*

Representing and Integrating Multiple Calendars

Sarit Kraus' Yehoshua Sagiv? V.S. Subrahmanian *

Abstract

Whenever humans refer to time, they do so with respect to a specific underlying calendar.
So do most software applications. However, most theoretical models of time refer to time
with respect to the integers (or reals). Thus, there is a mismatch between the theory and the
application of temporal reasoning.

To lessen this gap, we propose a formal, theoretical definition of a calendar and show how
one may specify dates, time points, time intervals, as well as sets of time points, in terms of
constraints with respect to a given calendar. Furthermore, when multiple applications using
different calendars wish to work together, there is a need to integrate those calendars together
into a single, unified calendar. We show how this can be done.

*This work was supported by the Army Research Office under Grants DAAH-04-95-10174 and DA AH-04-96-10297,
by ARPA/Rome Labs contract F30602-93-C-0241 (ARPA Order Nr. A716), by an NSF Young Investigator award
TRI1-93-57756, NSF Grant No. IRI-9423967 and by the Army Research Laboratory under Cooperative Agreement No.
DAALO01-96-2-0002.

"Dept. of Mathematics and Computer Science, Bar-Ilan University, Ramat Gan, 52900 Israel, and Institute for
Advanced Computer Studies, University of Maryland, College Park, MD 20742 E-Mail: sarit@cs.biu.ac.il

‘Dept. of Computer Science, Ross Building Hebrew University, Givat Ram, Jerusalem, Israel. E-Mail:
sagiv@cs.huji.ac.il

SDept. of Computer Science, Institute for Advanced Computer Studies, Institute for Systems Research, University
of Maryland, College Park, MD 20742, USA. E-Mail: vs@cs.umd.edu

Contents

1 Introduction

2 Preliminaries

3 Specifying Time w.r.t. a Calendar

4 Using Constraints to Define Calendars
4.1 Realizing Validity Predicates Through Constraints

4.2 Realizing Successors Through Constraints

5 Solving Temporal Constraints
5.1 Incorporating Validity
5.2 Eliminating Successor o e e e e
5.3 Subtracting Time Points of Periodic Calendars

5.4 Eliminating TPCL Atoms

6 Combining Multiple Calendars
6.1 What Does It Mean to Combine Two Calendars?
6.2 Combining Hierarchies
6.3 Combining Calendars e
6.4 Realizing Linking Functions via Constraints
6.5 Realizing the Validity Predicate of a Combined Calendar
6.6 Realizing the Successor of a Combined Calendar

6.7 Combining non Compatible Calendars

7 Combining Calendars with Different Top Time Units

8 Related Work

9 Conclusions

14

17

17

18

19

20

21

22

22

23

24

26

31

34

36

37

39

41

44

47

1 Introduction

The need to represent and reason with time is critical to the success of several real life problems,
both in the artificial intelligence arena, as well as in the database arena. For example, Al planning
and scheduling systems often need to check whether the state of the world satisfies some condition
at time t and may just as often assert that some action must be performed at time t. Such a
planning system may, for instance, be required to execute the action notify fire dept within 5
minutes of a fire alarm going off provided that a cursory 2-minute check by its sensors reveals no
system malfunction. Similarly, a personalized intelligent agent may be provided with the following

instruction: Remind Mary on the first Sunday of each month that she needs to pay the phone bill.

To date, most formal work in this area has assumed that a time point is either a natural number
or a real number. However, it is extremely cumbersome and unnatural to represent time as a
single point on some time-scale. Most human beings would have a hard time expressing the 15th
of March, 1994, as the time point 2,777,802,116 or something equally confusing. One reason why
human beings have no problem reasoning with time is because they always refer to a particular
calendar when discussing time. A formal framework for expressing and manipulating calendars
would allow AI/DB systems to succinctly and intelligibly express the results of their temporal
computations to a human being. At the same time, the human being could represent his/her needs

to the system using a calendar that he/she is familiar with.

Now, consider another scenario where two intelligent agents, one a planning agent, and another,
a database agent, are cooperating in the solution of some problem. The database agent may provide
a facility whereby any other agent may ask queries using a single query language (e.g. SQL). When
answering a query, the database agent may not access just one database, but rather access a variety
of relational, object oriented, geographic, terrain, and other databases. The planning agent, on the
other hand, may have (as usual) a set of planning operators—these could be in the form of STRIPS
or HTN operators. At various points in time, the planning agent tries to see if certain conditions
are true in the battlefield. Depending on which of those conditions is true, the planning agent infers

a goal to be accomplished and constructs a plan to accomplish it, if possible.

Suppose the planning agent asks the database agent a query of the form: Find all tuples in
the relation troop movements showing movements of Iraqi troops towards the Kurdish lines during
the interval 1000 hours on August 5, 1996, and 1800 hours, August 9, 1996. If we ignore the
non-temporal components of this query, we notice that the notion of time used by the planning
agent in its query refers to the concepts of hours (of a day), days, months and years. For the
database agent to successfully answer the query, it must be able to comprehend the temporal part

of the planning agent’s query.

However, this problem may be compounded if the database agent uses a different granularity to
represent time. For example, the database agent may specify time in terms of hours (of a month),

months and years. For the database agent to understand the query, it must be able to map the

temporal component of the query (expressed in the time granularity used by the planning agent)

to the representation of time that it uses internally.

In each of the above cases, two salient features emerge:

1. Fach agent involved is specifying time according to a different calendar. Thus, techniques
are needed to represent multiple calendars. This paper provides a framework for representing

widely varying types of calendars.

e We show how constraints may be used to represented calendars (these include not only

the standard Gregorian Calendar, but others, such as the Hebrew calendar, as well),

e We provide a formal mathematical definition of what it means for two calendars to be

compatible, and

o We provide algorithms to manipulate calendars by manipulating the constraints that

represent them.

2. When two agents need to communicate with each other about time, they need to somehow
ensure that time specified according to the first agent’s calendar “makes sense” according to
the second agent’s calendar. Instead of using ad-hoc means of converting time-points in one
calendar to time-points in another calendar, we will show how two calendars (represented in
our framework) may be neatly combined using a very general and robust technique. Each
of the agents involved in the communication may then understand what the other is saying
by examining this “combined calendar”. Furthermore, the construction of this combined
calendar, as well as techniques for agent A; to “understand” what agent A; is saying, are

also automated.

2 Preliminaries

Definition 2.1 (time unit) A time unit consists of a name and a time-value set. The time-value
set has a linear order, denoted <7, where T is the name of the time unit. The time unit is either
finite or infinite, depending on whether the time-value set is finite or infinite; an infinite time-value
set is assumed to be countable. For simplicity, we assume that a time unit is uniquely identified by
its name; that is, there are no distinct time units that have the same name, but different time-value
sets. a

Day, month, and year are all examples of time units. Formally, we use the names day, month
and year for these time units. The time-value set of day consists of the integers 1 through 31.
Similarly, the time-value set of month consists of the 12 months of the year, i.e., January, February,

etc. For year, the time-value set is infinite and consists of all integers.

Definition 2.2 (linear hierarchy of time units) A linear hierarchy of time units is a finite col-
lection of distinct time units with a linear order C among those time units. The greatest time unit
according to C is called the top of the hierarchy and it must be an infinite time unit, while all other

time units in the hierarchy must be finite. a

If we define the order day C month C year on the time units day, month and year, we get a

linear hierarchy of these time units.

Definition 2.3 (time point of a linear hierarchy) Suppose Ty C --- C T, is a linear hierarchy
H of time units. A time point is an n-tuple (¢1,...,%,), such that ¢; is a value of the time-value set
of T; (1 <4 < n). Time points are ordered according to the lexicographic ordering <y, which is
defined in the usual way; that is, (#1,...,%,) <mg (s1,...,5,) if there is an ¢ (1 <7 < n), such that
t; <, s;and t; =s; forj=44+1,...,n. a

In the above definition, note that <7, denotes the ordering on the time-value set of the time
unit 7;, while <z denotes the lexicographic ordering on time points of the hierarchy H. If T; or H

is clear from the context, we may simply write <.

Given the linear hierarchy day C month C year, both (30, February, 1996) and (13, March, 1996)
are time points, and (30, February, 1996) < (13, March,1996). We call this hierarchy, the Gregorian
linear hierarchy. However, if this linear hierarchy is supposed to represent the Gregorian Calendar,
then (30, February,1996) is not a valid time point. Therefore, we define a linear calendar in the

following way.

Definition 2.4 (linear calendar) A linear calendar consists of a linear hierarchy H of time units
and a validity predicate, which is usually denoted as walidy (or just as valid if H is clear from
context). The validity predicate specifies the valid time points; that is, validg(t) is true if ¢ is a

valid time point. a

The Gregorian Calendar can be represented by the linear hierarchy day C month C year and
a suitable validity predicate that states, for example, that (13, March, 1996) is a valid time point,
while (30, February, 1996) is not. An important question is how to represent the validity predicate.
Our approach, as will be discussed later (Definition 4.1), is to represent the validity predicate in a

suitable constraint language.

Instead of representing a time point by specifying the day of the month, the month and the
year, as in the Gregorian Calendar, we may choose to represent it by specifying the day of the
week, the week of the month, the month and the year. Formally, the alternative Gregorian linear
hierarchy is dow C week C month C year (where dow means “day of the week”) and the time-value

sets are as follows.

e The time-value set of dow consists of the seven days of the week, i.e., Sunday, Monday, etc.

e The time-value set of week is {0,1,2,3,4,5}. This requires some explanation. A month may
have 3 or 4 weeks that are fully contained in that month, and 1 or 2 weeks that are partially
contained in that month. Week 1 of the month is always the first week that is fully contained
in the month. Week 0 of the month exists if the first day of the month is not a Sunday; in this

case, the month starts in the middle of a week, which is referred to as week 0 of the month.
e The time-value set month consists of the twelve months of the year.

e The time-value set of year is the set of all integers.

The Alternative Gregorian Calendar (AGC) consists of the alternative Gregorian linear hi-
erarchy and a suitable validity predicate. For example, both (Thursday,0, December, 1995) and
(Friday, 0, December, 1995) are time points of the alternative linear hierarchy, but only the latter is a
valid time point (since Friday is the first day of December, 1995). Similarly, (Sunday, 1, September, 1996)
is a valid time point that denotes the first Sunday in September, 1996, while (Sunday, 0, September, 1996)
is not a valid time point (and, in fact, (Sunday, 0, September, X) is not a valid time point, regardless
of what X is).

Remark 2.1 (notation) If C is a calendar with a linear hierarchy H, then we will use C' and H
interchangeably as subscripts of the orderings < and C. In other words, both <o and <y denote
the lexicographic ordering on time points, while both C and Cg denote the ordering on the time

units of the calendar. O

Since both the Gregorian Calendar and the AGC are intended to represent the same set of
valid time points, these two calendars are compatible. The concept of composability is formally

introduced in the next two definitions.

Definition 2.5 (compatible linear hierarchies) Two linear hierarchies, Hy and Hs, are com-
patible if both have the same ordering among their common time units. In other words, if time
units 7 and 75 appear in both H; and Hj, then T} Cp, 15 holds if and only if 7 CTp, 15 holds. O

Proposition 2.1: If H; and Hy are compatible linear hierarchies that share a time unit T and T
is the top of Hq, then T is also the top of H.

Proof: Follows from the fact the top of a hierarchy is the only infinite time unit of the hierarchy.
O

Definition 2.6 (compatible linear calendars) Suppose (' is a calendar with a linear hierarchy
T Ce, -+ Cey, TL, and Cy is a calendar with a linear hierarchy T2 C¢, -+ - E¢, T2. The linear
calendars C'y and C5 are compatible if their linear hierarchies are compatible and there is a bijection

f from the valid time points of (1 to the valid time points of €, such that

o If(#1,....tL Yand (¢1,...,1L) are valid time points of Cy, such that (¢1,...,tL) <¢, (4,...,tL),
then f((t%v .- '7t}n)) <y f((ﬂv .- '7%))7 and
o If T! is the same time unit as Tj2 and (#1,...,tL) is a valid time point of Cy, such that

Ut) = (B, 2), then ¢} = 22,

Intuitively, the first condition means that f is order preserving, and the second condition means

that f is the identity on the time units that are common to both calendars. a

Proposition 2.2: If fis a bijection satisfying the conditions of the above definition, and (¢1,..., 1)
and (1,...,t}) are valid time points of Cy, then the following holds.

(s sty) <oy (Fse s t) == f((H- -0 1) <oy f((B5 -2 1))

Proof: One direction follows from the definition. To prove the other direction suppose (#1,...,t.)
and (#1,...,tL,) are valid time points of C, such that f((¢1,...,t5)) <c, f((&,...,tL)). Smce !
is bijective, (¢1,...,tL) and (¢1,...,t})) are distinct and, hence, either (¢1,...,tL) <¢, (4,...,1})

v (th,.. .t <o (8, ...,tk) must hold. However, if (¢,...,tL) <¢, (t%,..., L), then the
above definition implies that f((#1,...,tL)) <¢, f((t1,...,t.)), contradicting the assumption that
F((t, . th)) <o, F((H, ... t5)). Therefore, (¢],...,t5) <¢, (H,...,tL). O

Not every calendar can be represented as a linear calendar. For example, we may want to add
the time units dow and week to the Gregorian Calendar, and there is no natural linear hierarchy of
the 5 time units day, month, year, dow and week. Therefore, we define a hierarchy of time units as

follows.

Definition 2.7 (hierarchy of time units) A collection of distinct time units 7%,...,7T, with a

partial order C (on the time units) forms a hierarchy if there is a tree 7, such that

e The nodes of 7 correspond to the time units 14,...,7},,

e The root of the tree, called the top of the hierarchy, is an infinite time unit, while all other

nodes are finite time units, and

o T is an ancestor of T} in tree 7 if and only if T; C Tj. a

Figure 1 shows two hierarchies. A time point of a hierarchy is defined similarly to a time point

of a linear hierarchy.

Definition 2.8 (time point of a hierarchy) Suppose T},..., T, are the time units of a hierar-
chy H. A time point is an n-tuple (#1,...,%,), such that #; is a value from the time-value set of
T; (1 < i < n). The projection of the time point (¢1,...,t,) on the time units 1},,...,T;, is the
k-tuple (¢;,,...,t;,).]

year year

month month

day week day week

dow

Figure 1: Two hierarchies.

Writing the time units of a hierarchy as a sequence T7i,...,7T, is convenient, since it shows
how to associate the values of a time point (¢1,...,%,) with the time units. However, the sequence
T1,...,7T, does not define a linear order among the time units; in a hierarchy, there is only a partial
order among the time units and we will usually show this partial order as a tree (e.g., Figure 1). In
order to make explicit the association between values and time units, we may sometimes write a time
point as (11 1 t1,..., T, : t,), e.g., (day : 1, dow : Thursday, week : 0, month : February, year : 1996)

is a time point of the hierarchy shown in Part A of Figure 1.

In the next definition, we define a calendar as a combination of one or more linear calendars
and some additional time units (which are not necessarily part of a linear calendar). The definition
uses the following terminology. Given a tree 7 (representing a hierarchy), a complete path is any

path from the root to some leaf.

Definition 2.9 (calendar) A calendar consists of a hierarchy 7 of time units and one or more
embedded calendars, where an embedded calendar is a linear calendar over a linear hierarchy that
coincides with some complete path of the hierarchy 7. Furthermore, if there is more than one

embedded calendar, then any two embedded calendars are compatible.
In addition, a calendar has a validity predicate that satisfies the following conditions.
e If ¢ is a valid time point of the calendar, then the projection of £ on any embedded calendar
F is a valid time point of F,

o If ¢, is a valid time point of an embedded calendar F, then there is exactly one valid time

point ¢ of €', such that the projection of t on F is ., and

o If t is a valid time point of the calendar, such that ¢; and ¢y are projections of ¢ on two
embedded calendars Fy and FE, respectively, then f(¢;) = t3, where f is the bijection from
E1 to EQ.

Proposition 2.3: Let £ be an embedded calendar of some calendar C. If #; and t5 are two valid

time points of C' that are equal on all the time units of F, then ¢; and ¢, are identical.

Proof: Follows from the second bullet item of Definition 2.9. a

We can combine the Gregorian Calendar and the AGC into one calendar that has the hierarchy
shown in Part A of Figure 1. The combined calendar has both the Gregorian Calendar and the Alter-
native Calendar as embedded calendars. The time point (day : 1, dow : Thursday, week : 0, month :
February, year : 1996) is a valid time point of the combined calendar, since (1, February, 1996) is a
valid time point of the Gregorian Calendar, (Thursday, 0, February, 1996) is a valid time point of

the Alternative Calendar, and these two time points denote the same date.

As another example, consider the calendar that has the hierarchy shown in Part B of Figure 1
and has the Gregorian Calendar as the only embedded calendar. If day, month and year are assigned
values that form a valid time point of the Gregorian Calendar, then there is a unique value for week,
such that all four values form a valid time point of the whole calendar. However, values for week,

month and year do not determine a unique value for day.

Definition 2.10 (projection/de-projection) Let C' be a calendar having a hierarchy H and an
embedded calendar F. For a valid time point t. of (', the projection of ¢, on the time units of
is denoted as pr(t.,). For a valid time point ¢. of the embedded calendar F, the de-projection
of t. w.r.t. the calendar C, denoted dp(t.), is the unique valid time point . of C, such that
pr(t., £) = t.. If C' is clear from the context, we may write dp(?.) instead of dps(t.). Also, note
that dpg (') is well defined whenever ¢’ is a time point over a subset S of the time units of C', such

that S contains all time units of F. O

The reason projections and de-projections are needed is to ensure a smooth transition between

time points in a calendar and time points in its embedded calendar.

Proposition 2.4: If¢. is a valid time point of C'and £ is an embedded calendar, then dp-(pr(t., F))
t..

Proof: Follows from Definition 2.9. a

Definition 2.11 (linear order on valid time points) Suppose C' is a calendar and E is an
embedded calendar of €'. Given two valid time points t; and t, of C, we write t; <¢g to if
pr(t1, F) <g pr(tz, F). O

Note that the linear order is well defined, since any two (linear) embedded calendars are com-
patible. Next, we define a linear order on all time points of C' that extends the one defined above

on the valid time points.

Definition 2.12 (linear order on all time points) Let £ be an embedded calendar of C' with
a linear hierarchy H. A pseudo-linear hierarchy P of C is a linear hierarchy Ty Cp --- Cp T, of all
the time units of C', such that for some ¢, the linear hierarchy H coincides with T; Cp --- Cp 1.
Given time points ¢; and ¢, of C', we define ¢ <o t' if t; <p t3. a

Note that the order on all time points may depend on the choice of H and the choice of the
pseudo-linear hierarchy for the given H. However, the order on all time points extends the one

defined previously on the valid time points.

The definition of a linear order on valid time points induces a natural notion of the successor

of a valid time point.

Definition 2.13 (successor of a time-value) Consider a time unit 7. Given a time value #;
from the time-value set of T, we say that ¢y is the successor of t; if either one of the following

holds.

e t; <7 iy and there is no ¢ in the time-value set of 7', such that ¢; <7 ¢ < t3, or

e {1 is the maximal value of the time-value set of T' (i.e., 7" must be finite) and ¢; is the minimal

value of the time-value set of T.

The ¢th successor of t; in T is denoted as t; +7 ¢. a

The successor of the value 4 in the time unit day of the Gregorian Calendar is 5 and the successor
of 31is 1.

Definition 2.14 (successor of a valid time point) Let C' be a calendar with a hierarchy H.
Given a valid time point t; of H, we say that ¢y is the successor of t1 if {1 <y to and there is no
valid time point ¢’ of H, such that ¢; <y t' <y t3. The ¢th successor of ¢; in H is denoted as
t1 @y ¢ (or simply as 1 § ¢ if H is clear from the context). O

In the Gregorian Calendar, the successor of (13, March,1996) is (14, March,1996) and the successor
of (29, February, 1996) is (1, March,1996). As we shall see below (Proposition 2.5), it turns out
that the concept of successor can be propagated from a calendar to its embedded calendars in a

natural way.

10

Proposition 2.5: Let C' be a calendar with an embedded calendar E. Let &¢ and &g denote
the successor operators in C and F, respectively. For all valid time points t of C, the following

equalities hold.

tdol = dp(pr(t, E)dp 1)
pr(t, EYBp1l = pr(tde 1, E)

Proof: Suppose t §¢ 1 = t'. Since F is an embedded calendar of C', Definition 2.11 implies that
pr(t, E) <g pr(t', E). If there were a valid time point ¢* of E, such that pr(¢, E) <g t* <g pr(t', E),
then Definition 2.11 would imply that dp(pr(t, E)) <¢ dp(t?) <¢ dp(pr(t', E)), or equivalently,
t <¢ dp(t*) <¢ t' (since, by Proposition 2.4, dp(pr(t, E)) = t and dp(pr(¢’, E)) = t'). But t <¢
dp(t?) <¢ ' contradicts the assumption that ¢ 1 = ¢'. Therefore, we can conclude that pr(¢, £)®g
1 =pr(t, E) and, hence, dp(pr(t, E) g 1) = dp(pr(t', E)) =1t =t D¢ 1.

The second equation can be proved in a similar way. a

We are now in a position to define what it means for two calendars to be compatible. Intuitively,
compatibility of two calendars means that there is a smooth way of converting time points in one

calendar to time points in the other calendar, without any loss of temporal information.

Definition 2.15 (compatible calendars) Two calendars Cy and Cy are compatible if some em-

bedded calendar of 'y is compatible with some embedded calendar of C5. a

Recall that embedded calendars are linear, and that compatibility of linear calendars was defined

earlier in Definition refclc-def. For example, the Gregorian Calendar and the AGC are compatible.

Before describing how we specify time w.r.t. a calendar, we prove some results concerning the

successors of compatible calendars. First we will consider compatible linear calendars.

Proposition 2.6: Suppose €y and 5 are linear calendars that are compatible via the bijection 2
from Cy to Cy. Let §y and @y denote the successor operator in €y and C5, respectively. For all

valid time points ¢ of (7,

Bt @ 1) = (1) B 1.

Proof: Note that since ('] and C; are linear calendars, each serves as its own embedded calendar,

respectively.

Suppose t' = t ¢y 1. By Definition 2.6, ©(t) <¢, ¥(t'). If there were a valid time point ¢
of Cy, such that ¥(t) <¢, t* <, ¥(t'), then Definition 2.6 would imply ¢ <¢, ¥~ 1(t?) <¢, ¥,
contradicting the assumption that ¢ = ¢ @ 1. Therefore, there is no such ¢* and, hence, ¥(t) Py 1 =
(') = p(t 1 1) o

11

The above result says that the notion of successor is preserved by any bijection that establishes
compatibility between linear calendars. We now extend the above result to general calendars,

removing the restriction to linearity.

Proposition 2.7: Suppose €y and (9 are compatible calendars. Let Fy and F3 be embedded
calendars of C'y and (5, respectively, and let 1 be the bijection from F; to F3 that shows the
compatibility. Let @, and @, denote the successor operators in '; and Cy, respectively. For all

valid time points ¢ of (7,

dp02(¢(pr(t el 17E1))) = dp02(¢(pr(t,E1))) Do, 1.

Proof: Suppose ©g, and @p, denote the successor operators of Fy and Fs, respectively. Proposi-
tion 2.6 implies that o (pr(¢, £1) ®E, 1) = ¥(pr(t, 1)) $E, 1 and since Ey is an embedded calendar

of 'y, we get the following equation.

dpc, (¢(pr(t, £1) g, 1)) = dpe, (¢(pr(, 1)) ©r, 1) (1)

The second equation of Proposition 2.5 implies that

pr(tvEl) @E1 L = pl’(t @01 17E1)‘ (2)

Let t* = ¢(pr(t, E1)); note that ¢* is a valid time point of E,. Let ¢’ = dpg, (¢(pr(t, E1))). Note
that 12 = pr(t', E3). Since t' = dpg, (pr(t', E2)), the first equation of Proposition 2.5 implies that

deQ(pr(t/7 EQ) DE, 1) = deQ(pr(t/7 EQ)) o, 1. (3)
Since pr(¥', F2)) = t* = ¢(pr(t, 1)), we get
dpc, (¥(pr(t, £1)) ©m, 1) = dpg, (V(pr(?, £1))) Ses, 1. (4)

We can now substitute in Equation (1) as follows. In the left-hand side according to Equation (2)
and in the right-hand side according to Equation (4). The result is

dpc, (D(pr(t By 1, 1)) = dpc, (d(pr(t, £1))) Do, 1. (5)

a

The Gregorian calendar is a good example of a calendar that is periodic — a concept that we

define formally below. Intuitively, a periodic calendar is whose structure “repeats” over time.

Definition 2.16 (periodic calendar) Let C be a calendar with a hierarchy H consisting of time
units 71, ..., 7T,. We say that C'is periodic if there is an integer p > 0, such that for all time points
(t1,...,t,) of the hierarchy H, the time point (¢, ...,%,) is valid for C'if and only if (¢1,...,t,+7,p)
is valid for C' (note that T}, is the top time unit). The smallest p satisfying this definition is called
the period of the top time unit. a

12

Definition 2.17 (the period of a periodic calendar) Suppose C is a periodic calendar with
a hierarchy H consisting of time units 77,...,7T,. Let p be the period of the top time unit. Let
(t1,...,t,) be a time point of C'. The period of C' is defined to be the number of valid time points
t, such that (t1,...,4,) <¢ t <¢ (t1,.- -, tn +1, P)- O

For example, the period of the Gregorian Calendar is (365 x 4 4+ 1) days. The period of
the calendar that combines the Gregorian Calendar and the Alternative Gregorian Calendar (its
hierarchy is given in Part B of Figure 1) is (365 x 28 4+ 7) days.

Proposition 2.8: The period of a periodic calendar C is well-defined, i.e., the period does not
depend on the choice of (1,...,%,) in Definition 2.17.

Proof: Suppose Ty Cp --- Cp T, is the pseudo-linear hierarchy of C'. Let ¢ denote a time point
(t1,...,t,) of C. We write ¢t +7,, k as an abbreviation for (#1,...,%, +7, k). For an integer k > 1,
let S(t,k) denote the set of all time points s of C, such that t <¢ s <¢ t +71, k.

Let p be the period of the top time unit of C' and consider an integer h > 1. Consider the
bijective mapping ¢y, on time points of €' that is defined as follows.

Or((S1,..2550)) = (815,80 +1, hP)

Clearly, the image of S(¢,k) under ¢y, is S(¢ +71, hp, k). An easy induction on h shows that ¢y is
validity preserving; that is, ¢ is a valid time point of C' if and only if ¢(t) is a valid time point of
C'. Therefore, we get the following fact.

Fact 2.1: Let p be the period of the top time unit of ' and consider an integer h > 1. The sets
S(t, k) and S(t 41, hp, k) have the same number of valid time points.

Next we will show that the sets S(¢,p) and S(¢ +7, d,p), where 1 < d < p, have the same

number of valid time points. Consider the following three disjoint subsets.
1. S(t,d).
2. S(t+1,d,p—d).

3. S(t +71,. P, d)

Note that the union of the first two is equal to S(¢,p), and the union of the last two is equal to
S(t+1, d,p). Moreover, ¢; maps the first subset to the third one. Therefore, we have shown the

following.

Fact 2.2: Given 1 < d < p, where p is the period of the top time unit of C, the sets S(¢,p) and
S(t 41, d,p) have the same number of valid time points.

13

To complete the proof of the proposition, consider the sets S(t,p) and S(t +71, b,p), and let
d="bmod pand h = L%J; that is, the second set can be written as S(¢+7, (d+ hp),p). If d is zero
or h is zero, then Fact 2.1 or Fact 2.2, respectively, implies that S(¢,p) and S(t 471, (d + hp),p)
have the same number of valid time points. If both d and i are nonzero, then Fact 2.1 implies that
S(t,p) and S(t +71, hp,p) have the same number of valid time points, and Fact 2.2 implies that

S(t 41, hp,p) and S(t +1, (d 4 hp),p) have the same number of valid time points. a

Proposition 2.9: Suppose (' is a periodic calendar and p is the period of the top time unit. For
a time point (1,...,t,), let m denote the number of time points ¢, such that (¢1,...,%,) <¢ t <¢
(t1,...,tn +1, p). If C has some valid time points, then the length of any contiguous sequence

(according to <¢) of invalid time points is bounded by m.

Proof: First note that m depends only on p, but not on (¢4,...,%,), since <¢ is a lexicographic
order according to the pseudo-linear hierarchy of C'. Second, if there is contiguous sequence of m
or more invalid time points, then Definition 2.17 (together with Proposition 2.8) implies that C'

has no valid time points. a

3 Specifying Time w.r.t. a Calendar

Let us consider any application that refers to an arbitrary, but fixed calendar C'. The application
developer must be able to specify time points, intervals and sets of intervals w.r.t. calendar C'. For
instance, when we consider the example of Mary from the Introduction, we need to specify a set of
time points, viz. the first Sunday of every month. Constraints provide a convenient and succinct

representation of such sets of time points. For example, the constraint
(t.week = 1 & t.dow = Sunday)

captures all time points t that denote the first Sunday of any month. The variables in the above
constraint are t.week and t.dow, and they range over values from the time-value sets of week and
dow, respectively. As another example, to say that time point #; occurs at least 3 days before time

point to, we might write the constraint
t1 63 < tg.

In this constraint, the variables involved are t1 and tg and they range over time points. Thus,
different kinds of constraints have different types of variables that potentially could range either
over members of time-value sets or over time points. In general, writing constraints over time points
is often syntactically much more convenient and intuitive for the user. In particular, a human user
will find it very cumbersome (the reader is invited to try it!) to specify the constraint t1 ¢ 3 < t5

in terms of variables that range over values of time-value sets.

14

Consequently, we will define two constraint languages. The first is TUCL (Time Unit Constraint
Language) which allows us to express constraints using variables that range over values of time-
value sets. The second language is TPCL (Time Point Constraint Language) and it is for expressing

constraints using variables that range over time points.

Definition 3.1 (TPCL—time point constraint language) Let C' be a calendar with a hierar-
chy H of time units 77,...,T,.

e TPCL Variables: There is an infinite set of variable symbols ¢,#,¢!,¢%, ... that range over

time points of C.
e TPCL Constants: Every time point is a constant symbol.

e TPCL Atoms: 2Ry, where R € {<c,=},is a TPCL atom if at least one of 2 and y is a TPCL
variable, say ', and the other is either (i) a TPCL constant symbol, (ii) a TPCL variable 7,

or (iii) of the form #/ ®¢ n for some natural number n > 0.

e TPCL Constraints: A TPCL constraint is any boolean combination of TPCL atoms con-

structed using the logical connectives A, V and — (sometimes we use & instead of A). O

For example, t! < (1, January, 1995), t' = 2 & 1 and ¢* = (3, February, 1996) are TPCL atoms
w.r.t. the Gregorian Calendar. The conjunction t* = t* @ 1 A ¢2 < (1, January, 1995) is a TPCL

constraint that intuitively refers to any two consecutive days before 1995.

Definition 3.2 (TUCL—time unit constraint language) Let C be a calendar with a hierarchy

H of time units T,...,T,. Let V; denote the time-value set associated with T;.

e TUCL Variables: If ¢ is any TPCL variable, then ¢.7; is a TUCL variable of type T that

ranges over values of V;.
¢ Constants: Every member of Vj U---U V,, is a TUCL constant symbol.

e TUCL Atoms: 2Ry, where ® € {<7,,=},1s a TUCL atom of type T} if at least one of z and
y is of the form #!.T), and the other is either (i) a TUCL constant symbol from the set Vj, (ii)
a TUCL variable of the form tj.Tk, or (iii) of the form .7y, +7, n for some integer n > 0.

e TUCL Constraint: A TUCL constraint is any boolean combination of TUCL atoms con-

structed using the connectives A, V and = (sometimes we use & instead of A).

A TUCL constraint ¥ is said to be associated with the TPCL variable ¢* if all TUCL variables
appearing in ¥ are of the form ti.Tj (1<j<n). a

15

For example, t.week = 1 is a TUCL atom that has one TUCL variable, namely t.week. An
example of a TUCL constraint in the Gregorian Calendar is t'.day = 1 A t'.month = March, which
is associated with ¢! and intuitively refers to the first of March (of all years). Similarly, the TUCL
constraint (t'.month = May vV t'.month = June) A t'.year <year 1990 intuitively refers to the
May—June period of any year before 1990.

The reader should note that variables of the form t.week (or more generally ¢.7;) may only
appear in TUCL atoms, but not in TPCL atoms. Furthermore, the symbol $¢ may occur in TPCL
atoms but not in TUCL atoms. In contrast, the symbol +7, may occur in TUCL atoms, but not in

TPCL atoms.

Definition 3.3 (solution of TPCL constraints) A solution, o, to a TPCL constraint = is an
assignment of a time point to each TPCL variable in =, such that when each occurrence of each
TPCL variable V' in = is replaced with o(V'), the result is true. We say that two TPCL constraints

are equivalent if they have the same set of solutions. a

For example, t! = (2, February, 1990) and ¢! = (5, March, 1980) are solutions to the constraint
t < (1, January, 1995).

Definition 3.4 (solution of TUCL constraints) A solution, o, to a TUCL constraint = is an
assignment of a time point to each TPCL variable t occurring in =, such that when each occurrence
of each TUCL variable t.T; in = is replaced with o(¢.7}), the result is true. We say that two TUCL

constraints are equivalent if they have the same set of solutions. a

For example, {t!.month = January,t*.day = 1,t'.year = 1995} is a solution to the constraint

t' month < p, February A t!.day <day 3. Note that {t'.month = January,t*.day = 2} is not a

mont
solution, since t!.year is not assigned a value.

Example 3.1: Suppose we return to the example concerning Mary. In this example, the action

“Remind Mary to send out her phone bill” is fired for each solution of the constraint
(t.week = 1 & t.dow = Sunday).
This constraint has many solutions. For example,
o1 = {t.dow = Sunday, t.week = 1,t.month = January, t.year = 1997}

is a solution.

Notation: Suppose ¥ is a conjunction of constraints involving a temporal (i.e., TPCL or TUCL)
variable ¢ and further suppose that ¢ is either a constant or a temporal variable. We use the
notation ¥[t/¢'] to denote the expanded constraint ¥ A {t = ¢'}.

16

In addition to the TUCL and TPCL constraint languages, we define below a hybrid constraint
language that combines both of the above. This hybrid language provides the flexibility of express-

ing temporal constraints using both time-unit based atoms and time-point based atoms.

Definition 3.5 (hybrid constraint language) An HCL constraint is any boolean combination
of TPCL and TUCL atoms constructed using the connectives A, V and — (sometimes we use &
instead of N).]

For example, t! = 2 & 1 A (t'.month = June V t'.month = January) is an HCL constraint that
intuitively refers to any two consecutive days, where the first day is either in June or January of

any year.

4 Using Constraints to Define Calendars

Suppose (' is a calendar and ¥ is a constraint w.r.t. C'. Solutions to this constraint merely assign
time points to the temporal variables appearing in the constraint. However, the resulting time
point may or may not be valid. Thus far in the paper, we have merely assumed the existence of
a validity predicate that tells us which time points are valid. In this section, we will show that
validity predicates may be elegantly and succinctly expressed in terms of constraints. Furthermore,
it turns out that solving constraints that only contain variables with respect to some time units,
e.g., TUCL constraints, can be done using well known techniques. Therefore, we consider validity

predicates that can be expressed using such constraints.

4.1 Realizing Validity Predicates Through Constraints

Recall that in any calendar, only the top time unit is infinite. Therefore, it is possible to represent

the validity predicate of a calendar by a set of pairs of constraints (¥, ®), such that:

If the values tq...,t,_1 of the finite time units Ty, ..., T,_1 of the calendar satisfy the
constraint ¥ and if the value t,, of the top time unit of the calendar is a solution of the

constraint ®, then (t1...,t,-1,1,) is a valid time point.

Thus, ¥ only involves the variables ¢.17,...,t.T,,_1, while ® only involves the variable ¢.T,.
We leave open the possibility that the language for expressing the constraint ¥ on the finite time
units is different from the language for expressing the constraint ® on the top time value. The top
constraint is any TUCL constraint whose only variable is of the form t.7),, where ¢ is a TPCL variable
and T}, is the top time unit. For example, in the case of the Gregorian Calendar, t.year mod4 =0
is a top constraint. Note that in this example, the language in which @ is expressed includes the

“mod” operator. Other calendars may or may not require this operator and, therefore, we leave

17

open the precise choice of the language for expressing the top constraint. The constraint ¥ on the

finite time units will be expressed as a TUCL constraint that has a single TPCL variable.

Definition 4.1 (realization of a validity predicate via constraints) Let C be a calendar with
a hierarchy H of time units 74,...,T,, where T, is the top time unit. A set {(U1,®1),...,(Vpy,

®,,)} of pairs of constraints is said to realize a validity predicate if

e U, is a TUCL constraint that has a single TPCL variable ¢ and only the TUCL variables
t.11,...,t.Th—1 (but not t.7,) may appear in ¥,

e &, is a top constraint involving only the TUCL variable ¢.7,,,
e Forall 1 <i< j<mn,the TUCL constraints ¥; and ¥; have no common solutions, and

o (#},...,t) is a valid time point of C' if and only if there is a pair (Vy, ®x), such that ¢.77 =
..., t.T,—y = t,_; is a solution of ¥y and ¢.T,, =t/ is a solution of ®; (in other words,

(th,...,t) is a solution of the conjunction ¥y A ®y). o

The Gregorian Calendar can be realized by the constraints {(¥1, ®1), (¥, ®2)}, where

U, = (t.day <day 29) V (t.day <day 31 & t.month # February) v
(t.day = 31 & (t.month = January V t.month = MarchV t.month = May Vv t.month = July v
t.month = August V t.month = OctoberV t.month = December))

&, = 0 <t.year
U, = (t.day=29&t.month= February)
®;, = t.yearmod4d =0

For example, the pair (Vq, ®3) says that if the day field is 29 and the month field is February,
then the year field must be a multiple of 4. Notice, in particular, that the language of ®5 is
somewhat more complex than that used for ®;—it involves the use of some arithmetic through the

mod operator.

4.2 Realizing Successors Through Constraints

Recall that TPCL constraints are allowed to contain the successor operator @. In this section, we
show how we may specify the successor of a time point ¢ through the use of constraints. The reason
we need to specify successors using constraints is that adding 1 to the lowest time unit and handling
the carries appropriately (which may seem adequate, prima facie) is not adequate in general. This
is because not all combinations of time values are valid time points. For example, adding 1 to Feb.
28, 1993, leads (naively) to the syntactically correct, but invalid date of Feb. 29, 1993. As the
validity predicate itself is realized through the use of constraints, we continue to use constraints to

specify the notion of a successor.

18

Definition 4.2 (realization of a successor via constraints) Let C be a calendar with a hier-
archy H of time units Ty,...,7T,, where T, is the top time unit. A set {(01,Y1),...,(0, L)} of

pairs of constraints is said to realize a successor if

e 0,;is a TUCL constraint that has a single TPCL variable ¢, and the TUCL variables .7y, ..., t.T,

may appear in 0;,

o T;is a TUCL constraint that has exactly two TPCL variable ¢ and ¢+, and the TUCL variables
tTh,...,t. T, and t. Ty, ...,t7. T, may appear in T;,

e For each valid time point ¢/, there is exactly one ©; (1 < i < n), such that ¢ = ¢’ is a solution

of O;, and

o Ift = ¢ is a solution of ©;, then Y,[¢/t'] must have exactly one solution ¢+ = ¢ and ¢ is the

successor of ¢/ in C. a

Intuitively, the successor specification allows us to find the successor of a given time p point

as follows. First, determine if the time point p is valid. If the time point p is not valid, then

it does not have a successor. Otherwise, determine which of the ©; has the solution ¢t = p.

Next, find the solution ¢ = p’ of Y;[t/p], and p’ is the desired successor. For example, the
set {(01,71),(02,T3), (03, Ts3)} realizes the successor in the Gregorian Calendar, where

01

Th
O

T
O3
Ts

(t.day <day 28) V (t.day <day 29 & t.month # February) V

(t.day = 30 & (t.month = January V t.month = MarchV t.month = MayV t.month = July vV
t.month = AugustV t.month = OctoberV t.month = December)) V

(t.day = 28 & t1.month = February& t.yearmod4 = 0)

tt.month = t. month&t™ .year = t.year& t™ .day = t.day +day 1

(t.day = 31 & (t.month = January V t.month = MarchV t.month = MayV t.month = July vV

t.month = AugustV t.month = October)) Vv

(t.day = 30 & (t.month = AprilV t.month = June V t.month = September V t.month = November)) V
(t.day = 28&t.month = February&t.yearmod4 # 0)

tt . month = t.month +month L&ttt year = t.year&t™ .day =1

t.month = December& t.day = 31.

tt month = 1&t+ . day = 1 &t .year = t.year +yeqr 1

5 Solving Temporal Constraints

In general, given an HCL constraint, we would like to check if there exists a valid solution of that

constraint. We emphasize the point that viewing HCL constraints as ordinary constraints over the

19

integers is not enough, because the special nature of the validity predicate may cause some solutions
(over the integers) to represent invalid time points. In this section, we describe the following three
aspects of determining existence of valid solutions of temporal constraints:

/

1. First, we show how we can convert a temporal constraint =, into a new constraint =’ such

that =’ has a solution (over the time points) iff = has a valid solution over the time points.
2. Second, we show how we can eliminate all occurrences of @ from ='.

3. Finally, we show that as a consequence all TPCL-atoms can be eliminated as well, while

preserving satisfiability.

The above transformations allow us to determine satisfiability of the resulting constraint by
using standard constraint solving techniques over finite domains and the over the integers [12]. In
fact, if we consider only TPCL-constraints over periodic calendars, then it turns out that @ and

subtraction of time points can be solved in polynomial time.

5.1 Incorporating Validity

Suppose (' is a calendar and = is a constraint. We wish to create a constraint =’ such that: o is a
solution of Z' iff o is a valid solution of =. This is because an HCL constraint = may have solutions
that are not valid. However, as we are only interested in walid solutions of =, we create a new
constraint, =/, by adding some validity criteria to the constraint =. The following definition shows

how Z' may be defined for this purpose.

Definition 5.1 (extension of a constraint to handle validity) Consider a calendar €' whose
validity predicate is realized via a set of pairs {(¥1,®1),...,(V,,, @,)} with the variable ¢. Let

valid(t) denote the following formula:
(U1 () AD1()) V-V (U () A D(2)).

Suppose Z is an HCL constraint with variables ¢!, ..., ¢* (note that ¢ does not occur in =). The

extension of = with respect to the validity predicate of ' is the following formula.

EA /\ valid[t /1]
1<i<k

a

Proposition 5.1: o is a solution of = A (/\1<i<k valid[t/ti]) if and only if o is both a solution of

= and a valid time point of C.

Proof: Follows from Definition 4.1. O

20

5.2 Eliminating Successor

In this section, we show how to eliminate all occurrences of @ from a constraint = by iteratively

adding conjuncts to = based on the constraints that realize the successor.

Algorithm 1 (Elimination of &) Let C be a calendar whose successor is realized via the set of
pairs {(01,T1),...,(0,,,T,,)}, where ¢ and ¢+ are the variables occurring in these constraints. We

use succ(t,t1) to denote the following formula.
(O1() ATtV oV (O, (1) AT (2,1T))

Suppose Z is an HCL constraint, such that neither ¢ not ¢* occurs in =. The elimination of & is

achieved by rewriting = according to the following two rules until no rewriting is possible.

1. If v @ 1 occurs in =, then do the following. First, replace all occurrences of v @ 1 in = with a

new variable v* that does not occur in Z. Second, replace = with

= A sucelt/v, t1/vT]

2. If v @ b occurs in =, where b > 1 is an integer, then do the following. First, replace all
occurrences of v @ b in = with v+ (b — 1), where v° is a new variable that does not occur in
=. Second, replace = with

EAvC=0vD1

Proposition 5.2: Let Z' be the result of rewriting = according to the above rules. ¢ is a solution

of Z' if and only if the restriction of o to the variables of = is a solution of =.

Proof: Follows from Definition 4.2 by an induction on the number of applications of the rewriting

rules. O

Even if = has only one occurrence of a term of the form v @ b, the rewriting needed to eliminate
@ is exponential in the binary representation of b. However, most (if not all) calendars in daily use

are periodic (in the sense of Definition 2.16) and the following lemma holds for such calendars.

Lemma 5.1: Suppose (' is a periodic calendar, and let p be the period of the top time unit and ¢

be the period of the calendar. Then for all valid time points (1,...,%,) and all integers ¢ > 1, the

following is true, where d = b mod ¢ and h = [2].

(t1y. . stn) B b= (t1,...,tn +1, hp) B d

Proof: Follows from Definition 2.16, Definition 2.17 and Proposition 2.8. a

21

When the above lemma holds, we may replace a term of the form v & b by the term v’ & d and

add the following conjunction
VI =0T ANV Ty =0T ANV T, =0T, + hp

where v" is a new TPCL variable. Thus, the process of eliminating v & b requires at most O(p)
applications of the rewriting rules (since d < p). Since p is fixed (i.e., it depends only on the given

calendar, but not on Z), the elimination of v & b can be done in linear time in the size of =.

5.3 Subtracting Time Points of Periodic Calendars

In order to solve constraints efficiently, we may need to subtract one time point from another.
Subtraction of time points can be done efficiently if calendars are periodic. Suppose C' is a periodic
calendar, such that p is the period of the top time unit and c¢ is the period of the calendar. Let
t <¢ s be two valid time points of C', where ¢t = (¢1,...,%,) and s = (s1,...,5,). Computing
the non-negative integer a, such that s = t & a, can be done as follows. First, let b = s, — ¢,
d =0 mod p and h = L%J By the definitions of p and ¢, it follows that ¢ = a’ + hc, where o

satisfies

(tl,...,tn)@a’ = (81,...,tn ‘I‘Tn d)

Now, let d’ = t, mod p and A’ = | %

?"J. By Definition 2.17 and Proposition 2.8, a’ also satisfies

(tl,...,d/)@a/:(817--'7d/+Tn d)

Since d’ and d are nonnegative and bounded by ¢, and ¢ is a constant that depends only on the

calendar, we may compute a’ in polynomial time.

5.4 Eliminating TPCL Atoms

In this section, we show how we may iteratively eliminate TPCL atoms from a constraint =.

Algorithm 2 (Elimination of TPCL Atoms) Let Ey,...,Ep be the embedded calendars of C
where T C ... C Tg] is the linear hierarchy of the embedded calendar E;, 1 < j < k. For

each constraint atom A in = do:

1. If A is of the form t = (v1,...,v,) then replace it by:

t.le?Jl A t.TQI?JQ Ao A t.TnI?Jn

2. If A is of the form t' = t* then replace it by:

=T AP, =T AN T, = 82T,

22

3. If A is of the form t* <y t* then replace it by t' <g, * A....At' <pg, 12,

4. If A is of the form t <y (v1,...,v,) then replace it by t <g, (vi,...,0l YA ... At <p,

. nl
(vF, ... vE) where (v], .. .,vfbj

oV) is the projection of (vq,...,v,) on E;.

5. If A is of the form t <pg, (v{, .. .,U%J) replace it by

(LT > A 0T =vj A LTy =0l A ... AT =vj v
(T3 >vy A T3 =03 A oo ALTE =)) V
v

(t.T7 > v})
6. If A is of the form t! <E, t? replace it by

(T > AT A T =T A T =T A . MVT = 2TV
17 2 g 1 i _ 42 175 _ 427

(tTy > Ty A T3 =2 T3 A o0 ANET) =817) v

v

(1, > *.17)

Based on the techniques described thus far, it is easy to define both a concept of a temporal normal

)

form, and procedure that can be used to convert any constraint = into a temporal normal form

/

constraint =’ such that = has a valid solution iff =’ has a solution. (The technical report version

of this paper [15] provides an appendix consisting of such a normal form, and a transformation
procedure, but is omitted here to avoid lengthening the paper.) Furthermore, there is a close
correspondence between solutions of Z and Z' — if VALIDSOL(Z) denotes the set of valid solutions

of =, then:

VALIDSOL(Z) = {o|d’is a solution of ' and o is the restriction of o’ to the variables of =}.

6 Combining Multiple Calendars

Earlier in the paper, we stated that we can combine the Gregorian Calendar and the AGC into
one calendar that has the hierarchy shown in Part A of Figure 1. However, this statement was an
informal one—we stated what it means for two calendars to be compatible with each other, but we

did not formally state what it means to combine two arbitrary calendars.

Multiple calendars may arise naturally in a vast number of settings. For instance, consider the

case where an agent must access two data sources, one of which uses a calendar with the hierarchy
dow [week [month [C year
while the other uses calendar with the hierarchy

day C month C year.

23

In this case, the agent must be able to reason with both calendars by constructing a new calendar
that combines the two. The purpose of this section is to define what constitutes such a valid

combination, and to develop techniques to compute these combinations.

6.1 What Does It Mean to Combine Two Calendars?

Any notion of a combination of two calendars must satisfy certain intuitive requirements. In this
section, we will describe a number of examples and, in each case, we will define what intuitively
constitutes a valid combination. This will enable us to specify various criteria that should be

satisfied by a combined calendar.

Suppose (7 and Cy are two calendars that we wish to combine. In other words, we want to find
a calendar ' that “captures” calendars C; and C5. There are three parts involved in any method

for creating C':

1. Hierarchy Construction: Given the hierarchies associated with 'y and (s, we should be
able to define a hierarchy that will be associated with the calendar C'. In other words, we
should be able to merge the trees associated with C; and C5 into a new tree 7 that preserves

some of the ancestor relationships of the original trees.

2. Selecting Embedded Calendars: Once we have computed the tree 7 of the hierarchy
associated with the combined calendar, we need to identify (at least) one complete path in

this tree and designate it as an embedded calendar.

3. Merging Validity Specifications: Finally, we must merge the validity specifications asso-
clated with C'; and C5 into a new validity specification that guarantees that the embedded

calendars selected in the preceding step satisfy the conditions in Definition 2.9.

We now present some examples illustrating the above steps.

Example 6.1: Suppose we wish to combine the Gregorian calendar and the AGC. We need to go
through the following steps.

1. Hierarchy Construction: In this step, we need to construct a hierarchy that preserves the
ancestor relationships of both the Gregorian Calendar and the AGC. Figure 1(A) shows one
such hierarchy that preserves the desired ancestor relationships. Figure 2 also preserves the
ancestor relationships. However, the hierarchy of Figure 2 includes an ordering constraint,
viz. day C dow, that is not required by either the Gregorian calendar or the AGC. Therefore,

we should prefer the more conservative hierarchy shown in Figure 1(A).

2. Select Embedded Calendars: We now need to examine all the complete paths in Figure 1(A)

and select some of these paths as embedded calendars. There are two possibilities, in this

24

year

month

day

Figure 2: A Non-conservative hierarchy construction.

simple example, corresponding to the Gregorian calendar and the AGC, respectively. Since
these calendars were compatible, we can safely designate both as embedded calendars of the

combination.

3. Merging Validity Specifications: We now need to construct a validity predicate, keeping in
mind the choice of the hierarchy made above (i.e., Figure 1(A)) and the choice of the embedded
calendars. In particular, we want to ensure that if ¢ is a valid time point of the combined
calendar (that we are constructing), then the projections of ¢t on both the Gregorian Calendar
and the AGC are valid w.r.t. the validity predicates of the Gregorian Calendar and the AGC,
respectively. In addition, we need to specify the “link” between the AGC and the Gregorian
Calendar. In effect, this means that we specify, given values for year, month, week and dow,
how to obtain the corresponding value for day, and vice-versa. In order to realize the validity
predicate of the combined calendar, we need to manipulate the constraints that realize the

validity predicates of the Gregorian calendar and the AGC.

Example 6.2: Now consider a slightly more complicated example, where we have two very simple
linear calendars Cy and C; whose hierarchies are shown in Figure 3 Part (a) and Part (b), respec-
tively. There are exactly three ways of constructing a hierarchy that merges them and these are
depicted in Figure 3 Parts (c), (d) and (e). Of these, only Figure 3(c) is conservative and does
not introduce any new ancestor relationships. There are two complete paths in this case that are
candidates for being embedded calendars. However, in contrast to the preceding example, the two
original calendars €7 and (5 are not compatible. Intuitively, we know that values for year and
doy uniquely determine the month. The converse does not apply, since given the year and the
month, we cannot uniquely specify a doy. Therefore, it is preferable to select the complete path
year—doy as the embedded calendar of the combination. The complete path year-month will then

be a secondary calendar of the combination.

25

year year year year year

N

doy month doy month doy month

month doy

(a) (b) () (d) (e)

Figure 3: Possible hierarchy constructions.

Finally, to realize the validity predicate of the combined calendar, we need to explicitly specify
the link between the year and the doy, on one hand, and the month, on the other hand; i.e., we

need to state how the month may be computed from the year and the doy.

Example 6.3: Consider the calendars C, and Cp, where
C, : day C month [year

Cy : hour C day C month [year.

In this case, the hierarchy construction leads to the same hierarchy as that of Cp. Consequently, Cp

can be the only embedded calendar, and the validity predicate must coincide with that of Cp.
Finally, we consider a case where the calendars cannot be combined.

Example 6.4: Suppose C, and Cp are as given below.
C, : month [year.

Cp: woy [C year.

Here, woy stands for “week of the year.” There is one hierarchy that most conservatively merges
the hierarchies of C, and C,. The two complete paths of this combined hierarchy correspond to
Cy and Cy, respectively. In the preceding example, we showed how we could use the time units of
one embedded calendar to determine uniquely the values of the other time units. However, in this
case, neither of the two can be designated as the embedded calendar, because neither one of them

uniquely determines the other.

6.2 Combining Hierarchies

In this section, we first specify declaratively what it means to construct a hierarchy that combines

hierarchies from two different calendars.

26

Definition 6.1 (hierarchy combination) Suppose C'; and Cy are two calendars with hierarchies

71 and 73, respectively. The hierarchy 7 is said to be a hierarchy combination of 77 and 7y if

1. The set of time units of 7 is the union of the sets of time units of 773 and 75,
2. I T; Cq, T, where k € {1,2}, then Ty C7 T3, and

3. I T; C7 Tj, then either T; Ty T; or T Cpy, 15.

Intuitively, a hierarchy combination merely ensures that the orderings on the time units, from the

two calendars being combined, are preserved in the most conservative possible way.

Proposition 6.1 (uniqueness of hierarchy combination) Suppose Cy and C5 are two calen-
dars with the hierarchies 77 and 75, respectively. There exists at most one hierarchy 7 that is a

hierarchy combination of 7; and 7.

Proof: Suppose there are two distinct trees 7 and 77, such that each one is a hierarchy combination
of 77 and 7;. First, note that T; C7 T if and only if 7; T T;. In proof, if T; C7 T}, then by the
third part of Definition 6.1, either T; T, T or T; Tz, T}; in either case, T; Tz 1 follows from the

second part of Definition 6.1. The other direction is proved similarly.

Since 7 and 7" are distinct, there is a pair of time units 7; and 7}, such that in one of these two
trees, say in 7, time unit 77 is the parent of T; (implying T; C7 1), but T} is not the parent of 7; in
the other tree, 7'. However, since T; C7 T, we must also have T; Tz Tj; that is, T} is an ancestor
(but not the parent) of 7; in 7'. Let T} be the parent of T; in 7'. Therefore, T; Ty Ty T T}
and, so, we must also have T; C7 T}, C7 T}, contradicting the assumption that 77 is the parent of
T;in 7. O

Definition 6.2 (combinable hierarchies) Suppose 77 and 7, are two hierarchies of time units.
We say that 77 and 75 are combinable if

1. 77 and 75 share the same top time unit,

2. If time units 7; and 7; appear in both 7; and 73, then T; C7, T} holds if and only if T; C7, T;
holds,

3. BT Cr, T; and T; C7, Tk, where m,p € {1, 2}, then either T; C7, T or T; Tz, T
4. WT; Cg, Tj and T; C7, Tk, where m,p € {1,2}, then either T} Cg, Ty or Ty Cg, T; for some

q € {1,2}.

27

All the hierarchies of the calendars in the examples of Section 6.1 are combinable. The result
below states that if the hierarchies of the calendars 'y and 5 are combinable hierarchies, then

they uniquely determine a hierarchy combination.

Theorem 6.1 (existence of hierarchy combination) Suppose 'y and C5 are two calendars
with hierarchies 77 and 75, respectively. If 73 and 73 are combinable hierarchies, then there exists

exactly one 7 that is a hierarchy combination of 77 and 7.

Proof: Let 7 consists of the time units of 77 and 73, and let "+ be defined as the transitive
closure of C7; U C7,. We claim that if 7; C7 7} holds, then either T; T T} or T; Tz, T; must also
hold. In proof, by the definition of Cr, if T; T7 T}, then there is a sequence T3,,...,T;,, of time
units, such that 73, = T}, T;, = T; and for all 1 < 7 < m, either Ty, Cp Ty, or Ty, Cp, 1o
Therefore, an easy induction, using the third part of Definition 6.2, shows that for all 1 < 7 < m,
either T, Cq T;, or T;; Cg, T;; must hold.

It thus follows that C7 satisfies all the conditions of a hierarchy combination. It also follows
that C7 is indeed a partial order. In other words, there is no time unit 7}, such that T; Cr T;
(since if there were such a T;, then either T; Tz, T; or T; Cz, 1; would hold, contradicting the fact
that both C7 and Tz, are partial orders).

It remains to be shown that the partial order C7 coincides with a tree, as required by the third
bullet item in Definition 2.7. We will now show how to construct the tree 7. The root of 7 is the
time unit that is the top of both 73 and 73 (by the first part of Definition 6.2, 77 and 7; share
the same top time unit). For every other time unit 7; of 7, we define the parent of T} as follows.
First, we define the set A(T;) = {1} | 1; C7 1};}; note that this set is not empty, since 7; is smaller
than the top time unit. According to the fourth part of Definition 6.2, every two elements of the
above set are comparable according to C7 and, therefore, that set has a least element. We define
the least element of A(T;) to be the parent of 7.

We will now show that the tree constructed above satisfies the third bullet item in Definition 2.7;
that is, T} is an ancestor of T} if and only if 7; Tz 7;. The “only if” direction is true, since by
definition, T} is a parent of T} only if T3 C T;. The “if” direction follows by an easy induction, once
we show that A(T;) — {T;} = A(T;), where T} is the least element of A(T;). To show that, note
that if 7; C7 1% (k # j), then T; T T (since T is the least element of A(T;)) and, therefore,
A(T;) —{T;} C A(T;). To prove the other direction of the containment, note that if 7; C7 7}, then
T; C7 Ty (since T; Cr T;) and, hence, A(T;) — {1} 2 A(T;).

Finally, the uniqueness of 7 follows from Proposition 6.1. a

Example 6.5: Consider the calendars having the following hierarchies:

Cai TsCT,C'Th

28

Cpy: ToCIsC Ty,
These two hierarchies cannot be combined, because T3 C 15 holds in C,, while T5 T T3 holds in the

second.

Proposition 6.2: Suppose (' and (5 are two calendars with hierarchies 77 and 73, respectively.
If there is a hierarchy combination 7 of 7; and 75, then Conditions 1, 3 and 4 of Definition 6.2
must hold.

Proof: Suppose hierarchy 7 is a hierarchy combination of 77 and 73. Condition 1 of Definition 6.2

follows from the fact that a hierarchy has exactly one infinite time unit.

To show that Condition 3 of Definition 6.2 is true, suppose that T; Cz,, T; and T; Cz, Tk,
where m,p € {1,2}. By Condition 2 of Definition 6.1, T; C7 1; and T; C7 1) must hold and, by
the transitivity of C7, it follows that 1; C7 T%. By Condition 3 of Definition 6.1, either 7; Tz Tk
or T; C7, T} must also hold.

To show that Condition 4 of Definition 6.2 is true, suppose T; Cr,, T; and T; Cg, T, where
m,p € {1,2}. By Condition 2 of Definition 6.1, T; C7 1 and 1; C7 T} must also hold and, hence,
both T; and T} are ancestors of T; in 7. Therefore, either T; C7 T}, or T, C7 T; must hold and,
so, Condition 3 of Definition 6.1 implies that either T; Tz, Ty or Ty C7, T; must hold for some
g€ {1,2}. 0

Parts (a) and (b) of Figure 4 show two hierarchies that satisfy Conditions 1, 3 and 4 of com-
binable hierarchies (Definition 6.2). The hierarchy combination of these two hierarchies is shown
in Part (c) of Figure 4. The one complete path in the hierarchy of Part (c¢) appears neither in Part
(a) nor in Part (b). Therefore, none of the embedded calendars of the two original hierarchies is
an embedded calendar of the combined hierarchy and, therefore, the combined hierarchy cannot be
compatible with either one of the two original hierarchies. The next proposition shows that if all

four conditions of Definition 6.2 are satisfied, then the situation shown in Figure 4 cannot occur.

Proposition 6.3: Suppose 7y and 73 are combinable hierarchies, and 7 is a hierarchy combination

of 77 and 73. Let g be any complete path in 7. Then g is a complete path in either 77 or 75.

Proof: Consider the complete path g of 7. We claim that either 7; or 75 contains all time
units appearing on g. Suppose not. Therefore, there is a time unit 7; on g that is not in 7y and,
similarly, there is a time unit 7; on ¢ that is not in 75. Since both T; and 7} are on the same path
of 7, one of the two, say 7}, is an ancestor of the other, T;. Thus, T; C7 T;. By Condition 3 of
Definition 6.1, either T; T, T; or T; Cz, T;. But this is impossible, since neither 7; nor 7, contains
both T; and T;. Thus, we have shown that one of the two original hierarchies, say 7;, contains all

the time units appearing on the complete path p.

We will now show that ¢ is also a complete path of 7;. So, consider a pair of time units T; and
T;, such that T} is the parent of T} in g and, hence, T; C7 7T;. By Condition 3 of Definition 6.1,

29

1 T1 T1

2 T3 o

T3 T4 T4 T3
T4

(a) (b) ()

Figure 4: Hierarchies that their combination include a new embedded path.

either T; Tz, T or T; T, T; and, by Condition 2 of Definition 6.2, T; Cg, Tj. So, T} is an ancestor
of T; in 7;. Suppose the parent of T} in 7y is T, where k # j. Therefore, T; C7, T}, C7, T and, by
Condition 2 of Definition 6.1, T; C7 T} C7 17, contradicting the assumption that 7’ is the parent
of T; in p. Therefore, we have shown that if 7} is the parent of 7} in g, then 7} is also the parent
of T; in 7.

It remains to be shown that the leaf, T,,, of the complete path @ is also a leaf of 7;. Suppose
not. Therefore, there is a node T}, that is a child of T, in 7y and, hence, T}, C7; T,,,. By Condition
2 of Definition 6.1, T, C7 T},, contradicting the fact that 7, is a leaf of 7. a

Proposition 6.4: Suppose 7y and 73 are combinable hierarchies, and 7 is a hierarchy combination
of 7y and 75. If a complete path g of 7 is not a complete path of 7, then it must be a complete
path of 75.

Proof: By Proposition 6.5, all the nodes of p lie on some path ¢’ of 7. If ¢’ and p are not
identical, then ¢’ cannot appear in 77 and, by Proposition 6.3, ¢’ must be a complete path of 75.
O

We end this section with a description of how to construct a hierarchy combination 7 of the
combinable hierarchies 7; and 75. Essentially, the construction was given in the proof of The-
orem 6.1, where it was shown that the root of 7 is the infinite time unit that is shared by 74
and 75, and for every other time unit 7, the parent of T; in 7 is the least element of the set

A(Ty) =A{T; | T; C7 1;}. The following proposition shows what that least element is.

Proposition 6.5: Suppose 7y and 73 are combinable hierarchies, and 7 is a hierarchy combination

of 71 and 75.

o Let T; be a finite time unit (i.e., 7; is not the top time unit). If 7} appears in both 73 and
75, then T} has the same parent 7 in both.

30

e The parent of T; in either 77 or 73 is also the parent of T; in 7.

Proof: Let T; be a node of 7; and suppose T is the parent of T; in 7;. Therefore, T; Cx, T; and,
by Condition 2 of Definition 6.1, T; C7 T;. Now suppose that T}, where k # j, is the parent of T; in
7. Therefore, T; C7 T C7 1. By Condition 3 of Definition 6.1 and Condition 2 of Definition 6.2,
T; C7, Ty Cg, T;, contradicting the assumption that 7} is the parent of T; in 7;. Therefore, we
have shown that if 1; appears in 77, then it has the same parent in 77 and in 7. It can be shown

similarly that if T; appears in 75, then it has the same parent in 75 and in 7. a

If Condition 2 of Definition 6.2 is not satisfied (as in the case of Figure 4), then 7; may have
distinct parents in 77 and 73 and, in this case, the parent of T; in 7 is the least one (according
to C7) among its two original parents. More specifically, if there are two distinct parents in the

original hierarchies, then one of the two hierarchies must impose an order among those parents.

6.3 Combining Calendars

In this section, we will describe how to combine two calendars. In addition to constructing the
hierarchy combination of the two calendars, as discussed in the previous section, we also need a

mapping that links time points of 'y with time points of (5, as defined next.

Definition 6.3 (linking function) Let C; and C3 be a pair of calendars with combinable hier-
archies 71 and 7y, respectively. A linking function from Cy to Cy is a mapping f from the valid

time points of C to valid time points of 5, such that

o If ¢ and ¢’ are valid time points of Cy and ¢t <¢, ¢/, then f(¢) <¢, f(t'), and

o If ¢ is a valid time point of C'; and the time unit 77} is in both C'; and (', then the time points
t and f(¢) have the same value for 7.

Intuitively, the first condition means that f is order preserving, and the second condition means

that f is the identity on the time units that are common to both calendars. a

The above definition is similar to the definition of compatible linear calendars (Definition 2.6)
as well as to the definition of compatible calendars (Definition 2.15). However, there is also an
important difference; that is, f is not required to be a bijection (in particular, it may neither be

surjective nor injective).

Proposition 6.6: Let 1 and (5 be two calendars with combinable hierarchies 7; and 73, respec-
tively. Suppose all the time units of some embedded calendar Fy of (5 also appear in (7. If there
is a linking function f from 7 to (5, then it is unique and satisfies the following condition. Given
a valid time point #; of C, the equality f(#1) = ¢ holds if and only if ¢3 is the unique valid time
point of Cy, such that ¢ and t5 are equal on Fj.

31

Proof: Suppose #; is a valid time point of Cy. By Definition 6.3, ¢; and f(#1) are equal on Fj.
Since F5 is an embedded calendar of (5, the second bullet item of Definition 2.9 implies that there
is exactly one valid time point #3 of Cy, such that ¢; and ¢z are equal on Fy. Thus, f(t1) = 3 if

and only if ¢5 is the unique valid time point of (5, such that ¢; and ¢, are equal on Fs. a

Definition 6.4 (combination of calendars) Let C; and Cy be calendars with combinable hier-
archies 77 and 73, respectively, and let 7 be the hierarchy combination of 73 and 75. Suppose f is
a linking function from €7 to C; and there is an embedded calendar F of (1, such that the linear
hierarchy of F forms a complete path of 7. The combination of C; and (5 is a calendar €' defined

as follows.

1. The hierarchy of C'is 7.

2. Every embedded calendar E’ of C, such that the linear hierarchy of E’ forms a complete
path in 7, is an embedded calendars of C'. (Note that £ is one such embedded calendar).

3. The validity predicate of (', denoted valido, is defined by
valido(t) = valide, (pr(t, C1)) A valide,(pr(t, C2)) A f(pr(t,Ch)) = pr(t,C2)

where validc, and validc, are the validity predicates of 'y and C, respectively.

Note that the definition assumes the existence of a complete path g in 7, such that g is also an
embedded calendar E of Cy (in general, this assumption does not necessarily hold). The embedded

calendar F is an embedded calendar of C'.
Proposition 6.7: Definition 6.4 is correct, i.e., C' is a well-defined calendar.

Proof: By Theorem 6.1, the hierarchy of €' is well defined. We need to show that the validity
predicate of (' satisfies the three bullet items of Definition 2.9. The first and third items are satisfied,
since the embedded calendars of C' are also embedded calendars of Cy and valide, (pr(t,C7)) must

be true when validc(t) is true.

To show that the second item is satisfied, suppose t. is a valid time point of an embedded
calendar F of (/. Since F is also an embedded calendar of (1, the second item of Definition 2.9
implies that there is exactly one valid time point ¢., of C7, such that pr(t.,, £1) = t.. Moreover,
there is exactly one time point ¢ of C' that satisfies both pr(t,Cy) = ¢, and pr(t,C3) = f(t.,); note
that ¢ exists, since f is the identity on the time units that are common to €7 and C5, and t is
unique, since f(%.,) is unique for a given ¢.,. By the definition of a linking function (Definition 6.3),
f(te,) is a valid time point of C'y. Therefore, valido(t) is true. Thus, we have shown that there is
exactly one valid time point ¢ of C, such that pr(¢, &) = t.. O

32

Proposition 6.8: Suppose €y and (5 are two calendars with combinable hierarchies 77 and 75,
respectively, and validity predicates validc, and validc,, respectively. Let calendar C' be the
combination of 'y and C5. If all the time units of some embedded calendar Fo of Cy also appear

in 1y, then validc(t) is equivalent to the conjunction valide, (pr(t,Cy)) A valide, (pr(t, Cs)).
Proof: Follows from Definition 6.4 and Proposition 6.6. a

Proposition 6.9: If calendar C is the combination of calendars Cy and Cy, then C' is compatible

with calendar (7.
Proof: Follows since C' and (' have the same embedded calendars. a

Proposition 6.10: Suppose calendar €' is the combination of calendars 7 and C5. If the linking

function f is bijective, then C'is compatible with calendar C's.

Proof: Let Fq be an embedded calendar of C' (and, hence, Fy is also an embedded calendar of Cy),
and let F3 be an embedded calendar of C'y. Consider the mapping f defined as follows (intuitively,
[’ is the restriction of f to £y and Ey). Given a valid time point ¢, of Iy, we define f'(t.,) = t,
if f(te,) = tc,, where ¢, is the unique valid time point of Cy, such that pr(¢,,F1) = t.,, and
pr(t.,, L) = t.,.

We will show that f’ satisfies the conditions of Definition 2.6. First, f’ is a bijection from the
valid time points of £ to the valid time point of F5, since f is a bijection and for every valid time
point ¢, (¢ € {1,2}) of E;, there is exactly one valid time point t., of C;, such that pr(t.,, I;) = t,.

Second, f’ is the identity on the time units that are common to F; and F,, since f is the

identity on the time units that are common to € and Cs.

Third, suppose t., and t_ are valid time points of Ej, such that t., <g, t_ . Since Fj is an
embedded calendar of 'y, Definition 2.11 implies that ¢., <¢, t. , where t., and t_ are the unique
time points of Cy, such that pr(t.,, F1) = t., and pr(t., , F1) = t_ , respectively. Since f is a linking
function and bijective, f(.,) <, f(1,). Since Ey is an embedded calendar of Cy, Definition 2.11

implies that pr(f(t.,), £2) <c, pr(f(t.,), E2). By definition of f’, it follows that f'(t.,) <¢, f'(tL,)-

Thus, the function f’ is a bijection showing that F; and Fy are compatible linear calendars

and, hence, C'y and (5 are compatible calendars. a

Finally, it turns out that if €' is the combination of two periodic calendars Cy,Cy w.r.t a bijective
linking function, then C' itself is periodic. In other words, when combining two periodic calendars

using a bijective linking function, the combination is guaranteed to be periodic as well.

Proposition 6.11: Suppose Cy, (s are two periodic calendars that are combinable and have com-

bination C'. If the linking function f is bijective, then C'is also periodic.

33

Proof: Suppose Ti,...,T, are the time units of (', and py, py are the periods of the top time
unit of €7 and (5 respectively. We denote by p, the least common multiple of p; and p;. We will
show that a time point ¢ = (#1,...,%,) is valid for C if and only if ¥ = (¢1,...,t, +7, p) is valid in
C'. Since (' is the combination of Cy and (5, according to definition 6.4 it enough to show that

valide, (pr(t, C1)) A valide,(pr(t,C2)) A f(pr(t,C1)) = pr(t, C2)
iff
valide, (pr(t?, C1)) A valide, (pr(t?,C2)) A f(pr(t*,C)) = pr(t, C2)

Since T, is the top time value of both ('; and C5 and p is a multiple of the periods of the
top time unit of €7 and Cy, it is easy to see that valide, (pr(t,Cy)) iff valide, (pr(t?,Cy)) and
valide, (pr(t, Cy)) iff validc,(pr(t?, C)).

It is left to show that f(pr((t1,...,%,),C1)) = pr((t1,....4,), Co) M f(pr((t1,.... 0, 41, p),C1)) =
pr((t1, ..., tn+1,p), C2). Since T}, is a time unit of both Cy and Cyq, the value of T}, in pr((ty, ..., %,), C1)
and pr((t1,...,t,),C2) is the same (i.e., t,), and similarly the value of T, is the same for both
pr((t1,....tn +1, p), C1) and pr((t1,...,tn +1, p), C2) (i-e., t,, +7, p). Furthermore, since p is a mul-
tiple of py, the number of valid time points of Cy with the value t¢,, of T, is equal to the number
of valid time points of C7 with the value ¢, +7, p. Similarly, for C. As f is a linking function,

and thus satisfies the first bullet of Definition 6.3 and as f is bijective, we can conclude that

fpr(t, C1)) = pr(t, Ca) i f(pr(t?, C1)) = pr(t, Cy). o

6.4 Realizing Linking Functions via Constraints

As already stated earlier, the combination of two calendars depends upon the existence of a link-
ing function specifying the semantic relationship between the two calendars. Usually, a linking
function cannot be inferred automatically from the syntax of the original calendars; it must be
specified explicitly by the user or agent that wishes to combine the two calendars. It turns out that
constraints form a natural way of expressing linking functions. In fact, we will show that if calendar
(' is the combination of calendars €y and 5, then we can automatically obtain the realization of
the validity predicate of C' from the realizations (via constraints) of the linking function and the

validity predicates of Cy and Cs.

Definition 6.5 (restriction of a linking function) Suppose f is a linking function from ' to
(5, and Fq and Fy are embedded calendars of 'y and C5, respectively. The restriction of f to F;
and Fs is a linking function from Fy to E, that is defined as follows: f'(t.,) = t., if f(t,) =t.,.
where t., is the unique valid time point of Cy, such that pr(t.,, 1) = t¢,, and pr(t.,, F2) = t.,. O

The following proposition shows that for the purpose of realizing the validity predicate of C', it

is sufficient to realize the restriction of f to £y and Fs.

34

Proposition 6.12: Let validc, valide, and validc, be the validity predicates of the calendars C,

(7 and C5, respectively, that are mentioned in the above definition. Then

valido(t) <= valide, (pr(t,C1)) A valide, (pr(t,Co)) A f/(pr(t, E1)) = pr(t, E2)
Proof: By Definition 6.5 and Proposition 2.3, if f(pr(¢,C1)) = pr(t,C2), then f'(pr(t, £q)) =
pr(t, £2). Thus,

valido(t) = valide, (pr(t, C1)) A valide, (pr(t,Co)) A f/(pr(t, F1)) = pr(t, E2)
Conversely, if the conjunction

valide, (pr(t, C1)) A valide,(pr(t, C2)) A f'(pr(t, E1)) = pr(t, F2)

is true, then by Definition 6.5, f(pr(t,C1)) = pr(t, C2), since pr(t,C;) (i € {1,2})is the unique valid

time point of C; that is equal to pr(¢, F;) on E;. O

Definition 6.6 (realizing a linking function via constraints) Suppose calendar C'is a com-
bination of calendars €y and (s, according to a linking function f. Let T%,...,7, be all the time
units that appear in either €y and C'5, where T}, is the top time unit that is shared by both C; and
Cy. A set {(01,T1),...,(0,,,Y,,)} of pairs of constraints is said to realize the linking function f
if

0O; is a TUCL constraint that has a single TPCL variable ¢ and only the TUCL variables
t.11,...,t.Th—1 (but not t.7,) may appear in 0,

T; is a top constraint involving only the TUCL variable t.7T,,,

For all 1 <i < j <n, the TUCL constraints ©; and ©; have no common solutions, and

f(pr(t',Ch1)) = pr(t',C3) if and only if there is a pair (0;, ;) (1 < i < m), such that the

assignment ¢ = ¢’ is a solution of ©; A T;. a

Example 6.6: A very simple example showing how to realize a linking function is given below.
Consider the two calendars:

(C1: doy LC year
(5 : month C year.

As these calendars are linear, each one is also its own embedded calendar. Intuitively, we would

like to construct a linking function from 7 to Cy, because the day of year uniquely determines the

35

month, but not the other way round. Thus, we can realize this linking function using a set of 23

pairs of constraints {(©1,Y1),...,(023, To3)}. The first three pairs are given below.

0, = 1< tdoy <31 A tomonth = January.

T, = twyear>0

O, = (32<t.doy <59) At.month = February.
T, = tyear>0

O3 = t.doy = 60At.month = February

Ts = twyear mod 4 = 0.

The other pairs may be similarly expressed, building upon (01, Y1), (02, T3) and (03, T3).

6.5 Realizing the Validity Predicate of a Combined Calendar

Suppose calendar €' is a combination of calendars ('; and C5. In this section, we show how to
construct a realization (according to Definition 4.1) of the validity predicate of C' from realizations
of the linking function from €7 to €5 and the validity predicates of €'y and C3. Note that by
Proposition 6.12, it is sufficient to use a realization of the restriction of f to some embedded

calendars Fq and Fs of 'y and C5, respectively.

Theorem 6.2 (realizing the validity predicate of a Combined Calendar) Suppose calendar
(' is a combination of calendars C'; and C3, according to a linking function f. Let Ty, ...,T;, denote
the time units of C', where T}, is the top time unit, and let validc, validc, and validc, denote the
validity predicates of C', 'y and (5, respectively. Suppose f is realized by the set

{(01,71), .., (O, Ti)}

and validc, (1 = 1,2) is realized by the set
{9, @1), ., (), @1,)}

Moreover, suppose that (by an appropriate renaming, if necessary) all of the above realizations use

the same TPCL variable ¢. Then the following set of pairs realizes validc.
{(WLATU2A0,, L AP2AT,) 1< u<m,1<v<mg,l<w<k}
Proof: We need to show that the four conditions of Definition 4.1 hold.

1. Since ¥l W2 and @, are all TUCL constraints involving only the TUCL variables t.7%, ..., t.T,_q,
sois (PLATUZA0,).

36

2. Since ®L, ®2 and T,, are all top constraints (involving only the TUCL variable ¢.7},), so is
(PLABEAT,).

3. We need to show that (¥} AVZ AO,,) and (¥, AV2 AO,,), where either uy # ug, v1 # v
or wy # wsg, have no common solutions. It is true, since none of the following pairs can have
common solutions.

o Ul and ¥} , where uy # u.
o U2 and U2 where vy # vy,
o O, O,,, where wy # ws.

4. Suppose t' = (t},...,1) is a valid time point of C; that is, validc(t') is true. By definition

of validg, it follows that valide, (pr(t', Cy)), valide,(pr(t',C3)) and f(pr(t',C1)) = pr(t', Cs)

are all true.
e Since valide, (pr(t',C)) is true, there is a w, such that ¢ = pr(t',C;) is a solution of
Ulaol
o Since valide,(pr(t',Cy)) is true, there is a v, such that ¢ = pr(¢/,C3) is a solution of
U2 A P2,
e Since f(pr(t',Cy)) = pr(t',C3) is true, there is a w, such that ¢t = ¢’ is a solution of
Oy ATy
Therefore, there are u, v and w, such that ¢ = ¢’ is a solution of YL AUZA0, APLAGZAT,,.
Conversely, suppose t = ¢’ is a solution of UL A W2 A0, A ®L A D®2AT,. Then the following
must hold.
o ¢ =pr(t',C) is a solution of WL A ®L and, hence, valide, (pr(¥',C1)) is true.
o ¢ = pr(t',Cy) is a solution of W2 A ®2 and, hence, validc, (pr(t',C3)) is true.
e t =1 is a solution of @, A T,, and, hence, f(pr(t',C1)) = pr(¥/,C3) is true.

Therefore, validc(t') is true.

6.6 Realizing the Successor of a Combined Calendar

In order to complete the realization of calendar ' that combines calendars Cy and Cs, we need to
realize the successor of (. As the following propositions shows, the realization of the successor of

C can be constructed from the realization of valids and the realization of successor of (.

The following result will be helpful in realizing successors. Suppose ¢ is a time point in the

combined calendar, and suppose (without loss of generality) that the embedded calendar of the

37

combination is originally from ;. Then we may project t onto Cq and find the successor (in Cy) of
this projected time point. We may then de-project this time point back to the combined calendar

and obtain the successor of t. The following result says that this claim is indeed correct.

Proposition 6.13: Suppose calendar C is the combination of calendars €y and C3. Then the
following equality holds.
t o 1=dp(pr(t,C1) Gy 1).

Proof: Let E; be an embedded calendar of C' (and, hence, also of Cy). Consider a valid time
point ¢ of C'. By the first equality of Proposition 2.5,

pr(t,Cl) G, 1 = dpcl(pr(t,El) DEy 1)

since pr(t,C7) is a valid time point of Cy and pr(pr(¢,C1), E1) = pr(t, £1). By applying de-projection
to both sides of the above equality, we get the following:

dpc(pr(t, C1) Bey 1) = dpe(dpe, (pr(t, 1) ©g, 1))-
By the second bullet of Definition 2.9,
dpc(dpe, (pr(t, E1) @y 1)) = dpo(pr(l, E1) &5, 1),

since both sides of the equality have the same projection on the embedded calendar F;. From the

last two equations, we get the following:
dpc(pr(t, C1) ®ey 1) = dpo(pr(t, B1) &, 1).
By the first equality of Proposition 2.5,
tdol = dpe(pr(l, B1) ©p, 1),
and from the last two equations, we get the following.

t®cl = dpa(pr(t,Ch) Doy 1)

We are now able to state how the successor function of a combined calendar is realized.

Theorem 6.3 (realization of a successor of a combined calendar) Suppose calendar C'is a
combination of calendars C'; and C5, according to a linking function f from Cy to Cs, and Ty, ..., T,

are the time units of C', where T}, is the top time unit. Let

{(01,71), .., (O, Ti)}

38

be the set of pairs that realizes the successor of C (according to Definition 4.2). Similarly, let

{(®1,91),..., (P, V) }

be the realization of the validity predicate of C'. Moreover, suppose that (by an appropriate
renaming) the TPCL variable in each pair (®;,¥;) is tT. Then the successor function of C' is
realized by the following set:

{(62', T A (v;?”;lcbjmpj)) 11<i< k}

Proof: Note that both ©; and T; only have TUCL variables of the time units that appear in C.

However, we will consider solutions of ®; and T; that are defined on all the time units 17,...,7T,.

We need to show that the above set of pairs satisfies the four conditions of Definition 4.2. It is
easy to see that the first two conditions are satisfied. In order to prove that the third condition is
satisfied, suppose ¢t = t’ is a solution of both O, and O,, where p # ¢ and ¢’ is a valid time point
of C'. Since O, and 0, only have time units of (7, it follows that t = pr(¢’,C4) is also a solution
of both ©, and ©,; moreover, pr(,C7) is a valid time point of (1, since C' and C; share some
embedded calendar. However, the pairs (0,,T,) and (©,,T,) are in a set realizing the successor
of Cy and, therefore, ¢t = pr(t',Cy) cannot be a solution of both @, and ©,. This contradiction
implies that the third condition of Definition 4.2 is satisfied.

In order to prove the fourth condition, suppose t = t’ is a solution of ©;, where ¢’ is a valid time

point of C'. Thus, pr(#',Cy) is a valid time point of C7 and also a solution of ©;.

Since the set {(®1,¥1),...,(Ppm, ¥,)} realizes the validity predicate of C' and the only TPCL
variable appearing in this set has been renamed to ¢, it follows that every solution of T;[t/t'] A
(iP5 A \Ilj) is a valid time point of C.

Suppose T;[t/t'] A (i T \Ilj) has two solutions tT = ¢; and ¢T = t5. Since only time units
of Cy appear in T;, both pr(t;,Cy) and pr(te,C) are solutions of Y;[t/pr(t’,C)]. Since the pair
(0;,T;)is in a set realizing the successor of (1, it follows from the fourth condition of Definition 4.2
that pr(t1,Cy) = pr(tz, C1) and pr(',Cq) ®¢, 1 = pr(t1, Cq). Since C' and Cy share some embedded
calendar and both ¢; and t; are valid time points of C, it follows from pr(¢1,C1) = pr(tz,Cy) that
1y = t3. By Proposition 6.13, pr(t',C1) ®¢, 1 = pr(ty, Cy) implies t; = t' @& 1. Thus, we have shown
that the fourth condition of Definition 4.2 is satisfied. a

6.7 Combining non Compatible Calendars

Suppose Cy and C5 are two calendars that we wish to combine. The preceding sections specify
how to combine such calendars, even if these calendars are not compatible with one another. In
this section, we briefly describe how our calendar combination techniques vary, depending upon

whether C'; and (5 are compatible or not.

39

For (1 and C5 to be compatible, there must be a bijection between time points determined by
their respective embedded calendars. This definition of compatibility bears a close resemblance to
the definition of a linking function between such embedded calendars. However, linking functions

may not be bijections, while functions establishing compatibility are bijections.

Suppose we return to the calendars in Figure 3 (cf. also Example 6.6), and consider the two

incompatible calendars shown in (a) and (b) of that figure, i.e.,
(C1: doy LC year

(5 : month C year.

Their combination is captured by Figure 3(c) where the embedded calendar is doy C year. Notice
that there is a linking function between the calendars of Figure 3(a) and (b); however, this function
is not a bijection. Intuitively, given a year, and a day in the year, we can uniquely determine the
month in which that day falls; however, given a year and a month, we cannot uniquely determine a

day; this is what prevents the existence of bijection between the calendars of Figure 3(a) and (b).

Consequently, when Cy and (5 are incompatible, but there exists a linking function between
their respectively embedded calendars, we are faced with the following problem (which does not
occur if the calendars are compatible). A time-point, ¢, according to C'y determines a set, x(t), of
time points in the combined calendar. Thus, if a user who is familiar with calendar C; wishes to
ask whether a particular proposition p is true at time ¢ (in calendar C3), there are several possible

ways of answering this query such as the three shown below:

e Answer “yes” if p is true at all time points in y(¢) and “no” otherwise;
o Answer “yes” if p is true at some time point in x(¢) and “no” otherwise;

e Answer “don’t know” if p is true at some time point in x(¢), and p is false at some time point

in x(1).

For example, returning to the calendars in Figure 3, the user may ask the query “Did John visit
Turkey in June 1996.” June 1996 is a perfectly good time-point w.r.t. the calendar of Figure 3 (b);
however, if the data’s temporal aspect is specified by the combined calendar shown in Figure 3(c),
then its not clear whether it is appropriate to answer “yes” when John was in Turkey for a few
(but not all) days in June 1996.

Another situation that could occur is when two intelligent agents use two different calendars
(locally), but communicate with each other through a combined calendar. Thus, for instance, a
planning agent may use the calendar of Figure 3(a), while a database agent uses that of Figure 3(b)
— they communicate with each other through the calendar of Figure 3(c). Now suppose the planning
agent asks the database agent whether query @) holds at time ¢ where ¢ is a time-point according to

the combined calendar. Thus, for example, the planning agent may ask: “Were the steel widgets

40

shipped on doy = 76, month = March, year = 1996.” However, the database agent in this case
only has information represented with calendar C';. The answer provided by the database agent is
(similarly to previous discussion) contingent upon the semantics of the database agent. If it has
information that steel widgets were shipped in March 1996, this semantics should tell us whether
this refers to a truth about all days in March 1996, or just some day in March 1996. Thus, in this
case, the semantics of the database agent’s calendar will determine the response. In contrast, if the
database agent merely information that the steel widgets were shipped in June 1996, then it can

safely answer “no” to the planning agent’s query, independently of the forall/existential semantics.

In this paper, we are primarily interested in the problem of characterizing, representing, and
combining calendars. The problem of processing queries using such (possibly combined) calendars

will build upon these definitions and will be discussed in a future paper.

The above situation, of course, does not arise, if the two calendars are compatible.

7 Combining Calendars with Different Top Time Units

In the preceding sections, we have shown how to combine different calendars under the assumption
that the calendars being combined share the same top time unit. However, certain applications may
require the combination of two calendars with different top time units. For example, the Gregorian
calendar and the Hebrew calendar have different notions of “year” and hence, they have different
top time units. Any application which requires combining the Gregorian calendar and the Hebrew
calendar is not supported by the definitions of the previous sections. Fortunately, there is a simple

extension of the preceding sections that allow us to combine calendars with different top time units.

Definition 7.1 (temporal forest of time units) A collection of distinct time units Ty,...,T,

with a partial order C (on the time units) forms a temporal forest if there is a set of trees

{T1,..., 7}, such that

e Each 7;, 1 < ¢ < m,is a hierarchy of time units.
e For each 7 # j, 7; and 7; have disjoint sets of time units.
e Each time-unit 7T, appears in one of the trees 7,.

The Disjoint-ness Assumption. We will require that whenever we wish to combine two calendars

having different top time units, that those two calendars have disjoint sets of time-units.

We now show, through examples, why this is a reasonable assumption and furthermore, demon-

strate the applicability of the notion of temporal forest.

41

Example 7.1: Let us consider the combination of the Hebrew calendar and the Gregorian calendar

and the Hebrew calendar!. The hierarchy associated with the Gregorian calendar is:

day € month C year

while that associated with the Hebrew calendar is

hday € hmonth C hyear.

Notice that the set of time values associated with year and hyear and the ordering on those time

values are identical. However, these two time units must be treated differently for the following

reasons:

1.

First, the current year in the Gregorian calendar is 1997, while in the Hebrew calendar it
is 5757. Thus, the same “physical” point in time is captured in the two calendars with two
different time unit values, and thus, some distinction must be drawn between the Hebrew

notion of year, and the corresponding Gregorian notion.

Second, the number of months (hmonth) that constitute a Hebrew year (hyear) varies from
year to year — a phenomenon that does not occur in the Gregorian calendar. Similarly, the
number of days (hday) that constitutes a Hebrew month (hmonth) is either 29 or 30; in

contrast, the values of the time unit day in the Gregorian calendar is {1,...,31}.

. Of course, the Gregorian and Hebrew calendars use different time unit values for the time

units month, hmonth and day, hday.

This explains why the set of time-units associated with the Hebrew and Gregorian calendars are

totally disjoint. An analogous observation applies also to the Moslem and Hindu calendars.

Suppose now, that an application requires integrating the Hebrew and Gregorian calendars.

For example, in Israel, checks are usually dated with Gregorian dates, but sometimes, they may

be dated with Hebrew dates. To reason with this kind of heterogeneity, we must be able to “map”

both the Gregorian and the Hebrew dates into a combined calendar. This is done, as before, in

three steps.

2.

. Forest Construction: Instead of constructing a hierarchy (as we did previously when com-

bining calendars with the same top time unit), we will merge the hierarchies of two calendars

with different time units into a forest.

Selecting Embedded Calendar: This is the same step as before.

!The reader may be interested to know that the Gregorian calendar is based entirely on the sun; the Islamic
calendar is based entirely on the moon, while the Hebrew calendar is a hybrid, based largely on the moon, but

“adjusted” to take care of some solar phenomena.

42

3. Merging Validity Specification: This too, remains identical to what we had before.

The forest associated with merging the Gregorian and Hebrew calendars just consists of the

two trees originally associated with the Gregorian and Hebrew calendars.

The definition of combination of two calendars is almost identical to Definition 6.4 except that
it now generates a forest structure, rather than a hierarchy. We provide it below for the sake of

completeness.

Definition 7.2 (forest combination of calendars with different top time units) Suppose Cy
and (5 are disjoint calendars with different top time units. The forest combination, F'C, of C1 and

Cy is given by:

1. Forest of F'C': This consists of two trees, Ty, Ty viz. the hierarchy of €y and the hierarchy
of CQ.

2. Embedded Calendar of F(': There exists a complete path ¢ in some T;, ¢ = 1 or 2, such
that:

(a) There exists an embedded calendar £ of C; (¢ is either 1 or 2) whose linear hierarchy is

p and
(b) there exists a linking function f between C; and C; (¢ # j) w.r.t. F and B’ where £/

is an embedded calendar of C;. (Note that for this definition to “work”, we need to
use a modified definition of linking function from that given earlier, so as to account for
the fact that C; and C; have different top time units. Thus, the metavariable T; in the
second bullet of Definition 6.6, may now involve two top time-units, one from each of

the calendars being combined.)

(c) Eis the embedded calendar of F'C' .

3. Validity Predicate of F'C: The validity predicate, validrc associated with F(C is defined

as follows:
(a) If validpc(t) is true, then pr(¢,Cy) is valid w.r.t. C; and pr(t,Cq) is valid w.r.t. Cs.

(b) If validpc(t) is true, then f(pr(t, E)) = pr(t, E’).

This completely defines how to combine two calendars with disjoint hierarchies. Notice that
the validity predicate is unchanged from Definition 6.4. When considering the realization of forest

combinations, we note the following elementary differences.

1. In the second bullet of Definition 6.6, T;, which is used in the realization of the linking

function, may now involve two top time-units, one from each of the calendars being combined.

43

2. The constraint ®; used in the realization of the validity predicate (as specified in the second
bullet of Definition 4.1) may now involve two top time units. This is because of two reasons:
the first of course, is that there are two top time units in the two calendars being combined.
The second is that according to Theorem 6.2, the pair that realizes the validity predicate of
the combination involves one ®! from one calendar, and ®2 from the other, each having a

different top time unit in it.

8 Related Work

There has been extensive work in the area of temporal representation and reasoning in both the
AT and database communities. We classify the related work into three parts — work on temporal
constraints in Al, work on temporal databases, and work on calendars. In order to place our work
in the context of extensive research in these areas, we focus discussion on selected works; the reader
interested in detailed surveys of temporal representation and reasoning may consult Chomicki [5]

or Gabbay et. al.’s excellent survey book[10].

Temporal Constraints in AI: Allen[l] was one of the first to develop a logical framework
for reasoning with interval time for actions. He presented 13 relationships between intervals of
time and proposed a logic to reason with these interval relationships. Kautz and Vilain [26] study
three types of primitive relations between time points and allow the expression of disjunctive
information between time points. They show that under certain conditions, relations between
interval can be captured in their framework. Dean and McDermott [8] developed a technique for
reasoning about point-based temporal databases. In particular, they develop a framework called
Time Map Management (TMM) to answer queries involving temporal inference, as well as to
perform maintenance tasks when the temporal database is updated. Dechter et. al. [9] were one
of the first to apply general purpose constraint solving techniques (such as the Floyd-Warshall
shortest path algorithm) to reason about temporal relationships. Van Beek[2] develops algorithms
that finds consistent scenarios (as defined in his paper) based on Allen’s interval algebra and Vilain
and Kautz’s approach. Some other works dealing with events and actions in the AT field include
Kowalski and Sergot’s event calculus[18], Schwalb et. al.’s [24] work on events, efficient algorithms
for temporal constraints by Ladkin and Reinefeld [21], and studies of the complexity of temporal

reasoning [11].

In all these frameworks, time points are assumed to be either integers or reals, and intervals
are bounded by time points. However, these time points are not specified with reference to an
underlying calendar. The aim of this paper is to formalize the notion of calendars, i.e. to provide

a frame of reference against which techniques of these authors may be fruitfully applied.

Temporal (Constraint) Databases: Kabanza et. al. [13] presented a framework for infinite
temporal data bases. They view time as isomorphic to the integers. They represent time points

using linear repeating points (points of the form ¢ + kn, lrps for short) and restricted constraints.

44

Though they showed that the relational algebra may be extended to handle lrps, it still remains a
fact that representing time in terms of Irps is highly unnatural for human beings. As we stated in
the introduction, a human being may have trouble representing the 15th of March, 1994, as the time
point 2,777,802,116 or something equally confusing. In contrast to their work,we do not attempt to
map time to the integers. Instead, we represent time according to the notion of a calendar, which
we have defined, and allow the user and the system to manipulate (representations of) calendars,
without the user having to be aware of the internal calendar representation. Our framework is rich
enough to handle a wide variety of calendars. Kabanza et. al.’s results may, however, be used in
conjunction with ours as follows: their results on linear repeating points can be used to represent
the constraints for realizing calendars, by using their languages to express constraints on the top

time unit, which is isomorphic to the integers in our system.

In a similar vein, Koubarakis has published an elegant series of papers in which he reasons about
definite and indefinite temporal specifications [16, 17] — in particular, he shows that constraints
may be used to capture indefinite temporal information (points and interval) and manipulated
these constraints to implement operations that extend those in the relational algebra of databases.
However, he does not use symbolic time that refers to an underlying calendar, nor does he discuss

the integration of multiple calendars.

Calendars: Ladkin [19, 20] uses sequences of integers to represent standard units assuming a
linear hierarchy of time units, year, month, day, minutes etc. He uses this simple time system to
define intervals. In our framework, intervals can be easily represented by simple constraints such
as

(lower bound) < ¢ < (upper bound).

However, as solutions to such constraints are time-points, this representation of intervals ultimately
ends up reasoning with time points, and thus does not capture Ladkin’s intuitions. We will study

how interval reasoning with multiple calendars can be performed in future work.

Leban et. al. [22] define a calendar to be a collection of an infinite sequence of intervals that
span the time line. In other words, the space of all integers is “sliced” up into intervals that
capture different parts of a calendar. For example, if the unit measure is 1 second, and ty denotes

Saturday, December 31, 1904 then they suggest the following definitions:

1. Days =<< t0;86400 >> (this intuitively specifies that each day is an interval of 86400

seconds).

2. Months =<< Days;31;28:31;30...
31;28;31;30...
31;28;31;30...
31;29:31; ... >>.

Intuitively, this provides an explicit way of defining calendars, while constraints are more compact

and depend less upon the selection of the start time ty. In contrast, our framework is very general,

45

and can use well known techniques (e.g. Bellman Ford [6]) to solve constraints, rather than special-
ized techniques. In addition, we are able to seamlessly define what it means to combine calendars,
which they do not address. On the other hand, they study intervals in much greater detail than

we do.

Niezette and Stevenne [23] have made an elegant preliminary attempt to develop a symbolic
representation of periodic time. They too use constraints to represent time points. In contrast,
we use constraints to represent not only time points, but calendars as well. A consequence of our
approach is that we can represent very general calendars as opposed to the periodic calendars that
they focus on. They project each time unit (called calendar in their terminology) onto the integers
— something that we do not do, thus allowing us to present to the user, an interface that shows
only time as represented in the calendar (which is more natural to the user than representing time

as an integer).

Jajodia and his colleagues [27] provide a formal framework for reasoning with multiple time
granularities, but do not either represent time symbolically or represent calendars. They too
convert time expressed in multiple granularities to the integers. Hence, as in the case of Niezette
and Stevenne [23], our framework offers the advantage that the user can work with his own calendar
representation of time, rather than with answers coming back in terms of the integer representation

of time.

Bettini et. al. [3] develop the notion of an event structure with temporal granularities. An
event structure is basically a graph whose nodes represent events and whose edges represent tran-
sitions between these events. However, the edges are labeled with a set of “timed constraints with
granularity” (TCGs). They then show how to mine temporal dependency information (e.g. they
may notice that IBM stock experiences a rise in any interval where Microsoft stock experienced a
decline) from such event structures. Their work is related to ours because TCGs allow symbolic
time where different time units may label a TCG. Their work is complementary to ours in the
following sense: they develop techniques to convert one time unit to another, and essentially these
conversion functions may be used to implement our linking functions. On the other hand, they
have no notion of a calendar (they did not require it for their purposes), nor do they present a

technique to integrate calendars.

TSQL2 is a query language which is an extension to SQL2 that supports multiple calendars —
in particular, each user can define his own calendar. This is much closer in spirit to what we have
in mind. Frameworks such as those of [7] fall within this category. Another effort to define multiple

calendars is that of Chandra et. al. [4]. However, as Chomicki [5] pointed out:

“We are not aware of any comprehensive description, even informal, of semantics of
TSQL2 queries. This makes it impossible to establish formal properties of this lan-

guage.”
In contrast, our framework provides a formal foundation within which calendars may be expressed,

46

combined, and reasoned with. Chomicki [5] provides an excellent survey of temporal databases,

but only briefly touches upon symbolic representations of time.

9 Conclusions

Though most theoretical models of time (correctly) assume that the integers are adequate to reason
about time, the fact of the matter is that most human beings, as well as most applications dealing
with temporal data, specify time, not as integers, but rather as “dates” with respect to a symbolic,
underlying calendar (e.g. the Gregorian calendar). The first contribution we have made in this
paper is to provide a formal definition of a calendar that captures this intuition. Calendars are
composed of a hierarchy of time units (e.g. day, month, year, etc.) and each of these time units has
an associated set of symbolic values that are totally ordered. It may turn out that these symbolic
values are integers, but they could just as well not be integers (e.g. the values could be Monday,
Tuesday,...). In addition, calendars come equipped with a syntactic notion of a time-point w.r.t.
the calendar, and an accompanying semantic notion called validity which specifies which time-points

“make sense” (e.g. the syntactically valid date, “Feb 29, 1995” is not semantically valid).

Constraints over the domain of time points provide a unifying framework for expressing all the

above concepts.

Furthermore, we consider what happens when multiple applications using different calendars
wish to work together. In such a situation, the mismatch between their calendars needs to be
resolved. To do this, we define a declarative notion of combination of multiple calendars. We show
how this declarative notion may be operationally realized by manipulating the constraints used to

represent the calendars being combined.

References

[1] J. Allen (1984). Towards a general theory of action and time, Artificial Intelligence, 23:123-
154.

[2] P. van Beek (1992). Reasoning about qualitative temporal information, Artificial Intelligence,
58:297-326.

[3] C. Bettini, X. Sean Wang, and S. Jajodia. (1996) Testing Complex Relationships Involv-
ing Multiple Granularities and its Application to Data Mining, Proc. 15th ACM Symp. on
Principles of Database Systems, Montreal, Canada, pps 68-78.

[4] R. Chandra, A. Segev and M. Stonebraker. (1994) Implementing calendars and temporal rules
in next generation databases, Proc. IEEE Conf. on Data Engineering, 1994.

47

[5] J. Chomicki. (1994) Temporal Query Languages: A Survey, Proceedings of the 1st Interna-
tional Conference on Temporal Logic (eds. D. M. Gabbay and H. J. Ohlbach), pps 506-534,
Lecture Notes in Al Vol. 927, Springer.

[6] T. Cormen, C. Leiserson and R. Rivest. (1990) “Introduction to Algorithms.” MIT Press and
MecGraw Hill.

[7] Curtis E. Dyreson and Richard T. Snodgrass (1995) “Temporal Granularity”, in The TSQIL2
Temporal Query Language. Richard T. Snodgrass, editor. Kluwer Academic Press, 1995. pp.
347-383.

[8] T. Dean and D. McDermott (1987). Temporal data base management, Artificial Intelligence,
32(1):1-55.

[9] R. Dechter, I. Meiri and J. Pearl (1991). Temporal Constraint Networks, Artificial Intelligence,
49:61-95.

[10] D. Gabbay, C.J. Hogger and J.A. Robinson. (1994) Handbook of Logic in Artificial Intelli-
gence and Logic Programming, Vol. /: Epistemic and Temporal Reasoning, Clarendon Press,

Oxford.

[11] M. C. Golumbic and R. Shamir (1993). Complexity and algorithms for reasoning about time:
A graph-theoretic approach, Journal of the ACM, 40(5):1108-1133, November 1993.

[12] F. Hillier and G. Lieberman. (1974) Operations Research, Holden-Day.

[13] F. Kabanza, J.-M. Stévenne and P. Wolper. (1995) Handling Infinite Temporal Data, Journal

of computer and systems sciences, 51, 1, pps 3-17.

[14] D. E. Knuth. (1973) The Art of Computer Programming, Vol. 1: Fundamental Algorithms,
Addison Wesley.

[15] S. Kraus, Y. Sagiv and V.S. Subrahmanian. (1997) Representing and Integrating Multiple
Calendars, Univ. of Maryland Technical Report, Feb. 1997.

[16] M. Koubarakis. (1994) Database Models for Infinite and Indefinite Temporal Information,
Information Systems, Vol. 19, 2, pps 141-173.

[17] M. Koubarakis. (1994) Complexity Results for First Order Theories of Temporal Constraints,
Proc. 4th Intl. Conf. on Principles of Knowledge Representation and Reasoning (KR-94),
Bonn, Germany, pps 379-390.

[18] R. Kowalski and M. Sergot. (1986) A Logic-based Calculus of Events, New Generation Com-
puting, 4, pps 67-95.

48

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

P. Ladkin. (1986) Primitives and units for time specification, Proceedings of the Fifth Na-
tional Conference on Artificial Intelligence (AAAI-86), Vol. 1, pps 354-359, Philadelphia,

Pennsylvania, Morgan Kaufmann.

P. Ladkin. (1987) The Completeness of a Natural System for Reasoning with Time Inter-
vals, Proceedings of the 10th International Joint Conference on Artificial Intelligence (ed. J.
McDermott), Milan, Italy, pps 462-465, Morgan Kaufmann.

P. B Ladkin and A. Reinefeld. (1992) Effective Solution of Qualitative Interval Constraint
Problems, Artificial Intelligence, Vol. 57, Nr. 1, pps 105-124.

B. Leban, D. McDonald and D. Forster. (1986) A Representation for Collections of Temporal
Intervals, Proceedings of the 5th National Conference on Artificial Intelligence. Volume 1,

pps 367-371, Morgan Kaufmann.

M. Niezette and J. Stevenne. (1992) An Efficient Symbolic Representation of Periodic Time,
Proc. First International Conference on Information and Knowledge Management, Baltimore,
Maryland, Nov. 1992.

E. Schwalb and R. Dechter (1993). Coping with Disjunctions in Temporal Constraint Satisfac-
tion Problems In The National Conference on Artificial Intelligence, AAAI-93, Washington,
DC, pp. 127-132.

R. T. Snodgrass and M. D. Soo. Supporting Multiple Calendars, in: The TSQL2 Temporal
Query Language (ed. R.T. Snodgrass), pps 103-121, Kluwer Academic Publishers.

M. Vilain and H. Kautz. (1986) Constraint Propagation Algorithms for Temporal Reasoning,
Proc. AAAI-1986, Philadelphia, PA, pps 132-144.

X. Y. Wang, S. Jajodia, and V.S. Subrahmanian. Temporal Modules: An Approach Toward
Federated Temporal Databases, INFORMATION SCIENCES, Vol. 82, pps 103-128, 1995.

49

