	i) is t+. Then the successor function of C isrealized by the following set:n��i ; �i ^ �_mj=1�j ^ 	j�� j 1 � i � ko :Proof: Note that both �i and �i only have TUCL variables of the time units that appear in C1.However, we will consider solutions of �i and �i that are de�ned on all the time units T1; : : : ; Tn.We need to show that the above set of pairs satis�es the four conditions of De�nition 4.2. It iseasy to see that the �rst two conditions are satis�ed. In order to prove that the third condition issatis�ed, suppose t = t0 is a solution of both �p and �q , where p 6= q and t0 is a valid time pointof C. Since �p and �q only have time units of C1, it follows that t = pr(t0; C1) is also a solutionof both �p and �q; moreover, pr(t0; C1) is a valid time point of C1, since C and C1 share someembedded calendar. However, the pairs (�p;�p) and (�q ;�q) are in a set realizing the successorof C1 and, therefore, t = pr(t0; C1) cannot be a solution of both �p and �q . This contradictionimplies that the third condition of De�nition 4.2 is satis�ed.In order to prove the fourth condition, suppose t = t0 is a solution of �i, where t0 is a valid timepoint of C. Thus, pr(t0; C1) is a valid time point of C1 and also a solution of �i.Since the set f(�1;	1); : : : ; (�m;	m)g realizes the validity predicate of C and the only TPCLvariable appearing in this set has been renamed to t+, it follows that every solution of �i[t=t0] ^�_mj=1�j ^	j� is a valid time point of C.Suppose �i[t=t0] ^ �_mj=1�j ^ 	j� has two solutions t+ = t1 and t+ = t2. Since only time unitsof C1 appear in �i, both pr(t1; C1) and pr(t2; C1) are solutions of �i[t=pr(t0; C1)]. Since the pair(�i;�i) is in a set realizing the successor of C1, it follows from the fourth condition of De�nition 4.2that pr(t1; C1) = pr(t2; C1) and pr(t0; C1)�C1 1 = pr(t1; C1). Since C and C1 share some embeddedcalendar and both t1 and t2 are valid time points of C, it follows from pr(t1; C1) = pr(t2; C1) thatt1 = t2. By Proposition 6.13, pr(t0; C1)�C1 1 = pr(t1; C1) implies t1 = t0�C 1. Thus, we have shownthat the fourth condition of De�nition 4.2 is satis�ed. 26.7 Combining non Compatible CalendarsSuppose C1 and C2 are two calendars that we wish to combine. The preceding sections specifyhow to combine such calendars, even if these calendars are not compatible with one another. Inthis section, we brie
y describe how our calendar combination techniques vary, depending uponwhether C1 and C2 are compatible or not. 39

For C1 and C2 to be compatible, there must be a bijection between time points determined bytheir respective embedded calendars. This de�nition of compatibility bears a close resemblance tothe de�nition of a linking function between such embedded calendars. However, linking functionsmay not be bijections, while functions establishing compatibility are bijections.Suppose we return to the calendars in Figure 3 (cf. also Example 6.6), and consider the twoincompatible calendars shown in (a) and (b) of that �gure, i.e.,C1 : doy v yearC2 : month v year:Their combination is captured by Figure 3(c) where the embedded calendar is doy v year. Noticethat there is a linking function between the calendars of Figure 3(a) and (b); however, this functionis not a bijection. Intuitively, given a year, and a day in the year, we can uniquely determine themonth in which that day falls; however, given a year and a month, we cannot uniquely determine aday; this is what prevents the existence of bijection between the calendars of Figure 3(a) and (b).Consequently, when C1 and C2 are incompatible, but there exists a linking function betweentheir respectively embedded calendars, we are faced with the following problem (which does notoccur if the calendars are compatible). A time-point, t, according to C2 determines a set, �(t), oftime points in the combined calendar. Thus, if a user who is familiar with calendar C2 wishes toask whether a particular proposition p is true at time t (in calendar C2), there are several possibleways of answering this query such as the three shown below:� Answer \yes" if p is true at all time points in �(t) and \no" otherwise;� Answer \yes" if p is true at some time point in �(t) and \no" otherwise;� Answer \don't know" if p is true at some time point in �(t), and p is false at some time pointin �(t).For example, returning to the calendars in Figure 3, the user may ask the query \Did John visitTurkey in June 1996." June 1996 is a perfectly good time-point w.r.t. the calendar of Figure 3 (b);however, if the data's temporal aspect is speci�ed by the combined calendar shown in Figure 3(c),then its not clear whether it is appropriate to answer \yes" when John was in Turkey for a few(but not all) days in June 1996.Another situation that could occur is when two intelligent agents use two di�erent calendars(locally), but communicate with each other through a combined calendar. Thus, for instance, aplanning agent may use the calendar of Figure 3(a), while a database agent uses that of Figure 3(b){ they communicate with each other through the calendar of Figure 3(c). Now suppose the planningagent asks the database agent whether query Q holds at time t where t is a time-point according tothe combined calendar. Thus, for example, the planning agent may ask: \Were the steel widgets40

shipped on doy = 76, month = March, year = 1996." However, the database agent in this caseonly has information represented with calendar C2. The answer provided by the database agent is(similarly to previous discussion) contingent upon the semantics of the database agent. If it hasinformation that steel widgets were shipped in March 1996, this semantics should tell us whetherthis refers to a truth about all days in March 1996, or just some day in March 1996. Thus, in thiscase, the semantics of the database agent's calendar will determine the response. In contrast, if thedatabase agent merely information that the steel widgets were shipped in June 1996, then it cansafely answer \no" to the planning agent's query, independently of the forall/existential semantics.In this paper, we are primarily interested in the problem of characterizing, representing, andcombining calendars. The problem of processing queries using such (possibly combined) calendarswill build upon these de�nitions and will be discussed in a future paper.The above situation, of course, does not arise, if the two calendars are compatible.7 Combining Calendars with Di�erent Top Time UnitsIn the preceding sections, we have shown how to combine di�erent calendars under the assumptionthat the calendars being combined share the same top time unit. However, certain applications mayrequire the combination of two calendars with di�erent top time units. For example, the Gregoriancalendar and the Hebrew calendar have di�erent notions of \year" and hence, they have di�erenttop time units. Any application which requires combining the Gregorian calendar and the Hebrewcalendar is not supported by the de�nitions of the previous sections. Fortunately, there is a simpleextension of the preceding sections that allow us to combine calendars with di�erent top time units.De�nition 7.1 (temporal forest of time units) A collection of distinct time units T1; : : : ; Tnwith a partial order < (on the time units) forms a temporal forest if there is a set of treesfT1; : : : ; Tmg, such that� Each Ti, 1 � i � m, is a hierarchy of time units.� For each i 6= j, Ti and Tj have disjoint sets of time units.� Each time-unit Tr, appears in one of the trees Ti.The Disjoint-ness Assumption. We will require that whenever we wish to combine two calendarshaving di�erent top time units, that those two calendars have disjoint sets of time-units.We now show, through examples, why this is a reasonable assumption and furthermore, demon-strate the applicability of the notion of temporal forest.41

Example 7.1: Let us consider the combination of the Hebrew calendar and the Gregorian calendarand the Hebrew calendar1. The hierarchy associated with the Gregorian calendar is:day v month v yearwhile that associated with the Hebrew calendar ishday v hmonth v hyear:Notice that the set of time values associated with year and hyear and the ordering on those timevalues are identical. However, these two time units must be treated di�erently for the followingreasons:1. First, the current year in the Gregorian calendar is 1997, while in the Hebrew calendar itis 5757. Thus, the same \physical" point in time is captured in the two calendars with twodi�erent time unit values, and thus, some distinction must be drawn between the Hebrewnotion of year, and the corresponding Gregorian notion.2. Second, the number of months (hmonth) that constitute a Hebrew year (hyear) varies fromyear to year { a phenomenon that does not occur in the Gregorian calendar. Similarly, thenumber of days (hday) that constitutes a Hebrew month (hmonth) is either 29 or 30; incontrast, the values of the time unit day in the Gregorian calendar is f1; : : : ; 31g.3. Of course, the Gregorian and Hebrew calendars use di�erent time unit values for the timeunits month; hmonth and day; hday.This explains why the set of time-units associated with the Hebrew and Gregorian calendars aretotally disjoint. An analogous observation applies also to the Moslem and Hindu calendars.Suppose now, that an application requires integrating the Hebrew and Gregorian calendars.For example, in Israel, checks are usually dated with Gregorian dates, but sometimes, they maybe dated with Hebrew dates. To reason with this kind of heterogeneity, we must be able to \map"both the Gregorian and the Hebrew dates into a combined calendar. This is done, as before, inthree steps.1. Forest Construction: Instead of constructing a hierarchy (as we did previously when com-bining calendars with the same top time unit), we will merge the hierarchies of two calendarswith di�erent time units into a forest.2. Selecting Embedded Calendar: This is the same step as before.1The reader may be interested to know that the Gregorian calendar is based entirely on the sun; the Islamiccalendar is based entirely on the moon, while the Hebrew calendar is a hybrid, based largely on the moon, but\adjusted" to take care of some solar phenomena. 42

3. Merging Validity Speci�cation: This too, remains identical to what we had before.The forest associated with merging the Gregorian and Hebrew calendars just consists of thetwo trees originally associated with the Gregorian and Hebrew calendars.The de�nition of combination of two calendars is almost identical to De�nition 6.4 except thatit now generates a forest structure, rather than a hierarchy. We provide it below for the sake ofcompleteness.De�nition 7.2 (forest combination of calendars with di�erent top time units) Suppose C1and C2 are disjoint calendars with di�erent top time units. The forest combination, FC, of C1 andC2 is given by:1. Forest of FC: This consists of two trees, T1; T2 viz. the hierarchy of C1 and the hierarchyof C2.2. Embedded Calendar of FC: There exists a complete path } in some Ti, i = 1 or 2, suchthat:(a) There exists an embedded calendar E of Ci (i is either 1 or 2) whose linear hierarchy is} and(b) there exists a linking function f between Ci and Cj (i 6= j) w.r.t. E and E 0 where E 0is an embedded calendar of Cj . (Note that for this de�nition to \work", we need touse a modi�ed de�nition of linking function from that given earlier, so as to account forthe fact that Ci and Cj have di�erent top time units. Thus, the metavariable �i in thesecond bullet of De�nition 6.6, may now involve two top time-units, one from each ofthe calendars being combined.)(c) E is the embedded calendar of FC .3. Validity Predicate of FC: The validity predicate, validFC associated with FC is de�nedas follows:(a) If validFC(t) is true, then pr(t; C1) is valid w.r.t. C1 and pr(t; C2) is valid w.r.t. C2.(b) If validFC(t) is true, then f(pr(t; E)) = pr(t; E 0).This completely de�nes how to combine two calendars with disjoint hierarchies. Notice thatthe validity predicate is unchanged from De�nition 6.4. When considering the realization of forestcombinations, we note the following elementary di�erences.1. In the second bullet of De�nition 6.6, �i, which is used in the realization of the linkingfunction, may now involve two top time-units, one from each of the calendars being combined.43

2. The constraint �i used in the realization of the validity predicate (as speci�ed in the secondbullet of De�nition 4.1) may now involve two top time units. This is because of two reasons:the �rst of course, is that there are two top time units in the two calendars being combined.The second is that according to Theorem 6.2, the pair that realizes the validity predicate ofthe combination involves one �1u from one calendar, and �2v from the other, each having adi�erent top time unit in it.8 Related WorkThere has been extensive work in the area of temporal representation and reasoning in both theAI and database communities. We classify the related work into three parts { work on temporalconstraints in AI, work on temporal databases, and work on calendars. In order to place our workin the context of extensive research in these areas, we focus discussion on selected works; the readerinterested in detailed surveys of temporal representation and reasoning may consult Chomicki [5]or Gabbay et. al.'s excellent survey book[10].Temporal Constraints in AI: Allen[1] was one of the �rst to develop a logical frameworkfor reasoning with interval time for actions. He presented 13 relationships between intervals oftime and proposed a logic to reason with these interval relationships. Kautz and Vilain [26] studythree types of primitive relations between time points and allow the expression of disjunctiveinformation between time points. They show that under certain conditions, relations betweeninterval can be captured in their framework. Dean and McDermott [8] developed a technique forreasoning about point-based temporal databases. In particular, they develop a framework calledTime Map Management (TMM) to answer queries involving temporal inference, as well as toperform maintenance tasks when the temporal database is updated. Dechter et. al. [9] were oneof the �rst to apply general purpose constraint solving techniques (such as the Floyd-Warshallshortest path algorithm) to reason about temporal relationships. Van Beek[2] develops algorithmsthat �nds consistent scenarios (as de�ned in his paper) based on Allen's interval algebra and Vilainand Kautz's approach. Some other works dealing with events and actions in the AI �eld includeKowalski and Sergot's event calculus[18], Schwalb et. al.'s [24] work on events, e�cient algorithmsfor temporal constraints by Ladkin and Reinefeld [21], and studies of the complexity of temporalreasoning [11].In all these frameworks, time points are assumed to be either integers or reals, and intervalsare bounded by time points. However, these time points are not speci�ed with reference to anunderlying calendar. The aim of this paper is to formalize the notion of calendars, i.e. to providea frame of reference against which techniques of these authors may be fruitfully applied.Temporal (Constraint) Databases: Kabanza et. al. [13] presented a framework for in�nitetemporal data bases. They view time as isomorphic to the integers. They represent time pointsusing linear repeating points (points of the form c+ kn, lrps for short) and restricted constraints.44

Though they showed that the relational algebra may be extended to handle lrps, it still remains afact that representing time in terms of lrps is highly unnatural for human beings. As we stated inthe introduction, a human being may have trouble representing the 15th of March, 1994, as the timepoint 2,777,802,116 or something equally confusing. In contrast to their work,we do not attempt tomap time to the integers. Instead, we represent time according to the notion of a calendar, whichwe have de�ned, and allow the user and the system to manipulate (representations of) calendars,without the user having to be aware of the internal calendar representation. Our framework is richenough to handle a wide variety of calendars. Kabanza et. al.'s results may, however, be used inconjunction with ours as follows: their results on linear repeating points can be used to representthe constraints for realizing calendars, by using their languages to express constraints on the toptime unit, which is isomorphic to the integers in our system.In a similar vein, Koubarakis has published an elegant series of papers in which he reasons aboutde�nite and inde�nite temporal speci�cations [16, 17] { in particular, he shows that constraintsmay be used to capture inde�nite temporal information (points and interval) and manipulatedthese constraints to implement operations that extend those in the relational algebra of databases.However, he does not use symbolic time that refers to an underlying calendar, nor does he discussthe integration of multiple calendars.Calendars: Ladkin [19, 20] uses sequences of integers to represent standard units assuming alinear hierarchy of time units, year, month, day, minutes etc. He uses this simple time system tode�ne intervals. In our framework, intervals can be easily represented by simple constraints suchas hlower boundi � t � hupper boundi:However, as solutions to such constraints are time-points, this representation of intervals ultimatelyends up reasoning with time points, and thus does not capture Ladkin's intuitions. We will studyhow interval reasoning with multiple calendars can be performed in future work.Leban et. al. [22] de�ne a calendar to be a collection of an in�nite sequence of intervals thatspan the time line. In other words, the space of all integers is \sliced" up into intervals thatcapture di�erent parts of a calendar. For example, if the unit measure is 1 second, and t0 denotesSaturday; December 31; 1904 then they suggest the following de�nitions:1. Days �<< t0; 86400 >> (this intuitively speci�es that each day is an interval of 86400seconds).2. Months �<< Days; 31; 28; 31; 30 : : :31; 28; 31; 30 : : :31; 28; 31; 30 : : :31; 29; 31; : : : >>.Intuitively, this provides an explicit way of de�ning calendars, while constraints are more compactand depend less upon the selection of the start time t0. In contrast, our framework is very general,45

and can use well known techniques (e.g. Bellman Ford [6]) to solve constraints, rather than special-ized techniques. In addition, we are able to seamlessly de�ne what it means to combine calendars,which they do not address. On the other hand, they study intervals in much greater detail thanwe do.Niezette and Stevenne [23] have made an elegant preliminary attempt to develop a symbolicrepresentation of periodic time. They too use constraints to represent time points. In contrast,we use constraints to represent not only time points, but calendars as well. A consequence of ourapproach is that we can represent very general calendars as opposed to the periodic calendars thatthey focus on. They project each time unit (called calendar in their terminology) onto the integers{ something that we do not do, thus allowing us to present to the user, an interface that showsonly time as represented in the calendar (which is more natural to the user than representing timeas an integer).Jajodia and his colleagues [27] provide a formal framework for reasoning with multiple timegranularities, but do not either represent time symbolically or represent calendars. They tooconvert time expressed in multiple granularities to the integers. Hence, as in the case of Niezetteand Stevenne [23], our framework o�ers the advantage that the user can work with his own calendarrepresentation of time, rather than with answers coming back in terms of the integer representationof time.Bettini et. al. [3] develop the notion of an event structure with temporal granularities. Anevent structure is basically a graph whose nodes represent events and whose edges represent tran-sitions between these events. However, the edges are labeled with a set of \timed constraints withgranularity" (TCGs). They then show how to mine temporal dependency information (e.g. theymay notice that IBM stock experiences a rise in any interval where Microsoft stock experienced adecline) from such event structures. Their work is related to ours because TCGs allow symbolictime where di�erent time units may label a TCG. Their work is complementary to ours in thefollowing sense: they develop techniques to convert one time unit to another, and essentially theseconversion functions may be used to implement our linking functions. On the other hand, theyhave no notion of a calendar (they did not require it for their purposes), nor do they present atechnique to integrate calendars.TSQL2 is a query language which is an extension to SQL2 that supports multiple calendars {in particular, each user can de�ne his own calendar. This is much closer in spirit to what we havein mind. Frameworks such as those of [7] fall within this category. Another e�ort to de�ne multiplecalendars is that of Chandra et. al. [4]. However, as Chomicki [5] pointed out:\We are not aware of any comprehensive description, even informal, of semantics ofTSQL2 queries. This makes it impossible to establish formal properties of this lan-guage."In contrast, our framework provides a formal foundation within which calendars may be expressed,46

combined, and reasoned with. Chomicki [5] provides an excellent survey of temporal databases,but only brie
y touches upon symbolic representations of time.9 ConclusionsThough most theoretical models of time (correctly) assume that the integers are adequate to reasonabout time, the fact of the matter is that most human beings, as well as most applications dealingwith temporal data, specify time, not as integers, but rather as \dates" with respect to a symbolic,underlying calendar (e.g. the Gregorian calendar). The �rst contribution we have made in thispaper is to provide a formal de�nition of a calendar that captures this intuition. Calendars arecomposed of a hierarchy of time units (e.g. day, month, year, etc.) and each of these time units hasan associated set of symbolic values that are totally ordered. It may turn out that these symbolicvalues are integers, but they could just as well not be integers (e.g. the values could be Monday,Tuesday,: : :). In addition, calendars come equipped with a syntactic notion of a time-point w.r.t.the calendar, and an accompanying semantic notion called validity which speci�es which time-points\make sense" (e.g. the syntactically valid date, \Feb 29, 1995" is not semantically valid).Constraints over the domain of time points provide a unifying framework for expressing all theabove concepts.Furthermore, we consider what happens when multiple applications using di�erent calendarswish to work together. In such a situation, the mismatch between their calendars needs to beresolved. To do this, we de�ne a declarative notion of combination of multiple calendars. We showhow this declarative notion may be operationally realized by manipulating the constraints used torepresent the calendars being combined.References[1] J. Allen (1984). Towards a general theory of action and time, Arti�cial Intelligence, 23:123-154.[2] P. van Beek (1992). Reasoning about qualitative temporal information, Arti�cial Intelligence,58:297-326.[3] C. Bettini, X. Sean Wang, and S. Jajodia. (1996) Testing Complex Relationships Involv-ing Multiple Granularities and its Application to Data Mining, Proc. 15th ACM Symp. onPrinciples of Database Systems, Montreal, Canada, pps 68{78.[4] R. Chandra, A. Segev and M. Stonebraker. (1994) Implementing calendars and temporal rulesin next generation databases, Proc. IEEE Conf. on Data Engineering, 1994.47

[5] J. Chomicki. (1994) Temporal Query Languages: A Survey, Proceedings of the 1st Interna-tional Conference on Temporal Logic (eds. D. M. Gabbay and H. J. Ohlbach), pps 506{534,Lecture Notes in AI Vol. 927, Springer.[6] T. Cormen, C. Leiserson and R. Rivest. (1990) \Introduction to Algorithms." MIT Press andMcGraw Hill.[7] Curtis E. Dyreson and Richard T. Snodgrass (1995) \Temporal Granularity", in The TSQL2Temporal Query Language. Richard T. Snodgrass, editor. Kluwer Academic Press, 1995. pp.347-383.[8] T. Dean and D. McDermott (1987). Temporal data base management, Arti�cial Intelligence,32(1):1-55.[9] R. Dechter, I. Meiri and J. Pearl (1991).Temporal Constraint Networks, Arti�cial Intelligence,49:61-95.[10] D. Gabbay, C.J. Hogger and J.A. Robinson. (1994) Handbook of Logic in Arti�cial Intelli-gence and Logic Programming, Vol. 4: Epistemic and Temporal Reasoning, Clarendon Press,Oxford.[11] M. C. Golumbic and R. Shamir (1993). Complexity and algorithms for reasoning about time:A graph-theoretic approach, Journal of the ACM, 40(5):1108-1133, November 1993.[12] F. Hillier and G. Lieberman. (1974) Operations Research, Holden-Day.[13] F. Kabanza, J.-M. St�evenne and P. Wolper. (1995) Handling In�nite Temporal Data, Journalof computer and systems sciences, 51, 1, pps 3{17.[14] D. E. Knuth. (1973) The Art of Computer Programming, Vol. 1: Fundamental Algorithms,Addison Wesley.[15] S. Kraus, Y. Sagiv and V.S. Subrahmanian. (1997) Representing and Integrating MultipleCalendars, Univ. of Maryland Technical Report, Feb. 1997.[16] M. Koubarakis. (1994) Database Models for In�nite and Inde�nite Temporal Information,Information Systems, Vol. 19, 2, pps 141{173.[17] M. Koubarakis. (1994) Complexity Results for First Order Theories of Temporal Constraints,Proc. 4th Intl. Conf. on Principles of Knowledge Representation and Reasoning (KR-94),Bonn, Germany, pps 379{390.[18] R. Kowalski and M. Sergot. (1986) A Logic-based Calculus of Events, New Generation Com-puting, 4, pps 67-95. 48

[19] P. Ladkin. (1986) Primitives and units for time speci�cation, Proceedings of the Fifth Na-tional Conference on Arti�cial Intelligence (AAAI-86), Vol. 1, pps 354{359, Philadelphia,Pennsylvania, Morgan Kaufmann.[20] P. Ladkin. (1987) The Completeness of a Natural System for Reasoning with Time Inter-vals, Proceedings of the 10th International Joint Conference on Arti�cial Intelligence (ed. J.McDermott), Milan, Italy, pps 462{465, Morgan Kaufmann.[21] P. B Ladkin and A. Reinefeld. (1992) E�ective Solution of Qualitative Interval ConstraintProblems, Arti�cial Intelligence, Vol. 57, Nr. 1, pps 105{124.[22] B. Leban, D. McDonald and D. Forster. (1986) A Representation for Collections of TemporalIntervals, Proceedings of the 5th National Conference on Arti�cial Intelligence. Volume 1,pps 367{371, Morgan Kaufmann.[23] M. Niezette and J. Stevenne. (1992) An E�cient Symbolic Representation of Periodic Time,Proc. First International Conference on Information and Knowledge Management, Baltimore,Maryland, Nov. 1992.[24] E. Schwalb and R. Dechter (1993).Coping with Disjunctions in Temporal Constraint Satisfac-tion Problems In The National Conference on Arti�cial Intelligence, AAAI-93, Washington,DC, pp. 127-132.[25] R. T. Snodgrass and M. D. Soo. Supporting Multiple Calendars, in: The TSQL2 TemporalQuery Language (ed. R.T. Snodgrass), pps 103{121, Kluwer Academic Publishers.[26] M. Vilain and H. Kautz. (1986) Constraint Propagation Algorithms for Temporal Reasoning,Proc. AAAI-1986, Philadelphia, PA, pps 132{144.[27] X. Y. Wang, S. Jajodia, and V.S. Subrahmanian. Temporal Modules: An Approach TowardFederated Temporal Databases, Information Sciences, Vol. 82, pps 103{128, 1995.
49

