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This thesis explores object deformation and lighting change in images, propos-

ing methods that account for both variabilities within a single framework. We con-

struct a deformation- and lighting-insensitive metric that assigns a cost to a pair of

images based on their similarity. The primary applications discussed will be in the

domain of face recognition, because faces provide a good and important example of

highly structured yet deformable objects with readily available datasets. However,

our methods can be applied to any domain with deformations and lighting change.

In order to model variations in expression, establishing point correspondences be-

tween faces is essential, and a primary goal of this thesis is to determine dense

correspondences between pairs of face images, assigning a cost to each point pairing

based on a novel image metric.

We show that an image manifold can be defined to model deformations and

illumination changes. Images are considered as points on a high-dimensional man-



ifold given local structure by our new metric, where costs are based on changes in

shape and intensity. Curves on this manifold describe transformations such as defor-

mations and lighting changes to connect nearby images, or larger identity changes

connecting images far apart. This allows deformations to be introduced gradually

over the course of several images, where correspondences are well-defined between

every pair of adjacent images along a path. The similarity between two images on

the manifold can be defined as the length of the geodesic that connects them.

The new local metric is validated in an optical flow-like framework where it is

used to determine a dense correspondence vector field between pairs of images. We

then demonstrate how to find geodesics between pairs of images on a Riemannian

image manifold. The new lighting-insensitive metric is described in the wavelet do-

main where it is able to handle moderate amounts of deformation, and allows us to

derive an algorithm where the analytic geodesics between images can be computed

extremely efficiently. To handle larger deformations in addition to changes in illu-

mination, we consider an algorithmic framework where deformations are modeled

with diffeomorphisms. We present preliminary implementations of the diffeomorphic

framework, and suggest how this work can be extended for further applications.
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Chapter 1

Introduction

This thesis explores object deformation and lighting change in images. We

want to be able to meaningfully compare two images of the same object, specifically

when the object has deformed and/or the illumination of the scene has changed. We

aim to develop measures of similarity between two images where images of the same

object are assigned a low matching energy cost, while images of different objects have

a higher cost. The overriding goal of all work in this thesis is to compute image

comparison costs that can then be used for recognition purposes. The primary

application discussed here will be in the domain of face recognition, because faces

provide a good and important example of highly structured yet deformable objects

with readily available datasets that include large changes in expression and lighting.

However, our methods are not designed specifically for faces, and can be applied to

any domain with deformations and lighting change.

Our primary motivation is to show that an image manifold can be explicitly

defined to elegantly model deformations and illumination changes in images. M×N

images are considered as points on a high-dimensional manifold of images, and we

present a metric that gives local structure to the manifold, where costs are based

on changes in shape and intensity. Curves on this manifold describe transforma-

tions such as deformations and lighting changes to connect nearby images, or larger
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identity changes connecting images far apart. The similarity between two images

on the manifold can be defined as the length of the geodesic, or shortest path, that

connects them.

The primary contributions of this thesis are as follows. We present a novel

lighting-insensitive metric based on the effect of lighting in 3D scenes, where the met-

ric is a function of image gradients and the differences of image gradients, inspired

by the known result that image gradients across object boundaries are insensitive to

variations in lighting. We show that this local metric is meaningful by applying it to

compute dense correspondence vector fields between two images in an optical flow-

like setting, where the goal is to generate meaningful image matching costs in the

presence of deformation and lighting changes rather than perfect object tracking. A

new framework for optimizing flow fields is implemented, making use of the Sobolev

gradient and a global kernel, leading to increased stability against deformation.

We then demonstrate how to find geodesics between pairs of images on a

Riemannian image manifold using our new metric. Instead of calculating a single

correspondence vector field between two images, the metric is integrated along the

geodesic, which is discretized into a sequence of images varying along the path

connecting the two given images on the manifold. The benefit of using geodesics is

that a face can deform slowly through several steps, making the algorithm robust

to large expression change and lighting variations. The lighting-insensitive metric

is converted into the wavelet domain, where it is able to handle moderate amounts

of deformation, comparable in size to the support of the wavelet basis functions.

We show that in this formulation the geodesics through each wavelet basis location
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are independent, and can be calculated analytically so that no optimization scheme

is required and there is no risk of converging to local minima. This allows for an

extremely fast image comparison computation.

To handle larger deformations in addition to large changes in illumination,

we consider an algorithmic framework where a deformation can be described as a

diffeomorphism (a smooth invertible function between differentiable manifolds), and

the geodesic flow through diffeomorphisms is sought. To calculate the discretized

geodesic path, a computational optimization scheme based on the gradient descent

method is required. We present preliminary implementations of the diffeomorphic

framework, calculating diffeomorphisms for complete face databases, and suggest

how this work can be extended for further useful applications.

1.1 Outline of Proposed Methods

We start in Chapter 2 by exploring some of the most straightforward methods

for obtaining correspondences between images, to see where they break down. We

first consider an image morphing algorithm used in computer graphics applications

presented by Beier and Neely [8]. This method is based on matching corresponding

line segments in images, and is seen to be not very robust in regions of the image

not explicitly matched. We then look at optical flow, specifically the robust optical

flow algorithm of Black and Anandan [13]. In the optical flow framework, each

point in a first image is matched to some point in a second image, resulting in

more generally meaningful set of correspondences than the first simple morphing
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algorithm. However, the correspondence field is penalized by a cost function that

usually requires too much smoothness to be able to match all individually deformed

image patches, or is not smooth enough to be meaningful. This chapter is not meant

to be a comprehensive study of all possible known methods that handle deformation,

but simply serves to motivate the later chapters where new research is presented.

In order to model variations in expression, establishing point correspondences

between faces is essential. Our methods determine dense correspondences between

pairs of images, assigning a cost to each point pairing based on a novel image

metric. The research presented in this thesis was conceived with the idea that the

mathematical structures of geodesic paths and diffeomorphisms on image manifolds

should be powerful tools for handling deformations in images. If we consider an

image to be a point on a high dimensional image manifold, then following a path

away from that image through the manifold is like watching a sequence of images

that get progressively more different from the original. This allows deformations to

be introduced gradually over the course of several images, where correspondences

are well-defined between every pair of adjacent images on the path. A manifold is

a generalized often high-dimensional surface, diffeomorphisms are smooth, bijective

mappings between images represented as points on a manifold, and geodesics are

the locally shortest paths between two points on a manifold; these ideas will be

expanded later, or see [28, 93]. As we aim to measure image similarity, we use a

Riemannian manifold, in which a local metric gives structure to the manifold by

penalizing certain types of image change, in the same way a hill requires more work

from a walker in some directions than others. In order for the manifold structure to
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Figure 1.1: A high-dimensional manifold, where each point on the manifold is an

M×N -dimensional image, and geodesics connecting more similar images are shorter

(images from [50]).

be useful, images of the same object should be close together on the manifold, while

images of very different objects should be far apart; see Figure 1.1. The length of

the geodesic connecting two images can therefore be used as a measure of image

similarity.

In Chapter 3 we present a new metric for measuring image patch similarity

in the presence of illumination change. It is well known that using image gradients

instead of intensities directly is less sensitive to changes in lighting, for example from

[35, 55]. The metric we present has similar properties to the gradient direction, but

assigns a higher cost to changes when the image gradient is small than to changes

when the image gradient is large, by scaling the gradient of the image change by

the norm of the image gradient. We discuss why this can be useful, and in later

chapters this metric is used in a geodesic framework. The direction of the gradient
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in an image patch can be compared to the direction of the gradient in a different

patch, and the resulting difference measure is the angle difference. Using our new

metric where the relative magnitudes of the gradient affects the cost to match them,

a meaningful path can be traced from the first gradient to the second on a manifold

that provides more information than the simple angle difference.

The new local metric is used in an optical flow-like framework in Chapter 3,

where every pixel in the first image is matched to some pixel in the second image,

resulting in a correspondence vector field. This vector field can be thought of as

defining a small movement from one image to the next along a path on a manifold,

allowing both shape and intensity to be modified locally. The cost of a given corre-

spondence field is defined by the new illumination metric plus a regularization term,

and this cost is minimized using an optimization scheme. The first image can then

be warped along this vector field to result in an image that is in correspondence

with the second image using only pixel values from the first image; see Figure 1.2.

This study verifies that the local metric we present is meaningful.

Chapter 3 also presents a regularization term that was chosen to result in

an efficient Sobolev gradient [66]. In order to calculate the optimal correspondence

vector field, a minimization scheme must be implemented, and the smooth properties

of the Sobolev gradient allow a gradient descent-based scheme to progress further

before breaking out at a local minimum. This algorithm computes the x- and y-

components of the illumination and regularization costs at each pixel for each image

pair, and all this data is fed into a simple Näıve Bayes classification machine learning

routine that learns to discriminate between same-person and different-person image
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Figure 1.2: Correspondence vectors are found from the top left image to the bottom

left image, then the pixels from the top image are warped along these vectors to be

put in correspondence with the bottom image.

pairs. Identification results are presented on the AR Face Database [61], where the

identity of an unknown image is declared to be that of the known image that results

in the lowest image matching cost.

The new lighting-insensitive metric is used in a geodesic framework in Chap-

ter 4. In this work only lighting change is considered (no deformations), and the

metric is re-expressed in the wavelet domain where we show that the minimizing

geodesic path between any pair of corresponding image gradients can be calculated

analytically. In order to compute the matching cost of two images in the presence of

lighting changes, each point location is compared separately in wavelet space, where

a geodesic path is constructed between the values at that location in each image.

The lengths of these curves are summed for the overall image matching cost. A
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lookup table is pre-calculated, containing the discretized matching costs for every

pair of input values, so that at runtime the computations required to compare two

images involve simply projecting each image to its wavelet coefficients and referenc-

ing a lookup table, making this an extremely fast algorithm in practice. Because

wavelets are fundamentally a multi-scaled representation of an image, the coarsest

scales are insensitive to small image changes, so comparing wavelet coefficients pro-

vides some insensitivity to moderate deformations. Strong results are seen in the

face recognition task where both lighting and expressions are varied. The speed of

this algorithm allows many images to be compared very fast.

A method to explicitly handle image deformations using a diffeomorphic frame-

work is described in Chapter 5. This chapter presents an initial exploration of several

extensions of the previous work using diffeomorphisms. A sparse set of facial fea-

ture points is found automatically on each face image using published methods.

Geodesics are then calculated between these known corresponding points, and the

geodesics between the rest of the image points are calculated based on spline in-

terpolation, following the work of [20, 83]. The spline is chosen to have certain

desirable properties, relating to an appropriate cost function to be minimized and

appropriate geometry for the image domain. The result is a geodesic path through

diffeomorphisms between two images, along which a first image deforms into corre-

spondence with a second. Directly, the minimization procedure required to go from

initial input paths connecting the corresponding points to the true geodesic path

through diffeomorphisms is very expensive, but any set of paths defines a smooth,

invertible diffeomorphism which is in itself a desirable relation between two images.
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The lighting-insensitive metric discussed earlier can be added to this framework,

to calculate diffeomorphisms and geodesics that follow the geometric image defor-

mations and handle intensity changes. An image can then be morphed along the

diffeomorphic path connecting it to another image, and the resulting images can

be meaningfully compared. Preliminary results are again presented on the face

recognition task.

Since the entire diffeomorphic path between two images is known, all the

intermediate images along this path can be generated, like a movie of one face image

deforming into another. If two faces of an individual showing different expressions

are provided, then all the images connecting those expressions can be generated, and

a new image can be compared to all the intermediate images. When a new image is

closer in expression to one of the intermediate images than to either of the known

images, it is seen to match more closely to the generated images. This is significant

because it is very common in face recognition tasks for an image to be declared

more similar to an image of a different person showing a similar expression than to

an image of the same person with a different expression. We can now overcome this

problem if we are provided with images of every individual only at the expression

extremes. Preliminary results are provided on the Cohn-Kanade AU-Coded Facial

Expression Database [56]. We foresee many future applications of the methods

presented here.
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1.2 Related Work

Traditional Face Recognition:

Recognizing faces in the presence of expression variation has been studied for many

years. Expression variations are often simply ignored, and faces are compared as

if there were no deformations, accepting that the pixels in regions that have been

deformed will not match well to any image, so only the parts of the face that

have not deformed will provide meaningful comparisons. This is the case with

Principal Component Analysis (PCA, also known as eigenfaces) [82], which finds

the best low-dimensional linear linear subspace that captures the most important

variations in a dataset, and then the coefficients projecting an image into this subset

can be meaningfully compared. This is also true for Linear Discriminant Analysis

(LDA) [9] which, instead of finding the best subspace representation, finds the best

classification, and in the expression case results in learning which parts of the image

have high intraclass variability and discounting.

Handling expression variation explicitly requires the knowledge of how indi-

vidual points from two faces correspond. The Active Appearance Models of Cootes

et al. [24] separated shape information from texture information by identifying cor-

responding feature points in each image (hand-selecting 68 feature points on each

face), warping feature points to their average locations while interpolating all other

points, and mapping the texture values respectively to achieve “shape-free patches”

that could then be compared directly. Identifying this many points by hand is unrea-

sonable for large datasets, so several works deal with uniform grids on face images.
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For example Dynamic Link Matching by Lades et al. [49] fit a uniform grids over

face images and allowed each node to distort locally, interpolating the distortions

for all other points, and representing each grid point by its Gabor wavelet trans-

form, which was met with limited success. Another general method for handling

deformations is the Pictorial Structures of Felzenszwalb and Huttenlocher from [31],

where cost functions for deformations specific to faces were learned that depend on

the local image similarity and the amount of deformation required to arrive at this

similarity.

The methods studied in this thesis are all model-based and require no training

or learning stages (with one proof-of-concept exception), and so we do not focus on

those face recognition algorithms that do involve training as they form a distinct

body of work. However, we note that the current state-of-the-art algorithms for

face recognition rely heavily on learning methods. We argue that combining robust

models, such as those presented in this thesis, with successful learning algorithms

will result in advances in the state-of-the-art face recognition techniques. Significant

learning-based face recognition methods include the 3D morphable model work of

Blanz and Vetter [14], which learned 3D models of faces from textured 3D scans

of heads, then modeled new 2D face images fitting parameters for 3D shape and

texture, producing impressive results but requiring heavy computation. In [89],

Wright et al. projected an unknown image onto the space of known images and

enforced sparseness of coefficients, relying on the fact that the most compact repre-

sentation of a face is likely to be from faces of the same class. Currently, the most

robust results on the most general face recognition datasets are obtained by meth-
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ods that consider many different representations of faces together, including local

and global descriptors. These methods compare faces by comparing the relative

responses across all descriptors. For example in [48], Kumar et al. compared many

different face patches to known reference patches, resulting in similarity histograms

that can then be compared for identity verification. In [92], Yin et al. also divided

faces into patches, extracting descriptors such as SIFT and LBP to be compared

to reference patches, and then pose change was modeled by using a corresponding

patch for each reference patch in a gallery pose for image comparison.

Illumination Insensitivity:

While it has been shown that there can be no truly illumination-invariant image

measure in the general case [22], significant work has been done to develop models

which are insensitive to illumination change. The insensitivity of the gradient to

lighting change has been shown numerous times such as in Lowe’s SIFT descriptors

[55], where normalized gradients are used as features so that the descriptors are

invariant to affine changes in illumination. The self-quotient image model scales

image intensity values by smoothed versions of the local intensity at every location,

thereby removing the effects of shading to normalize an image, and this idea was

successfully applied to lighting-variant face recognition by Wang et al. in [86]. The

self-quotient image was combined with a total variation model for better edge preser-

vation by Chen et al. in [23]. Georghiades et al. in [33] presented the illumination

cone model, where it was observed that the set of all images of a single object in a

fixed pose but varying illumination form a convex cone in the space of images, and

this idea was used to reconstruct the shape and albedo of faces from training images
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of faces taken under different lighting conditions. Multi-scaled wavelets have been

used in the past to efficiently represent lighting variations in works including the

lighting model of [67]. Triggs [78] selected image keypoints that were robust against

scale, orientation, and illumination change by maximizing an eigenvalue-based local

stability criterion that compensates for linear illumination changes.

It was shown by Basri and Jacobs in [5] that all effects of Lambertian lighting

on a 3D object can be modeled very accurately in nine dimensions using as ba-

sis functions the first nine spherical harmonics. This idea was successfully applied

to face recognition by Zhang and Samaras in [95]. Gopalan and Jacobs [35] com-

pare several simple lighting-insensitive representations for illumination-insensitive

face recognition, and the gradient direction was found to generally be the most ro-

bust of these methods (self-quotient, correlation filters, eigenphases, whitening). A

lighting-insensitive wavelet-based face recognition algorithm is presented by Zhang

et al. in [96], where using the relation log(I) = log(R) + log(L) between inten-

sity (I), reflectance (R), and illuminance (L), the reflectance term is reduced using

thresholding in a multi-scale wavelet domain. In [76], Tan and Triggs apply robust

preprocessing and a ternary extension of the Local Binary Pattern (LBP) texture

descriptor to lighting-insensitive face recognition.

Wavelets for Deformation Insensitivity:

Wavelets have been used to obtain insensitivity to group actions in the work of

Bruna and Mallat [19]. Rubner’s Earth Mover’s Distance (EMD) [71] is a measure

that can handle certain types of deformation, and an efficient approximation of

this method was presented by Shirdhonkar and Jacobs in [73] that performs its
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calculations in the wavelet domain. EMD has previously been shown to handle

moderate deformations in [36], which performs a fast contour matching algorithm

to judge similarities between sets of local shape descriptors.

Optical Flow:

Illumination changes and deformations have been studied together in a variety of

works. Many attempts to solve this problem have used optical flow to find corre-

spondences between scene points as they deform and in the presence of illumination

change; optical flow will be defined explicitly in Section 2.4. The traditional op-

tical flow methods of Lucas and Kanade [3] and the regularized version by Horn

and Schunck [41] were updated to include a robust error function to allow multiple

motions to be modeled in a single image sequence by Black and Anandan [13]. Ne-

gahdaripour [64] relaxed the standard optical flow brightness constancy assumption

to allow intensity to change according to multiplication by a scalar and addition by a

constant. Kim et al. incorporated this approach into a robust optical flow framework

in [46]. Relaxing the brightness constancy constraint to incorporate time-dependent

physical causes of lighting change, such as changes in the surface orientation with

respect to the direction of light sources, was presented by Haussecker and Fleet

in [40]. A gradient constancy constraint for robustness to illumination change was

integrated into the coarse-to-fine algorithm of Brox et al. in [17]. Papenberg et

al. add higher order derivative constancy terms including a Laplacian constancy

term and a Hessian constancy term to the the gradient constancy term in [69].

A structure-texture decomposition was proposed in [87] that treats an image as a

composition of geometric structure and fine-scaled texture details, and uses total
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variation minimization to minimize illumination artifacts such as shadows. Zimmer

et al. handle violations of the brightness constancy assumption in [98] by consid-

ering a complementarity between the data and smoothness terms, incorporating

photometric invariant channels along with gradient constancy. Brox and Malik use

a variational model with rich local descriptors in [18] to accurately handle large

displacements better than previous coarse-to-fine methods. SIFT Flow was used in

[54] to determine correspondences based on pixelwise SIFT features, and is able to

find correspondences in and align images of different but related scenes, unlike tradi-

tional optical flow which requires the scenes being matched to be very similar. Face

recognition is performed by aligning images to a query using SIFT flow. Glocker

et al. use Markov Random Fields in [34] to dynamically solve for an optical flow

estimation as a discrete multi-labeling problem with the goal of effectively handling

image morphing.

Although optical flow was initially developed for the rigid object motion track-

ing problem, it has been successfully applied in face recognition. For example in

the work of Beymer and Poggio [12], the flow was calculated between a face and

a small variation in pose of that same face. The flow between a new face and the

original face was calculated to find correspondences, and then the flow field from

the original face was applied to a new face to generate a new pose of the new face,

which could then be used for comparison. Martinez [60] used the length of the flow

vectors to weight the importance of each pixel before performing image differencing

on expression variant image pairs. A robust optical flow method was developed by

Hseih et al. [42] based on 15 key points that are manually selected on each face to
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help drive the flow calculation. In Ma et al. [57], the optical flow of Brox is used

to compute flow between gradients, successfully capturing facial deformations and

generating synthetic expressions on faces.

Other Methods for Modeling Deformation and Illumination Variation

Together:

Other strategies for processing illumination variation and deformations together

involve template matching with affine transformations in a Lucas-Kanade-type al-

gorithm. Examples of this include the work by Hager and Belhumeur [37] which

handled illumination and small changes in pose together, treating occlusions as

statistical outliers, and the work by Tzimiropoulos et al. [84] which iteratively max-

imized image correlation based on gradients that capture the orientation of image

structures rather than pixel intensities.

Solving the expression and lighting problems together in faces has been at-

tempted in several recent works. Zhao and Gao [97] used only pixels from an edge

map to determine the best point pair correspondences between images based on

location and Gabor jet information. Xie and Lam [90] also found correspondences

between edge pixels, developing a cost function based on Euclidean distances, Ga-

bor maps and gradient directions at each pixel. In a separate work [91] Xie and

Lam modeled a face as a grid of tiles each of which was allowed to translate, rotate

and vary intensity linearly to match a second image. Song et al. [74] combined

binary edge features with gray scale information using mutual information. In [43],

James presented a method in which a simple local descriptor is calculated at each

pixel, descriptors at the same coordinates in two images are compared, and the
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number of sufficiently similar descriptor pairs based on a threshold were tallied, re-

sulting in a surprisingly robust cost function. Thesholding was also seen to produce

strong results in the work of Gass et al. in [32], which computes smooth warps

between expression-variant face images using local features, and handles occlusions

by thresholding local distances.

Manifolds and Differential Geometry:

Some of the methods presented in this thesis treat images as points on an image

manifold, and aim to find geodesic paths between images. These methods do not

fall into the category of manifold learning, being instead in the domain of analytical

geometry. In manifold learning algorithms, a large number of data points are given,

which are assumed to be sampled from an unknown manifold of much lower intrinsic

dimension than the dimension of the data points. Computations are performed with

the aim of reducing the dimension of the data while preserving the local and some-

times some global structure between points, such as following a sequence of adjacent

points to trace an approximate geodesic. Important Manifold Learning algorithms

include Isomap [77], Locally Linear Embedding [70], Laplacian Eigenmaps [11], and

Hessian Eigenmaps [30]. In our case, we know the image manifold explicitly, as we

define the metric that gives structure to it, and we consider only two images at a

time. Our work is more related to that of Absil et al. [1], who work with the Grass-

man Manifold, which is the space of all fixed-dimension linear subspaces of a given

Euclidean space. However, the properties of the image manifold we use are defined

by the metric we define to give it structure, and we perform computations using

the metric and the known images to calculate geodesic distances in the manifold
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itself. We adapt the theory presented in several of the works below to construct a

manifold using a new local metric, and demonstrate applications of this framework

using datasets larger than the examples presented in most of these works.

Computing geodesic paths through diffeomorphisms for image comparison ap-

plications has been explored in several works. Beg et al. [7] defined a framework

to solve for large deformation diffeomorphisms, using Euler-Lagrange equations to

minimize a cost function based on the a norm of a diffeomorphism through time

and the difference between the image morphed by the diffeomorphism and the im-

age to which it was being matched. In the work of Ashburner [2], diffeomorphic

image registration was computed by finding the best coefficients over a chosen set of

spline basis functions, an optimization problem solved using a Levenberg-Marquardt

strategy. Both these algorithms were applied to medical imaging datasets including

brain imagery. An evaluation of 14 nonlinear deformation algorithms was presented

in [47] with applications to brain imaging.

Diffeomorphisms based on a sparse set of point correspondences using the

Thin-Plate Splines deformation framework of Bookstein [15] have been defined.

Camion and Younes allowed for inexact correspondence matching in [20] and mini-

mized a data consistency term in addition to the norm on the diffeomorphism itself.

Twining et al. [83] enforced exact matching so they only minimized the norm on

the diffeomorphism to calculate the geodesic through diffeomorphisms. The former

of these algorithms was only applied to a small number of displaced grid points, the

latter was applied to a handful of simple images.

Trouvé and Younes studied deformations belonging to Lie groups with Lie al-
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gebras acting on Riemannian image manifolds in [79]. The algorithm was applied

to a handful of face images undergoing moderate pose changes or deformations.

Geodesic shooting was used by Miller et al. in [63] to generate complex deforma-

tions. Garcin and Younes used a multiscaled wavelet approach in [94] to perform

hierarchical energy minimization to arrive at a geodesic between two images that

is more likely to be globally optimal. There is also a body of geodesic methods

which do not involve diffeomorphisms, such as the work of Wirth et al. [88] which

computed geodesic paths between images that were represented using level sets.

The algorithms presented in this thesis involve finding correspondences be-

tween points in two images. These corresponding points will then be compared

using metrics insensitive to changes in scene illumination. In this work we do not

consider cast shadows, such as those caused by the nose onto the cheek when light-

ing is from one side, and we will not directly consider pose change, although small

amounts of pose change can be effectively handled as deformations. A robust general

object recognition system should combine the work of this thesis with an algorithm

specifically developed to handle changes in pose, for example [21]. Even stronger

results will be obtained when machine learning techniques are applied to the data

output by the methods presented, as certain types of deformations provide signifi-

cant information about the object being deformed. For example, a face can naturally

deform into a smile, but if the relative location of a cheekbone changes between two

images, these images are not likely to be of the same person, and this information

can be captured by simple machine learning algorithms. However, this is not the

primary objective of this thesis, and here we study general deformations and lighting
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changes. We handle expression and lighting variation within a single framework by

constructing deformation and lighting insensitive measures that assign a cost to a

pair of images based on their similarity.
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Chapter 2

Finding Correspondences to Model Deformations

In this chapter we set up the problems we address in this thesis, and present

some common methods that might be used as first attempts at solutions. This

chapter does not present new research, it is meant to provide motivation for the

research in the following chapters. We explore the situation in which two images

of an object are provided, but the object has undergone a nonlinear deformation in

one of the images. We would like to be able to quantitatively compare these images,

to determine if they are in fact of the same object, and further, we would like to

be able to recognize and appropriately handle the images even when the lighting

in the scene has changed. We will apply the algorithms developed in this thesis

to face recognition, as faces are a good and important example of objects that can

undergo moderate deformations and experience extreme lighting changes. However,

the primary focus of this work is the study of geometric and image properties.

2.1 Point Correspondences for Image Warping

In order to be able to quantitatively compare two images of an object that

has deformed, it is essential to determine how the points in the images correspond.

Once point correspondences are determined, the points can be compared to see

how similar they are, for example in intensity or in image features that capture
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relationships between neighboring pixels, such as the direction of the gradients of

the intensity. Without knowing how points correspond, we have no way of comparing

specific parts of an image.

Specific image feature point computation is a well-studied field, starting gener-

ally with the Harris corner detector [38], the Scale-Invariant Feature Points (SIFT)

[55], and the Speeded Up Robust Features (SURF) [6]. Feature point detectors have

been developed for many applications, and specifically for faces there are algorithms

that can reliably find 4 to 9 points on fairly uncontrolled images of faces. For exam-

ple, the commercial OMRON algorithm [25] detects the nine facial feature points as

seen in Figure 2.1.

This small number of points is sufficient to be able to rigidly align face images,

which is done by finding the average location of each feature point across a dataset,

then using the Least Squares or RANSAC [39] method to determine the affine trans-

formation that most closely aligns the feature points of each individual image to the

average position. Affine transforming each image accordingly puts them in a stan-

dard frame that is more meaningful for comparison, and our algorithms assume all

face images have been pre-aligned. However, such a small number of feature points

only provides enough information for a rigid affine transform, and does not provide

enough information to stretch and shrink individual parts of an image to effectively

warp all points into correspondence with another image. Several recent algorithms

including [10, 27, 53] automatically find much larger numbers of points or curves

on each face, and while these algorithms are becoming very accurate, there is still

some loss of robustness to variations in pose, lighting, expression and occlusion when
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Figure 2.1: Nine face feature points as detected by the Omron algorithm.

searching for so many very specific points.

We aim to deform one image so that it matches a second image as closely

as possible, thereby obtaining dense point correspondences between images. The

deformation will not be based on directly finding individual point correspondences

in the second image for each pixel in the first image, but instead will be based

on minimizing a cost function that compares pairings between the two images for

all pixels over a single global correspondence field. The deformed image is then

compared to the second image, and image pairs with high similarity are assumed

likely to be of the same object, person, or scene. As an example, see Figure 2.2.

To test algorithms throughout this thesis, face recognition tasks will be per-

formed on the expression and lighting subset of the AR Face Database [61], a publicly

available database created by Aleix Martinez and Robert Benavente in the Com-

puter Vision Center (CVC) at the Universitat Autònoma de Barcelona. This is a

widely used dataset and so we will be able to compare to other published methods.

This database includes frontal images of individuals on a plain background display-

ing large variations in expression in addition to variations in lighting, and these
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(a) (b) (c) (d)

Figure 2.2: The pixels from (a) are warped into correspondence with (b) via the

correspondence vector field in (c), resulting in the final image (d).

image variations can be compared to the well-lit neutral expression of each person.

The different expressions are seen in Figure 2.3(b), and the different lightings are

seen in Figure 2.3(c). For our experiments, each non-neutral face is compared to

every neutral face in the dataset, and a cost is calculated for each pairing. We

will define identity based on nearest neighbor matching, meaning that for a given

non-neutral face, if the pairing that returns the lowest matching cost came from the

neutral image of the same individual, then we deem the non-neutral image to have

been correctly identified. We use the standard crops of the AR Face Database [62],

consisting of 50 men and 50 women, and unless otherwise noted we rescale each crop

so that it is 83× 59 pixels, half the length and width of the original images, as face

recognition tasks tend to work the best on images of this scale.
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(a) (b) (c)

Figure 2.3: The variations of one person from the standard croppings of the AR

Face Database [62]: (a) neutral, (b) expressions, (c) lightings.

2.2 Current Facial Feature Point Detection

Some of the algorithms we present will require the knowledge of a small set of

facial feature points, with feature points more varied than those found in Figure 2.1,

and in this section we describe how we obtained appropriate feature points for later

use. In [27], 98 facial feature points are manually determined for the expression

variant images of the AR Face Database, so we will use these publicly available

points. To find the feature points in the lighting variant images, the algorithm

of [10] for automatically finding 29 face points was applied to the images, using

parameters learned from the datasets as described by the authors. We therefore

expect and observe that the facial feature points we use for the lighting variant

images are less precisely located than those in the expression variant part, but are

for the most part acceptably accurate. The supplied feature points are seen in Figure

2.4.

Fourteen semantically meaningful points found by both facial feature point

detection algorithms were selected on each face, as shown in Figure 2.5. From these

points, the images were aligned using affine transformations so that the locations
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(a)

(b)

(c)

Figure 2.4: Feature points found on the AR Face Database. (a)-(b) The feature

points found by Ding and Martinez in [27] are used for the expression variation

images, (c) the feature points found by Belheumer et al. in [10] are used for the

lighting variation images.
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Figure 2.5: The 14 selected feature points used in some of the algorithms in this

thesis, on a cropped face.

of the points in each aligned image were as close as possible to the average point

locations. Both feature point detection algorithms required the full uncropped face

images as input, as they make use of information relating to the shape and position

of the head and hair, and so we need to crop the images to just the face regions. To

create the standard cropping of the AR Face Database, the individual faces were

morphed to a standard position as described in [62]. We use the same subset of

individuals, but apply only an affine transformation to align the image, as opposed

to any nonlinear image morphing, during preprocessing. The average feature point

locations of the standard AR croppings are used for alignment, and the images are

cropped to the same regions of the face as the standard croppings as closely as

possible given that the amount of preprocessing is different.

2.3 Background: Simple Warping

To demonstrate that finding correspondences between deformed images is a

challenging task, we will first look at a straightforward way to attempt to match
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images of two objects, using warping methods developed for computer graphics ap-

plications to attempt to warp the one image to be in correspondence with the other.

The commonly cited algorithm of Beier and Neely [8] is based on corresponding

line segments in each image, and warps an image so that its segments are aligned

with the location of the corresponding segments in a second image. The appropri-

ate warping for all other image points can then be determined by interpolating the

warping of the known lines.

In order to determine corresponding line segments, corresponding points defin-

ing the endpoints of the segments must be known, and we will use the facial feature

points found from [10] and [27] to obtain these points as described in Section 2.2.

From the 14 known feature points, 13 lines were selected for use in the warping

algorithm of [8], as shown in Figure 2.6(a).

The warping at each point is defined as a weighted sum of the deformations

of every known feature line, where the weightings are determined by the distance to

each known line. For an individual pixel, the weight of each line is defined by

wgt =

(
L p

a+ d

)b
, (2.1)

where L is the length of the line, p controls how the length of the line affects the

weighting, a large a encourages smoother warpings at the expense of precision, d

is the distance from the pixel to the nearest point on the line, and b controls how

the distance affects the weighting. For the experiments here, p = 0, a = 1, and

b = 1, which disregards the length of the lines, weighs the importance of the lines
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linearly with respect to the inverse of their distance away from the point, and only

enforces moderate smoothness. The amount a single pixel is required to move can

be defined by a deformation vector at each point. The collection of these vectors

is a vector field that attempts to match the first image with the second, putting

them into correspondence. The results of two image warpings can be seen in Figure

2.6. This method works well for small deformations, but it handles poorly the large

changes in facial expression seen here.

Given two images, using the warping algorithm described above, image I2

is warped to match image I1, producing warped image Iw2 . An image similarity

measure is used to compare Iw2 to I1. Image differencing is the simplest image

comparison metric, where image intensity differences are calculated at each pixel,

and these differences are summed:

Eimdiff =
∑
i,j

‖I1(i, j)− Iw2 (i, j)‖. (2.2)

Both the L1 and L2 distances are considered.

It was found that warping from the variant face to the neutral face produced

more accurate results when compared to warping the neutral face to the variant

face. In the first direction, features that appear in a variant expression, such as an

open mouth, can be diminished when warping to neutral, but when starting with

the neutral face, there are no pixels corresponding to the inside of the mouth that

can be warped to match these pixels in the second image. See Figure 2.7.

Identification results on the expression variation part of the AR Face Database

29



(a)

(b)

(c)

Figure 2.6: (a) The line segments used for warping. (b)-(c) Two examples using the

line-based warping method, warping the image on the left to match the image in

the middle, creating the image on the right.
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(a)

(b)

Figure 2.7: Faces warped from neutral to variations, opposite the direction from

Figure 2.6. Empirically this was found to produce weaker identification results.
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Table 2.1: Identification results on the expression variation part of the AR Face

Database achieved using the warping algorithm of [8] with image differencing.

Smile Frown Scream Overall

Eimdiff L1 norm 98.0% 98.0% 83.0% 93.0%

Eimdiff L2 norm 84.0% 95.0% 75.0% 84.7%

achieved using the simple warping algorithm described above are presented in Table

2.1. The results show that simple face warping does aid in expression-insensitive

face recognition, but there is still much room for improvement, which we will explore

below.

The results obtained in this study are not entirely fair, as the feature point-

based implementation could probably be improved with further parameter explo-

ration, and it is possible that the 14 feature points chosen are not the ideal set of

face feature points to be used for warping. A better set of points might include a

partial outline of the face, to give more meaning to the deformation of the entire

face including the hairline. However, we would like to study methods of generating

dense correspondences where all the point correspondences are meaningful, and so

we elect instead to move on to more meaningful methods, starting with optical flow.
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2.4 Dense Point Correspondences from Optical Flow

A collection of algorithms developed for establishing dense point correspon-

dences between images is provided in the optical flow framework [3]. The traditional

optical flow algorithm was developed to track points on rigid objects through frames

in a video sequence. The amount of movement between images was small, and al-

though sides of an object might rotate out of view over the course of several frames,

the rigid object experienced no non-rigid deformations. Since its original inception,

optical flow has been extended for many uses, such as tracking non-rigid objects,

including expression-variant faces as discussed in the section on related work.

Optical flow determines the displacement of every pixel in an image to the

most similar pixel in a second image, returning the displacement vectors as a vector

field over the image. The method is completely automatic; the only input required

is the two images, which are assumed to be reasonably well aligned; see Figure 2.2.

Traditional optical flow is based on the intensity constraint equation, which assumes

that corresponding object points in two images will have near equal gray-scale values,

so that at point (x, y, t), its intensity I(x, y, t) is assumed to satisfy

I(x+ δx, y + δy, t+ δt) = I(x, y, t). (2.3)

A first order Taylor expansion of this equation gives

I(x+ δx, y + δy, t+ δt) = I(x, y, t) +
∂I

∂x
δx+

∂I

∂y
δy +

∂I

∂t
δt, (2.4)

and plugging equation (2.3) into equation (2.4) leads to the traditional optical flow
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equation:

∇I · w + It = 0, (2.5)

where w = [δx δy]T = [u v]T and δt = 1. This relation defines an energy to be

minimized, which we will refer to as the brightness energy,

Eb = ∇I · w + It. (2.6)

As this equation is under-determined, a second constraint must be added, and it is

standard to use this equation to enforce smoothness or regularity by minimizing the

gradient, as in [41], referenced as the regularization energy

E2
r =

(
∂u

∂x

)2

+

(
∂u

∂y

)2

+

(
∂v

∂x

)2

+

(
∂v

∂y

)2

= |∇δx|2 + |∇δy|2. (2.7)

Black and Anandan [13] incorporate a robust error function ρ to limit the effect of

outliers, allowing multiple distinct motions to be handled within a single image pair.

Instead of solving a least squares fit of all points, the effect of outliers is reduced

using an error ρ-function with each energy term, which limits blurring at motion

boundaries. The full energy to be minimized is

EB&A =

∫
ω

(
ρb(E

2
b ) + λρr(E

2
r )
)
dxdy (2.8)

for weighting constant λ. This equation is minimized using a coarse-to-fine strategy,

solving the problem at a coarse scale, then warping the image to a finer scale, adding
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(a)

(b)

Figure 2.8: Two examples using Black and Anandan optical flow to attempt to

automatically put two images into correspondence. The correspondence vector field

is from the far left image to the next image, and the warped image on the right

is the second image warped backwards along this correspondence field to be in

correspondence with the first image.

more outliers, and repeating the process. At each level, the solution is obtained

numerically using the Successive Over Relaxation (SOR) scheme. This method is

seen to handle boundaries much more reliably than the method of [41] alone. The

optical flow implementation used here is based largely on the implementation from

[75]. The results from applying this robust optical flow algorithm can be seen in

Figure 2.8.
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Using the Black and Anandan optical flow algorithm, we warp images from the

AR Face Database and perform a basic nearest neighbor recognition test using image

differencing from equation(2.2) as before. Results are presented in Table 2.2. We see

that warping based on dense optical flow out-performs feature point-based warping.

This is not surprising, as with optical flow, every pixel is deformed to a meaningful

location, whereas using sparse correspondences cannot reliably deform regions of

points. We see in the examples above that warping based on sparse points breaks

down faster than the robust optical flow, for the algorithm has no way to deal with

a mouth being closed, for example, which is equivalent to introducing occlusions.

The optical flow algorithm is able to find similar pixels for every point, whereas the

point-based warping can do nothing but drag along all the pixels between the very

few correspondences that it knows for sure.

Because the direct optical flow results are seen to be strong, we perform further

rudimentary tests on this method. This thesis aims to handle both deformations and

lighting variations together, and so we test the optical flow method on the lighting

variation subset of the AR Face Database. Several optical flow methods have been

developed to be insensitive to changes in scene lighting, such as in [46] where lighting

change is modeled by multiplication by a scalar and addition by a constant, an

idea from [64], and in [17] which incorporates a gradient constancy constraint for

robustness against illumination change. We do not explore these methods further

as we will take a somewhat different approach to handling lighting change. Here we

simply demonstrate that the standard Black and Anandan flow, which does not aim

to explicitly handle lighting variation, expectedly performs poorly between images
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with different illuminations.

A standard method for comparing images in the presence of lighting change

is to compare the direction of the gradients of the images. If [dx dy]T = ∇I are the

elements of the gradient of the intensity values of image I, then the direction of the

gradient at every point is

θ = tan−1 dy

dx
mod π. (2.9)

When there is significant lighting change in a scene, comparing the gradient direc-

tions θ is much more meaningful than comparing image intensities directly, because

although the gray scale values of the pixels may have changed significantly, the an-

gles of the surfaces in the images and hence the directions of the image gradients

(mod π) have remained the same. In order to compare gradient directions at indi-

vidual points, the difference between their angles is computed, taking the smaller of

∆θ and π −∆θ, so the difference in gradient directions ‖.‖GD is calculated as

da = ‖θ1 − θ2‖ (2.10)

db = π − da (2.11)

‖.‖GD = min(da, db). (2.12)

We compare the gradient directions of the optical flow output and include

these results in Table 2.2, where EGD =
∑

ij ‖θ2(i, j) − θ1(i, j)‖GD. It is seen that

using the gradient direction does increase the accuracy of the identification results,

but the results are still poor in the lighting case.

37



Table 2.2: Identification results on the expression and lighting variation subsets of

the AR Face Database achieved using Black and Anandan Optical Flow.

Expressions Smile Frown Scream Overall

Eimdiff L1 norm 100% 99% 89% 96%

Eimdiff L2 norm 99% 98% 76% 91%

EGD L1 norm 100% 100% 91% 97%

EGD L2 norm 100% 100% 88% 96%

Lightings From left From right From both sides Overall

Eimdiff L1 norm 19% 16% 0% 11.7%

Eimdiff L2 norm 12% 7% 0% 6.3%

EGD L1 norm 59% 52% 3% 38%

EGD L2 norm 58% 50% 3% 37%
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The results shown in this chapter are not meant to be comprehensive, and

these methods could be further tuned to perform better on the tasks presented. Our

purpose here was simply to explore some commonly used techniques to observe where

they break down. We have seen that having meaningful dense correspondences is

essential for handling deformations, but that the most straightforward approaches to

finding correspondences do not work sufficiently well. A variety of solutions to these

problems have been proposed, some of which will be highlighted in the following

chapters. This thesis will focus on exploring and improving methods for finding

dense pixel correspondences across deformations, and methods for comparing these

corresponding pixels in the presence of lighting variation.
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Chapter 3

A Deformation and Lighting Insensitive Metric for Face Recognition

Based on Dense Correspondences

The work from this chapter was published in the proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) in June 2011,

[44].

3.1 Introduction

Face recognition is a challenging problem, complicated by variations in pose,

expression, lighting, and the passage of time. Significant work has been done to

solve each of these problems separately. We consider the problems of lighting and

expression variation together, proposing a method that accounts for both variabil-

ities within a single model. We construct a deformation and lighting insensitive

metric that assigns a cost to a pair of images based on their similarity. In order to

model variations in expression, establishing point correspondences between faces is

essential. Our method determines a dense correspondence flow field between pairs

of faces, assigning a cost to each pixel pairing based on a novel image metric.

There are two main contributions in this chapter: 1) we present a new lighting-

insensitive metric based on the effect of lighting in 3D scenes, and 2) we present a

new framework for optimizing flow fields making use of the Sobolev gradient and
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a global kernel, leading to increased stability against deformation. The algorithm

presented here is able to find reliable correspondences between images that are taken

under very different conditions, and the cost function based on these correspondences

results in very good recognition accuracy across classes of structured images with

variations in deformation and lighting.

Our new deformation and lighting insensitive metric is a function of image

gradients and the difference of image gradients, inspired by the known result that

image gradients are insensitive to variations in lighting. To find the best pixel

correspondences between image pairs, we minimize the sum of the proposed photo-

metric matching costs at each pixel, added to a regularization term that enforces

smoothness across adjacent pixel correspondences using a global kernel. Our op-

timization scheme minimizes over the correspondence flow field making use of a

Sobolev gradient, which is smoother and results in superior rates of convergence.

The optimization returns correspondence costs for each image pair, which can be

compared to make decisions on identity. Based on the photometric and regulariza-

tion costs calculated at each pixel, we learn a Näıve Bayes Maximum Likelihood

model of how same-person and different-person image pairs typically correspond,

and we apply this knowledge to improve our results. Experiments are presented on

the AR Face Database, and our method is seen to be competitive with the current

state-of-the-art.

The standard method for finding dense correspondences is to determine the

optical flow between images. Methods of optical flow have traditionally been de-

veloped to measure rigid object motion between images in a video sequence. We
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emphasize that while we construct a method that involves determining a flow field

between pairs of images, our goal is to compute a distance between image pairs, and

we are not proposing a new method for solving problems in the general optical flow

framework. We will sometimes accept incorrect pixel correspondences if this allows

the overall image matching cost to be meaningful.

We review the use of optical flow for face recognition in Section 3.2, and present

our new metric in Section 3.3. Our optimization scheme is described in Section

3.4, a probabilistic model is introduced in Section 3.5 to improve our results, and

experiments are presented in Section 3.6.

3.2 Optical Flow for Face Recognition

Optical flow determines the displacement of every pixel in an image to the

most similar pixel in a second image, returning a vector field over the image. It was

discussed in detail in Section 2.4, and many applications of optical flow to face recog-

nition were described in Section 1.2. However, there are limits to using traditional

optical flow. The flow between faces is highly nonrigid, often with very large object

deformations, and does not involve any intermediate frames between two images

separated in time. For example see the expression extremes when comparing Figure

2.3(a) with the third image in Figure 2.3(b), or the lighting variations between Figs.

2.3(a) and 2.3(c). The challenge of this flow problem is demonstrated using the ro-

bust Black and Anandan flow [13], and similar results were observed when using the

long range Brox flow [17], which also incorporates a gradient constancy constraint
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for illumination change robustness. To inspect pixel correspondences, pixels from

one image can be traced along the flow and pasted into their corresponding positions

to create a warped image. When the weight on the regularization term in (2.8) is

very small, it is possible to achieve artificially good-looking results with the Black

and Anandan flow, such as in Figure 3.1(d) generated for λ = 10−5. Pixels from

the tongue in I1 are matched to lip, skin and beard pixels in I2, creating false cor-

respondences and a very nonsmooth flow. If the regularization weight is turned up

then the resulting flow is almost zero everywhere, and no deformations are captured.

If lighting changes are introduced, the method completely breaks down; see Figure

3.1(h). We want to construct a new metric that can handle large deformations and

is insensitive to lighting changes, to be able to find more accurate costs based on

dense correspondences between images.

3.3 A Deformation and Lighting Insensitive Metric

We present a new deformation and lighting insensitive metric, which we will

then use in an optical flow-like framework.

3.3.1 The New Metric

Traditional optical flow relies on the intensity constraint equation (2.3) to

find correspondences between images. Instead of enforcing consistent intensity, we

would like to construct a metric where intensities that change as a result of a lighting

change in the scene can still be matched. If w(~x) is the flow from image I1(~x) to
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(a) I1 (b) I2 (c) w (d) Iw2

(e) I1 (f) I2 (g) w (h) Iw2

Figure 3.1: Poor results are achieved when the Black and Anandan flow w is cal-

culated from I1 to I2, then the pixels from I2 are warped backwards along w to

generate image Iw2 which corresponds to I1. The flow here is calculated with a very

small regularization weighting. (a)-(d) Change in expression. (e)-(h) Change in

lighting.

image I2(~x), where ~xij = (i, j) is the pixel in the (i, j)th position, then I2(~x) can be

warped backwards along this flow to match I1(~x) by defining

Iw2 (~x) = I2 (~x+ w(~x)) . (3.1)
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Any image warped backwards via w will be denoted with a superscript w. Tradi-

tional template matching attempts to minimize the warped image difference

EL2

b (w) =
1

2

∑
i,j

‖Iw2 − I1‖2
L2 . (3.2)

The usual Euclidean metric gives structure to the image manifold in a local neigh-

borhood of I. Letting δI denote an infinitesimal image variation, this infinitesimal

metric is ‖δI‖L2 . In the discrete case we take

δI = Iw2 − I1, (3.3)

so ‖δI‖L2 is just (3.2). Our new metric instead defines a Riemannian structure on

images using the new infinitesimal metric

‖δI‖2
I =

1

2

∫
‖∇δI‖2(x, y)

‖∇I‖2(x, y) + ε2
dxdy, (3.4)

where ε is a small positive constant of the order of the image noise. As a simple

approximation of the geodesic distance, we then take our new photometric energy

term to be

Eb(w) =
1

2

∑
i,j

‖∇(Iw2 − I1)‖2

‖∇I1‖2 + ε2
, (3.5)

where for the moment the norms and gradients are all taken to follow their standard

Euclidean definitions in L2.

The idea that lighting change on a surface can be represented as multiplication

by a scalar and addition by a constant [64] is integrated into the robust optical flow

calculation in [46] to develop a lighting-insensitive optical flow algorithm. Our metric

goes further, and is designed to be insensitive to intensity changes caused by the
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effects of lighting variation in 3D scenes. We normalize by the gradient of the image

because a high image gradient often signals a rapid change in scene properties, such

as a change in albedo or a point with high curvature. At these locations, a change in

lighting conditions can have a significant effect on the image gradient. For example,

a brighter light can scale the image gradient. Changing the location of a light can

magnify or weaken the gradient at the edge of a polyhedron, as the two sides forming

the edge are exposed differently to the light. Therefore, at locations with large image

gradients, a significant change in the gradient is often due to lighting effects. At

the same time, regions with small image gradients often signal scene regions with

uniform albedo and surface normals. For Lambertian objects with uniform albedo

and surface normals, variations in lighting cannot induce large gradients. Therefore,

while it is not impossible for a lighting change to turn a small gradient into a large

one, it is less likely, and so is more heavily penalized by our metric.

The derivation of our new metric removes the restriction that movement be-

tween images be less than one pixel, a limitation [4] that comes from applying first

order finite differencing to a first order Taylor Expansion (2.4). Many long-range

optical flow methods have been developed to get around this restriction, often us-

ing hierarchical coarse-to-fine strategies [17]. Our method is able to capture larger

movements by optimizing over a dual space related through a global kernel, see Sec-

tion 3.3.3, and the new method is seen to handle typical face deformations better

than traditional optical flow.

In addition to minimizing Eb, a metric based on similarities between the gra-

dients of the intensities, we also want to take into account the total deformation
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required to arrive at this similarity, so we include a regularization term Er that

depends on the smoothness of the flow w. Traditional optical flow minimizes the

sum of the L2-norm squared gradients of the flow (2.7). Instead, we introduce a

more general Sobolev-type quadratic cost penalizing irregular w,

Er(w) =
1

2
〈K−1w, w〉

G
, (3.6)

where K is a symmetric positive definite matrix as will be discussed below, and the

definition of the G-inner product is given in (3.8).

Equations (3.5) and (3.6) are combined into the proposed Deformation and

Lighting Insensitive (DLI) energy function:

EDLI(w) = (1− λ)Eb(w) + λEr(w). (3.7)

In our experiments, we take the weighting constant λ = .01.

3.3.2 The Sobolev Gradient

Since Eb in (3.5) involves derivatives, the usual Euclidean gradient ∇EDLI(w)

will not be smooth enough to be used in an efficient gradient descent method. In-

stead we use a Sobolev gradient ∇
K
EDLI(w), which is smoother and results in supe-

rior rates of convergence [66], so the optimization scheme gets caught in fewer local

minima, and our algorithm is able to arrive efficiently at more accurate solutions.

We first define a general inner product

〈u, v〉
G

=
M∑
i=1

N∑
j=1

〈uij, vij〉R2 . (3.8)

47



where G := RM×N×2, the dimension of the flow w. Then taking the Sobolev inner

product

〈u, v〉
K

= 〈K−1u, v〉
G

(3.9)

used in the regularization term (3.6), the relation between the regular gradient and

the Sobolev gradient is given by

∇
K
f = K∇f, (3.10)

where K is a smoothing operator regularizing the Euclidean gradient. To derive

(3.10), it is sufficient to consider the variation δf of any smooth function f and follow

the framework of differential forms. The definition of the gradient of a function f for

any inner product defined by some K is the unique vector written ∇
K
f satisfying

the following equality for any vector w:

δf = 〈∇
K
f, δw〉

K
. (3.11)

This can be connected back to the traditional definition of the gradient by

observing that for a function f that depends on an N-dimensional vector ~v,

df(~v) =
N∑
i=1

(
∂f(~v)

∂vi
· δvi

)
= 〈∇

RN
f(~v), δ~v〉

RN
. (3.12)

From this,

δf = 〈∇f(w), δw〉
G

(3.13)

= 〈∇
K
f(w), δw〉

K
(3.14)

= 〈K−1∇
K
f(w), δw〉

G
, (3.15)
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and equating the first terms of the 〈., .〉
G

expressions, we get

∇f(w) = K−1∇
K
f(w), (3.16)

which is equivalent to (3.10). Since ∇Er(w) = K−1w directly from (3.6), we get

that

∇
K
Er(w) = w, (3.17)

where K−1 no longer appears, and only K is needed for the computation of ∇
K
Eb =

K∇Eb. Here w can be considered as an element of a Reproducing Kernel Hilbert

Space (RKHS).

We choose K to be the matrix form of a 2D convolution with a symmetric

positive definite kernel k,

Ku ≡ k ∗ u, (3.18)

where we abuse notation slightly to consider u as an MN × 1 column vector on the

left and as an M × N image on the right. Here k is an M × N kernel, and K is

the MN ×MN matrix representation of this kernel. Multiplying K by the vector

representation of u, (3.18) holds for corresponding elements. With this choice of

K and periodic boundary conditions, any matrix-vector product involving K can

be computed very efficiently with the Fast Fourier Transform (FFT). We therefore

accept periodic boundary conditions, as will be discussed further at the end of

Section 3.4.2.
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3.3.3 Choice of Kernel

The convolution kernel k associated with the matrix K used in (3.6) must be

positive definite in order to define an inner product. We select a Gaussian-like kernel

for its smoothing properties. The most obvious choice of such a kernel is defined for

all (x, y) as

k(x, y) = exp

(
−1

s2

(
x2 + y2

))
. (3.19)

We will use derivatives of this kernel to define the derivative filters discussed in

Section (3.4.2). The scale parameter used is s = 0.0075p where p is the perimeter

of the image, this value having been empirically determined to be robust.

When defining (3.6) we instead use a Cauchy kernel which was observed to

provide better results experimentally,

k(x, y) =
1

1 + 1
s2

(x2 + y2)
, (3.20)

where the scale parameter s = 1
32
p.

A second kernel is defined for each s with s2 = s
4
, and the final kernel is the

weighted average of these two kernels (1
4

the kernel with smaller scale, 3
4

the larger).

All parameters and kernel choices were tuned on simple synthetic datasets consisting

of grey polygons on a white background, to be as general as possible. At the start

of the iterations, the kernel of larger scale dominates, aligning large regions in the

image. As the iterations progress, smaller features become more significant and the

effect of the smaller kernel predominates.

The kernel has the same dimensions as the image. Convolving with such a

global kernel allows our algorithm to capture large-scale image deformations, includ-
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ing long-range translations and large rescalings, that other flow algorithms require

multiscale methods to achieve.

3.4 The Optimization Scheme

The optimization is performed using a modified gradient descent algorithm.

To find a point where the energy function E(w) is minimized, we start with w = 0,

and at every iteration calculate ∇
K
E, then update w using a standard gradient

descent update

wn+1 = wn −∆t · ∇
K
E(wn). (3.21)

In fact, the actual implementation uses a dual variable αn such that wn = Kαn

initialized at α0 = 0. Using the fact that ∇
K
E = K∇E, the update becomes

wn = Kαn (3.22)

αn+1 = αn −∆t · ∇E(wn), (3.23)

which involves only the usual Euclidean gradient. The step size ∆t is initially defined

to be 0.01. If an iteration results in a cost smaller than the previous cost, we accept

the new αn+1 and update ∆t = 1.1 · ∆t. If an iteration results in a larger cost,

then the iteration was not successful, and we update ∆t = 1
2
· ∆t and try again.

For the next calculation, we use the αn+1 which had resulted in too high a cost,

as it was found that this helps move away from local minima as in a rudimentary

deterministic annealing algorithm, but no αn+1 is accepted as a solution if the cost

it produces is not smaller than that at the previous accepted step.
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The optimization scheme is terminated when either the gradient at the current

α is within a small threshold of zero, or when the size of ∆t has been decreased to

within a small threshold of zero and no nearby α in the direction of the negative

gradient has resulted in a smaller overall cost. Like all implementations of the Gra-

dient Descent algorithm, our algorithm will usually stop at a local minimum, but it

was observed that optimizing over α using Sobolev gradients allows the optimization

scheme to proceed much further before terminating.

3.4.1 The Gradient of the DLI Metric

In order to use a gradient descent method, we must calculate the gradient of

the DLI energy function (3.7),

∇EDLI(w) = (1− λ)∇Eb(w) + λ∇Er(w). (3.24)

Since ∇Er(w) = K−1w = α we get

∇Er(w) = α, (3.25)

and all that remains is to solve for ∇Eb(w).

3.4.2 The Gradient of the Photometric Norm

For any given definition of the photometric norm Eb, the regular Euclidean

gradient can be calculated directly through applications of the chain rule and finite

differencing. However, since this cost involves the computation of derivatives of

warped images, we will consider a slightly more general situation using low-pass

filtered directional derivatives.
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Before describing this more general framework, we consider the simple example

of the template matching definition of Eb defined in (3.2). For this, the gradient

would be calculated as

∇Eb(w) = (Iw2 − I1)(∇I2)w, (3.26)

with the warped image gradient term (∇I2)w resulting from an application of the

chain rule. Using the more complex metric for Eb from (3.5), the gradient could be

derived similarly.

Instead, to increase robustness, we make use of more general gradient-like

filters with larger regions of support than those used by traditional finite difference

methods. Instead of calculating a true gradient ∇I we will instead calculate HI for

H = [Hx Hy]
T , where Hx and Hy represent convolutions with more general x- and

y-directional derivative filters hx and hy of the low-pass kernel k from (3.19).

We introduce a diagonal weighting matrix C on RMN×MN with dimensions as

in (3.18) to serve as the denominator, with diagonal coefficient

Cij,ij =
(
|(HxI1)ij|2 + |(HyI1)ij|2 + ε2

)−1
. (3.27)

The metric (3.5) can now be expressed as

Eb(w) =
1

2
〈CHx(I

w
2 − I1), Hx(I

w
2 − I1)〉

RM×N
(3.28)

+
1

2
〈CHy(I

w
2 − I1), Hy(I

w
2 − I1)〉

RM×N
(3.29)

=
1

2
〈∆C(Iw2 − I1), (Iw2 − I1)〉

RM×N
(3.30)

where ∆C = HT
x CHx + HT

y CHy is a discrete Laplacian operator combining the

directional derivatives and the weighting factors. Note that the multiplication by C
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has a linear cost with respect to the number of pixels, and the multiplication by HT
x

(respectively HT
y ) is a convolution with the adjoint filter of hx (respectively hy).

To calculate the gradient of Eb we will make use of the symmetry of the matrix

∆C to get

∂Eb
∂wij

(w) = [∆C(Iw2 − I1)]ij∇I2(~xij + wij) (3.31)

or equivalently

∇Eb(w) = [∆C(Iw2 − I1)](∇I2)w. (3.32)

To perform the computations efficiently, FFTs are used to compute the convolu-

tions. This means that we accept periodic boundary conditions, despite not having

periodic images. In order to avoid driving the optimization by pixels near the bound-

aries, which are the least important points for our purposes, we multiply the cost

function by a weighting function that diminishes the weights of the pixels closest to

each boundary smoothly down to zero, thereby approximating periodic boundary

conditions. This is implemented by premultiplying (3.27) with this weighting at

each point.

3.4.3 The Algorithm

The optimal pixel correspondences between images I1 and I2 are determined

by the flow w from I1 to I2 that minimizes the cost EDLI(w) from (3.7). The

optimization algorithm is summarized in Algorithm 1.

The optimization takes approximately 1 second to converge for a pair of images

of dimension 83× 59, running Matlab on a 3.16 GHz processor.
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Algorithm 1 Find Optimal Correspondences

Input images I1 and I2, initialize α0 = 0

repeat

wn = k ∗ αn

Calculate ∇E(wn) from (3.24) using (3.25) and (3.32)

αn+1 = αn −∆t · ∇E(wn), update ∆t

until ‖αn+1 − αn‖ < threshold

return final matching cost from (3.7)

Inspecting representative image pairs reveals that our algorithm is robust to

changes in expression and lighting. In Figure 3.2, the flow w is calculated from

I1 to I2, then the pixels from I2 are warped backwards along w to generate Iw2

which corresponds to I1. We see that in 3.2(d), the top lip and nose from I2 has

been matched very accurately to the location of the top lip in I1, and the top

of the face has been deformed slightly to align with I1. Below the top lip, the

regularization became more important than pixel intensity matching so the rest of

the mouth remained smooth, rather than having the discontinuous flow that would

be required to match both closed sets of lips in I2 to the open lips in I1. We note

that generating flows and warped images is not the goal of our algorithm. We are

searching for distance values between image pairs, and we accept some imperfect

correspondences when this preserves smoothness. It will be seen in Section 3.6 that

the smooth correspondences we achieve from our calculations are sufficient to serve

as the basis for an accurate identification algorithm. In Figure 3.2(h), the algorithm

has accurately detected that although there has been a change in lighting in the
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(a) I1 (b) I2 (c) w (d) Iw2

(e) I1 (f) I2 (g) w (h) Iw2

Figure 3.2: Results from our proposed flow calculation. (a)-(d) The algorithm is

robust to large deformations, where the top lip has been correctly matched between

images while keeping the overall flow smooth. (e)-(h) The algorithm correctly iden-

tifies that in spite of significant change in lighting there has been no deformation,

and the flow is small.

scene, there is no deformation of the face, and the calculated flow is small, mostly

accounting for imperfect alignment between images.

3.5 Learning Typical Correspondence Patterns

Because all images are known to be of faces, typical correspondences between

faces can be learned via Näıve Bayes classification to improve the recognition re-
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sults. Based on the cost values obtained from the DLI metric, we learn a Gaussian

model at each pixel between faces of the same person across variations in expression

and lighting, and we learn a separate model for correspondences between faces of

different people, also allowing for variations in expression and lighting. The found

correspondence costs between an unknown probe face and a known gallery face can

then be compared to each model.

After the correspondences between images have been calculated, at each pixel

we have a photometric cost in the x- and y-directions, and a regularization cost in

the x- and y-directions (recall that the gradient and the flow w both have x- and y-

components),

Eb(w) =
1

2

∑
i,j

‖∇(Iw2 − I1)‖2

R2

‖∇I1‖2
R2

+ ε2

=
1

2

∑
i,j

(
Ex
bij

)2

+
(
Ey
bij

)2

(3.33)

Er(w) =
1

2
〈K−1w, w〉

G
=

1

2
(K−1w)Tw =

1

2

(
K−

1
2w
)2

=
1

2

∑
i,j

(
Ex
rij

)2

+
(
Ey
rij

)2

(3.34)

The cost vector for an image pair correspondence at each pixel (i, j) is ~Eij =

[Ex
bij
Ey
bij
Ex
rij
Ey
rij

], and the total cost (3.7) at each pixel can be rewritten as

EDLI(w)ij = (Ex
bij

)2 + (Ey
bij

)2 + (Ex
rij

)2 + (Ey
rij

)2. (3.35)

We can use Maximum Likelihood estimation to learn the typical Gaussian

distribution for the flow costs between same person image pairs at each pixel. Given
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training data of many same person image pairs, we calculate the optimal pixel

correspondences between each pair using Algorithm 1. For each pixel, a Gaussian

is fit through the 4D cost vectors found for that location. The probability that two

new images both come from the same person can then be calculated at each pixel.

Assuming pixel independence, we multiply the probabilities over all pixels in

an image for the final probability value. We compute the probability Psame that

two images are from the same person, and probability Pdiff that two images are

not from the same person, repeating the above process using training data from

different person image pairs. The ratio Psame/Pdiff is used as the final similarity

metric between pairs of face images, as this is a more discriminatory metric than

Psame alone. In practice we calculate the log likelihood ratio. For a new image pair

I1 and I2, a new set of cost values ~Enew is calculated where each pixel location is as

in (3.35). The final similarity value for this image pairing is then

S(I1, I2) =
Psame( ~E

new(w))

Pdiff( ~Enew(w))
. (3.36)

We write this similarity function in terms of the image pair, while in the original

DLI energy function (3.7) the cost was written in terms of the flow between the two

images.

3.6 Experiments

Experiments are performed on the subset of the AR Face Database [62] deal-

ing with expression and lighting; see Figure 2.3. There are seven images of each

individual: a neutral face, three variations in expression (smile, frown, scream), and
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three variations in lighting (from the left, from the right, from both sides). The

standard 100 person aligned and cropped faces are used, consisting of 50 males and

50 females, several of whom are wearing glasses or have facial hair. We resize each

image to be 83 × 59 pixels, as images of this size return the most accurate results

with our algorithm. Similarly resized images have been used successfully in many

other algorithms [43, 90, 91]. Our algorithm is fully automatic, so no other input is

required.

The neutral faces of all individual are taken to be the gallery, and the other

six images of each person are compared to each gallery image separately. We found

that warping the neutral images to the non-neutral images is more stable, and so the

gallery images take the place of I2 in our algorithm, and the neutral faces are warped

backwards along the calculated flows to generate the Iw2 . Nearest neighbor matching

is applied, so that the neutral image that results in the lowest correspondence cost

for an unknown non-neutral image defines the identity of the unknown image.

Results are presented from the direct output of the optimization scheme min-

imizing (3.7) in the first row of Table 3.1. To use the probabilistic model from

Section 3.5 to maximize (3.36), half the dataset is used as training data, where the

same number of different person image pairs are used as available same person im-

age pairs (6× 50 = 300), with different person image pairs chosen randomly, given

that each type of variation is equally represented. The other half of the data is

used for testing. The dataset is divided in half randomly five times, and the average

accuracy of the five trials is presented in the second row of Table 3.1. The same

testing galleries are used for both the direct and learned methods. The results of
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Cost Function Expression Lighting Overall

Direct 82.0% 96.0% 89.0%

After Learning 89.6% 98.9% 94.3%

Smile gallery Direct 77.7% 84.8% 81.3%

Smile gallery After Learning 86.8% 91.2% 89.0%

Borders removed Direct 82.0% 96.0% 89.0%

Borders removed After Learning 85.1% 96.4% 90.7%

Table 3.1: Identification Accuracy found when directly minimizing equation (3.7),

and after applying the probabilistic model from equation (3.36). Rows 1-2: for a

gallery of neutral faces. Row 3-4: for a gallery of smile faces. Row 5-6: when 10%

of the border pixels have been removed from each edge for a gallery of neutral faces.

our algorithm are broken down for each expression and lighting variation in Table

3.2. The lowest observed accuracy is on the challenging “scream” case, where our

results are 30% higher than recently reported results [74, 97].

We note that after minimizing the cost function without applying the prob-

abilistic model, recognition accuracy across expression decreases as the image size

decreases, while accuracy across lighting increases as the image size decreases; see

Table 3.3. This effect is observed less strongly after probabilistic learning has been

applied; see Table 3.4. We choose to perform all further tests on images of dimension

83× 59 pixels.
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Variation Accuracy Variation Accuracy

Smile 97.6% Left light 98.8%

Frown 91.6% Right light 99.6%

Scream 79.6% Both lights 98.4%

Table 3.2: Identification Accuracy broken down by variation for a gallery of neutral

faces.

Image Size Expression Lighting Overall

165× 119 89.3% 91.3% 90.3%

117× 85 85.5% 94.0% 89.7%

83× 59 82.0% 96.0% 89.0%

59× 43 80.0% 97.3% 88.7%

Table 3.3: Identification Accuracy found when directly minimizing equation (3.7)

for a gallery of neutral faces.

To test the gains in robustness coming from our new lighting-insensitive pho-

tometric energy norm (3.5), we ran our optimization scheme replacing Eb in (3.7)

with the L2 warped image difference metric from (3.2). Results are presented in

the first row of Table 3.5. It is seen that this direct image differencing breaks down

when lighting variation is considered, and the new metric presented in this chapter

is more accurate in all cases.

To test that our algorithm is robust when both lighting and expression are
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Image Size Expression Lighting Overall

165× 119 89.3% 92.7% 91.0%

117× 85 90.3% 97.6% 93.9%

83× 59 89.6% 98.9% 94.3%

59× 43 80.0% 97.3% 88.7%

Table 3.4: Identification Accuracy found after applying the probabilistic model from

equation (3.36) for a gallery of neutral faces.

varied at once, we use the smile faces as our gallery, and repeat the above experiment,

so that all the lighting variation images are being warped from a neutral face with

harsh lighting to a smiling face with ambient lighting. See Table 3.1.

The recognition accuracy of many algorithms is directly related to the align-

ment of the outline of the head and neck. To test that we are capturing true face

information and not simply capturing the head and neck outlines, we remove 10%

of the pixels on each edge of the image after the flow has been calculated, and deter-

mine the matching cost only from the remaining pixels; see Figure 3.3. From Table

3.1 we see that very little accuracy is lost. As a comparison, we consider the simple

Gradient Direction method, which has been found to be one of the most robust

methods against changes in lighting [35]. This method determines the direction of

the image gradient at each pixel, and measures the distance between images as the

sum of the angles between their gradient directions at each pixel coordinate. The

Gradient Direction accuracy decreases by 7% in this case.
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Method Expression Lighting Overall

Proposed Framework

with image differencing 84.0% 8.7% 46.3%

Significant Jet Point [97] 80.8% 91.7% 86.3%

Binary Edge Feature and MI [74] 78.5% 97.0% 87.8%

Gradient Direction [35] 86.0% 96.0% 91.0%

Elastic Shape-Texture Matching [90] 98.3%* 97.2% 97.8%*

Elastic Local Reconstruction [91] 99.2%* 98.6% 98.9%*

Proposed Method 89.6% 98.9% 94.3%

Pixel Level Decisions [43] 99.0% 97.0% 98.0%

Table 3.5: Comparison with other methods that address both lighting and expression

variation on the AR Face Database using a gallery of neutral expression and lighting.

*The challenging “scream” case is not included in these expression tests, so these

results are not directly comparable.

When compared to other methods in the literature, the method proposed

here is found to be very competitive; see Table 3.5. The AR Face Database is

a tightly controlled and therefore relatively simple dataset. With a robust error

function incorporated into our algorithm to limit the effect of outliers, we expect

that our algorithm will be able to handle much less controlled datasets. Unlike other

algorithms [43], our method does not rely heavily on input image alignment, as we
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Figure 3.3: 10% of the border pixels have been removed from each edge to test that

the cost function is capturing face information and not just head alignment.

calculate dense correspondences based on global considerations. We foresee many

ways to extend the unified framework presented in this paper to incorporate more

robustness, to be able to handle greater variations that cause other algorithms to

fail. Nothing in our algorithm is specific to faces, the method can be applied to

any class of images with deformations and lighting variation that exhibit a standard

structure.

3.7 Conclusion

Finding reliable image metrics is a fundamental problem in Computer Vision.

We have presented an algorithm to perform recognition tasks in the presence of

deformation and lighting variations in well-structured images. Our primary contri-

butions are the introduction of a metric that handles lighting variation in a new

way, and a method to optimize over this metric. The new lighting-insensitive metric

is based on the effect of lighting in 3D scenes. The optimization scheme makes use

of smooth Sobolev gradients to efficiently optimize over a flow field that determines

dense correspondences between potentially deformed images taken under very dif-
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ferent conditions. The mathematics inspiring this work is rigorously motivated. We

have validated the efficacy of our metric and optimization scheme by applying them

to the problem of expression and lighting variant face recognition. Typical corre-

spondence cost patterns from our metric were learned between face image pairs and

a Näıve Bayes classifier was applied to improve recognition accuracy. Our very gen-

eral algorithm is seen to be competitive with the current state-of-the-art on the AR

Face Database, and it lays the groundwork for many possible extensions to handle

significantly more challenging datasets.
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Chapter 4

A Fast Illumination and Deformation Insensitive Image Comparison

Algorithm Using Wavelet-Based Geodesics

The work from this chapter will be published in the proceedings of the Euro-

pean Conference on Computer Vision (ECCV) in October 2012, [45].

4.1 Introduction

In this chapter we present a fast image comparison algorithm for handling

variations in illumination and moderate amounts of deformation using an efficient

geodesic framework. As the geodesic is the shortest path between two images on

a manifold, it is a natural choice to use the length of the geodesic to determine

the image similarity. Distances on the manifold are defined by a metric that is

insensitive to changes in scene lighting. This metric is described in the wavelet

domain where it is able to handle moderate amounts of deformation, and allows us

to derive an algorithm where the complete analytic cost calculation requires only

O(n) table lookups, for n the number of pixels in one image, less than 3ms per

image comparison. We demonstrate the similarity between our method and the

illumination insensitivity achieved by the Gradient Direction. Strong results are

presented on the AR Face Database.

Considering images as points on a high dimensional image manifold, defining a
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metric to give local structure to the manifold allows paths to be calculated between

images along the manifold; see Fig. 1.1. Computer Vision literature frequently

uses geodesics in a Manifold Learning framework, where many given images are

assumed to lie on a manifold and paths are defined by edges through sets of known

images. In this work, we are given only two images, and we consider the geometry

of the manifold, as induced by the chosen metric, to calculate the length of the path

between them. It is natural to use the length of the geodesic, or locally shortest

path, to define the similarity between two images, and geodesics provide significant

information about the ways in which images differ. Points along a geodesic curve

are images that have morphed part way from the first image to the second, and

changes such as lighting and deformations can be introduced gradually through time.

Being able to construct and manipulate geodesics has many applications, including

accurate image interpolation [80], the ability to extract nonlinear statistics from a

set of images on a manifold [81], and image registration [7]. In this work we aim to

measure geodesic lengths on an image manifold, and provide a framework that can

then be extended for further applications.

Due to their high dimensionality, calculating geodesic distances can be a very

expensive task directly, but we show that by working in the wavelet domain with a

well-chosen metric, we can solve this problem very efficiently. To define an appropri-

ate manifold of images, we will use a metric that is insensitive to changes in lighting

and moderate amounts of deformation. The metric depends on image gradients, as

gradients are less sensitive to changes in lighting than are direct pixel intensities.

We will achieve results similar to those from the illumination-insensitive Gradient
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Direction, but here we also have a meaningful geodesic in addition to a simple differ-

ence value. We will show that our lighting cost is insensitive to moderate amounts

of deformation when accumulated over several scales.

The primary contributions of this chapter are threefold: 1) a method using

geodesics to calculate an illumination-insensitive image comparison cost similar to

the Gradient Direction, but useful for applications where manipulating geodesics

is required; 2) the insight that local dependencies can be removed by using an

appropriate wavelet domain to express an image matching cost function based on

gradient terms, allowing the cost computation to be separated into independent

problems at every point location in wavelet space; and 3) a very fast calculation of

this image comparison cost.

4.2 Geodesics for Object Identification

Identifying objects in pairs of images is made challenging by changes in pose,

lighting, deformations, and occlusions. If these changes could be introduced grad-

ually over the course of several images, they would be much easier to handle. If

we consider the manifold of images of a single class of object, where every point

on the manifold is some instance of that object, then paths through the manifold

connecting two images would consist of a continuum of images morphing from the

first image to the second, like a video playing over time. The similarity of two in-

stances of an object could then be defined by the length of the geodesic connecting

them on the manifold, where shorter paths imply more similar objects; see Fig. 1.1.
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Being able to compute and manipulate geodesics has many benefits. We present a

framework for calculating the geodesic distance on a specific image manifold that

we define, and our method is easily integrable to a wide variety of applications.

Given a manifold of M × N -dimensional images, we define a metric on this

manifold so that it has a quantifiable structure, making it a Riemannian manifold

[29]. The metric defines how costly it is to take an infinitesimal step in any given

direction from any given point, and can be thought of as an M × N -dimensional

topographical map, where walking up a hill in one direction costs more than walking

downwards in a different direction. On the Euclidean plane, the metric is d(p1, p2) =

‖p2 − p1‖2, but a metric can be defined in many ways as long as it is locally linear

and a true metric: that it is always positive except at p1 = p2 where it is zero, that

it is symmetric, and that it satisfies the triangle inequality. The metric chosen to

define the manifold can be constructed to heavily penalize certain types of image

variations, while allowing other variations to have low costs. For example, we would

like an image metric that allows scene lighting to change at little cost, while object

instance changes should come with a very high cost.

The length L of a path I(t) from t = 0 to t = 1 on a manifold is defined, for

any given metric ‖ · ‖, to be

L(I(0), I(1)) =

∫ 1

0

∥∥∥∥dIdt
∥∥∥∥ dt, (4.1)

which a reader might be more familiar with in 2D where x(t) and y(t) are the x-
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and y-components of I(t):

L(I(0), I(1)) =

∫ 1

0

∣∣∣∣dIdt
∣∣∣∣ dt (4.2)

= lim
∆→0+

∫ 1−∆

0

∣∣∣∣I(t+ ∆)− I(t)

∆

∣∣∣∣ dt (4.3)

= lim
∆→0+

∫ 1−∆

0

√(
x(t+ ∆)− x(t)

∆

)2

+

(
y(t+ ∆)− y(t)

∆

)2

dt (4.4)

=

∫ 1

0

√(
dx

dt

)2

+

(
dy

dt

)2

dt. (4.5)

In order to calculate the geodesic path connecting I(0) and I(1), we must

find the minimum cost path I(t) along the manifold. This becomes an optimization

problem, where we want to solve Igeod(t) = arg minI(t) L(I(0), I(1)). Geometrically,

a geodesic is a curve whose tangent vectors dI
dt

have constant length [29]. It can be

shown that the length of the geodesic Igeod(t) is also equal to

Lgeod(I(0), I(1)) = min
I(t)

√
2E(I(t)), (4.6)

a function of the energy E of the curve [93], where energy is defined as

E(I(t)) =
1

2

∫ 1

0

∥∥∥∥dIdt
∥∥∥∥2

dt, (4.7)

which is familiar from classical mechanics where kinetic energy is 1
2
mv2. The

Cauchy-Schwartz inequality says that 2E ≥ L2, and for any path at constant speed

we have 2E = L2. The relation (4.6) can be understood intuitively because the tan-

gent vectors all have constant length c, and so if
∫ 1

0
‖c‖dt is minimal, then 1

2

∫ 1

0
‖c‖2dt

must also be minimal, as squaring is a monotonic function. Therefore,

Igeod(t) = arg min
I(t)

∫ 1

0

∥∥∥∥dIdt
∥∥∥∥ dt = arg min

I(t)

1

2

∫ 1

0

∥∥∥∥dIdt
∥∥∥∥2

dt. (4.8)
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We will choose an appropriate energy function and use the relation from (4.6)

to help us calculate geodesic distances on the image manifold.

The metric defining the manifold on which the geodesics live can be adjusted

for various applications, making this an elegant framework to handle an often messy

problem, allowing images to update gradually and continuously through time. In

the next sections we will discuss the metric and optimization schemes chosen to

efficiently solve this problem.

4.3 A Lighting-Insensitive Metric

The pixel-based metric proposed in Chapter 3 was designed to be insensitive to

changes in scene illumination, which we combined with a regularization term to han-

dle deformations in an Optical Flow-like framework, calling the combined method

the Deformation and Lighting Insensitive (DLI) metric. The lighting-insensitive (LI)

term relating two images I1 and I2 was presented as

ELI(I1, I2) =
1

2

∑
x,y

‖∇δI(x, y)‖2

‖∇I(x, y)‖2 + ε2
, (4.9)

where ∇δI and ∇I are defined in terms of I1 and a second image Î2 that is I2

warped to match I1 as closely as possible under certain constraints, so δI = Î2 − I1

and ∇I = ∇I1. The small constant ε is of the order of the noise in the image, and

ensures that the denominator is never zero.

Using image gradients instead of intensities directly is known to be less sen-

sitive to changes in lighting, for example from [55]. The Gradient Direction is a

cost function commonly used when insensitivity to illumination change is desired.
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The direction of the image gradient θ = tan−1
(
Iy
Ix

)
is calculated at each pixel, then

used in a sum-of-squared-differences or L1-norm image comparison, defining a cost

between a given pair of images. This measure is invariant to adding a constant

value to the image, or multiplying the image by a scalar, desirable properties for

being insensitive to changes in scene illumination. However, it can be argued that

a small change in illumination should be penalized less harshly than a large change

in illumination.

The metric ELI has similar properties to the Gradient Direction, but is able

to respond to different gradient relations appropriately, scaling the gradient of the

image change δI by the norm of the image gradient. Changing from a small to a

medium gradient norm will be penalized more severely than changing from a medium

to a large gradient norm. Comparing two smooth image regions should have a low

cost, while comparing a smooth region to a jagged region should have a high cost.

The image gradient is small at pixels that correspond to smooth regions of an object,

and although a change in scene lighting will result in different pixel intensities, the

relative intensities of the pixels will remain similar, and the gradient will remain

small, so both the numerator and the denominator will be small, resulting in a low

matching cost, and the desired property holds. In an image region where there is

a geometric boundary, such as at the edge of a building, a change in scene lighting

could affect the distinct surfaces in very different ways, but as the gradient is likely

to be large across this boundary, matching a larger ∇δI is permissible at a lower

cost as it will be weighted by the image gradient in the denominator. In an image
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region where there is an albedo change but little geometric change, for example a

colored stripe on a white wall, the gradient across this boundary may be large, but

as the scene lighting changes, ∇δI will scale with ∇I, so as long as the pixels being

compared correspond to the same points in the scene, the matching cost will remain

low.

To understand the difference in behavior between the Gradient Direction and

our new cost ELI mfld, we provide a simple toy example Fig. 4.1, which could rep-

resent a series of images captured as a lighting source moves from one side of a

building to another across a corner. Costs are calculated from the leftmost image

in Fig. 4.1(a) to all images in the sequence, and these costs are presented in Fig.

4.1(b). As the change in intensity gets larger, the cost of ELI mfld steadily increases,

and when the order of the intensity magnitudes reverses (from image 3 to image 5),

this causes a jump in the costs. With Gradient Direction (mod π), the cases where

two image regions have the same intensity (images 4 and 7) cause the comparison

cost value to blow up, while otherwise the direction of the gradients and hence the

costs are not discriminative.

We will use this metric to define a manifold that is insensitive to changes in

illumination. Along any curve I(t) (a continuum of images) on the manifold, for

small step δt > 0, δI(t) = I(t + δt) − I(t). The relation between two images from

(4.9) defines a Riemannian structure on images using the infinitesimal norm

‖δI‖2
LI =

1

2

∑
x,y

‖∇δI(x, y)‖2

‖∇I(x, y)‖2 + ε2
. (4.10)

Using this term in the energy function from (4.7), the energy of a curve I(t) on this
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(a) Image sequence.

(b) Image matching costs.

Figure 4.1: (a) Image sequence, where each image is compared to image 1, the

leftmost image. (b) Gradient Direction and ELI mfld costs for each image pair in the

image sequence.

manifold is

ELI mfld(I(t)) = lim
δt→0+

1

2

∫ 1−δt

0

‖δI‖2
LI

(δt)2
dt. (4.11)

We search for geodesics on this manifold in order to determine the distance

Lgeod(I(0), I(1)) between any given pair of input images I(0) and I(1). To calculate

the geodesic from (4.8) we must therefore solve

Igeod(t) = arg min
I(t)

lim
δt→0+

1

2

∫ 1−δt

0

∑
x,y

‖∇δI(x, y, t)‖2

‖∇I(x, y, t)‖2 + ε2
1

(δt)2
dt (4.12)

for fixed I(0) and I(1).
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4.3.1 Behavior of the Metric

In this section we will discuss the behavior of the geodesics defined by this

lighting-insensitive metric at a single point location (x, y). When the image gradient

is near zero, the metric is dominated by the 1
ε2

term, and the cost scales nearly

linearly with the change in the gradient.

In regions where the image gradients are large, the behavior is more expo-

nential. This can be seen analytically without loss of generality if we consider the

case where the gradient is zero in the y dimension in both images, so that there

is no change in gradient direction and ∇I = Ix. For clarity let ε2 = 0, and take

I ′ = limδt→0+
δI
δt

. This reduces (4.12) to

arg min
I(t)

1

2

∫ 1

0

(
I ′x
Ix

)2

dt, (4.13)

which can be solved using the Euler-Lagrange equation [26], a technique that con-

verts a functional to be minimized into a differential equation describing the mini-

mizing function. Specifically, given a functional J of the form

J(f) = min
f(t)

∫ 1

0

F (t, f(t), f ′(t))dt, (4.14)

the function f(t) that minimizes J(f) is described by the equation ∂F
∂f
− d

dt
∂F
∂f ′

= 0.

Applying the Euler-Lagrange equation to (4.13), the resulting differential equation
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is simplified to

−2(I ′x)
2

I3
x

− 2I ′′xI
2
x − 4Ix(I

′
x)

2

I4
x

= 0 (4.15)

2

I3
x

(
−I ′′xIx + (I ′x)

2
)

= 0 (4.16)

=⇒ (I ′x)
2 − IxI ′′x = 0. (4.17)

It can be shown that Ix(t) = cert satisfies this equation for c, r ∈ R, and any

set of boundary conditions I(0) and I(1) will determine the specific values of these

variables. We therefore see that when the value of ε is small with respect to the

magnitudes of ∇δI and ∇I, the gradient of I behaves like an exponential, meaning

that I changes exponentially with time. So the cost function we seek to minimize is

near linear when the image gradients are near zero, and near exponential when the

image gradients are larger, which penalizes scene lighting variation as desired.

4.3.2 Disadvantages of Direct Optimization

The most straightforward way to minimize a function is to use a gradient de-

scent scheme, and the function to be minimized in (4.12) does have a well-defined

gradient at all points. However, for input images of size M ×N , the geodesic path

I(t) has dimension M×N×T , where T is the number of time steps used to discretize

the geodesic. The gradient descent scheme easily gets trapped in local minima for

such large dimensional problems, no matter what step size update method is used.

Further, the cost contribution from each pixel is determined by the distribution of

pixel values in a neighborhood around that pixel, as gradients are fundamentally

defined as change over a neighborhood, whether they are calculated using a finite
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difference filter of small support, or a smoothed gradient filter with broader sup-

port. So the definition of the gradient at each point depends on the values of many

neighboring points, a cluttered and slow calculation. We avoid these computations

by moving the problem into the wavelet domain, where we will show that it can be

expressed as M ×N distinct 1D problems that are straightforward to solve.

4.4 Optimization in the Wavelet Domain

We show that moving the norm ELI mfld into the wavelet domain results in a

function that can be minimized over each independent variable separately, thereby

vastly simplifying the minimization calculations and resulting in a very fast compu-

tation. We will also find that this representation provides insensitivity to moderate

amounts of deformation.

4.4.1 Background on Wavelets

For our purposes, wavelets are a set of orthonormal functions that allow local

analysis of a function according to scale; for details see [59]. A family of wavelet

basis functions is constructed from a single function ψ(t) that is zero everywhere

except in a local region of finite support. The family of wavelets ψs,b takes the

original wavelet function ψ, scales it by s and translates it by b according to the

relation

ψs,b(t) =
1√
2s
ψ

(
t− 2sb

2s

)
, (4.18)

where s, b ∈ Z. In this work we will be considering the 2D discrete wavelet transform
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(DWT), which is defined by the wavelet family ψs,b(t) and by a scaling function

φs,b(t) which is a low pass filter that basically downsamples its input by a factor

of two. At every scale the wavelet transform has three outputs, defined in the

horizontal, vertical and diagonal directions, and a downsampled version of the input

that is then processed at the next scale. At one scale the outputs are defined as

H(x, y) = ψ(x)φ(y) (4.19)

V (x, y) = φ(x)ψ(y) (4.20)

D(x, y) = ψ(x)ψ(y), (4.21)

see Fig. 4.2(a). The horizontal and vertical components are each downsampled using

φ in one dimension, and transformed by the wavelet ψ in the other dimension. A

function I can be rewritten in terms of its orthogonal projection onto wavelet basis

functions, where the coefficients of each basis element ψs,b are defined by 〈I, ψs,b〉,

and the function as a whole can be expressed as

I =
∑
s

∑
b

〈I, ψs,b〉ψs,b. (4.22)

The wavelet transform of an image at the lowest scale (s = 1) returns a

convolution of the image with the appropriate wavelet functions ψ1,b(t) in each of

the three directions, and a convolution with the scaling function which results in an

image approximately equivalent to the input image but downsampled by a factor of

two in each dimension. For the next scale (s = 2), the image that was convolved

with the scaling function is then convolved with the high pass directional wavelets

in each of the three directions, and again with the scaling function to produce a
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(a) (b) (c)

Figure 4.2: (a) 2D Haar wavelet decomposition to three scales, (b) 1D Haar wavelet,

(c) 1D biorthogonal spline wavelet.

new approximate image downsampled by another factor of two in each dimension.

This process can be repeated until the size of the low pass output is as small as the

support of the wavelet function. An example of the output of the DWT is seen in

Fig. 4.2(a).

Wavelet functions ψ can be constructed in a wide variety of forms, but for our

purposes we consider only functions that have the same general form as a derivative

filter. The 1D Haar wavelet at one scale is exactly a simple finite difference filter,

see Fig. 4.2(b), and so filtering with a Haar wavelet is equivalent to downsampling

by two and filtering with a finite difference filter in each dimension, i.e. extracting

the gradient at every other pixel. The critical observation here is that each term

of this wavelet transform is independent. Wavelet basis functions can be chosen

to be orthogonal, and in this case changing the value of the wavelet coefficient at

one location at one scale affects no other coefficients at any scale, for its support

of two adjacent points at the next coarsest scale is downsampled by two, so these
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points influence no other coefficient. This allows us to define gradients in terms of

independent wavelet coefficients. If we filter with a smoother wavelet of a similar

gradient-like shape, such as the biorthogonal spline wavelet, see Fig. 4.2(c), this

can be considered to be filtering with a smoothed gradient filter, which results in

comparable wavelet decompositions but has desirable continuity properties. In this

work we will use the family of biorthogonal spline wavelets (with orders nr = 1, nd

= 3).

4.4.2 The Lighting Metric in the Wavelet Domain

We rewrite the function ELI mfld (4.11) in terms of wavelet coefficients. If these

coefficients are defined so that H(m,n) is the horizontal component and V (m,n)

is the vertical component of a 2D gradient-like wavelet calculated via a discrete

wavelet transform, then H ≈ Ix and V ≈ Iy, where each has been downsampled by

a factor of two. Using the L2 norm, ELI can be rewritten approximately as

Ewav(I) =
1

2

∑
m,n

δH2 + δV 2

H2 + V 2 + ε2
, (4.23)

where H and V depend on point locations (m,n), but we leave this out of the

notation for clarity, as (m,n) are fixed inside the sum. The converted cost function

does not make use of the diagonal component of the 2D wavelet decomposition, as

all terms are expressible using only H and V .

In the wavelet domain, each wavelet basis location is now independent of its

neighbors, as the local descriptions of the gradients are handled during the wavelet

filtering, a result of the orthogonality of the wavelets as described in the previous
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Figure 4.3: Algorithm schematic: The discrete wavelet transform (dwt) is applied

to the input images to generate the horizontal and vertical components H and V of

the wavelet decomposition at one scale. At each point pair location in H(0), V (0),

the geodesic curve is calculated to the corresponding point location in H(1), V (1).

These curves are then integrated, and the resulting values from each point pair are

summed for the total image matching cost.

section. A primary contribution of this work is the insight that using the wavelet

domain to express an image matching cost function based on gradients allows the

similarity computation to be separated into independent problems at every point

location in wavelet space. We recall that the terms comprising the cost function in

the wavelet domain are sampled from the original terms at every other pixel. Again

taking H ′ = limδt→0+
δH
δt

and V ′ = limδt→0+
δV
δt

so that the 1
(δt)2

term cancels, the

minimization problem (4.12) can be rewritten as

Igeod(t) =
1

2

∑
m,n

arg min
H(t),V (t)

∫ 1

0

H ′2 + V ′2

H2 + V 2 + ε2
dt. (4.24)

where H and V are curves through time, and each individual point on the curves is

in RM×N . The M×N×T dimensional problem of (4.12) has now been separated into

M × N independent continuous 1D problems to be summed, one for each location
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(m,n) in the wavelet domain. The geodesic path at each point location is defined

by two 1D curves, H(t) and V (t), which are coupled, meaning that their geodesic

paths are co-dependent and are optimized together; see Fig. 4.3. We can calculate

the geodesic path for each point location separately, and then the full geodesic path

of the image as a whole is simply the combination of all these distinct paths. The

starting and ending values H(0), H(1), V (0), V (1) are the coefficients from the

wavelet decompositions of the given images I(0) and I(1), and so this reduces to a

series of boundary value problems.

The minimization problem in (4.24) is a functional of a form that can be easily

converted to a set of differential equations using the Euler-Lagrange equation [26],

as described in Sec. 4.3, which can then be solved numerically. We chose to first

convert the relation into polar coordinates, as this proved to be more stable to solve

numerically. Defining r =
√
H2 + V 2 and θ = tan−1 V

H
, the inner functional to be

minimized becomes

arg min
r(t),θ(t)

∫ 1

0

r′2 + r2θ′2

r2 + ε2
dt. (4.25)

Following the vector form of the Euler-Lagrange equation, the differential equa-

tions that describe the curves r(t) and θ(t) that together minimize the term inside

the sum for a single point location (m,n) are

r′′ = rθ′2 + (rr′2 − r3θ′2)(r2 + ε2)−1,

θ′′ = 2r−1r′θ′(r2(r2 + ε2)− 1). (4.26)

This pair of second order equations can be solved as a system of four first

order equations using any numerical integration scheme, and we chose to use the
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Boundary Value Problem solver from MATLAB. The output is a pair of numerical

1D curves r(t) and θ(t), starting at r(0), θ(0) and ending at r(1), θ(1), that can be

converted back to 1D curves H(t), V (t), and that minimizes the cost from (4.24).

This process is repeated for each wavelet domain point (m,n) separately. We now

have M × N pairs of geodesic curves. A visual schematic of the algorithm can be

seen in Fig. 4.3.

Once all the optimal curves have been found, it remains to integrate along each

of them to calculate the cost contribution from each location, and sum these point

costs for the overall value of the energy of the image matching. These integrations

can be computed numerically, discretizing the curve into T segments and summing

the value of the cost function at each of these segments. Once the total energy is

calculated, we recall the relation from (4.6) and return the square root of twice the

energy value as the true geodesic length.

4.4.3 Limiting Behavior

When ε is reduced to 0, equation (4.25) decouples into two separate problems:

arg min
r(t)

∫ 1

0

r′2

r2
dt and arg min

θ(t)

∫ 1

0

θ′2dt. (4.27)

These equations are optimized by exponential curves in r(t) and linear curves

in θ(t), and when the boundary values are included, the optimal curves are

r(t) = r0e
ln

r1
r0
t

= r0

(
r1

r0

)t
and θ(t) = (θ1 − θ0)t+ θ0. (4.28)
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These functions can be integrated analytically, resulting in a total energy of

E =

(
ln
r1

r0

)2

+ (θ1 − θ0)2 , (4.29)

a value determined entirely by the boundary points, invariant to the path connecting

them. This is observed to be exactly the cost of the Gradient Direction plus a

constant term depending on the ratio of the lengths of the H and V terms in the

two images. So we expect the cost reported here to be very similar to the Gradient

Direction, but more highly penalizing cases where the difference in gradient norms

between the two images is large, while the Gradient Direction is invariant to uniform

scalar changes in intensity magnitude. It is reasonable and often desirable to have

cases where a uniform intensity change is small be penalized less than cases where

the magnitude is large. When the magnitude of r is the same at corresponding

pixels in both images, the cost is exactly that of the Gradient Direction. In this

limiting case when ε = 0 the geodesic path is not meaningful, but for all positive ε

a geodesic path does exist. When the gradient norms are small, we prefer the linear

penalty incurred by the ε term, as discussed in Sec. 4.3.1, so that small amounts of

noise in smooth regions do not bias the measure.

In practice when ε is positive, these properties are consistent, but the geodesic

cost is influenced by its entire path on the manifold. The cost to rotate by an angle

θ when r1 = r2 is essentially constant, regardless of the magnitude of r1. The cost

to go from (r1, θ1) to (r2, θ2) is close to the cost of rotating a constant r by θ2 − θ1

plus the cost of scaling from r1 to r2 without any rotation.
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4.4.4 Deformation Insensitivity

The algorithm presented above provides a way to compare images that is

insensitive to changes in scene lighting conditions. We now claim that this algorithm

can also handle moderate amounts of deformation. We first expand our function to

include several scales of wavelet coefficients instead of just one. The function to be

minimized is now

Igeod(t) =
1

2

∑
m,n

∑
s

arg min
H(t),V (t)

λs

∫ 1

0

H ′2 + V ′2

H2 + V 2 + ε2
dt (4.30)

where s is the scale of the wavelet, larger scales corresponding to coarser levels of

the decomposition. We choose the weighting coefficient on each scale to be λs = 2s

in order to more highly weight the coarser scales, which we justify from its simi-

larity to the Wavelet Earth Mover’s Distance weighting as discussed later in this

section. The coarsest images capture global geometric properties while essentially

ignoring small image deformations, and in general have coefficients that are smaller

in magnitude than those from the smaller scales. This choice of weights was also

observed empirically to provide the most accurate results. Using several scales in-

creases the accuracy of our method, as will be seen in the experiments section below.

This is expected because we can now consider both global image properties from

the coarse scales, and edge details that define specific instances of an object from

the finer scales, and both cases are handled appropriately in the presence of lighting

change. In our experiments we will use the first three scales of the biorthogonal

spline wavelet. The resulting algorithm now involves a separate geodesic curve con-

struction and integration for each scale and location.
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We now argue that simply using wavelets adds some insensitivity to deforma-

tion. The image pixels within the support of each individual wavelet basis function

are handled together during the wavelet transform, so deformations within this re-

gion can be modeled together. A similar observation was made previously when the

Earth Mover’s Distance was explored in the wavelet domain. The Wavelet EMD

[73] approximates the Earth Mover’s Distance in the wavelet domain, and its cost

depends on wavelet coefficients at all scales.

The Earth Mover’s Distance (EMD) algorithm [71] provides a way to compare

two distributions by measuring the distance and quantity of “mass” that must be

moved in order to convert one distribution into the other, where “mass” is thought of

as whatever is populating the bins of a histogram. This similarity measure captures

certain types of deformation, where no particular geometric structure is preserved

or favored, but local changes in mass cost significantly less than global structure

modifications. The Wavelet EMD [73] expresses the Earth Mover’s Distance in the

wavelet domain, converting an algorithm of complexity O(n3 log n) into an O(n)

algorithm without any significant performance difference, where n is the number of

points in an image.

The Wavelet EMD cost depends on wavelet coefficients at all scales. At each

individual scale, it limits the distance individual mass units can move to the span

of the wavelet at that scale. The weighting on the magnitude of each scales’ wavelet

coefficients in the distance calculation is 22s = 4s, similar to the weighting we

incorporated into our multiscaled cost function (4.30), where our base is 2 instead

of 4. When the image gradients are small, our proposed cost function is essentially
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linear, as discussed in the end of Sec. 4.3, meaning that it behaves similarly to the

Wavelet EMD, and we understand how this new metric is able to handle moderate

amounts of deformation, as this is the purpose of the Earth Mover’s Distance. When

the image gradients are larger, the new metric becomes more exponential, which

allows the image comparison to be penalized less heavily when large lighting changes

are present.

We have now described a method to compute geodesic paths between images

by reformulating the manifold’s metric in the wavelet domain. A primary contribu-

tion of this work is the insight that using the wavelet domain to express an image

matching cost function based on gradients allows the similarity computation to be

separated into independent problems at every point location in wavelet space. 1D

geodesic paths directed by the cost function can be analytically computed and nu-

merically integrated at each point, and the sum of these point costs can be summed

for the overall image matching cost, i.e. the length of the geodesic between the

images on the manifold. We will now discuss how these calculations can be further

optimized to create a very computationally efficient algorithm.

4.5 The Faster Algorithm

We will now discuss how to optimize our calculations to create a very compu-

tationally efficient algorithm. For any given pair of starting input values H(0), V (0)

and ending input values H(1), V (1), the geodesic curve connecting them is always

the same, so the cost of this input is always the same. This means that the geodesic
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curves can be calculated and integrated offline, and at run time the only computa-

tion that has to be performed is to look up the value of the integral for the given

(H(0), V (0), H(1), V (1)). To further reduce the amount of space and time required,

at every point we convert the input (H(0), V (0), H(1), V (1)) into polar coordinates,

(r1, r2, θ1, θ2), and then rotate so that θ2 = 0, as these rotated values preserve the

relation between the points and will result in the same output cost. This allows

us to generate a lookup table of integral values that depends on only three values

(r1, r2,∆θ) instead of four.

We discretize the space of r values into 40 bins of exponentially increasing

size in the range [0, 1.5], as this is the range of wavelet coefficient values observed

in practice for images with pixel values in [0, 1], with coarser scales generally con-

sisting of smaller values. We used ε = 0.01 in our experiments. The space of ∆θ

values we discretize into 80 bins of uniform size in the range [0, 2π). The resulting

costs are symmetric about ∆θ = π, so we really only have to store the first half of

these values, and the lookup table to be stored is of dimension 40 × 40 × 40. The

online calculation at each location (m,n) in wavelet space consists of converting

(H(0), V (0), H(1), V (1)) into polar coordinates (r1, r2,∆θ), looking up the corre-

sponding integral value in the table, and adding this value to the overall cost being

calculated.

This calculation is limited principally by the speed at which a given machine

can perform a lookup in a 40×40×40 array, which is in general a very fast operation.

The cost of this calculation is on the order of milliseconds, fast enough to use in

practice when many image comparisons must be computed very quickly. On a 3.16
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GHz machine running MATLAB in serial, this takes on average 1.3× 10−3 seconds

for a pair of images with 5000 pixels each. We emphasize that the lookup table

is application-independent; once it has been generated, which takes 1.5 hours, the

same table can be used for any pair of images from any domain.

An outline of the algorithm used for our experiments is provided in Algorithm

2.

Algorithm 2 Calculating the wavelet-based image matching cost along lighting-

insensitive geodesics.

Input images I1 and I2

Compute wavelet transform of each image for scales s = 1, 2, 3:

H1,s, V1,s ← I1, H2,s, V2,s ← I2

for all scales s = 1, 2, 3 do

for all points locations (m,n) in wavelet image at scale s do

[r1, r2, 0,∆θ]← polar([H1,s(m,n), V1,s(m,n), H2,s(m,n), V2,s(m,n)])

Calculate length of geodesic minimizing (4.25) from [r1, 0] to [r2,∆θ]

or

Look up value in bin containing [r1, r2,∆θ] from pre-generated table

end for

sum values, weight by λs

end for

return final sum is image matching cost
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4.6 Experiments

4.6.1 Face Recognition

One class of object that is regularly presented with large amounts of light-

ing variation and moderate amounts of deformation is the human face. Although

nothing in our algorithm is specific to faces, the limited amount of deformation

present with expression change, along with potentially high variations due to light-

ing change, make them a relevant application of our work. We use a common face

dataset studied for this problem, the subset of the AR Face Database [62] that

contains variation in expression and lighting. We reduce the size of the standard

cropped AR images by a factor of two in each dimension, as face recognition al-

gorithms routinely perform the best on images of this scale, and so the images we

compare are 83× 59 pixels in dimension, and are smoothed slightly before process-

ing. We use a neutral face from each of the 100 people in the dataset as gallery

images, and the three variations in expression and the three variations in lighting

for each person comprise the test set; see Fig. 2.3. The identity of each test image

is determined by the gallery image returning the lowest cost pairing.

The algorithm presented here is a fast method for comparing images in the

presence of lighting change and moderate deformations, and so we compare to other

lighting and deformation insensitive algorithms that do not require training data.

It was shown in [35] that the Gradient Direction method, described around equa-

tion (2.9), consistently performs better than the other standard pixel-based lighting-

insensitive methods (Self-Quotient, luminance map estimation, Eigenphases, Whiten-
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ing), so we compare to Gradient Direction. We also compare to the results of the

Deformation and Lighting Insensitive metric (EDLI) from Chapter 3, and we ex-

pect our calculations to be much faster. Other works that present a cost function

to handle both lighting change and deformations include that of [97], which calcu-

lates image point correspondences using edge maps and Gabor jet information, and

[74] which uses mutual information to combine binary edge features with grayscale

information. We also compare to simple image differencing and to normalized cross-

correlation [52], where the template is a full image, as these methods are frequently

used to compare images when many comparisons must be completed very fast. As

our method is based on an L2 metric, we use the L2 norm on each of these measures

for valid comparison. Results on the AR Face Database are presented in Table 4.1

for both algorithm speed and accuracy.

We see that our method achieves more accurate results than the Gradient

Direction method on the lighting variation images, and significantly more accurate

results on the expression variation images, as expected. This confirms the insen-

sitivity of the method to lighting change, with the added benefit that we are able

to construct geodesic information which allows for meaningful extensions such as

mapping and interpolating large image variations. The accuracy of the method is

also above that of the EDLI work where the lighting metric was first presented, which

also handled deformations explicitly, and our calculations here are 103 times faster

than that work, making our method useful in template matching applications where

the original method was prohibitively slow.

The previous best results on this dataset, as far as the authors are aware, were
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produced by Pixel-Level Decisions in [43], where simple thresholding was applied to

pixel differences of a chosen image property. Standard deviation calculated within

a window around each pixel was the property that provided the best results. The

differences between these standard deviations at every pixel location in each image

were computed, and the total number of pixel differences less than a pre-determined

threshold were counted for the final similarity value. We present these results here

to demonstrate that the surprisingly strong results achieved from this extremely

simple algorithm can be applied to other pixel-based methods, and we use a similar

thresholding step on our results as well. [43] also suggests compensating for local

error by repeating the procedure with the images shifted a few pixels in every di-

rection, but we do not compare these results as they are not relevant to the ideas in

this paper. However, this repeated shifting could be applied to improve the results

of any of the these methods. As the threshold value for our point costs in wavelet

space, we use the cost value that counts the lowest 20% of the point costs across all

images, as this was the value used by [43]. The exact threshold value is not sensi-

tive, and we observed that all values thresholding 9% to 47% of the costs resulted in

overall accuracies within 1% of each other, and the ideal threshhold on this dataset,

if hand-picked, results in an overall accuracy of 98.0%. We see in Table 4.1 that this

simple thresholding extension removes 58.6% of the errors in our method.

The proposed algorithm performs well with variations in lighting, and also

handles moderate amounts of deformation. Many methods perform very poorly on

the scream category of this database, but the multiscaled method presented here

achieved 83.0% accuracy in this case, and 93.0% with thresholding, higher than
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Method Time (sec) Expression Lighting Overall

Image Differencing 3.1× 10−5 83.0% 9.0% 46.0%

Normalized Cross-Correlation [52] 7.2× 10−3 84.0% 59.3% 71.7%

Significant Jet Point [97] – 80.8% 91.7% 86.3%

Binary Edge Feature

and MI [74] – 78.5% 97.0% 87.8%

Gradient Direction [35] 3.8× 10−4 85.0% 95.3% 90.2%

EDLI (Chapter 3) 1.0× 100 89.6% 98.9% 94.3%

Proposed Method 1.3× 10−3 93.7% 96.7% 95.2%

Pixel Level Decisions [43] 5.6× 10−4 98.0% 94.0% 96.0%

Proposed Method thresholded 1.3× 10−3 97.3% 97.0% 97.2%

Table 4.1: Identification results on the AR Face Database. The Time column reports

the MATLAB calculation time of a single image pair comparison in seconds, except

in two cases where time was not reported and we unable to reproduce the authors’

results.
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either Gradient Direction (57.0%) or the EDLI metric (79.6%), which was designed

to handle deformations as described above.

4.6.2 Template Matching

As a proof of concept that our method can be used effectively in template-

matching scenarios where many image comparisons must be made very fast, we

consider the NORB Object Recognition Dataset [50], which consists of images of

50 toys imaged under 6 lighting conditions, 9 elevations, 18 azimuths, and many

backgrounds; see Figure 4.4. We take as our template a 16 × 16 patch from an

image of a single toy (the stegosaurus) with a plain background under good lighting

conditions with an elevation and azimuth of 0 degrees; see Figure 4.4(a) - (b). We

search for the best match of this patch centered at every pixel in the 108×108 pixel

images of the same toy appearing in cluttered scenes; see Figure 4.4(c). We use

all 6 lighting conditions, and to add some “deformation” we include pose variations

with the azimuth at 0, 20 and −20 degrees, keeping the elevation at 0. The dataset

contains two distinct images in each of these settings (the dataset also contains stereo

images, but we only use one of each stereo pair for our purposes), and so we compare

the template patch to 108×108 = 11, 664 positions in each of 6×3×2 = 36 images.

If the center of the best matching location is within 8 pixels of the true location

(as defined by hand), we declare it to be correct. As fast techniques that might be

used for template matching, we compare our proposed method to Normalized Cross

Correlation and the Gradient Direction, and the results are presented in Table 4.2.
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(a) (b)

(c)

Figure 4.4: Images from the NORB Dataset. (a) The full image from which the

template was cropped. (b) The template used. (c) Some images in which the best

match for the template was sought.

We see that in this simple trial, the method presented in this work significantly out-

performs the other two techniques. We also tested other patches from other animal

toys in the NORB dataset, but found that if the patches were not sufficiently smooth,

for example the head of the triceratops, then all three methods performed poorly,

identifying the correct location less than 50% of the time.

The proposed algorithm is seen to produce accurate identification results, and

the computation time required is extremely small. We emphasize that no training

data or learning stage is required for our algorithm.

95



Method Localization Accuracy

Normalized Cross-Correlation [52] 25.0%

Gradient Direction [35] 61.1%

Proposed Method 80.6%

Table 4.2: Template matching results on a subset of the NORB Dataset. If the

center of the region most closely matched to the template is within 8 pixels of the

true location, the location was declared to be correct.

4.7 Conclusion

We have presented a fast algorithm for handling illumination changes and

moderate deformations applicable to any class of images. Geodesic distances were

calculated between pairs of images, as defined on an image manifold given structure

by an illumination-insensitive metric that was based on the change in image gradi-

ents. The metric was calculated in the wavelet domain, where each point location

contributed independently to the overall image comparison cost, allowing geodesic

costs to be computed extremely efficiently using a pre-calculated lookup table. Us-

ing wavelets at multiple scales allowed for insensitivity to moderate deformations in

a manner similar to the Wavelet Earth Mover’s Distance. Strong results were pre-

sented on the AR Face Database, where our algorithm is seen to be both extremely

fast and accurate, and we demonstrated that because this method is so fast, it can

also be applied successfully in situations where Normalized Cross-Correlation is of-

96



ten used, where many image comparisons must be computed in a very short amount

of time. Using geodesics to calculate image comparisons instead of simple pixel

differences allows our method to be incorporated into a wide array of applications

where having information along a morphing path is relevant.
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Chapter 5

Diffeomorphisms For General Image Comparison

In order to correctly handle deformations in images, we must explicitly account

for displacements between regions due to movement, such as the opening of a mouth.

This is in contrast to the algorithm of Chapter 4, where images were assumed to be

aligned and we calculated geodesics through the space of illumination changes. We

would like to solve the image registration problem, which is to determine a dense

correspondence of points between any pair of images, especially across large object

deformations. One interpretation of a dense correspondence is a one-to-one and onto

mapping, which is called a bijection. Being one-to-one and onto is more restrictive

than is sometimes desired to handle real-world scenarios in which occlusions and

previously unseen image regions regularly appear, but there are many situations

in which these restrictions are preferred, especially in medical imaging. This is a

valuable first step towards more general transformations, because it will allow us to

use a diffeomorphic framework, resulting in deformations that are smooth and have

the very powerful property of invertability.

We will search for diffeomorphisms between images on a Riemannian manifold.

In Chapter 4, we considered image manifolds where each point on the manifold was

an image. Here we also study manifolds where each point is a diffeomorphism, and

the origin is the identity diffeomorphism. A Riemannian manifold is a generalized
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differentiable surface where the tangent space at each point on the manifold has an

inner product, so that distances and angles have meaning. The distance between two

points on the manifold is the length of the (shortest) geodesic connecting them, as

defined by a metric. A diffeomorphism is a smooth bijective mapping between points

on manifolds (technically between points on any two manifolds, but in our case all

manifolds are the same manifold), which should be thought of as a deformation

through time; see [28, 93] for a complete description of the mathematics. A good

mental image of a diffeomorphism is a 2D uniform mesh being deformed within the

plane, where no point can cross over any other point because the transformation

is one-to-one and onto, but regions can be stretched and shrunk; for example see

Figure 5.1. Working with full diffeomorphisms is more meaningful than simple

correspondence vector fields as studied in Chapter 3, because with diffeomorphisms,

images can deform gradually through time, and the deformations are guaranteed

to be smooth and invertible. This allows large image changes to be dealt with

more robustly, and in principle changes like occlusions could be introduced slowly

and handled explicitly, although in this thesis we consider only deformations and

lighting changes.

In this chapter we present an initial foray into the application of diffeomor-

phisms to image comparisons. We describe a diffeomorphic framework based on a

body of literature on the topic, and define a way to apply this framework to face im-

ages. We calculate diffeomorphisms and geodesics through diffeomorphisms between

images on a manifold, and compare images deformed by diffeomorphisms. Optimiza-

tion methods and challenges are discussed. We then show how intermediate images
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Figure 5.1: An example of a diffeomorphism between two grids, with two interme-

diate configurations shown (images from [2]).

can be generated along a diffeomorphic path between two known face images of dif-

ferent expressions, and that these generated images are useful for matching to faces

of new expressions. One of the goals of this chapter is to present the diffeomorphic

framework in a manner accessible to a somewhat broader audience than has pre-

viously been a part of the computational diffeomorphism community. The results

presented here are rudimentary, and are meant to demonstrate that diffeomorphisms

are a useful, manageable, and elegant tool for face recognition with many potential

extensions.

5.1 A Diffeomorphic Framework

There is a body of work studying diffeomorphisms between images, often with

applications to medical imaging, including [2, 7], and we will set up a diffeomorphic

framework in a similar manner here. In order to make the image registration problem

well-defined, we need an image-pairing energy cost that is minimized when the

images are in correct correspondence. This energy cost function will have a term

measuring the amount of deformation required to put the images in correspondence,
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and later we will also consider incorporating a term measuring the amount of pixel

similarity achieved after the deformation, with a weighting between the two terms.

Consider an image I0 as a uniform grid of pixels. The image I0 will be deformed

to be put in correspondence with image I1, and we will think of this deformation

as happening through time, so that at time t, t ∈ [0, 1], It is an image in a video

sequence deforming I0 to I1. Let I : Ω→ R be an image in the domain Ω ⊆ R2, and

for a gray scale image we can write that at every location ~x = [x, y] ∈ Ω, I(~x) = c

for some scalar intensity value c. The pixels of image I are defined on a uniform

grid, where pixel i is at location ~xi. To deform the image, the pixels of image I

are displaced by a vector field ~v, where ~v : Ω → R2, so that point i at location ~xi

is displaced by vector ~vi, and the final location of point i after the deformation is

~xi + ~vi.

A full diffeomorphism from t = 0 to t = 1 is defined by a vector field ~v(t) at

each time t that deforms the pixels an infinitesimal amount in the given directions

at each point. The location and corresponding vector of point i at time t are written

respectively as ~xi(t) and ~vi(t). A transformation between two images is written as

φ : Ω→ Ω, and as image I is deformed through time, a path φt through the space of

transformations is traced on the manifold of diffeomorphisms; see Figure 5.2. The

final deformation φ1(I0) deforms image I0 to be in correspondence with I1, and at

any point along the transformation, φt(I0) = It is an image. In other words, ~v(t)

defines the direction of the infinitesimal transformation at any given time t, while

φt defines the full transformation from ~x(0), the initial uniform grid, to ~x(t), the

locations of the grid points at time t, and depends on each of the ~vt. It is interesting
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Figure 5.2: Visualization of the manifold of diffeomorphisms. At t = 0 the diffeo-

morphism φ0 is the identity mapping, and at t = 1 the diffeomorphism φ1 is the

mapping that morphs image I0 to be in correspondence with image I1. At time t,

the diffeomorphic change is in the direction of ~v(t).

to note that φ1 = φ0 +
∫ 1

0
~vt(φt)dt, and that differentiating with respect to time

yields d
dt
φt = ~vt(φt).

In practice, the path φt must be discretized, and therefore at time t ∈ [0, 1],

the vector field ~v(t) consists of finite non-infinitesimal values. If ~v is not sufficiently

smooth and ∆t is not sufficiently small, then there could be instances where the

paths of points from It to It+∆t overlap those of their neighbors, making the map-

ping from It to It+∆t not bijective. However, assuming sufficient smoothness and

sufficiently small ∆t, this mapping is one-to-one, onto, and differentiable, making

the transformation a diffeomorphism.

In order to compute a deformation in this diffeomorphic framework, the vector

fields ~v(t) must be known explicitly at every t. The optimal transformation from I0

to I1, that warps I0 into correspondence with I1, is the one that minimizes a given
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energy function over the vector fields at each time.

To enforce smoothness on the vector fields, the cost function used to define

the image registration penalizes the norm of the vector field by including a ‖~v(t)‖

term to be defined. The energy function may also include a distance function d(·, ·)

that penalizes discrepancy between φ1(I0) and I1. So the energy function to be

minimized is

E(~v) =

∫ 1

0

‖~v(t)‖dt+ λd (φ1(I0), I1) , (5.1)

and ~̂v, the optimal ~v, is calculated as

~̂v = arg min
~v

E(~v), (5.2)

for some definition of the norms, often the L2-norm, and some relative weighting λ.

In order to determine the minimum vector fields ~v, an optimization scheme

must be employed, and it is standard to use a scheme based on Gradient Descent.

An initial ~v(t)0 is chosen, and at each iteration is updated via

~v(t)k+1 = ~v(t)k − ε∇E(~v(t)), (5.3)

for some stepsize ε. This requires the calculation of ∇E(~v(t)), which can in general

be quite complicated, or the use of finite differences [51] or automatic differentiation

[65].

We point out that what is really being calculated here is a geodesic flow: the

sequence of vector fields that result in the minimum energy path between two given

103



images.

5.2 Diffeomorphisms Based on Sparse Correspondences

We consider human faces being deformed by various expressions as an appli-

cation of diffeomorphisms, and we want to define the diffeomorphism problem in

an appropriate manner. When a face deforms, typical actions include the opening

and closing of the mouth and eyes. These actions introduce new regions or remove

existing regions of the face, implying that one-to-many or many-to-one matchings of

pixels between images would be technically correct, for example matching all teeth

pixels from an open mouth to the boundary between two lips on a closed mouth.

However, diffeomorphisms are bijections by definition, and so a mapping that is not

one-to-one and onto is not allowed. We accept this property because the resulting

maps are smooth and invertible, both very desirable properties, and we will address

the potentially disappearing points appropriately.

Diffeomorphisms have been applied to medical imaging in several works, where

regions with structures are assumed to deform but to always be present, but less

work has been applied to faces. Individual face images have been transformed by

diffeomorphisms in studies such as [79, 83], but we are not aware of any cases where

diffeomorphisms have been applied to an entire face database with quantitative

comparison goals. To properly address all the complexities of face deformation, a

robust method to handle regions of the face visible in some images but not others,

such as teeth, and occlusions in general, must be incorporated. However, that is not
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the goal of this thesis. Here we explore the applications of diffeomorphisms to face

recognition, laying a groundwork for further developments.

Rather than try to force points to match regions of the face that might be

absent in some images, we elect to use a diffeomorphism algorithm based on a

sparse set of face feature points. We use points that appear in all face images

(as long as they are sufficiently frontal), and can be automatically detected using

published facial feature point detection algorithms. We use the same two fiducial

point detection algorithms [10, 27] as described in Chapter 2 Section 2.2 to collect

14 points on each face; see Figure 2.5. We then require the diffeomorphisms we

calculate to exactly match these 14 points. The rest of the face image points will

be interpolated using an appropriate spline-based interpolation at every time step,

and we will then also consider penalizing based on how well the pixels match.

We chose to use the method of bounded diffeomorphisms based closely on the

work of Twining et al. [83], which itself is derived from the work of Camion and

Younes [20]. Using thin-plate splines penalized by the bending energy to describe a

warping between two corresponding sets of points was first presented in the seminal

work of Bookstein in [15]. This work is extended to generating diffeomorphic flows

in a body of work including [20, 83]. The goal of these works is to construct dif-

feomorphisms given a sparse set of landmark points and their displacements. The

input to the algorithm is the initial and final positions of N points in 2D space.

The algorithm determines the appropriate path that each point must travel through

time, as penalized by an energy cost function, so that the path of each point is a

geodesic. The algorithm also smoothly interpolates the rest of the plane using thin-
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plate splines to generate a dense diffeomorphism from the starting to the ending

configurations.

The underlying idea behind the diffeomorphism calculations is that the energy

cost Ediffeo of a diffeomorphism is defined by a differential operator, L, and that the

desired configuration defining the diffeomorphism is that of minimum energy. For

the moment we will consider only one time step so that time can be removed from

the equations for simplicity, but the time variable will be added back later. For

point locations ~x and their velocities ~v,

Ediffeo(~v(~x)) =

∫
R2

‖L~v(~x)‖2d~x. (5.4)

L is often taken to be the Laplacian, L = ∇2 =
∑

i

(
∂
∂xi

)2

, but in principle can

be any linear operator, and we will require it to be self-adjoint (that is, 〈Lx, y〉 =

〈x, Ly〉) so that the energy can be expressed as the following

Ediffeo(v) =

∫
R2

‖L~v(~x)‖2d~x =

∫
R2

〈L~v(~x), L~v(~x)〉d~x =

∫
R2

〈~v(~x), L2~v(~x)〉d~x

=

∫
R2

~v(~x) · L2~v(~x)dx. (5.5)

It is natural to use the Laplacian operator to define energy because it has a

meaningful physical interpretation. A configuration with minimum Laplacian energy

corresponds to a situation with minimal second derivatives, and arises for example

in physics when heat or a gas has fully diffused and a system is at equilibrium.

In [20], the full energy cost is defined to be the sum of the diffeomorphism

energy with a second term, which penalizes the difference between the final position
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of the landmark points and their intended corresponding locations. Instead, we use

the energy function defined in [83], where exact matching is imposed, meaning that

the final position of the points is not a free variable, and this second term is zero,

and so Ediffeo is the complete cost to be minimized.

The diffeomorphism is defined through a linear combination of basis functions

that determine the interpolations between all image points, and these basis functions

are chosen to have properties desirable for the given application. The basis functions

for the interpolating spline will be the Green’s function (described below) of the

operator L, and the conditions placed on the spline will therefore determine L,

where one of the conditions is that the spline be expressible as a Green’s function.

Using a Green’s function in this way allows calculations to be performed with the

diffeomorphism.

Given a linear operator L, the Green’s function G(x, s) is defined so that

LG(x, s) = δ(x − s). This function is useful in finding functions u(x) that satisfy

the relation Lu(x) = f(x), for a given L and f(x), via the following derivation:

∫
LG(x, s)f(s)ds =

∫
δ(x− s)f(s) from LG(x, s) = δ(x− s)ds (5.6)

= f(x) from the definition of the δ-function (5.7)

therefore, as Lu(x) = f(x),
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Lu(x) =

∫
LG(x, s)f(s)ds = L

∫
G(x, s)f(s)ds (5.8)

=⇒ u(x) =

∫
G(x, s)f(s)ds, (5.9)

and so an expression for the u(x) that satisfies Lu(x) = f(x) can always be found,

given the Green’s function G(x, s) of L. The Green’s function of the Laplacian is

G(x, s) = 1
|x−s| . The Green’s function of an operator is not necessarily unique, and

can in general be a distribution rather than a proper function; for more details see

[26].

In the diffeomorphism setup, the velocity ~v(~x) is expressed as a linear combi-

nation of the Green’s functions G(x, s) of the operator L2 calculated at each of the

N landmark points, so that

~v(~x) =
N∑
i=1

αiG(~x, ~xi). (5.10)

The Green’s functions are therefore the basis functions defining the diffeomorphism,

and so a Green’s function with desirable geometric properties is chosen, and the

corresponding L2 is accepted as defining the energy. In order to plug the Green’s

function into the energy definition of (5.5), we use the definition L2G(x, s) = δ(x−s)

to obtain an expression for L2~v,

L2~v(~x) = L2

N∑
i=1

αiG(~x, ~xi) =
N∑
i=1

αiL
2G(~x, ~xi) =

N∑
i=1

αiδ(~x− ~xi) (5.11)

and plug this into the equation to arrive at a new expression for Ediffeo that will be

used in calculations:
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Ediffeo(~v) =

∫
R2

~v(~x) · L2~v(~x)d~x

=

∫
R2

~v(~x) ·
N∑
i=1

αiδ(~x− ~xi)d~x

=
N∑
i=1

∫
R2

~v(~x) · αiδ(~x− ~xi)d~x

=
N∑
i=1

~v(~xi) · αi

=
N∑
i=1

(
N∑
j=1

αjG(~xi, ~xj)

)
· αi

=
N∑
i=1

N∑
j=1

〈αi, αj〉G(~xi, ~xj). (5.12)

This final definition of the diffeomorphic energy is the function we will minimize in

order to calculate the desired diffeomorphisms.

In the work of Camion and Younes [20], the Green’s function from the original

Bookstein thin-plate splines, relating to the bending energy, is used: G(x, s) =

−r2 log r2, where r =
√
x2 + s2. Here we will instead use the clamped-plate spline

model presented in [83], because this Green’s function is zero and has zero derivative

on the unit circle. This is an ideal situation for faces, where we can allow a face

within a given circle to deform while keeping the background stationary. We resize

each cropped rectangular face image to be unit square, thereby compressing the face

regions to be more circular. The Green’s function is defined as
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G(~x,~s) = |~x− ~s|2
(

1

2
(A2 − 1)− logA

)
, where (5.13)

A(~x,~s) =

√
|~x|2|~s|2 − 2~x · ~s+ 1

|~x− ~s|
. (5.14)

For any given arrangement of points ~xi, both ~vi and G(~xi, ~xj) can be directly

calculated, and so the αi from equation (5.10) can be computed by solving a system

of linear equations. Bringing back the time variable, we define

~v(~xi(t)) =
~xi(t+ ∆t)− ~xi(t)

∆t
, (5.15)

and G is anN×N matrix with entriesG(~xj(t), ~xi(t)). For any configuration of points

~xi(t), in order solve for the αi(t) at each t we can invert the following relation, which

in discrete time involves solving a system of linear equations

~v(~xj(t)) =
N∑
i=1

αi(t)G(~xj(t), ~xi(t)). (5.16)

Given the ~v(~xi(t)) and the G(~xj(t), ~xi(t)), the energy of any given configuration can

be then calculated from equation (5.12).

In order to find the point configuration resulting in minimum energy, which

defines the diffeomorphism, a gradient descent scheme is used as described above.

For the starting configuration, we linearly interpolate between the N feature points,

so that ~xi(t) = T−t
T−1

~xi(1) + t−1
T−1

~xi(T ) for t = 1, ..., T . Matlab’s standard fminunc()

unconstrained optimization routine is used to automatically estimate the gradient

and use the BFGS method to estimate the Hessian; for details see [68].
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Finite difference calculations can be quite cumbersome, and in order to have

an algorithm that runs efficiently it would be nice to have an analytic expression

of the gradient. The energy equation depends on α terms which are solved via

a system of linear equations depending on v from equation (5.16). For any given

number of landmark points N , it would technically be possible to write down an

explicit derivative across this system, but this expression would depend on every

term many times over, and the number of arithmetic computations required here

is the same order of magnitude as the finite difference itself, while being much

more complicated. A way to get around this problem would be to use automatic

differentiation [65]. With automatic differentiation, the computer keeps track of

which elementary arithmetic operations and functions are executed to calculate a

function, and applies the chain rule (potentially thousands of times) to calculate the

numeric value of the derivative at any given point. This derivative calculation has

the same complexity as the calculation of the original function. However, simple

Matlab implementations of automatic differentiation are not able to handle a system

of linear equations. The use of a more complete C implementation of automatic

differentiation will be considered in the future. For this work we use standard finite

differences, accepting the lack of efficiency for our initial studies. With T = 10 times

steps and N = 14 landmark points, using Matlab on a 3.16 GHz machine computing

serially, our computations take approximately .8 seconds per iteration, and require

roughly 150 iterations per image pair, so to calculate the geodesic diffeomorphism

between one pair of images takes approximately 2 minutes. We note that this is

independent of image size, and depends only on the number of corresponding points
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and time steps.

Figures 5.3 and 5.4 show the output of a diffeomorphism between two face

images for T = 10 time steps. The paths that each of the N points traverse through

time and space are plotted. The points in the first image are on a uniform grid,

and this grid is deformed via the clamped-plate spline diffeomorphic interpolation

in order to correspond to the points in the second image, resulting in the final

deformation presented. We see that while the paths through time of the more

horizontal moving features are near linear, the paths of the edges of the eyes and

the edges of the mouth have converged to a more rounded trajectory. For very small

tolerances and random initial positions, this same minimal configuration is reached,

implying that this is likely to be not just a local but the global path of least energy,

that is, the optimal geodesic.

Because a diffeomorphism is one-to-one and onto, features that do not exist in

one image cannot appear in a diffeomorphism of that image; its existing features can

only be stretched and shrunk. Therefore when matching a face with a closed mouth

to a face with an open mouth, the lip region will stretch, but nothing which was

inside of the mouth can appear. Also, because diffeomorphisms are a mathematical

tool and do not know anything about faces, using only a single point on the bottom

of the lips to represent the opening of a mouth is not enough information to force

the diffeomorphic path to open as a human mouth opens (convexly), and instead it

pulls the lip pixels down concavely like a weight on a string, as in Figure 5.4(d). This

could be fixed by using an outline of points along all structures that potentially open

and close, but this loses the strength of the algorithm based on an extremely sparse
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(a) (b)

(c) (d) (e)

Figure 5.3: The minimal energy diffeomorphism is using 10 time steps. (a) The

geodesic path for each of the 14 input fiducial face points. (b) Close-up on the

geodesic of the furthest left point on the left eye. (c) The original mesh of points

in the first images, (d) the final positions of the points in the diffeomorphism from

neutral to scream, (e) the final positions of the points in the diffeomorphism from

scream to neutral (note only points within the circle are allowed to move).
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(a) (b) (c) (d)

Figure 5.4: (a) Neutral face, (b) scream face, (c) scream face warped backwards

along the diffeomorphism from 5.3(d), (d) neutral face warped backwards along the

diffeomorphism from 5.3(e).

set of points. For the studies performed here, we use this unnatural deformation as

it occurs mathematically.

Our objective is not to generate realistic images, but is instead to show that

the robust mathematical structures of manifolds and diffeomorphisms can be applied

in the domain of real images, producing meaningful ways of measuring deformations

and image similarity.

We note that the calculated geodesics are symmetric, so the optimal path

from image 1 to image 2 is the same optimal path as from image 2 to image 1.

Numerically, the gradient descent scheme can reach slightly different values, but we

observe that in practice as long as a sufficient number of iterations are computed

these numerical errors are negligible.
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5.3 Incorporating the Intensity Cost into the Diffeomorphisms

A robust algorithm would calculate diffeomorphisms whose optimal paths are

based both on geometric deformations and on relative image intensity values. To

the energy function (5.12) we will consider adding a second term as in equation

(5.1), the wavelet-based lighting-insensitive intensity cost described in Chapter 4,

equation (4.30). This energy cost is already based on geodesic paths, and so for a

given pair of intensity values, the intensity values of the entire geodesic path can be

found. We now wish to minimize

Etotal(v) = (1− λ) ∗ Ediffeo(v) + λ ∗ EWlgt(I(v)), (5.17)

where λ is a weighting constant, and I(v) is the set of images generated for a given

path v.

The lighting cost function EWlgt(I(v)) is calculated in wavelet space, and so in

order for the calculations to be more efficient, the entire diffeomorphism calculation

can be performed in wavelet space. Wavelets are local basis functions, and so the

locations of the feature points on a face are still meaningful in wavelet space (resized

to match the appropriate wavelet scale). The new term in the cost function will

calculate the cost between each successive pair of images along the diffeomorphism

through time. The individual geodesic paths of the coupled H and V components

are generated from the initial and final intensity values, and so at time t the values

can be extracted from these curves. The cost comparing times t and t + 1 is the

integral along the coupled curves over this time step, however it is faster to use the
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pre-generated lookup table to determine these incremental costs.

The problem with using a lookup table is that if we want to use finite differences

to calculate the gradient for a gradient descent scheme, values from a lookup table

equate to step functions and are not smooth. If a very small step size is used to

calculate a finite difference, the same bin in the table will be accessed for both

points and the effective gradient will appear to be zero. If a much larger step size

is used, the results are unpredictable and not meaningful. Therefore, the lookup

table cannot be used for gradient calculations. The original energy function 4.30

could be minimized, but this would require solving a boundary value problem for

each pixel pair at each step. Alternately, we can make use of the limiting behavior

of the function, as discussed in Section 4.4.3. We know that the photometric energy

function behaves similarly to the simple sum E =
(

ln r1
r0

)2

+ (θ1 − θ0)2, and as this

function is much more efficient to calculate, it can be used in calculations as a good

approximation.

One possible way to efficiently optimize (5.17) might be to consider an al-

ternating gradient descent optimization scheme, where first steps are taken in the

direction of −∇Ediffeo(v1), then steps are taken in the direction of −∇EWlgt(I(v2)),

then steps are taken towards v1 = v2, as described in [16]. However, these methods

work best when the two separate functions being optimized are truly decoupled, but

here the independent variable of EWlgt is I(v). The full image path I depends on the

point geodesics ~xi(t), which is calculated for all points in space using the relation

from equation (5.16). Therefore, the calculations required to compute EWlgt involve

the calculations from the computation of Ediffeo(v), and the two terms cannot be
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treated as truly distinct.

In absolute terms, the size of the EWlgt(I(v)) values are much smaller than

those of Ediffeo(v), and so the value of λ should be small. However, if λ is taken so

that the two energies are of roughly the same magnitude, then the minimizing path

differs very little from the path used when only Ediffeo(v) is minimized. This is not

true for larger λ, but for much larger λ the computation starts to lose meaning. With

this in mind, we decide that it is reasonable to calculate the optimal diffeomorphic

path based entirely on Ediffeo(v), and consider the geodesics from EWlgt(I(v)) on the

output.

5.4 Diffeomorphism Experiments

The speed at which we are currently able to perform gradient calculations in

Matlab is prohibitively slow for running our algorithm on large datasets that require

tens of thousands of image comparisons. However, if we reduce the number of time

steps computed from 10 to 6 and limit the number of gradient descent steps allowed

per image pair to 50, we were able to compute the approximate geodesics between

the challenging scream case and all neutral images of the AR Face Database. From

the optimal paths xi(t), the full path of each image point can be reconstructed from

the neutral to the scream image and from the scream to the neutral image. From the

point paths from neutral to scream, the pixels from the scream image can be warped

backwards to be put in correspondence with the neutral image, and this new image is

compared with the given neutral image. Similarly the pixels from the neutral image
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Accuracy from each warping direction scream to neutral neutral to scream

image differencing 76% 78%

EWlgt 81% 82%

Table 5.1: Identification results on the challenging scream case of the AR Face

Database, calculating the geodesic diffeomorphism and warping one image along

this path to be put in correspondence with the other for image comparison.

can be warped backwards along the point paths from the scream to neutral; see

Figure 5.4. We compare the resulting image pairs using simple image differencing,

and using our multi-scaled method from Chapter 4, and the identification results

are presented in Table 5.1.

We observe that, not surprisingly, the unnatural deformation of the mathe-

matical diffeomorphisms are not sufficient for handling extreme human expression

variation, and these recognition results are comparable to those presented in Chap-

ter 4 for the scream case. We note that as seen previously in this thesis, warping a

neutral face to a variant face provides better results than warping the variant face

to match the neutral face.

Although we cannot currently calculate the geodesic diffeomorphisms between

all image pairs in the AR Face Database (600 variations × 100 neutral faces =

60, 000 image comparisons), we note that the optimal full image diffeomorphism

is never very far from that generated by the input paths that linearly interpolates

between then input points through time. These input diffeomorphisms are not the
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desired geodesics, but they are still diffeomorphisms with all the desirable properties

of diffeomorphisms, namely smoothness and invertibility. We perform the identifi-

cation task on the full dataset using the paths from our input diffeomorphisms as

we used the geodesic diffeomorphisms the experiment comparing the scream and

neutral faces above, but with T = 10. The results are presented in Table 5.2.

We see that although meaningful identification information is being captured

and the results are good, the identification accuracy achieved here based on the

diffeomorphisms (but no geodesics) is not stronger than previous methods. However,

we point out that the average recognition rate across all expression variations is

higher than the method from Chapter 3 before the learning stage was applied, and

higher than the method from Chapter 4 before the thresholding was applied. This

implies that if further simple data manipulation techniques were applied to this

data, that very strong expression-insensitive recognition rates could be achieved.

5.5 Generating Intermediate Images Along Diffeomorphisms

We would like to generate the intermediate images along the geodesic as one

face morphs to another, and be able to perform computations with these images.

Many algorithms exist from computer graphics to interpolate realistic-looking video

sequences between given images, such as the work of Shechtman et al. [72] which uses

small pieces of the input images to generate smoothly morphing intermediate images,

and that of Mahajan et al. [58] which generates plausible image interpolations by

copying pixel gradients along interpolated paths between images, in a framework
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Accuracy from each warping direction variation to neutral neutral to variation

image differencing smile 99.0% 98.0%

image differencing frown 99.0% 98.0%

image differencing scream 75.0% 78.0%

image differencing ave. expressions 91.0% 91.3%

image differencing left lighting 22.0% 22.0%

image differencing right lighting 19.0% 22.0%

image differencing both lightings 2.0% 2.0%

image differencing ave. lightings 14.3% 15.3%

EWlgt smile 99.0% 99.0%

EWlgt frown 99.0% 99.0%

EWlgt scream 79.0% 82.0%

EWlgt ave. expressions 92.3% 93.3%

EWlgt left lighting 92.0% 92.0%

EWlgt right lighting 93.0% 94.0%

EWlgt both lightings 84.0% 81.0%

EWlgt ave. lightings 89.7% 89.0%

Table 5.2: Identification results on the full AR Face Database using the input dif-

feomorphisms, warping one image along this path to be put in correspondence with

the other for image comparison.
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related to optical flow, and handle occlusions using transition points. Again, our

goal is not to create the most visually pleasing images, but instead to create images

whose similarity can be meaningfully measured using diffeomorphisms.

Face recognition tasks are regularly performed by comparing an unknown im-

age to every element of a set of known images, and using nearest neighbor matching

so the identity of the most similar face is taken to define the identity of the unknown

face. Often, multiple images of each person are known in advance, but each image is

treated separately. Being able to generate the images along a geodesic path between

known images of a person would allow for the comparison of an unknown image to

all images in the space between the known images. For example, if we are given

the image of a person in both neutral and screaming poses, along the path between

them might be an image more similar to that person’s smile than either of the given

images. Being able to generate intermediate images will make it possible to compare

images to the entire convex hull of a local set of known images on the face manifold;

see Figure 5.5. Computing convex hulls on arbitrary manifolds is an open problem

that we do not claim to be solving, as there are many situations where the region

that the convex hull contains is not clear or is the entire surface (for example three

points on a sphere that are not contained in a single hemisphere). However, if face

images of an individual are assumed to be sufficiently close together on a Rieman-

nian image manifold which is sufficiently smooth, then the geodesics connecting the

images are likely to bound a meaningful closed convex region on the manifold.

The diffeomorphism from image 1 to image 2 is defined by the locations of the

N feature points at each of T time steps. With this information, it is possible to
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Figure 5.5: The convex hull of a set of known images of an individual, and the

geodesic from an unknown face to the known convex set.

generate the diffeomorphic path for each point in an image, as we know each ~xi(t)

and αi(t), so we can solve for each ~v(~x(t)) via equation (5.16), where the ~xj(t) are

replaced with the general ~x(t). From the ~v(~x(t)) and the initial conditions ~x(0) and

~x(1), we can generate the positions of each point at each time step, ~x(t), via

~x(t) = ~x(t− 1) + ~v(t− 1), t = 2, ..., T − 1. (5.18)

The boundary condition ~x(T ) = ~x(T −1)+~v(T −1) is enforced because the variable

~v calculated from equation (5.15) is used in equation (5.16).

Knowing the full path of each point in image 1 tells us the corresponding

points in image 2. At each time step, the pixels from image 1 can be positioned at

their locations in space at that time, generating new images. However, when regions
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in image 2 do not appear in image 1, those regions in the intermediate images have

no corresponding pixels. Extrapolation from the known pixels is possible, but it is

better instead to use the pixels from image 2 and warp backwards along the flow

as done previously in this thesis, for example in 5.4(c) and (d), so that each pixel

location is assigned an intensity value. If pixel (i, j) in image 1 corresponds to

pixel (i + vx, j + vy) in image 2, where (vx, vy) are generally not integers, then the

corresponding intensity value is determined via bilinear interpolation from the four

nearest pixels to the corresponding point location in image 2.

In order to determine the intensity values at each point along the geodesic

path between I1(i, j) and I2(i + vx, j + vy), we use the intensity values along the

geodesics generated by the lighting-insensitive metric from Chapter 4. The calcu-

lated geodesics are defined by the horizontal and vertical components of the 2D

wavelet transform, and so the method from Chapter 4 provides the H and V values

at any point along the geodesic. The diagonal components and the approximate im-

age were not used in the calculation, so we must determine their intermediate values

another way. The most obvious way to do this is to simply linearly interpolate the

known values at each end. Linearly interpolating the approximate image somewhat

defeats the purpose of having an algorithm that can explicitly handle deformations,

but since we are using the first three scales of wavelets, the final approximate image

is 6 × 4 or 11 × 8 for input images of size 42 × 30 and 83 × 60 respectively. These

images are so small that most details are lost, and so using linear interpolations of

these images to generate the intermediate images is not unreasonable. In order to

generate the intermediate images, we generate a new lookup table that contains the
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Figure 5.6: Intermediate images for 10 time steps calculated using the horizontal

and vertical wavelet coefficients from Chapter 4, with the diagonal and approximate

coefficients interpolated linearly from the input first and last images.

values of the horizontal and vertical components at each of T = 10 time steps along

each geodesic. Intermediate images along the geodesic path are generated in this

manner, reconstructing the images from the wavelet coefficients at the first three

scales, and the resulting images are show in Figure 5.6.

We see that in the regions of the images that undergo significant deformation,

namely around the mouth, these linearly interpolated approximate and diagonal

coefficients are not sufficient to recreate smooth images. The artifacts seen are not

a property of the geodesic values being taken from a lookup table, as the same

images were observed when the true geodesic paths are calculated at each point, a

significantly slower calculation. The wavelet horizontal and vertical geodesic paths

are quite nonlinear when the starting and ending values are very different, most
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Figure 5.7: Intermediate images for 10 time steps calculated using the horizontal

and vertical wavelet coefficients from Chapter 4, with the diagonal and approxi-

mate coefficients interpolated linearly from the input first and last images when

the corresponding points have ∆θ < π
2
, and where the intensity values are linearly

interpolated for the points with ∆θ > π
2
.

significantly when the θ values in equation (4.25) are very different. These are the

correct meaningful geodesic paths that measure the shortest distance between the

two input images, but unfortunately as they do not depend on the diagonal and

approximate coefficients, they do not provide the value of these coefficients. As a

proof of concept, if the corresponding points with ∆θ larger than π
2

are linearly

interpolated, while the true intensity geodesics are used for the other point pairs,

the image sequence in Figure 5.7 is achieved, showing that it is these large ∆θ cases

that are causing the lack of smoothness between the coefficients in the reconstructed

image.
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As using the wavelet-based intensity geodesics does not create visually pleasing

intermediate images, we will instead interpolate the intensity values linearly along

the image path from image 2 to image 1. In order to generate intermediate images

that use pixel values from both images, we calculate both the diffeomorphism from

image 1 to image 2 and its intermediate images I2(t) based on the pixels from image

2, and also the diffeomorphism from image 2 to image 1 and its intermediate images

I1(t) based on the pixels from image 1. We note that because the diffeomorphism

based on the sparse landmark points is invertible, the diffeomorphic path does not

need to be recalculated in each direction, only the locations of the discrete pixels

from each image after T steps need to be solved separately for each of the two

images. The final intermediate images are determined by a weighted average of

these two sets of images, where the weights are determined linearly according to t:

I(t) =
T − t
T − 1

I1(t) +
t− 1

T − 1
I2(t), t = 1, ..., T. (5.19)

The output of the linearly interpolated intermediate images is seen in Figure 5.8.

The diffeomorphism is calculated only within the highlighted ellipse, as described

above, so points outside this ellipse are purely linearly interpolated between the two

images and are meaningless for this study. These intermediate images are seen to

be reasonably realistic, with the eyes closing and the mouth opening through the

sequence of images.

We can now use these intermediate images in the recognition task. Using

the expression subset of the AR Face Database [61] as before, we take the extreme
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Figure 5.8: Intermediate images for 10 time steps. The first and last images are

input, the rest are generated by the proposed algorithm based on linear interpolation.

The diffeomorphism is calculated only within the highlighted ellipse.

images of scream and neutral for each individual and generate the intermediate

images along the geodesic path connecting them, so that we now have T images of

each individual. We then use all the generated images as the gallery images, and

compare the smile and frown probes to the entire gallery set, assigning identity from

nearest neighbor matching. We compare images using our wavelet-based lighting-

insensitive metric from Chapter 4. As a baseline we compare to the case when the

only images in the gallery are the original neutral and scream examples. The results

of this experiment are presented in Table 5.3.

We see that the identification accuracy for the smile case has improved as

compared to the case where only the neutral and scream images are known, but for

the frown case has remained the same. However, the results on this subset of the
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Accuracy for each probe image Smile Frown

EWlgt with gallery of neutral and scream 99% 98%

EWlgt with gallery of intermediate images 100% 98%

Table 5.3: Identification accuracy using nearest neighbor matching on the expression

variation subset of the AR Face Database, where the neutral and scream faces are

known and the gallery of each person consists of all 10 intermediate images generated

by the proposed algorithm.

AR Face Database were already essentially saturated, and so it is not possible to

say how much our method actually added to the recognition accuracy. Regardless,

it is reasonable to interpret the results by considering that the movement of the face

from neutral to scream raises the outer lips, passing through a position more similar

to smile than either the neutral or the scream cases. However, in a frown the outer

lips move downward, in the opposite direction of the scream. The fact that the

results improved for the smile case, when relevant data is being generated, but not

for the frown, implies that the observed improvement is a result not of simply having

more data, but of having meaningful data, as desired. Unfortunately the expression

subset of the AR Face Database is not a good dataset to use for this experiment, as

the only challenging case is the scream image, and as data from this image must be

used to generate the intermediate images it cannot be used as a probe image in the

experiments.

We therefore consider the Cohn-Kanade AU-Coded Facial Expression Database
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Figure 5.9: One image sequence from the Cohn-Kanade AU-Coded Facial Expression

Database.

[56], which is a dataset very commonly used for testing expression recognition al-

gorithms. The dataset consists of video sequences of people demonstrating extreme

facial expressions, moving from neutral to the peak of the expression in an aver-

age of 28 frames; for example see Figure 5.9. Facial feature points are also known.

This dataset was generated to be used for recognizing expressions, not identities,

and as such it is too easy for the identification task. Using simple image differenc-

ing with the neutral and extreme images of each expression sequence in the entire

database (123 people, 323 sequences) as the gallery, and the intermediate images

as the probes, the identification accuracy is already 99.9%. This dataset will be

used instead to compare our generated images with the true intermediate images

provided, to demonstrate that the intermediate images we generate are meaningful,

and useful for image comparison.

We take the neutral and extreme frame of a sequence, and generate images

between them, then compare all the true intermediate images to the generated

images; see Figure 5.10. There is no expectation that the images at time t in the
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Figure 5.10: Generated intermediate images of one sequence from the Cohn-Kanade

AU-Coded Facial Expression Database, where only the first and last image of the

sequence are provided.

sequence correspond, as humans do not move from one expression to another linearly

through time, but our generated images are meaningful if a true intermediate image

corresponds more closely to one of the generated intermediate images than it does

to the provided extremes. If this is true, then we are able to overcome the often

observed challenge that occurs when an automatic face recognition system declares

that a face of one expression is more similar to a different face of that same expression

than to a face of the same person showing a different expression.

Intermediate images were generated for all 323 expression sequences of the

Cohn-Kanade AU-Coded Facial Expression Database, with T = 10 images in each

sequence, and results are presented in Table 5.4. We see that in the vast majority of

cases, the true intermediate images did match more closely to our generated images

than they did to the known neutral and extreme expressions.

We have shown that given a sparse set of images, we are able to generate

a large number of meaningful intermediate images to make a dataset robust to
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Percentage matching our generated images

Mean 77.5%

Median 80.0%

Table 5.4: The percentage of each expression image sequence from the Cohn-Kanade

AU-Coded Facial Expression Database that matched more closely to our generated

intermediate images than they did to the true extreme images of their respective

sequences.

common errors. In other words, we are able to generate images along the boundary

of a convex hull of known images, as long as they are sufficiently close together on

the manifold that this is meaningful. This allows an unknown image to be compared

not only to known images, but to the set of convex combinations of known images.

This is a very powerful idea and we foresee many potentially useful domain-specific

extensions of these methods.

5.6 Conclusion

We have shown how smooth, invertible deformations can be applied to face

images by using the framework of diffeomorphisms. The diffeomorphic path between

two images was defined by a sparse set of corresponding feature points on each face,

and geodesics between these feature points were calculated by minimizing an appro-

priate cost function. These paths were interpolated so that the path through time
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of every point in each image was defined, resulting in a full image diffeomorphism

between the two images. Neutral faces were deformed based on the diffeomorphic

paths, to be put in correspondence with expression and lighting variant faces, and

face recognition tasks were performed by comparing these images, with promising

results. Intermediate images along the diffeomorphic paths were generated by in-

terpolating pixel values along the paths. Known intermediate images from facial

expression video sequences were compared to the generated intermediate images,

and the true intermediate images were seen to match more closely to the generated

intermediate images than to the extremes of the video sequences, which were the

only input into the diffeomorphism algorithm. Being able to generate intermediate

images between all known images of an individual provides a way for an unknown

image to be compared to the full convex hull of known images of an individual on a

manifold.

The result shown here are preliminary, demonstrating the potential utility of

some of the possible paths that become available when full diffeomorphisms are

generated between pairs of images.
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Chapter 6

Conclusion and Future Work

We have constructed a deformation- and lighting-insensitive metric that as-

signs a cost to a pair of images based on their similarity. The metric is based on the

effect of lighting in 3D scenes, comparing image gradients in a new way. In order

to explicitly model image deformations, establishing point correspondences between

images is essential, and this thesis presented several algorithms for determining

dense point correspondences between pairs of images across changes in shape and

illumination, assigning a cost to each of these pairings. The methods are inspired

by the idea that geodesics and diffeomorphisms on Riemannian image manifolds

can provide a robust and elegant way to model changes in shape and lighting. The

methods of this thesis were applied to face recognition, but nothing about our work

is specific to this domain, and the methods can be applied in any situation where

an object with some amount of structure has been deformed.

We proposed a method for finding correspondences between images based on

our new metric, using smooth Sobolev gradients to efficiently optimize over a corre-

spondence vector field that determined dense correspondences between potentially

deformed images taken under very different conditions. Typical correspondence cost

patterns from our metric were learned between face image pairs, and a Näıve Bayes

classifier was applied to improve recognition accuracy.
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The new local metric was extended in a fast algorithm for calculating geodesic

distances between pairs of images on an image manifold with significant illumination

variation. The metric was calculated in the wavelet domain, where each point

location contributed independently to the overall image comparison cost, allowing

geodesic costs to be computed extremely efficiently by referencing a pre-calculated

lookup table. Using wavelets at multiple scales allowed for insensitivity to moderate

deformations. The speed of this algorithm allowed it to be useful in many real-world

scenarios.

We then showed how smooth, invertible deformations can be modeled using the

framework of diffeomorphisms. The full diffeomorphic path between two images was

constructed from the paths between a sparse set of corresponding feature points in

each image, applying spline interpolation with an appropriate set of basis functions

to define the paths for all other image points. Faces were deformed based on these

diffeomorphic paths to be put in correspondence with other expression-variant faces.

Intermediate images along the diffeomorphic path were generated by interpolating

pixel values, producing images similar to real intermediate face images when they

are known.

Strong results were presented on the expression and lighting variant subset of

the AR Face Database for all algorithms presented in this thesis. Instead of simply

comparing pixels in two images, using geodesics and diffeomorphisms to calculate

image similarities can be incorporated into a wide array of useful applications where

having information along a morphing path between two images is relevant. This

framework allows large image changes to be introduced gradually and handled ex-
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plicitly in a well-defined fashion, and can be applied to calculate image similarities

across large datasets. We discuss some of these extensions below.

6.1 Future Directions

The work presented in this thesis can lead to many further studies. The most

important next step towards making image diffeomorphisms useful for practical ap-

plications is to explicitly and robustly handle occlusions. There are several ways

that this could be attempted, including the addition of robust statistical tools such

as M-estimators, and redefining the diffeomorphisms so that one-to-many and many-

to-one matches are allowed with a certain penalty. Combining the resulting method

with an algorithm that explicitly handles changes in pose, such as [21], should then

provide a very robust general face recognition system. Domains other than face

recognition should be explored with these methods, such as medical imaging and

fine-grained visual categorization including animal and plant sub-species identifica-

tion. The diffeomorphic framework explored here provides an elegant way to handle

any type of image variation by allowing the change to be introduced gradually in a

well-defined manner.

Optimization schemes can always be improved. For example in Chapter 3, the

optimization iterations move towards the optimal solution, but even using Sobolev

gradient they terminate at a local minimum long before the true optimal correspon-

dences are reached. Interestingly, this provides enough information for the machine

learning algorithm to successfully discriminate which locally optimal vector fields
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correspond to same-person image pairs vs different person image pairs. However,

a hierarchical method would likely help the iterations progress significantly further

before settling on a minima. A stronger optimization method would also benefit the

diffeomorphism calculations from Chapter 5, where making use of a full C language

implementation of automatic differentiation could help calculate numerically cor-

rect diffeomorphism gradients in the same order of time as the function calculation,

allowing true geodesic diffeomorphisms to be calculated efficiently.

The results of all the methods presented in this thesis could be improved by

applying machine learning methods to the data that they produce. One applica-

tion was seen in Chapter 3 when Naive Bayes was applied via simple Gaussians fit

through the cost data at each pixel, which removed 48% of the errors in the re-

sulting recognition rates. Support Vector Machines [85] with an appropriate kernel,

or other statistical regression analysis techniques, should be able to help effectively

separate same-person image pair data from different-person image pair data. Ma-

chine learning methods can learn the ways in which faces deform naturally, thereby

recognizing when a deformation is likely to be between two images of the same per-

son, as compared to an unnatural deformation which would be assumed to come

from two different people.

The diffeomorphisms from Chapter 5 could be made more realistic to faces if

they are not based on such sparse point correspondences. Perhaps it would help to

use basis functions that were based not on points but on curves, so that a convex

curve outlining the mouth could be defined. A diffeomorphism scheme not based on

sparse points would also help solve this problem, such as methods similar to [2, 7].
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It would also be very interesting to study not only interpolation between im-

ages, but also extrapolation. Given a set of sparse facial feature locations, a diffeo-

morphism can be found deforming an entire image to those locations, even if there

is no image to be matched with at that location. Images can also be deformed fur-

ther in the direction of the final known diffeomorphism. There are many potential

applications of these ideas to face recognition, and to other domains where explicit

deformation and illumination change modeling is required.

The strong results achieved by simple thresholding, as seen in Chapter 4,

should be further studied, to determine where the Local Binary Decisions method

breaks down, and to easily incorporate an unbiased thresholding step to all methods

as appropriate. The Gradient Direction method could probably be made stronger

by using a wider gradient filter and by making it multi-scaled. This would probably

result in a very strong comparison metric that is robust to moderate amounts of

deformation.

A non-isotropic version of the lighting-insensitive metric from equation (3.5)

can be defined and explored, where there is a lower cost for intensity changes in the

direction of the gradient.

There are also several implementation decisions that should also be further

explored, including parameter selections such as the amount of smoothing applied

to each image before being processed, the size of the kernels, the discretization

used in the lookup table, and the size of the image crops being compared. In

order to say that the wavelet version of the cost function presented in Chapter 4

in equation (4.23) is equivalent to the original function (4.10), the original function
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could be presented as the sum of every other pixel. The first scale of the Haar

wavelet basis functions have a support of width two, and so this would make the

wavelet version exact when Haar wavelets are used and only one scale is considered.

As the preliminary study presented in Section 4.6.2 implies, the extremely fast

and accurate method of Chapter 4 should be extended for applications where fast

template matching schemes such as Normalized Cross-Correlation are often used,

where many image comparisons must be computed in a very short amount of time.
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