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Chapter 1

Introduction

Future aircraft are expected to meet higher performance and combat superi-
ority requirements characterized as super-agility or supermaneuverability. Su-
permaneuverability calls for an aircraft to perform maneuvers in post-stall or
high-angle-of-attack (or high-a) flight regimes. These maneuvers would enable
an aircraft to gain advantage over its opponents by quick deceleration and atti-
tude pointing [1]. However, problems, such as loss of control effectiveness and
nonlinear dynamics [2], are associated with high-o maneuvers. They are pri-
marily caused by unsteady aerodynamics, which can lead to wing rock, which is
a coupling between longitudinal and lateral motions, aerodynamic jump, where
(roll-axis) aerodynamic coefficients undergo sudden changes in value, and stall-
spin, which is induced by being near the stall region. To address the problems
at such extreme flight conditions, innovative controls, such as thrust vectoring,
or novel control strategies, such as nonlinear control, may be required.

Aircraft control traditionally has relied on gain-scheduling of linear control

laws (which essentially becomes a nonlinear control), an approach that has been



very successful. One can characterize nonlinear dynamics in high-alpha ma-
neuvers by using a large number of linear models, but this method may not
be adequate, especially since some of the chosen operating points may not be
equilibrium points. One can build robustness into the control strategy (e.g., by
requiring more gain and phase margins), but this approach translates to a more
conservative control, which means possible performance degradation. An alter-
native method is to take explicitly into account the nonlinearities in the control
design, thus better utilizing the existing dynamics and control power. We chose
to investigate the dynamic inverse control technique because of its ease of imple-
mentation, and the simple way that maneuvers can enter into the control. The
objective of nonlinear dynamic inversion is to invert the dynamic equations of
the plant directly in order to find the control necessary to yield the given output.

We began work on this project because of a desire by Grumman Aerospace
Corp. to investigate alternative methods of control for the X-29 forward-swept-
wing research aircraft. The current method of control was to use gain-scheduled
control laws. This required choosing many operating points about the flight
envelope, designing linear controllers for each operating point, and blending
them together smoothly such that stability was achieved. This was a long and
sometimes difficult process (decisions needed to be made about what variable
to schedule with, and how). Using a nonlinear control method we could (hope-
fully) design one global controller. Stability would also be achieved across a
larger (hopefully global) region. We want the controller design process to be an
algorithmic one, similar to the process used for linear systems. Since we are deal-
ing with aerodynamics derived from wind tunnel testing and hence somewhat

prone to error, we want the design to be robust. We first designed a dynamic



inverse controller based on the Newton-Raphson method since an analytic form
for the plant was not available, only aerodynamic lookup tables. Performance
was not acceptable because low gains had to be used in order to achieve stability.
Stability guarantees could not be given. We then formulated a reduced analytic
model in order to use feedback linearization techniques to design the controller.
The controller was then modified so that stability robustness to modeling errors
could be achieved.

Our contribution is the elaboration of the dynamic inverse methods first de-
scribed by Meyer and Cicolani [3]. We expand the method to a more complex
aerodynamics and airframe description, that of the full nonlinear simulation
(wind-tunnel and flight tested model) of the X-29. We perform an engineer-
ing application of recent robust feedback linearization results to a high fidelity
simulation of the X-29 at high-angles-of-attack. We reduced the model of the
X-29 to a level sufficient to formulate the control. However, we have included
actuator redundancy and actuator limits. In addition, we modified the robust
control method to add integral action to enable the controller to reduce steady
state errors.

Chapter 2 outlines the background material for nonlinear aircraft control.
We first describe the terminology used in the aircraft dynamic equations. Next,
we describe the feedback linearization control method. We then outline dynamic
inverse control methods in the literature applied to aircraft. Robust feedback
linearization methods are then discussed. Chapter 3 describes our first dynamic
inverse control design for the X-29. We use a two time scale approach to sep-
arate the control design into two steps to enable the inversion to be performed

easily. We then describe a more analytical control method which gives better



performance and stability guarantees. Chapter 4 discusses the X-29 model in
more detail and describes the controller design and simulation. We then discuss
the robust control additions needed to guarantee stability in the face of mod-
eling errors. New simulation results are then shown. Finally, Chapter 5 gives

conclusions and discussions for further research.



Chapter 2

Baékground

2.1 Aircraft Dynamics

Since most of the work we will describe in this chapter has been applied to
aircraft models, some familiarity with aircraft dynamics is needed. Therefore,
we begin this chapter with a brief overview of rigid (jet) aircraft dynamics and
the associated terminology. For a complete description of aircraft dynamics and
control, the reader is referred to McRuer et al. [4] or Stevens and Lewis [5].
The equations of motion of a rigid body can be decoupled into independent
rotational and translational equations if the origin of the coordinate system is
chosen to be at the center of gravity (cg). The rotational motion of the body
will then be equivalent to pitching, yawing, and rolling motions (to be defined
later) about the center of gravity as if the cg were a fixed point in space. The
remaining components of the motion will be three components of translation of
the cg. Therefore, we will describe the state model for a six-degrees-of-freedom

(6-DOF) model.
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Figure 2.1: Diagram depicting axis definitions, moments and angular rates of

the aircraft.



The choice of state variables follows from application of Newton’s second
law of motion. Three components of position are needed to specify potential
energy in the gravitational field. Three components of velocity are required to
specify translational kinetic energy, and three components of angular velocity to
specify rotational kinetic energy. Three additional state variables are needed for
attitude states. The attitude variables are used to specify orientation relative to
the gravity vector. Therefore, the state vector of the basic rigid body model will

contain 12 components.

2.1.1 Definition of Axes and Angles

The aerodynamic forces and moments on an aircraft are produced by the relative
motion with respect to the air and depend on the orientation of the aircraft
with respect to the airflow. In a uniform airflow these forces and moments are
unchanged after a rotation around the free-stream velocity vector. Therefore,
only two orientation angles (with respect to the relative wind) are needed to
specify the aerodynamic forces and moments. The angles that are used are
the angle of attack () and the sideslip angle (8). They are known as the
aerodynamic angles and will now be defined by means of coordinate rotations
in three dimensions. Note that the aerodynamic forces and moments are also
dependent on angular rates, but for the moment we are concerned only with
their dependence on orientation.

Figure 2.1 shows an aircraft with the relative wind on its side (i.e. sideslip-
ping) and with the conventional right-handed (forward, right, and down) set of
body-fixed axes illustrated. The angles of attack and sideslip are defined by

performing a plane rotation about the body y-axis, followed by a plane rotation



about the new z-axis, such that the final z-axis is aligned directly into the rel-
ative wind. The first rotation defines the stability azes, and the angle of attack
is the angle between the body-fixed z-axis and the stability z-axis. Alpha is
positive if the rotation about the body-fixed y-axis was negative; thus a positive
alpha is shown in the figure. The second rotation leads to a set of wind azes,
and the sideslip angle is the angle between the stability z-axis and the wind
z-axis. Beta is positive if the rotation about the stability z-axis is positive, and
a positive beta is shown in the figure.

An aircraft of conventional shape must fly more or less directly into the
apparent wind in order to have low drag. Therefore, beta is usually very small
in steady flight. Alpha must be large enough to generate the required lift but
is also usually quite small (in steady flight). Therefore, although the stability
axes and wind axes have a variable orientation depending on the flight condition,
they essentially point forward, right, and down, the same as the body-fixed axes.
Note that technically all three sets of axes are “body axes” but only one is body-
fixed. We shall drop the term “fixed” and simply refer to them as body, stability
and wind axes.

A left-handed wind axes system, aligned backwards, left, and up relative to
the aircraft, has often been used in the past for wind tunnel data. Lift L, drag D,
and cross-wind force C were defined naturally in these axes as the aerodynamic
force components along the respective positive axes. In the right-handed axes
that we have defined, we will use —L and —D for the z and & force components,
and define a component Y for the aerodynamic sideforce measured along the

positive y-axis.



The transformation from the body to stability axes is

S _ o -
T cosa 0 sina z
Y = 0 1 0 Y R (2.1)
z —sina (0 cosoa z

|~ lsTAB L 1 L7 leopy

and the rotation from stability axes to wind axes is

z cos@ sinf 0 x
Y =| —sinf cosfB 0 Yy . (2.2)
0 0 1 z
WIND STAB

We shall denote these rotations by B, and Bg, and the complete rotation from
body to wind axes by B,,. Therefore, if vgopy is an arbitrary vector in the body

axes, and vwnp is the same vector expressed in wind axes, then

vwinp = BgBavpopy = Bwvpopy, (2.3)

where

cosacosfS sinff sinacosf
By =| —cosasinf cosp —sinasinf |- (2.4)
—sino 0 cos &
For the remainder of the derivation, we will shorten the subscripts to b for body,
s for stability, and w for wind axes.

In order to describe the position state variables, we need to define a new
reference frame. We shall call this reference frame the north-east-down (NED)
frame because the z-axis points north, y-axis east, and z-axis points down. The
NED frame is considered fixed in space with its z-y plane tangent to the Earth’s

surface. The vehicle position (z and y) and altitude (k) are measured from the

origin of this reference system.



We need the ability to relate the instantaneous attitude of the aircraft (in the
body axes) to the NED reference frame. The sequence of rotations conventionally
used in the aircraft industry to describe the attitude with respect to this (NED)
reference frame is as follows. Starting from the reference frame (aircraft straight

and level):

1. Rotate about the z-axis, nose right (positive yaw ).
2. Rotate about the new y-axis, nose up (positive pitch ).

3. Rotate about the new z-axis, right wing down (positive roll ¢).

The yaw (or heading), pitch, and roll (or bank) angles ¥, 6, ¢ are commonly
referred to as Euler angles. To transform a vector in the NED frame to the same

vector in the body-axes we use the following transformation:

z z
z
BODY NED
The individual rotation matrices are
( 1 0 0
By = 0 cos¢ sing
0 —sing cos¢

-

cosf 0 —sind
By = 0 1 0

sinf 0 cosf

cosyp siny 0
By = —sinY cosy 0
I 0 0 1

10



If we let By = By Bs B, denote the complete transformation from the NED frame

to the body frame, we get

cos 8 cos cos # sin ¥ —sind
By = ~cos¢siny +singsinfcosyp cosdcost +sin psinfsint  sin dcosd

sin ¢sin 1 + cos psinfcosyp —sin pcosP + cosPsinfsinp cos ¢ cos b
(26)

This transformation will be needed later to transform the body-axes translational

velocities to the NED frame to define the position state variable trajectories.

2.1.2 Definition of Forces and Moments

The forces and moments at the aircraft cg have components due to aerodynamic
effects and to engine thrust; these components will be denoted, respectively,
by the subscripts A and T. The velocity vector of the cg, expressed in wind
axes, has (by definition) an z-component equal to the true airspeed Vr, and no
other components. We will now define the various forces and moments and their
relationships to the body-axes quantities. The total force vectors in the body

and wind axes respectively, are given by

Fy, F;, Fpr
B = |F |=|F,|t| F | =EHat 5y (2.7)
2 F,, For
-D
BuFy = Fy=Fy, +Fu.=| v |+BuF,. (2.8)
~L

11



The moment vectors in the body and wind axes, respectively are given by

2] Tl [z ]
Ty = | M |=| My |+| My | =T+ Ty (2.9)
| N ] i Ny ] i Nt |
- -
T = | My, | +BuTsy = Tu, + T (2.10)
N"-UA

The velocity vector in the body axes is given as

U Vr Vr cos a cos
vy = V | = B,Z;vw = BZ: 0 = Vr Sil’iﬂ . (2'11)
W 0 Vrsinacos

The thrust component F,, can be produced by unbalanced engine power
because in a multiengined aircraft, the (inboard) engines may be toed-in to align
them with the airflow from the forebody. The component F,. may result from
a design in which the thrust vector is aligned to pass through the cg, when an
engine is above or below the cg. From eq. (2.11) we get the following expressions

for «, 3, and true airspeed:

tana = %
sinf = (2.12)

Vr = (U2+V2+W2)1/2
a, f, and V7 are the three most important variables determining aerodynamic

forces and moments, so these equations will prove very useful in conjunction

with the body-axes equations of motion.

12



The forces and moments acting on the complete aircraft are defined in terms

of dimensionless aerodynamic coefficients. We have

drag, D ¢SCp
lift, L gSCL
sideforce, Y gSCy
B (2.13)
rolling moment, L gSbuC)
pitching moment, M gScCuy
yawing moment, N gSbChy,
where
_ 1, . :
q§ = -2—pVT = free-stream dynamic pressure
p = air density
S = wing reference area
b = wing span
¢ = wing mean geometric chord.

The dynamic pressure equation models the way in which forces and moments

depend on airspeed and density. Note that the dimensionless force coeflicients

have been specified for wind axes. The moment coefficients may be specified in

wind, stability, or body axes, but the same symbols are used in each case.

The various dimensionless coefficients Cp, Cp, ..., Cn, are primarily depen-

dent on the aerodynamic angles o and § and less dependent on a number of other

variables. The coefficients are also dependent on control surface deflections; oth-

erwise, the vehicle would not be controllable. Furthermore, although the effect

of airspeed is accounted for through the dynamic pressure, the aerodynamic co-

efficients are still airspeed dependent at other than low subsonic Mach numbers.

13



This is because the flexibility of the airframe causes it to change shape when
large aerodynamic forces are generated at higher Mach numbers, and because
the nature of the flow field changes at high Mach numbers. The aerodynamic
coefficients are also dependent on other factors, such as engine power level, con-
figuration effects (e.g. landing gear, external tanks, etc.) and ground proximity
effects.

Because of the complicated functional dependence of the aerodynamic coef-
ficients, each “total” coefficient in eq. (2.13) is modeled as a sum of components
that are, individually, functions of fewer variables. The coefficients are usually
expressed as a baseline component, plus incremental or correction terms. The
baseline component is primarily a function of «, #, and Mach number. The
incremental terms that must be added will depend on flight conditions. Data
for these equations are derived from wind-tunnel tests on models, flight tests,
and aerodynamic-prediction computer programs, and are compiled in the aero-
dynamic database in tabular or graphical form. The extent to which individual
force and moment equations can be broken down into summations of simpler
functions of fewer variables depends on the complexity of the airframe, the range

of validity required, and the skill of the stability and control engineer.

2.1.3 The Nonlinear Aircraft Model

The standard 6-DOF equations used for conventional aircraft assume a flat
Earth, since the accelerations associated with the Earth’s rotation are negli-
gible compared to the accelerations that can be produced by a maneuvering
aircraft. Furthermore, when designing control systems for maneuvering aircraft,

there is no need to perform accurate navigation over the surface of the Earth.

14



The elements of the state vector will comprise, respectively, the components

of the velocity vector vg (eq, 2.11), the Euler angles, the angular velocities, and

the position vector. Therefore, we have the state vector

X=[UVWéeéobtppqgrazuyhl.

(2.14)

We now define the standard set of body-axes state equations. The body-axes

force equations are:

rV——qW—gsin&-{—%

rU—l—pW+gsin¢cos0+%

qU—pV+gcos¢cos0+%

p+ tan @(gsin ¢ + r cos ¢)
gcos ¢ — rsin ¢

sec#(gsin ¢ + r cos ¢)

(arr + cp)g + sl + 4N
espr — cg(p? — 1) + oM
(csp — car)q + caL + coN

where the constants ¢; are defined by

91

C3

Cs

Cr

Cy

Qo=L)L=12 . (a=lytl)ls
2 T

T
I I
2z _— Tz
T ¢4 = 7T
LI I
iz x o Xz
I, 6 = 7,
1 o o lalle=L)+I,
I 8 = T
Iz
T

15
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(2.18)



with

T=1I -1,

and the inertia matrix (under the assumption that z-z is a plane of symmetry)

is given by ) )
I, 0 -1,
J=1 0 I 0
| L 0 L

The navigation equations represent, respectively, the north, east, and vertical
components of the aircraft velocity in the locally level geographic (NED) frame

on the surface of the Earth and are given by

& = Ucosfcosth+ V(—cosdsint + sin ¢sin 6 cos 1))
+W (sin ¢ sin 9 + cos ¢sin 8 cos ¥)

g = U-cosfsint + V(cos ¢ cosp + sin ¢ sin 0 sin 1)) (2.19)
+W{(—sin ¢ cos ¢ + cos ¢ sin f sin 1))

h = Usinf — Vsin¢cosd — W cos ¢ cos .

The force and moment components (Fy, F,, F,, L, M, N) in the 6-DOF equa-
tions must be broken into aerodynamic and thrust contributions as in egs. (2.7)
through (2.10). Then the aerodynamic contributions can be obtained from
eq. (2.13). The aerodynamic force and moment components in eqgs. (2.15) and
(2.17) depend on the aerodynamic angles and true airspeed. Therefore, we must
use eq. (2.12) to calculate these quantities. It is usually convenient to go one
step further and replace the state variables U, V, and W in the 6-DOF model
by Vr, B, and a. Then U, V, and W can be calculated from eq. (2.11) for the

force equations, and from eq. (2.12) we can derive the following expressions for

16



the new state derivatives:
’ _ UULVV+WW
Vr = Ve
5 . VVp=VV.
g = TR (2.20)

& = UW-WU
= TUzywe

The new state vector becomes
X=(Vt BadOppqgrazyhl. (2.21)

At this point a difficulty may arise because the aerodynamic force coefficients
can depend on & or 8. However, the ¢ and 3 derivatives are not available
until after the force equations have been evaluated. In terms of a state-variable
formulation, the body-axes state equations cannot be arranged in a form that
allows an explicit solution for the derivatives. This problem can be avoided by a
change of axes, provided that the aerodynamic forces are linearly dependent on
& and B. Note that if & and B dependence is present only in the aerodynamic
moment coefficients, implicit state equations can be avoided simply by evaluating
the force equations before the moment equations. This is a common situation.
The rate derivative Cp, is frequently neglected as are all the A derivatives, while
the Cp,, is significant.

In addition to solving the implicit solution problems of eq. (2.20), the wind
axes are natural axes for aerodynamic forces. Furthermore, the wind-axes equa-
tions will easily lead to linear, small perturbation equations whose coefficients
contain the partial derivatives of the aerodynamic forces and moments with
respect to the wind-axes variables «, 3, and V7. These are the aerodynamic
derivatives (or “stability derivatives”). Methods exist to estimate their values

for a complete aircraft, and the values are commonly specified in aerodynamic

17




databases. For simplicity, the engine thrust vector will be assumed to be parallel
to the body z-axis. The body-axes thrust force component will be denoted by
Fr. We can express the aerodynamic angles and true airspeed derivatives in the

wind-axes as:

Vp = %[FTcosacosﬂ—Dﬁ-mgl]
,3 = Ty+psina—rcosa (2.22)

& = q—gysecf —tanf(pcosa+ rsina)

with

1 .
qu = ;nTT[FTsma—I—L-l—mgg,]

1 .
Ty = ;n—V; [—Frcosasin 8+ Y + mg,]

where ¢,, is the pitch rate in the wind-axes, r,, is the roll rate in the wind-axes,

and the components of the gravity vector are given by

g1 = ¢g(—cosacosfsinf + sin fsin ¢ cos  + sin c cos [ cos ¢ cos 6)
g2 = ¢g(cosasinfsinb + cos B sin ¢ cos § — sin asin [ cos ¢ cos 6) (2.23)

g3 = g(sinasinf + cos acos ¢ cos b).

[t is now apparent from the wind-axes force equations that if linear depen-
dence on ¢ is present in the lift coefficient, the & terms can be collected on the
left-hand side of the lift equations. Similarly, the side-force equation can be made
explicit in 8 if B dependence is present in the side-force coefficient. Therefore,
explicit state equations can be derived by using the wind-axes force equations

when this is difficult or impossible with the body-axes state equations.

18



2.2 Feedback Linearization

We consider a nonlinear system modeled as

& = f(z,u) (2.24)
y = h(=). (2.25)
with internal state z = (z1,2,, -, z,) € R", control input v € R™, measured

output y € R?, and f: R* x R™ — RR". We will investigate when the dynamics
of egs. (2.24) - (2.25) can be transformed by a (local) state space transformation

z = ®(z) and a static state feedback

u = oz, v) (2.26)

into a linear system
z = Az+ Bv (2.27)
y = Cxz. (2.28)

This is called the feedback linearization problem (see [6], [7]). If the controlled
dynamics (2.24)—(2.25) are feedback linearizable, then the control of the system
can be split into two parts: a nonlinear feedback loop which renders the system
(in suitable local coordinates) linear, and a super imposed linear control strategy
for the obtained linear system. The material in this section is taken largely
from Isidori [6]. We will first give some necessary mathematical background for
solving this problem. Then we will give necessary and sufficient conditions such
that a nonlinear single-input single-output system is feedback linearizable. The
solution to the SISO case has a simple structure which will give insight into the
more complicated multivariable problem. We will then give the solution to the

multivariable system case.
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2.2.1 Mathematical Preliminaries

A nonlinear change of coordinates can be described in the form
z = ®(z) (2.29)

where z € R"™ is the new state vector, z € R" is the original state vector and

®(z) represents a R™-valued function of n variables,

$1(z)
¢$2(z)

with the following properties

1. ®(z) is invertible, i.e. there exists a function ®~1(z) such that

for all z € R"™.

2. ®(z) and ®71(z) are both smooth mappings, i.e. have continuous partial

derivatives of any order.

A transformation of this type is called a global diffecomorphism on R™. Some-
times a transformation possessing both these properties and defined for all z is
difficult to find and the properties in question are difficult to verify. Thus, in
most cases one rather looks at transformations defined only in a neighborhood

of a given point. A transformation of this type is called a local diffeomorphism.
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Proposition 2.1 ([6]) Suppose ®(z) is a smooth function defined on some sub-

set U of R"™. Suppose the Jacobian matriz

%1 oh ., 841
I Oz, Ozn
042 B¢ ., 942
6@ - e Ozg OTn
Oz
9n O¢n ... On
| 31:1 31‘2 Ozn B

is nonsingular at a point ¢ = z°. Then, for some suitable open subset U° of

U, containing 2°, ®(z) defines a local diffeomorphism between U° and its image

B(UO).

Given a real valued function of z = (21,23, -,2x), A(z), and a (n vector)-

valued function of 2

fi(z)

and letting

ox {ax aA}

9z~ |0z, Oe,

we define a new real-valued function of z, denoted L;A(z), in the following way

o\ LS
L) = 5 () = % &j—ifi(:c).

This function is sometimes called the derivative of A(z) along f. Occasionally,

for compactness we may use a more condensed notation and write

),

d\(z) = 3

Repeated use of the derivative of A(z) along a function is possible. Thus, for

instance, by differentiating A(z) first along f(z) and then along a (n vector)-
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valued function g(z), we may construct the new function

0L
L,Lo\(w) = =5 =g(2).

If ) is being differentiated k times along f, we may construct a function recur-
sively defined as
LA
k _ f
LiM(z) = "—an(m)
with L$A(z) = A(z).
Another type of differential operation involves two (n vector)-valued func-

tions of £ = (1,22, **,Zx), f(z) and g(z). We define a new (n vector)-valued

function of z, denoted [f, g|(z) as

r6l(e) = 525(z) = 2Lo(z)

where g—% and %5 are the Jacobian matrices of g(z) and f(z), respectively. This
new function is called the Lie product or Lie bracket of f(z) and g(z). Repeated
bracketing of a function g(z) with the same function f(z) is possible. Whenever
this is needed, in order to avoid notation of the form [f, [f, -, [f, g]]] that could

generate confusion, it is preferable to define such an operation recursively, as

adjg(z) = [f,ad] " g](2)
for any k > 1, setting adjg(z) = g(z).
Definition 2.1 ([6]) A set of k (n vector)-valued functions {X1(z),- - -, Xi(z)},
such that the matriz
(Xa(z) Xao(z) -+ Xi(w))
has rank k at the point x = °, is said to be involutive near z°, if for each pair

of integers (¢,7),1 < 4,7 <k, the matriz

(Xi(z) Xa(@) -+ Xi(e) [Xi, X;)(2))
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still has rank k for all z in a neighborhood of x°.

2.2.2 Single-Input Single-Output Systems

We begin by looking at a single-input single-output plant modeled by nonlinear

differential equations of the form

¢ = f(z)+g(z)u (2.30)
y = h(z). (2.31)
with internal state ¢ = (24,29, --,2,) € R", control input v € R, and mea-

sured output y € R. The R"-valued functions f(z), g(z) and the real-valued
function h(z) are nonlinear functions of their arguments, and are assumed to be

differentiable a sufficient number of times.

Definition 2.2 ([6]) The nonlinear system described by egs. (2.30) — (2.31) has

relative degree r at z° if:
1. LyLEh(z) =0 for all z in a neighborhood of 2° and all k < r — 1;
2. LyL ' h(z®) #0.

It can be shown that the relative degree, r, is exactly the number of times y(t)
has to be differentiated at t = t° for u(t°) to appear explicitly.
Consider a nonlinear system (2.30) — (2.31) having at some point z = z°

relative degree equal to the dimension of the state space, i.e. r = n. Construct
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a change of coordinates by setting

~ - -

$1(<) h(z)

®(z) = ¢2Fx) - Lf’.l(m) . (2.32)

L én(z) | i L’f‘_lh(z) ]
In the new coordinates

zi=¢i(x) =L h(z) 1<i<n
we get

d 0¢, 0 Oh 0
B 02 T Lh(e(t) = bala(t) = (1)

dzn-l _ 8¢n_1 833 _ 6L}‘2h 81; a1 B _
" or - oa o = L hla(®)) = dale(t)) = z(1).

For z, we get

dz

d—: = Lh(x(t)) + Lo LT h(2(t))u(?).
Replacing z(t) on the right hand side of the equation by z(t) = ®~1(2(t)) we get

dz,
— = bl=(t) + a(z())u(t)

with
a(z) = L,LT'h(®7'(z))
b(z) = Lih(®7'(z)).
Summarizing, the transformed system equations become:
21 = Zy

Zy = z3

Zn = b(2) + a(2)u.
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Recall that at the point 2° = ®(z°), and hence at all z in a neighborhood of 2°,
the function a(z) is nonzero by definition of the relative degree.

Choose now the following state feedback control law

1
u = @[——b(z) + v]. (2.33)

The resulting closed-loop system described by the equations

7;'1 = 2y
Z; = %

: : (2.34)
Zn, = U,

is linear and controllable. Thus we conclude that any nonlinear system of the
form (2.30) — (2.31) with relative degree n at some point z° can be transformed
into a system which is linear and controllable by means of (i) a local change
of coordinates, and (ii) a local static state feedback. We can also express the

control law in the original = coordinates as

1 1

U= ———[-b(®(z)) + v] = m["L}Lh(ﬂﬁ) + v]. (2.35)

a(9(z))
Note that while eq. (2.35) appears to contain only the output function A(z),
when the derivatives are taken the final form for u will in general be a function
of the entire state vector.

Up to this point, the existence of an “output” function h(z) relative to which
system (2.30) — (2.31) has relative degree exactly equal to n (at 2%) has been key
in making it possible to transform the system into a linear and controllable one.
If such a function h(z) is not available beforehand, either because the actual

output of the system does not satisfy the conditions required to have relative
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degree n or simply because no specific output is defined for the given system,
the question arises whether it is possible to find an appropriate h(z) that allows
output linearization. The following theorem gives conditions under which an

output exists which linearizes the system.

Theorem 2.1 ([6]) Suppose a system of the form (2.80) is given. There exists

an “output” function h(z) for which the system has relative degree n at a point

z° if and only if the following conditions are satisfied:

1. the matriz [g(z°) adsg(z®) ---ad} ?g(z°) ad}'g(z°)] has rank n,

2. the set {g(z°), adsg(°), - - ad} ?g(z®)} is involutive near z°.

2.2.3 Multi-Input Multi-Output Systems

In this section, we shall see how the theory developed for single-input single-
output systems can be extended to nonlinear systems having many inputs and
many outputs. In order to avoid unnecessary complications, we shall restrict our
analysis to the consideration of systems having the same number m of inputs and
outputs. We will state how the conditions for the main theorem (Theorem 2.2)
should be changed to handle a system with a different number of inputs and
outputs. The multivariable nonlinear systems we consider are described in state

space form as

z = f(w)+§:gi(:v)u,- (2.36)
wo= h(@)

(2.37)
Yym = hn(z)
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with state z = (21,22, +,%,) € R", control inputs u; € IR, and measured
p

outputs y; € R. We can write these equations in a more condensed form as

i = fz)+g(@u

y = h(z)
with
u o= [ug -+ U
y = [y o yml
and where

g(z) = lo(z) g2(z) -+ gm(2)],
h(z) = [h(z) ha(z) - hm(2))
are respectively an n X m matrix and an m-vector.

Definition 2.3 ([6]) The multivariable nonlinear system described by egs. (2.36) -

(2.88) has a (vector) relative degree {ry,--,rn} at z° if:
1.

LgJL];h,'(:E) =0

foralll1 <j<m, foralll <i<m, forallk <r;—1, and for allz in a

neighborhood of z°,

2. the m x m matrix

Ly L 'ha(z) o Lo L ha(e)
Lo L7 'hy(z) -+ Ly L7 'ho(z
A(z) = nf 2(2) gm - f 2() (2.38)
| Lo L hm(@) oo Lgn L7 hm(2)

is nonsingular at x = z°.
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It is seen that this definition incorporates the one given for the single-input single-
output case in the previous section. Note that each integer r; is associated with

the ¢-th output of the system. By definition, for all k¥ < r; — 1, the row vector
(Lo Lihi(2) Lo Lihi(z) -+ Ly, Lihi(e)]

is zero for all z in a neighborhood of z° and, for £k = r; — 1, this row vector is
nonzero (i.e. has at least a nonzero element at z°), because the matrix A(z?) is
assumed to be nonsingular. As a consequence, in view also of the condition (1),
we see that for each ¢ there is at least one choice of 7 such that the (single-
input single-output) system having output y; and input u; has exactly relative
degree r; at z° and, for any other possible choice of j (i.e. of input channel), the
corresponding relative degree at z° (if any) is necessarily higher than or equal
to r;. Finally, it can be shown that r; is exactly the number of times the :-th
output y;(t) has to be differentiated at ¢ = t° to have at least one component of
the input vector u(t°) appear explicitly.

We note that the matrix A(z°) can be written as

L;‘"lhl(w) W

L2 hy(z
A% =| | (*) [91(2°) g2(z®) -+ gm(a®)].

i L}’"‘lhm(w)

From the nonsingularity of the matrix A(z°) we deduce that the matrix

[1(z) ga(z) -+ gm(2)]

has rank m near z°.

We will now discuss the multivariable extension of the feedback linearization

problem. Consider the nonlinear system (2.36)-(2.38) having a (vector) relative
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degree {ry,---,rm} at 2° and suppose the sum r = r; +ry + .-+ + r,, is exactly

equal to the dimension n of the state space. Then the set of functions
di(z) = L}}‘lhi(m) for 1<k<r,1<i<m
with
0(z) = col[¢y(2), -, ¢y, (2), -, 47 (2), -, ¢7. (2)]

defines completely a local coordinate transformation at z°. In the new coordi-

nates
2 = $i(2)

the system is described by m sets of equations of the form

4= b(2)+ Y ai(2)u(t)
—~
for 1 <: < m with
aij(2) = Lg‘LTf‘”lh,-((I)'l(z)) forl <i,7<m
bi(z) = L7hi(®7'(2)) forl <7 <m

Note that in the original coordinates a;; is exactly equal to the (7, 7) entry of the
matrix A(z) in (2.38). Note also, that if we look at a particular
[
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the notation is consistent with the single-input single-output case discussed in

the previous section.

Define

-

L? h] (CE)

b(z) = L?h:"(m) . (2.39)

i L}"‘hm(w)

Recall that in a neighborhood of the point z2° = ®~1(z°) the matrix A(z) is

nonsingular and therefore the equations

V1

%)

v = = b(z) + A(2)u (2.40)

Um

can be solved for u. The input u solving these equations has the form of a state
feedback
u = A"Y2)[-b(2) + v].

Imposing this feedback yields a system characterized by the m sets of equations

T J—
2y = 2y
(2.41)
21 — 7
z’r.'—l zr.
2' = v

for 1 <7 < m, which is clearly linear and controllable. In terms of the original

description of the system, the linearizing feedback has the form

u=az)+ B(z)v (2.42)
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where

a(z) = —A"z)b(z) B(z) = A™Y(z)

with A(z) and b(z) defined in (2.38) and (2.39), respectively. We can conclude

by looking at (2.41) that the new system description can be written as

2 = Az+ Bv (2.43)

y = Cz (2.44)
with

A = diag(A1,--,An)
B = diag(by,: -, bm)

C = diag(ci, "+ ,cm)

where A; is the r; X r; matrix

-0 10 - 0-

0 01 0
A=

0 00 1

_000- 0_

b; is the r; x 1 vector

and ¢; is the 1 x r; vector

It can be shown that the conditions used above to construct the linearizing

feedback are also necessary conditions.

31



Lemma 2.1 ([6]) Given a nonlinear system of the form (2.86)-(2.38), suppose
the matriz g(z°) has rank m. There ezists a static state feedback and a change of
coordinates, defined locally around z°, so that the system is transformed into the
form (2.44) if and only if the nonlinear system (2.36)—(2.88) has some (vector)

relative degree {ry, -+, rm} atz° and ri+ro+ -+ 71 =n.

As in the SISO case, if the actual output of the system h(z) does not satisfy
the conditions of Lemma 2.1 or no specific output is defined for the given system,
we wish to know whether it is possible to find an appropriate h(z) that allows

output linearization. Let us first define

Go = span{gi, - ,gm}

Gl = Spa'n{g1>' o )gm,adfgh' o ?adfgm}

G; = span{adig;:0<k<i, 1<j<m}
fori = 0,1,---,n — 1. Note that by definition, G;_; C G; for any ¢+ > 1. The
following theorem gives conditions under which an output exists which linearizes

the system.

Theorem 2.2 ([6]) Suppose the matriz g(z°) has rank m. Then there exist m

real-valued functions Ai(z),A2(z),- -+, Am(2) such that the system

¢ = f(z)+9(z)u

y = o)
has some (vector) relative degree {ry,---,rm} at z° with

MAr et =n

if and only if:
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1. for each 0 <1 < n — 1, the distribution G; has constant dimension near

SDO ;

2. the distribution G,_1 has dimension n;

3. for each 0 <1 < n —2, the distribution G, is involutive.

Observe that the conditions stated in Theorem 2.2, in the case of a single-
input system, reduce exactly to those described in Theorem 2.1. When m =1

the distribution G; reduces to

G; = span{g,adsg, -, adig}.

The condition (2) above, i.e. dim(Gnr-1) = n, implies that dim(G;) =7+ 1, i.e.
the condition (1). This being the case, the involutivity of G,—2 implies also that
of Go, ,Gr-3.

Theorem 2.2 can be extended for a system with p outputs and m inputs, with
p # m, provided condition (2) of Definition 2.38 is replaced by the assumption
that the p x m matrix A(z) has full row rank (i.e. rank equal to the number
of output channels). This implies that the number of inputs must be larger
than or equal to the number of outputs. Under this new assumption, the same
coordinate transformation can be used. If A(z) has rank p, then equation (2.40)

can be solved for u as
u = Ag'(z)[—b(z) + v]
where AR'(z) is the right inverse of A(z).
We will now extend the results of Theorem 2.2 to general nonlinear systems

of the form

= f(z,u) (2.45)
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with state 2 = (24,22, ---,2,) € R", and control input u € R™. The conditions
for feedback linearizability rely on the notion of extended system of a general

nonlinear system.

Definition 2.4 ([8]) The extended system of (2.45) is the affine nonlinear sys-

tem
t = f(z,u)

U = w

(2.46)
with state (z,u) € R" x R™ and new input w € R™.

The extended system is of the form

Te = f(xe) + g(xe)w

where z. = (z,u) and
OnXm

9(5'36) =

Imxm

Theorem 2.3 ([8, 9]) Consider the nonlinear system (2.45) with f(z°, u°) = 0.
The nonlinear system (2.45) is feedback linearizable around (z°,u°) if and only if
the extended system (2.46) is feedback linearizable around (z°,u°), i.e. satisfies

the conditions of Theorem 2.2.

2.3 Dynamic Inversion Applied to Aircraft

The dynamic inversion technique was first proposed by Meyer and Cicolani [3]
as part of a total automatic flight control system for short take-off and landing
(STOL) and vertical take-off and landing (VTOL) aircraft. A control system

was needed which could follow rough trajectory commands given by either the
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Figure 2.2: Simplified arrangement of the controller proposed by Meyer and

Cicolani.

pilot or an air traffic controller despite strong nonlinearities in the description of
the plant. A simplified description of the control loop proposed can be seen in
Figure 2.2. The combination of the trimmap and the aircraft is approximately
an identity in the following sense. If a trajectory is defined for the aircraft to
follow, the acceleration, and hence the required force, are known. The trimmap
represents an inverse model of the aircraft and given a commanded force solves
for the control settings that will generate that force. If the trimmap contains
an accurate representation of the vehicle dynamics, the controls generated from
the trimmap when applied to the aircraft will result in a trajectory that matches
the one commanded. From the standpoint of the control loop operation, the
application of the trimmap concept makes the combined trimmap and aircraft
blocks approximately an identity and results in operational characteristics that
are approximately linear. From the linearization theory in the previous section,
and the fact that the aircraft dynamics take the form of second-order differ-

ential equations for each channel (pitch, roll, yaw) the combined operational
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Abstract

Title of Dissertation: Development and Analysis of a Nonlinear
Dynamic Inverse Control Strategy

John Reilly, Doctor of Philosophy, 1996

Dissertation directed by: Professor William S. Levine
Department of Electrical Engineering

Aircraft control normally relies on gain-scheduling of linear control laws, an
approach that has been very successful. One can characterize nonlinear dynam-
ics in high-alpha maneuvers by using a large number of linear models, but this
method may not be adequate, especially since some of the chosen operating
points may not be equilibrium points. One can build robustness into the control
strategy (e.g., by requiring more gain and phase margins), but this approach
translates to a more conservative control, which means possible performance
degradation. An alternative method is to take explicitly into account the non-
linearities in the control design, thus better utilizing the existing dynamics and
control power. We choose to investigate the dynamic inverse control technique
because of its ease of implementation, and the simple way that maneuvers can
enter into the control. The objective of nonlinear dynamic inversion is to invert
the dynamic equations of the plant directly in order to find the control necessary
to yield the given output.

We elaborate the dynamic inverse methods first described by Meyer and Ci-

colani. We expand the method to a more complex aerodynamics and airframe



description, that of the full nonlinear simulation (wind-tunnel and flight tested
model) of the X-29.To achieve additional realism, the simulation contains ac-
tuator redundancy and actuator limits. We first formulate a reduced analytic
model in order to use feedback linearization techniques to design the controller.
Since we neglect some of the aerodynamic terms, the controller is then modified
so that stability robustness to modeling errors can be achieved. In addition, we
modify the robust control method to add integral action to enable the controller

to reduce steady state errors and to lower the control rates.



characteristics take the form of double integrators for each channel.

The major parts of the controller can be broken into two subsystems: one
for translation and one for rotation, see Figure 2.3. This exploits the natural
division of an aircraft’s dynamics as discussed in Section 2.1. Each subsystem
will then be in the control affine form as required for feedback linearization, if
viewed properly. The aircraft rotation state equations take the form of equa-
tion (2.17). The inputs are the control deflections (appearing linearly in the N,
L, and M terms) and the outputs are the angular rates. This subsystem sat-
isfies the form required in equations (2.36)-(2.38). The (vector) relative degree
for this subsystem can easily be found to be {1,1,1}. The linearizing feedback
1s calculated through the moment trimmap. The combination of the lineariz-
ing feedback with the rotation subsystem of the aircraft (the inner loop) results
in a set of integrators (one for each channel) where the inputs are the com-
manded angular accelerations and the outputs are the angular rates. Similarly,
the translation subsystem with the attitude angles and thrust as inputs and the
translation velocities as outputs takes the form of equations (2.36)—(2.38). The
third-order system has three inputs (67, 8,«) and three outputs (U, V, W) (the
state equations are given by equation (2.15) with the inputs appearing linearly
in the F,, F,, and F, terms respectively) and can trivially be shown to have
(vector) relative degree {1,1,1}. The linearizing feedback for this subsystem is
the force trimmap. The combination of the linearizing feedback with the trans-
lation subsystem of the aircraft (the outer loop) results in a set of integrators
(one for each channel) where the inputs are the commanded forces and the out-

puts are the attitude angles and thrust command. We will now describe these

transformations in more detail.
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The function of the translational block is to convert rough commanded tra-
jectories into a throttle command and attitude command angles to be sent to
the rotational block. The trajectory command generator smoothes the pilot in-
puts (R;, Vi, and V,) to create the trajectory commands (R., V., and VC), and

generates the open loop forces
f oc = ch

to be added to the correctional forces, f.. from the perturbation regulator. The
total inertial (relative to the runway) force, fic, is then converted into the corre-
sponding force coefficients relative to the velocity vector by means of eq. (2.13).

A commanded roll angle, ¢. is also generated by

The commanded force coefficients, Cr., Cp, and Cy,, are then input to a force
trim map to find the required attitude angles and thrust command. A trim map
is a table which maps a given output (or operating condition) into the inputs
required to ”trim” the aircraft at the desired output. To trim an aircraft means
that one needs to find the appropriate control deflections (inputs) to maintain
the aircraft at the desired operating condition (outputs). Usually the resulting
aircraft motion has zero acceleration. However, in the context of the following
description, trim has been generalized to include nonzero accelerations. In this
case, the maneuvers sent to the force trim map are static accelerations which
assume no angular motion. The trim map “inverts” any admissible acceleration
into the required attitude and thrust commands. The entire force trim equations

which need to be solved are:

OL(aaﬁau)_CLc =0
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CD(Ol, ﬁ, u) - CDC = 0

Cy(a,ﬂ,u)—Cyc = 0

where u is the control vector. The force trim map consists of a table lookup
where the predominant independent variables are the lift coefficient, Cp, drag
coeflicient, Cp, and sideforce coefficient, Cy, and the predominant outputs are
the angle of attack, o, yaw angle 3, and the throttle, éT. The lookup tables
may also be functions of control surfaces such as flap settings, dynamic vari-
ables such as @ and f (which can be calculated from body axes velocities, see
equation (2.12)) and other variables such as air temperature and density. Dy-
namics such as &, B, etc. were neglected at this point and taken care of in the
perturbation loop.

The function of the rotational block is to convert rough commanded attitude
and flight-path angles into control surface deflections. The attitude command
generator smoothes the attitude and flight-path inputs to create the rotational
commands (A., w., and w.), The open loop angular acceleration command, w,,,
is then added to the correctional angular acceleration, w,. from the perturbation

regulator. The dynamic equation for rotation is given by
w=J"M+ S(w)Jw]

where J is the aircraft moment of inertia in body axes, M is the total aerody-

namic and propulsive moment, and for any column vector = (zy, zq, z3)7,

0 T3 —T9
S(:c) =] —zz3 0 Ty
re —x1 O
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Therefore, the total moment can be found by rearranging the above equation.

The commanded moment coefficients can then be calculated from

bCh,
M=gS| eC,,
bC,,,

where (), is the rolling moment coefficient, C,,, is the pitching moment coeffi-
cient, and C,,, is the yawing moment coefficient, § is the dynamic pressure, S is
the wing area, b is the reference span of the wing, and ¢ is the reference aero-
dynamic chord of the wing. The moment coefficients are input to the moment
trim map which attempts to find the control surface deflections by “inverting”

the equations:

Cz(a,ﬂ,U)—Czc = 0
Comla,B,u) —Cpe = 0

Cnla, fyu)y = Cry = 0

where u is the control vector.

A perturbation controller closes each loop from the output of the plant to the
trim maps to regulate any inaccuracies or intentionally neglected terms in the
trim map calculations as well as to account for any disturbances. As described
earlier, the trimmaps perform the function of calculating the linearizing feedback,
hence the combination of the controller and the aircraft results in a series of
integrators. Therefore the controller regulates a basically linear function over the
entire operating range of the aircraft. The first flight test of this control concept
was presented by Wehrend and Meyer [10] on a DHC-6 Twin Otter aircraft using

a modified racetrack course with satisfactory performance. Simplified analytical
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models using only the major aerodynamic terms were used for the trimmaps
because of the simplicity of the aerodynamics of the Twin Otter aircraft. For
example, no state information («, #) was used in the force trimmap. This concept
was next used by Smith and Meyer [11] for a simulation study of automatic
landing of an A-TE aircraft on a carrier. This application, more than others,
placed limits on the aircraft motion to ensure that the commands were within
the flight envelope of the aircraft. Because of the algorithmic nature of the
controller, this was easily accomplished by placing limits on the commanded
values output from the trim map. For example, the commanded angle of attack
o, calculated from the force trim map was limited to between —2° and +16° .
Calculated values outside that range were simply forced to the boundary. The
study showed that this concept improved the performance of carrier landing
compared to conventional approaches.

Up to this point, the trim map inversion was performed using exhaustive
searches of the (simplified) aerodynamic tables to find the proper output (atti-
tude angles, thrust, control deflections) for the given input (forces and moments).
This technique was satisfactory for aircraft for which the configuration allowed
the force and moment equations to be treated separately. For more complex
aircraft, the inverse cannot be solved directly because analytical expressions for
the trim variables do not exist. Smith and Meyer [12] instead chose to use an
iterative Newton-Raphson procedure in a simulation study of a proposed vertical
attitude take-off and landing (VATOL, tail sitter) aircraft to trim at the given
forces and moments. A six-degree-of-freedom (three forces and three moments)
trim was first used to trim the translational maneuvering assuming zero angular

velocity and acceleration. The commanded attitudes were then used to gen-
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erate angular accelerations as input to a four-degree-of-freedom (forward force
and three moments) trim to find the four controls necessary to produce the com-
manded accelerations. Vertical attitude maneuvering about hover and transition
from forward flight to hover were simulated using this control concept. Simula-
tion results were satisfactory. However, during the transition from forward flight
to hover, the Newton-Raphson algorithm became unstable. The trirﬁ procedure
was trying to maintain the desired lift force. However, the lift curve slope, Cr,
changes sign (from positive to negative) near an o of 32 deg. Therefore, near
an « of 32 deg the algorithm will hunt for the proper a to maintain the trim
force. This causes the procedure to oscillate between successive values for a.
To enable trim near this position, the predicted corrections to control, i.e. the
outputs from the Newton-Raphson algorithm, were reduced to 80%.

Kato and Sugiura [13] attempt to add insight into the inverse problem by
performing a theoretical study of airplane general motion. By expressing the
aircraft state variables as functions only of the triple (, 8, ¢) and the given flight
trajectory (z, y, z), they have formally justified the separation simplifications
made by Meyer, et. al. in calculating the linearizing feedback. The block
diagram shown in Figure 2.4 is a representation of an example given in the
paper. For conventional aircraft, the main controls are the elevator, rudder,
and aileron which control the angle of attack «, the sideslip angle 5, and the
bank angle ¢, respectively. Therefore, they use these angles («, 3, ) as the
independent variables in their approach. The “motion” they use as the inputs
are the flight path angles (¥w, Ow) and the velocity (Vr) along the flight path. If
the flight-path angles are known functions of time, the attitude angles, heading

) and pitch 0, can be written in terms of the path angles and the triplet (e, 3, @),
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l.e.

'@b = ¢(¢W, 0Wa «, ﬂa (P)

0 = 0('¢W, 0W,a)ﬂ7(10)

The path angles (1w, Ow) should be distinguished from the attitude angles (1), ).
Note that the path angles are two of the Euler angles for the wind-axis, while
the attitude angles are two of the Euler angles for the body-axis. (Alternatively,
they mention how to use their approach using attitude angles as inputs.) Simi-
larly, the angular velocities (p, ¢,r) and linear velocities (u,v,w) can be written
as functions of the path angles, tangent velocity (Vr) and the triplet (o, 8, ¢).
Therefore, the forces acting on the aircraft can be written as functions of the
unknown variables («, 3,¢), and the unknown controls (éa,ée,ér,6T). Since the
control surfaces (6a,ée,0r) only give a small contribution to the forces, they are
neglected at this time. The remaining approximate force equations are then
seen to be functions of four unknowns, the angles (o, 3,¢) and the thrust éT.
A fourth equation is needed in order to simultaneously solve the equations for
(at, B, ). For the numerical example given, a prescribed bank angle ¢ was cho-
sen. Alternative constraints could be used. One example could be that the flight
be coordinated, i.e. that B = 0. Therefore, approximate values for («, 8, é7) can

be found by solving the approximate force equations
FX(t;a?:B76T) =0
FY(t; «, ﬂ) =0

Fz(t;e,8) = 0

Since the force equations are nonlinear, even though' the example uses linear

aerodynamic forces, a successive iteration method was used to find o and 3. The
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aircraft moment equations were then used to solve for the control deflections.
Since the aerodynamic forces due to the control surfaces were neglected, the
solution found is only an approximate one. The control deflections are then
substituted into the exact force equations to again solve for the angles (¢, G, ¢).
The entire process of solving the force and moment equations is then repeated
until the solutions found for the control deflections converge. Obviously, this
method of inversion to find the necessary control can not be used in a real-
time implementation because of the computational power required for both the
iterative search for the angles («, 8, ¢) and the repetitive nature of the algorithm.

Lane and Stengel [14] apply decoupling theory methods developed by Singh
and Rugh [15] and Freund [16] to compute the inverse dynamics for a Navion
General Aviation aircraft. This amounts to constructing the linearizing feedback
u as defined in eq. (2.42). This method requires that the plant dynamics be in

the form:

= F(z)+ G(z)u

y = h(z)

where F(z)is an (n x 1) vector, G(z) is an (n X m) matrix, and i(z) is an (m

(2.47)

x 1) vector. Since the aircraft dynamics usually take the more general nonlinear

form (see the description of the aerodynamic coefficients in equation (2.13)),

' = f(z',v)

y = h(z')
a transformation into the form in (2.47) is required. This can be accomplished
by augmenting the original system with derivatives of the appropriate control
inputs, i.e. modifying the original system into it’s extended form (eq. (2.46)).

To compute the inverse dynamics of (2.47), the solution to the exact state space
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feedback linearization problem outlined in Section 2.2.3 is used, namely that
u= A"Yz)[-b(z) + v]. (2.48)

Application of this control leaves the original system in the integrator-decoupled

form

<
I
S

with
y =)
With an appropriate choice for the input v, the original system can be made
to perform as desired. Lane and Stengel chose an input of the form
r—1
v=—3 Puyf+ Pow (2.49)
k=0

where P; are (m X m) constant matrices chosen so that

m
r= ZT,’
1=1

poles can be placed arbitrarily and w is the new external input. The control
law consisting of (2.48) and (2.49) was then simulated for the Navion aircraft
with control saturation logic and stall prevention logic installed to evaluate the
performance of this control method. The performance was adequate. However,
as seen from eq. (2.49), derivatives of the outputs and possibly derivatives of the
inputs (to convert the system into extended form) are required for the controller,
making this scheme impractical for any actual implementation on a real aircraft.
Lane and Stengel [17] present a discrete-time version of the above control laws.

Snell, Enns, and Garrard [18] designed a nonlinear dynamic inverse controller

for a highly maneuverable aircraft (representative of the X-31 research aircraft).
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This work was motivated by a previous control design using a gain-scheduled
proportional plus integral control law [19]. Performance of the controller for
a small maneuver was adequate. However, when used with a more aggressive
maneuver (reversing the velocity vector in the minimum amount of time), the
controller generated excessive amounts of # and lateral acceleration. Their in-
verse controller design {18] followed the approach of Kokotovic et. al. [20, 21]
as applied to aircraft by Menon et. al. [22] to formulate the problem as a two
time-scale problem. Separation of the aircraft dynamics into fast and slow sys-
tems has two advantages. First, from an implementation point of view, the flight
control computer can update certain control loops at a slower rate than others.
Second, and more important, the inversion transformations have been greatly

simplified. For example, look at the (fast) moment equations
&y = F(z1,2q,23) + G(z1, T2, 23)u (2.50)

where z; = col(g,p,r). Note that x5 = col(8, o, p), z3 = col(V, x,v) are slower
states that can be treated as constants in equation (2.50). G is full rank, and
according to Definition 2.3 the system trivially has vector relative degree {1,1,1}.

Since h(z) = z;,

Oh

8—:61 = IS><3

and

Then according to equation (2.42) the linearizing control is

u = A" z)[-b(z) + v]
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with

Lyhi(z) o
b(z) = | Lyho(a) | = p-F(2) = F(2).
Lyhs(z)

Substituting we then get
u= G H~F(z)+v].

If we then let v = 24, = Y4es, We have inverted the system defined by equa-
tion (2.50). A similar transformation can be performed on the slower states

using the fast states, z, as inputs, i.e.
.'1.32 = F(.’Ez, .733) + G(.’Ez, 373)331 (251)

However, the time scale separation must be valid for the maneuvers under con-
sideration and the airframe dynamics given. This is a valid assumption for most
currently operational fighter aircraft since the control surface deflections con-
tribute relatively small forces on the airframe.

The fast dynamics, referred to in Figure 2.5 by z1, were defined by the
attitude rates p, q, and r, which were controlled by the five inputs: aileron,
canard, rudder, and lateral and normal thrust vectoring (TVC) (éa,éc,ér,6y,6z).
The slow dynamics, referred to by z,, were defined by the angle of attack, «,
sideslip angle, 8, and bank angle about the velocity vector y using the rates p,
g, and r, as inputs. Simplifications were made to the dynamical equations which
allowed the inversion to be done algebraically, namely, that the inputs in each
case appeared in an affine manner. The pilot commands («, 3, jt) were used as

the inputs to the slow dynamic inversion. By neglecting the small terms due to
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the control surfaces, the slow dynamics could be written as

. [ ] [
ﬂ fﬁ(‘is) P

a|= fa(is) +g("is) q

||| fu(®) | | 7]

where Z; consists of the slowly varying states

Ts = [V,ﬂ,a,,u,'y]

with ~ representing the glide-slope angle. The form of ¢g(Z;) is defined by kine-
matics (see equation (2.22) for & and 8, f is similar) and is identical for any
aircraft. The matrix is full rank except when cos 8 = 0. Therefore the angular

rate commands (p., ¢, r.) can be found by solving

Pc /Bd fﬁ(is)
g | =971 @) || da | — | ful@) || (2.52)
Te p’d fﬂf(js)

These commands were then used as inputs to the fast dynamic inversion. The

fast dynamics could be written as

n
p fo(Z) b
il =1 folz) | +9(2)]| 6,
0 (%) by

-62_

where Z is the eight-vector of system states

z=[V,B,0,p,q,7, 1t,7].
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The 3 x 5 matrix g(Z) is generically of rank 3 and, therefore the right inverse

gr'(Z) exists. The commanded control inputs were found from

ba
& 5] | @]l
5 1= @ || d|—| £ || (2.53)
8y [ 7] | (@) ]
L 62 .

A specific right inverse was chosen to minimize the norm of the weighted

input vector @ defined by

[ 52 /Samas
6o/ bomas
b/ brmaz
8y/bymas
6./ 6omas

As shown in equations (2.52) and (2.53), the “control” could be calculated via a

>
il

matrix equation because both the slow and fast dynamics assumed a “control”
affine form. Bugajski, Enns, and Elgersma [23] took this approach one step fur-
ther by using a Newton-Raphson inversion algorithm on a nonlinear model of
NASA’s High Angle-of-Attack Research Vehicle (HARV) to eliminate any restric-
tions on the manner in which the control inputs enter in the equations of motion.
The nonlinear model takes the general form of equation (2.45) and is constructed
from aerodynamic table lookups. The Newton-Raphson algorithm enables the
linearization to be performed just as in the affine MIMO case (Section 2.2.3) by
essentially finding the A(z) matrix at each new desired point. Linearization is

simplified as before by separating into fast and slow states. Control surface limit-
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ing was accommodated by a real time reduction of the bandwidth of the attitude
loop. Again, stability was not studied in the dynamic inversion controllers.

Enns [24] performed a robustness analysis of two control laws applied to a
linearized version of the lateral (roll and yaw directions) equations of motion
of the same aircraft: one developed using the dynamic inverse method and the
other using a p-synthesis approach. The p-synthesis was performed for robust
performance and model uncertainty. Stability margins, handling qualities, and
robustness analysis of the two designs were compared. The u-synthesis provided
better turn coordination, but because no uncertainty was modeled at the sensors,
poor stability margins were the result for the yaw rate sensor. Also, the dynamic
inverse control had a faster roll rate response to lateral stick inputs. In general,
the p-synthesis design was more robust. However, no robustness properties were
designed into the dynamic inverse method. Because of the ability of the dynamic
inverse method to handle nonlinearities, some robustness properties should be
included in the design method.

Work on controlling the HARV using dynamic inversion based control con-
tinued in {25]. Since the control laws would eventually be implemented in the
actual aircraft for flight testing, a large portion of the work dealt with defining
the proper variables to control and the desirable pilot handling qualities. The pi-
lot would manually close the three velocity loops (magnitude, heading, and flight
path angle) and the bank angle loop with throttle, lateral and longitudinal stick,
and rudder pedals. The angle-of-attack and pitch-rate loops were combined and
the yaw-rate and sideslip loops were combined. Therefore, the loops to control
automatically corresponded to roll, pitch, and yaw. The control variables were

predominantly defined by roll rate, a blend of pitch rate and angle-of-attack, and
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a blend of yaw rate and sideslip angle. The control variables, CV, were modeled

with differential equations

CV = F(z,u) (2.54)

which depend on aircraft state variables (z) and control effectors (v). The differ-
ential equations are just the rigid body equations of motion. The state variables
were assumed to be measured, and the control effectors take the form of aero-
dynamic surfaces, and thrust vectoring. A desired rate of change of the control
variable was selected to achieve satisfactory handling qualities in response to
pilot commands. This was modeled with a first order differential equation

- desired

cvT = -}(ovcmd — Qymees) (2.55)

with a specified time constant for each control variable. The two differential
equations above (eqgs. (2.54) and (2.55) ) were then equated, leaving an expres-
sion

F(z™e 4™ = %(Cvmd — CVymess) (2.56)

emd) To facilitate solving equation (2.56),

to be solved for the control effectors (u
a reduced aerodynamic data base was obtained with a least squares fit to HARV
data for a limited flight envelope (Mach < 0.7, 15,000 ft < h < 45,000 ft). Fixed
values of Mach = 0.4, h = 25,000 ft and & = 0 were used to produce the reduced
database for the limited flight envelope. Thus for the reduced database, depen-
dence on Mach, altitude, and dynamic angle-of-attack effects were neglected.
Furthermore, it was assumed that the aerodynamic coefficients are linear in ev-

erything except angle-of-attack with angle-of-attack dependent multipliers. More

precisely, the aerodynamic coefficients were written as

Cr = Ci{a)+ Cry(a)B + Cy,(a)p + Cr,(a)q
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+Ch, ()7 + Cr,, (a)ba + Chis, (2)e + Ci,, ()6, (2.57)

where £ = D, Y, L, |, m, n (drag, side force, lift, roll, pitch, yaw). The reduced
model was checked against the full database model (visually by comparing plots)
at various points in the limited flight envelope. As plots of the aerodynamic
coefficients showed, the agreement between the models was good. Using this

reduced database, the left hand side of equation (2.56) reduces to
F(xmeas,ucmd) — f(xmeas) +g(wmeas)ucmd. (258)

Eq (2.58) was then equated with eq. (2.56) to yield
1

= (.cmd meas
(v — )
T

F(@™) + g(z™eoyyemd =
which can be solved for v“™¢. The dynamic inversion then amounts to simple
algebra using the inverse of the matrix g(z™¢**) to find w™?. If the minimum sin-
gular value of g falls below a certain number (usually at high « conditions where
surfaces become ineffective), it is replaced by a predefined constant matrix to en-
sure that the matrix is invertible. Since the ability to achieve a perfect inversion
is limited by modeling errors, actuator dynamics which were unaccounted for,
delays, etc., an integrator was placed on the control variable error signal. This
decreases the sensitivity of the closed loop response to modeling errors and low
frequency atmospheric disturbances and implies that the control variable will
have zero steady state error in response to step commands. Desirable pilot han-
dling qualities were achieved by precompensation of stick and pedal commands
and trim inputs. The pilot inputs were scaled with flight condition dependent
gains and a first order shaping filter to achieve time constants other than those

resulting from feedback objectives. Figure 2.6 depicts the dynamic inversion

control law used on the HARV.
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Figure 2.6: Dynamic Inverse controller used on the HARV.

Stability and robustness analysis of the closed-loop system was performed on
linearized versions of the system at 11 flight conditions throughout the flight en-
velope. The longitudinal and lateral/directional axes were analyzed separately.
The linear analysis consisted of closed-loop poles, frequency responses, singular
value, and structured singular value tests. The phugoid mode was unstable for
five of the 11 flight conditions. To test robust stability, a multiplicative un-
structured uncertainty was added at the interface between the actuators and the
aircraft. By looking at the maximum singular value of the closed-loop trans-
fer function from actuator to aircraft, it was shown that modeling errors up
to 50% could be tolerated in the longitudinal case and up to 33% for the lat-
eral/directional case. Multiplicative uncertainties, in this case uncoupled - i.e.
diagonal, were also added to the sensed quantities to check for robust stability.
The structured singular value (x) was used because of the diagonal nature of the
uncertainties. It was shown that large values for g occurred at low frequencies

in the longitudinal axis (phugoid mode) and hence not much uncertainty could
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be tolerated. However, other than this frequency range, it was shown that about
the same level of uncertainty could be tolerated at the sensors as was shown for
the actuators. The lateral/directional axes were shown to tolerate about 33%
uncertainty at the sensor locations. The nonlinear analysis primarily consisted
of nonlinear simulation. Because a directional instability was observed during
real-time simulation, caused by real-time simulator delays coupled with actua-
tor rate limiting, some describing function analysis was also done. This analysis
revealed that the bandwidth of the yaw axis should be reduced.

Modifications to the HARV control laws were made in [26]. The modifica-
tions mostly attempted to fix the deficiencies found from testing in [25] and
increase stability. For example, a velocity feedback term was added to the pitch
control variable (MCV) to increase stability of the phugoid mode. Also, an
o-limiting loop was added to the commanded pitch control variable (M CVemd)
to impose "protective” limits on the aircraft such as those derived from struc-
tural g-limits. In addition, the longitudinal and lateral/directional axes were
split up in the dynamic inversion routine. This allowed the longitudinal axis to
be inverted first so as to give pitch commands first priority. The longitudinal
control effector, 8. was found from inversion of the pitch control variable equa-
tion. The lateral/directional control effectors (8., ¢, and 6.) were found from
inversion of the roll and yaw control variable equations. Linear stability and
robustness analysis was performed similar to [25]. For the 21 flight conditions
tested, the longitudinal axis was unstable for one flight condition and the lat-
eral/directional axes were unstable for six flight conditions. The robust stability
results were similar to those found in [26]. More work must be performed to

resolve the stability issues. Disagreements were also found between the linear
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and nonlinear simulations for the lateral/directional axes. Since the nonlinear
simulation shows the desired behavior, the control law definitions in the linear
simulation may be incorrect. Overall, the stability and robustness analysis per-
formed in [25] and [26] amount to ”standard” linear methods. Coupling between
the longitudinal and lateral/directional axes, along with other nonlinear effects,
cannot be accounted for with these methods. In addition, as was stated in [25],
it was assumed that all the states were available for feedback. However, 8 was
not measured and therefore modifications to the control laws must be made.

Enns et. al. [27] give an overview of the dynamic inversion concept as an
alternative design method for flight controls. This work summarizes earlier
reports [25, 26] and again emphasizes that the selection of proper controlled
variables 1s central to the performance and robustness of the dynamic inverse
method. Robustness was shown about linearizations of the aircraft model. It
was stated that this design method will benefit substantially from additional re-
search efforts, particularly in the areas of nonlinear zero dynamics and nonlinear
robustness. There remains one other problem using this method - all the states
must be measured, since full-state information is needed for the dynamic inverse
controller. However, as commented in [27], most modern aircraft now carry a
full compliment of sensors. The only remaining sensing issues revolve around
airstream-relative measurements, i.e. true airspeed, angle-of-attack, and sideslip
angle. The current solution to this problem is to use blends of inertial measure-
ments and air-data for these signals. The paper concluded with an example of
the dynamic inversion method applied to the F-18 HARV.

In summary, Meyer and Cicolani first proposed the dynamic inversion tech-

nique because a control system was needed which could follow rough trajectory
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commands despite strong nonlinearities in the description of the plant. Simple
aircraft models were used and inversion was performed using pure table lookups.
Smith and Meyer used this method in a simulation study of automatic landing of
an A7-E aircraft on a carrier. Flight envelope limiting was added for this study.
They next applied the method to a VATOL aircraft simulation. In this case,
inversion was performed using an iterative Newton-Raphson procedure instead
of table lookups. Kato and Suguira performed a theoretical study of airplane
general motion to show that separation simplifications between translational and
rotational motion made by Meyer, et. al. were valid. Lane and Stengel then
applied the more general method of feedback linearization to a general aviation
aircraft. After the linearization, they chose a specific form for the new input
so that some of the closed-loop poles could be arbitrarily placed. Snell, Enns,
and Garrard designed a dynamic inverse controller for a representation of the
X-31 research aircraft. They used a simple description of the aircraft dynamics
which allowed the inversion to be performed algebraically. Bugajski, Enns, and
Elgersma took this approach one step further by using a Newton-Raphson inver-
sion algorithm on a nonlinear model of NASA’s High Angle-of-Attack Research
Vehicle (HARV) to eliminate any restrictions on the manner in which the con-
trol inputs enter in the equations of motion. Work on the HARV continued by
choosing the proper variables to control in order to satisfy pilot handling quali-
ties. A reduced aerodynamic model was constructed for a limited flight envelope
by neglecting the dependence on Mach, altitude, and dynamic angle-of-attack
effects. The reduced model was affine in the controls so the inversion could again
be performed algebraically. The next logical step would be to describe an in-

verse method that can address the more general non-affine input case for more
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complex systems. Since the aircraft dynamics will not be known exactly, the
method must work well despite uncertainties in the system description. We will
outline such a method and show its performance with full nonlinear simulations

in the remaining chapters.

2.4 Robust Feedback Linearization

In the previous sections, we outlined methods for computing the control needed
for a nonlinear system to follow a commanded trajectory. As was shown, explicit
knowledge of the system to be controlled was needed to calculate the “inverting”
control. In order to make the control calculations robust to modeling uncertain-
ties and unmodeled dynamics, additional terms must be added to the nominal
feedback linearizing control. This section outlines an approach by Slotine and
Hedrick [28] to solve the robust feedback linearization problem. The method is
based on sliding control and the reader is referred to Slotine and Li [29] for a
complete description.

We consider a single-input nonlinear system modeled as

t = f(z)+g(z)u (2.59)
y = h(z). (2.60)
where the state vector z = (z1,z3, ", %n) € R" and is available for measure-

ment, y € IR?. Assume that the system’s relative degree is equal to the system
order n, and that the system’s model relative degree is also equal to n. Assume

that f is not exactly known, but approximated as f , with

f=r+7s (2.61)
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We assume that the functions h(z) and g(z) are exactly known. The control
problem is to have the output y track a desired output trajectory y; (we assume
that yy and its time derivatives up to order n are given and bounded) while
maintaining all system states bounded.

Based on the available model (egs. (2.59)-(2.60)) we now compute the normal

states as
M =y
P2 = th
Uz = L?h (2.62)
_ n—1
pn = L 7 h

Because of model uncertainties (eq. (2.61)), the y; are not simply successive

derivatives of the output y but instead are

1 = pz+ Dy
L LD
K2 K3 2 (2.63)
fn = L’fih + LgL}f“lhu + D,
where
Dy = —Ljh
Dy, = —L;L;h
’ = (2.64)
- Jyn—1
D, = —L;L 7 h.
We need to compute the trajectories, z; for : = 1,...,n we wish the system

(2.63) to follow. We define z; = y; with z, through z, to be defined later based

on a Lyapunov-like argument. Define

8; = ji; — ¢isa,t(ﬁ,-/¢,-) 1=1,...,n (265)
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where ji; = pu; —z;, the ¢; are strictly positive quantities, and sat is the saturation

function

sgn(z) if |z[>1
cat(z) = gn() 2| > 1,
T otherwise.

By definition of s; (eq.(2.65)), when the sat(fi;/¢;) is not in effect (ii; < ¢;) on

a time interval [t1, t2] s; = 0 and hence $; = 0 on (¢y,12).

Otherwise we get

51 = pa+D1—2z

= 53+ ¢osat(fia/d2) + 22 — 21+ Dy

s59 = ps+Dy—2

= s34 ¢3sat(fis/¢s) + 23 — 22+ D,

$n = L3h+ L,L3  hu — 24 + Dy

(2.66)

We will select the z; as known functions of the states. Thus, their derivatives

in the above equations are not known exactly, but rather are estimated as z;

based on the system model.

Letting

A; = Di+zie — 2+ dipasat(fiig1/div1) 1=1,...

An = Dn‘l'zne_zn

we get (for s; # 0)

§1 = Sat+zp—Z1.+ 4

S = Szt 23— 22+ A2

s = L3h+ LgL}f"lhu — Zne + A

61
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Assuming that state dependent bounds on the modeling error f are known,

then one can compute state dependent functions F; such that
Al < F; i=1,...,n. (2.69)

Consider the Lyapunov function candidate

V=g (2.70)

2 i=1 '
where o is a strictly positive constant. We then get
vV = 0n-181(52 + 23 — Z1e + A1)
+08p-2(83 + 23 — Z2¢ + Ay)
4o+ sn(L’fih + LgL?'lhu — Zne + Ay).

Define
21 = Yd
2y = Z1e— Fisat(fin/é1) — Asy
23 = %3, — Fysat(fia/ds) — Asy — 08 (2.71)

24 = %3, — Fisat(fis/d3) — As3 — 03y

where ) is a strictly positive constant. The last term in this recursive construc-
tion, z, is such that z,. may itself contain the input u.

One can rewrite z,. in the general form
Zne = Znez + Zneull-
If we choose the control input as
u = (LgL}i‘lh — new) (=L 4 Zpeg — Frsat(fin/¢n) — Asp — 05,1)  (2.72)

we then have

V422V <0 (2.73)
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which shows that the s; all exponentially converge to zero [30]. Hence the error
terms, ji; are asymptotically bounded by ¢;. More importantly, since y; =y and

z1 = Y4, we have that the output asymptotically approaches to within ¢, of y .

Proof of equation 2.73

V = o™ lsy(sy — Fysat(fiy/d1) — As1 + Ai)

+0725y(83 — Fasat(fia/da) — Asa — 051 + Ag)

+ot sn(L3h+ (LyLY b = nea) (Lo LT h = fnea) ™

{=L3h + fnes — Fosat(fin/$n) = Asn = T8n-1} = fneo + An)

= —2)\V 4 o"s; [A1 — Fisat(fiy/¢1)]
0" 15y [Ag — Fasat(fiz/42)]
+ o+ 80 [An — Fusat(fin/ ¢n))]
If the saturation, sat(fi;/#;) is not in effect, then s; = 0. Otherwise, when

fii > 0 and || > 45,
si = Jii — pisat(fii/ i)
= [i— ¢
> 0.
We also have that
A; — Fisat(fis/¢:) = Ay — F; < 0.
Therefore, s; [A; — F;] < 0. When fi; <0 and |fii| > ¢,
si = fii — disat(fii/ i)

= ji— ¢

IN

0.
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We also have that

A; — Fisat(fii/¢;)) = A+ F; >0

Therefore, s; [A; — F;] < 0.

So for all values of ji;, we have that
8: [A; — Fisat(fi;/¢:)] <0

therefore we get

V<2V

or

V+2)\V <0.
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Chapter 3

Dynamic Inversion Algorithms

We have designed a nonlinear dynamic inverse model-following control law using
Grumman’s X-29 forward-swept-wing research aircraft as a test vehicle [31]. To
generate the smooth output we wish to track, the first part of the controller
consists of a zero-input model driven by an initial condition which generates the
desired output. In practice, part of the model would be replaced by the pilot stick
command which would be the input to the remaining part of the model. The
new model would generate an output which satisfies the handling requirements
for the aircraft. Before we give a detailed description of the design procedure,
let us first give some motivation for using the nonlinear control method.

We will compare the performance of an LQR control law to a nonlinear dy-
namic inverse controller, both applied to the nonlinear simulation. The control
actuators will be ignored during construction of both controllers, but will be in-
cluded in the simulation. To construct the LQR control we first need to linearize
the plant about some operating point. We chose to linearize about Mach 0.6 at

15,000 ft. The states for the linear system are w, ¢, u, 0 with canards, flaps, and
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strakes as the input surfaces. With this four state model we attempted to design
an LQR model-following controller [32]. The model following error could not be
decreased to an acceptable level without excessively high gains in addition to a
nonzero steady state error. Therefore, we add an integral path to the controller.

The performance index we want to minimize is
J = /0°°{u’(t)Ru(t) + 2/ (t)Qua(t) + €' (t)Qae(t) + €i(t)Qiei(t) }dt  (3.1)

where R=R >0, Q1 =0Q1 20, Q:=Q, 20, Qi=@Q; >0,e(t)is
the error between the plant and the model, and é; = ¢ = y — y4. We chose a
20 deg step command in pitch to evaluate the controllers. Figure 3.1 shows the
performance of the (fixed) linear simulation along with the commanded controls
using the LQR controller with @; = I, Q2 = 500, @; = 500, and R =diag(1,1,50)

to minimize the flaperon movement. This produces the following K matrix

1.36e-01 1.52¢402  2.44e-01 1.46e403 — 2.23¢{01 — 1.47¢{01 2.14e401

K = —3.94¢-01 -6.23e401 7.38¢-01 — 3.52e402 7.35e+00 3.39e100 - 6.49e400

—6.39e-02 — 3.85e100 4.10e-02 3.54e400 2.60e-01 —5.64e-02 —1.74e-01

The first four columns are the state feedback gains, while the fifth and sixth
columns are the feedforward gains from the trajectory model and the last col-
umn is the gain on the integral of the error. Note that in actuality the control
commands would be added to the control trim values. Figure 3.2 shows the per-
formance of the nonlinear simulation using the same LQR controller. Along with
the desired (commanded) 6, we show the output from a linear simulation (the
design point) and the output from the nonlinear simulation. The trim values for
0, and the control surfaces are subtracted off of the nonlinear simulation signals

to facilitate a direct comparison with the linear simulation case. Clearly we can
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Figure 3.1: Performance of linear X-29 simulation with LQR model-following

controller.
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Figure 3.3: Comparison of LQR model-following error.

see the large difference between the expected performance as shown by the linear
simulation and the actual performance of the full nonlinear simulation. This is
partly due to the fact that the actuators are not modeled in the linear simula-
tion. These effects can be seen in the oscillations of the canard around ¢ = 1.5
sec. and t = 8.3 sec. The oscillations also end up at the output, § as we see more
clearly by looking at the error shown in Figure 3.3. Notice that both the canard
and the strake become saturated from around 7 seconds on. This occurs because
of the change in flight condition by that time. Figure 3.4 shows a comparison
of the remaining states, w, ¢, and u for the linear simulation and the nonlinear
simulation, both using the same LQR controller. Again, for the nonlinear case,
only the change in velocities from the trim condition are shown. We have not
shown that by the end of the simulation the height has increased by 700 ft. This

change together with the decrease in forward velocity, u, is enough to change
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the aerodynamic coefficients used to calculate the aircraft forces and moments
(see equations 4.1-4.3). Also, the force due to thrust is neglected in the linear
simulation. These changes are enough to cause the nonlinear simulation model
to deviate from the (fixed) linear model.

Figure 3.5 shows the performance of the simulation using the nonlinear dy-
namic inverse controller outlined in this chapter. Specifically, the controller is
calculated via equations (3.21) and (3.28) with gains: K; = 225, K; = 75,K3 =

11. These gains place the poles of the error dynamics at

-5
(3.2)
-3+ 60

Again, the trim values are subtracted off of the signals for direct comparison
to the linear case. As shown in the figure, the nonlinear controller tracks the
commanded & very well. Figure 3.6 shows the remaining states, w, ¢, and u
for the nonlinear simulation. Again, only the change in velocities from the trim
condition are shown. For this simulation and the robust control construction in
the next chapter, we have swapped the roles of « and @ since 6 is usually the
regulated variable for an autopilot and a is usually not regulated.

A brief description of the procedure for designing a nonlinear dynamic inverse
model-following controller now follows. Let the aircraft dynamics be described

by the general nonlinear state equation

i = f(z,u) (3.3)

and the linear observation equation

y=Cz, (3.4)
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For ease of discussion, we have neglected the sensor dynamics. In fact, the sensor
dynamics can be neglected because they are much faster than the plant dynamics.
If the bandwidth of the sensor dynamics is close to that of the controller, we can
easily include the sensor dynamics in the description of the plant. Given some
desired output y4(t) and that z(t) is available for feedback we would like to find a
control u such that y = y4. Because of the general way in which the control enters
into the state equation (see equation (3.3) e.g. it is not in control affine form),
we use an approach similar to [23] to do the inversion. Using an elaboration of
the two-time-scale api)roach of Kokotovic [21] as applied to aircraft by Menon
et. al. [22], we partition the dynamics of the aircraft into the fast attitude rate

states, zo, the slow attitude angle states, z;, and the “exogenous“ states, z3

T1 a q
=\ g, | Withai =] ¢ |,22=]| p |,23= and y =z; (3.5)
Vv
T3 B r

where ¢ is the pitch rate, p is the roll rate, r is the yaw rate, « is the angle of
attack, ¢ is the roll angle, 3 is the sideslip angle, 8 is the pitch angle, and V is
the forward speed. Since 8 is usually not a regulated state, and V has dynamics
much slower than the attitude angles, # and V have been lumped together into

z3. Typically the state equations can be simplified as

-7.71 = f1($1,$2,$3) (36)

&2 = fo(T1, T2, T3, 1) (3.7)

where we have assumed that the control does not affect the slow states. This is
a reasonable assumption as stated in the previous chapter, because the control

surfaces do not contribute large forces. We can measure z3, and we know that the
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rates z; evolve much faster than the positions z;. Then given y; and measured

outputs y, we can approximate ; (remember that y(t) = z;(t)) as
ildea = Kl(yd(t + AT) - y(t)) (3'8)

where K is chosen to ensure reasonable command rates. Because our controller
tries to keep y(t) close to yq(t), we expect ;,,, to be close to the correct rates,
. those that would drive the system toward y4. We then “invert” equation (3.6)
to find the needed z; (call it z3__,). Similarly, we can approximate &, from the

calculated z,_, and the measured z, as
:i:zdea = K2(m2cmd(t + AT) - $2(t)) (39)

Then, “inverting” equation (3.7), we can find u. A block diagram describing this
approach can be seen in figure 3.7.

Because evaluating the functions f; and f; (taken from wind tunnel data)
involves table lookup, the inverses to eqgs. (3.6) and (3.7) must be found numer-
ically. We have used the iterative Newton-Raphson method. However, even if

we were to obtain analytical expressions for f; and f,, they are not in control
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affine form. The Newton-Raphson method essentially creates a local definition

for the functions f; and f;. For example, locally f; can be expressed as
fonn(z,u) = F(z) + G(z)u. (3.10)

Since we want to find the control such that z,,,, = fa(z,u), the algorithm will

then iteratively compute the inverse as
u=G7(2)[~F(2) + F2,]. (3.11)

This is (locally) identical to the feedback linearization method described in the

previous chapter, provided the approximation and hence G™*(z) can be found.
In order to find the necessary u so that the output y tracks the desired output

Y4, we must use the Newton-Raphson algorithm twice. Given the desired output

Y4, we must first use the algorithm to find the necessary z, such that
A .
Fl(fcz) = fl(mlaﬂﬁz,wa) — 1, =0 (3.12)

where £, is given by eq. (3.8) and F; : R* — R". To find the zero of Fi, we
proceed as follows: If ¢; is a zero of Fy, and if F} is sufficiently differentiable in a
neighborhood S(¢;) of {3, then we can approximate the function Fj by a Taylor
series expansion about z5, € S(&;). If we ignore all but the first order terms in

the expansion we get the formula for the classical Newton-Raphson method:
él =Tz — Jl_l(m%)Fl(x?o) (313)

where Ji(z3,) is the Jacobian matrix for Fy evaluated at zs,. Using similar
arguments, starting with the calculated z, from eqs. (3.12) and (3.13), we must
use the Newton-Raphson algorithm for the second time to find the necessary u
such that

Fy(u) = fa(zy, 29, 3, u) — T2, =0 (3.14)
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where Z,,,, is given by eq. (3.9) and F; : R® — R". We use the Newton-Raphson
calculation

52 = Ug — J{l(uo)Fz(uo) (315)

to find the new value for u (call this u4), where Jy(ug) is the Jacobian matrix
for F, evaluated at u.

However, when egs. (3.13) and (3.15) were used to find the necessary control
ug there were occasions when use of the iterate £, caused eq. (3.14) to diverge

from zero. One way to prevent divergence is to scale the search direction as

éz = Ug — (%)k J5 (uo) Fa(uo) (3.16)

where k = 0,1,... is the smallest integer such that ||F3(£)|| < ||F2(uo)||- This
procedure is called the stabilized Newton method. This has no effect on the
convergence of the algorithm. It only prevents divergence of the iterate ég.
Therefore, use of the modified Newton algorithm does not guarantee that the
plant states will stably track some desired trajectories. It does provide a needed
bound on the next value of the control signal. This bound is necessary if the
controller is to be implemented on a real aircraft.

Through simulations we have found this control scheme to be robust enough
so that a simplified version of the nonlinear equations in egs. (3.6) and (3.7)
can be used to perform the inversion. Figure 3.8 shows the performance of the
X-29 given an o command to follow. The full six-degree-of-freedom nonlinear
simulation was used. However, the inversion algorithm used mostly (the specifics
will be described below) only the linear terms from the force and moment equa-
tions to calculate the control. (See Chapter 4 for a detailed development of the

X-29 force and moment equations.) For the Newton-Raphson inversion of the
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Figure 3.9: Roll command following using Newton-Raphson inversion algorithm.

longitudinal equations, we used the reduced set of force and moment equations,
equations (4.16)—(4.18), but without any of the quadratic terms. The inversion
from & to ¢ was then performed using equation (2.22). (Note that most of the
nonlinear terms introduced come from the conversion from the body axis to the
wind axis.) Inversion from ¢ to u was performed using equation (2.17). For the
lateral direction, a similar set of equations were developed for the forces and
moments. Inversion from ¢ to p was performed using equation (2.16), while
equation (2.22) was used to invert from 4 to r. Inversion from p and 7 to u was
performed simultaneously using equation (2.17). Similarly, figure 3.9 shows the
performance of the X-29 for a roll command. Throughout both simulations we
used K; =[5 10 10] and K, =[20 30 30]. (Recall that y,, = 2, hence K; and

K, are 1 x 3 vectors.) Notice that the outputs lag the commands. This is partly
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due to the fact that the actuators were not modeled in the control design but
were included in the simulation. However, the major cause of the delay is that
the gains were not high enough. From equations (3.8) and (3.9) we see that to
closely approximate the pure derivative we need K; ~ 3. Since the simulation
uses AT = .0125 sec. for the controller loop, the ideal value for K; should be
about 80. As shown above, the gains needed for stability are much lower. Similar
reasoning applies to K,. The gains K; and K, were chosen by trial and error
to ensure stability for the chosen set of maneuvers. Thus, a formal measure of
stability of the closed-loop system remains unknown.

One of the keys to the success of this dynamic inverse procedure is to find a
good algorithm for carrying out the inversion of v — f(z1,z,,u). It is easy to
show that the Newton-Raphson method may fail to yield a system with stable
tracking properties, assuming that the desired trajectory is within the constraints
of the aircraft’s control power. This is apparent from the simulations in [31] and
those of Smith and Meyer [12]. In the remainder of this section, we shall develop
a stable inversion algorithm for a general nonlinear system which we believe will
enhance the robustness of the dynamic inverse control method.

In view of the previous discussion, we propose the following approach for an
inversion algorithm for a system in the general nonlinear form. The following
approach can be shown to be an alternative way of viewing the extended sys-
tem (see equation (2.46)) and gives a method of constructing such a system. In
fact, the method we will describe shows what the extended system looks like
after a change of coordinates. For ease of discussion, we look at a simplified

version of eqs.(3.6) and (3.7) (We drop dependence on z3 and let fi(-) = z5. For
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simplicity, we drop the subscript 2 from f5(*)):
Ty = T, (3.17)
Ty = f(z1,22,u). (3.18)
We would like to find a feedback control, u, which can stably track the desired
trajectory yg = i,,,(t). Let us also assume that we can calculate z,, ,(t). To
find such a control, let
z = f(z1,zq,u). (3.19)

Note that if £, is available for feedback, then the obvious choice would be to let

z = 3. Otherwise we would calculate z from eq. (3.19). Taking the derivative,

we get
z = fo (T1, 22, u) - &1 + fo, (21, 22,u) - 2+ fulz1,z2,u) - & (3.20)
We then let
= o (@, e u){Ea,,, — fo (1,22,0) - T2 — fo, (21, T2,0) - 2
— &(zy — 21,22 — Tay,,, % — Zdes) } (3.21)

where z4e, = &, and @ is a feedback yet to be determined. This can be shown
to be equivalent to the feedback linearization problem for the extended system
with

v =&, — P(z1 — T1,,, T2 — Ta,,,, Z — Zdes)-
If we substitute eq. (3.21) into egs. (3.17) , (3.18), and (3.20) and assume that

f(z1,x2,u) is known exactly (nominal case) we get

Ii!l = T9 (322)
by = z (3.23)
é = ;i.zdcs - Q(ml - xldea’ T2 — xzdes’ Z—= zdes) (3'24)
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If we define the errors between the actual states and the desired ones to be
Azy =11 —T1,,, Azyg==z2—1y,,, and Az=2— zg,

we can then write equations for the error dynamics as

Aéi?'z = Az (326)
Az = —®(Azy,Azy, A2) (3.27)

We can now talk about stability and robustness of the closed-loop system by

placing suitable constraints on f, and ®. For example, if we let
O(Azy,Aze, Az) = K1Azy + KoAzy + K3Az (3.28)

then egs. (3.25)-(3.27) become

Az, = Az (3.30)
AZ = —Klel - KQA.’L'Q - I{3AZ (331)

Assuming that f, # 0, stability and robustness conditions can then be stud-
ied using only linear methods, which are much more powerful than those for
nonlinear systems. Also, when comparing this method to the Newton-Raphson
method discussed earlier (specifically comparing eqgs. (3.8) and (3.9), where K;
and K, were chosen by trial and error through simulation, with eq. (3.31)) we
now have a direct method for choosing the feedback gains . If we look at the

system defined by egs. (3.29)-(3.31), we can write the characteristic eq. as
AX) = N+ K302+ Ko\ + K. (3.32)

Therefore, by appropriate choice of K, K, K3 we can determine how fast the

error dynamics go to zero.
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3.1 Implementation

The above discussion shows that the continuous-time closed-loop system with
the control law in (3.21) has stable tracking properties. However, when this
algorithm is implemented in the form of a digital controller, precautions have to
be taken to ensure stability. The first step is to use a good integration routine
to approximate u from @ in (3.21). Since the chosen integration routine must be
used with a fixed step size, i.e. one sample, this leads us to a group of methods

called one step methods [33]. In general, such methods are given by a function

n(t,u; h, g)

where g(t,z,u) = ¢. Starting with the initial values ¢, ug, we now obtain ap-
proximate values 4, for the quantities u, = u(t,) of the exact solution u(t) by

means of the algorithm:

~

Ug .= Ug
forn=0,1,2,...
(3.33)
'&n+1 = ’lftn + h"](tm ﬁn; h’g(tnv :E(tn), ftn))
tn+l = tn + h
The simplest of these methods would be Euler’s method, where
n(¢,u; b, g) = g(t, z, u).
Then
W(tnt1) = U(ty) + hi. (3.34)

While this has the advantage of being quick to calculate, it is not very accurate

or stable. It introduces errors of the size O(h?) per step. A good example
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of the numerical accuracy and stability of some one-step integration methods
can be found in Athans, et. al [34]. They compare the performance of the
Euler, Heun (a second order method), and fourth-order Runga-Kutta methods
for solving a second-order nonlinear differential equation known as the Van der
Pol equation. By starting at an unstable equilibrium point, they show that small
roundoff errors will accumulate and cause the numerical solutions to diverge.
This effect varies according to step size h and the numerical integration routine
used. If a small enough step size is used, none of the numerical solutions diverge.
However, when the step size is increased, eventually all three of the methods
diverge. The Euler method is the first to diverge, at least 20 times faster than
the fourth-order RK method. In fact, at just 10 times the original step size,
the Euler method solution shows significant inaccuracies while the fourth-order
RK solution is virtually unchanged. This example shows that a higher-order
integration method should be used for accuracy and stability.

A fourth-order Runge-Kutta method uses
1
W(t,u; hvg) = é’[cl +2¢, + 2¢c3 + C4]
where

G = g(t,x,u)

1 1 1
c2 = g(t+ zh,z(t+ =h),u(t) + =he)

AN
3 = g(t+ §h’ z(t + Eh),u(t) + Ehcz)

ca = g(t+h,z(t+h),u(t)+ hes).
This gives the following updating algorithm:

. . h
U(tn+1) = U(tn) + -6—[61 + 262 + 203 + C4] (335)
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where

G = g(:l:l(tn), x2(tn)7 Z(tn)’ u(tn))

1 1 1 1

2 = g(@i(ta + Fh), @2(tn + Sh), 2(tn + h), ultn) + Sher)
1 1 1 1

c3 = g(xl(tn + §h)7x2(tn + 5 ),Z(tn + é‘h),U(tn) + '2"th)

cs = g(zi(tn + k), z2(tn + h), z2(ts + k), u(ts) + hes).

It is clear from the above equations that the control gets updated every second
sample, and the sampling time AT = %h. With this integration method, errors
of size O(h®) are introduced per step.

Another concern in the digital implementation is the sampling time AT.
Sampling must be fast enough not only to reconstruct the plant dynamics, but
also to capture the closed-loop dynamics. This means that for a selected sam-
pling time, there are limits as to how far the roots of the error characteristic
equation (3.32) can be pushed into the left half plane. Stated another way,
choosing a sampling time places an upper bound on the allowable bandwidth of
the closed-loop system (from Nyquist’s sampling theorem) which in turn places
upper bounds on the feedback gains K, K3, K3.

As an example, we have applied the inversion algorithms to a simple descrip-
tion of an inverted pendulum with the force on the pendulum applied nonlinearly.

The normalized equations for the inverted pendulum are:

§ = w
(3.36)
w = sind + 2u + sin(ucos§).
The control portion of the above equation was constructed such that u would en-

ter nonlinearly (sin(u cos 0)) in a way that ensures f, # 0, where f = sin §+2u+

sin(u cos §). A comparison was made between the methods we have discussed:
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Figure 3.10: Comparison of the error between the three control methods.

stabilized Newton-Raphson (NR), the approach shown in egs. (3.21), (3.28) using
eq. (3.34) (Euler), or using eq. (3.35) (Runge-Kutta). As suspected, the Runge-
Kutta method (and to a lesser extent, the Euler method) is more accurate than
the NR method. Figure 3.10 shows the error between 6;., and the achieved 8 for
the different methods. The NR method uses gains: K; = K, = 15, while the RK
and Euler methods use gains: K; = 225, K; = 75, and K3 = 11. The gains in
all three cases could be slightly larger before instability occurs; these gains were
chosen to allow a measure of stability margin. The gains were chosen by trial
and error through simulation. As stated previously, the NR gains should ideally
have been 80 to approximate the derivative. The gains were scaled down until

the simulation was stable and then scaled down more to allow for a measure of
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Figure 3.11: Comparison of the error when uncertainty is present.

stability margin. For the RK and Euler methods, the gains were chosen to place
the roots of the characteristic equation, equation (3.32), just far enough in the
left half plane to ensure good error dynamics. Performing a robustness analysis
on the algorithms through simulation showed that performance barely changed
(at least for the RK and NR methods) despite a £50% change in the control
power available (while using the same equations as before for the inversion).
The same conclusions were found when changing the state contributions in the
equations for the plant, e.g. changing eq. (3.18) to read &2 = f(.5z1,.522,u).
Figure 3.11 shows a representative plot of the errors for the case when eq. (3.18)

is changed to read &, = f(.5z, .52, 1.5u).

3.2 Sensitivity

To study robustness, we can begin by checking the sensitivity of the closed-loop

system to changes in some of the parameters, p, of the plant. Suppose the actual
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plant is of the form
Ty = Zy
&y = f(z1,22,p,u).

where p is some parameter of which we only have an estimate, e.g. some aero-
dynamic coefficients. As before, we want y = z, to track y;. We can assume

that

Then as before, we let

zZ = f(l'l, T, U)

with some nominal value for p. Rewriting eq. (3.20)
2= fo T2+ fo, 2+ fu- i (3.37)

Solving the above equation for & we get

FANN 1
g(t,x,u) =u = f, 1{33201“ — for T2 fop 2 — (I)(e)} (3'38)
where
(5] L1 — Y4
e = €a = To — gd
€3 zZ— Yd

Upon digital implementation of eq. (3.38) for the controller, we get the approx-

imate solution

a(k) = u(kT)+O(T") (3.39)

88



where O(TT) is the error introduced from an order r integration routine.
We are interested in the sensitivity of the tracking error to changes in the

plant parameters, p. Therefore, let the cost function be

1/2

J=le(k)llz = [} + ] + €3 (3.40)

Define the sensitivity function (sometimes referred to as the Bode sensitivity) to

be
_aJ / J_9Jp
3.41
" pfp ~ 0pJ (341)
From the cost function above, we then have
de
o1 _ i[E+E g )
op lef + €3 + 63]1/2
e1%8 + €292 + €355 | 5.43)
e + €3 + 63]1/2 .
Substituting this into equation (3.41) we get
G %“2&”%]'1’ (3.44)

[e2 + €3 + €3]

Now, we examine the individual partial derivatives in the above equation.

Since
er(k) = zi(k) — ya(k),
we have
der(k) _ Oz(k)  Oya(k)
o = 5 _ 5 (3.45)
— » (3.46)

since the desired output is fixed, and not a function of p. Similarly, for the

second error term

e2(k) = za(k) — ya(k)
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we get

dea(k) _ 0z2(k) 3 0y4(k)
op ~  Op dp
sz(k)
Op
For the third error term
es(k) = z(k)— ja(k)
we get
Oes(k) _ 0z(k) B Jya(k)
dp —  Op Op
_ 0z(k)
= 5
_ 0f Oz, | Of Oz, 8_f_(?2
" 0z, 0p Oz, 0p  Oudp

Note that if we have &, available for feedback then

des(k)  9z(k)

“dp Op
A Bi(k)
& 5

(3.47)

(3.48)

(3.49)
(3.50)

(3.51)

(3.52)

(3.53)

In order to calculate the sensitivity, we need to find the partial derivatives

shown in the right hand side of eqs. (3.46), (3.48). But we don’t have analytical

expressions for the states 1, z3, only for their derivatives. However, we can solve

the following set of differential equations to find the required partial derivatives:

0z, Oz

dp ~ op

0t,  O0f Oz  Of Ovo  OfOu  Of
dp  On dp ' Bz, Op  Oudp  Op
ou _ dg 0z,  Og 0z, @sz + _B_ggg
Jp Ory dp Oz, Op  0z0p Oudp

90

(3.54)
(3.55)

dg

% (3.56)




The equations can be written as:

&y Oz
i 0 1 o0 ||& 0 0 ,
z
92 | = | 8L 23f 9f Ozp of —. .
dp oz Ozy Ou Op + 9p + 0 ap (3 57)
feu B3 983 39 du 9g 9y
dp oz 8z, Ou ap 8p 8z
~ ~ P S S
v A(t) v By (t) By (t)

It can easily be seen that equation (3.57) represents a linear system where the
new states are labeled v. However, the state matrix is time-varying since the
various partial derivatives are functions of the nominal values of (%), z2(t), and
u(t). Therefore, eq. (3.57) must be solved numerically. To account for the digital
implementation of u (as in eq. (3.39)), we will perform the numerical integration
computations exactly as computed in the controller. This solution can then be
substituted into equation (3.44) to find the overall sensitivity function.

We will continue with the inverted pendulum example and calculate its sen-

sitivity to one of the plant parameters. We replace equation (3.36) with

§ = w (3.58)

w = sin(ph) + 2u + sin(u cos(ph)). (3.59)

to show an uncertainty in the measurement of 6.

Figure 3.12 shows the sensitivity function for various values of p using a 4th-
order Runga-Kutta integration routine. The simulation was performed with 2
calculated via equation (3.19) with f defined by equation (3.59) with p = 1.
Figure 3.13 shows the sensitivity function when an Euler integration routine is
used instead. Figure 3.14 shows the sensitivity function when we let 2 = , in the
feedback calculation in equation (3.21), i.e. measured Z, instead of calculated.

As expected, the sensitivity is lower since the feedback calculations include some
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Figure 3.12: Sensitivity function using calculated z and Runga-Kutta integra-

tion.
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Figure 3.13: Sensitivity function using calculated z and Euler integration.
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Figure 3.14: Sensitivity function using z = ¢ and Runga-Kutta integration.
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knowledge of the value for p. The peaks in the plots are due to the cost function J
approaching zero. Since calculations using the Runga-Kutta integration routines
yield the smallest errors, the peaks for the Runga-Kutta sensitivity function are
the highest. Note also that because of the periodic nature of the errors, the
sensitivity function is also somewhat periodic.

To avoid some of the shortcomings of the above sensitivity function, let us

define a new cost function, independent of time:
Jo = [lea(k)ll2 + llez(k)ll2 + [[ea(R)l2 (3.60)

where ||-||2 is the Euclidian norm for sequences. From the cost function above,

we then have

dp 2 lex(R)|l2 2 |lea(R)]l2 2 les(k)ll2 '
_ Thae(k)® , Zhe ea(k)2E o eq(k) 25t (3.62)
[[ex (k)] lle2(k)]|2 [les(k)l|2 '
With S as before, namely
0Jy p
= —= 3.63
S 3 Ja (3.63)

we recalculate the sensitivity. Using this new formulation, the sensitivity func-
tions for the inverted pendulum simulation are shown in Table 3.1. The Runga-
Kutta sensitivity functions above are not always the lowest. This is due to the
fact that all three error signals are weighted evenly in the cost function. In all
cases, the error of interest e; is smallest when using the Runga-Kutta integra-
tion with z = 5. However, the other two errors, e; and ez, do not always have
the smallest norm, largely due to higher startup transients. The cost function
defined in equation (3.60) can easily be modified to weight the position error e;

more heavily, simply by multiplying the e¢; norm by a number bigger than 1.
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Taking this idea to the extreme, and only using information from the position

error, i.e.

Jz = |lex(k)]|2 (3.64)

Table 3.2 shows the new sensitivity function using J3.
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Chapter 4

Application of Algorithm to

X-29 Aircraft example

4.1 X-29 Model

In this section we will describe the model of the X-29, Grumman’s forward-
swept-wing research aircraft, used in the study. Information on the primary
flight control system and the results from flight tests can be found in Clarke
et.al [35]. Figure 4.1 shows a picture of the X-29 outlining the control surfaces
available. The two canards are slaved to move in unison, and are the primary
longitudinal control surfaces. The strake flaps are also slaved together and used
for longitudinal control; however, they are mostly used in trimming the aircraft
since they are not as effective as the canards. As seen in the figure, there are
three flaperons on each wing. While all six can be driven independently, in
this study the three flaperons on each wing are controlled together for simplic-

ity. The flaperons are used for both longitudinal and lateral motions (hence
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Flaperons

Canard

/ Strake Flaps

Figure 4.1: A top view of the X-29 aircraft displaying the flight control surfaces.

the name flaperon - part flaps and part aileron). The longitudinal and lateral
commands for the flaperons will be divided into two fictitious control surfaces
- flaps and ailerons. The longitudinal commands will be defined for the flaps,
while the lateral commands will be defined for the ailerons, with priority given
to the aileron commands. The remaining control surface is the rudder, driven
by lateral/directional commands.

Figure 4.2 graphically describes the valid ranges of angle-of-attack and sideslip
for the model. The canard is restricted to move between -60 and +30 degrees,
with a positive canard deflection defined when the trailing edge of the canard
moves downward. The flap has a range of -10 to +25 degrees, with a positive
flap deflection defined when the flaperon is moved downward. The strake has a
range of +30 degrees, with a positive strake deflection defined when the strake
flap is moved downward. The rudder has a range of +30 degrees, with a positive

movement defined when it is moved to the right. The aileron has a half angle
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Figure 4.2: Angle-of-attack and sideslip envelope of the X-29 aircraft.

maximum of 17.5 degrees, with a positive aileron movement defined when the
right flaperon is moved upward and the left flaperon is moved downward. The
model is valid up to Mach 2.0 and up to 55,000 ft. However, the aircraft has only
been flight tested up to Mach 1.48 and just over 50,000 ft, and up to 50° angle
of attack at 1g and 35° angle of attack at airspeeds up to 300 knots.

A six-degrees-of-freedom simulation with table look-ups for aerodynamic co-
efficients, which are based on actual wind tunnel data, is used to represent the

aircraft. For the longitudinal axis, the dimensionless aerodynamic coefficients
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take the following form:

Ca = Cagee(M)+Cay(M)-a+Cy,(M)-o?
+Csp (M) - 65 + Ca,_, (M) - 6% + ACu,, (e, 87, M)
+Cigy (M) - 85 + Ca,_, (M) - 8% + ACa, (2,65, M)
+ [Ciag (M) - b6 + Ca, , (M) - 8% + ACas, (@, 80, 67, M)
Kay,, (@80,65) w
+HANC,, (o, M, 6F)
+HAAC, (o, 85) + HA2ACy, (a, M, 6s)
+HAAC s, (a,60,8F) + HAPAC,, (o, M, &0)
+HANCy,,, (0 M, b0, 6r) + HAACs,, (o M,50,65)

+ACALc;(a) 5C7 6F) + ACAGE(a, 67 h)

ON = Chuws (M) + Crio(M) - & + 57 [Ony (M) - &+ Cre (M) - g
+Cn,, (M) - 6 + AC, (e, 6F, M)
+Cn,, (M) - 85 + ACw, (, b5, M)
+ [CNy, (M) - 8¢ + AC, (e, 6¢,6r, M) - KNy, (@80, 8s)
+HAACw, (o, M, §F) (4.2)
+HAACN, (a,65) + HA?ACK, (a, M, 8s)
+HAACK, (o, 6¢,6F) + HAACn, (e, M, 6¢)
+HAACN,,, (o, M,8c,8¢) + HAACK,,, (@ M, éc, 65)
+ACN, (@, 6c) + ACNgs(a, 6, h)
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Cn = Cppeo M)+ Cpru(M) -
{ (M) G+ [Cny(M) + HAAC ()] - ¢}
(M) ér + ACn, (o, b7, M)
ey (M) - 85 + ACp, (0,85, M)

+ [Cmc (M) - 8¢ + ACnm, (e, ¢, 85, M))| - Kneg,_(60,65)

+HAAC, (o, M, oF)

+HAAC, (@, 6s) + HA2ACm6S(a, M,és) (4.3)

+HAAC,, (o, 6c,6F) + HA2AC’,Mc (o, M, 6¢)

+HAAC’“605F (a, M, bc,6r) + HAACm6c65 (e, M, b¢,6s)

+|ACmy, (@84, M) + HAAC,, (a,64)

+ACmﬂ65 (a0, 65) + HAACmﬂJS(a, 8s)| - 18]

+HAAC"‘%C (8,a,éc, M)

+ACh,s(a,6¢c) + ACp5(a,6,h)
where C, is the axial force coefficient, Cy is the normal force coefficient, and
C, is the pitching moment coeflicient. The coeflicient C4 is the backward force
along the fuselage and C is the upward force normal to the fuselage. Hence
both coeflicients are calculated in the body axes. A transformation to the wind
axes must be performed to match the definitions in equation (2.13). The coeffi-
cients used in the above equations are derived from wind tunnel testing, and are
functions of the variables in parenthesis. For example, C,, sy (M) is the pitching
moment coefficient due to the flap, and is a function of Mach number. As the
Mach number changes, a new value for C,, sp TUSE be found, either directly from
the data tables, or by using linear interpolation between stored values. The

terms beginning with a A are nonlinear incremental terms that are phased in

based on the values of the independent variables in parenthesis. For example,
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for some nominal value of @, ér, and M, AC,_ (e, 6p, M) = 0. Away from
the nominal values, AC’mdF(a, dr, M) is nonzero. Since many of the terms are
functions of multiple variables, multidimensional linear interpolation must be
performed in between measured parameters. The coefficients with subscripts
LG are incremental effects due to the landing gear down, while the coefficients
with subscripts GE are incremental effects due to the closeness of the aircraft
to the ground. Both of these terms will not come into play for the maneuvers

chosen in our study. The term K., is the canard-strake interference factor,

ss
and is nominally equal to one. It varies about one when the canard angle is
extreme enough to change the airflow across the strake. Note that it is modelled
as a reduction in effectiveness of the canard. The terms beginning with HA are

high o increments and are only nonzero when o < —4° and a > 24° .

The lateral-directional axis has dimensionless coefficients of the form:

Cy = Cy,(M,a,B,6c)+ ACy,, (M,a,B) + ACyés(M, a,B,6¢)
+ACy,, (M, e, 8,80) + ACy, (M, 0, 6c)
+ACy,, (M, 8,60) (4.4)
% [Ov,(M,0) - p+ v (M, 0, 8¢) - ]
+ACy, (M, a,8,6¢,8F) + ACy,5(M, e, 8,6, h)

Ci = Cu(M,a,B,éc)+ AC, (M, e,p) + AC;, (M, 8,6¢)
+AC, (M, a,B,6c) + AC,, (M, a,6¢)
| +AC:6Ap(M,a, B,6¢c) (4.5)
+37 [Ci(M, 0, B) - p + C1. (M, 0, 0) - 1]
+ACL (M, a, B,6c,6F) + ACig5(M, o, B, 6c, h)
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Cn = Cny(M,e,B,80) + ACy, (M,a,B) + ACy, (M, e, B,6c)

+ACh,, (M, a,éc) + ACy,, (M, o, éc)

+ACn6Ap(M, a, B,6c) (4.6)

+3 [Cnp(M, @) - p+ Cup (M, 0, 85) - 7]

+AC,6(M,a, 8,6c,6F) + ACnx (M, o, B,6c, h)
where Cy is the side force coefficient, C; is the rolling moment coefficient, and
C, is the yawing moment coefficient. The lateral-directional equations (4.4)-
(4.6) may look simpler than the longitudinal equations in (4.1)-(4.3), however,
the lateral equation terms rely more heavily on table lookups, e.g. Cm6S(M ) vs.
ACy; (M, e, B,6c). The lateral-directional equations also use piecewise linear
(at any particular operating point) control surface coefficients vs. the simpler
constant coefficient plus a nonlinear term for the longitudinal equations. For

example, the relationship for the rolling moment due to the flap is described as

0 5}:' =25 deg
AC, = A015F1 [25—1_56’5 10deg < éF < 25deg (7)
6 - .
) AC’:,,F1 + ACI6F2 [101—_063] Odeg < éF < 10deg
\ AC:6F1 + A015F2 + AC’;GF3 ["—l'sff-] —10deg < éF < 0deg

where each coefficient AC;, , is a function of & and §. A similar term for the
#

longitudinal pitching moment due to the flap is expressed simply as
Crme, (M) - b5 + ACp, (o, F, M).

As seen in equations (4.1) through (4.6) and the previous discussion of how
they are constructed, a complete and accurate model for the X-29 is difficult and
complex to describe. If the control engineer is to account for all the nonlinearities

in the aircraft, the controller will be very complex and large. The design must
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reduce the complexity of the aircraft model required for inversion while ensuring
that the controller is robust to the inaccuracies and reductions of the inversion
model. In the following sections we will show how to construct a nonlinear

controller for this problem.

4.2 Simulation

The state equations representing the longitudinal equations of motion for the

X-29 (or any jet aircraft, see equations (2.16), (2.17), (2.22) ) can be described

as follows:
V = —nl;[—D-’rTcosa]— gsin(f — @) (4.8)
& = q—qu (4.9)
0 = ¢ (4.10)
i = -I—‘—i-;-M (4.11)

where V is the total velocity, « is the angle of attack, 8 is the pitch angle(body
axis), and ¢ is the pitch rate(body axis), ¢, is the pitch rate in the wind-axis
direction, D is the total drag force, and M is the pitching moment(body axis).

The equations for the additional variables are:

1 .
Ww = [L + Tsina — mg cos(a — 6)] (4.12)
M = gSeC, (4.13)
= ¢S(Cycosa— Cysina) (4.14)
D = gS(Csicosa+ Cnsina) (4.15)

with inputs

T — Thrust (Ibs.)
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8¢ — Canard deflection (deg.)
ér — Flap deflection (deg.)

8s — Strake deflection (deg.)

where § = %sz represents dynamic pressure, L is the upward lift force perpen-
dicular to thé velocity vector, ¢, S, Iyy, and m are constants associated with the
aircraft. The axial and normal body axes forces in equations (4.14) and (4.15)
are transformed into lift and drag wind axes forces to correspond to the equations
of motion developed in Section 2.1.3. We will assume that we are to design an
autopilot for the 6 channel. Alternatively, the § command can be generated from
the pilot input. In either case, we want the 6 output from the aircraft to follow
a given § command. For this simulation study we will not use the thrust input,
T, as a changeable input, i.e. it will remain constant throughout the maneuvers.
This is consistent with what was done in Grumman’s controller. Also note that
the actuators are not modelled in the following description of the aircraft used
for controller synthesis. However, first order models for the actuators are used

in the simulation. The strake actuators are modelled by

35
Bosy = —ar b,
out S + 35 mn

while all the remaining actuators are modelled by

20

————bin-
s+ 20

6out =

In addition, the simulation has the additional capability to place rate limits on
the actuators. The rate limits are: 105 deg/sec for the canards, 73 deg/dec
for the flaperons, 27 deg/sec for the strakes, and 125 deg/sec for the rudder.
Therefore, the controller must be robust enough to cope with the unmodelled

actuators and their limits.
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A reduced (missing any high angle terms) set of force and moment equations

is given below.

Ca =

Cy =

COS &
qS
+CA5F '5F+CA6F2 ‘6%‘+CA65 -63+CA652 -5§ (4.16)

CAa:O + DRAM + CAa . a+ CAQ,2 . a2

+C a4, b0 + CA"cz - 8%

sin o c .
CNe=o + Dram 75 +Cn, - a+ 37 (CNd -a+ Ch, - q) (4.17)
+CnN,,, 67 + Cn,, - 65 + Cn,, - b
c )
Cma:O + Cma o+ W (C‘md ca+ Cqu) (4.18)

+Cingy - 67 + Oy, + 85 + Cmy, - b6

where C4 is the nondimensional axial force, Cy is the nondimensional normal

force, and C,, is the nondimensional pitching moment. The axial force is mea-

sured in the body axis with a positive force pointing towards the tail. The

normal force is measured in the body axis with a positive force pointing upward.

The pitching moment is measured in the body axis about the center of gravity

with a positive moment pitching upward. We would like to rewrite eq. (4.9) so

that the right hand side does not depend on & (as seen from egs. (4.12), (4.14),

and (4.17)). Substitution of equations (4.12), (4.16), and (4.17) into (4.9) and

grouping the & terms on the left yields

(1l + cosa

piCN) = (1 —cosazizCn,)g

-5 ) .
+2% [CA sin o — cos & (ONa=0 + DRAMS%"

+Cn, - a+Cn,, 6+ Cn,, - 65+ Cn,, - 6c ) |
—-L sina + & cos(a — 0).

(4.19)
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If

7Sz
1 + cos aignﬁ%CN"‘ £0 (4.20)

then we can calculate & directly from the states and input terms. Since
K& gse__ 1pSe
2mV? 2m

is a constant for a given altitude with K ~ 1072 and 0.36 < Cy_ < 0.48 over
the entire flight envelope, then eq. (4.20) holds. If we define Cx as the normal

force equation without the dynamic effects (those due to & and ¢), e.g.

Cn = Cn,_, + Dram Sl(;sa + Cn, - @+ Cny, - 0 + Cn,, - 85+ Ch,, - 8¢
then we can rewrite eq. (4.19) more compactly as
& = (14 cos a%%CNd)"l {(1 — cos a;ff%CNq)q (4.21)
+;st [CA sina — Cy cos a] —ZL sina + ¢ cos(a — 9)} .
We note that, similar to eq. (4.20),
1 — cos a—iSiC’N #0 (4.22)
2mV?

holds since 4.0 < Cy, < 8.1 over the entire flight envelope. Therefore, if we are
given ¢, we can solve for q.

Now that we have a closed-form expression for &, and hence for ¢ (see equa-
tions (4.11) and (4.18) we would like to find a feedback control, which can stably
track the desired trajectory 84.s. To this end we will use the algorithm described
in the previous chapter and summarized in figure 4.3, where we will use z; = 6,
t3 = ¢ and £ = [V 0 « ¢q]'. To use the algorithm, we will also need trajectories
Qdess Gdes @nd §ges. To find a control, as the algorithm states, we need to take the

derivative of the ¢ equation, eq. (4.11). This gives

§=+— Mt + My + Mob + MyV + M, (4.23)

IYY
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Figure 4.3: Inverse dynamics controller.
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where u = [6¢ 6F 65]T, M, is the partial derivative of pitching moment with

respect to @, M, is the partial derivative of pitching moment with respect to

q, My is the partial derivative of pitching moment with respect to 8, My is the

partial derivative of pitching moment with respect to V, and the row vector

M, is the partial derivative of pitching moment with respect to the controls w.

Evaluating the partial derivatives we get

M, = §Se [Cma—}- g 8a]

(4.24)
(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

2V "0
_ ase b
M, = 2V lCm" + Cms 8q}
gSct O
M = %, %
? 2V e 58
e |2Cn  OCy
My = g§Sc [7 + W]
M, = G5¢|Cm + sCmy o2
v A
with
da gSc gSe 1
a—z = (1+cosa V2CNQ) {(1+cosa2i‘%CN.)—V
[qS (sma —Cn,q+Cacosa+ Cysina
+(CAQ. d DRAM Slana + 20,4301) sin
—(Cn. + Dram CZ;O[) cos a)
—T cos a — mgsin(a — §))
: gSc gSc
+(sin aﬁz—n-VECNd) [(1 — cos QQ;V2 Cn,)q
| . x .
+W (qS(CA sina — Cy cosa) — T'sin a + mg cos(a — (9))]}
da gSc gSe
5 = (14 cos Qan‘;CNd)_l(l - cosoz2 77 Cw,)
Py —a
-B%f = (14 cos QanSIf’Z Cny)~ 1%sm(a —0)
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oC é da .
Cm _ S0 9% (0 src, 4.32
Y [CN‘* gy~ (Omad +C "‘I)] (432)
da GSc S . X
3—; = (14 cos a;ﬂ;z Cng) ™" {’I’ZVZ [CA sina — Cy cos a] (4.33)
_ T .
+-:1—f/ [%QVA sin o — 8‘;\/ cos a} + —yisina - % cos(a — 6) }(4.34)
0C 4 2 cos o
=L - _ 4.35
5v Dpam 5V (4.35)
Cn 2sina
=N 4.36
% Dram 75V (4.36)
ad qSE -1 QS . =
= (1 + cos ag Cn,) s [(CA6 + 2C 4, u)sina — Cy, cos a] (4.37)
Cmu = [Cmoc Cmop Cmos] ‘ (4'38)
CA& = [CAsc CAop CA&_S-] (439)
Ca,, = [CA% CA62F CA%] (4.40)
Cny, = [CNJC CNop CNos]° (4‘41)

Note that all of the derivative terms C, in the above equations, e.g. Cy,, are

constants depending on the particular Mach number as shown in equations (4.1)-

(4.3). To find the control, we need to solve eq. (4.23) for &. If we let

Myt = Iyy (§aes — ®(e)) — Mad — Myg — Mob — MyV (4.42)
where L. , -
€1 0 - 0des
[ A= 82 = q —_— qdes (4.43)
| €3 ] | d— qdes ]

and ®(e) is a simple feedback function, we can solve for the desired control.
However, since we have three redundant control surfaces, eq. (4.42) is under-
determined. Hence there are an infinite number of solutions. Complicating

this problem is the fact that each surface has different rate and position limits.
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There are several different methods in the literature for solving this problem.
The reader is referred to [36, 37, 38] for comparisons of the different control
allocation schemes. Since no one solution was the clear choice, we decided to
choose a generalized inverse solution. For clarity, we let the right hand side of

equation (4.42) be represented simply as X. We then rewrite equation (4.42) as
My =X (4.44)

where M, = [Ms, Ms, Mjs,] and since v = [§¢ OF 6s]T, we get that X € R.
The notion of a generalized inverse is such that if we can find a P such that

M, P = I, then the solution to eq. (4.44) is given by
uv=PX. (4.45)

In our case, since [ is 1 x 1 and M, # 0; a solution P can always be found.
However, there exist many solutions. The standard psuedo-inverse solution gives
the P such that ||u||; is a minimum. In addition, the psuedo-inverse solution
gives the P such that ||M,u — PX||; is a minimum. However, in our case, since
I'is1x1, ||Myu— PX|, = 0 for all P. Since M, is changing, a new P will
constantly need to be calculated. The most reliable way to do this involves first
finding the singular value decomposition [39] of M,. Since we would like to keep
the calculation as simple as possible, for implementation in the flight computer,
and since we would like to take into account the different limits for the control
surfaces, we will define a different way to compute the generalized inverse.

In order to find a unique solution which accounts for the different limits on
the control surfaces, we will slave the control surfaces together in the following

manner

0c =—-196 6p=0.76 6s=1.006.
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These numbers were chosen to approximately normalize the control surface de-
flections. Also, we want to minimize use of the flaperons for longitudinal control
since they are also used for the lateral/directional control. The above scaling is
equivalent to defining a term P, = [~1.9 0.7 1.0]7, and letting @ = P,6. We then

must solve the equation

M,Pé=X

for 6. Let the solution be denoted by 6. Then a solution to equation (4.44) can

be computed as

u = P15
= Pl(Mu.Pl)_lX (446)
2 px.
Therefore,
i = P [Iyy (daes — ®(€) — Mt — My — Myb — My V| . (4.47)

If we substitute the calculated control into the state equations (4.9), and (4.11)

and assuming for now that we know Z, D, M exactly (nominal case) we get

‘1."1 9 q
I 2 gl= 2 . (4.48)
z z Gaes — P(e)

The dynamics of the error equations can be found by taking the derivative

of eq. (4.43). Therefore, the error dynamics can be described by

é1 = 0 - édes
= g~ Qdes
= €2 (44:9)
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€2 = §— des
= e3 (4.50)
€3 = §— (es
= —®(e) (4.51)
where the last line for é; follows from eq. (4.48).
If we let
®(e) = Kiey + Kyey + Kaes (4.52)

then we can look at the entire error dynamics equations to check stability. Com-

bining egs. (4.49), (4.50), and (4.51) into matrix form we get

0 1 0
e=190 o 1 |- (4.53)
~Ky -K, —Ks

Therefore, stability of the closed-loop system-follows from a proper selection of
gains for ®(e). K, K3, K5 must be chosen such that the roots of the character-
istic eq.

AN = X+ K3\ + Ko\ + K. (4.54)

lie sufficiently far in the left-half of the complex plane.

We choose the roots of the characteristic eq. (4.54) to be
A= —10, -5+ 5

to ensure good transient response characteristics. This leads to a set of gains

K, = 500
K, = 150
K3 = 20
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Figure 4.4: Simulation of the X-29 aircraft in a pitch up maneuver at Mach 0.9
and 30,000 ft.

Figure 4.4 shows simulation results for a high-a pitch up maneuver at a speed
of Mach 0.9 and an altitude of 30,000 ft using the control law outlined in equa-
tions (4.47) and (4.52). This is an aggressive maneuver, pulling close to 6 gs
at its peak, comparable to a full stick pullup. As the figure shows, the output
tracks the command closely. For this simulation, and all further ones, control
displacement limits are in effect. We can see that the control surfaces stay within
their displacement limits. However, rate limits were not used in the simulation.
The commanded control rates were well outside their limits with a maximum
rate at 3.8 sec. of 218 deg/sec for the canard, 80 deg/sec for the flaperon, and

115 deg/sec for the strake. If we turned the rate limiting on for the simulation,
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Figure 4.5: Canard-strake interference factor for the pitch up maneuver.

the control surfaces would hit their rate limits and the system would go unstable.
Figure 4.5 shows the canard-strake interference factor as it changes throughout
the maneuver. For the region around 3.7 sec. the canard surface is about 6.5%
less effective. However, for the majority of the time the surface is close to full
effectiveness.

Since the controller must work over the entire flight envelope, we used the
same control law (with different aerodynamic coefficients for the new operating
point) for the same pitch up maneuver as before but at a speed of Mach 0.6
and an altitude of 15,000 ft to check the performance at the new operating
point. We would expect that at the lower altitude the control surfaces are more

effective. This alone would make the maneuver less demanding on the aircraft.
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Figure 4.6: Simulation of the X-29 aircraft in a pitch up maneuver at Mach 0.6
and 15,000 ft.
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However, the slower speed reduces control effectiveness. Thus we get a tradeoff
for effectiveness. Figure 4.6 shows the simulation results. The commanded
control rates for the canard and strake were still outside their limits with a
maximum rate at 1.5 sec. of 119 deg/sec for the canard, and 63 deg/sec for the
strake. The flaperon rate is now within its limit at a maximum of 44 deg/sec.
The canard-strake interference factor has about the same shape as before, but

now only dips to a 2.5% loss in effectiveness.

4.2.1 Integral Control

If a steady state error in the #-tracking loop exists which is larger than the
designer can tolerate, we can simply add an integrator term in the error feedback

signal ®(e). We will then have
®(e) = Kie; + Kiey + Kjea + Kzes

where ¢; = [ e;. The dynamics of the error equations will then be defined as

é; 0 1 0 0

g o 0 1 0

é= = . (4.55)
€z 0 0 0 1
€3 -K; -K, -K, —-K3

Similar to the previous case, K;, K;, K,, K3 must be chosen such that the roots

of the characteristic eq.
AN = M+ K30° + K0P + Ky + K. (4.56)

lie sufficiently far in the left-half of the complex plane.
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4.3 Robust Control Law

The previous section described a nonlinear control law requiring exact knowledge
of the plant for inversion. Since this is not realistic, the method needs to be
modified to account for uncertainty in the plant description.

The state equations representing the longitudinal equations of motion for the

X-29 (see egs. (4.9)-(4.12)) are repeated here for convenience:

vV = %[—D+Tcosa]— gsin(0 — a) (4.57)
& = ¢—Qu (4.58)
§ = ¢ (4.59)
i = TYl;-M (4.60)

where V is the total velocity, a is the angle of attack,  is the pitch angle(body
axis), and q is the pitch rate(body axis), ¢, is the pitch rate in the wind-axis
direction, D is the total drag force, and M is the pitching moment(body axis).

The equations for the additional variables are:

o = 51_‘7 (L + T'sin o — mg cos(a — 6)] (4.61)
M = gSeC, (4.62)
L = §gS(Cncosa— Cysina) (4.63)
D = gS(Cacosa+ Cysina). (4.64)

We will restrict our attention to the variables # and ¢ since we wish to track a
6 command. Once again we note that actuator models are not included in the
aircraft equations used for controller construction, while first-order actuators are

used in the simulation.
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Following the notation of Slotine and Hedrick {28], and rewriting the above

equations we have

0 = ¢ (4.65)
1

Q=M £ C + Cal@) + Co(8) + Cog + Cu(u). (4.66)

Since the model is not exactly known, we approximate the terms above by:

¢ = C+C (4.67)
Cole) = Cqla) + Cu(a) (4.68)
Co(0) = Cy(8) + Co(0) (4.69)

¢, = C,+C, (4.70)
Cu(u) = Cu(u)+ Culw). (4.71)

The extended system can then be written as

6 q 0
g |=|C+Cula)+Co(0)+Cog+Cu(w) | +] 0 |¥ (4.72)
u 0 1

L . = =

where v is the new control input. The system’s relative degree was found to be

3, and the computed normal states are:

bs = Lih = g (4.73)
us = LEh = ¢ = C+Cala) + Co(8) + Cog + Culu).

Because of model uncertainties, the y; are not simply successive derivatives of
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the output y but instead are
1 = p+ D
fo = p3+ D
s = L"}h + LQLZ}hV + Ds

where
Dy = —Ljh =0
D, = —LiL;h = ~C = Cyla) — Co(8) — Cyqg — Cu(w)
Dy = —LjL%h
= =G, [C + Cala) + Co(8) + Cog + Culu)]
I3h = a(jgga) a4+, [C + Cal) + Co(6) + Cog + Cu(w)]
u A — 0 | A
LR A IO
1

(4.74)

(4.75)

(4.76)

(4.77)

(4.78)

(4.79)

Following Slotine and Hedrick [28] we define 2z, = yq4 = 03 with 2; and 23 to

be defined later based on a Lyapunov-like argument. Define

s = fi; — ¢isat(fi/d:) 1=1,2,

3

(4.80)

where ji; = p; — z;, the ¢; are strictly positive quantities, and sat is the saturation

function (sat(x) = sgn(z) if |z| > 1, sat(z) = = otherwise). When the sat(j;/¢;)

is not in effect (&; < ¢;) s; = 0 and hence s; = 0. Otherwise we get

83 = pa+D1— 2z

= 8g + dosat(fia/d2) + 22 — 21 + Dy

So = pz+Dr—2

= 33+ ¢s3sat(fa/P3) + 23 — 22+ D

53 = L:;-h + LgL?hI/ - 23 + D3
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We will select the z; as known functions of the states. Thus, their derivatives
in the above equations are not known exactly, but rather are estimated as z;

based on the system model. Letting
Ai = Di+zie — % + ipasat(fivi/di) i=1,2 (4.82)
Az = D3+ 23—z (4.83)
we get (for s; # 0)

8, = Sa+ 22—z + 4L

33 = 83+ 23—zt A, (4.84)

83

L:}h + LgLf;hz/ — %3¢ + As.
Assuming that state dependent bounds are known on the modelling error f, then

one can compute state dependent functions F; such that
1A < F; 1=1,2,3. (4.85)
Consider the Lyapunov function candidate
V= 5 Y o] (4.86)
where ¢ is a strictly positive constant. We then get

vV = 0231(s2 + 22 — 216 + A1)
+032(83 + 23 — Z2e + A2)
+$3(L§~h + LgL?hI/ — 7:’33 + A3)

Define
72 = Yd (4.87)
29 = 2':13 - Flsat(ﬁl/d)l) - /\81 (488)
23 = Z’Qe - ngat(ﬁ2/¢2) - /\32 — 08 (489)
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where ) is a strictly positive constant. Since our system has relative degree 3,
the derivative of z3 may contain the input ». We can therefore write z3. in the

general form
Z3e = Z3ez T Z3eul.
If we choose the control input as

v = (L9L§~h — égeu)‘l(—L‘}h + 23e0 — Fasat(fis/¢s) — Ass — 052) (4.90)

we then have

V +2\V <0

which shows that the s; all exponentially converge to zero.
We will now follow the above approach for the longitudinal equations of

motion for the X-29 as described by eqs. (4.67)-(4.72). Let 2y = 85. Then

Z-le = Z'l = 04 and

Ay = Dy + e — 31 + dosat(fiz/d2)

= ¢gsat(fia/¢2) (4.91)

since Dy = 0 from eq. (4.75). Therefore, we can let
1A < 62 = R (4.92)
From eq. (4.88) we have
29 = 21 — Fisat(fin/¢1) — Asq
which leads to

. . . . d . .
Z2e = %1 — Fiesat(fin/é1) — FIE[Sat(/‘l/‘ﬁl)] — A%

. d " .
= Z2ie Flaz[sa.t(,ul/¢1)] - /\81.
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since Fy is a constant and hence Fi. = 0. When the sat(fi;/¢;) is in effect
(i > ¢i), £{sat(fi1/¢1)} =0, hence we get

223 = Ele - A(,ul - Zl) (493)
= qqg— Mpa — 4]
When the sat(fi;/¢:) is not in effect (f; < ¢i, s; = 0) and hence 3; = 0 we get

. = d —z
e = Fe— FgloET (4.94)

= Ga— Blpa —qd
Combining eqgs. (4.93)-(4.94) we get

G1F
1

Z2¢ = Z1e — [p2 — Z1e] | M1 — Gh) + (4.95)

where

1 |l <
G = ] < ¢ (4.96)

0 otherwise.

Since we must take some actual derivatives of the estimated derivatives, we
will introduce the notation (z.) to mean the actual derivative of the estimated
derivative of £ whenever there might be some confusion. We can easily see from

the above derivations that the actual derivative for z; is

. . ! . G F
@=@J_m+m—mpa—an-;ﬂ. (4.97)
From eqs. (4.95) and (4.97) we can construct
o1 = (b1 (h1e)) + e — 21+ D1 [A(l — G+ }
1
=0 (4.98)
since z1e = %1, Z1e = (%1.)’, and Dy = 0. We then have
Ay = Dy+ 2 — 23 + ¢asat(fis/¢s)
= D2 + ¢3S&t(ﬁ3/¢3). (499)
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With substitutions from eq. (4.98), we now construct an F, such that |A,| < F;

as

F, =Dy + ¢3

where we can define D, for the X-29 as

D2 é sup |D2I
= sup|(~C ~ Ca(@) = Co(6) — Coq — Cul(w)) |

From eq. (4.89) we have
z3 = 23, — Fasat(fia/¢2) — Asz — 0s1.

Taking the estimated derivative we get

23 = Fre — Fresat(fia/¢2) — Fasat(fia/$2)] — Asa — 0y
= a0 — Faesat(fia/ds) — (in — 52e) [M(1 — G2) + %22]
—o(l = G1)(fia — Z1e)
= 5o~ Fresat(a/$) — (s — £22) [N(1 = Go) + BE]
—o(1—Gi)(p2 — 21e)
with
1 2] < ¢,

0 otherwise.

Gy =

e = 2t — s — 51 [M1 - Gh) + B
= o= s — da M1 = Gy) + S
Now we also have
(32e) = (%1) — [3 + D2 — (2] M1 — G1) + S|
= G e+ D2 — @) M1 — Gy) + GE]
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To construct As we need to find the derivative of z3 with respect to f instead of

f, or zs. Similar to eq. (4.102) we then get

23 = (22.) — Fisat(fia/¢2) — Faslsat(fia/d2)] — Ay — 08}
= (42.) — Fjsat(fia/¢2) — (i — ) [M(1 — Ga) + S|
~o(1 = Gh)(y — 2) (4.106)
= (é0.) — Fisat(fia/$2) — (o + Do — i2) [\(1 - Ga) + 2]
—~o(1 = G1)(p2 + D1 — #)

Substituting this in to find Az we have

As = D3+ z3c— 23
= Ds+ [#e — (22¢)] — [er - Fz] sat(fiz/é2)
+ 52 — (22 — D) (M1 = Ga) + BB + 0(1 = G1) [21e — 41 + D]
= D+ [ — (42)'] = [Fae — B3| sat(iha/ 62)

+D; [A(1 - Gy) + S5 (4.107)

since Z5. — 23 = 0 and D; = 0. From equations (4.104) and (4.105) we can

compute

fae — (32e) = Dy [M1-Gy)+ SR (4.108)

Substituting into eq. (4.107) above leads to

As = D3+ D [M1=Gy)+SE 4 \(1-G,) + B (£.109)
- [er - FZ] satb(fiz/¢2)

We then must construct an F3 for use in eq. (4.90) such that A; < F3. Finally,
the designer must choose values for A, o, ¢, ¢2, and ¢s.

For a first try at the design, assume that we have good knowledge of the
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plant. Therefore we can let Dy = D3 = 0. This leads to

F = ¢
F, = ¢5 (4.110)
Fs = 0.

It also means that the Z3. equation will have no components due to the control,
hence Z3., = 0. Note that this is not totally unrealistic because a larger ¢; allows
a larger command following error. This could imply a larger uncertainty of the
system model. Also, the more acurate the description of the plant, the closer we
approach this setup.

For this simulation we chose:

A = 100

o = 10

$1 = 0.02 (4.111)
¢ = 0.1

¢s = 0.1

Notice from the many equations for z; and A; that we always have internal gains
of the form % Looking at equations (4.110) and (4.111) we can see that these
internal gains are very reasonable with the highest value being % = 5. Figure 4.7
shows the simulation results for the same pitch up maneuver as before at a speed
of Mach 0.9 and an altitude of 30,000 ft. The commanded control rates for the
canard and strake were still outside their limits with a maximum rate at 3.9
sec. of 151 deg/sec for the canard and 88 deg/sec for the strake. These are
lower than the rates of the (Runga-Kutta (RK)) controller in the last section,
however the price paid is a larger error for 6 as seen in Figure 4.8. The value of

¢1 chosen only ensures that the error approaches a value of 0.02 % % = 1.146° .
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Figure 4.7: Simulation of the X-29 aircraft in a pitch up maneuver at Mach 0.9

and 30,000 ft using the robust controller.
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Figure 4.8: Model-following error for a pitch up maneuver at Mach 0.9 and

30,000 ft using the robust controller.

One possible solution to decreasing the error would be to use a lower value for
#,. However, this would lead to higher control rates as we saw before. A better
solution would be to add integration to the model-following controller. This is

the topic for the next section.

4.3.1 Integral Robust Control

To aid the controller in following a signal, we can redesign the robust controller
in the previous section to include integral action. Let us define po = [ 1 and
z0 = [y4. We then let

S0 = fio — Posat(fio/do) (4.112)
where as before fig = po — 20 = [(¢1 — ya), and ¢p is a strictly positive quantity.

When the sat(fig/do) is not in effect (fio < @o) s = 0 and hence o = 0.
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Otherwise we get
So = o — %o
= M1~ Yd
= 8+ dsat(fy/d1) + 21 — ya
Letting

Do = Zoe — 2o+ ¢ysat(fia /1)

= ¢rsat(fi1/¢1)

we get (for so # 0)

S = S1+z1—yi+ Ao

(4.113)

(4.114)
(4.115)

(4.116)

(4.117)

If we let Fu = ¢, then we are assﬁred that |Ao| < Fo. We now add another term

to the Lyapunov function candidate of equation (4.86) which we will now refer

to as V; to get
13 .
Vo = 5203"3? =d%s2 + W
1=0
Taking the derivative we then get

Vz = 0330(31 + 21 — Z0e + Do)
+02s1(s2 + 22 — 21 + Ay)
+032(83 + 23 — Z2¢ + A2)

+33(L:}h + Lng;hl/ — Z3¢ + A3).

Redefining equations (4.87)- (4.89) and adding zp we have

20 = /yd

21 = y4— Fosat(fio/do) — Aoso
Zy = éle - Flsat(ﬁ1/¢1) — )\31 — 08¢

zZ3 = éZe - ngat(ﬁ2/¢2) — /\32 — 081
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where )o is a strictly positive constant. Choosing the same control as before, i.e.

equation (4.90) we still have (in a proof analogous to the previous case)
Vo + 20V; + 0%Xosd <0

which shows that the s; all exponentially converge to zero. We use Ao instead
of X so we can adjust the gain on the integrator independently. Using the same
logic, we could use a different )\; for each z; if we desired.

We now need to check how the new definitions for z; affect z;. With

21 = yqg — Fosat(fio/do) — Aso

and Fy = ¢y, we get

Golp
%o

21e = Ja — [p1 — ya] | M1 — Go) + (4.123)

where

1 fho| <
Go = ol < 60 (4.124)
0 otherwise.

This is similar in style to what was previously Z;.. Next we look at
29 = 213 - Flsat(/'ll/qﬁl) - /\51 — 0 38p.

Taking the estimated derivative we get

G\ Fy
1

since F; = ¢, and hence Fy = 0. For %, we get

223 = 213 —_ [/1.2 - 2131 [A(l - G]) + } hand 0'([11 - ’yd)(l - Go) (4125)

GOFO}
¢ |

Since D; = 0 we still have 3. = (21.)'. Therefore, as in the previous case

%1e = Ja — [p2 + D1 — 94 [)\(1 — Go) + (4.126)

we have 5, = 2, so equation (4.99) for A, is unchanged. Since the equation
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for z3 remains unchanged (equation (4.89) or (4.122)), the only change for zs,
(equation (4.102)) is the contribution due to Z;.. Starting from equation (4.125)

and taking the estimated derivative we get

) Gy F _
$e = 280 — s — %1.] [/\(1 -Gy + ;1 1] —o(pa— )1 —Go)  (4.127)
with
) GoF,
22 =8 — s — §d) {/\0(1 ~Go) + ;0 "] : (4.128)

We also need to calculate 23 in order to find Az. The same reasoning applies here,
so we only need to find the new form for (2;.)’. Starting from equation (4.125)

and taking the actual derivative we get

(' = (= i+ Da= ()] [31 = 6+ ] — o440 )1 - G
(4.129)
with
(1) = y8 ~ [4a + D2 — ja] [)\0(1 —Go) + G;f "] . (4.130)
From equation (4.107) we saw that
As = D3+ [%e — (22)] - [er - Fz] sat(fi2/ $2) (4.131)

+Da [M1 = Go) + G2} .
Combining equations (4.127) and (4.129) we can then compute
fe = (i2) = (a0 = (1)) + (51 = (ae)')
+D; [A(1 = G1) + BB + oD (1 - Go) (4132)
= Dy [Mo(1 - Go) + BR] 4+ D, M1 - Gy) + GE].
Substituting into equation (4.131) above leads to
As = Ds— [P — By sat(fiz/2)

+D; [Ao(1 = Go) + SB 4 M1~ G1) + BB 4 A(1 - Gy) + BE]
(4.133)
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With the same assumptions as before, e.g. Dy = D3 = 0 we use

F
F
F3

2
s (4.134)

0

along with Fy = @o (which will always be true). Again, the z3. equation will

have no components due to the control.

For this simulation we use the same values as before:

A
1
2
3

with the additional gains of
Ao

%o

10.0
1.0
0.02 (4.135)
0.1
0.1

1.0
(4.136)

0.01.

Figure 4.9 shows simulation results for the identical pitch up maneuver at a

speed of Mach 0.9 and an altitude of 30,000 ft. The output follows the command

much more closely as seen in Figure 4.10. The error labeled RK is for the control

law outlined in the previous section in equations (4.47) and (4.52). A benefit of

using integral action to decrease the error is lower control rates. We now have

a maximum rate at 3.7 sec. of 128 deg/sec for the canard and 73 deg/sec for

the strake. These are still outside their allowable ranges, but closer. The next

section outlines a method for dealing with the limits on the actuators.
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Figure 4.9: Simulation of the X-29 aircraft in a pitch up maneuver at Mach 0.9

and 30,000 ft using the robust controller with integral action.
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error (deg)

tme (sec)

Figure 4.10: Comparison of the model-following error for the robust controller

with integral action.

4.3.2 Implementation for limited control effectors

Let us first look at an implementation of the robust control algorithm where we
assume that we know the actual system description (at least to within some A
defined by ¢;). However, since we wish to keep the simulation realistic, we will
include actuator rate and position limiting in the system description. Since these
do not fit into the analytic description of the system, they will be incorporated
into the uncertainty information. The difference between the calculated control
and that which can actually be used (due to limiting) is added to the D; term.
This also adds to the D3 term. The following construction applies to either
the plain robust controller or the controller with the integrator added. Only
the forms for the derivatives for z; will change. For simplicity we will show
the forms of the derivatives assuming we will be using the controller with the
integral added. If not, just use the derivatives shown in section 4.3.

We need to construct the accompanying forms for Fj, F5, and Fj3 in order to
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use the control defined by eq. (4.90). From eq. (4.91) we have

Ay = Dy + #e — 21 + ¢osat(fiz/é2)
= ¢osat(fiz/d2)-

(4.137)

Therefore we get
M <F = ¢ (4.138)

Since we assume we have a good model of the plant, most of the D; term

from eq. (4.76) vanishes except the part due to actuator limits. We get
Dy = —Cu(u) (4.139)

where C,(u) is the difference between the control contribution to the ¢ equation
using the (unlimited) calculated control from eq. (4.90) and the actual (rate and

position limited) control contribution and is defined by
Cu(u) = Cu(u) — Culuw).

Using the reduced set of force and moment equations from eqgs. (4.16)-(4.18) we

get
Culu) = Lan [Cmuu +

- £ ¢,..Ch, (u)] (4.140)

oy “maTua
with

gSc -1 S :
Cu,(u) = (1 + cos a;n;z CNd) :&_V [(CA6u + Ca, u2) sin @ — Cy,u cos a]

and Cr,, Ca;, Ca,,, and Cn, defined by eqgs. (4.38)~(4.41), respectively. The
u used in the above equations is derived from the control update equation,

eq. (4.90), as u = [ v. We then let the actual control contribution be defined by

Cou(v) = Cut) |umuyp (4.141)
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where uiy: is the actual limited value for the control surface commands.

Then as we had before in eq. (4.99) we get

Ay = D, + 2. — 23 + ¢ssat(fia/ ¢3)

(4.142)
= D + ¢ssat(fis/¢3).
In order to use a less conservative bound for A, we simply let
Fy £ |Dy| + ¢s. (4.143)
Repeating equation (4.102) we have
fe = Fre— Frosat(fia/$2) — (Ha — #2e) [/\(1 - Gy) + -G-gz] (4.144)
=0 (1 — G1)(p2 — #1c)
with
. G F; .

Fre = 22 — [us — %1c] [,\(1 —Gy) + ;l l] —o(ps — Ja)(1 - Go)  (4.145)

and

" GoF

A2 =y — (s — i le(l ~ Go) + =5 0] . (4.146)

According to the procedure, we need to separate the 23, equation into state com-
ponents and components due to the control. Looking through equations (4.144)-
(4.146), the only terms which can possibly have any contributions due to the
control are 3 and Fy.. However, since our system description is in the extended
form this is not possible (by definition of relative degree) for ys. Let ujms = u—us

then we have

dupme _ du_dus
dt ~— dt dt
= v —us.
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Looking more closely at er we get

Fy. = sgn(D2)%(Dy)
= sgn(Dy) & [Cultime) — Cu(w)]
= sgn(Ds) [ZCultime) (v — tis) — ZCu(u)y]
rsgn(Ds) [Ma(ttme) (v = i) — Ma(u)]
sgn(Da) (M — us) — Ma(u)) v — M — us)is)].

Foeut — Foep

fl

>

Substituting in for M, from equation (4.28) we get

Fowr = I—;;sgn(Dz) {QSE%CM%(I + cos o525 Oy, )7 {2CA62(—u5)sin a}}

= sgn(Dy) { 2L 2Cn, (1 + cos 03 255Cn, )™ [2Ci,, (—us)sinal }.

The constant SZE;’Z::? = .0081 and the term (1 + cos Q%Cm)“l ~ 1 through-
out the flight envelope. The coefficient CAaz is on the order of 10~ and the
remaining terms are on the order of 1. Therefore, Fz,m is on the order of 107

throughout the flight envelope and can be neglected.

Turning our attention to Az we see from equation (4.133) that

A3 = D3 - {Fge — Fz] Sat(/lz/¢2)
+D2 a1 ~ Ga) + BB + M1 = Gy) + BE 4 M1 ~ Gy) + B2

= D3+ Dy [o(l — Go) + B2 4+ M1 = G1) + BB + M1 - Gy) + S|
(4.147)

where

1 ¢

D3 = qSCIYY 5‘7

Comy D> (4.148)

Since D; is only a function of w, F-ze = Fg. For a less conservative bound for Aj
we simply define

P 2 A4 (4.149)
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The same control law is used, equation 4.90 (repeated here for convenience),

only the values for F5 and z3. will change
v = (LgL%h — i3eu) ™ (—L3h + Z3e — Fasat(jis/¢s) — As3 — 052).

We use the same controller values as before:

A = 10.0

o = 10

¢ = 0.02

¢ = 0.1 (4.150)
¢ = 0.1

do = 1.0

$o = 0.0L

Figure 4.11 shows the performance of the system with the new controller. As
shown the error goes to zero. This time all the control rates are under or on their
limits. Both the canard and strake hit their rate limits at 3.9 sec. as we can
clearly see in the case of the strake. The flaperons stay below their limits with a
maximum of 57 deg/sec. Figure 4.12 shows a comparison of the model-following
error for this controller and the one in the last section without rate limits.

Again, verifying that the controller could perform satisfactorily over the en-
tire flight envelope, we used the same control law (with different aerodynamic
coeflicients for the new operating point) for the same pitch up maneuver at two
different speeds, Mach 0.6 and 1.2, both at an altitude of 15,000 ft. Figure 4.13
shows the performance of the X-29 for the pitch up maneuver at Mach 0.6. Both
the canard and strake hit their rate limits at 1.5 sec. into the maneuver while

the flaperons stay below their limits with a maximum of 59 deg/sec. Figure 4.14
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Figure 4.11: Simulation of the X-29 aircraft in a pitch up maneuver at Mach 0.9

and 30,000 ft using the rate-limited robust controller with integral action.
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Figure 4.12: Comparison of the model-following error for the robust controller.
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Figure 4.13: Simulation of the X-29 aircraft in a pitch up maneuver at Mach 0.6

and 15,000 ft using the rate-limited robust controller with integral action.
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Figure 4.14: Model-following error for the robust controller at Mach 0.6 at 15,000
ft.
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Figure 4.15: Simulation of the X-29 aircraft in a pitch up maneuver at Mach 1.2

and 15,000 ft using the rate-limited robust controller with integral action.

shows the model-following error for this controller. Figure 4.15 shows the per-
formance of the X-29 for the pitch up maneuver at Mach 1.2. Since the X-29 is
more maneuverable at the higher speed, and because we are at a higher dynamic
pressure, the maneuver is easier to perform. Only the strake hits the rate lim-
its at 3.7 sec. into the maneuver. Figure 4.16 shows the model-following error
for this controller. Although the maneuver is easier to perform, the aircraft is
close to it’s structural limits as seen by the plot of the normal acceleration in
Figure 4.17.

As seen in the figures, performance is acceptable. If this were not the case,

since we do neglect some of the system dynamics, then we would need to add
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Figure 4.16: Model-following error for the robust controller at Mach 1.2 at 15,000
ft.
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Figure 4.17: Normal acceleration of the X-29 at Mach 1.2 at 15,000 ft.
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the additional dynamics to the system description and compute new equations

for Fy, F3, and Fj5. This is described in the next section.

4.3.3 Complete implementation

The last section gave a description of the robust controller for the case when we
have confidence in the description of our system to within A;. In this section
we will outline how to construct the additional terms needed for the controller
to account for the neglected dynamics (this is essentially the difference between
egs. (4.1), (4.2), (4.3) and the reduced set of equations (4.16), (4.17), (4.18),
respectively) . Ironically, the better we make the description of the neglected
dynamics, the more likely it is that they can be used in the system equations for
the controller calculations directly. For this reason we will only sketch out the

procedure we would use to get a rough estimate of the neglected terms.
By definition of f and y, we still have Dy = 0. Therefore, from eq. (4.92) we

have
Fy = ¢,.
From eq. (4.99) we have
Az = D; + ¢3sat(fiz/ds)
with (eq. (4.76))

Dy =—C = Cola) - Cs(8) — Crg — Cu(u). (4.151)

Looking at the neglected terms from the force and moment equations (4.1), (4.2)
and (4.3) we see that equation (4.151) can not be as clearcut as stated. Mach

number aside, almost all of the neglected terms have some dependence on c.
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Equation (4.151) should actually look more like

~ ~

D; = —Cy(a)q — Cyla,u). (4.152)

~

The first term, Cy(a), is composed entirely from high angle-of-attack terms. The
second term, é’u(a, u), can be seperated into a portion due to high angle-of-attack
terms and a portion that can be valid at any time. First let us focus on the high
angle-of-attack terms. The main contributions to the high angle-of-attack terms

comes from the C,, equation:

AC,,.HA = HAACm,;F (a, M, 5}7)
+HAAC,, (,65) + HA*ACn, (o, M, b5)
+HAAC, (a,6c,6F) + HA*ACn,_(a, M, éc)

+HAAC,,, (a,M,b¢c,6F) + HAAC,,,, (a,M,éc,8s)
Sp §s
We will also get some contribution from Cy4 and Cy as

ACAHA = HAACA6F (a, M, 5}:‘)
+HAAC, (o, 8s) + HA'ACy, (o, M, 8s)
+HAAC 4, (,6c,87) + HA*ACy, (o, M, §¢)

-{-HAAC'A&(7 (a, M, é¢c,6F) +HAAC'A6c (e, M, b¢, 65)
5p ss
and

ACNHA = HAACN,;F (a, M, (SF)
+HAAON65. (a, 55) + HAZACNés (a, M, 55)
+HAACY, (a,80,88) + HA'ACw, (o) M, &)

+HAACK,, (o, M,8c,8F) + HAACN,, (o, M,80,85)
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The overall contribution for the high angle-of-attack terms will then be

(4.153)
— sin(a)ACAHA] .

. 1 1
Since Ac,,ma, AcyH4, and Ac, g4 are on the same order, and Tyy > the

dominant high angle-of-attack contributions will be

Ans = 35¢[7-Acnna). (4.154)

Iyy

Looking at the equation above for A¢,ma we see that the Ays term would
entirely contribute to the control uncertainty term. The remaining control un-

certainty would come from the incremental control terms as

A, = ACWF(a, or, M) + ACWS (e, 65, M)
+ACm6c (a, 50,5F,M) . Km506 (a, 50,55) (4,155)
S
~Ciny (M) - [1 ~ Ko, (80, 55)] .

We would then get

~

1
Cu(a,u) =Aga+ QSE—AU. (4.156)
Iyy

To find D3 we would calculate

1
D = §S6—— - —

o 5y COmeDs (4.157)

Figure 4.18 shows a plot of Agy4 for the maneuver flown in the last section at
Mach 0.9 at 30,000 ft. Figure 4.19 shows a plot of the remaining neglected

control terms, namely, §S EK};Au for the same maneuver. The first term in the

D, equation above would only be comprised of high angle-of-attack terms as

3 1 ¢
Cole) = 5e7—55 [HAAC (o). (4.158)
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Figure 4.18: Plot of the high angle-of-attack contributions to Ds.
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Figure 4.19: Plot of the incremental control contributions to D,.
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Figure 4.20: Plot of the high angle-of-attack pitch contributions to Dj.

Figure 4.20 shows a plot of the high angle-of-attack terms due to ¢, namely,
Cy(e) - ¢ for the same maneuver.

The figures show the neglected incremental pitching moment terms for a
given maneuver. If the performance of the controller in the last section was
poor due to neglected terms in the pitching moment equation then we would
need to model these contributions. However, as stated earlier, if we can find an
analytical form for the neglected terms, we might as well include them directly

in the controller calculations and avoid the uncertainty modelling.
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Chapter 5

Conclusions and Future

Directions

In this dissertation we have outlined the procedure for designing a nonlinear
robust controller based on feedback linearization methods. This work was moti-
vated by the need for an algorithmic approach to designing a global controller for
nonlinear systems. For application to aerospace systems we needed the ability
for the controller to accept desired trajectories as inputs and to be robust to
modelling uncertainties. In Chapter 3 we showed preliminary results of using
a numerical Newton-Raphson technique for inversion of the X-29 aircraft equa-
tions. Since this method cannot guarantee convergence in light of modelling
uncertainties, and due to the guessing nature of the algorithm, this method was
deemed unsuitable for application to aircaft systems which require a high level of
reliability. In Chapter 4 we applied feedback linearization methods, modified by
Slotine and Hedrick [28] to include sliding control methods to add robustness, to

a high fidelity nonlinear simulation of the X-29. We designed a controller for the
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longitudinal axis to follow a set of given trajectories. Since the controller requires
state feedback, the actuator models must be left out of the design. Therefore, in
addition to possible system model uncertainties, the controller must be able to
handle the nonlinearities introduced by the actuators. To complicate the design,
the actuators on the X-29 have rate and displacement limits which limit perfor-
mance and affect stability. By formulating the limits of the actuators into the
uncertainty models of the system, we have enabled the controller to account for
the nonlinearities added by the actuators. We have shown good performance of
our controller as shown by plots of the output of the X-29 for various operating
points throughout the flight envelope.

Our contributions to the field of nonlinear control can be summarized as

follows:

o An engineering application of a robust nonlinear controller to a high fidelity

nonlinear simulation of the X-29 aircraft.

¢ Formulated a method to describe the nonlinearities introduced by the ac-

tuators which encapsulate the limitations of the actual X-29 actuators.

¢ Modified the method of Slotine and Hedrick [28] to include integral action
in the controller to force the position model following errors to zero. This
modification is much more desirable for actual implementation than simply
increasing the controller gains because higher gains produce higher control

rates and decrease stability.

We have designed a controller for the longitudinal axis of the X-29 aircraft. In
the actual implementation of this controller, the maneuvers chosen would need

to statisfy pilot handling qualities criteria. This can be addressed simply by con-
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structing the model generator to output trajectories the pilot would like. We did
not address this issue since it would not effect the design of the control law. This
work could be continued by also designing a controller for the lateral/directional
axis. Because the lateral/directional axis aerodynamic equations were described
by a different format, they do not lead to a straightforward application of this
control technique. However, the same method would apply to this axis system.
The first step in the design would be to fit a more analytic form to the lateral
force and moment equations. The fit does not need to be perfect. There could be
some remaining A differences just as in the longitudinal case. Once this form is
acquired, we could perform the same type of controller calculations. In fact, the
lateral/directional system would have two outputs, roll and yaw, along with two
inputs, aileron and rudder, thus aleviating the redundant control problem. Then
with a full 6 degree-of-freedom controller for the X-29, more complex maneuvers

could be performed to test the controller.
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