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Abstract

We analyze sequential detection for diffusion type signals both in the fixed prob-
ability of error formulation and in the Bayes Formulation. We show that the optimal
strategy in both cases is of the threshold type with explicitly computable thresholds.
We provide efficient numerical schemes for computing approximations to the likeli-
hood ratio and provide an implementation via a special purpose VLSI processor for
real time processing in the scalar diffusion case. Finally, we describe the DELPHI
expert system which is under development. Its purpose is to provide an integrated

system level design tool for sequential real time detection and estimation.



Introduction

In the present paper we analyze in detail the sequential detection problem for dif-
fusion process signals. In particular we address questions related to optimal strategies,
numerical computation of the sufficient statistics, real-time architectures for imple-
menting the resulting algorithms, and describes a sophisticated system level design
tool: the DELPHI system. The techniques presented here can be extended to apply
to more general signal, observation models such as multi-dimensional diffusions, jump
point process models and mixed models. We shall not address them here.

While Gaussian signal processing theory and design have reached a certain de-
gree of completeness, the corresponding developments for non-Gaussian signal pro-
cessing are unsatisfactory from the designer’s point of view. The main reason is that
no systematic effort has been undertaken to transform the theoretical advances in
non-Gaussian detection and estimation theory into practical design methods. In the
meantime the engineering specifications on signal processors are becoming increas-
ingly more demanding, resulting in an unavoidable ascending degree of complexity.

Recent progress in stochastic processes, and in particular in non-Gaussian detec-
tion and nonlinear filtering theory, hold great promise. It is well known that every
signal detection and classification problem requires the solution of some underlying
estimation problem (Kailath [1969]). Despite the fact that this has been known
for many years, its impact on the resolution of complex signal processing problems

in non-Gaussian environments has been very limited (see the references of (Kailath
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Introduction 2

[1969]) for some ingenious applications). The primary reason for the limited appli-
cability of the powerful machinery of nonlinear estimation in signal detection and
classification problems has been the formidable computational complexity called for
by these theories: at least a stochastic nonlinear partial differential equation has
to be solved on-line. However, recently three events have caused a serious reexam-
ination of these issues. First, recent progress in nonlinear estimation succeeded in
replacing the fundamental stochastic nonlinear partial differential equation with a
linear non-stochastic partial differential equation, (Davis [1981]) the so called robust
version of the Zakai equation. Second, the advent of systolic VLSI arrays (as well
as other special purpose VLSI array processors) led to the proposal of a design of a
VLSI processor that could implement the Zakai equation in real time (Baras [1981]).
Third, the maturation of artificial intelligence has provided a plethora of design tools

whose impact on other disciplines has not even been tested yet.

The nonlinear filtering problem, in its various manifestations (depending on sig-
nal and observation models), is at the heart of many interesting and significant signal
processing problems. We have identified, among others, digital signal processing
(such as pulse amplitude modulation, delta modulation, adaptive delta modulation,
and speech processing), direction finding receivers, digital phase lock loops, adaptive
sonar and radar arrays, sequential detection, simultaneous detection and estimation,
sensor scheduling in data fusion problems, adaptive stochastic control, stochastic con-

trol with partial observations, and nonlinear observers.

We next offer some justification for the selection of the research problem and
technical approach. First regarding VLSI architectures, we note that recently a lot of
attention and research effort has been devoted to VLSI architectures for linear signal
processing schemes (Kailath Whitehead |). However, the need for special architectures
is more dramatic in the case of nonlinear signal processors, such as needed in non-

Gaussian problems. To focus, we recall that the sequential detection problem or the
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nonlinear filtering problem, calls for a processor that operates on data in “real time”.
What is meant by “real time”? Since it is clear that we are led to some sort of
digital circuit implementation, real time means that the allowable sampling period
for the observed data must be larger that the computational cycle for the digital
device implementing the algorithm. In the case of the nonlinear filtering problem,
the theoretical analysis produces an algorithm that calls for the solution of a stochastic
partial differential equation. Hence a real time processor based on this algorithm must
provide fast approximations to the solution of this equation. To a great extent our
work has been initiated by the desire for developing a theory and design to account
for real time implementation constraints for non-Gaussian detection and non-linear

filtering.

The structure of this paper is as follows.

In Section 1, we provide a detailed analysis of the sequential detection problem
for diffusion signal and observation models. Both the Bayesian and fixed probability
of error formulations are examined. We show that in both cases the optimal strategy
is of threshold type with thresholds that can be computed explicitly.

In Section 2, we provide a detailed treatment of the numerical analysis of the
Zakai equation using semigroup methods. A general approximation theorem is pre-
sented. This theorem is intended to be used to check convergence of individual ap-
proximation schemes.

In Section 3, we describe a VLSI architecture that can implement the algorithms
presented in Section 2 in real time. Initial estimates indicate that for 100 mesh points,
we can perform 5000 calculations per second.

In Section 4, we describe the DELPHI expert system, which is under development
at Maryland. It affords an engineer a sophisticated and “ user friendly” design tool
for real-time circuit design iin non-Gaussian detection and estimation problems.

Finally, we discuss briefly some future direction of the work described here.



1. Sequential Detection of Diffusion Signals

1.1 Introduction

In this chapter, we consider the binary sequential hypothesis testing problem. Here,
we are given an IR"-valued signal process {z;, ¢ > 0} which satisfies the stochastic

differential equation
dil?t = f(fl)t) dt -+ g(fl)t) dwt
(1.1)

x0=£

where {w:, t > 0} is an R™-valued standard Brownian motion. However, we cannot
observe {z:, ¢ > 0} directly, instead we only observe the increments dy; of an R”-
valued stochastic process {y:, ¢ > 0}. Under each hypothesis the observed data is
the output of a stochastic differential equation, i.e.,

Under H; : dy: = h(z¢) dt + dv;
(1.2)
Under Hy : dy; = dv;
where {v;, t > 0} is an RP-valued standard Brownian motion which is independent
of {wy, t > 0}.
We assume that for all z, y in R™, the functions f, g, and h satisfy the Lipschitz

condition,

17(z) = @)l + lla(z) — (@)l + [1a(2) = R(y)[| < Kllz — 9] (1.3)

and the growth condition

£ @)+ llg(@N1* + R(2)]1* < K (1 + [|=][*). (1.4)
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These conditions guarantee that the stochastic differential equations in (1.1) have
unique continuous strong solutions (Arnold [1974]).

Data is observed continuously starting at an initial time which is taken for con-
venience to be zero. At each time ¢ > 0, the decision-maker can either declare one of
the hypotheses to be true or continue collecting data. The decision-maker selects his
decision based on the data collected up to time ¢, so as to minimize an appropriate
cost function.

We will present both the fixed probability of error and the Bayesian formulations
for this problem. In both formulations, we have a measurable space ({2, ), on which
we are given two probability measures Py, P;, and the random process {y:, ¢ > 0}.
When hypothesis Hy (respectively Hy) is valid the statistics of the observed process
{ys, t > 0} are governed by measure Py (respectively P).

The difference between these formulations is how they prescribe the cost function
to be minimized. For each formulation, we show that the appropriate cost function is
minimized by a threshold policy. The essential difference between these formulations
is how they prescribe the thresholds.

More precisely, a decision policy involves the selection of a termination time 7,
and of a binary valued decision 8. If § = 1, we shall accept hypothesis Hy; if 6 = 0 we

shall accept hypothesis Hy. Let 7! denote the o-algebra generated by {y,, s <t}.

Definition 1.1.1. An admissible decision policy is any pair u = (7,6) of RV’s where
7 is an F-stopping time, and 6 is an 7Y-measurable {0, 1}-valued RV. The collection

of all admissible decision policies will be denoted by U.

Definition 1.1.2. A policy « in U is a threshold policy or of threshold type if there
exists constants A and B, with 0 < A <1< B < o0 and A # B, such that
r=inf(t > 0| A,

1, A, >B
§ = {0A<A (1.6)

(A, B)) (1.5)

‘ﬂl



Here A; is the likelihood ratio associated with this problem, namely
¢ Lt
As =exp(/ AT dy, - _/ a2 ds) (L.7)
0 2Jo
where T denoted transpose, and
he = By(h(z) | 7). (1.8

This chapter is organized as follows. First, we present general results on threshold
policies. Then, we show how threshold policies solve the fixed probability of error
problem. Then, we show that, with the cost function given in (1.42), threshold
policies solve the Bayesian problem. Finally, we state the generalization to the case
where Hp, like Hy, includes a function of a signal process {z%, ¢ > 0}. In both of
these problems, we show how to find the optimal threshold policy.

Throughout this chapter, we make the following technical assumptions.

(T1) E;(|h(z¢)]) < o0, t>0.

(12) P2 Iha]l?ds = o0) = 1.

(T3) Ei( [7]|hs]?ds) < 00, 0 <t < 0.
where h; is defined in (1.8).



1.2 Threshold Policies

For each u in U, let a(u) and B(u) be the false alarm and miss probabilities associated

with u, respectively, i.e.
a(u) =FP(6=1) B(u) =P (6 =0). (1.9)

Throughout this chapter a and 3 will be positive constants that satisfy the inequality
at+pf <1

A threshold policy » in U will be described in the form (1.5)—(1.8) and will be
identified with the threshold constants (A, B). Let T’ be the collection of all threshold
policies in U.

We will now prove some results about threshold policies. These proofs are taken

from (Liptser & Shiryayev [1978, Chapter 17.6]).

Lemma 1.2.1. For a threshold policy w in T,

Pi(r < 00) =1, :1=0,1. (1.10)

Proof: We will show the result for 1 = 1 as a similar argument works for the case

1 = 0. Let o, be the sequence of 7!-stopping times defined by
t A
o = inf(t > 0] / Rl ds > n)
0

for each n = 0,1,.... The very definition of 7 yields the inequalities

TACy, 1

TAG, R
A< exp(/ hT dy, — —/ |hs||? ds) < B.
0 2 Jo
or equivalently

TAOy R TAOR R
log A < f hT dy, — %/ ||2s]|? ds < log B. (1.11)
0 ¢}
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Under P, it can be shown (Liptser & Shiryayev [1977]) that {y:, t > 0} satisfies the

stochastic differential equation

dyt = ibtdt + dW—t

(1.12)

with {W;, t > 0} a standard Brownian motion, and upon substituting (1.12) into

(1.11) we see that
TACy, TACy
pp o 1 £ 2
log A < hg dW3+§ ||hs||* ds < log B
0 0
From the definition of oy, fy" ||hs]|2 ds = n , from which it follows that
TACy R e
Ei(/ RTdW,) =0
0
Now, by taking the expectation of (1.13) under Py, we get from (1.14) that

1 TACy R TACy . .
Bulloghena) = Ba(y [ Ihuldss [T W)
0 0

1 TACy R
:El(E/O [ha||? ds) < log B.

Since (1.14) is true for all n and ¢, 1 oo it follows that

B [ Il ds) < o

whence
1 {75 19 1%

The conclusion

Pi(r=00)=0

is now readily obtained via (T2).

(1.13)

(1.14)

(1.15)

]

Since A; has a.s. continuous sample paths and since 7 is a.s. finite, we can conclude

that for threshold policies, A, takes on the values A or B (Po- and P;-a.s.).



Lemma 1.2.2. For a threshold policy w in I" with thresholds A and B,

Proof: From the comment following Lemma 1.2.1, we know that
Ol(’d) = P0(6 == 1) = Po(Af = B)

and

B(u) = Py(6 =0) = Py(A, = A)

From Girsanov’s Theorem (Liptser & Shiryayev [1977]) we see that

RN =4,
hence
Pi(A; = A) = Eo(1(a,=a)A;) = APo(A, = A)
similarly,

1
Po(A, = B) = By (L(a,=p)A; ") = g4 = B).

It also follows from the comment following Lemma 1.2.1 that
Py(A,=A)=1-Py(A, =B)

and
Pi(A,=B)=1—Pi(A, = A).
From (1.19)—(1.22) and some simple algebra, we get (1.16)

This result has several immediate consequences.

Corollary 1.2.8. For any threshold policy v in T,

a(u) + B(u) < 1.

(1.16)

(1.17)

(1.18)

(1.19)

(1.20)

(1.21)

(1.22)
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Proof: This follows from (1.16) above and from the fact that 0 < A <1 < B < o
with A # B.
Corollary 1.2.4. Let u be a threshold policy in T with A and B defined by

B g _1-8

l—-a o

A=

(1.23)

where oo+ 3 < 1, then

Proof: This is obtained by direct substitution of (1.23) into (1.16).

Lemma 1.2.5. Let u = (,6) be any policy in U with a(u) + 8(u) < 1 and let

a = au) B = B(u).

Define uw* = (7*,6*) to be the threshold policy in ' with parameters (A*, B*) that
correspond to the pair (a,3) as defined in (1.23).
Then

Eo(/OT a2 ds) = 2w(a, B) (1.24)
El(/OT [hal? ds) = 20 (8, @) (1.25)

where
11—z

w(z,y) := (1 — z) log

+a:log1m , O0<z,y<l (1.26)
Y

Proof: We will only show (1.24) since a similar argument works for (1.25). Let
t L[t .
L:=logAs= [ hT dy, — —/ |hs||?ds, t>0.
0 2Jo

Consider the solution g;(z) of the boundary valued problem
g! () + (1) gi(z) = -2
1=0,1 (1.27)
g:(log A) = g;(log B) = 0.
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on the interval [log A,log B]. Elementary calculations show that

B — ABe™* B
B —¢* B
go(m)—2<B_Alogz—logB+x>, (1.29)
for log A < z < log B. From (1.15), (1.26), (1.28), and (1.29), we now see that
90(0) = 2w(e, B) (1.30)
91(0) = 2w(B, o). (1.31)

By applying Ité’s rule to go{L,aq, ), We get

TAOC, . 1 TACy R
go(Lona) =9000)+ [ ab (LT dyat g [ (B(0) - g5(En)) ] ds

TAOYy

TACy . .
=00+ [ @y~ [ R s (132
0 0

Again from the definition of ¢, and the fact that g§(z) is bounded for z €

[log A,log B], we see that

TAOy . TACy .
Bol [ (LT dy) =Bo( [ ab(Ba)AT dv,) =0
0 0
and consequently upon taking the expectation of (1.32) with respect to Py we get
TACy N
Bo(go(Brno.)) =00(0) ~ Bol [ IIha]*ds). (133
0
Letting n go to infinity in (1.33), we finally obtain

0= 90(0) ~ Eo( |lhel? d),

whence (1.24). The equality (1.25) can be established using similar methods. i
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1.3 Fixed Probability of Error Formulation

Given 0 < @, < 1 with a + 8 < 1, let U(a, B) be the set of all admissible policies u

in U such that

The fixed probability of error formulation to the sequential hypothesis testing
problem requires the solution of the following.
Problem (Pr): Find u* in U(e,B) such that for all w in
U(e, B),

E,.(/ uibsnzds)in(/ hol[2ds), &=0,1. (1.34)
0 4]

Theorem 1.3.1. If u* is the threshold policy with constants (A*, B*) defined by

A*: ﬁ , B*:l_lB,
l1—a o

then u* solves problem (Pr).

Proof: From Lemma 1.2.2, it follows that v € U(a, ). Hence, we only need to show
u* is optimal is the sense of (1.33). To this end, let v = (7,6) be any policy in U(e, 8).

From Lemma 1.2.1 we see that
177 . T 117 .
By [ Wbl ds) = Bu( [ BTy - 5 [ il as)
2 Jo 0 2Jo
= Ej(log A¢)

= —E1 (log A;—l)
and from Jensen’s inequality

1 17 _
EI(E/O hel[2 ds) = —E; (log ATY) (1.35)
= _—P(§ =1)E (logA;' | § =1) — Py(6 =0)E (logA;! |6 =0)

> _—Pi(6=1)log Ey(A;* | 6§ =1) — Pi(6 =0)log E1 (A" | 6 =0).
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Since

Po(6 = i) = Ex(1(5=4)AsY)
= Er(Ls=i)B1 (A7 | 8§ =4))

=P (6 =9)E1(A;Y] 6 =1), (1.36)
the inequality (1.35) becomes

El(%[ [l ds) > —Py(6 = 1) log (Pow = )) - Pi(6=0) log( TP =)

AGES) Pi(5=0)

= (1- Pi(6 = ) tog(* 5 ET) - pufo = 0 rog (52T
- <p0P2fI°)) Pu(6 = 0 tog (=T NP0 )
>1og(1 ﬂ) Blo (——( )é ))
= (1-8)1og > L 4 prog 7
) (1.57)

The inequality

ol [ bl ds) 2 Bo( [ ] ds)

can be established in a similar fashion. O
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1.4 Bayesian Formulation

For the Bayesian formulation, let H be an {0,1}-valued RV indicating the true hy-
pothesis. By ¢ we denote the a priori probability that hypothesis H; is true. We

consider a probability measure P on (1, 7) such that
PH=1)=¢p PH=0)=1-¢p (1.38)
and such that for every A€ ¥
P(A) = ¢P1(A) + (1 — ) Po(A), (1.39)

where P; and Py are the measures defined in Section 1.1.

We shall assume the cost of observation to accrue according to kf; |]izs||2ds,
where k > 0 and {h¢, t > 0} is defined by (1.8). The average cost due to data
collection is simply

Ji(r) = B k/OT [hel2dt) (1.40)
where the expectation is taken under P. The costs associated with the binary decision
6 are given by

c1, when H =1 and é = 0;

C(H,6) = {cz, when H =0 and 6 = 1; (1.41)
0, otherwise.

where ¢; > 0 and ¢ > 0. The average cost due to the selection of 6 is
12(8) = E[C(H,5))]
=c¢;P(H=1,6§=0)+c;P(H=0,6=1)
= ¢1pP1(6 = 0) + ¢2(1 — ) Po(6 = 1). (1.42)
If v = (r,6) is any admissible policy, then the corresponding average expected cost is
J(u) = E( k/OT ||ho||2ds + C(H, $§)). (1.43)

The Bayesian approach to sequential detection requires the solution of the fol-

lowing optimization problem.
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Problem (Pg): Given ¢ € (0,1), find v* in U such that,

J(u*) = irelg J(u). (1.44)

Let m; = P(H = 1| 7!) be the a posteriori probability of the hypothesis H;

given 7Y. From the definition of m; we see that

P(H=1|7!)=B(H|7)
)

=vE(p

| %)
dP;
= el d(pPy + (1 - ) Po)

dP, .
- (pd(goPl + (1 - ) Po) (}rt ) (145)

| %)

From Girsanov’s Theorem, we know that

Z—Ilj—;—(f:’) =&, t>0,

hence (1.45) becomes

2.

— — [ N i

(1.46)

Lemma 1.4.1. Let u = (7,68) be any policy in U with a(u) + B(u) < 1 and pose
wi=alw)  Bi=p).
If u* = (*,6*) is the threshold policy in T with thresholds (A*, B*) defined by
B . _1-8

A* =
1-a’ o

)

then
J(u) = Jl(T) + J2(6) > Jl(’l'*) + Jz(ts*) = J(u*) (1.47)
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Proof: This lemma follows from Corollary 1.2.3 and Theorem 1.3.1 since
J2(8) = E(C(H,$§)) = E(C(H,6%)) = J2(6%). o

For this problem, the requirement a(u) + f(u) < 1 is not restrictive. In fact, for
any v in U with a(u)+ B(u) > 1, the threshold policy u* = (r*,6*) in T, defined by
7* =0 and

6*:{0’ c1p > ca(l— )
1, c1p <ez(l—p)

incurs lower cost than wu.
The main consequence of Lemma 1.4.2 is that now in problem (Pg), we only have

to infimum over threshold policies. We now show the infimum in (Pg) is obtained by

a threshold policy.

Theorem 1.4.1. There exists a threshold policy v* in T that solves problem (Pg).

The optimal thresholds 0 < A* < 1 < B* < oo with A* # B*, are given by the

=5 m=()Ew) e

where a* and b* are the unique solutions of the transcendental equations

relations

c2 + ¢y = k(¥'(a*) — ¥'(b*)) (1.49)

c2(1—b*) =c1a” + (b* — a*)(c1 — k¥'(a*)) + K(T(b*) — ¥(a*)), (1.50)

with

() = (1 - 23) log i (1.51)

satisfying 0 < a* < b* < 1.

Proof: It follows from Lemma 1.4.1 that in order to solve (Pg) we only need to

consider threshold policies. Without loss in generality we assume 7* > 0. From
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(1.24), (1.25) and (1.42) the Bayesian cost for a threshold policy u is given by

J(u) = J1(7) + J2(6)
=Bk [ IhalPa) + (1 ) Bolk [ WhalPde) + expB(e) + ex(1 - e)atu)

= 2p kw(B(u), a(u)) + 2 (1 - o) kw(a(w), B()) + exp Blu) + ea(l — ) a(u)
Therefore, the optimal threshold policy u* is given by

J(u*) = irég‘ J(u) (1.52)

= jnf (20 kw(B,0) +2(1- ) kw(a,B) + 108+ es(1 - ) a).
at+p8<1

After some algebraic simplification using equations (1.16), (1.48), and (1.51),

equation (1.52) becomes
J(u*) = 0<(1Lréfb<lK(a, b) (1.53)
with
A
K (a,5) 2 (269 (p) + [(p — alea(1 - b) - 262 (3))
+ (6—¢)(cra - ZkW(a))]/(b - a)).
The infimum in (1.53) is over an open set therefore, if the minimum value of K(a,b)

exists then it can be found by solving

%K(a*,b*) _ (—gf—_‘a‘f—))z(zk[w*) —0(a*)] - 2k(b" — a*) ' (a*)

- 62(1 - b*) + Clb*> =0 (154)

This implies that
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c2(1—b*) = cya* + (b* — a*)(c1 — kV'(a*)) + k(T (0*) — ¥(a*)). (1.57)
It can be shown that for 0 < a* < b* < 1, these equations have a unique solution

(Shiryayev [1977, pp. 183-184]). Thus the thresholds are uniquely determined by ¢;,

ce, and k. m]

1.5 General Hypopaper Testing Problem
We will now state the results for the hypothesis testing problem when Hg contains
a signal in addition to noise. Here, {z}, ¢ > 0} and {z%, ¢t > 0} represent signal
processes and are R™ and R™-valued, respectively. The standard Brownian mo-
tions {w}, t > 0} and {w?, ¢t > 0} are R™ and R™?-valued, respectively and are
independent of the RP-valued standard Brownian motion {v;, ¢ > 0}. Under each
hypothesis the observed data, dy;, is the output of a stochastic differential equation
Under Hy: dy: = h'(zy) dt + dvs
dzy = f1(z;) dt + g' (z) dwy
Under Hy: dys = h%(z2) dt + dvs
dz? = f?(22) dt + ¢° () dw;
The functions f!, f2, g1, g2, h!, and h? satisfy the Lipschitz and growth conditions

of Section 1.1.
Let hi = By (hi(z) | #¥), i = 1,2. In addition to (T1)-(T3) we assume that

o<
B[ IR - RPds = o) =1, i=1,1
0

Then, the solutions to the Bayesian and fixed probability of error formulations are

still valid with A; defined by

t R 1 t R
Ac=exp( [ (=R dy, - 5 [C(LE - 1A21P) ds).
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1.6 Summary

We have shown that in both formulations of the sequential hypothesis testing problem,
the optimum decision policy is of threshold type. For the fixed probability of error
formulation, this result was shown in (Liptser & Shiryayev [1978]). To our knowledge,
no one has given explicit threshold formulas for the Bayesian case. Our ability to do
so lies in our modification of the Bayesian cost. Usually, the Bayesian cost includes a
constant penality for each observation. We have chosen the observation cost to depend
on the observation itself. This cost function is quite reasonable since it increases
the penality when the confidence increases and results in explicit formulas for the
thresholds.

In order to implement the optimum policy, A; needs to be computed from the
observations {y,;, 8 < t}. In the next chapter we show that under the appropriate
assumptions on the functions f, g, and h, the computation of A; can be accomplished
by calculating the unnormalized conditional density of = given the observations and

then integrating.



2. Numerical Treatment

2.1 Introduction

In this chapter we will discuss the numerical method used to approximate A;. It will
be shown that A; = [ » u(z,t) dz where u(z,t) is the solution to the Zakai equation.
Our strategy will be to find a good approximation to u(z,t) and then to can use it to
approximate A;. Therefore most of this chapter will be spent approximating u(z,t).
Since the Zakai equation is a linear stochastic partial differential equation, we will
use standard numerical techniques for linear partial differential equations to obtain
approximations to its solution. This means using semigroup methods to prove the
necessary results and hence present one convergence theorem which can be used to

check convergence of several approximation schemes.

This chapter is organized as follows: Section 2 contains the necessary results
from nonlinear filtering. Sections 3-4 contain the necessary results from semigroups
and parabolic partial differential equations. The remaining sections contain the ap-

proximation theorems for A; and u(z,t).

2.2 Results from Nonlinear Filtering

From the theory of nonlinear filtering, it is known (Liptser & Shiryayev [1977]) that
under the appropriate conditions on f, g, and h, the unnormalized density of z given

the observations satisfies the linear stochastic partial differential equation, known as

20
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the Zakai equation, given below

( du(z,t) = L*u(z,t) dt + u(z,t) AT (2) dy,

L* u(z,t) = Z ax?;zj LE: Z 92 - [fi(z) u(z, t)] (21)

o(z) = lg(:z:) g7 (z) (z,t) €

where po(z) is the initial density of z and @ = R"™ x [0,T]. In order to guarantee
existence and uniqueness of the solution of (2.1) (Baras, Blankenship & Hopkins, Jr
[1983]), we make the following assumptions which are enforced throughout.

(A1) L* is uniformly elliptic, that is, for some A > 0, for all z,z in R"™
To(z)z> 22Tz

(A2) The functions f(z), 0(:1;) and h(z), along with 5‘2—{fi (=), ai oii(z),
aizjaij(x), 32; PE(2)s T am +25—hi(z), and ﬁ?{;—waﬁ(m) fori,7 =1,...,n, and
k=1,...p, are uniformly bounded and Lipschitz continuous.

In order to prove the necessary convergence results we will transform (2.1) into
(2.7) (given below), approximate the solution of (2.7) and then transform back to get
an approximation to the solution of (2.1). This transformation is discussed in (Clark
[1978]) and is accomplished by a gauge transformation as follows.

Under assumption (A2) we see that

L*u = 1.210 ;(z) S2.00 8a;] Z< ; —a%aij(z)> 5%" +e(z)u  (2.2)
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and define

(v, t) = hT (2)ys — %“h(m)”zt—i— o(z)t. (2.5)

Consider the function r(z,t) which is related to the solution of (2.1) via
r(z,t) = e~ P@0t) 4 (g, 1), (2.6)
It follows from It6’s rule and the definition of the process {y:, ¢t > 0} that

d
—7r(z,t) = e~ P(@:0e,t) gx[op(2,9e:t) o 2.t
ot ( ) [ ( )] (2-7)

r(z,0) = po(z), (z,t) € Q.

The importance of this transformation is that (2.7) is a classical parabolic par-
tial differential equation with coefficients which (for every w) are Holder continuous
functions of time. Therefore we can use standard techniques to prove convergence
of approximations of (2.7) to its solution and by the simple transformation process
in (2.8), get convergence of the respective approximation to the solution of (2.1). It
is important to note that the only necessary term in the transformation is AT (z) ;.
The other terms in the definition of ¢ help give desirable numerical properties to the
subsequent approximation scheme.

Once the solution to (2.1) is found, A; is calculated by integrating u(z,t), i.e.,

Ay = / i u(z,t) dz. (2.8)

To see this note that from (1.7) and It&’s rule it follows that A; satisfies the stochastic

differential equation
dA; = AhT dy;
(2.9)
Ap=1.

Let < f,g > denote the Lz-inner product of f and g, i.e.,

< f,g>= /]R" f(z) g(z) d= (2.10)
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then from (2.1)

d<ugl>=<L*u,1> dt+ <u hT,1> dy,

=<uy, L1> dt+ < ug, AT > dy;
< ug, hT >

- <ug,l >

=< u, 1> Y dy:. (2.11)

< ’lLt,]. > dyt

Therefore .
d< ut,l > =< ut,l > hz‘dyt
(2.12)
< ug,1>=1.

From existence and uniqueness of the solution of the stochastic differential equation

(2.9) we obtain

Ay =< ugl>= / u(z,t)dt  as.

Note that in the calculation above, we used the fact that < u,1 > 0. This follows
from (A1)-(A2).

In practical applications, z; and dy; correspond to physical signals and as such,
they are bounded. Therefore the boundness assumptions in (A2) on f, g, and A
are not restrictive since we can always take them bounded. In fact because of the
boundness of z;, we need only consider values of u(z, t) for z in a bounded set D C R"™.
Therefore, we will solve (2.1) with 2 = D x [0,T] and with the boundary condition
u(z,t) = 0 for z on dD. The assumptions (A1) and (A2) now hold with R™ replaced
by D.

The boundness assumptions in (A2) on the partial derivatives of f, o , and h are
strong. We make these assumptions in order to prove that each suitable approxima-
tion, u,(z,t), converges uniformly to the true solution u(z,t) of (2.1), i.e., for each ¢
in [0,T] and under the sup-norm

lim [|un(z,t) — u(z,t)]|oo = 0. (2.13)

7n— 00
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Since we will be implementing the resulting approximation scheme on a digital
computer, we must be sure that under the finite arithmetic of the computer, A}
provides a good approximation to A; (with the obvious notation). Therefore, we
insist on uniform convergence. Notice that if (2.13) holds then by Holder’s inequality
A? converges to A;. We note that under milder conditions on the functions f, g, and

h, the corresponding weak convergence results can be shown (Kushner [1977]).
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2.3 Definitions and Semigroup Results

Let X be a Banach space with norm ||H and let X,, be a Banach space with norm
..
Definition 2.3.1. The sequence of Banach spaces {X,}3° approximate X if there

exist bounded linear operators P, : X — X, such that for all f in X,

Jim || Pasl,, =1 7- (2.15)

Note that it is not necessary for X,, to be a subset of X. For our purposes X,

will usually be finite dimensional while X will always be infinite dimensional.

Definition 2.3.2. The sequence {fn}$°, with fy, in X, converges to f in X, denoted
limp, e fn = f; if

Jim [ fn = Pof|, =0. (2.16)

Let B(X,Y) denote the set of all bounded linear operators from X intoY and
let B(X) := B(X,X). The operator norm on B(X) will also be denoted by HH and
the operator norm on B(X,,) will be denoted ||||n

For each ¢t > 0, let T'(t) be a continuous linear map in X.

Definition 2.3.3. T'(t) is said to be a strongly continuous semigroup, denoted (Co)-
semigroup, if it satisfies the following three properties:

(A) T(0)=1I

(B) T(s+t)=T(s)  T(t), 5t>0

(C) im0 T(t)f = f feX.

It is known (Yosida [1980]) that for every (Co)-semigroup T'(t) there exists con-

stants M > 1 and b € R such that

IT@)|| < Me*  t>o0. (2.17)
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If 5=0and M = 1 we say T(t) is a contraction (Cp)-semigroup.

Definition 2.3.4 The generator A of a (Cp)-semigroup is defined to be the unique

linear operator A satisfying

13118“% - Af” —0, forall f in D(A) (2.18)

where D(A), the domain of A, is defined by all f in X where the limit exists.

Every (Cp)-semigroup has an infinitesimal generator, therefore we will use

exp(tA) to denote a (Cp)-semigroup with infinitesimal generator A.

Lemma 2.3.5. Let X be a Banach space. Suppose S and S™! are bounded operators
in X. Let T(t) be a (Co)-semigroup in X with infinitesimal generator A. Then
S~IT(t) S is a (Co)-semigroup in X with infinitesimal generator ST1AS.

Proof: First we show S™IT(t) S is a (Cp)-semigroup. The conditions (A) and (B)
being clearly satisfied, we only need to show (C) is satisfied.

Let ¢ = Sf then
IsiT@)sf -1l <||s7H{|T#) sf - s
=|[s7HT)g - g]| - 0.
Therefore, S~1T(t) S is a (Co)-semigroup, and we now show that S™1AS is its in-

finitesimal generator. For all f in X such that Sf € D(A)

i T —<S‘1AS>fH=lzfgl\5*(w—wf)u
- s~ | 22
=0. m|

Definition 2.3.6. A linear operator A is closed if the graph of A defined by
G(A) ={(f,Af): feD(4)} (2.19)

is a closed subspace of X x X.
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Definition 2.3.7. A linear operator A in a Banach space X is closeable if the closure
of the graph G(A) is itself the graph of a linear operator in X. The closure of A is
denoted A.

Definition 2.3.8. Let the sequence of Banach spaces {X,,}& approximate X. The
linear operators A, in X, converge to the linear operator A in X, denoted A =

limy— o0 An, if for all f in D(A)

lim ||An Pnf—PuAf|, =0 (2.20)

n—oo

The following theorem from Hille and Yosida characterizes the linear operators

in X which generate (Cp)-semigroups.

Theorem 2.3.9 (Hille-Yosida). Let A be a closed linear operator with domain and
range in a Banach space X. Let b € R and M > 1. The following assertions are
equivalent:

(i) The operator A generates a (Co)-semigroup, T(t) for which
|T@)] <Me®  t>o0. (2.21)
(ii) The domain of A is dense in X, sI — A is boundedly invertible for s > b and

[s—b"(sI-A)7"| <M, nelN (2.22)

Proof: See (Yosida [1980, pp. 246 -248 |).
The following approximation theorem for (Co)-semigroups comes from Trotter.

Theorem 2.3.10 (Trotter). Let {k,}§° be a sequence of positive numbers converging
to zero, and {T,}3° a sequence of linear operators in X,, satisfying the stability

condition

|T%||, < Mebkhrn (2.23)
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where M and b are constants, independent of n and k. Let A, = h,;*(T,, —I) so that
Tk = (I + hnAn)® and define A := lim,_,c0 An. If

(i) D(A) is dense in X, and

(ii) For some s > b, the range of (sI — A) is dense in X,

then the closure of A is the infinitesimal generator of a (Co)-semigroup T'(t) and

T() = lim (T,)l%], ¢>o0. (2.24)

n— oo

Proof: See (Trotter [1958, pp. 903-904 |).

Since the operator A(t) in (2.7) depends on time we are interested in approximat-
ing the solution of the abstract Cauchy problem for linear problems. In the Cauchy

problem we want to find »(t) in X such that

du(t) _
at — Alu) (2.26)
4(0) = ug

where for each ¢t > 0, A(t) is a linear operator in a Banach space X. We assume that
(2.26) is well-posed, i.e., there exists a unique solution to (2.26) in X.

If A(t) = A then the solution u(t) to (2.26) is given by
u(t) = T(t) uo (2.27)

where A is the infinitesimal generator of the semigroup T'(¢). In this case, Theo-

rem 2.3.10 describes how to approximate T'(t) and hence how to approximate u(t).

Definition 2.8.12. The operator U(t, s) is called a fundamental solution to (2.26) if
it satisfies
(1) U(t,s) is a strongly continuous function, defined for 0 < s < ¢t < T which
takes values in B(X).
(2) Ut,r)U(r,s)=U(t,s) for0<s<r<t<T.
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(3) U(s,s)=1 forall se[0,T].
(1) 2U(5) = AL U ().
(5) £U(ts) = ~U(t,s)Als).
Conditions (4)—(5) are understood to hold on a dense subspace of X where they
make sense. The derivatives £ 3¢ and ‘9 are taken in the strong topology of X. Notice
that if A(t) = A then U(¢,s) is just the (Co)-semigroup T'(t — s) with generator A.

The solution to (2.26) is given by
u(t) = U(¢,0) uo. (2.28)

where U (¢, s) is the fundamental solution to (2.26).

Let X be a Banach space with norm H” Let Y be a dense subspace of X and
assume Y is itself a Banach space, with norm H”Y Suppose there exists a constant ¢
such that HvH < c||v||Y for all v in Y. Henceforth, we assume X and Y satisfy these
conditions. We now give some useful definitions.

Definition 2.3.18. The set of all generators of (Cy)-semigroups with constants M
and b in X is denoted by by G(X,M,b) , and the set of all generators of (Co)-
semigroups in X is denoted by

=J U e, M,p) (2.29)

belR M1

Definition 2.3.14. Let A € G(X). The Banach space Y is called A-admissible if
exp(tA) maps Y into Y, and if the restriction ofexp(tA) to Y forms a semigroup
mY.

Definition 2.3.15. The family of operators A(t) in G(X) is called stable, with

stability constants M and b, if there exist real numbers M > 1 and b such that

H < Meblartte) 50>, (2.30)




30

forall 0 <t <t3<---<tx <Tand k=1,2,.... Here the product is time ordered,

le.
k

H exp( 85 A(tj) ) = exp( Sk A(tk) ) <o exp( s1 A(tl) ) (2.31)

For the remainder of this chapter, all operator products will be time ordered.

The following lemma will be useful to test for stability.

Lemma 2.3.16. Assume that A(t) is stable with stability constants M and b. If
for each t in [0,T), B(t) is bounded, i.e., ||B(t)|| < K < oo then for each t in [0,t],

A(t) + B(t) belongs to G(X) and is stable with stability constants M and b+ MK.

Proof: See (Kato [1970, p 248 |).

We now state assumptions on the generator A(t) in (2.26).
(A3) A(2) is stable with constants 1 and b.
(A4) The Banach space Y is A-admissible and ¥ C D(A(t)) for each ¢ in [0,T]
and the operator A(t) is a continuous function in the norm of B(Y, X).
(A5) A(t) is closed in X.
(A6) For some s > b, the range of (sI —A(t)) is dense in X, where b is independent
of t.

The following convergence theorem combines the theorems (Kato [1970,Theorem

4.1 p247)) and (Trotter [1958, Theorem 5.3 p903]).

Theorem 2.3.17. Let h,, be a sequence of positive numbers such that h,, — 0 as
n — 0o. Suppose that for each t in [0,T] the linear operators Ty ¢ in X, satisfy the
stability conditions

T ||, < MeForn (2.320)

and

< MedNhn (2.32b)

nes
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where t; = 7 hy, tny < T and the constants M > 1, b € R are independent of t, k and
n.

Let An(t) = (Tn,t — I)/hyn and suppose that

A(t) := lim A,(t). (2.33)

n—oo

for each ti in [0,T]. For each pair (t,s) satisfying 0 < s <t < T, ty < s < tg11, and

t; <t < ty41, define the operator

Un(tys) = = (2.34)

If the operator A(t) in (2.33) satisfies (A3)-(A6) and if the corresponding Cauchy

problem in well-posed then

U(t,s) = lim Uy(t,s) (2.35)

n— oo

where U (t, s) is the fundamental solution generated by A(t).
Proof: It is easy to see from its definition that U,(t, s) satisfies (1), (2), and (3) of
Definition 2.3.12. Furthermore it can be seen that U,(t,s) maps X,, into X,,, and

that for eachvin Y,

Un(t + hn,s) — Unlt, s)
hy

P = Ap(t) Un(t, ) Py (2.37)

and
Un(tys+ hn) — U2, s)
hn

From (2.32) and the stability of A(t) we have that

Pov = -Uy(t,s + hy) An(s) Pav. (2.38)

[Un(ts8)|| < M2, |U(t,5)], < M P2, (2.39)

Next v € Y and let
U(t,s) = U(hn[t/hn), e |s/hn])-
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It follows that all we need to show is the convergence of Uy, (¢, s) to U(t, s) hence

-1

|Un(t,8)Pov — PuU (¢, s)v]|, = ”Z Un(t,tj41) Pal (ti41,8)v — Un(t, t5) PO (25, 8)v]| |
i=k
-1

- ||ZkUn(t,tj+1)PnU(tj+1, 8)v — Un(t,t;41) PaU (85, 8)v
+J(; (t:5+1) PaU (5, 8)v — Unl(t,t5) PaU (¢4, 8)0 |,
~||ZU (6, t541) Pu(U(t;41,8) — U(t;,8))v
+ (Un(t, tis1) — Un(t,1)) PO (85, 8)v]|
:||iUn(t,t,-+1)Pn(U(t]+1, t;) — DU (8, 5)v
— Uy(t, tj+1)h An(ti) PO (85, 8)v ]|,
< M'e—(t— a)ZH tit1,t5) — 1)v — hndAn(t;)Pav|,

<M'( )e 'y(t 3)

t; N —T
sup || U( .7+;;t.7)
7=k,..,l—1 n

v — An(t;)Pav|| , (2.40)

where v = max{b,b} and M' = MM. From (2.33) and Definition 2.3.12 it follows
that U,(t, s) P,v converges as n — oo uniformly in 0 < s <¢ <T. From the fact that

Y is dense in X it follows that for all u in X,

n1—1+12<> |Un(t, s) Pru — PU(t,s)ul| =0 (2.41)
exists uniformly in 0 < s <t < T. |

The results above can be used to show convergence of several different types of
approximation schemes. In the next sections, we will apply them to implicit Euler

type, finite difference approximations for the parabolic equation (2.7).
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2.4 Results on Parabolic Partial Differential Equations

In this section we will quote results from the theory of parabolic partial differential
equations to establish that A* in (2.4) generates a (Cp)-semigroup and to show that
there exists a unique solution to (2.7). This will done for the case where z in (2.7) is
a scalar diffusion. Similar techniques can be applied to the vector case and results in
schemes similar to those found in (Richtmyer & Morton [1967]).

Throughout this section, let D = (a, b) a bounded interval and let X = Cj[(e, b)]N
Co[(a,b)] under the sup-norm and ¥ = C*{(a,b)] N Co|(a,b)] with norm |||, such

that for each f in Y
I7lly = 217
n=0

It is known that ¥ forms a dense subspace in X. Furthermore, for every f in Y,

!lf” < ”f”Y We will consider the Cauchy problem:
ug(z,t) = a(z,t) ups(z,t) + b(z, ) us(z,t) + c(z,t) u(z, 1),
u(a,t) = u(bt) =0, tel0,T] (2.43)
u(z,0) = uo(z), (z,t) € 0,

where (1 = (a, ) %[0, T]. The follow theorem from Besala gives the necessary existence

result for the solution of (2.43).

Theorem 2.4.1 (Besala) For (2.43), let the functions a(z,t), b(=,t), and ¢(z,t) (real
valued) together with a;(z,t), azz(2,t), bz(2,t) be locally Hélder continuous in (1.
Assume that for all (z,t) in Q
i) a(z,t) > A > 0, for some A
i) e(z,t) <0,
iii) ¢(z,t) — bz(2,t) + azz(2,t) <O.
Then the Cauchy problem (2.43) has a fundamental solution U (t, s) in the Banach

space X where

|U(¢,s)] < 1. (2.44)



34

Furthermore, there exists a function I'(z,t; z, s) which satisfies

0 <T(z,t2,8) < (2.45)

for some positive k, and

(2.46)

such that
b
Ult, s) f(z) = / Tzt 2,5) f(2) dz.

Moreover, if uo(z) is continuous and bounded, then
b
w(z,t) = U(t,0)u(z) = / I(z,t; 2,0) uo () dz (2.47)
is a bounded solution of (2.43).

Proof: See (Besala [1975]).

The following theorem due to Friedman gives the necessary uniqueness result for

(2.43).
Theorem 2.4.2. If a(z,t), b(z,t), and ¢(z,t), in (2.43) are continuous in ). If there
exists A > 0 such that for all z in (a,b)

a(z,t) > A (2.48)

for (z,t) in 1, then there exists at most one solution to the Cauchy problem (2.43).

Proof: See (Friedman [1964, Theorem 7, p. 41})

Corollary 2.4.3. For each t;, in [0, T], the operator A(ty) defined in (2.7) generates

a (Cyp)-semigroup in X with constants 1 and K.



35

Proof: Using the notation of (2.43) for the operator A(t;) and from assumption (A2)

it follows that there exists a finite constant X > 0 such that

Lrézxif{({axm(z,t) —by(z,t) — K} <0. (2.50)

Define A(tx) = A(tx) — K. From assumption (Al) it follows that A(tz) satisfies the
hypotheses of Theorem 2.4.1, therefore A(t;) generates a contraction (Cp)-semigroup.
From Lemma 2.3.16 it follows that that A(¢y) generates a (Cp)-semigroup in X with

constants 1 and K.
Corollary 2.4.4. Under assumptions (A1)-(A2) the semigroup generated by A(ty)
for each ty, in [0,T)] is given by

exp(t A(ty) ) = e (@ Veite) exp(t A*) e (®iberts) (2.51)
where ¢(-,+,+) is defined in (2.23).
Proof: Directly from Lemma 2.3.5.

We are now ready to show a convergence theorem for the case when only time is

discretized

Theorem 2.4.5. Let At =T /n and k = [t/At]. For k > 0 define

k—1

Un(t, O)po(x) — e—sp(ac,ykAt,kAt)< H eh(a:)ij—}-c(x)At—%h?(z)At exp(AtA* )> po(m)
7=0
(2.52)
where Ay; = y(j11)at — Yjat, then
lim sup ]lUn(t,O)po(z) —'r(:z:,t)“ =0, (2.53)

n—00 4e(0,T] o

where r(z,t) is the solution of (2.7). Furthermore, in view of (2.6), it follows that

lim sup
0 te(0,T)

PEVack A T (1 0)po(z) — u(z, §) H =0 (2.54)

where u(z,t) is the solution of (2.1).
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Proof: Let T, ; = exp( At A(t)) where A(t) is the operator in (2.7). Substituting
(2.51) into the definition of ﬁn(t, 0) of Corollary 2.3.18 and rewriting the product
yields (2.52). From Corollary 2.3.4, A(t) is stable with constants 1 and K hence all

of the hypothesis of Theorem 2.3.17 are satisfied, therefore the convergence (2.53).

Corollary 2.4.6. Let A, (t) := A(tgyy) for t; < t < ti4y replace A,(t) in Theo-
rem 2.3.17. If ty = k At then for A(t) in (2.7) and using (2.6), we see that

k—1
ﬁn(t, 0)po(z) = ( H exp( At A*) eh(2) Ayjte(z) At—3h (z) At) po(2) (2.55)
j=0

converges to u(z,t) in (2.1), i.e.,

lim sup Hﬁn(t,O)po(x) —u(z,t)|  =0. (2.56)
N0 ¢elo,T]

Proof: All of the hypotheses of Theorem 2.3.17 are satisfied with A,, (t), hence the

result (2.35) with only the indices changed.

Example 1. Time discretization of (2.1).

Under the assumptions (A1)—(A2) the discrete time approximation scheme

)
n(z,t) = <H (I - AtL*)‘leh(”‘)Ayf“%hz(m)At) po(z) (2.57)

i=0
converges to the solution of (2.1).
Let T, = (I—-AtL*)~! and the Banach space X as above. It is known (Richtmyer

& Morton [1967]) that

[ Tnl] < e54° (2.58)

therefore

exp(tL*) = lim (Tn)[ﬁ]. (2.59)

n—roo
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Convergence of (2.57) to the solution of (2.1) follows from Theorem 2.3.17 and Corol-
lary 2.5.6. This scheme appears in (LeGland [1981]; Pardoux & Talay [1983]) and
was obtained by different methods.

By arguments similar to those in Theorem 2.4.5 it is possible to show that
L .
Vi (t,0)p(z) = <H eh’ ()80 —zl|R(2)] Atexp(AtL*))po(z) (2.60)
§=0

converges to the solution of (2.1), where Ay; and At are defined in Theorem 2.4.5.
This result is important for applications since it demonstrates the importance of the
transition density of z in the calculation of u(z,t). The importance of the transition
density has been shown and is illustrated in the Kallianpur-Striebel formula. For us, it
is interesting that (2.60) can be thought of as a direct approximation the Kallianpur-
Striebel formula.

In applications, the transition density of z can usually be approximated from
the observed data. While the functions f and ¢ usually cannot. Therefore, this
approximation method has the additional, practical advantage of just needing the

transition density.
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2.5 The Finite Difference Approximation Scheme for (2.1)

It is now possible to find several finite difference approximation schemes for (2.1).
In fact, from Theorem 2.4.5 it follows that all we need is a good approximation for
exp(AtA* ) Several good approximation schemes exist in the numerical analysis
literature, however we will only concentrate on one.

In the scalar z case we have D = (a,b),

L*u(z,t) = a(z) vyz(z,t) + b(z) us(z,t) + c(z)u(z,t)

(2.60)
= A*u(z,t) + c(z)u(z, t)
where {
o(s) = 20®)
b(z) = g(2) ¢'(z) — /() (2-61)

¢(e) = g(2) g"(z) + (¢'(z))* + 9(2) ¢'(2) — f'(2)
Let Az > 0 and define zx = a + k Az and n such that z,, < b. Consider the

collection of points {z}}? in D. Let Az — 0 as n — oo such that z, — b as n — oo.
Let X and Y be the Banach spaces in Section 2.4 and let the approximating Banach
spaces X, = R™"! under the oo-norm. Define the operator P, : X — X, such that

for each ¢ in X
(Pnd); = é(2:), i=0,...,n. (2.62)
It is easily checked that for each ¢ in X

Jim || Pagll,, = 4l

The linear operator A, in X, will be obtained from A* by replacing the z-

derivatives in A* with finite difference approximations. To this end, for each ¢ in

Y pose
(An P, ¢)1 — a(a:,-) ¢($i+1) — %2(5)12) =+ ¢(CU'£——1) + max(b(xi),o) ¢(£I}H_li; qﬁ(xz)
+ min(b(z;),0) ¢ (i) _Ai(“i—l)

(2.63)
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where i=0,...,n.

From Taylor’s Theorem
B(zs £ Az) = (@) + () (£AT) + %(bzm(zi + 04)(Az)? (2.64)
where 0 < 6 < Az and —Az < f_ < 0. Substituting into (2.63) yields
(AnPnd): = @ (b20(2i +0) + bua(2i +0-)) + b(z:) (¢2(2:) + O(Az)). (2.65)
Since ¢, is continuous it follows that
Jim [|A, Pogp— PuA*S|| =0 (2.66)

We are now able to show convergence of the full discretization of (2.7), i.e. when

both time and space are discretized.

Theorem 2.5.1. Let At = h,, and let P, as in (2.62). Define

Dy = diag {P, eh” (2) Ayite(z)At—3h* (z) Aty

(2.67)
= diag {ehT(zi) Ayit(c(zi)~§h® (=) At}
where Ayr = Y(k+1)at — Ykat. Consider v* in R™"! defined by
v+ = (I — At A,) "' Dyo*
(2.68)
00 = P, po.
Let kAt — t asn — oo, then for every t in [0, T
lim sup |(v*): —u(zi, kAL)| =0. (2.69)

N0 4=0,...,n

Proof: Let T, = (I — AtA,)"!. From (2.63) we see that Ay, is a diagonally dominant

matrix. It has the form

A= : (2.70)
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For every At > 0, (T,,)~! has the form

(Tn)_l =1 AtA, = - . T . (2_71)
- +
and is strictly diagonally dominant since the diagonal is reinforced. It is easily checked

that (7))~ is an inverse positive matrix, i.e., (T,,)i; > 0, see (Schréder [1978, Corol-

lary 1.6b, p221 |). Since (T},) ! is invertible for all A¢ in [0,T] we see that
ITalleo < €72

for some b in R, so that T}, satisfies (2.23).

Let w* = (E;) ™! v* where

Ek = dlag {Pnep(z’ykAt,kAt)}

(2.72)
= diag {e‘P(xi»ykAt,kAt)}
and ©(-,+,+) is defined in (2.5). Then from (2.68) we obtain
w*t! = (Ep 1) "' T Erta w*
(2.73)
w® = P, p,

Define fn(tk) = (Bx+1) "1 Tp, Ex41 where t; = kAt then for each 3 in [0, T
T () || < M eFbae

and

S MebNAt'

N ~
H Tn(tj)

As in Theorem 2.3.10, we define

~

Tn(tk) -1

At
1T, -1
= (Ek+1) ( At )Ek+1' (2.74)

fin(tk) =
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From the continuity and differentiability of ¢(:,-,-) and from (2.66) it follows that for
each ¢ in D(A*)

im [[ e (e0t) 4°2lemt) () — &, (1) Po ()], = .

n—co ©o

Therefore from Theorem 2.3.17, w* in (2.73) converges to the solution of (2.7). The
continuity of the transformation (2.6) implies (2.68) converges to the solution of (2.1)
hence (2.69). O

The approximation for b(z) u(z,t) is standard in the numerical literature and is
motivated from stability of finite difference methods for hyperbolic equations (Richt-
myer & Morton [1967, p. 292 ]). Basically, when b(z;) > 0 we take a forward difference
approximation and when b(z;) < 0 we take a backward difference approximation. Us-
ing this approximation ensures positivity of our approximation scheme, independent

of the value of At.
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2.6 Convergence of the Corresponding Likelihood Ratio Approximation

Using v* defined in (2.69) it is easy to construct a convergent approximation to the

likelihood ratio. Let {z;}7 be the collection of points defined in Section 2.5 and let

and define

then

Therefore,

Uy (z,8) = (vk), if z;<z<ziq1, At<t<(k+1)At

b b
lim [A; —AP|= lim | wu(z,t)dz - / un(z,1)]

n— oo 7n— 00 a

< (b—a) lim sup |u(z,t) — un(z,t)]

n—00 ye(g,b)

=(b—a) lim sup |u(@s,t) — un(zs, 1)

N0 ;=0,...,n

=(b—a) lim sup |u(z;,t)— (v*)d]

n—00 ;=0 ...,n
=0.

™ is a convergent approximation to A;.
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2.7 Summary

The main result in chapter was the convergence result in Theorem 2.3.17. This
theorem presented verifiable conditions which ensure convergence of an approximation
scheme for the abstract Cauchy problem (2.26). These conditions were used to show
convergence of the natural finite difference approximation scheme for the solution to
(2.1). This, in turn, implied show convergence of the approximate likelihood ratio to
the true likelihood ratio.

Schemes similar to (2.68) have been discussed in (Kushner [1977]; Pardoux &
Talay [1983]). Furthermore, numerical studies have been performed in (Yavin [1985])
using these methods which have produced satisfactory results for approximations to
hs.

Again, the importance of the result in Theorem 2.4.5 is that the stochastic part
of (2.1) has been isolated from the non-stochastic part. Therefore, the wealth of
information on numerical approximation for parabolic partial differential equations

can be used to approximate exp(tA* ), and this in turn is used to approximate (2.1).



3. VLSI Architectures

3.1 Introduction

In this chapter we will present a VLSI architecture for solving (2.1) when z is scalar.
This architecture will not be efficient for vector z. However, as was pointed out in
Section 2.9, it is possible to use some of the advanced techniques for sparse matrices to
develop architectures for higher state dimensions. It is important to emphasize that
these methods are not sufficiently efficient for real time implementations of problems
with state dimensions higher than three.

In Section 2.7 we presented a finite difference scheme to approximate the solution

of (2.1). At each time ¢ = kAt, this scheme involved solving the linear equation
(I - AtA,) VFH = D VE, (3.1)

where Dy, = diag{exp(h(z:) Ayx+ (c(z:) — 2h*(z:)) At)}. Our goal is to give a design
for a VLSI chip to efficiently solve (3.1). This means that:
(1) the time necessary to compute V¥+1, given V¥, A, and yi, should be below
a problem dependent threshold; and
(2) the control structure within the chip should be simple and regular.
We will show how the systolic array architecture of (Kung & Leiserson [1980])
can be used to obtain a VLSI design satisfying these goals. The discussion of systolic

architectures follows closely (Kung & Leiserson [1980]).

44
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3.2 Systolic Arrays and Sequential Computations

Systolic processors are arrays of tightly synchronized simple processors in which data
is fed to each processor in a regular and ordered manner. In these arrays, data flows
through the processors much in the same way that blood flows through the heart,
hence the term systolic. Because of their order and regularity, systolic processors are
significantly faster than conventional processors.

We will be interested in systolic processors which perform linear algebra oper-

ations. The basic component of these arrays is the inner product processor (IPP)

denoted by ﬂy . At each clock pulse the IPP takes the inputs z, y and a and

computes az + y (the inner product step). This value is output on the y-output line,
and the z and a values pass through to their respective output lines untouched.

To illustrate the speedup, consider how a typical von Neumann computer would
perform the inner product step. Before a von Neumann computer can execute an
instruction it must first get (or fetch) the instruction from memory and then fetch
the arguments (or operands) for that instruction from memory. Table 3.2.1 shows
the computer instructions necessary to execute the inner product step. It does not

include the overhead of fetching the instructions and the operands.

Instruction ( cont. )
1. Fetch z 3. Fetchy
1. Fetcha 5. Add (az) & y
2. Multiply a & =z 6. return (az +y)

Table 3.2.1. Operations performed ezecuting the snner product step.

However, the computer actually performs two additional operations in executing
each :mand. For each instruction listed in Table 3.2.1 .. ¢ are three additional
instructions to perform. Table 3.2.2 shows these additional instructions.

Therefore, performing the inner product step requires a von Neumann compuier
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Actual Operations

Fetch Instruction
Fetch Operand for Instruction
Execute Instruction

Table 3.2.2. Operations performed each instruction in Table 3.1.

to execute 18 operations. Notice that only two of these operations are mathematical,
the other 16 involve data manipulation and program control. The time required to
perform each of the 18 operations varies from computer to computer, however on any
one computer, these steps take approximately the same time to perform (when using
fixed point arithmatic). Systolic processors are fast because they eliminate the 16

wasted operations.

To illustrate how a systolic array can be used in a linear algebra operation we
consider the matrix-vector operation y = Az where A is an n-by-n matrix and z is a
vector in R™. Let y; denote the ¢** component of the vector y. The following n-step

recursion can be used to calculate y;

yM =0

y,(kﬂ) = yfk) +ax 2z, 1<k<n.

It is easily verified that y; = y§n+1).

The above recursion shows that matrix-vector multiplication is nothing more
than a sum of inner product steps. Therefore, it is reasonable to expect that with the

correct data flow we can accomplish this matrix-vector multiplication with an array

of IPP’s.

Let A be an n-by-n matrix. We say A is a band matrix with bandwidth w if

a;; = 0 outside a w-wide diagonal band containing the main diagonal. For example,
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the matrix A in (3.2) has bandwidth 3.

ai,1 03,2 0 0 0
az,1 a2 4az3 O 0
A=1{a31 azz azs az4 O (3.2)
0 a42 a43 aq4 a4p5
0 0 as3 aggy ass
asq o a43 °
[¢] ass (] aq2
a23 o asz o
o azz (<] asy
ayz o azi ©
aii [+] Q
[e] [o] [o] o
[¢] [e] o
-] ¢ le——r Y10 Y20 Y3 -
L30 X0 T30 ——» v f— z output

Figure 3.2.3. Systolic layout for matriz vector multiplscation.

Figure 3.2.3 from (Kung & Leiserson [1980]) shows how to compute y = Az for
A in (3.2). Each y; is initially zero, and  stands for a one step delay. Figure 3.2.4
from (Kung & Leiserson [1980]), shows the array at several clock steps to show how
the data flow and interconnections in Figure 3.2.3 calculate y.

For our example, A had bandwidth 3. In general, if A has bandwidth w then
we need w IPPs to accomplish a matrix-vector multiplication. It takes 2n + w clock
cycles for this algorithm to compute the matrix vector multiplication as compared
to the sequential algorithm which takes O(nw) units of time. As pointed out by
Tables 3.2.1-3.2.2, a unit of time for the sequential algorithm is several clock cycles
long. Therefore, the systolic algorithm is significantly faster.

The number of processors depends only on the bandwidth of the matrix A and
not on its dimension. This makes a systolic design ideal for implementing finite

difference approximations, where the number of mesh points is typically not-known
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a priori but where the maximum bandwidth is determined by the specific scheme. In

the next section, we will show how the solution of (3.1) can be accomplished with

systolic arrays.

CLOCK PULSE

SYSTEM CONFIGURATION

! 1 - he—| he— Y1 fe
—t - o - —
2 -+ he— le— Y1 je e
- Z) I ——— — o
- le— Y1 fe Y2 e
3 aii H
—»] - ) |l -
gy !/1 petg =y y2 g4 P—
4 a2 azy
—{ 2y |4 ol 2, b .
Y1 o ot Y2 fe— Y3 le—
5 Gag " as
—» —» To - r—. T .
- Y2 e Pt— 98 —
6 azs asz
Y2 o fe— Ys la—] Y4 e
7 ass aq2
—i 1 13 . — 22 —o

Figure 3.2.4 A walk through several clock cycles of the systolic layout.
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3.3 Results from Linear Algebra

To solve (3.1), we use Gaussian elimination without pivoting. This method, which is
stable since (I — At A,,) is strictly diagonally dominant, results in matrices L and U

such that

LU = (I - At A,)

where U is an upper triangular matrix and L is a unit lower triangular matrix.
The matrices L and U will be bi-diagonal since Gaussian elimination without
pivoting is used. As is standard with Gaussian elimination, once the factors L and U

are found, (3.1) is solved by finding z such that

Lz =D, V* (3.3)
and then by solving

UV = ¢ (3.4)

to get VF+L,
Let L be the lower triangular matrix resulting from the factorization of a band

matrix. We are interested in solving Lz = b for the vector z. That is, we want to

solve
l11 0 T by
Iy laa O z2 bs
lsg1 I3z I3 O z3 | = | bs (3.5)
0 g2 lyz l4g T4 by

This is solved by a simple back substitution algorithm. It is well known that this can
be accomplished by systolic arrays (Kung & Leiserson [1980}).
To see this, notice that the elements z; can be computed by the following recur-

sion:
1

)

y* ) = o) 4ty (3.6)

z; = (b — y,(i))/lii



shows the overall layout.

| Sa.mple yk:tl

y{t)

hold

Solve Solve v+l

Lz = D,V* UVEk+l = ¢

vk

{dela,y}

Ak-'-l

E V_k+1

Threshold
Detector

Figure 3.3.2. Overall layout for the sequential detector.
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3.4 Implementation Issues

In collaboration with D. Simmons, a member of the research staff of the Systems
Research Center, we have designed a board to implement the systolic architecture
discussed above. This implementation will be completed shortly and will reside as a
special purpose processor in an IBM personal computer. The hardware details of the
actual design and layout will appear in a technical report. In order to get some idea
of the implementation constraints, we will discuss some of the issues raised in going
from the block diagram layout of Figure 3.3.2 to the hardware design.

The major implementation question was ¢ Should we use fixed point or floating
point arithmetic?’. Among the advantages of fixed point arithmetic are that fixed
point computations are up to four times faster than the corresponding floating point
and that fixed point arithmetic leads to a simpler design. However, the numbers
in our problems typically have large dynamic ranges. It is common to have density
values as small as 1 x 107® with likelihood values as high as 1 x 10°. In addition,
we do not want to lock ourselves into a fixed dynamic range as would happen if
we implemented fixed point. Therefore, in order to maintain flexibility, we decided
to sacrifice processor speed and complexity and implement the design using IEEE
standard floating point. A brief descriptioon of the processor layout, the architecture
and the components of proposed board prototype design are shown in the next few
pages. We have named the proposed chip the “Zakai I” chip. Once the processor is
built we will be in a better position to evaluate the optimal design.

Initial timing calculations indicate a processor speed of 22 million floating point
operations per second. This means that with 100 grid points, we can calculate 5000

solutions per second.
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Z.akai Solver Overview
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Zakai 1 Solver Architecture
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Actual Systolic Layout
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3.5 Summary

We have shown that a systolic processor can be used to implement a sequential hy-
popaper tester. It was seen that the control structure for the resulting processor
was simple and regular. This makes it ideal for VLSI implementation. Furthermore,
timing results were given, hence exact computation time for the processor can be
calculated.

This solves the sequential hypothesis testing problem for the scalar z case unfor-

tunately more work remains for the vector z case.



4. The DELPHI System

We are currently developing an expert system to facilitate the CAD of sophis-
ticated and complex chips for non-linear signal processing. The software system is
named DEsign Laboratory for Processing Hidden Information (DELPHI) and can be
implemented on any Al machine carrying common LISP.

The system being developed combines an Al engine, symbolic algebra and mul-
tiprocessor numerical schemes. It has the capability of reasoning mathematically and
makes available to a control engineer, sophisticated mathematical and computational
tools, in a form suitable for immediate use. Its major advantage is its capability
to interact symbolically with the user. The block diagram of the DELPHI software
system is shown in figure 4.1 below. The system can be used as: (a) a tool for
integrated design, (b) an advanced teaching aid (we have successfully used it with
third year undergraduate students), (c) a tool for integrating symbolic and numerical
computation.

The “smart” interface block, allows the user to enter a signal and observation
model symbolically. We are currently implementing a module that will diagnose user
“expertness”, so as to allow various degrees of flexibility to the user. We are also
implementing a module capable of understanding the “nature” of the module, i.e.,
diffusion, point or Markov chain type models.

The modelling block can currently build automatically a linear dynamical system

model for a Guassian process using the Akaike-Rissanen-Hannan theory. We are
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Figure 4.1 Blocks of the DELPHI System
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currently working on building general diffusion type, point process type and hidden
Markov chain type models. This block will have the ability to call a variety of statistics
and time series libraries from the Al machine for performing statistical validation tests
on the model under construction.

The likelihood ratio (or sufficient statistic computer) block is under continuous
development, and is currently the most advanced. In addition to the results of the
present paper, it can perform similar computations for point process observations,
mixed diffusion point process type models, and Markov chain models.

During next year we will couple the system to a silicon compiler for actual VLSI
chip layout. What we will really develop is a “smart” compiler which can preselect
the architecture to best fit the problem based on the parallel complexity theory of the
Zakai equation.

The likelihood ratio block has currently the following capabilities: (an M indi-
cates a MACSYMA computation, an F indicates a FORTRAN computation).

M1: Input f,g,h in symbolic form. Generate the multidimensional Zakai equation.
M2: Compute automatically discretizations of all stochastic differential equations.

Automatically generate FORTRAN code.

F3: Solve numerically pathwise the resulting stochastic difference equations and store
the y- paths.

M4: Generate discretization schemes for the Zakai equation and automatically gener-
ate the associated FORTRAN code.

IF'5: Automatically integrate numerically the discretized Zakai equation.

F6: Display graphically the solution.

M7: Compute symbolically discretizations of the Likelihood Ratio and automatically
generate appropriate FORTRAN code.

'8: Evaluate numerically the likelihood ratio.

Further additions currently planned include: apriori bounds for performance of
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detectors and estimators, additional numerical schemes for the Zakai equation (e.g.,
multi-grid algorithms), automatic performance evaluation of sequential detectors. In
addition we have initiated the development of a LISP based, domain-specific, higher
level language for signal processing. Finally, a reduced version of the system is being

ported on an IBM PC AT.



Future Directions

We have presented a VLSI design to implement a real time processor for the case
where the signal process is scalar valued. More research work needs to be done in
order to discover the appropriate architecture for the general case where the signal
process is multidimensional. It is clear that this will be accomplished by exploiting
problem specific information into the design. It is also clear that an implementable
architecure will be very regular but exceedingly redundent and detailed. Therefore,
a systematic and automatic method must be devised which takes.a problem and
produces a VLSI design.

It appears that systolic arrays can be used for higher dimensions, up to about
5 or 6. For even higher dimensions it is clear that we will need massively parallel

architectures.
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