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Existing rigid overlay pavement design methods are empirical and 

use a specified level of cracking as the defined failure condition. The 

existing empirical designs are based on tests run thirty years ago, and 

current analytical models provide greatly improved abilities to examine 

the overlay pavement structure. Emphasis by many agencies on life cycle 

cost analysis and more sophisticated maintenance and rehabilitation 

strategies require methods of predicting pavement performance rather 

than simply developing safe designs. A layered elastic analytical model 

was selected to evaluate stresses from applied loads in the pavement 

structure. Pavement performance was measured in terms of a Structural 

Condition Index which related the type, degree, and severity of pavement 

cracking and spalling on a scale of 0 to 100. Models were developed to 

represent the effect of cracking in base slabs under the overlay, to 

account for fatigue damage of previous traffic on the base pavement, and 

to account for the effects of substandard load transfer at slab joints. 

The predicted performance of overlays and pavements using this analysis 

was checked against the results of full-scale accelerated traffic tests 

conducted by the Corps of Engineers and against current overlay design 

methods and was found to provide reasonable agreement. This methodology 

using the layered elastic analytical model and analysis of fatigue and 



cracking in the base slab provides a method of predicting pavement and 

overlay deterioration in terms of a Structural Condition Index. 
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PART I: INTRODUCTION 

Design of rigid concrete overlays to upgrade existing concrete 

base pavements for airfields today use the same techniques that were 

developed by the U.S. Army Corps of Engineers (CE) over 30 years ago. 

Although current methods of concrete pavement design have developed 

into a blend of theory, laboratory investigation, field testing, and 

modifications based on observed field behavior, overlay design conti­

nues to be purely empirical and is based on a limited number of tests 

conducted during the 1940's and 1950's. Today the need for rehabili­

tation of existing pavement facilities is more important than ever 

before, and continued reliance on an empirical design approach for 

such a basic rehabilitation technique as pavement overlays needs to be 

reevaluated. 

Analysis of in-service pavements has found that the current 

methods of concrete pavement design have proven adequate in the past 

for selecting new airfield pavement thickness (Kohn 1985, Hutchinson 

and Vedros 1977). However, similar analysis of in-service overlays 

comparing their performance to a design method has not been done. A 

review of the existing CE overlay design method by a group of con­

sultants to the Waterways Experiment Station (WES), summarized by Chou 

(1983), identified a number of problems with the current overlay 

design approach. Inconsistent failure definitions and inadequate 

empirical equations are major limitations of the design method. 

Future requirements for life cycle cost analysis and improved methods 

for pavement rehabilitation will need an improved mechanistic analysis 

approach. A review of concrete overlays by Hutchinson (1982) also 
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suggested replacing the current empirical approach with a new theoret-

ical design procedure. 

Pavement design procedures may either develop a safe design 

which will not fail under future traffic, or they may attempt to pre-

diet future pavement performance. The current concrete pavement and 

overlay design methods use the safe design approach wherein thick-

nesses of pavement are selected for some specified design traffic to 

keep the surface pavement above a predefined failure level in terms of 

slab cracking. The current approaches have been found to be generally 

adequate for structural design of new concrete pavements but have been 

strongly questioned for overlay design. 

In recent years numerous government agencies have placed new 

emphasis on life cycle cost analyses, growing pavement rehabilitation 

requirements, and effective pavement management. This change in 

emphasis requires design methods capable of predicting pavement per-

formance, and previous safe design approaches are no longer totally 

satisfactory. Witczak (1976) noted, 

11However, this approach (safe design approach), while sound for 
other engineering designs, leads to excessive costs and, fur­
thermore, provides little, if any, ability to predict dete­
rioration and, hence, performance with time. In the author's 
opinion, this latter concept (design predicting performance) is 
absolutely mandatory if pavement design is to ever achieve a 
'higher step' in rational design concepts. As a result, the 
overall interaction of initial fracture prediction, rate of 
crack propagation, subsequent distress-to-performance relation­
ships, and a failure level based upon functional concepts is 
considered necessary in order to truly define a procedure that 
can predict future pavement performance." 

The need for an improved overlay design method has been noted by 

a number of investigators including Hutchinson (1982) and the WES con-

sultants (Chou 1983). Furthermore, this improved method should use a 
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mechanistic approach and be capable of predicting pavement performance 

rather than simply providing a safe design. The ability to predict 

performance then allows a realistic appraisal of alternate strategies 

of rehabilitation and maintenance of pavements. The objective of this 

study is to develop a mechanistically based design procedure for rigid 

concrete overlays of an existing concrete base pavement that will pre­

dict deterioration of the pavement as a function of applied traffic. 
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PART II: BACKGROUND 

Current Airfield Rigid Pavement Design 

At present, thickness designs for concrete airfield pavement are 

generally done by a fatigue analysis. Tensile stresses in the bottom 

of the slab from a selected design aircraft are calculated and then 

related to passes of the design aircraft through a fatigue relation­

ship. The most widely used concrete airfield design procedures in the 

United States were developed originally by the US Army Corps of Engi­

neers (CE) (Sale and Hutchinson 1959) and the Portland Cement Associa­

tion (PCA) (Packard 1973). The CE approach is used by the US Army, 

the US Air Force, and the Federal Aviation Administration (FAA). The 

PCA approach is used by the US Navy and a number of commercial design­

ers. These two approaches differ primarily in the analytical models 

and fatigue relationships used, but each individual agency also modi­

fies these basic approaches to reflect its specific needs and experi­

ences. Descriptions of these individual agency design preocedures are 

presented by Yoder and Witczak (1975). 

In order to implement any design approach, the aircraft traffic 

on the pavement must be analyzed; the real pavement structure and air­

craft loads must be idealized so that tensile stresses may be calcu­

lated by an analytical model; these stresses must be compared to some 

fatigue criterion to determine the number of cycles of load the pave­

ment can withstand; and finally the field performance of pavements 

designed with these idealizations must be evaluated to make adjust­

ments in the design approach. The following sections present in more 
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detail some of the specific idealizations and assumptions used in cur-

rent airfield design approaches. 

Aircraft traffic 

Aircraft do not traverse the same point on a pavement with each 

pass of the aircraft. Studies of aircraft traffic at airfields (Brown 

and Thompson 1973, HoSang 1975) developed the concept of using a nor-

mal distribution to develop a pass to coverage ratio that represents 

the variable pattern of aircraft traffic. Brown and Thompson's (1973) 

observations found that 75 percent of the traffic on a channelized 

traffic area such as a primary taxiway or runway was concentrated 

within a 70-in. wander width. For less channelized traffic areas such 

as runway interiors or parking aprons a representative wander width 

was 140 in. For an aircraft gear with a single wheel the pass to 

coverage ratio is the inverse of the maximum probability of the wheel 

passing over a point within the traffic lane or 

where 

P/C = Pass to coverage ratio 

c 
X 

cr 
X 

w 
t 

Maximum ordinate of the normally distributed curve of the 
applied traffic 

Maximum ordinate of the standard normal distribution curve, 
tabulated values found in references such as Harr (1977) 

Standard deviation of the applied traffic distribution 

= Width of the tire 

5 



However, if the gear contains a second wheel the distribution of 

each wheel must be added together to determine a composite distribu-

tion and the previous equation becomes 

where 
c 

XC 
maximum ordinate of the composite distribution found by 
summing the individual wheel distribution curves 

For instance, a 70-in. wander width which is defined to include 

75 percent of the total traffic has a standard deviation of 30.43 in. 

The maximum ordinate from the standard normal distribution for a 

single wheel is 0.399. Therefore 

c = = 
X 

0.399 
30.43 = 0.0131 

The B-727 has two 13.5-in. wide tires spaced 34-in. apart. When the 

distribution curves of these two tires are added together the maximum 

ordinate, C , of the composite curve is 0.0228, and the pass-to­xc 

coverage ratio becomes 

p 

c 
1 

c w 
XC t 

3.25 

1 
0.0228 X 13.5 
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The maximum tensile stress normally is underneath the tire of 

the B-727. Consequently the number of coverages on a concrete pave-

ment is the maximum number of stress repetitions to which the concrete 

is subjected. Certain twin-tandem gears such as the B-747 develop 

only a single maximum stress between the forward and trailing wheels. 

These trailing wheels are not counted in determining a pass-to-

coverage ratio for rigid pavements as they are for flexible pavements. 

Brown and Thompson (1973) identify these aircraft and tabulate pass-

to-coverage ratios for 70- and 140-in. wander widths for a variety of 

current civil and military aircraft. 

The actual traffic at an airfield will almost always consist of 

a mix of different sizes of aircraft with varying gear configurations. 

Not only does the pattern of traffic cause difficulty in formulating 

the problem, but the mix of aircraft with each aircraft type causing a 

different stress level must be considered in the analysis. Further-

more, aircraft of the same type operate at varying loads, sometimes at 

only 70-80 percent of the maximum gross load. 

Landing aircraft are often thought to impart an impact load on 

the pavement, but this is unsubstantiated. Tests conducted by the CE 

during World War II found that a dynamic load could only be measured 

during intentionally hard landings that often resulted in mechanical 

damage to the aircraft (US Army Engineer Rigid Pavement Laboratory 

1943). Later more extensive tests were conducted jointly by the FAA 

and the CE (Ledbetter 1976). These tests found that concrete pave-

ments tended to show relatively flat pressure and deflection responses 

to a wide variety of aircraft operations. The responses were a 
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maximum for the stationary aircraft loads and decreased somewhat for 

taxiing, landing, rotation, etc. Flexible pavements showed much 

sharper and more pronounced peak measurements for the static loads 

compared to other aircraft operations than did the concrete pavement. 

The actual traffic at an airfield is a complex combination of 

varying aircraft types, gear configurations, and loads following 

diverse patterns of traffic at varying speeds. To reduce this situ­

ation to manageable proportions, airfields are usually designed only 

for departing aircraft on the assumptio? that the lighter landing air­

craft have little effect. For simplicity aircraft are assumed to 

operate at maximum load in the absence of more detailed information. 

Agencies such as the CE or FAA include in their published design pro­

cedures (Department of the Army 1979, Federal Aviation Administration 

1978) methods to convert a mix of aircraft into equivalent passes of 

the single, most severe aircraft loading in the mix. 

Analytical models 

The first analytical models for theoretical analysis of concrete 

pavements were developed by Westergaard (1926, 1948). These models 

characterized the pavement as a thin elastic plate supported on a bed 

of independent springs. Three stress solutions were developed: a 

load in the interior of a slab infinite in horizontal directions, a 

load adjacent to an edge of a slab infinite in the other three hori­

zontal directions, and a load on a corner of a slab infinite in the 

other two horizontal directions. These solutions are expressed as 
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a e 

where 

Interior Loading 

(j = 
i 

3P(l+v) (a/£,)2 

64 h 2 . 

Edge Loading 

3 (l+v) P = 
1T (3+v) h2 

(_ Eh3 ~ + 1. 84 - 4v + 1-v + 1.18 (1+2 v) (a/£.)] 

\100ka~ 3 2 

Corner Loading 

a = 3P [ 1 - (a 1 )0 • 6 ] 
c h2 R, 

cr
1 

tensile stress for interior loading 

cr = tensile stress for edge loading 
e 

cr tensile stress for corner loading 
c 

a = radius of circular load 

P total applied load 

v Poisson's ratio 

h slab thickness 

~ radius of relative stiffness 

[ 

E h3 ] 1/4 

12(1-})k 

E modulus of elasticity 

k = modulus of subgrade reaction 

distance to point of action of resultant along corner angle 
bisector 

/2a 

y Euler's constant 

= 0.5722 ..... . 
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Ioannides, Thompson, and Barenberg (1985a) present a detailed 

description of the origins and various forms of these equations 

including other load shapes (elliptical, semicircle, and square), 

simplified forms, and the inclusion of a "special theory" adjustment 

for cases where the radius of the loaded area is less than 1.724 times 

the pavement thickness. A number of modifications have been proposed 

for the corner load by other investigators and these modifications are 

discussed by Ioannides, Thompson and Barenberg (l985a). They con­

sidered the above forms of the equations for interior and edge loading 

to be the most correct and complete. Based on comparisons with finite 

element analysis they concluded that the ratio of the smallest slab 

dimension to the radius of relative stiffness must be at least 3.5, 

5.0 and 4.0 to meet the infinite or semi-infinite Westergaard assump­

tions for the interior, edge, and corner loading cases. 

The concrete pavement slab in these models is characterized with 

the elastic material properties of a modulus of elasticity and a Pois­

son's ratio while the supporting layers of base course and subgrade 

materials are represented by a spring constant, k , termed modulus of 

subgrade reaction with units of pounds per square inch per inch 

(lb/in.
2
/in.). Westergaard (1948) referred to this spring constant 

k as "an empirical makeshift, which however has been found in the 

past to give usable results." Terzaghi (1955) extensively discussed 

the applications and limitations of the plate load tests used to 

determine the value of k. The idealization of all the supporting 

layers as linear springs is generally the major objection to the 

Westergaard model. Major drawbacks to this idealization include the 

difficulty of determining a k value during design since this 
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determination requires an in situ field test and the poor idealization 

by a single number for the real layered base course and subgrade 

structure. If one or more of these layers is stabilized, representing 

the structure with only a spring constant is particularly poor. 

Pickett and Ray (1951) developed solutions to the Westergaard 

equations in terms of influence charts that simplified the required 

calculations. Computerized solutions were also presented later for 

the interior load problem (Packard, no date) and for the edge load 

problem (Kreger 1967). A regression equation to calculate the Wester-

gaard free edge stress was developed by Witczak, Uzan, and Johnson 

(1983) and later modified slightly at the US Army Engineers Waterways 

Experiment Station (WES). This equation is in the form: 

where 

a 
e 

regression constants dependent on individual air­
craft gear and tire properties (tabulated values 
published by Rollings (1985)) 

P gear load, lb 

The limitations in the Westergaard model's representation of the 

materials under the concrete slab led to interest in using the layered 

elastic analytical model to calculate stresses. The widespread use of 

nondestructive pavement testing equipment that analyze pavement prop-

erties by comparing field measured deflection basins with those 
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calculated by the layered elastic theory has also contributed greatly 

to the interest in layered elastic solutions for pavement evaluation 

and design. The CE and the FAA recently developed an airfield rigid 

pavement layered elastic design procedure (Parker et al. 1979) that is 

accepted by the CE as an alternative to the Westergaard-based design 

procedures. 

The layered elastic model idealizes the pavement structure as a 

sequence of continuous, horizontally uniform, homogeneous, isotropic 

layers each characterized by a modulus of elasticity and a Poisson's 

ratio. The interface between the layers can be full slip, no slip, or 

some specified intermediate level of slip. The formulation of the 

problem of a circular load on a layered elastic system is usually 

expressed with one or more stress functions for each layer. For 

instance the vertical displacement, 

can be expressed as 

where 

u 
z 

cr 
zz 

Laplace operator 

v ' zz 

~ Stress function in r, 6, and z 

and stress, crzz' in a layer 

The stress function, ~. can be transformed with the Hankel transform by 

1 2 



where 

T (~) 
n 

J (m,r) 
0 

m 

T (~) 
n 

00 

f 
0 

r ~ J (m,r) dr 
0 

Hankel transform of ~ 

Bessel function of the first kind and of zero order 

Hankel transform parameter 

Neglecting body forces, equilibrium and compatibility are met if 

4 
0 

The general solution to this equation in the Hankel transform of the 

stress function becomes 

T (~) n . 

The four constants, A, B, C, and D, are evaluated for each layer from 

the layer boundary conditions. The stress function is found by 

inverting the transformed solution by the Hankel inversion theorem: 

00 

f m T (~) J (m,r) dm n n 
0 

Displacements, stresses, and strains in the layer can then be found 

from the stress function. 

Complete derivations of generalized forms of the layered elastic 

model have been presented by Schiffman (1962), Peutz and Kempen 

(1968), Jong, Peutz, and Korswagen (1973), and Cauwelaert, Lequeux, 
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and Delaunois (1986). The integrals in the layered elastic model can­

not be solved analytically and must be evaluated numerically. Some 

solutions are available for specific numbers of layers and assumptions 

of material properties (e.g., Burmister 1943 or Jones 1962); however, 

computers are the only practical method of solving the general layered 

elastic model. Several computer programs are available, and they 

differ primarily in the numerical methods used to evaluate the 

integrals. 

The limitations of the Westergaard and layered elastic models 

have led to interest in numerical methods using discretization such as 

finite element or finite difference methods. Of these approaches, 

finite element analysis has generated the most interest, but the 

Westergaard models remain the most widely used for calculating 

stresses in published design procedures and in practice for airfield 

pavements. The PCA (Packard 1973) and the US Navy (Department of the 

Navy 1973) use the Westergaard interior load model while the CE 

(Department of the Army 1979), the US Air Force, and the FAA (1978) 

use the Westergaard edge load model. 

Fatigue relationships 

Airfield rigid pavement thickness design is normally based on a 

fatigue analysis of the concrete. The fatigue strength of plain con­

crete is that proportion of the static strength that can withstand a 

specified number of load cycles. It is usually considered to be the 

same in compression, tension, and flexure. In general, the modulus of 

elasticity decreases and strains increase with increasing load 

repetitions. 
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If concrete is subjected to fluctuating levels of stress, the 

ratio of the minimum stress level to the maximum stress level affects 

the fatigue strength. This is illustrated by the stress-fatigue life 

curves in Figure 1 (American Concrete Institute 1981) for plain con-

crete beams tested in flexure. The ratio of maximum applied stress to 

concrete flexural strength that supports a given number of cycles of 

load increases dramatically if the ratio of the minimum stress to the 

maximum stress applied to the test beam increases from 0.15 to 0.75. 

There is considerable scatter in fatigue test results for concrete, so 

it is common to show the probability of sample failure as presented in 

Figure 1 for the minimum-maximum stress ratio of 0.15. Tepfers (1979) 

and Tepfers and Kutti (1979) have proposed a concrete fatigue relation 

to include this effect of the minimum-maximum stress ratio as 

where 

a 
max 

f 

s 

A 

N 

a 
max 

f 
1 - S (1-A) log N 

maximum applied stress 

compressive or tensile strength of concrete 

a coefficient with proposed value of 0.0685 

stress ratio a . ja 
m~n max 

number of load cycles to produce failure 

An in-service pavement exists under fluctuating stress condi-

tions. Temperature and moisture gradients in the pavement slab change 

with time and result in varying stress conditions in the slab upon 
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periodic load induced stresses. Domenichini and Marchionna (1981) 

studied the effects of temperature variation for the concrete pavement 

in the American Association of State Highway Officials (AASHO) road 

test. Their data show that the stress ratio of minimum temperature 

stress to the sum of the temperature and load stresses for AASHO road 

test slabs 6.5 to 9.5 in. thick varied from 0.16 to 0.60 depending on 

the time of day and season of the year. The analysis by Domenichini 

and Marchionna (1981) only considered the daytime condition of the 

surface of the slab to be warmer than the bottom and neglected other 

potential stresses such as those caused by a moisture gradient. 

Nevertheless, their work clearly shows that the stress ratio that 

exists in pavements is not a constant. The fluctuating stress ratio 

in pavements implies that there is not a unique concrete fatigue 

relationship for concrete pavements. 

The effect of varying magnitudes of loading is usually handled 

by Miner's hypothesis (Miner 1945) which states that failure occurs 

when the summation of ni/Ni equals 1, where ni is the number of 

cycles applied at a particular stress level and N. 
~ 

is the number of 

cycles that would cause failure at the same stress level. The effect 

of varying magnitudes of cyclic loading has not been adequately inves-

tigated, and Miner's hypothesis does not always give conservative 

results. Initial loads near 90 percent of the ultimate static 

strength reduce fatigue life, whereas initial loads below 50 to 

55 percent increase fatigue life (Witczak 1976). Consequently, 

Miner's hypothesis would appear to be unsafe for high loads and con-

servative for low loads (Kesler 1970). 
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Pavements are subject to varying frequencies of loading and have 

rest periods of varying length between loadings. Laboratory tests 

have found that these factors can have significant effect on the fati­

gue performance of concrete. If the applied cyclic stress is less 

than 0.75 of the ultimate strength, frequencies of loading in the 

range of 70 to 900 cycles per minute do not have much effect on fati­

gue performance. However, at higher stress levels frequency has sig­

nificant effect on fatigue performance of concrete (American Concrete 

Institute 1981). Also periodic rest periods between loadings appear 

to significantly improve fatigue life (Kesler 1970). 

There are two basic approaches to developing a concrete fatigue 

relationship for use in pavement design. The first is to use a con­

servative interpretation of laboratory beam tests at a low minimum to 

maximum stress ratio. The PCA (1984) fatigue relationship is probably 

the most widely used relation of this type. The second approach is to 

use full-scale accelerated traffic tests of concrete pavements to 

develop "field" fatigue relationships. The CE has conducted large­

scale accelerated traffic tests using aircraft size loads and gear 

assemblies, and the AASHO road test provided similar information for 

truck-sized axle loads. Full-scale tests have the advantages of 

testing actual slab and joint systems, testing the concrete under 

actual multiaxial stress conditions, and including, to some extent, 

temperature and moisture stresses. As illustrated in the previous 

discussion a number of factors such as stress ratios, rest periods, 

relative load magnitude, and load frequency can affect the fatigue 

performance of concrete. Field tests include some of these effects, 
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but they have the disadvantages of high cost and difficulty in defin-

ing applied stress levels. 

Figure 2 shows a comparison of several concrete fatigue rela-

tionships used or proposed for use in the design of concrete pave-

ments. The ordinate of this figure is plotted as the design factor 

which is the concrete flexural strength divided by the applied stress. 

This factor is used by the CE for pavement fatigue analysis and will 

be used for the remainder of this report rather than its inverse which 

is commonly used by the PCA (1984) and the American Concrete Insti-

tute (ACI) (1981). The PCA relation can be seen to be a very conser-

vative interpretation when compared to the ACI (1981) curves for 5 and 

50 percent probability of failure at a minimum to maximum stress ratio 

of 0.15. The other curves in Figure 2 are based on field tests and 

are different from these laboratory developed curves. 

The problem of defining the applied stress level in field tests 

is illustrated in Figure 2 by the two CE relationships. Both CE fati-

gue relationships are based on the same field tests, but one relation 

uses the layered elastic analytical model to calculate the stresses 

under the test load while the other uses the Westergaard edge load 

model. Each model calculates a different numerical value for the 

stress with the layered elastic calculated stress always being lower. 

Consequently, the resulting fatigue relation for each analytical model 

is different. The same effect is seen for the AASHO road test results 

in Figure 2 where Treybig et al. (1977) used the layered elastic model 

and Vesic and Saxena (1969) used the Westergaard edge load analytical 

model. The actual stresses in the slabs in the field are actually 

variable depending on the placement of the load, rate of loading, load 
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transfer of joints, temperature conditions, moisture gradient, etc. 

Consequently, the stresses calculated from the analytical models are 

nominal stresses reflecting the relative effect of imposed traffic 

loads rather than actual stresses. 

The fatigue relationships based on field tests must define some 

condition of failure for the test sections. The CE tests defined 

failure as occurring when one half or more of the trafficked slabs 

have one or more structural cracks. Vesic and Saxena (1969) defined 

failure as a Pavement Serviceability Index (PSI) of 2.5. As a compar­

ison, the CE failure criteria would represent a PSI of 3.0 to 3.3. 

The relationship developed by Treybig et al. (1977) defined failure as 

the development of class 3 cracking in an AASHO road test section. A 

class 3 crack is a ''crack opened or spalled at the surface to a width 

of 1/4 in. or more over a distance equal to at least one-half of the 

crack length'' (Scrivner 1962). 

Fatigue relationships based on field tests will vary depending 

on the analytical model used to calculate stresses and on the defined 

failure level, but the shape of relationships based on the AASHO road 

tests are very different from other fatigue relationships. The ACI 

and both CE curves in Figure 2 are straight lines on a semilogarithmic 

plot whereas the AASHO relationships are sharply curved. This differ­

ence is probably due to extensive pumping that developed at the AASHO 

road test. Consequently, AASHO road test relationships actually 

include the damage from both concrete fatigue and the pumping. Pump­

ing is a severe problem in highway pavements but less so in airfields. 
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Design methods 

The most common airfield pavement design procedures are the PCA 

and CE design methods or some modification of these. The basic steps 

in the design are to convert the actual pattern of aircraft traffic to 

cycles of stress or coverages, calculate the load-induced stresses 

using an analytical model, and then determine the number of coverages 

of this load that could be sustained by the pavement using one of the 

fatigue relationships. 

The PCA uses a Westergaard interior load analytical model for 

its stress calculations neglecting the effects of higher stresses at 

the joints. The higher stresses at the joints and the other addi­

tional environmental stresses are accounted for indirectly by use of a 

factor of safety of 1.5 to 2.0 with concrete flexural strength and the 

conservative interpretation of laboratory fatigue test results pre­

viously shown in Figure 2. 

The CE design method using the Westergaard edge load model with 

25 percent load transfer is widely used and has been adopted by the 

US Army, the US Air Force, and the FAA. This design method does not 

use any factor of safety directly. The assumptions on loads are con­

servative, and the use of field test developed fatigue relations 

include some thermal and moisture related stress in the performance 

criteria. The CE construction specifications require that 80 percent 

of the quality control flexural tests fall above the specified design 

flexural strength. The practical effect of this requirement is that 

the contractor usually produces a concrete that is well above the 

design flexural strength. The CE now uses the Westergaard or layered 

elastic fatigue relationships in Figure 2. However, earlier CE and 
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the current FAA design methods used fatigue relationship defined in 

terms of percent standard thickness. The concepts are similar and 

have little effect on the results. The background of the percent 

standard thickness fatigue relationships are described by Rollings 

(1981) and Parker et al. (1979). 

Soon after the first version of the CE design method was pro­

duced in World War II, a long-term pavement performance monitoring 

program began that produced modifications to the design procedure to 

reflect field performance of pavements. One of the early observations 

was that the ends of concrete runways were failing before the runway 

interior. This observation in conjunction with the study of traffic 

at military air~ields led to the definition of four types of pavement 

at military airfields. Type A areas are runway ends and primary taxi­

ways that are subject to highly channelized, slow moving aircraft and 

are designed for 70-in. wander widths and full aircraft loads. Type B 

areas are parking and similar areas where traffic is more widely dis­

tributed. These areas are designed for full aircraft load and 140-in. 

wander widths. Type C areas are runway interiors and are designed for 

75 percent of the aircraft load and 140-in. wander widths. Type D 

areas are seldom trafficked areas like the outside edges of the runway 

and are designed for reduced weight, a limited number of aircraft 

passes, and 140-in. wander widths. 

Traffic at commercial airfields is more complex in mix and pat­

tern than military airfields, so the FAA adopts a different approach. 

Full design thickness is used for areas subject to departing aircraft. 

Areas such as high speed turnoffs that are used primarily by arriving 

aircraft may be reduced 10 percent from the full design thickness. 
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Seldom trafficked areas analogous to the military Type D areas can be 

reduced 30 percent in thickness. 

The CE pavement performance monitoring program and test sections 

found that the Westergaard model did not adequately reflect the effect 

of subgrade strength on observed pavement performance. The modulus of 

subgrade reaction, k , appears in Westergaard stress calculations as 

a fourth root in the denominator of the radius of relative stiffness, 

~ , for the edge and interior load stress calculations. Taking the 

natural logarithm of the radius of relative stiffness in several of 

the equations further reduces the effect of k . Consequently, the 

subgrade support as measured by the k value has a relatively small 

effect on the calculated stresses. Pavements on high- and low­

strength subgrades were observed to crack approximately as predicted 

by the CE criteria, but at this point their performance diverged. 

Pavements on low~strength subgrades rapidly deteriorated with addi­

tional cracking, faulting, and spalling whereas the pavements on high 

strength subgrades deteriorated at a much slower rate. Consequently, 

the CE reduces the required pavement thickness on high-strength sub­

grades as shown in Table 1 to take advantage of this improved post­

cracking behavior. The FAA, however, does not use this reduction for 

high-strength subgrade in their design. 

The existing design methods are essentially fatigue analyses 

that are modified by agency and organization experience. A number of 

idealizations are used to reduce the real field problems of aircraft 

operating on pavements so that these analyses can be done. Much of 

each method is based on past experience; therefore modifications, 

changes, and substitutions in the design procedures cannot be done 
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Table 1 

Reduction in Pavement Thickness for High-Strength Foundations 

Sub grade 
Modulus, k Reduction in 

(lb/in. 2/in.) Thickness (%) 

200 0.0 

300 4.6 

400 10.6 

500 19.2 
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blindly. To obtain reliable results with any of these design methods, 

the complete method must be used as the agency specifies. 

Current Rigid Overlay Design Methods 

CE design method 

The most widely used overlay design methods are the empirical 

relations developed by the CE. The required overlay thickness is 

determined by the overlay equation: 

where 

h 
0 

h 
e 

thickness of overlay 

= required thickness for a new pavement to support the 
design traffic planned for the overlay 

hb = original thickness of existing pavement to be overlaid 

n = a power dependent on the bond condition between base 
pavement and overlay 

1.0 fully bonded overlay 

1.4 partially bonded overlay 

2.0 unbonded overlay 

C condition factor for existing base pavement values 
summarized in Table 2 

An overlay is considered to be unbonded if there is a separation 

layer of asphalt concrete or other material between the overlay and 

base slab so that no bond can develop. If the overlay is cast directly 

on the base slab, it is considered a partially bonded overlay. If the 
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Table 2 

Condition Factor Values 

C Factor Base Pavement Condition 

1.0 Existing pavement is in good structural 
condition with little or no structural 
cracking. 

0.75 

0.35 

Existing pavement has some initial 
structural cracking but little pro­
gressive distress such as spalling and 
multiple cracks. 

Existing pavement is badly cracked and 
may show multiple cracking, shattered 
slabs, spalling, and faulting. 
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surface is well prepared by cold milling or similar techniques and a 

bonding grout is used between the overlay and the base slab, the over-

lay is considered to be fully bonded. 

If the flexural strength of the overlay and the base pavement 

are substantially different, this difference may be included by 

replacing hb in the original equation with 

where 

h 
eo x h 

heb b 

hb original thickness of pavement to be overlaid 

h 
eo 

required thickness for a new pavment to support the over­
lay design traffic determined with the overlay concrete 
flexural strength 

= required thickness for a new pavement to support the 
overlay design traffic determined with the existing base 
pavement concrete flexural strength 

This adjustment is used by the CE but not by the FAA. 

The origin of the concept relating an overlay slab and a base 

slab to an equivalent slab by a summation of the thicknesses raised to 

a power is unclear. Older (1924) used a square relation (n=2 and C=l 

in the CE overlay equation) to evaluate a monolithic structure of 

bricks bonded to a concrete base slab for the Bates road test, and 

this reference to equation 1 is the earliest that has been found. 

Arms, Aaron, and Palmer (1958) suggested that this relation with 

n equal to 2 came into general use for overlay design with the recog-

nition that it was not technically accurate. The ACI Committee 325 on 

con·crete pavements states that "for many years" concrete overlays have 
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been designed on the "assumption" that the strength of a base and 

* 

overlay slab is equal to that of a single slab with a thickness equal 

to the square root of the sum of the squares of the base and overlay 

slab thicknesses (American Concrete Institute 1967). 

During the 1940's and 1950's the CE conducted a series of accel-

erated traffic tests of overlay test items. Many of these tests were 

never adequately documented. but summaries of the results were pub-

lished by Hutchinson and Wathen (1962) and Mellinger (1963). The 

Engineering Design Manual 1110-45-303 (Department of the Army 1958) 

from this period stated that: 

"The results of the traffic testing at Lockbourne No. 1 and 
No. 2 and Sharonville No. 2 indicated that the above relation­
ship (n=2 and C=l in equation 1) was approximately correct when 
a leveling course, cushion course, or bond-breaking course was 
placed between the two slabs, and that the relationship was too 
conservative when the overlay was placed directly on the base 
slab without purposely destroying the bond between the slabs." 

As shown in Figure 3,* the CE accelerated traffic testing suggested 

that the power in the overlay design equation should be 1.4 instead of 

2.0 when partial bond was allowed between the overlay and the base 

slab. Fully bonded overlays (n 1 and C = 1) should behave monolith-

ically with the base pavement. However, problems of constructing ade-

quate joints in the overlay capable of load transfer have not been 

solved, and fully bonded overlays are now considered most appropriate 

in airfield work for solving surface problems such as scaling or 

smoothness rather than for pavement structural upgrade (Hutchinson 

1982). 

This figure was provided by M. Ronald Hutchinson (CE, retired, pre­
viously at the Ohio River Division Laboratories and Chief of the PSD 
at the WES) from his personal files. 
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The CE overlay design equations are widely used, but their deri­

vation and basis are poorly documented and incomplete. 

Other design methods 

Problems with the CE developed empirical overlay design equa- . 

tions have led to examinations of other approaches to overlay design. 

Martin (1973) used the results of the AASHO road test to establish 

allowable maximum deflections and propose a design procedure based on 

measured deflections. The use of allowable deflections has generally 

been applied to flexible overlays over a rigid pavement rather than to 

rigid overlays. 

The weakness of the Westergaard models for evaluating layered 

overlay systems led other investigations to examine approaches using 

stronger analytical models. The layered elastic model does a better 

job of modeling the multiple layers of the overlay geometry than any 

of the Westergaard models. Several investigators used the layered 

elastic model or a hybrid finite element model to calculate tensile 

stresses which were related to performance through one of the fatigue 

relationships discussed earlier. Smith et al. (1986) and Hutchinson 

(1982) provide summaries of current overlay design practice and 

describe the characteristics of some of the proposed design procedures 

using stronger analytical models. Tayabji and Okamoto (1985) 

developed a design procedure for bonded and unhanded overlays using a 

finite element plate element model to represent the concrete slabs and 

a spring foundation to represent the underlying layers. No attempt 

was made to evaluate partially bonded overlays. 

Several approaches to overlay desig·n summarized by Smith et al. 

(1986) and Hutchinson (1982) have been studied to try to improve upon 
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the CE equation. Most of these have been oriented toward highways 

rather than airfields. Major problems encountered in these investi-

gations have included problems in evaluating the condition of the base 

pavement, establishing design performance criteria, and adequately 

modeling slab joints and interface conditions. 

Basic overlay relationships 

Simple beam theory can be used to derive equations for unbonded 

overlays and an equivalent slab that are in a form similar to the CE 

overlay design equation given earlier, An overlay slab and a base 

slab can be considered to be structurally equal to an equivalent slab 

such as shown in Figure 4. If a thin slice of unit width, b , from 

this equivalent slab is subjected to a moment, M , the curvature of 
e 

the beam is 

where 

pe = radius of curvature 

M = moment 
e 

E modulus of elasticity 
e 

I = moment of inertia 
e 

= 
M 

e 
E I 

e e 

If the overlay and base slab are subject to an equivalent moment 

such that Me = M1 + M2 , compatibility requires the radius of curvature 

of the base and the overlay slabs to be equal so that 

1 
p 
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There are three potential ways of defining an equivalent slab: 

a. The equivalent slab must have the same rigidity as the over­
lay and base slab, i.e., Eeie = E1I 1 + E2I 2 . 

b. The tensile stress in the equivalent slab, cr , must be equal 
to the tensile stress in the base slab, cr 2 , I.e., cre cr 2 • 

c. The tensile stress in the equivalent slab must be equal to 
the tensile stress in the overlay, cr

1
, i.e., cre cr

1
. 

Substituting the formula for the moment of inertia of a rec­

tangular cross section (bh3/12) into the requirement that the equiva-

lent slab's moment of inertia must equal the sum of the moment of 

inertia of the base and the overlay results in the relation: 

Now if an equivalent slab and the base slab thickness are known and 

all modulus values are equal, then the required overlay thickness to 

meet this definition would be 

This relation is analogous to the current unbonded overlay equation 

except the power relation is a cube rather than a square. Although 

this approach provides a system of equal rigidity, it does not provide 

any information on stresses. 

In a simple, linearly elastic beam the extreme fiber stress may 

be determined as 

-----·--~------ ·-·- ~-~~~ ~-~~--~--- ---· -- ---- --

cr 
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where 

o extreme fiber stress 

M applied moment 

c centroidal distance h/2 

I moment of inertia 

The stress in the equivalent slab and the base slab can be 

represented as 

M (h /2) 6 Me e e 
0 = = "7 e I e e 

M2 (h2/2) 
02 12 

Noting that the radius of relative stiffness of the overlay and the 

base slab must be equal and that the equivalent moment is equal to the 

sum of M1 and M2 leads to 

1 "1\El 1 M2E2 

pl Il P2 12 

Ml 
IlE1 
--M r 2E2 2 

M 
I1El 

M2 M.., ( E1hi ) --M + 1 + --e I 2E2 2 .. 3 
E2h2 

35 



Expressing M
2 

in terms of Me followed by substituting into the 

expression for stress in the base slab leads to 

M3 E2 (h2/2) 6 M 3 
e E2h2 

02 3 El 12 3 3 
Elhl E2h2 + Elhl 

1 + --3-
E2h2 

Requiring that oe and o2 must be equal in the second definition 

of an equivalent slab and setting the expressions for each equal to 

one another will simplify to 

If the equivalent slab and the base slab are known, the required over-

lay thickness to keep the stresses in the base slab and equivalent 

slab equal becomes 

A similar analysis with the requirement that the equivalent slab 

stress and overlay slab stress, o
1

, are equal results for the third 

case in the relation 
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Since h
1 

appears on both sides of this equation, it can solved most 

easily by an iterative solution process. 

Figure 5 shows each of the equations for the three definitions 

of equivalent slab (equal rigidity, overlay slab stress equals equiva-

lent slab stress, and base slab stress equals equivalent slab stress) 

plotted together if the overlay and base slab moduli of elasticity are 

equal. Also shown is the CE unbonded overlay equation. Each axis has 

been normalized by he. and they are expressed in terms of h1/he and 

h
2

/he. The CE equation, the overlay stress equation, and the base 

slab all intersect when 

0.707 

Each value of h2 /he has two solutions in the base stress 
equation. 

As the thickness of the base slab term h 2/he increases toward 1172, 
relatively thick overlays are required to maintain the stress in the 

base equal to the stress in the equivalent slab without increasing the 

stress in the overlay above the value for the equivalent slab. If the 

lower value of h1/he is selected for any given h2/he value, the over-

lay stress equation shows that the stress in the overlay exceeds that 

of the equivalent slab. When the h 2/he value exceeds 1172, the over-

lay stress equation controls. The CE equation keeps stresses in the 
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overlay or the base higher than the equivalent slab in all cases 

except the point h1/he = h2/he = 1//2. The equal rigidity equation 

keeps the stresses in both the overlay and the base slab below that of 

the equivalent slab for all values. 

Simple beam theory can derive forms of overlay design equations 

similar to the CE overlay design equation depending on how the equiva­

lent slab is defined. The definitions of equivalent slab on the basis 

of stress show there are different regions where stress in the overlay 

and stress in the base slab control. Which stress control depends on 

the ratio of base slab thickness to equivalent slab thickness. 
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PART III: BASIS FOR I~~ROVED OVERLAY DESIGN PROCEDURE 

An improved rigid pavement overlay design procedure will require 

development of a method of measuring performance of the concrete pave­

ment to replace the current defined failure level approach. An ana­

lytical model will be needed to calculate stresses, strains, deflec­

tions or some combination of design parameters to replace the current 

empirical overlay relationships. This analytical model will have to 

be able to represent two layers of concrete with various possible 

interface conditions as well as model the underlying base and subgrade 

materials. The existing base pavement to be overlaid may have suf­

fered some deterioration from past traffic, and a method of measuring 

or accounting for this damage is needed. A complete methodology for 

an improved overlay design procedure must address each of these 

concepts. 

Performance Criteria 

Current prescriptive definitions of pavement failure in specific 

terms such as percentage of cracked slabs are not adequate to monitor 

or predict pavement performance. A pavement is either failed or not 

failed by such definitions. There is no way to express how well or 

poorly a pavement is performing, how fast it is deteriorating, etc. 

Once the defined state of failure is reached the pavement is still 

functional, but there is no way to express this postfailure perfor­

mance. Defining pavement performance by a specified failure condition 

will not meet the objective of this study. 
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The AASHO road test introduced the concept of Present Servicea­

bility Index (PSI) to express the condition of a pavement numerically. 

A PSI of 5.0 represents a perfect pavement while a 0.0 rating would be 

an unusable pavement. This concept was originally developed by Carey 

and Irick (1960) and is a measurable function of roughness, cracking, 

patching etc. Longitudinal roughness is the primary controlling fac­

tor that affects the PSI value. The PSI is an improvement over the 

previous defined failure levels, but it is oriented toward highway 

uses and is not directly applicable to airfields. 

The US Army Construction Engineering Research Laboratory devel­

oped a system of rating airfield pavement for the US Air Force 

(Shahin, Dar.ter, and Kahn 1976). This system is known as the Pavement 

Condition Index (PCI) and has been adopted by the US Air Force, the 

US Navy, and the FAA (Shahin, Darter, and Kahn 1977b, FAA 1980, 

Department of the Navy 1985). Further work has extended this system 

as a rating and management tool for roads and streets for munici­

palities, army posts, and similar organizations. 

The PCI varies from 0 to 100. Qualitative pavement ratings and 

corresponding PCI ranges are shown in Table 3. The PCI is a simple, 

reproducible method of obtaining a numerical rating of a pavement that 

would equal the subjective rating of a panel of experienced pavement 

engineers. 

The PCI recognizes the 31 types of distress listed in Table 4. 

Deduct values are assigned depending on the type of distress, its 

severity, and the amount or density of the distress in the pavement. 

The PCI is described by the equation: 
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PCI 

Table 3 

Descriptive Rating of the PCI 

Rating DescriEtive Rating 

86-100 Excellent 

71-85 Very good 

56-70 Good 

41-55 Fair 

26-40 Poor 

11-25 Very poor 

0-10 Failed 
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Pavement 
Type 

Rigid 
Rigid 
Rigid 

Rigid 
Rigid 

Rigid 
Rigid 
Rigid 
Rigid 
Rigid 

Rigid 
Rigid 
Rigid 
Rigid 
Rigid 

Flexible 
Flexible 
Flexible 
Flexible 
Flexible 

Flexible 
Flexible 
Flexible 

Flexible 
Flexible 

Flexible 
Flexible 
Flexible 
Flexible 

Flexible 
Flexible 

Distress 
Number 

1 
2 
3 

4 
5 

6 
7 
8 
9 

10 

ll 
12 
l3 
14 
15 

1 
2 
3 
4 
5 

6 
7 
8 

9 
10 

ll 
12 
13 
14 

15 
16 

Table 4 

PCI Distress Types 

Name 

Blowup 
Corner break 
Longitudinal/transverse/diagonal 

cracking 
Durability cracking 
Joint seal damage 

Small patch 
Patching/utility cut defect 
Pop outs 
Pumping 
Scaling 

Settlement 
Shattered slab 
Shrinkage cracks 
Spalling along joints 
Spalling corner 

Alligator cracking 
Bleeding 
Block cracking 
Corrugation 
Depression 

Jet blast erosion 
Joint reflective cracking 
Longitudinal and transverse 

cracking 
Oil spillage 
Patching and utility cut 

Polished aggregate 
Raveling, weathering 
Rutting 
Shoving of flexible pavement by 

PCC slabs 
Slippage cracking 
Swell 

* PCC = portland cement concrete. 
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Number of 
Recognized 
Severity 

Levels 

3 
3 

3 
3 
3 

3 
3 
1 
1 
3 

3 
3 
1 
3 
3 

3 
1 
3 
3 
3 

1 
3 

3 
1 
3 

1 
1 
3 

3 
1 
3 



where 

where 

PCI 

m n 

100- a L L f(T., S., D .. ) 
l. J l.J 

i=1 j=1 

a = an adjustment factor depending on the number of 
distress types with deduct values in excess of 
5 points (this factor was necessary to match 
the original engineer panel's ratings) 

m total number of distress types 

n = total number of severity levels for each 
distress type 

f(Ti, Sj, Dij) =deduct value for distress type, T. , at 
severity level, S. , existing at d~nsity D .. 

J l.J 

The PCI may conceptually also be considered as follows: 

PCI 100 - D - D - D - D - D S E M C 0 

n
5 

= structural deduct due to distress types, severities, and 
densities associated with loads (e.g., distress No. Rl2 
shattered slab) 

environmental deduct due to distresses associated with 
environmental effects (e.g., distress No. Fl2 raveling, 
weathering) 

materials deduct due to distress associated with materials 
used in construction (e.g., distress No. R8 popouts) 

construction deduct due to distress associated with 
construction procedures (e.g., distress No. F2 bleeding) 

operations deduct due to distress associated with opera­
tions and maintenance of the pavement (e.g., distress 
No. R7 patching/utility cuts) 
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In many cases, the distress types identified in Table 4 may be caused 

by different factors. For example, distress No. R3 longitudinal/ 

transverse/diagonal cracking may be caused by structural loads, or it 

may be caused by environmentally induced thermal stresses. Distress 

No. RlO scaling may be due to poor construction procedures or to cer-

tain siliceous aggregates undergoing an alkali-aggregate reaction. 

Many of the distress types used in the PCI are caused by factors 

that are not reflected in analytical models (durability cracking dis-

tress type No. R4 in concrete, for example). This kind of damage in 

pavements has usually been controlled by construction and material 

specifications that control how pavements are constructed and what 

materials are allowed to be used in the pavement. The PCI system as 

it currently exists includes distress types that cannot be evaluated 

with current analytical models, and so some modification to the PCI is 

needed. 

A Structural Condition Index (SCI) from the PCI can be defined 

as: 

m n 

SCI 100- a 2: 2: 
i=l j=l 

with variables as defined previously, but T. 
l. 

is now limited to only 

those distress types associated with structural deterioration caused 

by loads. It also follows that 

PCI = SCI - all other deducts 
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Thickness design of concrete pavement for fatigue is based on 

the load-induced tensile stresses in the slab. Available analytical 

models are capable of calculating the magnitudes of these stresses by 

usi~g various idealizations of the pavement structure. There are some 

other load-caused distresses in pavements which, however, are not 

directly related to the tensile stress in the slab. The most impor­

tant of these is pumping which is a function of soil type, availabil­

ity of moisture, and load magnitude and frequency. Pumping forms 

voids under the pavement resulting in loss of support and accelerated 

deterioration. These other load-related problems such as pumping are 

not considered directly in pavement thickness design. Instead protec­

tion, such as requiring pumping resistant base courses or stabi­

lization, is specified. Pumping is usually a highway rather than an 

airfield problem and is a special topic in itself. The SCI for this 

study is limited to considering only those distress types associated 

with load-induced tensile stresses that result in fatigue damage to 

pavements. 

Table 5 shows the PCI distress types that have been selected to 

be used with rigid pavements to determine the SCI value. Distress 

No. 13, shrinkage cracking, is included in the SCI because this dis­

tress type would include a tight, load-related crack that does not 

extend across the entire width or length of the slab as well as the 

conventional shrinkage cracking due to improper curing procedures. 

With further traffic this crack, if caused by loads, will propagate 

across the slab into a type 3 longitudinal/transverse/diagonal crack 

of low severity with a higher deduct value. For the SCI value, this 



Number 

2 

3 

12 

13 

14 

15 

Table 5 

PCI Rigid Pavement Distress Types Used with the SCI 

Name 

Corner break 

Longitudinal/transverse/diagonal cracking 

Shattered slab 

Shrinkage cracks* (cracking partial width 
of the slab) 

Spalling along joints 

Spalling corner 

Associated 
Severity Levels 

3 

3 

3 

1 

3 

3 

* Used only to describe a load induced crack that extends only part 
way across a slab. In the SCI it does not include conventional 
shrinkage cracks due to curing problems. 
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distress will be counted only when it is caused by load and not if it 

is due to improper concrete curing practice, 

The SCI allows a much more precise and reproducible rating of a 

pavement's condition than previous methods. Table 6 shows six exam­

ples of the range of SCI values that could be obtained by pavements 

all meeting the traditional Corps of Engineers (CE) initial crack 

failure criterion. The results in Table 6 illustrate the greater 

precision possible using the SCI to describe pavement performance 

compared to the prescribed failure definitions such as the CE initial 

crack criterion. 

Analytical Model 

Westergaard models 

As discuss~d in Part II the Westergaard free edge load or the 

Westergaard interior load models form the basis of most current air­

field design methods. The major limitation of either of these models 

is the characterization of all material below the slab as a spring 

with a nonvariable spring constant. The inability of this kind of 

model to consider the layered structure of an overlay slab resting on 

a base slab led to the original development of the current empirical 

overlay design equations. To avoid the empirical approach, either the 

base slab must be included with the underlying materials as part of 

the spring system supporting the overlay slab or the base slab and the 

overlay slab must be added together to form an equivalent slab. 

Neither approach was considered satisfactory for this study, 
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Table 6 

Exam12le SCI Values Meet in~ the Cor12s of En~ineers 

Initial Failure Definition 

Example 
No. Densitl• % Severitl TyJ2e SCI 

1 so 1 No. 3 1/T/D cracking* 80 

2 so M No. 3 L/T/D cracking 55 

3 25 L No. 3 1/T/D cracking 61 
zs· M No. 3 L/T/D cracking 

4 15 L No. 3 1/T/D cracking 45 
20 M No. 3 L/T/D cracking 
15 H No. 3 L/T/D cracking 

5 25 1 No. 3 L/T/D cracking 70 
25 L No. 12 shattered slab 

6 15 1 No. 3 L/T/D cracking 55 
15 M No. 3 1/T/D cracking 
10 L No. 12 shattered slab 
10 M No. 12 shattered slab 

* PCI Rigid Pavement Type No. 3 with 1/T/D (longitudinal/transverse/ 
diagonal) cracking. 
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Finite element models 

Finite element analysis is a powerful numerical method that is 

capable of solving engineering problems with complex material proper-

ties and geometry. In this method the continuum to be analyzed is 

represented as a collection of finite elements connected only at their 

nodes; a displacement function is assumed over the region of the ele-

ment; an element stiffness matrix is determined reflecting the assumed 

displacement function, geometry of the element, and material proper-

ties; a global stiffness matrix is assembled for the continuum from 

the individual element stiffness matrices; unknown nodal displacements 

are determined from the global stiffness matrix and load vector; and 

finally element stresses and strains are calculated from the nodal 

displacement. Obviously this technique must be computerized. 

A variety of finite element computer programs are available that 

offer a broad selection of element types, displacement functions, 

material models, and special functions such as friction or slip sur-

faces. As the programs become more sophisticated and generalized, 

their cost for input preparation, computer support, and output analy-

sis and their demand for accurate material characterization increase 

dramatically. Also finite element solutions for a problem can seldom 

be performed in a single step but must include sensitivity studies to 

determine factors such as an adequate finite element mesh or appropri-

ate number of loading steps for some material models. 

The most generalized finite element solutions available are the 

three-dimensional codes that allow complex modeling of material varia-

tion and structural geometry in all planes, but their application is 

prohibitively expensive for routine pavement design and analysis. 
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Some work has been done with prismatic solid elements for analysis of 

pavements, but these have also been too expensive for general pavement 

work. The plane strain, plane stress, and axisymmetric finite element 

programs use idealizations that seldom, if ever, are applicable to 

rigid pavement problems. A group of hybrid finite element codes have 

been developed that are simpler and more economical than the three­

dimensional and solid prismatic solutions. These codes appear to have 

more immediate potential for pavement design and analysis than those 

mentioned previously. 

These hybrid codes typically use a four-node thin plate finite 

element to represent the rigid concrete pavement surface and either a 

spring or layered elastic representation of the remaining pavement 

structure (Huang and Wang 1973, Chou and Huang 1981, Huang 1985, Ioan­

nides et al. 1985b, Majidzadeh et al. 1985). Overlays and stabilized 

layers are analyzed by transforming the surface slab and the base slab 

or stabilized layer into an equivalent thickness of plain concrete 

assuming either no bond or complete bond between the layers. Indi­

vidual slabs are analyzed as an assemblage of the four-node thin plate 

finite elements, and load transfer between slabs can be included in 

the analysis by such methods as assigning joint deflection efficien­

cies, treating dowel bars as beam elements, or using springs to model 

load transfer across the joint. 

Layered elastic model 

Layered elastic analytical models idealize the pavement system 

as a sequence of homogeneous, elastic, horizontally uniform layers 

subject to circular uniform loads. The formulation of the solution to 

stresses, strains, and deflections to this problem was originally set 
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forth by Burmister (1943). The solution requires the integration of 

Bessel functions which, except for two- or three-layer systems, is 

done numerically. A variety of computer programs have been developed 

to solve the layered elastic problem, and they differ primarily in the 

methods and accuracy of these numerical procedures. Crawford and 

Katona (1975) and Parker et al. (1979) provide some comparisons and 

evaluations of several of these commonly available programs. 

The bond between layers may be treated as unhanded (friction­

less), fully bonded (full friction), or intermediate between the two. 

The fully bonded case requires that the horizontal displacements on 

either side of the boundary between layers be equal. For the unbonded 

case, the interface is considered a principal plane and shear stresses 

at the interface are set equal to zero. These two cases are the most 

common idealizations for pavement analysis. Usually, the interface 

between a rigid pavement and the underlying layer is considered 

unbonded or frictionless, and almost all other pavement interfaces are 

considered fully bonded. 

The generally recognized existence of partially bonded rigid 

overlays makes it desirable to treat cases intermediate between fully 

bonded and unbonded. One approach, originally proposed by Westergaard 

(1926), assumes that the shear stress of a layer above an interface is 

a function of the difference between the horizontal displacement of 

the layer above the interface and the horizontal displacement of the 

layer below the interface. This approximation does not meet the elas­

ticity compatibility equations and has led to another intermediate 

friction solution based on making the horizontal displacement of the 

layer above an interface a function of the horizontal displacement of 
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the layer below the interface (Cauwelaert, Lequeux, and Delaunois 

1986). 

The BISAR layered elastic program uses the Westergaard approxi­

mation for intermediate bond conditions at interfaces. Cauwelaert, 

Lequex, and Delaunois (1986) have developed an initial version of a 

layered elastic program, FLIP, which solves the intermediate bond 

condition as noted above. Initial checks of this program indicate 

that it matches the fully bonded and unbonded deflections of BISAR, 

and it is currently undergoing further study and testing at the 

US Army Engineer Waterways Experiment Station. A wide variety of 

other programs such as CHEVRON, CHEVIT, ELSYM5, CIRCLY, or CRANLAY are 

available to solve either the fully bonded or unbonded interface 

cases. Parker et al. (1979) recommended the BISAR layered elastic 

program for use with rigid pavements because of problems encountered 

with erratic deflection basins with some other programs when the ratio 

of the concrete modulus to the subgrade modulus was very large. There 

was little difference in calculated concrete pavement tensile stress 

between the programs, however. The FLIP program may eventually offer 

an alternate intermediate bond interface model. 

Model selection 

Most of the analytical models discussed above use linearly elas­

tic material properties. Much more powerful material models are 

available for use with some finite element techniques, but they have 

not found much application in pavement work. To date, the input data 

required for these models and the increased effort involved in this 

type of modeling have not produced results that can be analyzed 

effectively. More research is required in this area before these 
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types of models will become usable. The Westergaard models and the 

hybrid finite element models that use the spring subgrade describe all 

material below the pavement surface with a single value spring con­

stant. Representing each of these lower layers separately with lin­

early elastic material properties as with the layered elastic model or 

some of the finite element models offers the advantage of modeling the 

effects of different layers of material with varying stiffness within 

the pavement structure. 

The Westergaard edge-loaded model, the hybrid finite element 

codes, and the three-dimensional finite element codes offer the best 

geometric models of actual pavement slabs and can directly include the 

effect of slab joints in the analysis. The inability of the layered 

elastic model to include the effect of joints in the pavement is a 

major limitation of its usefulness in analysis of concrete pavements. 

However, the layered elastic model offers an excellent representation 

of the layered overlay structure with variable interface conditions 

between layers. The joint limitation can be overcome by the use of 

empirical correlations and adjustment factors. 

The layered elastic model and some of the more complex finite 

element models include methods of accounting for different levels of 

bond or friction between layers. The hybrid finite element programs 

handle no bond and complete bond by transforming the surface and base 

slab into an equivalent slab but are unable to examine intermediate 

levels of bonding. A similar approach of transforming to an equiva­

lent slab could be used with the Westergaard models. The existence of 

the partially bonded overlay concept suggests that the effect of 
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various levels of friction and bonding between the overlay and base 

slab is important in developing an effective overlay analysis 

technique. 

Input time, computer support, and overall cost of analysis of· 

the different models varies. The Westergaard and layered elastic 

models are readily solved on current levels of microcomputers. 

Rapidly increasing capacity of these machines suggests that some of 

the simpler finite element programs will soon be available on micro-

computer. At the present time, finite element analysis at sufficient 

detail to be usable for pavements requires the support of a mainframe 

computer. Cost of analysis is lowest for the Westergaard solutions 

followed in increasing order of cost by layered elastic, hybrid finite 

element with spring subgrade, axisymmetric finite element, hybrid 

finite element with layered elastic subgrade, prismatic solid, and 

three-dimensional finite element programs. 

The layered elastic model solved with the BISAR computer program 

will be used for this program. Selection of this model is based on 

the following: 

a. Reasonable modeling accuracy. This model can represent the 
layered structure and variable interface condition that 
exist in an overlay with appropriate material models. The 
inability to model joints and effects of nonstandard load 
transfer is a major disadvantage of this approach. 

b. Costs and computer support. This model has reasonable 
input, computer, and analysis costs. It can be supported on 
current generations of microcomputers. 

c. Compatible with other systems. Layered elastic models are 
currently being used at the WES and in other agencies for 
flexible and rigid pavement design and analysis and are 
widely used for evaluation of nondestructive pavement tests. 
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Previous Traffic Damage 

Figure 6 illustrates some of the interactions between the base 

slab and an overlay slab. A base slab subjected to traffic from t 0 

to t
1 

will undergo some deterioration. If nothing is done, con­

tinued traffic would allow the pavement to deteriorate as shown by the 

dashed line. If, however, the slab is overlaid at t 1 , the stresses 

in the base slab are reduced. As traffic is applied to the overlay 

slab the base slab will continue to deteriorate as shown by the solid 

line but at a reduced rate from before. 

At traffic t
1 

the base slab is capable of providing a certain 

amount of support to the new overlay slab. Since the base slab has 

undergone some deterioration from t 0 to t 1 , it will not provide 

the same support as a brand new slab. For this amount of support the 

traffic on the overlay will develop a certain stress level which will 

result in deterioration of the overlay slab. However, at traffic t
2 

the base slab has deteriorated further; its support value has 

decreased; the stress in the overlay, therefore, has increased; and 

the deterioration of the overlay slab is faster than would be pre-

dieted from the conditions at Similarly, at base slab 

deterioration has continued with the same result of accelerating 

deterioration in the overlay. Any predictive performance model for 

the overlay slab must recognize and account for the acceleration of 

the deterioration of the overlay slab as the base slab deteriorates 

with continuously decreasing support to the overlay. 
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Methodology 

The objective of this research study is to develop a mechanistic 

method of designing concrete overlays for rigid pavements that will pre-

diet the performance of the overlay. The layered elastic model has been 

selected as the analytical basis for this study. The SCI has been 

defined as the measure of performance of the pavement. Prediction of 

performance of an overlay will require three steps: 

a. Determine pavement properties. A layered elastic analysis 
requires that each material be described by a modulus of 
elasticity and a Poisson's ratio. Modulus values can be 
determined for in-place materials by standard nondestructive 
testing, destructive sampling and testing. or construction 
data. If nondestructive testing techniques are not used, 
modulus values for soil and aggregates are usually estimated 
by correlations with standard pavement tests such as modulus 
of subgrade reaction or California Bearing Ratio (CBR), but 
they can also be determined from laboratory tests such as 
the resilient modulus test. The concrete modulus for the 
proposed overlay can be estimated from local historical con­
struction data, or it can be determined before construction 
as part of the mixture proportioning studies. Layered 
elastic calculations are relatively insensitive to Poisson's 
ratio, and these values are usually taken as 0.15 to 0.20 
for concrete and 0.3 to 0.5 for aggregates and soils. The 
interface conditions between each layer must also be 
selected. The interface between concrete and soil or aggre­
gate is commonly modeled as frictionless and most other soil 
or aggregate interfaces are modeled as fully bonded. The 
appropriate bond condition between the concrete overlay and 
base pavement needs to be determined. 

b. Base slab analysis. The condition of the base slab to be 
overlaid must be determined. The effect of previous traffic 
before overlay on the base slab's remaining fatigue life 
must be evaluated. Its support provided to the overlay slab 
must be quantified in terms usable with the layered elastic 
model. Similarly, if the existing base slab load transfer 
is substandard, this must be expressed in some manner usable 
with the layered elastic model. 

c. Overlay slab analysis. As the base slab deteriorates, its 
supporting value to the overlay slab must be determined. 
This effect will be accounted for by dividing the traffic 
into intervals, determining the reduction in support value 
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provided by the base slab during that interval of traffic, 
calculating the stress in the overlay for this changed sup­
port condition, and then calculating the loss in the SCI of 
the overlay during that traffic interval. 

In order to carry out this type of analysis, a model will be 

needed to describe the deterioration of a concrete pavement in terms 

of the SCI as load repetitions are applied. Substandard load transfer 

between slabs in the base pavement must be expressed in terms usable 

with the layered elastic model. A method of quantifying the change in 

support provided by the base slab as it deteriorates is also needed. 

Once these models are available this concept of analysis can be 

checked against available overlay test section data and compared to 

current design methods. 
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PART IV: PERFORtUillCE MODEL FOR RIGID PAVEMENTS 

The most extensive historic controlled trafficking data using 

full-scale aircraft loads are the Corps of Engineers (CE) accelerated 

trafficking tests conducted at Lockbourne AFB, Sharonville, and the 

US Army Engineer Waterways Experiment Station (WES). These were the 

only tests conducted with full aircraft size loads and include tests 

with weights up to the current B-747 and C-5 aircraft. Sixty-seven 

test sections were built and tested during this test program that 

originally started in World War II. These tests used full-size con­

crete slabs for testing and applied traffic with full-size aircraft 

gear and gear loads. A summary of all these tests is given by Parker 

et al. (1979). 

Test Section Data 

The new rigid pavement performance models developed for this 

research study are based on a reevaluation of the accelerated traffic 

tests conducted by the CE. The analysis of these test sections used 

the original test reports and supplemented this information with 

photographs, work logs, minutes of meetings, and any related corre­

spondence that could be located in the files at WES. Table 7 lists 

67 test sections that were part of this test program. These data are 

divided into three classes, I, II, and III as shown. The class III 

data were not. used in the analysis for the following reasons: lack of 

information needed for the analysis, no deterioration under traffic,. 

failure conditions such as severe pumping that are not included in the 
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Table 7 

Available Rigid Pavement Field Test Data 

Item DesiBnation 
Parker 
et al.* Original 

Test Series (1979) Test Quality Remarks 

l. Lockbourne A-1 A2.60 II Poor data spread 
No. 1 

A-2 A1. 60 II Poor data spread 

B-1 B2.66L II One slab 

B-2 Bl. 66L II Unusual failure 

C-1 C2.66L I 

C-2 Cl. 668 I 

D-1 D2.66 I 

D-2 Dl.66 I 

E-1 E2.66M III No deterioration 

E-2 E1.66M I 

F-1 F2.80 III No deterioration 

F-2 Fl. SO III Unusable data spread 

K-3 K2.100 III Unusual failure 

K-2 K1.100 III Unusual failure 

N-2 N1.86 I 

N-3 N2.86 II Poor data spread 

0-2 01.106 I 

0-3 02.106 I 

P-2 Pl.812 III Unusable data spread 

(Continued) 

* Parker et al. (1979) summary of test information used a shortened 
designation for test items in Lockbourne Test No. 1 and No. 2. 

(Sheet 1 of 4) 
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Test Series 

1. Lockbourne 
No. 1 

(Continued) 

2. Lockbourne 
No. 2 

Table 7 (Continued) 

Item Designation 
Parker 
et al. * 
(1979) 

P-3 

Q-2 

. Q-3 

R-2 

R-3 

S-2 

S-3 

T-2 

T-3 

Original 
Test 

P2.812 

Q1.102 

Q2 .102 

Rl.612 

R2.612 

Sl. 66 

82.66 

Tl.60 

T2.60 

U-2 Ul.60 

U-3 U2.60 

A-Rec A-Rec 

E-1 * 

E-2 * 
E-3 * 

E-4 * 

E-5 * 

E-6 * 

Quality 

III 

III 

I 

III 

III 

III 

III 

III 

III 

II 

III 

III 

III 

III 

III 

III 

III 

II 

(Continued) 

Remarks 

Unusable data spread 

Unusable data spre~d 

R-2 through T-3 had 
unusually rapid 
failure. These sec­
tions have been 
deleted in past 
studies 

Poor data spread 

Unusable data spread 

Insufficient data 

Bad load transfer 
condition 

Poor data 

Bad load transfer 
condition 

Bad load transfer 
condition 

Bad load transfer 
condition 

Poor data spread 

* Specific original slab designations for these test items are shown 
in Appendix A. (Sheet 2 of 4) 
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Table 7 (Continued) 

Item Desi8nation 
Parker 
et al. * Original 

Test Series (1979) Test Qualitz: Remarks 

2. Lockbourne 
No. 2 E-7 * III No deterioration 

(Continued) 
M-1 * I 

M-2 * II Poor data spread 

M-3 * III No deterioration 

3. Lockbourne 
No. 3 III Insufficient data 

4. Sharon-
ville 57 III No detailed data ever 

Channelized published on Sharon-
58 III ville Channelized 

Test Sections 
59 Ill 

60 III 

61 III 

62 III 

5. Sharonville 
Heavy Load 71 III No failure 

72 III Poor data, unusual 
deterioration 

73 II Unusual deterioration 

6. Multiple Wheel 1-CS I 
Wheel Heavy 
Gear Load 2-CS III Severe pumping 
(MWHGL) 

3-CS III Severe pumping 

4-CS II Slight pumping 

(Continued) 

* Specific original slab designations for these test items are shown 
in Appendix A. (Sheet 3 of 4) 
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Table 7 (Concluded) 

Item Desis;nation 
Parker 
et al.* Original 

Test Series (1979) Test Qualit;y Remarks 

6. Multiple 2-DT I 
Wheel 
Heavy Gear 3-DT I 
Load 
(MWHGL) 
(Continued) 

7. Keyed l-C5 II Slight pumping 
Longitudi-
nal Joint 2-CS I 
Study 
(KLJS) 3-CS II Possible damage from 

instrumentation 
traffic 

4-C5 III Pumping 

4-DT I 

8. Soil Stabi- 3-200 I 
lization 
Pavement 3-240 III Damaged by static test 
Study 
(SSPS) 4-200 I 

4-240 II Possible damage by adja-
cent traffic 

(Sheet 4 of 4) 
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SCI, test slabs that had no load transfer or peculiar joint construe-

tion no longer in use, and the quality or spread of the data inadequ-

ate to determine performance (e.g., at one point SCI= 100, many 

repetitions later SCI= 0 with no information between these points). 

Lockbourne No. 1, test sections R-2, R-3, S-2, S-3, T-2, and T-3 are 

also included as class III data. These sections failed inexplicably. 

With high design factors they reached shattered conditions in as 

little as 1.5 coverages. These test sections have been excluded in 

past analyses of these data because of their peculiar behavior and 

have been excluded from this analysis also. The remaining data are 

divided into two classes, I and II. The class I data are the best 

quality.data. Class II data include tests that may have had slight 

pumping that could have influenced test results, data that had a poor 

spread in values so that it was difficult to interpret, or tests that 

had a large amount of unusual distress such as extensive joint spall-

ing without any cracking. 

Most test section reports include a crack map taken at either 

specific traffic intervals or the traffic coverage level at which a 

crack formed is indicated on the map itself. This map is-usually sup-

plemented with written descriptions and photographs in the report. 

Additional information in the form of photographs, work logs, and 

briefing papers are also available for some test sections. 

The PCI procedures as published by the Federal Aviation Adminis-

tration (FAA) were used to develop the test section SCI, except only 

the five distress types listed in Table 5 were used. Each of these 

distress types has a description and photographs that describe its 

severity level. Charts provide a deduct value for each distress type 
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depending on its severity level and density. These deduct values are 

summed and then adjusted if more than one distress type exists. The 

damage.descriptions and deduct curves used to compute the SCI can be 

found in the FAA publication describing the PCI (Federal Aviation 

Administration 1980). Table 8 shows an example SCI calculation for 

one test section. 

Judging the severity level of a distress from the available 

records was often very difficult. It was particularly difficult to 

separate low- and medium-severity type 3 longitudinal/transverse/ 

diagonal cracking. This separation is based on spalling along the 

joint, crack width, or formation of a second crack. During traffick­

ing, observers are watching for cracks and generally note when the 

first crack occurs. This crack is undoubtedly a tight, low-severity 

crack. However, the working of this crack which leads to widening and 

spalling may not be recorded, and photographs may not be available or 

show adequate detail. The transition between low- and medium-severity 

cracks then cannot be clearly identified in the tests. Therefore, all 

cracks were assumed to be low-severity cracks unless information was 

available to indicate otherwise. Applying this rule a slab would be 

assigned a low-severity crack rating when the initial crack forms. It 

is raised to a medium severity level when a second crack forms and 

divides the slab into three pieces. When additional cracks divide the 

slab into four or five pieces, the rating becomes a low-severity shat­

tered slab. This ratio is raised to medium severity when the slab is 

further subdivided into six pieces. As multiple cracks occur, they 

usually begin to work and almost invariably spalling is noted in the 

report text, marked on the crack map, or is visible in photographs. 
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Table 8 

ExamEle SCI Calculations for Kezed Longitudinal Joint Test Section Item 2-CS 

Traffic Distress Summed Adjusted 
Coverage No. DescriEtion Severity Densitz (%) Deduct Deduct Deduct SCI 

0 100 

144 3 L/T/D cracking* Low 25 15 15 15 85 

344 3 L/T/D cracking Low SCJ 20 20 20 80 

~ 504 3 L/T/D cracking Low 25 15 
-...] 

12 Shattered slab Med 25 43 58 50 so 

688 3 L/T/D cracking Low 25 15 

12 Shattered slab Med 25 43 103 87 13 

1696 3 L/T/D cracking Med 25 32 

12 Shattered slab Med 25 42 

High so 77 151 100+ 0 

* L/T/D cracking longitudinal/transverse/diagonal cracking. 



Cons~quently, it is usually possible to appropriately class a shat­

tered slab's severity level on the basis of the severity of the cracks 

in addition to its number of pieces. 

The SCI is a function of the- density or amount of distress that. 

occurs in a test section. Commonly, a test section consisted of four 

slabs, but some had only two slabs. On an actual pavement the large 

number of slabs would be expected to deteriorate gradually, providing 

a smooth curve. Test section data will tend to be rougher because of 

the limited number of slabs that lead to large, abrupt changes in the 

density measurement associated with distresses. 

Another problem existed with the Lockbourne No. 1 tests. These 

sections were built during World War II, and joint design was one of 

the test variables. A test section was typically 20 by 40 ft and 

separated from the test section before and after it by transition 

slabs. Each test section was divided into four 10- by 20-ft slabs by 

contraction joints. One longitudinal edge joint was a keyed joint 

with an adjacent test section. The other longitudinal edge was free. 

One transverse joint at the end of the test section was a doweled 

expansion joint while the other end had a free expansion joint with no 

provisions for load transfer. Since the layered elastic model was 

used for stress calculations, and it cannot accurately account for 

varying load transfer levels, only slabs that represent current con­

struction methods with reasonable joint load transfer were used to 

develop the performance models. In the Lockbourne No. l tests, only 

the two slabs adjacent to the doweled construction joint can be used 

for calculation of the SCI. Some of the Lockbourne test items also 

applied traffic to within 2 ft of the free edge longitudinal joint. 
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For these sections only the single slab adjacent to the doweled expan­

sion joint and the keyed longitudinal joint could be used in the 

analysis. 

Appendix A presents the detailed summary of the analysis of the 

CE test sections. The thickness and material properties for each item 

are tabulated for each test series. These data were taken from the 

original CE test reports listed in the bibliography and references or 

from the test summary by Parker et al. (1979). Next the calculated 

SCI value for the test items in each test series are tabulated with 

the calculated c0 and CF values, the specific slabs analyzed for 

the test item, and the size of the load. The SCI values are shown for 

each coverage level for which there was a map of cracking, photo­

graphs, or written description that allowed the SCI to be calculated. 

The final table in Appendix A presents the stresses and design factors 

calculated for each test item. 

Test Section Performance 

Proposed deterioration model 

Test section deterioration data show a great deal of scatter as 

can be seen by the examples in Figure 7. Fatigue analysis in Part II 

used the logarithm of stress cycles or coverages, and when this is 

used for the abscissa of the test section deterioration plots, the 

scatter of the data is greatly reduced. Figure 8 shows the test items 

from Figure 7 replotted with SCI as a function of the logarithm of 

coverages. The relation for each test item is essentially linear with 

the logarithm of coverages. 
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Rigid pavements and the CE test items generally go through a 

period with little or no deterioration, and then, as suggested in Fig­

ure 8, they deteriorate in a linear form as a function of the loga­

rithm of coverages. This allows the definition of the proposed rigid 

pavement performance model shown in Figure 9. A rigid pavement suf­

fers no structural fatigue related deterioration until the point iden­

tified as c
0 

in Figure 9 is reached. During this period the SCI is 

100. From c
0 

to CF where the SCI is zero, the pavement deterior­

ates linearly as a function of the logarithm of coverages. c
0 

repre­

sents the onset of structural deterioration, and CF is essentially 

complete or absolute failure with an SCI of zero. 

Some test sections (e.g. MWHGL Item l-CS in Figure 8) show a 

gradual upper curve into the linear deterioration behavior rather than 

the abrupt deterioration in the proposed model. This is probably true 

of actual pavements also. As noted earlier the test section data have 

relatively few slabs, so the damage density values used to calculate 

the SCI for test items show sudden large increases as slabs begins to 

deteriorate. In actual pavements this increase in damage density 

would be progressive resulting probably in a smooth curve. The major 

deterioration occurs along the line defined by c0 and CF , and the 

minor deterioration that may occur along the upper curve line in Fig­

ure 9 does not significantly affect the usefulness of the proposed 

model. 

The structural fatigue deterioration of a rigid pavement can be 

uniquely described by the two parameters, c0 and CF . The pavement 

undergoes no deterioration until c0 is reached and thereafter 

deteriorates linearly as a function of the logarithm of coverages 
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until CF is reached. If these two parameters can be predicted for a 

rigid pavement, then the SCI at any given coverage level can also be 

predicted. 

Determination of Model Parameters 

The c
0 

and CF values were calculated for each CE test item 

by fitting a least squares regression straight line to the SCI and 

coverage data of each item. The c
0 

value was found by setting SCI 

equal to 100, and CF value was found by setting the SCI equal to 

zero. Table 9 summarizes the results of this analysis for each test 

item rated as having type I or II quality data. Not all the SCI­

coverage data points were used in the analysis as indicated in 

Table 9. Excluded data points fell into three groups. When the SCI 

was equal to 100, the data point was on the horizontal portion of the 

model in Figure 9 and had not reached c0 yet. Generally, this kind 

of point was excluded from the analysis. When a data point had an SCI 

of zero, it has a similar problem since it can be past CF and on the 

horizontal portion of the model in Figure 9. Also as noted in Fig­

ure 9, some test items have a slightly curved upper portion from the 

SCI of 100 horizontal line to the straight line deterioration line. 

These points have SCI values of 80 to 100 at coverage levels 

before c
0 

is reached. This type of point was excluded from the data 

points used to determine c0 and CF • The correlation coefficient 

values in Table 9 indicate that the data used to determine c
0 

and CF were reasonably linear as idealized by the model in Figure 9. 

Figure 10 shows three relationships developed for c
0 

as a func­

tion of the design factor (DF). The design factor is the concrete 

flexural strength divided by the layered elastic calculated stress. 
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Table 9 

C 0 and C F Values for Test Sections 

Number Correlation 

of Data Coefficient 
co CF 2 Test Section gualit~ Points r 

l. Lockbourne No. 1 

A-1 II 225 10,084 2 
A-2 II 13 59 2 
B-1 II 59 522 3 0.88 
B-2 II 3 96 4(3)* 0.99 
C-1 I 48 636 4 0.93 
C-2 I 13 92 3 0.99 
D-1 I 289 3, 776 3 0.96 
D-2 I 6 104 3 0.95 
E-2 I 50 212 3 0.95 
N-2 I 105 284 4(3) * 0.99 
N-3 II 6 32 2 
0-2 I 347 1,606 4 0.97 
0-3 I 41 155 4(3)* 0.99 
Q-3 I 36 209 4 0.92 
U-2 II 123 488 3(2)* 

2. Lockbourne No. 2 

E-6 II 1,342 13,083 2 
M-1 I 93 353 9 0.87 
M-2 II 1,693 6' 774 3(2)* 

3. Sharonville 
Heavy Load 

73 II 668 7,054 4 0.83 

4. Multiple Wheel 
Heavy Gear Load 
Test (MWHGL) 

l-CS I 150 936 5(4)* 0.93 
4-CS II 165 258 2 
2-DT I 128 476 4 (3) * 0.99 
3-DT I 177 960 5(4)* 0.95 

5. Keyed Longitu-
dinal Joint 
Study (KLJS) 

1-CS II 16 683 4 0.91 
2-CS I 292 783 4(3)* 0.97 

(Continued) 
* Number in parentheses is number of points actually used to deter-

mine c0 and CF . 
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Table 9 (Concluded) 

Number Correlation 

of Data Coefficient 
co CF 2 Test Section Qualitz Points r 

5. Keyed Longitu-
dinal Joint 
Study (KLJS) 
(Continued) 

3-C5 II 11 395 4 0.94 
4-DT I 228 1,094 4 0.95 

6. Soil Stabili-
zation Pavement 
Study (SSPS) 

3-200 I 937 4,258 5(4)* 0.93 
4-200 I 1,179 5,934 3 0.95 
4-240 II 22 377 4 0.99 
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The c
0 

values for each test item are from Table 9. The design fac­

tors for each test item were calculated using stresses from layered 

elastic theory and are tabulated in Appendix A. The first relation 

was developed for the class I test sections identified in Table 7. 

The second relation identified as class IIa includes four data points 

that were listed as class II because of poor data spread that made 

calculation of c
0 

uncertain. These points gave results in line with 

the class I data. The third relation identified as class II includes 

all class I and class II data. 

All but one of the class II data, exclusive of the four points 

shown as IIa, have positive residuals for any of the relationships. 

These positive residuals suggest that a systematic error may exist. 

In this case, the poor data spread in most of these test items has 

resulted in underestimating c0 . The one section that has a negative 

residual is item 4-CS of the MWHGL test that was classified as 

class II data because slight pumping occurred during the test. 

Including the four class IIa data points changes the slope of 

the relationship between DF and c
0 

significantly. The addition of 

these four data points appears reasonable relative to the class I 

data. The class IIa relationship slope of 0.39 is also similar in 

magnitude to the 0.35 developed earlier by Parker et al. (1979) for 

conventional initial failure design with layered elastic models. 

Overall, the class Ila relationship appears to be the best relation 

available for the quality and quantity of data available, and it is 

recommended for predicting the c
0 

value. 

Figure 11 shows three relations developed for CF for the data 

divisions as before. The residuals for the class II data do not show 
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the pattern of being all positive that they did for c
0 

The 

class II and IIa relations are parallel lines while the class I line 

once again has an appreciably larger slope. There does not appear to 

be any reason to exclude any of the data points in Figure 11, so the 

relation for all of the class II data is the most appropriate for use. 

In this analysis, it has been assumed that c
0 

and CF are 

functions only of the design factor. As previously noted this assump­

tion may not be completely true. Postcracking behavior of slabs may 

also be a function of the subgrade support. The CE recognized this 

effect by the high-strength subgrade thickness reduction used with the 

traditional CE design method discussed in Part II. However, attempts 

to use subgrade strength with the design factor to obtain better c
0 

and CF relationships were unsuccessful because the test sections 

were almost universally built on low-strength subgrades. Therefore, 

insufficient data exist to examine the effect of high-strength sub­

grade influence on postcracking behavior of the pavements. Also, the 

use of an elastic modulus value with a layered elastic analytical 

model may simply reflect the contributions of the subgrade better than 

the Westergaard model with the subgrade spring constant. As discussed 

in Part II, the Westergaard stress calculation is not very sensitive 

to the modulus of subgrade reaction. 

Model Evaluation 

Comparison with other criteria 

The relations developed for the two parameters c0 and CF 

allow the prediction of a pavement's SCI value for any specific 
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traffic coverage if the design factor is known. The design factor is 

calculated from the concrete flexural strength and layered elastic 

stresses. These relations for c
0 

and CF are in effect fatigue 

relations, and they follow the same linear form as other concrete fat­

igue relations discussed in Part .II. These relations for c
0 

and CF 

are based on tests with relatively small magnitudes of traffic. How­

ever, their extrapolation to larger coverage levels is supported by 

the linear concrete fatigue relations found in beam fatigue tests 

described in Part II. 

The current CE fatigue relationship for Westergaard edge load 

model calculated stresses and the fatigue relationship developed by 

Parker et al. (1979) for layered elastic model calculated stresses use 

the same form as the c0 and CF relations. Design factor is 

expressed as a linear function of the logarithm of coverages. The 

relationships for c0 and CF and Parker et al. (1979) relationship 

use the same analytical model to calculate stresses for determining 

the design factor. Parker et al. (1979) used the CE definition of 

rigid pavement failure to determine their relationship. As noted in 

Table 6, the CE definition of failure could have SCI values that rea­

sonably range from 55 to 80 depending on the amount and severity of 

cracking in the test slabs. As shown in Figure 12, the relationships 

for c0 and CF bracket the Parker et al. (1979) relationship within 

the ranges of traffic used in the CE test sections. Since the c
0 

and CF relationships are for an SCI of 100 and 0 and the Parker 

et al. (1979) is for some range of SCI values between these extremes, 

the relative positions of the three relations are consistent. 
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Rate of deterioration 

The relationships for c
0 

and CF have the same form as other 

concrete fatigue relationships and appear consistent with other con-

crete pavement criteria. However, the logarithmic form of the c
0 

and eF relationships indicates that once deterioration begins the 

rate of deterioration decreases with increasing coverages. 

The deterioration of a test section can also be examined using a 

normalized coverage factor, eN , defined as 

where e is the coverage leve-l at which a specific SCI is calcu-

lated. The relation between CN factor and SCI in Figure 13 is a 

measure of the rate of structural deterioration at a given coverage 

level. Normalizing the traffic coverage data using the calculate c
0 

and CF values effectively collapses the data. 

By definition, when C is equal to c
0 the normalized factor 

CN should be zero, and when C is equal to CF , eN should be 1. 

The relation in Figure 13 passes through these points. Negative CN 

values with SCI values less than 100 are due to the initial curved 

deterioration some test sections showed as was seen in Figure 9. 

The decrease in the rate of deterioration is not consistent with 

some of the results reported from the field performance of pavements. 

Shahin, Darter, and Kohn (1977a) found that Air Force airfield pave-

ments up to 35 years old showed a slightly convex relationship between 

PCI and the pavement age in years. This is an increase in the rate of 

deterioration with age and implies that if the annual traffic rate is 
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approximately constant then the rate of pavement deterioration 

increases with coverage level as opposed to decreasing with coverage 

level as implied by Figure 13. 

This discrepancy is due to several factors. First, the PCI 

includes all forms of distress and not just the structural deducts 

used by the SCI. Some of the distress, particularly those associated 

with durability or maintenance, will become more pronounced with age 

regardless of loading. The assumption of constant equivalent annual 

traffic is probably erroneous also. Although the Air Force has not 

seen the same increase in traffic volume that has occurred in civil 

aviation, aircraft have become progressively larger and heavier with 

increasing structural loading of the pavement. The addition of the 

other PCI deducts not included in the SCI and increasing aircraft 

loading will tend to accelerate the rate of deterioration of in­

service pavements. 

As a pavement begins to structurally deteriorate, its ability to 

carry load through bending decreases. When carried to the extreme the 

pavement is cracked into small blocks that are pushed into the sub­

grade with negligible bending. Consequently, in badly deteriorated 

pavements further progression of deterioration will depend less on 

fatigue tensile related cracking than it will on spalling and fault­

ing. Also, deteriorated pavement will allow water to penetrate to the 

subgrade thereby weakening it and reducing the pavement support. The 

c
0 

and CF relationships are based on accelerated traffic tests 

that, although they include field effects such as temperature or mois­

ture warping or nonuniform subgrade support, generally do not last 
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long enough to provide information on water penetration and subgrade 

weakening that may occur over years as a pavement deteriorates. 

The rate of deterioration of the SCI predicted by the c
0 

and 

CF relationships is reasonable for the data and limitations upon 

which the relations are based. An in-service pavement will have addi­

tional deterioration besides that predicted by the SCI loss from the 

c0 and CF relations. 

Unfailed test sections 

Four test items in Table 7 had SCI values of 100 at the end of 

traffic testing. Table 10 shows the predicted performance of each of 

these sections along with the coverage level at the end of traffick­

ing. Only one test section exceeded its predicted c
0 

value where 

deterioration would have been expected to start. The other three test 

sections stopped traffic before reaching their c
0 

values and, as 

predicted by the model, showed no deterioration. 

U-Tapao Airbase 

During the Vietnam War, three pavement features failed under 

B-52 traffic at U-Tapao Airbase, Thailand. It is generally very dif­

ficult to assess field performance of in-service pavements because the 

actual number of aircraft using the feature and their actual weights 

are seldom known. However, since these were bomber aircraft on combat 

missions, departing aircraft were probably at or near their maximum 

weights. Also, the military operations were concentrated in a rela­

tively short period of 1967-1972. These pavement features were sub­

ject to predominately B-52 traffic which is such a severe aircraft 

when fully loaded that traffic by unloaded B-52 aircraft or other 

types of aircraft is insignificant. The failed U-Tapao features offer 
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Table 10 

Predicted Performance of Unfailed Test Item 

Predicted Performance Unfailed 
Test Series Test Item co CF Coveras;es 

l. Lockbourne No. l E2.66M 252 1,024 556 

F2.80 2,708 11, 253 550 

2. Lockbourne No. 2 E-7 74,791 325,068 2,2204 

3. Sharonville Heavy 

Load 71 7.142xl0 6 32.653xl0 6 9,680 
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the opportunity to check the proposed performance models against in­

service pavement performance. 

Pavement condition surveys by Lambiotte and Chapman (1969) and 

Lambiotte (1972) provide the basis for this analysis. Properties 

drawn from these reports are shown in Table 11. The SCI values were 

estimated from the condition survey reports. The c0 and CF values 

were calculated using the performance models presented earlier in this 

section. About 14 percent of Hardstand Taxiway 2 (the south end) 

failed and was rebuilt after only 74 coverages. The remainder con­

tinued to be used with the estimated SCI deteriorating from 88 to 76 

over the next few years. Access Taxiway 2 failed after 1,230 cover­

ages and was rebuilt. No condition information was available other 

than the pavement failed. Access Taxiway 1 failed after 9,820 cover­

ages and was abandoned. At this point, it had an estimated SCI of 36. 

Figure 14 shows the performance of the three U-Tapao pavement 

features predicted by the c0 and CF values from Table 4. Also 

shown are estimates of the SCI values for Hardstand Taxiway 1 and 

Access Taxiway 1. The predicted performance curves reflect the 

relative performance of the actual pavements, i.e,. Access Taxiway 1 

significantly outperformed Access Taxiway 2, which in turn outper­

formed Hardstand Taxiway 1. 

The best traffic and condition data were available for Access 

Taxiway 1, and its SCI of 36 when it was replaced with an adjacent 

bypass taxiway agrees well with the predicted performance. Access 

Taxiway 2 failed sooner than would be predicted. The rapid failure of 

one end of Hardstand Taxiway 1 at 74 coverages is probably not repre­

sentative. The fact that one end failed rapidly and the remaining 
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Table ll 

Failed Pavements at U-Tapao Air base 

Ra 
Subgrade 

Predicted Behavior 
k E 

Coverages 
(lb/ (lb/ (lb/ Pavement "At h 
. 2) 2 . 2) scrb co CF Feature (in.) ln. in. /in.) 1n. Failure" 

Hardstand TW l 16 580 300 39,400 76-88 538 1486 c 

Access TW 1 16 645 400 57,000 36 5285 19427 9820 

Access TW 2 16 615 350 48,000 "Failed" 1731 6309 1230 

a 
b 

c 

Concrete flexural strength. 
SCI was estimated by percentage of cracked slabs and joint spalls reported. One half of each 

damage type was assumed to be of low severity, and one half was assumed to be of medium 
severity. 
Five hundred feet on south end failed and was rebuilt in 1967 shortly after opening, approxi­

mately 74 coverages. The remaining approximately 3,000 feet remained in use without repair, 
and some condition survey data were reported for 1968, 1969 and 1971 inspections. 
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86 percent of the feature continued to perform leads to the suspicion 

that moisture or subgrade conditions in this area were worse than 

reported or that construction problems may have resulted in low-

strength concrete. Although pavement condition d~ta for the rest of 

the feature were reported to allow estimates of the SCI in 1968, 1969, 

and 1971, there are no reliable traffic data. If the 74 coverages 

that caused failure after "several months" are considered as typical 

for a third of a year, then there were about 250,500, and 1,000 cover-

ages as is plotted in Figure 14. If it is considered as typical for 

two months, then the coverage levels would be about 500, 1,000, and 

1,500. The rapid failure of the south end of Hardstand Taxiway 1 no 

doubt caused considerable concern, and evaluation of the structural 

capacity of the pavement recognized that this pavement was not capable 

of sustained B-52 traffic (Lambiotte and Chapman 1969). In all like-

lihood traffic on this feature was reduced as much as possible, and 

all the constant rate of accumulation traffic estimates are erroneous. 

Lambiotte and Chapman (1969) note that on Hardstand Taxiway 1: 

"Traffic intensity, however, is far lighter than on either of 
the access Taxiways (1 and 2) or other primary facilities. Thus 
the prognosis for this pavement section is that it (deteriora­
tion) will probably occur more gradually than other pavement 
failures experienced to date on the station." 

Overall, the performance models did an excellent job predict-

ing the performance of Access Taxiway 1, overestimated the performance 

of Access Taxiway 2, and in light of the uncertainties concerning 

traffic levels made a reasonable estimate of the performance u£ Hard-

stand Taxiway 1. The relative predicted performance of each feature 

was consistent with the relative actual pavement performance. 
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Summary 

Concrete pavement fatigue deterioration can be described by a 

model using the two performance factors, c
0 

and CF . Until traffic 

coverages reach c
0 

, there is no significant structural deterioration 

and the pavement SCI is 100. Between the coverage levels of c0 and 

CF , the pavement SCI value decreases linearly with the logarithm of 

coverages until an SCI value of zero is reached at CF . Conceptu-

ally, c
0 

is the onset of deterioration, and CF is complete fail-

ure. The two performance factors, c
0 

and CF , may be determined 

from the following relationships: 

where 

DF 0.5234 + 0.3920 Log C
0 

DF 0.2967 + 0.3881 Log CF 

DF design factor 

concrete flexural strength + layered elastic calculated 
stress 

The relations for c
0 

and CF are essentially layered elastic 

based field fatigue curves from accelerated traffic field tests. They 

account for fatigue damage due to applied loads and indirectly include 

factors such as temperature and moisture induced stresses and nonuni-

form subgrade support because they are based on full-scale field 

tests. Actual in-service pavements will show additional deterioration 

due to factors not related to fatigue loading. Some of these other 

factors include durability problems such as D-cracking, deterioration 
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due to maintenance problems such as failed joint sealant, or environ­

mental effects such as subgrade weakening due to moisture infiltration 

through cracked pavements .or improperly sealed joints. 

The c
0 

and CF relations are developed from full-scale field 

tests, and the data show appreciable scatter. However, this variabil­

ity is common in fatigue testing in both the laboratory and field. 

The relationships presented for c
0 

and CF appears to be the most 

appropriate for the available data. They are consistent with other 

criteria and follow the same form as other fatigue relationships. 

When these relations were used with unfailed test items and the U­

Tapao AB in-service pavements, they gave reasonably good agreement 

between actual and predicted pavement performance. 

The pavement performance model based on c
0 

and CF parameters 

predicts the SCI of a specific pavement system for any coverage level. 

This is a major departure from conventional pavement design criteria 

that use a specific failure condition as their basis. The model with 

the c
0 

and CF factors has no specified failure level; but if the 

final predicted SCI value is between 55 and 80 at the end of the 

design traffic, then the design will be consistent with the current CE 

failure criterion. 
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PART V: EFFECTIVE MODULUS FOR CRACKED SLABS 

When a plain concrete pavement slab cracks, its ability to 

transmit load through bending is reduced. Generally such a crack in a 

pavement is unable to transmit moment, although aggregate interlock 

across the crack can transmit shear. This shear transfer across the 

crack decreases with further application of load repetitions or open­

ing of the crack. 

The progressive cracking and decreasing load carrying capacity 

of a slab must be modeled for overlay design. The performance rela­

tions for concrete pavements developed in the previous section require 

that the supporting layers be characterized by a thickness, a·modulus 

of elasticity, a Poisson's ratio, and an interface condition. When a 

concrete base slab is overlaid, the base slab can continue to crack 

and deteriorate under traffic loads, and the support provided to the 

overlay is decreased as the base slab deteriorates. Consequently, the 

support provided to an overlay slab by the base pavement is a variable 

and not a constant. 

Within the limitations of the layered elastic model there are 

two potential ways to represent this decreasing support. The base 

slab thickness used in the stress calculations can be replaced with a 

decreased or effective thickness, or the base slab concrete modulus of 

elasticity can be reduced. Of these two approaches, use of a reduced 

effective modulus of elasticity for the cracked concrete was selected 

as the preferable approach for this study. Thickness is almost the 

only pavement parameter that can physically be measured with con­

fidence. The concepts of linear elasticity and the concrete modulus 
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of elasticity used for analysis are artificial constraints placed on a 

real, nonlinear system to make it analyzable. Therefore, it was felt 

that the thickness should not be varied and that an effective modulus 

of elasticity was a more reasonable adjustment. 

Existing Models 

A design study for an overlay at Diego Garcia by Lyon Asso-

ciates, Inc. (1982) used 200 falling weight deflectometer tests on 

cracked slabs to develop a correlation between the Corps of Engi-

neers (CE) visual condition or C factor in Table 2 and the effective 

modulus of cracked slabs. This relation was expressed as 

where 

E 
r 

c 

E 67.8 C + 22.9 
r 

ratio of the effective modulus of the cracked slab to the 
modulus of the uncracked slabs as a percent 

CE visual condition factor from Table 2 

One of the criticisms of the CE C factor has been that it is sub-

jective and poorly defined. Figure 15 shows a range of possible SCI 

values for the available definitions of the C factor. An approximate 

relation within this band is shown in Figure 15 and is described by 

C -0.076 + 1.073 (SCI) 
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where 

C CE visual condition factor 

SCI Structural Condition Index 

This relation can be substituted into the Diego Garcia expression to 

provide an estimate of the effective modulus in terms of SCI as 

follows: 

E 0.177 + 0.00727(SCI) 
r 

Two other relations for C versus effective modulus and for nomi-

nal size of Portland Cement Concrete (PCC) slab fragment versus the 

effective modulus ratio are shown in Figures 16 and 17 (AASHTO 1986). 

The relation between C and SCI can be used to convert the relation in 

Figure 16 into a relation between SCI and E-ratio. Table 12 lists 

some sample calculations to show one possible form of the SCI and E-

ratio relation derived from Figure 17. The assumptions on damage used 

in developing the relation between SCI and nominal slab fragment 

length obviously affect the results, and the curve in Figure 17 is one 

of a family of possible curves. 

The AASHTO, Diego Garcia, and slab fragment developed relations 

between SCI and E-ratio are plotted together in Figure 18. The Diego 

Garcia relation was based on data where the C factor varied from 

0.35 to 0.95 or a SCI of approximately 41 to 95. This E-ratio should 

go to 1.0 as the SCI goes to 100 although the mathematics of the 

regression analysis do not do so. The relation developed from the 

nominal slab fragment size could be replaced with a family of possible 

curves developed by changing assumptions of initial slab size, damage 
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Table 12 

Sample Calculations for Determining SCI and E-Ratio 

from Nominal Slab Fragment Size 

Nominal Slab Eb 
Effective 

Slab Condition SCI a Fragment. in. 
. c 

r Length 

Intact 100 240 X 240 1.0 240 

Initial Crack 80 120 X 240 0.83 170 

3 to 4 pieces 55 60 X 60 0.40 60 

6 pieces 39 30 X 60 0.13 42 

9 pieces 23 15 X 30 0.05e 21 

a Assumes 50 percent damage density. 

Calculated from Figure 17 using least dimension of nominal slab 
fragment. 

Square root of area of slab fragment. 

Calculated from Figure 17 using effective length. 

Extrapolated. 
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density, etc. The relations show reasonable agreement with one 

another, although the Diego Garcia relation begins to deviate from the 

others as the SCI decreases. Information in the lower regions of 

SCI values for any of the curves is missing. These relations are not 

adequate to develop a usable model for the effective modulus of 

cracked concrete, so tests were conducted at the US Army Engineer 

Waterways Experiment Station (WES) to provide additional data on the 

effective modulus of elasticity for cracked concrete slabs. 

Slab Tests 

Test slabs 

Six concrete slabs were located at WES that could be tested to 

develop data for the SCI and E-ratio relationship. Test slabs l and 2 

were located in the Mobility Division test vehicle parking area. They 

were 21 by 27.8 ft in plan, 7.3 in. thick, and reinforced with wire 

mesh. Both slabs had been cast directly on the native loess (CL) sub­

grade. Slab 1 had several discontinuous contraction shrinkage cracks. 

Slab 2 had similar contraction shrinkage cracks that quartered the 

slab. The slab dimensions in plan are such that contraction cracking 

would be expected for slabs of this thickness. The location of the 

cracks at the approximate slab edge centerpoints of slab 2 supports 

this conclusion. These slabs in the past have only been subject to 

light traffic of unloaded Mobility Division test vehicles going to an 

adjacent wash rack. All indications are that the existing cracks in 

slabs 1 and 2 before the test are due to initial contraction induced 
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stresses and overly large plan dimensions rather than load related 

stresses. 

Test slabs 3 and 4 were located in Hanger No. 4 and had been 

used previously for parking. The slabs were IS by 16 ft in plan, 

5.6 in. thick, and reinforced with wire mesh. Both slabs had been 

cast directly on the native loess (CL) subgrade and had corner breaks. 

These outside corner breaks had been caused during previous nearby 

tests when the wheels of the MX Transporter had inadvertently tra­

versed the outside edges of the slabs. 

Test slabs 5 and 6 were located on the WES Poorhouse Property. 

Slab 5 was 13.5 b~ 17.9 ft in plan, and slab 6 was 16.25 by 17.9 ft in 

plan. The slabs had been originally cast as a single slab, but a con­

traction crack divided the original slab into two slabs. Both slabs 

were 18.1 in. thick and had been cast directly on the native loess 

(CL) subgrade. These slabs had been originally used to test security 

sensors. Each slab had slots approximately 1.5 in. wide and 2 in. 

deep cut across the width of the slabs. Security sensor cable had 

been placed in these slots, and then the slots had been filled with 

flexible polymeric materials. 

Test procedures and limitations 

Data for the SCI and E-ratio relationship were developed by pro­

gressively cracking each of the slabs, rating the slab SCI at each 

stage of cracking, and measuring the elastic response of the slab at 

each stage. Cracking was done by dropping a headache ball from a 

crane at selected points to try to obtain controlled cracking. A 

falling weight deflectometer was used to measure the slab's deflection 

under load. Only single slabs were tested, so the damage density for 
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SCI calculations was selected to be 50 percent to represent an average 

or typical condition on a pavement feature. 

The contraction cracks in slab 2 essentially acted as con­

traction joints dividing the original slab into four slabs. Each of 

these was considered to be a separate effective slab. All deflection 

tests were run away from the sides of slabs 3 and 4 that had.the cor­

ner cracks. Consequently, the effect of these corner cracks on the 

elastic deflection of the slab should have been minor, and they were 

ignored in computing the SCI for these slabs. The sensor slots in 

slabs 5 and 6 could not be avoided and would have some effect on the 

stiffness of the slab. However, their small size in relation to the 

overall slab dimensions and the fact that they were filled suggested 

that their overall effect on deflection would be minor. However, they 

would probably affect crack location significantly. 

Slabs 1 through 4 were all lightly reinforced. Airfield pave­

ment slabs and most highway pavement slabs are not usually reinforced. 

Reinforcing in pavements is placed at middepth of the pavement to hold 

any cracks that form tightly closed and to prevent opening and working 

of the crack. Reinforcing in pavements is not intended to handle ten­

sile strains as it is in structural concrete. Its location at or near 

the midpoint of the slab should be near enough to the neutral axis of 

bending that any effect on deflection by the reinforcing steel should 

be slight, and it was ignored for this test. Because the steel will 

tend to hold cracks tightly closed, all cracking in these slabs can be 

expected to be low severity. 

The concrete cracking from the impact of the dropped weight is 

due to shock waves and has a very different cause from fatigue 
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cracking due to repeated load application that causes concrete pave­

ment structural deterioration. However, research has found no dif­

ference in cracks caused by slow or fast loading (Benture and ~findess 

1986), and the cracking from this test's impact loads should affect 

deflection measurements in the same manner as would fatigue cracking. 

Deflection measurements were made using the Dynatest Falling 

Weight Deflectometer, model 800.0. This machine uses a weight dropped 

onto an 11.812 in. diam steel plate to impart an impulse load to the 

pavement and cause the pavement to deflect. A hard plastic pad and 

then a hard rubber pad are attached to the bottom of the plate. Four 

drop heights are available so that the level of impact load can be 

selected to be within the range of approximately 8,000 to 23,000 lb. 

The actual load applied to the plate for each test drop is measured by 

a load cell. Velocity transducers are used to measure surface deflec­

tions up to 75 x 10-J in. in magnitude. Deflections were measured 

radially in a straight line at 0, 12, 24, 36, 48, 60, and 72 in. from 

the center of the plate for this test. The 0-in. transducer measures 

the deflection through a hole in the center of the plate. All data 

are automatically recorded and stored for future analysis. Typically 

four drops were made at any one station. The first drop generally 

gave the highest deflection readings probably because of the seating 

of the plate under load. The first readings were not used for anal­

ysis. The next three drops were checked for consistency of results, 

and one typical set of readings was selected for analysis. 

The deflection basin measured by the velocity transducers was 

used to determine modulus values of the concrete. and subgrade. ~lod­

ulus values were varied until the calculated basin matched the 
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measured basin as closely as possible. Deflections were calculated 

using the layered elastic model solved with the BISAR computer code 

discussed in Part III. The iterations of matching the calculated and 

measured deflection basins were done using the computer program BISDEF 

developed by Dr. Walter Barker of WES. BISDEF uses BISAR as a sub­

routine to calculate deflections. The calculation of modulus values 

from deflection basins is a standard WES pavement evaluation and anal­

ysis procedure described in detail by Bush (1980). 

The input requirements and selected constants for each BISDEF 

calculation are shown in Figure 19. The 1 million-psi modulus mate­

rial at 20 ft was found necessary in previous work to obtain accurate 

surface deflection predictions (Parker et al. 1979). The computer 

program BISDEF varies the concrete pavement and subgrade modulus (or 

one of them can be set to a specified value) until the computed 

deflection basin matches the measured one as closely as possible. 

Deflection basins were measured at three locations on each slab. 

The location of deflection basin measurements and initial slab condi­

tions are shown on Figures 20, 21, and 22. Each falling weight test 

position is identified as position 100, 200, or 300 on each slab. In 

general position 100 is located at the center of the slab; position 

200 is adjacent to a joint; and position 300 is at a slab quarter 

point. The contraction cracking in slab 2 required some modification 

of this positioning as shown in Figure 20. The third digit in the 

position number indicates the series of cracking. For example, 

test 100 is an initial falling weight test at position 100 before any 

cracking. Test 101 is a falling weight test at position 100 after the 

first set of cracks have been formed; test 102 is a falling weight 
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NOTE: LOAD APPLIED TO PLATE MEASURED BY LOAD CELL 
DEFLECTION BASIN MEASURED BY VELOCITY TRANS­
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test at position 100 after the second set of cracks have been formed; 

etc. As the tests were conducted on slab 1, modifications to test 

positions were made. The initial crack in slab 1 passed north of the 

load plate and between the plate and the 12-in. deflection sensor. A 

second test position (position 100.5) was established immediately 

north of the crack so that the plate and sensors would be on the same 

side of the crack. Tests were run at both position 100 and 100.5, and 

tests were subsequently numbered 101, 101.5, 102, 102.5, etc. After 

the final cracks were made in slab 1, deflections at position 300 were 

very large due to extensive cracking in the area, so another location 

was tested. This position is shown as 300.5 in Figure 22, and the 

test was numbered 304.5. The test 3 at position 300 was rerun the 

next day and is identified as test 304R. All deflection basins that 

were collected during these tests are recorded in Appendix B. 

Initial modulus values 

The results of falling weight tests and predicted modulus values 

for the concrete and subgrade of each slab and test position before 

beginning the cracking of slabs is shown in Table 13. When evaluating 

a concrete pavement to determine modulus values, it is the general 

practice to run the test at the center of an intact slab so that the 

conditions of continuous, homogenous, linearly elastic layers assumed 

in the analytical model to calculate deflections will be as nearly 

valid as possible. Position 100 on all slabs most nearly corresponds 

to this condition. The lowest deflections were recorded at posi-

tion 100 on all slabs and the highest at position 200 adjacent to a 

joint or crack. The only exception is slab 2 where position 300 in 

the corner between cracks had the highest ·deflection. Position 200 on 
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Table 13 

Predicted Initial Hodulus Values Before Cracking 

Measured Deflection Predicted Modulus Error in Matching 
(x 10-3 in.) (lb/in~ ) Basin 

Slab Test DO a D12a D24a D36a D48a D60a D72a Concrete Sub grade Absolute b Arithmetic c 

1 100 27.3 23.6 18.0 13.5 10.0 7.5 5.6 1,953,000 10,540 14.58. 3.32 

200 32.0 25.5 19.0 14.1 9.8 7.6 5.6 1,452,000 10,960 30.50 6.47 

300 30.6 26.2 20.0 14.9 11.0 8. 1 5.9 1,620,000 9,530 11.21 1.60 

2 100 26.3 23.7 18.9 14.9 ll.5 9.0 6.8d 2,690,000 9,680 29.37 29.37 ,_. 
,_. 

lOOA Same as above but D72 sensor not used 2,758,000 9,360 8.90 6.54 N 

200 26.6 25.0 19.5 15.0 11.1 8.5 6.5 2,372,000 9,750 22.07 21.57 

300 27.3 23.4 18.2 14.0 8.8 8.3 6.3 2,062,000 10,370 44.25 7.80 

3 100 21.1 19.1 15.7 11.9 7.4 6.5 4.8 5,862,000 13,020 35.13 5.23 

200 39.8 30.5 21.0 14.3 9.5 7. 1 5.0 1,478,000 10,740 4.37 29.40 

300 28.4 24.9 17.3 11.9 8.1 6.6 5.0 2,709,000 12,700 42.05 28.79 

(Continued) 
a Sensor location: DO is sensor at 0 in., Dl2 is 12 sensor at in., D24 is sensor at 24 in., etc. 
b Absolute Error = sum of the absolute value of the percent error. 

Percent Error (measured deflection- calculated deflection)/(rneasured deflection). 
c Arithmetic Error arithmetic sum of percent error taking into account the sign of the error. 
d Sensor on adjacent slab. 



Table 13 (Concluded) 

Measured Deflection Predicted Modulus Error in Matching 
-3 (lb/in: ) (x 10 in.) Basin 

DO a D12a D24a D36a D48a D60a D72a Concrete Subgrade Absolute 
b Arithmetic c 

Slab Test 

4 100 17.9 15.9 12.8 10.0 7.6 5.9 4.4 2,489,000 16,070 190.53 20.58 

200 52.0 38.9 24.6 16.3 10.6 7.0 5.0 1,000,000 9,420 24.65 -10.49 

300 20.5 17.9 14.1 10.6 7.5 5.8 4.4 5,884,000 13,870 15.44 2.61 

5 100 4.5 4.2 3.7 3.4 3.0 2.6 2.2 3,959,000 21 J 990 9. 77 3.58 
,__. 

100A Same ,__. as above except E-Subgrade Set = 11,660 10,286,000 11 '660 66.58 -18.53 
VJ 

200 9.2 8.1 7.0 6.1 5.2 4.3 3.5 1,295,000 14,870 6.87 -0.08 

300 5.6 5.2 4.9 4.5 4.1 3.7 3.4 4,995,000 11,660 4.40 -0.12 

6 100 3.9 3. 7 3.6 3.4 3.2 3.1 2.9 15,216,000 8,340 6.64 1.18 

100A Same as above except E-Subgrade Set 13,250 8,606,000 13,250 26.04 9.52 

100B Same as above except E-Subgrade Set 21,990 4,632,000 21,990 56.99 79.62 

200 7.5 7. 1 5.5 4.6 3.9 3.4 2.8 13,935,000 19,559 20.19 -1.95 

300 4.7 4. 5 4.4 4.3 4.0 4.0 3.9 20,000,000 4 J 130 9.65 0.31 

a Sensor location: DO is sensor at 0 in., 012 is sensor at 12 in., 024 is sensor at 24 in., etc. 
b Absolute Error = sum of the absolute value of the percent error. 

Percent Error (measured deflection - calculated deflection)/(measured deflection). 
c Arithmetic Error = arithmetic sum of percent error taking into account the sign of the error. 
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all slabs and position 300 on slab 2 are the least satisfactory tests 

to try to determine an initial, uncracked concrete modulus of elas­

ticity because the presence of discontinuities distorts the deflection 

basin by violating the basic assumptions of the analytical model used 

to calculate deflections. All tests at each position were run with 

the plate and the velocity transducers in the same position. 

The predicted subgrade modulus for slabs l and 2 varied from 

approximately 9,500 to 10,500 lb/in.
2

. These elastic modulus values 

correspond to a modulus of subgrade reaction, k, of approximately 100 

to 110 lb/in.
2
/in. This is toward the lower end of the range of 

values to be expected from this soil type. However, this subgrade was 

originally poorly prepared before concrete placement, and the slabs 

are located adjace~t to a washrack and between the washrack and a 

drainage ditch. The subgrade soil under the slabs probably remains 

wet since the washrack is in frequent use. Therefore, subgrade soil 

modulus values appear to be reasonable for slabs l and 2. A plate 

load test run at slab 1 approximately 2-1/2 months after these deflec­

tion tests found the k value to be 167 lb/in.
2
/in. This value is in 

reasonable agreement with the predicted values from the falling weight 

tests considering the approximate nature of all correlations between 

modulus of subgrade reaction and elastic modulus and considering the 

elapsed time between tests. 

The predicted concrete modulus values for slabs 1 and 2 vary 

from approximately 1.6 to 2.8 million. These modulus values are 

unusually low for concrete; however the quality of the concrete in 

slabs 1 and 2 is very poor. The concrete tended to crush rather than 

crack when struck by the headache ball. The same was true even when 
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the ball was dropped from only a few feet above the pavement surface, 

An examination of the crushed concrete found intact aggregate and a 

soft matrix that could often be broken by hand, Immediately after 

crushing there was a distinct odor that was generally described by 

observers as "green". Although the concrete modulus values are low, 

the concrete quality appears to be poor, and the values are therefore 

not unreasonable. 

Test 300 on slab 1 was taken as the most representative test 

position to serve as a base for further analysis as the slab was 

cracked. The error in matching this basin was smaller than posi­

tion 100, and as will be discussed later, during initial cracking a 

crack formed between the plate at position 100 and the first sensor 

and thus made interpretation of the deflection basin more difficult 

using an elastic layer analytical model. Position 200, as discussed 

earlier, is the least desirable position to use as a base for further 

analysis. For slab 2, test 100A in Table 2 was selected as the base 

for further analysis. This test is the same as test 100 except the 

72-in. sensor deflection was not used in the basin matching because 

the sensor was located across the joint on slab 1. ·Removing this 

sensor from the analysis significantly reduced the error in matching 

the basin when compared to test 100, and the error is significantly 

lower than tests 200 or 300. 

The soil modulus of elasticity values for slabs 3 and 4 vary 

from approximately 13,000 to 16,000 lb/in.
2

, neglecting position 200 

on each slab. This corresponds to a modulus of subgrade reaction, k, 

of about 110 to 150 lb/in.
2

/ in. which is reasonable for this soil. A 

plate load test run at slab 3 approximately 2-1/2 months after the 
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deflection tests found a modulus of subgrade reaction of 122 lb/in.
2

/ 

in. The length of time between probably had a minimal effect since 

the slabs are located inside a hanger and are protected from weather. 

The modulus of concrete for slabs 3 and 4 ranges from 2.5 to 5.9 mil­

lion lb/in. 2 . Test 100 on slab 3 and test 300 on slab 4 were selected 

as the best choices to use as a base for further analysis because they 

had the lowest errors and most consistent and reasonable soil and con-

crete modulus values. 

The concrete and soil modulus values for slabs 5 and 6 in 

Table 12 are much less satisfactory than those calculated for slabs 1 

through 4. A major part of this problem is the small magnitude of the 

deflections that could be obtained on the 18-in.-thick slabs using the 

falling weight deflectometer. Small errors in deflection measurements 

due to instrument sensitivity greatly affect the basin and resulting 

calculations when the deflection magnitudes are so small. Concrete 

modulus values of 10 to 20 million are completely unrealistic. The 

concrete modulus values of 4 to 5 million for tests 100 and 300 on 

slab 5 are much more reasonable. However, the subgrade elastic 

modulus values for these two tests are approximately 22,000 and 

11,700 lb/in.
2

. These values correspond to modulus of subgrade 

reaction, k, values of about 190 and 120 lb/in.
2
/in. The value of 

190 lb/in.
2
/in. is toward the upper end of values to be expected for 

this type of soil. These slabs are located on the soil surface at the 

top of a well-drained hill. No information on site preparation before 

construction could be located. At the time of these tests, Vicksburg, 

Mississippi, was in the midst of an extended drought. The combination 

of good site drainage and extended dry weather make it plausible that 
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the elastic modulus values for this site could be on the order of 

22,000 lb/in.
2

. More expected values for this soil under moist con-

ditions would be 10,000 to 15,000 psi as at position 300. This posi-

tion also gave the smallest errors for matching the deflection basin 

on slab 5. When the deflection test 100B was run with the same sub-

grade modulus as test 300, the predicted concrete modulus was 10 mil-

lion which is too high to be acceptable. The concrete modulus at 

position 100 on slab 6 was calculated with assigned subgrade modulus 

values of 13,250 lb/in.
2 

(test 100A) and 21,990 lb/in. 2 (test 100B). 

Results are shown in Table 13. The predicted concrete modulus value 

of 8.6 million for 100A remains suspiciously high. When the high-

strength subgrade modulus was used in lOOB, the predicted concrete 

modulus was 4.6 million, which is within reasonable ranges for con-

crete and is in agreement with the predicted concrete modulus values 

tests 100 and 300 on slab 5. Test 100 on slab 5 and test 100B on 

slab 6 were selected as the most reasonable results to use as a base 

for further analysis for the following reasons: 

a. The center of the slab, position 100, provides the closest 
physical agreement with the layered elastic model. 

b. Slab 5, position 100, gives reasonably small agreement 
errors between the calculated and measured deflection 
basins. 

? 
c. The relatively high subgrade modulus of 21,990 lb/in.- gives 

consistent and reasonable predicted concrete modulus values 
for both slab 5, test 100, and slab 6, test lOOB. 

~ 

d. The subgrade modulus value of 21,990 lb/in.~ is reasonable, 
even though somewhat high, for the site, weather, and soil 
conditions. 

e. Lower subgrade modulus values gave unrealistically high pre­
dicted concrete modulus values for slab 5, position lOOB, 
and slab 6, position lOOA. 
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Cracked slab SCI analysis 

After the initial uncracked falling weight deflection data were 

collected for a slab, the headache ball was used to develop various 

levels of cracking, and then the SCI at each level of cracking was 

determined. The SCI calculations assumed that the test slab was 

representative of a pavement feature with a 50 percent distress den­

sity. At each level of cracking with accompanying SCI calculation, 

falling weight deflection data were collected for each position on 

each slab. Generally, all falling weight tests and cracking were done 

on one day for each slab. 

Photographs and crack maps for each slab at the different stages 

of cracking are contained in Appendix B. Slab 2 was effectively 

broken into four slabs by contraction cracking, so the slab considered 

in the analysis was the northwest corner of the original slab. This 

slab, for analysis, is bordered by the west edge of the slab, the 

joint between slabs 1 and 2 and two contraction cracks. 

The calculations of the SCI for each stage of cracking on each 

slab are summarized in Table 14. The guidelines for SCI calculations 

discussed in Part IV were used for determining the SCI for these slabs 

with two limitations. Since only one slab was available, all SCI cal­

culations assume a 50 percent damage density. This test slab would be 

considered as representative of an entire pavement feature to be eval­

uated. Second, the SCI value of zero was assigned when the area 

immediately around the test position was divided into multiple frag­

ments by extensive cracking as for slab l, test 104 shown in 

Appendix B. 
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Table 14 

Summary of SCI Calculations for Test Slabs 

Density 

Slab Test Damage TyEe (%) Severity Deduct SCI 

1 300 None 0 0 100 

301 Type 3, L/T/D cracking* 50 Low 20 80 

302 Type 12, shattered slab 50 Low 42 58 

303 Type 12, shattered slab so High 77 23 

304 Closely spaced cracks 100 0 

2 100 None 0 0 100 

101 Type 3, L/T/D cracking 50 Low 20 80 

102 Type 3, L/T/D cracking 50 Low 20 80 

103 Type 12, shattered slab 50 Med. 61 39 

104 Type 12, shattered slab so High 77 23 

3 100 None 0 0 100 

101 Type 12, shattered slab so Med. 61 39 

102 Type 12, shattered slab so High 77 23 

4 300 None 0 0 100 

301 Type 12, shattered slab 50 Low 42 58 

302 Type 12, shattered slab 50 High 77 23 

5 100 None 0 0 100 

101 Type 12, shattered slab 50 Med. 61 39 

102 Type 12, shattered slab 50 High 77 23 

103 Closely spaced cracks 100 0 

6 100 None 0 0 100 

101 Type 3, L/T/0 cracking 50 Med. 45 55 

102 Type 12, shattered slab so High 77 ']'"> 
... ..) 

103 Closely spaced cracks 100 0 

* L/T/0 Cracking longitudinal/transverse/diagonal cracking. 
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Determining cracked concrete modulus 

A concrete modulus was calculated for each stage of cracking, as 

described earlier, by matching the falling weight deflection basin as 

closely as possible. Table 15 shows the results of these calculations 

for slab 1 at positions 100, 200, and 300 at each stage of cracking. 

For the calculations for slab 1, the subgrade modulus of elasticity 

was set equal to 10,000 lb/in.
2 

for all positions. Results for the 

initial tests 100, 200, and 300 appear reasonable. However, once 

cracking starts (tests 101, 201, etc.) calculated concrete modulus 

values decrease rapidly, and the error in matching the basin increases 

dramatically. Figures 23 through 25 show the measured and calculated 

basins at each position and degree of cracking on slab 1. From these 

figures, it is apparent that layered elastic theory can do a reason­

able job of matching the deflection basin of an intact slab. Once 

cracking begins, differences between the measured and predicted basins 

become more pronounced. 

Since the cracked slab deflection basin could not be matched 

acceptably by layered elastic theory, the effective modulus of con­

crete was defined to be that modulus which would give the same deflec-

tion under the center of the loaded plate using layered elastic theory 

as was measured in the falling weight test. The representative posi-

tions, initial concrete modulus, and subgrade modulus for uncracked 

concrete slabs were selected earlier. For each test at subsequent 

levels of cracking, the measured field center deflection from the 

falling weight test was matched by varying the concrete modulus and 

holding the subgrade modulus the same as for the initial uncracked 

condition. The BISAR layered elastic computer code was used for all 
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Table 15 

Predicted Concrete Modulus from Slab 1 

by Matching Deflection Basins 

Predicted 
Position Cone. Modulus (Esi) a Absolute Error b Arithmetic Error c 

a 

b 

c 

d 

100 2,266,000 3. 1 

101 545,000 11.2 

102 50,000 31.4 

103 50,500 30.3 

104 10,200 35.2 

200 1,870,000 5.5 

201 467,000 10.7 

202 153,000 22.1 

203 312,000 11. 7 

204 10,000 25.9 

300 1,504,000 2.0 

301 783,000 25.0 

302 500,000 17.3 

303 215,000 24 .·7 

304Rd 20,136 29.5 

Subgrade modulus for all runs set at E = 10,000 psi. 

Arithmetic Error = sum of the percent error. 

-2.6 

9.9 

31.4 

30.0 

35.2 

-4.3 

10.7 

22.1 

11.6 

18.2 

2.0 

-5.4 

11.3 

24.3 

29.5 

Absolute error = sum of the absolute values of percent error. 
Percent error= (measured deflection- calculated deflection)/ 
(measured deflection) 

Retested next day, original test overranged sensors for lowest load. 
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calculations. Table 16 summarizes the calculations of effective con-

crete modulus for each level of cracking of each slab. 

Cracked Slab Model 

Figure 26 shows the data in Table 16 plotted with the original 

estimated relationships of the E-ratio and SCI from Figure 18. The 

best fit second order polynomial least squares regression for these 

data is described by the equation: 

? 
E-ratio 0.0198 + 0.0064 (SCI) + (0.00575 X SCI)~ 

n 24 

2 
0.95 r 

Std. error of regression 0.083 

At the SCI value of 100, the predicted E-ratio is 0.99. The coeffici-

ents of the above equation were adjusted slightly so that at the SCI 

of 100, the predicted E-ratio is 1.00. The form of this final recom-

mended equation is plotted in Figure 26 as 

E-ratio 
? 

0.02 + 0.0064 (SCI) + (0.00584 x SCI)-

This equation appears to be a reasonable relationship. It is in 

agreement with trends suggested by existing relationships in Fig-

ure 26. It also appears to do a reasonable job of agreeing with the 

data developed in the WES slab tests. At the SCI value of zero the 

predicted E-ratio is 0.02. For a common concrete modulus of 
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Table 16 

Effective Concrete Modulus Using Center Deflections 

Slab Test Position Concrete Modulus (lb/in. 2) E-Ratio 
a SCI 

1 300 1,620,000 b 
1.000 100 

301 1,180,000 0.728 80 

302 985,000 0.608 58 

303 258,000 0.159 23 

304 24,250 0.015 0 

2 100A 2,758,000 b 
1.000 100 

100 1,950,000 o .. 707 80 

102 1,724,000 0.625 80 

103 466,000 0.169 39 

104 306,000 0.111 ..,~ 

.::...) 

3 100 5,862,000 b 
1.000 100 

101 2,650,000 0.452 39 

102 1,110,000 0.189 23 

300 5,884,000 b 
1.000 100 

4 301 4,350,000 0.739 58 

302 1,210,000 0.206 ...,~ 

.:...) 

5 100 3,959,000 b 
1.000 100 

101 950,000 0.240 39 

102 496,000 0.125 23 

103 135 '000 0.034 0 

6 100B 4,632,000b 1.000 100 

101 2,000,000 0.432 55 

102 995,000 0.215 23 

103 313,000 0.068 0 

a E-Ratio = effective E of concrete slab/initial E of concrete slab. 
b Taken from Table 13. 
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elasticity of 4 million psi, the effective modulus of elasticity of the 

concrete slab when completely broken up would be predicted to be 

80,000 psi. This value is in the range of modulus values used for 

analysis of granular base courses and would be a reasonable representa­

tive value of a badly broken up concrete slab. For the information 

currently available, the formula for E given above appears to be the 
r 

best and mos·t reasonable available. 
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PART VI: LOAD TRANSFER 

Measured Load Transfer 

When a load is placed on the edge of an airfield pavement slab, 

some portion of that load is carried to the adjacent slab by the dowel 

bars, keys, or aggregate interlock between the slabs. This additional 

support provided by the adjacent slab is load transfer. It is usually 

expressed as a percent of the total load applied (e.g. 25 percent load 

transfer means that 25 percent of the load is carried by the adjacent 

slab). In an analysis using the Westergaard free edge model, the 

effect of load transfer can be included directly by assuming that some 

percentage of the applied load is supported by the adjacent slab. 

Because the system is linear, a 25 percent reduction in load results 

in a 25 percent reduction in stress, as can be verified by examining 

the Westergaard equations in Part II. The Corps of Engineers (CE) and 

Federal Aviation Administration (FAA) design procedures assume that 

25 percent of the load applied to the edge of a slab is supported by 

the adjacent slab. 

As discussed earlier, the layered elastic analytical model is 

unable to account for the load transfer effect directly. All the per­

formance models and relationships developed in this study have been 

based on test sections that have used doweled or keyed construction 

joints and contraction joints on short joint spacings that develop 

good aggregate interlock. Consequently, all of the relationships in 

the proposed design procedure are only valid for pavements that use 

these standard joints and develop typical levels of load transfer. 
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The actual value of load transfer across a joint is a variable 

rather than a constant. It will be influenced by a variety of factors 

such as construction quality, magnitude of joint opening due to tem­

perature and moisture fluctuations, and number of repetitions of 

traffic.· 

Load transfer can be determined in the field by comparing 

strains or deflections measured on the loaded and unloaded side of a 

joint. Data of this type reported by Grau (1979), Ahlvin et al. 

(1971), and Ohio River Division Laboratories (1946, 1950, and 1959) 

were analyzed to obtain load transfer values for different joint 

types. Load transfer from strain data was computed.as the ratio of 

strains from the unloaded side of the joint to the strains on the 

loaded side of the joint. Grau (1979) gives more detail on this type 

of analysis. 

The joint efficiency measured as the ratio of the deflection on 

the unloaded side of the joint to the deflection on the loaded side of 

the joint can be related to the stress load transfer or percent maxi­

mum edge stress as indicated by the two relations in Figure 27. The 

regression equation fitted to Chou's (1983) data in Figure 27 should 

pass through the 50, 1.0 and 100, 0.0 points for percent maximum edge 

stress and joint efficiency. However, the mathematics of the regres­

sion do not do this. Most of the deflection data to be analyzed fall 

in the intermediate joint efficiency ranges where the regression equa­

tion provides good agreement with Chou's (1983) results and this equa­

tion was used to convert reported deflection joint efficiency data 

into edge percent maximum stress. A comparison between Chou's (1983) 

results and the relation suggested by Sawan and Darter (1979) shows 
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differences of up to approximately 8 percent in the estimate of per­

cent maximum edge stress for a given joint efficiency. 

Table 17 shows the results of the analyses of the deflection and 

strain data reported by Grau (1979), Ahlvin et al. (1971) and Ohio 

River Division Laboratory (1946, 1950, and 1959b). Doweled joints and 

contraction joints with aggregate interlock achieved high mean values 

of load transfer that exceeded the common 25 percent assumption while 

the keyed joint mean load transfer barely met this assumption. The 

"free" joint that was used at the Lockbourne tests consisted of a 

piece of redwood board the full depth of the slab which as can be seen 

provided highly variable and low levels of load transfer. This joint 

is not ·a standard joint, and deterioration in test items that used 

this joint usually started around these joints. For this reason the 

earlier analyses did not include test item slabs with this joint. 

A joint, particularly if overloaded, will deteriorate with 

increasing traffic repetitions. Figure 28 shows that the initially 

high load transfer of 45.2 percent of a keyed joint deteriorated under 

C-5A traffic to levels of 15.4 and 11.1 percent. Reductions in load 

transfer with traffic repetitions have also been reported for other 

types of joints (Barenberg and Smith 1979). 

This loss of load transfer with traffic is of particular impor­

tance for overlay analysis. The base pavement is often being overlaid 

because of structural damage from past traffic. Consequently, an 

integral part of any overlay design must be the assessment of the 

existing load transfer at the joints in the base pavement. If these 

joints are not achieving at least the 25 percent load transfer 

commonly assumed for standa_rd joints, then adjustments to the proposed 
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Table 17 
Load Transfer for Different Joint Types 

Number of Load Transfer Coefficient of 
Type of Joint Data Points Range Mean Variation (%) 

Doweled Construction 
Joint 195 0.0-50.0 30.6 38.0 

Doweled Expansion 
Joint 15 15.4-42.6 30.5 24.4 

Contraction Joint with 46 15.6-50.0 37.2 19.2 
Aggregate Interlock 

Keyed Joint 61 5.6-49.0 25.4 41.4 

Leekbourne "Free" 
Joint 8 5.8-24.5 15.5 40.9 
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design method must be made. These adjustments can be made by develop­

ing a factor to increase the stresses calculated by the layered elas­

tic model if substandard load transfer is found in the joints of the 

base pavement. 

Modifications for Layered Elastic Theory 

Parker et al. (1979) observed that the relation between stresses 

for rigid pavement test sections calculated using the Westergaard edge 

loaded model and the layered elastic model was approximately linear. 

To obtain additional information on the relation between Westergaard 

and layered elastic stresses, both stresses were calculated for an 

additional 60 cases to supplement the 60 test sections analyzed by 

Parker et al (1979). These additional cases included F-4, B-707, 

B-727, B-747, and C-141 aircraft with modulus of subgrade reactions 

from 50 to 400 lb/in.
2
/in. and thicknesses of 6 to 40 in. These cal­

culations along with the Parker et al. (1979) stress calculations are 

tabulated in Appendix C. 

Several different least square regression relations were tried 

for these 120 total cases. As can be seen in Figure 29, a simple 

power relationship did better than the linear relationship suggested 

by Parker et al. (1979). The scatter of the data is larger at high 

levels of stress. However, in the range of stresses encountered in 

normal design the scatter is much less. This power relationship can 

also be considered as 
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where 

0.64(S o )
0 · 972 

w 

crLE stress from layered elastic analytical model 

cr stress from Westergaard edge loaded analytical model 
w 

B the proportion of the Westergaard stress used in design to 
account for load transfer, i.e., 1.0- a 

a = load transfer to adjacent slab 

y equivalent proportion of layered elastic stress to account 
for load transfer in the Westergaard stress 

It is apparent that y is simply B raised to the 0.972 power. All the 

models and relationships developed for use with the proposed design 

procedures are based on joints meeting the common 25 percent load 

transfer assumption. Normalizing the relation between Y and S for the 

standard 25 percent load transfer results in a multiplier, X , ior 

the layered elastic stress as shown in Figure 30. The equation for 

the multiplier, X , is 

where 

a = load transfer 

X 
(1-a) 0. 972 

0.7561 

This multiplier accounts for load transfer different from that used to 

develop the models and relations in the proposed design procedure. 

The average joint load transfer of a base pavement can be found 

using Figure 27 from the ratio of the deflection on the unloaded and 

loaded side of a joint. If this load transfer meets or exceeds 
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25 percent, then no adjustment in stresses should be made. If the 

load transfer is lower than this value, the layered elastic calculated 

stresses in the base slab should be increased by multiplying them by 

the appropriate X from Figure 30. 
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PART VII: PROPOSED DESIGN PROCEDURE 

Methodology 

The improved design concept outlined in Part III required models 

to describe the deterioration of the pavement, to describe cracking in 

the base slab, and to account for substandard load transfer. These 

models were developed in Parts IV through VI, and a proposed design 

procedure using these models with the design concept from Part III 

will be developed in this part. This proposed design procedure uses 

the layered elastic analytical model to calculate load induced tensile 

stress in the base pavement and overlay. These stresses are used to 

predict deteriqration of the base and overlay in terms of a Structural 

Condition Index (SCI) varying from 0 to 100. Effects of fatigue dam­

age to the base pavement prior to placing the overlay, progressive 

cracking in the base pavement, and substandard load transfer at the 

pavement joints are included in the analysis. The steps in the pro­

posed design procedure are shown in Figure 31 and will be discussed 

~nd illustrated with a design example in the following sections. 

Material properties 

Each layer in the pavement must be described by a modulus of 

elasticity and a Poisson's ratio. A very effective method of esti­

mating the modulus of elasticity for the existing base pavement and 

underlying layers is to calculate the modulus values from the deflec­

tion basin of a falling weight as was done for the six slabs in Part V 

and as is described by Bush (1980). The modulus value for the overlay 

concrete could be determined in the laboratory as part of the mixture 
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proportioning studies; or it could be conservatively estimated as 

4,000,000 lb/in. 2 as is currently done for the Corps of Engineers (CE) 

and Federal Aviation Administration (FAA) pavement design curves. 

Another option would be to estimate it from typical laboratory or non-

destructive test values from recently completed local projects that 

used concrete mixture proportions similar to that anticipated for the 

overlay. Poisson's ratio is seldom measured for pavement analysis. 

Instead it is commonly estimated to be 0.15 to 0.20 for concrete, 0.30 

for granular materials, and 0.40 to 0.50 for cohesive soil materials. 

If falling weight deflectometer or similar nondestructive tests 

are not used to determine modulus values, laboratory tests can be run 

on samples taken from the base pavement and underlying layers to deter-

mine modulus values. This is relatively simple for the concrete in the 

base pavement or for samples of stabilized material. On the other 

hand, laboratory resilient modulus tests on undisturbed or representa-

tive recompacted soil samples are expensive and often difficult to 

interpret properly. 

Modulus values for soils are often estimated from correlations 

with existing tests. For example, the California Bearing Ratio (CBR) 

is often used to estimate modulus values if no more detailed informa~ 

tion is available. An approximate relation suggested by Dorman and 

Klomp (1964) is 

E 1500 x CBR 
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where 

E modulus of elasticity in lb/in.
2 

CBR the California Bearing Ratio in percent 

Parker et al. (1979) have suggested the following relationship 

Log E 1.415 + 1.284 log k 

where 

E =modulus of elasticity in lb/in.
2 

k modulus of subgrade reaction in lb/in.
2
/in. 

If no other data are available, the modulus values could be estimated 

from the soil classification, but this is obviously the least accurate 

approach. Table 18 shows some typical modulus of elasticity values. 

The values vary widely and reflect variations due to temperature, 

state of stress, load frequency and duration, age and composition of 

materials, and strain level. Selection of modulus values for design 

is a critical step. More detailed information on determining modulus 

values for paving materials to be used with layered elastic analysis 

can be found in Parker et al. (1979), Barker and Brabston (1975), and 

Green (1978). 

A problem arises if the modulus of subgrade reaction, k , is 

used to estimate the elastic modulus values for a granular base over a 

subgrade. A 30-in. diam plate is used to determine a composite k on 

the surface of the base that, unless the base is exceptionally thick, 

includes the influence of both the base and subgrade. This is the k 

that would be used in conventional design. For the proposed design 
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Table 18 

Typical Modulus of Elasticity Values 

Material Typical ranges (lb/in.
2

) 

Portland Cement Concrete 3.5 - 6.0 x 106 

Asphalt Concrete 100,000 - 1,000,000 (highly 
temperature dependent) 

Highly Plastic Clay or Silt (CH, MH)* 2,000 - 8,000 

Clays and Silts of low plasticity, 5,000 - 20,000 
Silty Clays (CL, ML)* 

Sands, Sandy Clays, Clayey Sands 15,000 - 40,000 
(SP, SW, SM, SC)* 

Natural Gravels (GP, GW, GM, GC)* 15,000 - 50,000 

Crushed Well-Graded Stone (GM, GW)* 30,000 - 100,000 

Stabilized Base Course Materials 200,000 - 1,000,000 

* Unified Soil Classification Symbols 
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procedure it would be appropriate to conduct plate load tests (or CBR 

tests) on the subgrade as well as on the surface of the base course to 

get better estimates of modulus values. If a relatively thin granular 

base on the order of 4-6 in. thick rests on a clay subgrade, the com-

posite k may give a reasonable estimate of the modulus of elastic-

ity. Such thin layers in a pavement may not actually act indepen-

dently and are ~ery difficult to compact if they are on a resilient 

subgrade. Consequently, these thin bases may not obtain very high 

modulus values. If, on the other hand, the base is relatively thick, 

any modulus value estimated from the composite k will not adequately 

reflect the lower modulus of the subgrade. Each structural layer in_ 

the pavement must have its modulus value evaluated. Tests with the 

falling weight deflectometer or similar device are the best method of 

characterizing the pavement properties under these conditions. 

Flexural strength has a major impact on concrete pavement per-

formance. Consequently, the best possible estimate of flexural 

strength is needed. The flexural strength of the overlay concrete 

should be determined as part of the mixture proportioning studies. 

The flexural strength of the base pavement may be determined from 

historical data, flexural beams cut from the base pavement, or approx-

imate correlations between flexural strength and tests run on cores 

taken from the base pavement. Flexural strength is often estimated by 

the relation 

ff K If' 1 c 
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where 

f' 
c 

2 flexural strength in lb/in. 

a constant varying from 8 to 10 

compressive strength in lb/in. 
2 

Also Hammitt (1974) has suggested the relationships 

where 

f' 
c 

f + 2123 
ff 

c 
= 10.02 

n 189 tests 

2 o. 77 r 

ff = 210 + 1.017 

n 199 tests 

2 0.73 r 

compressive strength, lb/in. 2 

2 flexural strength, lb/in. 

f 
st 

splitting tensile strength, lb/in.
2 

There is no unique correlation between flexural strength and compressive 

or splitting tensile strengths. The actual relationship varies depend-

ing on the aggregates and mixture proportions used in the concrete. 

Even though cores are far easier to obtain from an existing pavement 

than are beams, the estimate of flexural strength from compressive or 

splitting tensile tests on the cores may not be very reliable. 

The interface conditions between layers must also be described. 

In general all pavement interfaces except those with concrete have been 

treated as fully bonded in most layered elastic analyses of pavements. 

146 



The interface between concrete and other materials is usually treated 

as frictionless. Obviously, the interface for a fully bonded overlay 

with special surface preparation and bonding grouts should be treated 

as fully bonded, whereas the unbonded overlay interface with a dis­

tinct bond breaking course would be more appropriately treated as 

frictionless. The partially bonded overlay is more of a problem, and 

an appropriate friction factor will be developed in Part VIII from the 

CE overlay test section data. 

The condition of the base pavement at the time of overlay often 

determines the bonding condition used for the overlay. Any crack or 

joint in the base pavement will reflect through the overlay soon after 

placement unless there is a positive bond breaker between the overlay 

and base pavements. Therefore, joints in the overlay are matched with 

the base pavement joints for fully bonded or partially bonded over­

lays. Also, their use is usually limited to overlay of pavements that 

are in sound structural condition. Fully bonded overlays are used 

only on uncracked pavements or pavements with cracked slabs that are 

replaced prior to placement of the overlay. Partially bonded overlays 

are sometimes placed on pavements with some minor load related crack­

ing. The pavement SCI should be 70 or better if a partially bonded 

overlay is to be used. However, slabs showing multiple cracks or 

spalling or raveling cracks should be replaced prior to placement of 

the overlay. 

The bond breaking course used with unhanded overlays is gener­

ally thin and will not normally need to be modeled in the layered 

elastic analytical model. Typical examples of bond breakers include 

polyethylene, heavy applications of curing compound, building paper, 
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applications of sprayed bitumen and sand or gravel, or thin asphalt 

concrete layers. Sometimes thicker bond breaker layers of asphalt 

concrete, roller compacted concrete, or econocrete may be used as 

leveling courses or to make major grade changes. If these layers are 

one inch or more in thickness, it will probably be necessary to 

include them in the layered elastic model. 

Base pavement conditions 

Previous traffic on the base pavement has consumed some of its 

fatigue capacity. If it has begun to structurally deteriorate from 

this traffic, an SCI can be determined from the PCI procedures in Fed­

eral Aviation Administration (1980), Department of the Navy (1985), or 

Shahin, Darter, and Kahn (1976) using the specific distress types 

listed in Table 5. The ratio between the effective modulus of elas-

ticity and the initial undamaged modulus of elasticity can be deter-

mined for any SCI from the relationship developed in Part V: 

E 0.02 + 0.064 x SCI + (0.00584 x SCI) 2 
r 

Since the initial concrete modulus was determined in the previ-

ous step, the effective concrete modulus to use in the layered elastic 

model can be determined. The initial modulus of elasticity should be 

determined from intact concrete. For example, falling weight deflect-

ometer tests should be run at the center of intact slabs. Certain 

durability related distress problems such as severe D-cracking or 

crazing due to alkali aggregate reaction affect the concrete modulus 

of elasticity, and this may need to be included in the analysis. If 

the falling weight is used to determine the initial modulus of the 
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concrete from an intact slab that is undergoing alkali aggregate reac­

tion, the alkali aggregate reaction damage is already included in the 

initial modulus estimate. No adjustment would then be needed. How­

ever, if the initial modulus was determined from historical construc­

tion records or estimated, then it would be appropriate to include the 

PCI deducts for crazing due to alkali aggregate reaction in calculating 

the SCI. However, minor crazing due to plastic shrinkage cracking from 

improper curing has little or no effect on the concrete modulus and 

should not be considered in any adjustment to modulus values. Each 

case needs to analyzed individually. 

If the pavement to be overlaid has an SCI of 100, the amount and 

type of past traffic on the base pavement must be determined. Records 

of this type are often poor, but the best possible estimate of this 

must be made so that fatigue damage to the base pavement can be cal­

culated later. A mix of aircraft types can be converted into equiva­

lent passes of a single selected type of aircraft using one of the 

published methods (Federal Aviation Administration 1978, Department of 

the Army 1979). 

The effective load transfer at the joints of the base pavement 

needs to be determined. This may be done by determining the ratio of 

the deflections on the loaded to the unloaded side of a joint and 

using the relationship in Figure 27 to estimate load transfer. If the 

effective load transfer is below 25 percent, then a stress multiplier 

from Figure 30 needs to be selected. This multiplier will be used in 

a later step to adjust the calculated stresses in the base. Presum­

ably, no adjustment will normally be needed for the overlay since con­

ventional joint construction would be used. Load transfer is a 
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variable rather than a constant, and it also often decreases with 

increasing traffic repetition. Consequently, consistent substandard 

load transfer measurement in the base pavement might conservatively be 

treated as no load transfer to recognize the potential for future 

deterioration. 

Trial thickness 

This design method is an iterative process. A trial thickness 

of overlay is selected, and its condition in terms of SCI at the end 

of the design traffic is predicted. If this SCI is unacceptably low, 

then a thicker overlay is tried. If, on the other hand, the initial 

trial overlay thickness is capable of supporting much more traffic 

than necessary, a thinner overlay can be tried. The models used in 

this proposed design procedure only represent the deterioration of a 

concrete pavement due to cyclic fatigue damage caused by repetitive 

loading. Other causes of pavement deterioration such as pumping or 

D-cracking must be guarded against by other means. 

Base pavement performance 

The base pavement performance factors, c
0 

and CF , before 

overlay must be calculated for the traffic load applied before the 

overlay is placed. Next, these factors must be recalculated for the 

base after the overlay is placed using the traffic load to be applied 

after overlay. These factors are determined from the following 

equations: 

DF 0.5234 + 0.3920 log c
0 

DF = 0.2967 + 0.3881 log CF 
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where 

DF = design factor = flexural strength ~ calculated stress 

c
0

.= coverage level at which SCI begins to decrease from 100 

C = coverage level at which SCI becomes 0 F 

If the base pavement has not begun to deteriorate before over-

lay, the fatigue damage, d , from this previous traffic can be cal-

culated as 

where 

d 

c 

d = 

fatigue damage 

coverage of traffic applied before overlay 

base performance factor, c0 , calculated for traffic load 
applied before overlay 

The equivalent amount of traffic that this represents after overlay is 

determined by 

where 

the equivalent amount of traffic after overlay that would 
do the same fatigue damage to the base pavement as was done 
by the traffic before the overlay was placed 

base performance factor, c0 , after overlay calculated using 
trial overlay thickness and the overlay traffic load 
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If the joint load transfer has been found to be substandard, the 

appropriate stress multiplier, X, selected earlier should be used to 

increase the calculated stresses used to determine the base c
0 

and 

CF factors. 

Traffic intervals 

The design traffic to be applied to the overlay is divided into 

intervals so that the stresses from the varying base slab support dur­

ing each interval can be determined. The first interval of traffic is 

up to the base c0 value calculated after overlay, and the last 

interval is all traffic past CF • If some equivalent traffic has 

been applied before overlay, these traffic coverages must be sub­

tracted from c0 and CF since this damage has already occurred. 

During the initial traffic interval the full uncracked concrete 

modulus is used for the base slab to calculate the stresses in the 

overlay. During the last interval the SCI is 0 and the appropriate 

reduced base concrete modulus is used to calculate the stresses in the 

overlay. 

Between c0 and CF the traffic is divided into intermediate 

intervals for analysis. This study used four intermediate intervals 

and used the appropriate reduced modulus for SCI values of 80, 60, 40, 

and 20 for the intervals. The intervals of traffic were from co to 

the coverage level at which the SCI was 70, from this last point to 

the coverage level at which the SCI was 50, from this la'st point to 

the coverage level at which the SCI was 30, and from this last point 

to CF 

If there ha~ been fatigue damage, these traffic intervals have 

to be reduced by the equivalent traffic. If the base pavement has 
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begun to deteriorate before the overlay is placed, the base SCI value 

at the time of overlay determines the initial support conditions. If 

applied traffic before the overlay is placed exceeds the C
0

b value 

(possibly due to limits of the model, poor traffic estimates, or 

inaccurate material or load parameters), the equivalent traffic can be 

set equal to c0 after overlay. Doing so is equivalent to assuming 

that the base pavement will begin to deteriorate with the first cover-

age of traffic on the overlay. 

Overlay performance for each traffic interval 

During each interval of traffic the damage suffered by the over-

lay during that interval is assumed to be controlled by the perfor-

mance factors, c
0 

and CF , calculated for the overlay stresses for 

that interval. Each interval of traffic results in a decrease in the 

modulus of the concrete in the base pavement. This causes higher ten-

sile stresses in the overlay with a corresponding decrease in the 

overlay performance factors, c0 and CF . Once these overlay per-

formance factors are calculated for the stresses in each interval of 

traffic, the fatigue damage during an interval of traffic can be 

determined by 

where 

d. 
~ 

c. 
~ 

c . 
0~ 

d. 
~ 

c. 
~ 

c . 
0~ 

overlay fatigue damage during the ith interval of traffic 

coverages of traffic during the ith interval 

the overlay c0 performance factor calculated using the 
appropriate base pavement modulus of elasticity for the ith 
traffic interval 
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Composite overlay deterioration 

The damage suffered by the overlay during each interval of traf-

fie must be combined to determine a composite overlay deterioration. 

The first step is to determine the coverage level at which overlay 

deterioration begins. This coverage level is essentially the overlay 

composite, c
0 

. During the first interval of traffic (i.e., the 

traffic up to the point where the base slab begins to deteriorate and 

support to the overlay decreases), the fatigue damage, d. , during 
l 

the first interval can be calculated as noted before. Because of this 

fatigue damage the c
0 

for the next interval needs to be adjusted as 

follows: 

where 

C* o,i+l 

d. 
1 

c . l o,1+ 

C* o,i+l (l - d.) c 
l o,i+l 

c
0 

factor for interval i+l adjusted for fatigue damage 
from the preceding interval. 

fatigue damage from the preceding traffic interval 

c
0 

factor calculated from the stress for traffic 
interval i+l. 

This process is continued until traffic applied during an inter-

val exceeds the adjusted c
0 

value. When traffic reaches this 

adjusted c
0 

value the overlay is assumed to begin to deteriorate. 

The loss in SCI over the remaining traffic interval is assumed to be 

the same as the loss in SCI for the same amount of traffic past c
0 

on the original unadjusted c0 - CF line of the traffic interval. 

The loss in SCI for the next interval of traffic will be the same as 
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the loss along that interval's c0 - CF line. This is continued 

until the SCI is zero. 

The discussion up to this point assumed that the base cracked 

under the overlay traffic. Under some conditions of load, overlay 

geometry, and material properties the base will not crack before the 

overlay does. For this case, the composite overlay performance is 

simply the unadjusted c
0 

- CF relationship for the first interval of 

traffic. 

Design requirements 

The composite overlay deterioration curve tells how much struc­

tural deterioration is expected for a given overlay thickness at any 

traffic level. If the rate of deterioration results in an unaccept­

able SCI at the end of the design traffic, then a thicker overlay 

needs to be tried. If it has more capacity than needed, a thinner 

overlay can be tried. 

Example Calculations 

The overlay design procedure will be illustrated by analyzing 

overlay test item A 2.7-60 from the Lockbourne No. l tests. 

Material properties 

Figure 32 shows the model of item A 2.7-60. Material properties 

were reported by the Ohio River Division Laboratories original test 

report of construction (1946) and are also summarized by Parker et al. 

(1979). Concrete modulus of elasticity was determined in the labora­

tory from field cast cylinders. Concrete flexural strength was deter­

mined from field cast beams, and Poisson's ratio was estimated as 
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0.15. The modulus of elasticity of the clay subgrade was estimated 

using the relation developed by Parker et al. (1979) from the modulus 

of subgrade reaction. The modulus of subgrade reaction was determined 

from field plate load tests. The Poisson's ratio for the clay sub­

grade was estimated. The inclusion of the rigid boundary at a depth 

of 20 ft follows the recommendation of Parker et al. (1979). 

The bond between the overlay and base pavement was treated as 

unbonded. The 3/4-in.-thick sand asphalt bond breaker was not modeled 

directly. If the bond breaker was much thicker, it would probably be 

necessary to include the bond breaker in the model. This bond breaker 

must be stable under loading. The cutback asphalt actually used in 

the sand asphalt bond breaker did not cure and pumped up through 

cracks and joints. This unstable material led to premature failure of 

the overlay, illustrating that pavement failure can arise from factors 

other than the fatigue damage considered in this study. 

Base pavement condition 

Prior to the overlay placement the base slab was subjected to 

520 coverages of a 20,000-lb wheel load. At the end of this traffic 

the base pavement had an SCI of 100. All joints for this example meet 

the basic 25 percent load transfer. 

Trial thickness 

The trial thickness for this example calculation is the actual 

7-in. thickness of the overlay. 

Base pavement performance 

A 20,000-lb wheel trafficked the base pavement before the. over­

lay, and a 60,000-lb wheel trafficked the overlay afterwards. The 

calculated stresses under these loads and the equivalent c
0 

and CF 
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factors are shown in Table 19. The fatigue damage from the 20,000-lb 

wheel load traffic slab can be calculated by 

c 
d 

co (20 kip) 

520 
2117 

The equivalent traffic is 

d C0(60 kip) 0, 2456 X 2779 

0.2456 

682 coverages 

The 520 coverages of 20,000-lb wheel before the overlay caused the 

same damage as 682 coverages of 60,000-lb wheel would cause to the 

base pavement after the overlay was in place. 

Traffic intervals 

Figure 33 illustrates the effect of the traffic prior to the 

overlay placement and the decrease in the support provided by the base 

slab after it begins to deteriorate. The traffic on the overlay is 

divided into six intervals as shown in Figure 34. During each inter-

val of traffic on the overlay the SCI of the base is assumed to be con-

stant, and the modulus of elasticity of the base during the interval 

is assumed to be equal to the value corresponding to a constant SCI 

value. The SCI values for this analysis are 100 for interval 0, 80 for 

interval 1, 60 for interval 2, 40 for interval 3, 20 for interval 4, 

and 0 for interval 5. The dividing point between intervals 1, 2, 3, 

and 4 are points a, b, and c in Figure 34 which correspond to the cov-

erage level where the base SCI is 70, 50, and 30. Notice that the 

equivalent traffic has already been applied to the base. 
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Table 19 

Base Slab Stresses and Performance Factors 

1. Calculated Stresses for Base Slab 

2. 

(1) 

( 2) 

2 
Before overlay (20-kip wheel) 405 lb/in. 

After overlay (60-kip wheel) 395 lb/in.
2 

Performance Factors c0 and CF for Base Slab 

(1) co before overlay (20-kip wheel) 2,117 

(2) co after overlay (60-kip wheel) 2, 779 

(3) CF before overlay (20-kip wheel) 8,779 

(4) CF after overlay (60-kip wheel) 11' 552 
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Overlay performance for each interval 

The stresses in the overlay and the corresponding c
0 

and CF 

performance factors for interval of traffic are shown in Table 20. 

Composite overlay deterioration 

The first step in developing the composite overlay deterioration 

is to determine the coverage level where the overlay begins to deteri-

orate. This is in effect the composite c
0 

performance factor. Dur­

ing interval zero of traffic the fatigue damage to the overlay can be 

calculated as 

where 

-c. 
d. ~ 

~ COi 

d 
co 2,097 0.186 

0 C Oo 11 '254 

d. = overlay fatigue damage during interval i 
~ 

C. coverages of traffic applied during traffic interval i 
~ 

c
0

i overlay c
0 

performance factor for interval i 

The next traffic interval's c0 value adjusted for this fatigue dam­

age can be calculated as 

c~,i+l (1 d.) c o,i+l ~ 

c~l (1 d ) 
0 col 

c~l (1 0.186) 4,881 

COl 3,973 
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Table 20 

Stress and Performance Factors for Overlaz 

Overlaz 

Overlay Base Slab Stress 
(lb/ 

Traffic 
E E 2 . 2) co CF Interval Covera~es SCI ratio (lb/in. ) ~n. 

0 0-2,097 100 1.000 3,800,000 360 11,254 47,327 

1 2,097-3,579 80 0.748 2,842,459 386 4,881 20,357 

2 3,579-4,984 60 0.525 1,995,846 414 2,233 9,238 

3 4,984-6,852 40 0.330 1,225,824 446 1,030 4,229 

4 6,852-10,870 20 0.161 613 '394 486 452 1,840 

5 >10,870 0 0.020 77,554 584 97 388 
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This analysis is continued for each interval of traffic until 

the point where cracking or onset of deterioration, c
0 

, of the over­

lay is reached. Table 21 shows these calculations for test 

item A 2.7-60. At the end of the interval of traffic number 1 

(3,579 coverages) in Table 21, the damage factor, d. , shows that 
~ 

37.3 percent of the overlay's capacity before the onset of deterio-

ration has been used. The adjusted c0 value for the next interval 

is 1,400 coverages and the applied traffic is 1,405 coverages, so the 

overlay cracks after 1,400 coverages in this interval (4,979 total 

coverages). From this point to the end of the interval (4,984 cover-

ages) the deterioration or loss in SCI will be the same as on the 

unadjusted c
0 

- CF line for the interval. For this specific 

example, there are only 5 more coverages in the interval, thus 

resulting in the loss of only a fraction of the point in the SCI. 

This can be ignored. During all following intervals the deterioration 

will be the same as the interval's original c0 - CF line during 

their respective traffic levels until SCI value of zero is reached. 

This is illustrated in Figure 35. Once cracking is predicted to start 

in the overlay, the loss of SCI in this example over the 1,868 cover-

ages of interval 3 will be the same as the loss of SCI for the first 

1,868 coverages past c0 for interval 3. This brings the SCI of the 

overlay to 27 at the end of interval 3 or at 6,852 total coverages. 

Between 6,852 and 10,870 coverages the loss of SCI will be determined 

from the c0 - CF relation for interval 4. As shown in Figure 35, 
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Table 21 

ExamEle Overlay Damage Calculation Test Section A 2.7-60 

Overlay Applied Overlay Damage Adjusted 
Traffic c. COi f. co, Interval Traffic ~ ~ i+l 

0 0-2097 2,097 ll '254 0. 186 ll '254 

1 2,097-3,579 1,482 4,881 0.373 3,973 

2 3,579-4,984 1,405 2,233 Overlay Cracks 1,400 

3 4,984-6,852 1,868 1,030 

4 6,852-10,870 4,018 452 

5 10870+ 97 
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the SCI goes from 27 to zero after 582 coverages in interval 4. 

Therefore, the composite overlay will reach the SCI value of 0 after 

another 582 coverages or 7,427 coverages total. 

Design requirements 

The composite overlay deterioration is shown in Figure 36. The 

overlay begins to structurally deteriorate after 4,979 coverages and 

reaches an SCI value of zero after 7,427 coverages. If the overlay 

must carry more traffic than this, another thicker trial overlay 

thickness must be selected and the procedure must be repeated. 

Figure 36 also shows the deterioration that would be predicted 

if cracking in the base slab was neglected. This is simply the behav-

ior described by the c0 and CF performance factors for interval 0 

in Table 21. Including the effect of progressive deterioration of the 

base slab greatly reduces the predicted performance of the overlay. 

Summary 

The proposed overlay design procedure is analytically more 

powerful than the existing empirical design procedures. It is able to 

include the effects of varying material properties in the overlay struc-

ture; it accounts for past traffic and the condition of the base pave-

ment at the time of overlay; it includes the effects of progressive 

cracking in the base under overlay traffic; and it predicts deteriora-

tion of the pavement in terms of SCI. The proposed overlay design pro-

cedure will be used in the following sections to analyze the CE 
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overlay test section data, and it will be compared with existing 

methods of design. 
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PART VIII: ANALYSIS OF CORPS OF ENGINEERS OVERLAY TEST DATA 

Test Section Data 

The Corps of Engineers (CE) tested 24 test items of rigid over­

lays over rigid base pavements. Table 22 is a summary of these tests. 

Twenty-three tests were unhanded overlays; four were partially bonded, 

and one was fully bonded. The quality of the data collected from 

these tests varies. 

The unhanded test sections in Lockbourne No. 1 test used a nom­

inal 3/4-in.-thick bond breaking layer of sand asphalt. Test items 

A 2.7-60 through C 2.7-66S used a cutback asphalt cement while 

item L 1.5-60 through M 2.7-60 used an emulsified asphalt cement. The 

sand asphalt made with these binders did not cure adequately. When 

the pavement was trafficked, the sand asphalt pumped out of joints and 

cracks and was still soft when the overlay slabs were removed at the 

end of the tests. This pumping and softness of the sand asphalt bond 

breaking layer undoubtedly resulted in forming voids under the overlay 

slabs and caused premature failure in the overlay. Consequently, all 

of these slabs would be expected to fail sooner than predicted by the 

models developed in Part IV. The Lockbourne No. 2 test items all had 

free joints without load transfer. Adjustment to the calculated 

stresses for load transfer has to be made for these overlays. 

No final report was written for the Sharonville tests; conse­

quently, the data on performance of the test sections is very limited. 

No performance data were reported for items 21 and 22. Items 23 

through 28 were identified as not failing or were failed at some 
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Table 22 

Summary of the Corps of Engineers Overlay Tests 

Traffic 
Slab Coverages 

Test Bond Thickness (in.) on 
Test Series Item Condition Base Overlay Base Slab Remarks 

Lockbourne A 2.7-60 Unbonded 5. 72 7 520 3/4 in. sand asphalt bond 
No. 1 breaker, did not cure 

B 2.7-661 Unbonded 6 7 524 Same 

c 2.7-66S Unbonded 6 7 526 Same 

D 2.7-66 Partial 5.5 7 554 

,...... E 2.7-66M Partial 5.75 7 556 
-...J 
,...... F 2.7-80 Partial 8 7 554 

L 1.5-60 Unbonded 6 5 0 3/4 in. sand asphalt bond 
breaker, did not cure 

L 2.5-60 Unbonded 6 5 0 Same 

M l. 7-60 Unbonded 6 7 0 Same 

M 2.7-60 Unbonded 6 7 0 Same 

Lockbourne F 12.14-100 Unhanded 10 14 0 Used nonstandard joints 
No. 2 

G 12.14-100 Partial 10 14 0 Same 

L 14.14-80 Unbonded 8 14 0 Same 

M 14.14-80 Unhanded 8 14 0 Same 

(Continued) 



Table 22 (Concluded) 

Traffic 
Slab Coverages 

Test Bond Thickness (in.) on 
Test Series Item Condition Base Overlaz Base Slab Remarks 

Sharonville 21 Unbonded 6 16 0 No performance data reported 

22 Unbonded 8 15 0 No performance data reported 

23 Unbonded 5.75 13.25 0 Unfailed at 22,000 coverages 

24 Unhanded 7.75 12.25 0 Unfailed at 22,000 coverages 

25 Unbonded 9.75 10.25 0 Failed 18,500 coverages 

26 Unbonded 10 6 0 Failed 1,200 coverages 
...... 
'-1 27 Unbonded 8 9 0 Failed 250 coverages 
N 

28 Unhanded 10 6 0 Failed 230 coverages 

Sharonville 69 Unbonded 17 15 0 Failed 4,000 Coverages 
Heavy Load 70 Full 17 11 0 Spalling over dowel bars 



stated coverage level. The SCI value of such a failure cannot be cal­

culated from the limited available data but could be expected to be in 

the range 55 to 80 as indicated in Table 6. Unpublished field records 

provide some more detailed descriptions of the performance of items 69 

and 70, The proposed design procedure presented in Part VII was used 

to analyze the CE overlay test sections, and the predicted overlay 

performance was compared to observed performance. 

Unbonded Overlays 

In Table 22 there are a total of 19 unbonded overlay test items. 

The best recorded data exist for the Lockbourne No. 1 and No. 2 tests; 

however the 10 unhanded test items from these tests could not be ana-. 

lyzed. As mentioned previously, the 3/4-in.-thick bond breaker in 

Lockbourne No. l did not cure properly, so the unbonded overlays all 

failed prematurely. Consequently, no meaningful comparison between 

predicted and observed behavior could be made. The Lockbourne No. 2 

test items without load transfer were analyzed separately in another 

section. The remaining 9 test items are all from the Sharonville 

tests. Items 21 and 22 have no recorded performance data. Items 23 

and 24 did not fail after 22,000 coverages of traffic according to 

Mellinger (1963), who also gave coverage levels at which items 25 

through 28 and 69 were judged to have failed. The minutes of the 

meeting of the board of consultants (Ohio River Division Laboratories 

1959a) contain a diagram showing the progression of cracking and 

spalling for item 69. No other data on the performance of these test 

items have been located. 
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Data on the subgrade for items 23 through 28 were reported in 

the minutes of a meeting of the board of consultants (Ohio River Divi­

sion Laboratories 1954). The original subgrade was constructed at a 

nominal CBR of ·3 to 4, but despite spraying the subgrade surface with 

an asphalt membrane, some unspecified amount of subgrade drying 

did occur. Mellinger (1963) carried out his analysis of these test 

sections using a low modulus of subgrade reaction, k, value of 

50 lb/in.
2
/in. comparable to the constructed moisture content. An 

analysis by Monismith et al. (1981) used a higher k value of 

125 lb/in.
2
/in. representative of a condition where some drying 

occurred in the subgrade. Because of the uncertainty over the appro­

priate subgrade condition, two analyses were run for items 23 

through 28. One analysis used an elastic modulus of 12,800 psi for 

the subgrade, which is equivalent to the k value of 125 lb/in. 2/in. 

used by Monismith et al (1981) according to the relation between k and 

modulus values reported by Parker et al (1979). The second analysis 

used the average CBR values at the surface and 6 in. below the surface 

as the subgrade was originally constructed (Ohio River Division Labo­

ratories 1954). The elastic modulus was estimated using the relation 

that the elastic modulus is approximately equal to 1,500 multiplied by 

the CBR. These two modulus values bracket the range of expected sub­

grade conditions expected for these test items. 

Concrete strength varied considerably for item 69. Concrete 

flexural strength averaged 710 and 770 psi on the east side of the 

test item for the overlay and the base pavement, respectively. It 

averaged 825 and 615 psi for the overlay and the base pavement, 

respectively, on the west side of the test item. One analysis for 
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this item used the average flexural strength of all concrete placed in 

the overlay (770 psi) and the average strength placed in the base 

pavement (690 psi). A second analysis used the lowest flexural 

strength in the overlay (710 psi) and the base pavement (615 psi). 

The performance of each test item overlay was predicted using 

the procedures outlined in Part VII. No traffic was applied to the 

base pavements prior to the placement of the overlay. The results of 

these predictions are shown on Figures 37 to 43. Each figure shows 

the failure reported by Mellinger (1963), which is estimated from 

Table 6 to have occurred at an SCI value between 55 and 80. Also, the 

coverage level at which the base slab would be predicted to begin 

deterioration or cracking is shown for items 25, 27, 28, and 69. The 

overlay was predicted to start deterioration before the base slab 

cracking for items 23, 24, and 26. 

Items 23 and 24 did not fail with up to 22,000 coverages of 

traffic, and Figures 37 and 38 show agreement with this result for the 

higher of the two subgrade elastic moduli. Item 26 in Figure 40 also 

shows good agreement with the reported failure coverage level for the 

higher subgrade modulus value. Predictions for items 25 and 28 in 

Figures 39 and 42 bracketed the reported failure levels. Predictions 

for item 27 and 69 in Figures 41 and 43 were all too high. Figure 43 

shows the SCI deterioration of item 69 calculated from the cracking 

and spalling reported in the minutes of the meeting of the board of 

consultants (Ohio River Division Laboratories 1959a). There was some 

cracking at fairly low levels of traffic, which was apparently dis­

counted by Mellinger (1963) in selecting his failure level of 

4,000 coverages. If this early cracking is ignored in the computation 
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of the SCI, Mellinger's failure level and the SCI computed from the 

minutes of the board of consultants meeting are in good agreement as 

seen in Figure 42. Table 23 shows the predicted coverage levels at 

which the SCI reached 70 for each test item. Except for items 27 

and 69, the predicted performance is in reasonable agreement with the 

observed performance. 

The traffic on items 23, 24, and 26 would not be predicted to 

have caused deterioration in the base pavement, and no reduction was 

made in the base pavement modulus value in calculating the deteriora-

tion of the overlay. As seen in Figures 37, 38, and 40, the predicted 

deterioration in these items agreed well with the observed performance 

for the higher subgrade modulus values. Thus, the performance models 

developed in Part IV are considered adequate for predicting the perfor-

mance of an unbonded overlay using layered elastic theory. 

The use of a reduced cracked base slab modulus at different lev-

els of'traffic for items 25, 27, 28, and 69 was less successful. Pre-

dictions of performance for items 25 and 28 gave reasonable agreement 

with the observed behavior, but the traffic predicted to cause deteri-

oration in items 27 and 69 was higher than observed in the test items. 

The inclusion of the reduced cracked slab modulus in the analysis 

greatly reduces the traffic required to cause deterioration in an over-

lay. This effect can be seen in Table 24 where failure to include the 

reduced modulus for cracked base slab in the analysis results in 

greatly overpredicting the overlay traffic until deterioration starts. 

In the extreme example of item 28 with the higher subgrade modulus, the 

traffic until deterioration starts is three orders of magnitude above 
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Test 
Item 

23 

24 

25 

26 

27 

28 

69 

Table 23 

Comparison of Predicted and Observed Performance of 

Unbonded Overlay Test Items 

Predicted 
Failure Coverage Level 

14,700a-39,500b 

19,000a-71,500b 

8,200a-45,000b 

435a-1,380b 

700a-3,100b 

145a-640b 

6 ,-500c-24,000d 

Observed Failure 

at 22,000 unfailede 

at 22,000 unfailede 

18,500e 

1,200e 

250e 

230e 

2,400f-4,000e 

a Coverage at which SCI is 70 in Figures 37 through 42 for lower 
subgrade E value. 

b Coverage at which SCI is 70 in Figures 37 through 42 for higher 
subgrade E value. 

c Coverage level at which SCI is 70 in Figure 43 for low concrete 
flexural strength values. 

d Coverage level at which SCI is 70 in Figure 43 for average concrete 
flexural strength values. 

e Failure level reported by Mellinger (1963). 

f Coverage at which SCI is 70 based on cracking and spalling as 
reported by Ohio River Division Laboratories (1959a). 
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Table 24 

Effect of Including Base Slab Cracking on Predictions of 

Overlal Deterioration 

Sub grade Predicted Onset of Deterioration, co Reported 
Item Modulus With Base Cracking Without Base Crackin~ Failure 

25 Lower 7,523 28,596 18,500 

25 Higher 40,426 92,751 18,500 

27 Lower 609 1,186 250 

27 Higher 2,556 3,701 250 

28 Lower 134 81,694 230 

28 Higher 615 253,128 230 

69 Average* 23,076 3,326,121 4,000 

69 Lower* 6,297 812,257 4,000 

* For item 69 average flexural strength and lower flexural strength 
were variables rather than subgrade elastic modulus. 
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the reported failure of the test item. The effect of including the 

cracked slab in the analysis is shown graphically in Figure 44 for 

item 25. 

The importance and validity of including a reduced modulus to 

represent cracking of the base slab at different intervals of traffic 

is strongly supported by the results of the analysis of items 25, 27, 

28, and 69. However, the mixed success of the predictions is indica­

tive that the cracked slab model developed in Part V requires further 

research. The three data points iri Figure 26 that lie above the sug­

gested AASHTO relation pull the original equation for the E-ratio 

developed in Part V upward. Figure 45 shows a revised E-ratio equa­

tion which, neglecting these three points, shows substantial agreement 

with the remaining data and the suggested AASHTO relation and which 

predicts a more rapid reduction in the cracked slab modulus as the SCI 

decreases. 

This revised equation was used to predict the overlay deteriora­

tion of item 25 and 69. It reduced the onset of deterioration for 

item 25 with the higher modulus subgrade from 40,426 coverages 

to 38,872 coverages. For item 69, it reduced the onset of deterio­

ration using the low flexural strength values from 6,297 coverages to 

5,857 coverages. These changes do not appreciably improve the agree­

ment with the reported failures of 18,500 and 4,000 coverages. The 

use of a reduced modulus for cracking in the base slab greatly accel­

erates the predicted onset of cracking in the overlay, but it is not 

very sensitive to the precise form of the equation. Consequently, the 

original equation for predicting the E-ratio should remain as devel­

oped in Part V using all of the data points. 
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Only 7 of the 19 unbonded overlays tested by the CE could be 

analyzed. Analysis of these 7 overlay test items shows that predic-

tions of performance are sensitive to the quality of the input infer-

mation. Uncertainty over appropriate subgrade modulus of elasticity 

values and concrete flexural strengths and lack of detailed perfor-

mance information on the test items hindered the analysis. Three test 

items (23, 24, and 26) gave good agreement between predicted and 

reported performance when the base slab was not predicted to crack. 

Thus, the layered elastic analytical model can be used with the rigid 

pavement performance models from Part V to predict performance of 

unbonded overlays that are supported by intact base slabs. The con-

cept of using a reduced modulus for the base slab as it deteriorates 

under traffic was shown in the analysis of items 25, 27, 28, and 69 to 

greatly reduce the predicted performance of the overlay. Without the 

use of this reduced modulus for the base slab, predictions of overlay 

deterioration are greatly in error. Using the reduced modulus for the 

base slab, analysis of items 25 and 28 gave good agreement between 

observed and predicted performance, but the analysis of items 26 

and 69 overpredicted the performance of the overlays. Overall per-

formance of the 7 test items support the general concept of using the 

layered elastic model to analyze unbonded overlays. The models for 

predicting the performance of rigid pavements and for evaluating the 

cracked slab modulus gave reasonable results. 
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Partially Bonded Overlays 

Figure 3 shows the 12 data points that were the basis for the 

partially bonded overlay's 1.4 power used by the CE in their overlay 

design equation in Part II. Only 4 of these points are shown in 

Table 22. The remaining data points were reinforced concrete over-

lays. The presence of steel reinforcing in concrete pavements does 

not delay the onset of cracking in the pavement but changes the pat-

tern of ~racking and delays spalling and raveling. The CE used 

spalling of the load induced crack rather than cracking alone to 

define failure of reinforced pavements (Rollings 1981, Philippe 1948). 

In Figure 3, the CE empirical relation between the required pavement 

thickness of reinforced concrete to fail by crack spalling and the 

pavement thickness of plain concrete required to fail by cracking was 

used to convert reinforced test sections to equivalent thicknesses of 

plain concrete. Sin~e reinforced pavement performs differently from 

plain concrete, it cannot be analyzed with the models developed in 

this study. 

Consequently, only the four partially bonded test items shown in 

Table 22 were analyzed. Of these four test items, traffic for 

item G 12-14-100 in the Lockbourne No. 2 test series crossed free slab 

edges with no load transfer and is discussed in a separate section. 

Crack maps of test items D 2.7-66, E 2.7-66M, and F 2.7-80 were 

provided at 24, 98, 138, and 712 coverages of a 60,000-lb wheel load 

(Ohio River Division Laboratories 1946). The SCI of each test item 

was calculated at these coverage levels, and the performance was pre-

dieted using the layered elastic analytical model and cracking in the 
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base pavement with various amounts of friction between the overlay and 

the base pavement. These results are shown in Figures 46, 47, and 48. 

The BISAR computer program expresses the bond between layers with a K 

factor. The fully bonded case is represented by a K of 0; the 

unbonded case by a K of 1,000; and intermediate bond cases between 

these extremes use values between 0 and 1,000. The assumptions for 

the various bond cases for the BISAR program were discussed in 

Part III. 

For each test section, the amount of slip or friction between 

the overlay and the base pavement greatly affects the predicted amount 

of traffic the test section can withstand. For test item D 2.7-66, 

the predicted onset of deterioration, c0 , increases from 76 coverages 

for the unhanded case to 1,592 coverages for the fully bonded case. 

The effect of varying K is not linear and becomes more pronounced as 

the fully bonded case is approached. Going from a K of 1,000 to a K 

of 750 only changed the predicted onset of deterioration from 76 

to 95, whereas the change from a K of 250 to 0 changed the predicted 

onset of deterioration from 262 to 1,592 coverages. 

Only item D 2.7-66 provided more than one coverage level where 

the SCI was not 100. The two points that are less than 100 do not fit 

the performance model for concrete pavements from Part IV and do not 

show the steep deterioration of the unhanded overlay in item 69 in 

Figure 43. With the very limited data available, it is impossible to 

ascertain with certainty what form the overlay deterioration takes. 

However, the overlay deterioration models as calculated are reason-

able, representing increased rates of deterioration as the base slab 

support decreases. In item D 2.7-66, the sharp deterioration in the 
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SCI value from 100 at 98 coverages to 78 at 138 coverages is consis-

tent with the models. Similarly, the sharp deterioration of item 69, 

once deterioration starts, supports the models. However, there is no 

explanation available for the initial cracking in item 69 or for the 

slow deterioration between 138 and 712 coverages for item D 2.7-66. 

Whether these discrepancies are due to factors not adequately modeled 

in the analysis or whether there are unreported construction, mate-

rial, or testing variations that contributed to this performance can-

not be resolved from the limited available information. Overall, 

these models appear to give reasonable results, but more data are 

needed to verify them. 

Figures 46 through 48 show that the K value that gives the best 

agreement with the deterioration data varies from about 640 to 930. 

If all three test items are averaged, the K value is about 750, or if 

only items E 2.7-66 and D 2.7-66 are averaged, the K value is about 

660. 

Fully Bonded Overlays 

Item 70 of the Sharonville Heavy Load Tests was an 11-in. over-

lay bonded to a 17-in. base pavement. The base pavement concrete was 

acid etched with hydrochloric acid and thoroughly washed. Then a 

portland cement grout was used to bond the overlay concrete to the 

base concrete. This test item had the same variations in flexural 

strength discussed earlier for the unbonded overlay test item 69. 

The base pavement had keyed longitudinal construction joints. 

The bonded overlay used doweled longitudinal construction joints over 
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the base pavements keyed joints. Under traffic, cracking and spalling 

began almost immediately over the dowel bars. Despite periodic patch-

ing the test item was considered beyond salvage after 8,000 coverages. 

Predictions of the fully bonded overlay performance using the 

layered elastic model exceeded actual traffic regardless of what com-

bination of low or average flexural strength results was used for the 

overlay and the base pavement. The only deterioration reported in the 

test item was associated with the dowel bars, and no concrete fatigue 

related structural deterioration occurred. 

A fully bonded overlay and base slab are essentially a mono-

lithic structure. The layered elastic analysis can account for dif-

ferences in modulus values and flexural strengths between the overlay 

and base pavement, as well as for previous traffic fatigue damage on 

the base pavement. However, the value of this analysis ability for a 

fully bonded overlay is moot since physically an adequate load trans-

fer construction joint cannot be built. For this reason, the CE and 

most other agencies require fully bonded airfield overlays to be 

between 2 and 5 in. in thickness, and their use is restricted to cor-

rection of surface smoothness or deterioration. Use of fully bonded 

overlays for structural upgrading of airfields requires development 

and testing of new construction joints. 

Overlays Without Load Transfer 

The four test items, F 12.14-100, G 12.14-100, L 14.14-80, and 

M 14.14-80, in Table 22 were excluded from analysis earlier because of 

the substandard load transfer of the slab joints. Item F 12.14-100 
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was bounded by three "free" joints described in Part VI and one "pre-

molded joint-free expansion," and had a contraction joint that divided 

the item into two slabs. Item G 12.14-100 was the same except one 

"free" joint was replaced with a keyed joint. Items L 14.14-80 and 

M 14.14-80 were separated from one another by a keyed joint and con-

sisted of one slab each. The remaining joints for each slab were a 

"free" joint, a "premolded joint-free expansion," and a "plain butt 

joint." In all four test items, deterioration began as corner crack-

ing associated with the joints that were not capable of providing load 

transfer to adjacent slabs. Analysis of these test items has to 

include the effect of these nonstandard joints. 

Item G 12.14-100 was a partially bonded overlay, and the fric-

tion factor, K , in the BISAR program was set at 750 for the anal-

ysis. All of the other items were unhanded. These test items were 

constructed between 28 October and 25 November 1944. Although the 

same nominal concrete mixture was used for all construction, 28-day 

flexural strengths ranged from 570 to 915 lb/in.
2

. Although the 

quality of concrete varied considerably, no differentiation was made 

between the base pavement and overlay concrete in each item even 

though they were placed on different days. Consequently, the analysis 

of these test items is hindered by the lack of accurate data on the 

concrete. The modulus of elasticity and the flexural strength that 

are tabulated in Appendix D were from field cured samples for each 

item. 

Table 25 compares the predicted performance of these four test 

items with the actual reported performance. All of these test items 

had relatively thick overlays, and the overlay began deterioration 
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Table 25 

Performance of Test Items with Substandard Load Transfer 

Predicted Performance Actual 
Normal Load Transfer No Load Transfer Performance 

Item co SCI co SCI Coverage SCI 

F 12.14-100 7,042 100 383 100 10 71 

63 45 

1,000 11 

1,430 0 

[Ill 

G 12.14-100 219,000 100 5,091 100 370 100 l ~l 
887 71 jill 

1,430 50 !11 
'I l.il 

I II 

L 14.14-80 20,650 100 858 100 5 58 

1,000 0 , 'I 
I ir 
I II 
Jl' 

M 14.14-80 6,908 100 377 100 36 58 
II 

887 0 I' 
I; 
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before the base pavement. The increase in stress for no load transfer 

from Figure 30 caused major reductions in the predicted start of dete-

riorations, c0 , in the overlay. These reductions are typically one 

or two orders of magnitude, but even so, the predicted performances 

with no load transfer are still about an order of magnitude larger 

than the actual performance. 

The increase in stress for substandard joints in Figure 30 

greatly reduces the predicted performance of the overlays. However, 

the four test items all deteriorated much more rapidly than predicted. 

The quality of the available material data on the concrete is poor, 

and the value of any predictions based on it is uncertain. The avail-

able data are inadequate to allow evaluation of the load transfer 

multiplier. The multiplier greatly reduces the predicted performance 

of the overlay, but better performance data are needed to determine if 

it is adequate. 

. 199 

lli'l 

1111' I I: ,, 
111:1 

lm:: 
'1!'1 I ,1 
.jill 

jl!!l 

1141 
:ll 
ll~ 



PART IX: EVALUATION AND COMPARISON OF OVERLAY 
DESIGN PROCEDURES 

Design Methods 

The primary method in engineering practice today of determining 

the required rigid overlay thickness for airfields is the empirical 

Corps of Engineer (CE) equation described in Part II. The required 

overlay thickness is a power relationship between the difference in 

the existing base pavement to be overlaid and the new, equivalent 

pavement that would be required to support the design traffic if no 

base pavement existed. Differences in bond condition between the 

overlay and the base pavement are handled by adjusting the power used 

in the equation. Cracking in the base pavement before overlay and 

differences in flexural strength of the overlay and the base pavement 

are included in the analysis by adjusting the base pavement thickness. 

The design method proposed in this study uses a layered elastic 

analytical model to calculate stresses in the base pavement and the 

overlay. Deterioration of the base and the overlay in terms of the 

SCI is predicted using the relationships developed in Part IV. This 

deterioration is a function of the calculated stresses, the flexural 

strength of the concrete, and the number of stress repetitions or 

coverages of traffic. As the base pavement deteriorates, its support 

to the overlay is reduced, and this loss in support is represented by 

reducing the .concrete modulus value of the base pavement using the 

relationship developed in Part V. 

The major differences in the two design approaches are sum-

marized in Table 26. In order to evaluate these two design approaches 

200 



Design Considerations 

l. Analytical model 

2. Failure 

3. Interface conditions between 
overlay and base pavement 

4. Material properties 

N 
0 

5. Difference in strength/modulus ...... 
of overlay and base pavement 
concrete 

6. Cracking in base pavement 
before overlay 

7. Fatigue effects of traffic on 
uncracked base pavement 

8. Cracking of base after overlay 

Table 26 

Comparison of Overlay Design Hethods 

Corps of Engineers 

Empirical equ~tion 

Cracking in 50 percent of slabs 

Adjust power in equation 

Equivalent required h needed as 
input to empirical equation 

Adjust thickness of base pavement 

Reduce thickness of base pavement 

Not inclu<fed 

Not applicable 

Proposed Method 

Layered elastic 

Predict deterioration in terms 
of SCI 

Variable between full bond and 
and unbonded 

E, v for all materials and 
flexural strength of concrete 

Included directly in calcula­
tion of stresses and design 
factor 

Reduce E value of base 
concrete 

Included in terms of equivalent 
traffic 

Reduced E value of base as 
cracking progresses under 
traffic 



comparative designs were prepared in the following section for a vari-

ety of design conditions. 

Evaluation 

Test cases 

The empirical power equation for overlay design uses the thick-

ness of an equivalent new pavement to support the design traffic as 

input to calculate the overlay thickness required over a given thick-

ness of base pavement. The equivalent thickness must be determined 

from some existing concrete pavement design procedure such as pub-

lished by the CE, US Navy, Federal Aviation Administation (FAA), or 

Portland Cement Association. Any resulting overlay design will 

include all the assumptions and criteria of the basic design procedure 

used to calculate the equivalent thickness. 

In order to evaluate the power equation and compare it with the 

proposed layered elastic design procedure, the same criteria must be 

used to determine the equivalent thickness for the power equation and 

for the layered elastic procedure. For this analysis both procedures 

use the onset of deterioration, as determined by c
0 

, as the design 

performance criterion. The equivalent thickness input for the power 

equation is the thickness of pavement that develops stresses as cal-

culated by the layered elastic theory for a given design load that 

will reach the onset of deterioration c
0 

at the design coverage 

level. In this way the power equation and the proposed layered elas-

tic design approach can be compared without introducing other limita-

tions from established design procedures such as beam fatigue 
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relationships versus field test relationships, Westergaard edge load-

ing versus Westergaard interior loading, and reductions in thickness 

for high-strength subgrades. 

A matrix of possible design variables is shown in Tables 27 

and 28. The four aircraft shown include single, twin, and twin-tandem 

wheeled main gears. Their design characteristics are in Table 29. 

Soil modulus of elasticity values in Table 27 vary from 4,000 to 

50,000 lb/in.
2 

representing poor to good subgrade support. Design 

coverage levels vary from 10,000 to 250,000. As discussed before, the 

criterion for this comparison between the CE overlay equation and the 

proposed design method is reaching the calculated value of c0 at the 

specified design coverage level. The modulus of elasticity for con­

crete varies from 4 to 5 million lb/in.
2

• The thickness of existing 

base pavement varies from 0.25 to 0.75 of the equivalent new pavement. 

In the calculations, no base pavement thickness was allowed to go 

below 4 in. since pavements less than 6 in. are seldom encountered and 

a thickness below 4 in. would have little physical meaning. 

This variation in design parameters covers the spectrum that 

could be expected. Twelve specific cases were selected using random 

numbers for analysis as shown in Tables 27 and 28. During the anal­

ysis two additional cases, 3A and 8A in the tables, were added to 

include a single wheeled main gear aircraft at the 0.75 base thickness 

and another multiwheeled main gear aircraft at the intermediate 0.4 to 

0.6 base thickness. Other than these restrictions all of the rest of 

the design parameters were selected randomly for these two cases. 

Table 30 shows the distribution of these design parameters in the 

14 specific cases analyzed. 

203 



Design E-Soil 

Coverages (x 10
3 

(x 1d ) 
2 

lb/in. 

10 4 

10 

20 

35 
N 
0 50 
-1>-

25 4 

10 

20 

35 

50 

50 4 

10 

20 

35 

50 

Table 27 

Design Parameters for the Overlay 

F-4C 
E-concrete 

(x 106 lb/in. 
2

) 
4.0 4.5 5.0 

1 

2 

Aircraft 
B-727 

E-concrete 

(x 106 lb/in.
2

) 
4.0 4.5 5.0 

4 

5 

6 

7 

(Continued) 

C-141B 
E-concrete 

(x 10
6
lb/in.

2
) 

4.0 4.5 5.0 

9 

10 

11 

B-747 
E-concrete 

(x 10
6
lb/in.

2
) 

4.0 4.5 5.0 



N 
0 
V1 

Design 
Coverages 

(x 103) 

75 

100 

250 

E-Soil 

(x 103 

(lb/in. 2) 

4 

10 

20 

35 

50 

4 

10 

20 

35 

50 

4 

10 

20 

35 

50 

F-4C 
E-concrete 

(x 106 lb/in.
2) 

4.0 4.5 5.0 

3A 

Table 27 (Concluded) 

B-727 
E-concrete 

(x 106 lb/in. 2) 
4.0 4.5 5.0 

8A 

Aircraft 
C-141B 

E-concrete 

(x 10
6
1b/in. 2) 

4.0 4.5 5.0 

12 

B-747 
E-concrete 

(x 10
6
lb/in.

2) 
4.0 4.5 5.0 

13 

14 



Table 28 

Design Parameters for the Base Pavement 

Base Pavement Base Pavement Base Pavement 

E = 4 X 106lb/in. 2 
E = 4.5 X l0

6
lb/in. 2 

E 5.0 X 106lb/in. 2 

Case Thickness of Base Pavement hbase/hequivalent 
No. 0.25* 0.40 0.50 0.60 0.75 0.25* 0.40 0.50 0.60 0.75 0.25* 0.40 0.50 0.60 0.75 -- --

1 X 

2 X 

3A X 

4 X 
N 
0 5 X 
0" 

6 X 

7 X 

8A X 

9 X 

10 X 

11 X 

12 X 

13 X 

14 X 

* No base pavement allowed to go below 4 in. regardless of this ratio. 



Table 29 

Aircraft Characteristics 

Aircraft 
F-4C B-727 C-141 B 

Main Gear Type Single Twin Twin-Tandem 

Spacing (in., 38.2 32.5 X 48 
width x length) 

Wheel Load (lb) 25,000 44,000 40,800 

Tire Contact Area (in. 2) 100 238 208 

Contact Pressure (lb/in. 2) 250 185 196 

Equivalent radius (in.) 5.64 8. 70 8.14 
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Twin-Tandem 

44 X 58 

47,000 

219 

215 

8.35 
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Table 30 

Distribution of Desi~n Parameters 

Percent 
Number of 

in Total 
Desi~n Parameters Value Sample Cases 

1. Aircraft F-4C 3 21 

B-727 5 36 

C-141 4 29 

B-747 2 14 

2. Design Coverage Levels 10,000 3 21 [fit 
!91 

25,000 2 14 [II 
Iii 

50,000 4 29 ill 
Ill 

75,000 Ill 3 21 I' 
Jll 

100,000 
II 

1 7 ill 

250,000 1 7 

Soil Modulus (lb/in.
2

) 
II 

3. 4,000 2 14 IU 
li 

10,000 4 29 II 

20,000 2 14 :11 
II 

35,000 4 29 

50,000 2 14 

4. Concrete Modulus ~or 
6 4 4.0x10 29 

Overlay (lb/in. ) 6 
7 4.5x10 50 

5.0x10 6 3 21 

5. Concrete Modulus for 2 
6 

3 4.0x10 21 
Base Pavement (lb/in. ) 6 

36 4.5x10 5 

5.0x10 
6 

6 43 

6. Thickness of Base Pavement 0.25 4 29 

(~ase/hequivalent) 0.40 2 14 

0.50 1 7 

0.60 3 21 

0.75 4 29 

208 



The modulus of elasticity of concrete and the modulus of rupture 

or flexural strength are not independent so flexural strength was not 

used as a variable in Tables 27 and 28. However, there is no single, 

specific relation between concrete modulus of elasticity and flexural 

strength because it varies depending on the aggregate and mix proper-

tions used in the concrete. The modulus of elasticity for concrete is 

commonly estimated as 

where 

E 
c 

f' 
c 

E 
c 

57,000 If' 
c 

modulus of elasticity of concrete, lb/in. 2 

compressive strength of concrete, lb/in. 2 

Also, flexural strength is commonly estimated from the compressive 

strength as 

where 

R K If' 1 c 

R = flexur21 strength or modulus of rupture of concrete in 
lb/in. 

K
1 

= a constant varying from 8 to 10 

A variety of different modulus of elasticity and corresponding flexural 

strength values can be calculated from these relations. For this anal-

ysis intermediate values in the possible range of calculated values 

were used. Concrete with a modulus of 4 million lb/in. 2 was estimated 
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have a flexural strength of 600 lb/in. 2 , and concrete modulus of elas­

ticity values of 4.5 and 5 million lb/in.
2 

were estimated to have 

flexural strength values of 700 and 800 lb/in. 2 , respectively. Pois-

son's ratio for all concrete was assumed to be 0.15. 

The Poisson's ratio for soil was assumed to vary depending on 

its modulus of elasticity. Soil modulus of elasticity values of 4,000 

and 10,000 lb/in.
2 

were considered representative of cohesive soils, 

and a Poisson's ratio of 0.4 was used for these soils. Modulus of 

elasticity values of 35,000 and 50,000 lb/in.
2 

were representative of 

good quality cohesionless materials, and a Poisson's ratio of 0.3 was 

used with these. The soil with a modulus of elasticity of 20,000 lb/ 

in. 2 was considered to be an intermediate soil such as a sandy clay, 

silty sand, or silty gravel. A Poisson's ratio of 0.35 was used for 

this soil. 

For any case in Tables 27 and 28, the design factor required so 

that the onset of deterioration, c0 , will be reached at the design 

coverage level can be determined from the following equation developed 

in Part IV by substituting the case's required design coverage level 

DF Flexural strength = 4 Calculated stress 0 · 523 + 0 · 3920 Log C 0 

The equivalent slab is defined to have the same concrete properties as 

the overlay concrete for the specific case to be overlayed. For that 

case's flexural strength an allowable stress level can be determined 

from the required design factor. 
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Next, an iterative series of layered elastic calculations deter-

mined what thickness of equivalent pavement is needed to match this 

allowable stress level for a specific case's loading, overlay concrete 

properties, and subgrade properties. In all calculations an artifi-

cial stiff layer with a modulus of one million and a Poisson's ratio 

of 0.5 was placed at a depth of 20 ft as recommended by Parker et al. 

(1979). 

Once the equivalent slab thickness is determined, the thickness 

of the base pavement is set since each case's base thickness in 

Table 28 is defined as a proportion of the equivalent slab thickness. 

As mentioned before no base slab was allowed to be less than 4-in. 

regardless of the proportion shown in Table 28. Once the equivalent 

slab and base slab thicknesses are determined, the CE overlay thick-

ness can be determined from the power equation. 

The required overlay thickness by the proposed design method 

using the layered elastic analytical model follows the same analysis 

technique as was outlined in Part VII. A series of trial overlay 

thicknesses is analyzed for a case's specific loading, base thickness, 

and material properties until an overlay thickness is found that 

reaches c
0 

at the specific case's design coverage level. If the base 

pavement does not reach its c0 deterioration value within the case's 

design coverage level, the overlay thickness is determined simply from 

the c
0 

value calculated from overlay stresses with full support from 

the base slab. If, however, the base slab reaches its ·C
0 

before the 

design coverage level, the traffic is divided into intervals and dete-

rioration of the overlay in each interval is calculated with the 

reduced base support as was done in Part VII. Trial overlay 
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Next, an iterative series of layered elastic calculations deter-

mined what thickness of equivalent pavement is needed to match this 

allowable stress level for a specific case's loading, overlay concrete 

properties, and subgrade properties. In all calculations an artifi-

cial stiff layer with a modulus of one million and a Poisson's ratio 

of 0.5 was placed at a depth of 20 ft as recommended by Parker et al. 

(1979). 

Once the equivalent slab thickness is determined, the thickness 

of the base pavement is set since each case's base thickness in 

Table 28 is defined as a proportion of the equivalent slab thickness. 

As mentioned before no base slab was allowed to be less than 4-in. 

regardless of the proportion shown in Table 28. Once the equivalent 

slab and base slab thicknesses are determined, the CE overlay thick-

ness can be determined from the power equation. 

The required overlay thickness by the proposed design method 

using the layered elastic analytical model follows the same analysis 

technique as was outlined in Part VII. A series of trial overlay 

thicknesses is analyzed for a case's specific loading, base thickness, 

and material properties until an overlay thickness is found that 

reaches c
0 

at the specific case's design coverage level. If the base 

pavement does not reach its c0 deterioration value within the case's 

design coverage level, the overlay thickness is determined simply from 

the c
0 

value calculated from overlay stresses with full support from 

the base slab. If, however, the base slab reaches its ·c
0 

before the 

design coverage level, the traffic is divided into intervals and dete-

rioration of the overlay in each interval is calculated with the 

reduced base support as was done in Part VII. Trial overlay 
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thicknesses are analyzed until the c
0 

in the overlay including the 

reduced support of the base pavement is reached at the design coverage 

level. 

Unbonded overlay 

Table 31 shows the results of these calculations for unbonded 

overlays for the 14 cases in Tables 27 and 28. Invariably, the 

required overlay thicknesses by the proposed design method are smaller 

than those calculated by the CE power equation. Figure 49 shows the 

thicknesses calculated using the proposed design approach with the CE 

unhanded design equation. The CE equation serves as an effective 

upper bound for the proposed design method solutions. As was seen in 

Figure 5, there are distinct separate regions where stress in the 

overlay controls and where stress in the base controls. These regions 

are apparent in Figure 49 and also in Figure 50 where the ratio of 

base modulus of elasticity to overlay modulus of elasticity is 

included in the fig~re. This ratio reflects a difference in flexural 

strength as well as modulus values. In the region where cracking in 

the base occurs under the design traffic, the modulus ratio in Fig-

ure 50 also shows a trend that increasing modulus ratio, hence 

increasing base modulus and flexural strength relative to the over-

lay's values, results in a decrease in overlay thickness. This trend 

is not true of the cases where the base did not crack. 

In Figure 5, it was seen that the equal rigidity definition of 

an equivalent slab resulted in an upper bound solution when compared 

to those definitions of an equivalent slab using stress in the overlay 

or base as the criteria for defining the eq~ivalent slab. Similarly 
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Table 31 

Unbonded Overlay Results 

Equivalent 
Slab Overlay Base Slab Sub!;lrade 

h E hb Eb E 
CE 

eq h 0 
s h 

(lb/in. 
2

) 
0 

(lb/in.
2

) (lb/in. 
2

) (lb/in.
2

) 
0 

Case Aircraft (in.) (in.) (in.) 

F-4 8.5 7.3 5.0x10
6 4.0 5.0x10

6 35,000 7.5 

2 F-4 10.6 9.5 4.5x10
6 4.0 4.0x10

6 10,000 9.8 

3 F-4 10.0 4.9 4.5x10
6 7.5 5.0x10

6 35,000 6.6 

4 B-727 16.0 14.2 4.5x10
6 4.0 4.5x10

6 10,000 15.5 

N 5 B-727 14.2 6.4 4.0x10
6 10.7 4.5x10

6 50,000 9.3 

,__. 
w S.Ox106 5.0x10

6 

6 B-727 14.4 7.9 10.8 20,000 9.5 

B-727 13.7 9.8 4.5xt0
6 8.2 4.0x10

6 50,000 11.0 

8 B-727 17.5 10.9 4.5x10
6 10.5 4.5x10

6 10,000 14.0 

9 C-141 19.0 6.5 4.0x10
6 14.2 4.5x10

6 10,000 12.6 

10 C-141 21.5 14.0 4.5x10
6 8.6 5.0x10

6 4,000 19. 7 

11 C-141 14.2 12.6 4.5x10
6 4.0 4.5x10

6 35,000 13.6 

12 C-141 22.3 12.1 5 .Oxl0
6 11.2 5.0x10

6 4,000 19.3 

13 B-747 16.2 14.5 4. Oxl0
6 4.0 5.0x10

6 35,000 15.7 

14 B-747 19.6 11.5 4.0x10
6 11.8 4.0x10

6 20,000 15.6 



Table 31 

Unbonded Overlaz: Results 

Equivalent 
Slab Overlal Base Slab Sub grade CE 

h h E hb Eb E 
h eq 0 s 

(lb/in. 2) 
0 

2 
(lb/ in. 

2
) (lb/in.

2
) 

0 

Case Aircraft (in.) (lb/in. ) (in.) (in.) 

1 F-4 8.5 7.3 5.0x10 6 4.0 5.0x10 6 35,000 7.5 

2 F-4 10.6 9.5 4.5x10 6 4.0 4.0x10 6 10,000 9.8 

3 F-4 10.0 4.9 4.5x10 6 7.5 5.0x10 6 35,000 6.6 

4 B-727 16.0 14.2 4.5x10 6 4.0 4.5x10 
6 

10,000 15.5 
N B-727 6.4 6 10.7 6 50,000 9.3 ,_. 5 14.2 4.0x10 4.5xl0 
v..> 6 6 6 B-727 14.4 7.9 5.0x10 10.8 5.0x10 20,000 9.5 

7 B-727 13.7 9.8 4.5xl0 6 8.2 4.0x10 
6 

50,000 11.0 

8 B-727 17.5 10.9 4.5x10 6 10.5 4.5x10 6 10,000 14.0 

9 C-141 19.0 6.5 4.0x10 6 14.2 4.5x10 6 10,000 12.6 

10 C-141 21.5 14.0 4.5xl0 6 
8.6 5.0x10 

6 
4,000 19.7 

11 C-141 14.2 12.6 4.5x10 6 4.0 4.5x10 
6 

35,000 13.6 

12 C-141 22.3 12.1 5.0xl0 6 
11.2 5.0x10 

6 
4,000 19.3 

13 B-747 16.2 14.5 4.0x10 6 
4.0 5.0x10 6 

35,000 15.7 

14 B-747 19.6 ll.5 4.0x10 6 11.8 4.0xl0 6 20,000 15.6 

- ---------------------
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the CE equation in Figures 49 and 50 serves as an upper bound for the 

solutions from the proposed design method. 

Partially bonded overlays 

The analysis was repeated for seven of the cases in Table 31 for 

partially bonded overlays. Variation of the partially bonded inter-

face K condition between 660 and 750 for four cases, as suggested by 

the analysis in Part VIII, resulted in negligible changes in required 

overlay thickness. Changes varied from 0 to 0.2 in. Consequently, a 

K of 750 appeared to be appropriate for representing the partially 

bonded overlay conditions. Results of the overlay design for par-

tially bonded conditions are shown in Table 32. Unlike the unbonded 

condition, the CE partially bonded equation is not an upper bound for 

the proposed design approach solutions. 

Table 33 shows a comparison of the CE and the proposed design 

overlay requirements for both the bonded and partially bonded cases. 

Including the increased friction of partially bonded overlays in the 

analysis results in a decrease in required overlay thickness using the 

proposed design approach. However, this decrease is relatively small, 

1 to 7 percent for these cases. The CE partially bonded equation 

reduces the required overlay thickness from 8 to 32 percent. 

Figure 51 shows the unbonded and partially bonded overlay thick-

nesses calculated using the proposed layered elastic based approach, 

the CE test section data from Figure 3, and Fhe CE design equations. 

The CE partially bonded equation with the 1.4 power serves as a visual 

"best fit" relation for all data regardless of bond condition while 

the unbonded equation with the 2.0 power serves as an upper bound. 

The effect of increased friction between the overlay and the base is 
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Table 32 

Partiall;r Bonded Overlai': Results 

Equivalent 
Slab Overlay Base Slab Sub grade CE 
h E hb Eb E eq h 0 s h 

(lb/in. 2) 
0 2 2 2 

0 

Case Aircraft (in.) (lb/in. ) (in.) (lb/ in. ) (lb/in. ) (in.) 

l F-4 8.5 7.2 5.0x10 6 4.0 5.0x10 6 
35,000 6.3 

2 F-4 10.6 9.3 4.5x10 6 4.0 4.0x10 6 10,000 8.6 

3 B-727 16.0 13.9 4.5x10 6 4.0 4.5x10 6 10,000 14.3 

4 B-727 
N 

14.2 6.0 4.0x10 6 10.7 4.5x10 6 50,000 6.4 
,__. 

5 B-727 14.4 7.8 
6 10.8 6 20,000 6.5 -.....! 5.0x10 5.0x10 

6 B-727 13.7 9.1 4.5x10 6 8,2 4.0x10 6 50,000 8.5 

12 C-141 22.3 11.7 5.0x10 
6 11.2 S.OxlO 6 4,000 15.8 



Table 33 

ComEarison Between Unhanded and Partial!~ Bonded Overla~ Designs 

Percent Difference 
Bet,veen 

Unhanded Partialll Bonded Unbonded and 

hb/h CE h (in.) LE h (in.) CE h LE h (in.) Partially Bonded 
Case Aircraft eq 0 0 0 0 LE CE 

1 F-4 0.47 7.5 7.3 6.3 7.2 1.3 16.01 

2 F-4 0.38 9.8 9.5 8.6 9.3 2. 1 12.2 

4 B-727 0.25 15.5 14.2 14.3 13.9 2.1 7.7 

5 B-727 0.75 9.3 6.4 6.4 6.0 6.2 31.2 
N 

6 B-727 0.75 9.5 7.9 6.5 7.8 1.3 31.6 ...... 
CXl 

7 B-727 0.60 11.0 9.8 8.5 9.1 7.1 22.7 

12 C-141 0.50 19.3 12.1 15.8 11.7 3.3 18.1 

Note: CE Corps of Engineers design. 

LE Proposed design method using layered elastic analytical model. 

Percent Difference = (h - h ) /h unbonded partial bond unhanded 
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beneficial; however, this effect appears to be relatively small com­

pared to other effects such as relative modulus values, strength, and 

loading conditions. The layered elastic model is much more powerful 

than the power equation for evaluating these effects; however the 

Corps of Engineers unbonded overlay equation is an effective, simple, 

design method but conservative. The use of the partially bonded over­

lay equation is not conservative; it does not adequately reflect the 

interaction of the various design parameters; and consequently, its 

continued use appears questionable. 

Comparisons 

The CE and the FAA airfield design methods have a common basis, 

but as discussed in Part II they differ in a variety of details such 

as definitions of traffic areas, thickness reduction for high-strength 

subgrades, and use of design factors versus percent standard thickness 

fatigue relationships. The Waterways Experiment Station computer pro­

grams RAD611 and R611FAA were used to develop designs for the 14 cases 

in Tables 27 and 28. These programs were developed specifically to be 

usable on IBM-compatible microcomputers, and these programs are pres­

ently undergoing evaluation in CE Division and District offices and 

FAA Regional offices. The program RAD611 is an interactive program 

designed to follow the new Army and Air Force airfield rigid pavement 

design manual scheduled for printing and distribution in the fall of 

1987. Similarly, R611FAA follows the existing FAA design guidance 

except that the adjustment for differing flexural strength in the base 

and the overlay discussed in Part II is included in the computer 
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program, although it is not in the published advisory circular (Fed­

eral Aviation Administration 1978). 

The proposed design approach using the layered elastic model 

attempts to predict performance of a pavement in terms of the SCI. 

Some design performance level must be selected to use with this 

approach to compare its required pavement thickness with the thick­

nesses determined for the CE and FAA approaches. The performance 

level used for this comparison will be, as before, the onset of dete-

rioration, c0 

Table 34 shows the results for equivalent slab, unbonded, and 

partially bonded overlays determined by the proposed layered elastic 

based approach, the CE RAD611 program, and the FAA R611FAA program for 

the 14 cases in Tables 27 and 28. The subgrade modulus of elasticity 

values in these cases have to be converted to modulus of subgrade 

reaction values for use with Westergaard model based solutions. This 

conversion was made with the relation proposed by Parker et al. 

(1979). The subgrade modulus of elasticity values of 4,000, 10,000, 

20,000, 35,000, and 50,000 lb/in.
2 

were estimated to be equivalent to 

modulus of subgrade reaction values of 50, 103, 177, 274, and 

361 lb/in.
2
/in. 

In general, the proposed design method allows somewhat thinner 

equivalent slab thicknesses and appreciably thinner unbonded overlays. 

As noted in the previous section, the proposed design method's added 

interface friction for partially bonded overlays does not reduce the 

overlay required thickness appreciably from the thickness required for 

unbonded overlays. However, both the CE and FAA design approaches 

greatly reduce the required overlay thickness for partially bonded 
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Table 34 

Comrarison of Overlaz Desian Procedure Results 

Desis;n Procedure Thickness .(in.) 

Case Aircraft 

1 F-4 

2 F-4 

3A F-4 

4 B-727 

5 B-727 

6 B-727 

7 B-727 

SA B-727 

9 C-141 

10 C-141 

11 C-141 

12 C-141 

13 B-747 

14 B-747 

Notes: h eq 

Proposed 
AEEroach 

h h h h 
~ u _L ~ 

8.5 7.3 7.2 9.2 

10.6 9.5 9.3 11.2 

10.0 4.9 10.8 

16.0 14.2 13.9 17.4 

14.2 6.4 6.0 15.2 

14.4 7.9 7.8 15.4 

13.7 9.8 9.1 14.3 

17.5 10.9 17.8 

19.0 6.5 19.2 

21.5 14.0 21.0 

14.2 12.6 15.3 

22.3 12.1 11.7 19.2 

16.2 14.5 17.1 

19.6 ll.5 20.1 

equivalent thickness. 

h = unbonded overlay thickness. 
u 

CE 
h 

u 

8.2 

10.6 

6.0 

16.9 

9.4 

11.0 

12.3 

14.4 

10.6 

18.8 

14.8 

15.6 

16.3 

16.3 

h = partially bonded overlay thickness. 
p 
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h h 
___..E.__ ~ 

7.0 

9.5 

7.0 

15.8 16.5 

6.2 15.3 

7.9 15.1 

10.0 14.9 

11.2 17.3 

6.6 

15.8 

13.6 

12.2 

14.8 16.2 

12.7 18.9 

FAA 
h h 

u _E__ 

16.0 14.8 !i ,, 
11.3 8.9 111 

m 

10.5 7.5 
r.l 
II• 

ill 
13.0 10.7 111 

II 

13.8 10.6 

15.4 13.8 

14.8 11.2 



overlays. In most cases, the partially bonded overlay thickness for 

these two approaches are approximately equal to the proposed design 

method's unbonded overlay thickness. Again it is illustrated that the 

partially bonded overlay equation is a best fit to data, whereas the 

unbonded overlay equation is a conservative upper bound. Since the 

partially bonded overlay equation is not always conservative and it 

cannot model the interactions of different parameters such as overlay 

and base modulus of elasticity values and load configuration, its con­

tinued use is questionable. 

Figure 52 shows the results of the equivalent slab and unbonded 

overlay thicknesses for three design approaches. In general, the FAA 

approach requires thinner pavements than the CE approach. The pro­

posed design approach results usually in thinner equivalent slabs and 

always in thinner overlays. The criterion proposed by Parker et al. 

(1979) for use with the layered elastic model is shown with the pro-

posed design methods relations for c0 and CF in Figure 12. For 

any given coverage level the Parker criterion requires a lower design 

factor than does the relation for c0 . Consequently, the Parker 

criterion for use with the layered elastic model results in a thinner 

pavement than does the proposed design method with c
0 

as the design 

performance level. 

The proposed design method results in pavement thicknesses that 

are similar to those required by existing CE and FAA design methods. 

Required overlay thicknesses by the proposed design method are appre­

ciably thinner, however, due to the improved modeling of the base 

pavement and the overlay. The empirical unbonded overlay equation is 

a conservative upper bound to the proposed design method. 
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Effect of Previous Traffic 

The previous sections have treated the base pavement as intact 

and undamaged by traffic before the overlay. As was discussed in 

Part VII, traffic applied to the base pavement before the overlay con-

sumes a portion of its fatigue capacity and this effect has to be 

included in the analysis. 

For the specific parameters of case 5 in Table 31, a 6.4-in.-

thick overlay is adequate to support 25,000 coverages of a B-727 

before deterioration as predicted using the relation for c0 • This 

prediction assumes there has been no previous traffic. As discussed 

in Part VII, a fatigue damage factor, d , could be defined as 

where 

d 

d = a fatigue damage factor between 0.0 and 1.0 

C the equivalent traffic applied to the base 

c
0 

= the coverage level to cause the onset of deterioration in 
the base 

In the previous analyses the base pavement has been assumed to be 

untrafficked, so the fatigue factor was zero. Figure 53 shows the 

effect of including fatigue in the prediction of the performance of 

the overlay for case 5. As fatigue from traffic before the overlay is 

increased, the predicted coverage levels before deterioration 

decrease. ·At a fatigue factor value of 1.0, the base slab was on. the 
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verge of starting to deteriorate before the overlay. Its deteriora­

tion with decreased support under the overlay traffic reduces the 

number of coverages to reach c0 in the overlay by almost half. 

If the pavement has been cracked and is deteriorating at the 

time of the overlay, its reduced support to the overlay has to be 

included in the analysis. The existing CE overlay design equation 

uses the condition factor in Table 2 to account for the deterioration. 

In Figure 53 deterioration has been calculated for the overlay in 

case 5 forCE condition factors of 0.75, 0.50, and 0.25. The equiva­

lent SCI values for these factors were estimated from the relationship 

in Figure 15 and were used to determine the initial cracked slab 

effective modulus for the analysis. The effect of existing structural 

deterioration in the base slab is very pronounced. Obviously, the 

inclusion of any fatigue or structural damage to the base pavement 

before the overlay has to be an integral part of any overlay design. 

As shown previously in Table 34 and Figure 52, the existing CE 

and FAA design procedures result in thicker overlays. Figure 54 com­

pares the predicted performance of the 6.4-in.-thick overlay required 

by the layered elastic approach and the 9.4-in.-thick overlay required 

by the CE design for case 5. The CE design without any consideration 

for fatigue or structural condition of the base slab results in a pre­

dicted capacity about 20 times greater than the required 25,000 cover­

ages. Including the effect of fatigue reduces this prediction to as 

little as a four-fold increase over the design coverage level. When 

the structural condition of the base slab before the overlay is 

included in the CE design using the condition factor, the predicted 

performance of the resulting design thickness falls between these two 
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extremes. Although the CE overlay design procedure does not include 

previous fatigue damage to the base pavement, the method is suffi­

ciently conservative that adequate capacity is provided. The addi­

tional overlay thickness required by the condition factors for 

cracking in the base slab before the overlay also provides adequate 

capacity to exceed the design coverage level. 

The required increase in the overlay thickness due to the condi­

tion factor in the CE overlay equation is shown in Figure 55 along 

with the predicted performance of cases 4, 5, and 7. Only in case 5 

did the base slab undergo a decrease in support due to fatigue. As 

the fatigue factor increased from 0.0 to 1.0, the thickness to reach 

c
0 

at 25,000 coverages increased from 6.4 to 7.4 in. The effect of 

the structural condition of the base slab at the time of the overlay 

is seen to have very significant influence on the required thickness 

of overlay in Figure 55. In the specific example of case 5 the 

required overlay thickness almost doubled as it went from 6.4 in. to 

12.7 in. to account for the condition of the base slab. As before, 

the CE overlay equation with the condition factor provides conserva­

tive results. 

The proposed overlay design approach using the layered elastic 

analytical model results in thinner overlays than required by existing 

design approaches. Because it attempts to predict performance and 

more closely models the pavement structure, the proposed layered elas­

tic design approach requires much more accurate assessment of material 

properties and the structural condition of the base pavement. Factors 

such as fatigue damage from previous traffic that did not crack the 

pavement must be assessed if this approach is to be used. The 
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conservativeness of the existing empirical approach was sufficient to 

allow these factors to be ignored previously. The importance of these 

factors is increased as the structural value of the base pavement 

increases. 
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PART X: CONCLUSIONS ~~ RECOMMENDATIONS 

Conclusions 

A proposed new overlay design and analysis procedure has been 

presented for rigid airfield pavements. It predicts pavement deteri­

oration in terms of a Structural Condition Index (SCI) varying between 

0 and 100. The basis for the procedure is the layered elastic analy­

tical model. Effects of fatigue damage to the base pavement, progres­

sive cracking in the base pavement, and substandard load transfer at 

the pavement joints are included in the analysis. 

The proposed new overlay design procedure was found to require 

thinner overlays than existing design procedures. This reduction in 

required thickness is particularly true for thick base pavements that 

contribute significantly to the structural capacity of the overlay and 

base pavement system. The difference is mainly due to the proposed 

design procedure's improved modeling of the base pavements contribu­

tion to the system compared with the existing empirical design proce­

dures. 

The proposed design procedure predicts pavement performance, and 

therefore requires accurate material, structural condition, and fati­

gue characterization of the pavement. 

The existing Corps of Engineers (CE) unbonded overlay design 

equation is a conservative upper bound to the solutions from the pro­

posed design procedure. Consequently, it remains as a simple con­

servative design method. The CE partially bonded overlay equation is 
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not conservative, however, and its continued use is highly question­

able and subject to further study. 

The proposed design approach using the BISAR computer program is 

capable of handling any degree of interface condition from friction­

less to fully bonded. A fully bonded overlay may have major problems 

in constructing a satisfactory joint capable of adequate load transfer 

if a thick overlay is used. Therefore, the fully bonded overlay for 

airfields should be limited to thin overlays of 2- to 5-in. thickness 

to correct surface deficiencies and provide limited structural 

improvement of the pavement. The limited data on the overlays nor­

mally referred to as partially bonded suggest that there is increased 

friction or bonding which improves their performance compared to 

unbonded overlays. However, accurately characterizing the appropriate 

friction level to use in design is difficult. 

The BISAR computer program was used to calculate layered elastic 

stresses for this study. Other layered elastic computer programs may 

be used if they provide stress solutions of the same accuracy as the 

BISAR program. Most of these programs can only handle the fully 

bonded and unbonded overlays because they lack models for intermediate 

levels of friction. 

The proposed design procedure gives reasonable results and pro­

vides general agreement with the available data. However, the data 

upon which the proposed and existing design procedures are based are 

very limited. Major efforts are needed to develop new trafficking 

data and to collect field performance data for overlays. 
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The proposed design procedure predicts structural deterioration 

of a pavement due to load induced stresses. There are other causes of 

deterioration in pavements that must be addressed separately. 

The proposed design procedure is analytically much more powerful 

than the existing empirical procedures and allows direct analysis of 

the effects of a variety of design parameters such as material pro-

perties or interface friction. However, load characterization, major 

simplifications of material properties, and simple assumptions con-

cerning time-dependent effects such as variation in load transfer or 

temperature are needed to simplify the problem to a point where anal-

ytical solutions are feasible. While the analytical solutions provide 

the engineer with results to evaluate, all analytical solutions should 

be tempered and adjusted with judgment and experience. 

Recommendations for Further Research 

The proposed design procedure and the existing overlay design 

procedures are based on limited historic data. A program of full-

scale test sections and field monitoring of in-service parameters and 

overlays is badly needed. Some specific areas that require further 

work include: 

a. Validate the-proposed rigid performance model presented in 
Part IV from in-service pavements. 

b. Determine what factors affect the structural deterioration 
besides the design factor. 

c. Gather more data on the effective cracked slab model. 

d. Validate or improve the load transfer adjustment developed 
in Part VI. 
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e. Determine appropriate friction levels to use in analysis of 
unhanded and partially bonded overlays. 

f. Develop other models to include durability and pumping 
related deterioration. 

~· Extend the improved design method to include flexible 
overlays. 

The proposed design approach should be used to study the optimal 

point for pavement rehabilitation and to compare rehabilitation strat-

egies (e.g., should an overlay try to protect the base pavement from 

further cracking or is it more cost effective to allow the base to 

crack with a thinner overlay). 

The effective cracked slab model should be investigated as a 

method of designing overlays for "crack and seat" construction. 

A long-term assessment and monitoring of load transfer in rigid 

airfield pavements is needed to determine the actual values and varia-

bility of this parameter. 
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APPENDIX A 

CORPS OF ENGINEERS RIGID PAVEMENT 

TEST SECTION DATA 
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Table A1 

Hate rial Properties for Lockbourne No. 1 Test Sections 

Concrete Surface Base Course Subgrade 
E (x 12

6 
h E E 

Item h (in.) lb/in. ) (in.) Type (lb/in.
2

)* \) Type (lb/in. 2
)* \) --

A 1. 60 5. 72 3.8 Silty clay 16,000 0.4 

A 2.60 5. 72 3.8 Silty clay 16,000 0.4 

B 1.66L 5.50 3.8 6 Loose gravel 6,700 0.3 Silty clay 9,500 0.4 

B 2.661 5.50 3.8 6 Loose gravel 6,700 0.3 Silty clay 9,500 0.4 

c 1.66S 5.50 3.8 6 Sand 10,000 0.3 Silty clay 4,900 0.4 

N c 2.665 5.50 3.8 6 Sand 10,000 0.3 Silty clay 4,900 0.4 
w 
'-1 

D 1. 66 5.50 3.8 6 Sand and 10,000 0.3 Silty clay 4,900 0.4 
gravel 

D 2.66 5.50 3.8 6 Sand and 10,000 0.3 Silty clay 4,900 0.4 
gravel 

E 1.66H 5.75 3.8 6 Crushed stone 18,000 0.3 Silty clay 6,000 0.4 

E 2.66H 5.75 3.8 6 Crushed stone 18,000 0.3 Silty clay 6,000 0.4 

F 1.80 7.75 3.8 Silty clay 4, 100 0.4 

F 2.80 7.75 3.8 Silty clay 4,100 0.4 

K 1.100 9.44 3.8 Silty clay 8,200 0.4 

K 2.100 9.44 3.8 Silty clay 8,200 0.4 

(Continued) 

* Estimated from Log E = 1. 415 + 1. 284 log k from Parker et al. (1979). 
k = Modulus of subgrade reaction .. 



N 
w 
co 

Table A1 (Concluded) 

Concrete Surface Base Course 
E (x 19

6 
h E 

Item h (in.) lb/in. ) (in.) Type (lb/in. 2)* \} --
N 1.86 8.0 3.8 6 Sand and gravel 10,000 

N 2.86 8.0 3.8 6 10,000 

0 1.06 9.46 3.8 6 Sand and gravel 10,000 

0 2.06 9.46 3.8 6 Sand and gravel 10,000 

p 1.812 7.58 3.8 12 Sand and gravel 15,000 

p 2.812 7.58 3.8 12 Sand and gravel 15,000 

Q 1.1012 9.44 3.8 12 Sand and gravel 15,000 

Q 2.1012 9.44 3.8 12 Sand and gravel 15,000 

R 1.612 5.88 3. 77 60 Sand and gravel 59,800 

R 2.612 5.67 3.53 60 Sand and gravel 59,800 

s 1.66 5.83 3. 77 66 Sand and gravel 55,800 

s 2.66 5.69 3.53 66 Sand and gravel 55,800 

T 1.60 5.63 3. 77 72 Sand and gravel 51,800 

T 2.60 5.68 3.53 72 Sand and gravel 51,800 

u 1.60 5.83 3.8 72 Sand 23,000 

u 2.60 5.83 3.8 72 Sand 23,000 

* Estimated from LogE= 1.415 + 1.284 log k from Parker et al. (1979). 
k = Modulus of subgrade reaction. 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

0.3 

Suhsrade 
E 

Type (lh/in. 2
)* \} 

Silty clay 4,900 0.4 

Silty clay 4,900 0.4 

Silty clay 4,900 0.4 

Silty clay 4,900 0.4 

Silty clay 3,200 0.4 

Silty clay 3,200 0.4 

Silty clay 3,900 0.4 

Silty clay 3,900 0.4 

Silty clay 5,800 0.4 

Silty clay 5,800 0.4 

Silty clay 5,800 0.4 

Silty clay 5,800 0.4 

Silty clay 5,800 0.4 

Silty clay 5,800 0.4 

Silty clay 5,800 0.4 

Silty clay 5,800 0.4 



Table A2 

Performance for Lockbourne No. 1 Test Sections 

C a c b Slabs 
Ite'll' Cover a !:lies SCI 0 F Analyzed Load 

A 1.60 18 80 13 59 NE and SE 37-kip single 
wheel load 

59 0 (SWL) 

94 0 

A 2.60 294 93 225 10,084 SE 20-kip SWL 

520 78 

B 1. 66L 14 55 3 96 NW, SW 37-kip SWL 

56 13 

91 3 

225 0 

B 2. 66L 76 86 59 522 sw 20-kip SWL 

298 42 

388 0 

c 1. 668 15 93 13 92 NE, SE 37-kip SWL 

56 23 

91 2 

225 0 

c 2. 668 78 78 54 599 SE 20-kip SWL 

300 42 

390 17 

526 0 

D 1. 66 20 55 6 104 NW, sw 37-kip SWL 

56 28 

91 0 

(Continued) 

a Calculated onset of deterioration DF ; 0.5234 + 0.3924 Log C . 
0 

b Calculated absolute failure (SCI = 0) DF = 0.2967 + 0.3881 Log CF. 

DF = design factor = flexural strength + calculated stress. 
(Sheet 1 of 4) 
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Table A2 (Continued) 

co CF 
Slabs 

Item Covera~es SCI Analzzed Load 

D 2.66 300 100 289 3 '776 SE 20-kip SWL 

390 86 

526 78 

E 1. 66M 21 100 50 212 NE, SE 37-kip SWL 

57 100 

92 45 

226 0 

E 2.66M 556 100 SE 20-kip SWL 

F 1.80 111 55 70 195 NW, SW 37-kip SWL 

195 0 

287 0 

F 2.80 550 100 20-kip SWL 

K 1.100 412 78 259 1,995 NW, SW 37-kip SWL 

722 44 

982 42 

1,482 12 

K 2.100 42 42 1 1,435 sw 60-kip SWL 

722 12 

982 0 

N 1.86 107 100 105 284 NW, SW 37-kip SWL 

191 36 

283 3 

N 2.86 6 100 6 32 NW, SW 60-kip SWL 

16 39 

32 0 

0 1.06 418 93 347 1,606 NE, SE 37-kip SWL 

728 45 

988 27 

1488 11 

(Continued) 
(Sheet 2 of 4) 
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Table A2 (Continued) 

co CF 
Slabs 

Item Cove rases SCI Analyzed Load 

0 2.06 42 100 41 155 NE, SE 60-kip SWL 

80 45 

138 11 

205 0 

p 1.812 106 100 NW, SW 37-kip SWL 

272 93 

1,148 0 

p 2.812 6 42 NW, SW 60-kip SWL 

190 0 

Q 1.1012 457 100 NE, SE 37-kip SWL 

988 100 

1,487 93 

Q 2.1012 42 100 36 209 NE, SE 60-kip SWL 

80 45 

138 13 

205 13 

R 1. 612 105 100 217 557 NW, SW 37-kip SWL 

262 80 

492 13 

1,022 0 

R 2.612 1.5 58 1.0 4.2 NW, sw 60-kip SWL 

19 26 

42 0 

s 1.66 90 93 222 549 NE, SE 37-kip SWL 

271 78 

497 11 

1,027 0 

s 2.66 1.5 25 1.0 42 NE, SE 60-kip SWL 

19 17 

42 0 

(Continued) 
(Sheet 3 of 4) 
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Table A2 (Concluded) 

co CF 
Slabs 

Item Covera~es SCI Anall':zed Load 

T 1.60 87 86 215 559 NW, SW 37-kip SWL 

268 77 

494 13 

1,184 0 

T 2.60 19 100 19 137 NW, SW 60-kip SWL 

42 58 

138 0 

u 1.60 81 100 123 488 NE, SE 37-kip SWL 

262 45 

488 0 

u 2.60 1.5 12 1.0 42 NE, SE 60-kip SWL 

19 2 

42 0 

(Sheet 4 of 4) 
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Table A3 

Naterial Properties for Lockbourne No. 2 Test Section and Hodification 

Concrete Surface Base Course 

E (x 106 
h 

E (x 103 

Item h (in.) lb/in. 2) (in.) Type lb/in. 2)* \) --
E-2 15 4.0 72 Sand and gravel 16,000 0.3 

E-6 20.26 4.0 

l1 1 12 4.12 

M 2 15 4.12 

M 3 20 4.12 

* Estimated from LogE= 1.415 + 1.285 log k from Parker et al. (1979). 
k = Hodulus of subgrade reaction. 

Subgrade 

E (x 103 

Type lb/in.
2

)* 

Silty clay 6,600 

Silty clay 9,300 

Silty clay 4,400 

Silty clay 4,400 

Silty clay 4,400 

v 

0.4 

0.4 

0.4 

0.4 

0.4 



Table A4 

Performance for Lockbourne No. 2 Test Section and Modification 

Item Coverages SCI 
C a 

0 
c b 

F Slabs Analyzed Load 

E-2 1,430 78 1,280 2,241 D 10.150 150-kip SWL 

2,023 16 

E-6 500 98 1,040 52,554 F and G 7.20; F, G, 150-kip SWL 

1,000 96 H, I, and J 8.2 

1,430 91 

1,725 89 

N 2,023 82 
~ 

~ M 1 125 91 93 353 R, s, and Q 0 .120, 150-kip twin-

144 83 1.120' and 2.120 tandem 

150 57 Wheel Spacing: 

154 56 31.25 "x 62.75" 

169 49 

188 35 

235 18 

324 15 

384 0 

(Continued) 

a 
Calculated onset of deterioration DF = 0.5234 + 0.3920 Log c 

0 

b Calculated absolute failure (SCI = 0) DF = 0.2967 + 0.3881 Log CF. 

DF = Design Factor = flexural strength f calculated stress. 



Table A4 (Concluded) 

Item Coverages SCI 
C a 

0 
c b 

F Slabs Analyzed 

M 2 29 95 1,693 6 '774 u 

1,500 92 

2,000 88 

2,204 81 

M 3 2,204 100 X 

a Calculated onset of deterioration DF = 0.5234 + 0.3920 Log C . 
0 

and V 0.150, 
and 2.150 

and y 0.200, 

and 2.200 

b Calculated absolute failure (SCI = 0) DF = 0.2967 + 0.3881 Log CF. 

OF = Design Factor = flexural strength f calculated stress. 

1.150, 

1.200 

Load 

150-kip twin-
tandem 

150-kip twin-
tandem 



N 
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Table AS 

Material ProEerties for Sharonville Heavl Load and Multiple Wheel Heavl 

Concrete Surface Base Course 

E (x 106 
h 

E (x 103 

Item h (in.) lb/in. 2) (in.) ~ lb/in.
2

)* 

72 28 4.2 4 Sand Not modeled 

73 24 4.2 4 Sand Not modeled 

l-C5 10 6.0 

2-C5 12 6.0 

2-DT 12 6.0 

3-CS 14 6.0 

3-DT 14 6.0 

4-C5 8 6.0 

* Estimated from Log E = 1. 415 + 1. 284 log k from Parker et al. (1979). 
k = Modulus of subgrade reaction. 

TyEe 

CL-CH clay 

CL-CH clay 

CH clay 

CH clay 

CH clay 

CH clay 

CH clay 

CH clay 

Gear Load Tests 

Subgrade 

E (x 103 

lb/in. 2)* \1 --
6,000 0.4 

6,000 0.4 

7,500 0.4 

7,500 0.4 

7,500 0.4 

7,500 0.4 

7,500 0.4 

7,500 0.4 



Table A6 

Performance for Sharonville Heav:r: Load and 

MultiEle Wheel Heavy Gear Load Tests 

Item Coverages SCI 
C a 

0 
c b 

F Load 

72 1,000 85 420 147,210 325-kip twin-

1,260 82 tandem 

1,440 79 Tire spacing 

3,700 63 31.25" X 62.75" 

73 1,000 89 668 7,054 325-kip twin-

1,200 68 tandem 

1,650 58 

2, 115 55 

1-C5 112 92 150 936 360-kip 

192 85 12-wheel C-5 

251 81 gear assembly 

288 56 

592 26 

2-DT 40 93 128 476 166-kip dual-

150 86 tandem 

290 43 Wheel spacing 

410 8 44 11 
X 58 11 

3-DT 150 8 177 960 166-kip dual-

260 78 tandem 

410 45 Wheel spacing 

530 43 44" X 58" 

680 17 

4-CS 180 80 165 258 325-kip 

240 16 12-wheel C-5 
gear assembly 

a Calculatd onset of deterioration DF = 0.5234 + 0.3924 Log C . 
0 

b Calculated absolute failure (SCI = 0) DF = 0.2967 + 0.3881 Log CF. 

DF = design factor = flexural strength + calculated stress. 

247 



N 
-10-
(Y) 

Table A7 

Material ProEerties for Keyed Lon~itudinal Join.t Stud)!: and Soil Stabilization Pavement Studl 

Concrete Surface Base Course 

E (x 106 
h 

E 
2 (lb/in. 2)a Item h (in.) lb/in. ) (in.) Type 

KLJS-1 8 6.0 24 Clayey, gravelly 20,000 
sand 

KLJS-2 11 6.0 

KLJS-3 10 6.0 4 Sand 7,500 

KLJS-4 10 6.0 6 Cement 250,000 
stabilized 

SSPS-3 15 6.0 6 Bituminous b 
stabilized 

SSPS-4 15 6.0 6 Cement 200,000 
stabilized 

a 
Estimated from Log E = 1.415 + 1. 284 log k from Parker et al. (1979). 

k Modulus of subgrade reaction. 
b 

E 200,00 in Lane 1 under 200-kip gear load. 

E 100,000 in Lane 2 under 240-kip gear load. 

Subgrade 

E (x 103 

lb/in. 2)a v Type --
0.3 CH clay 7,500 

CH clay 7,500 

0.3 CH clay 7,500 

0.2 CH clay 7,500 

0.4 CH clay 7,500 

0.2 CH clay 7,500 

v --
0.4 

0.4 

0.4 

0.4 

0.4 

0.4 



Item 

KLJS 1-CS 

KLJS 3-CS 

KLJS 3-CS 

KLJS 4-DT 

SSPS 3-200 

SSPS 4-200 

Table AS 

Performance for Keyed Longitudinal Joint Study and 

Soil Stabilization Pavement Study 

Coverages 

54 

144 

344 

504 

144 

344 

504 

688 

22 

116 

164 

364 

320 

630 

880 

950 

200 

1770 

2050 

3000 

4460 

1770 

4660 

5220 

SCI 

68 

38 

30 

0 

85 

80 

52 

9 

80 

45 

15 

3 

78 

34 

23 

1 

84 

60 

52 

12 

3 

74 

20 

0 

C a 
0 

16 

292 

ll 

228 

937 

1179 

(Continued) 

c b 
F 

683 

783 

395 

1094 

4258 

5934 

Load 

360-kip 

C-5 gear 
assembly 

360-kip 

C-5 gear 
assembly 

360-kip 

C-5 gear 
assembly 

166-kip dual­
tandem 

200-kip dual­
tandem 

200-kip dual­
tandem 

a Calculated onset of deterioration DF = 0.5234 + 0.3924 Log C . 
0 

b Calculated absolute failure (SCI = 0) DF = 0.2967 + 0.3881 Log CF. 

DF = design factor = flexural strength + calculated stress. 

249 



Table AS (Concluded) 

Item Coverages SCI 
C a 

0 
c b 

F Load 

SSPS 4-240 40 80 22 377 240-kip dual-

100 42 tandem 

200 27 

350 1 
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Table A9 

Calculated Stress and Desi8n Factors 

Flex. Str. Layered Elastic Design 
Test Section Item (lb/in~ Stress (lb/in. 2) Factor 

Lockbourne No. 1 A 1.60 780 599 1.302 

A 2.60 740 405 1. 827 

B 1. 66 C 780 759 1. 028 

B 2.66 c 740 504 1. 468 

c 1.66 s 780 853 0.914 

c 2.66 s 740 558 1.326 

D 1.66 780 877 0.889 

D 2.66 740 572 1. 294 

E 1.66 M 780 771 1. 012 

E 2. 66 M 740 505 1.465 

F 1.80 780 625 1.248 

F 2.80 740 396 1.869 

K 1.100 780 410 1.902 

K 2.100 735 570 1.290 

N 1.86 780 560 1.383 

N 2.86 735 785 0.936 

0 1.06 780 458 1.703 

0 2.06 735 647 1.136 

p 1.812 780 632 1.234 

p 2.812 735 883 0.832 

Q 1.1012 780 465 1.677 

Q 2.1012 735 659 1.115 

R 1.612 780 332 2.349 

R 2.612 735 381 1.929 

s 1.66 780 344 2.267 

s 2.66 735 381 l. 929 

T 1. 60 780 364 2.143 

T 2.60 735 397 1. 85 l 

u 1.60 780 527 1.480 

(Continued) 
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Table A9 (Concluded) 

Flex. Str. Layered Elastic Design ·2 
Stress (lb/in. 2) Test Section Item (1b/in. ) Factor 

u 2.60 735 651 1.129 

E-2 680 574 1.185 

E-6 700 397 1.763 

M 1 725 600 1.208 

M 2 725 446 l. 626 

M 3 725 295 2.458 

Sharonville Heavy 72 800 319 2.508 

Load 

73 800 401 1.995 

Multiple Wheel 1-C5 725 580 1. 250 

Heavy Gear Load 2-C5 800 473 1. 691 

2-DT 700 566 1.234 

3-C5 660 396 1. 675 

3-DT 700 461 1. 518 

4-C5 775 735 1.054 

Keyed Longitudinal 1-CS 905 656 1.380 

Joint Study 2-C5 730 522 1.399 

3-C5 810 580 1.397 

4-C5 860 522 1.648 

4-DT 860 643 1.338 

Soil Stabilization 3-200 900 463 1.944 

Pavement Study 4-240 900 564 1.596 

4-200 870 463 1.879 

4-240 870 555 1.568 
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APPENDIX B 

SLAB TEST DATA 
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Fig. Bl. Crane and Headache Ball Used to Crack Slabs 

Fig. B2. Dynatest Falling Weight Deflectometer, Model 8000 
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Fig. B3. Initial Condition, Slab l 

Fig. B4. Initial Condition, Slab 2 
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Fig. B5. Initial Cracking For Slabs 1 and 2 



Fig. B6. Initial Cracking, Slab 1, SCI 80 

Fig. B7. Initial Cracking, Slab 2, SCI 80 
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Fig. B9. Second Cracking, Slab l, SCI 58 

--::'"·/ 
_/,.,,··-

Fig. BlO. Second Cracking, Slab 2, SCI 80 
at Position 100 
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Fig. B12. Third Cracking, Slab 1, SCI = 23 

Fig. B13. Third Cracking, Slab 2, SCI = 39 
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Fig. Bl4. Fourth Cracking, Slab 1, SCI = 0 

Fig. B15. Slab 1 Next Morning 
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Fig. Bl6. Fourth Cracking, Slab 2, SCI 23 

Fig. Bl7. Initial Condition, Slab 3 

263 



Fig. Bl8. Initial Condition, Slab 4 

--

Fig. Bl9. First Cracking, Slab 3, SCI = 39 
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Fig. B20. Second Cracking, Slab 3, SCI = 23 

Fig. B21. First Cracking, Slab 4, SCI 58 
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Fig. B22. Second Cracking, Slab 4, SCI 23 

Fig. B23. Initial Conditions, Slab 5 
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Fig. B24. Initial Conditions, Slab 6 

Fig. B25. First Cracking, Slab 5 and 6, -
SCI = 39 and 55 
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Fig. B26. Second Cracking, Slab 5 and 6, 
SCI = 23 

Fig. B27. Third Cracking, Slabs 5 and 6, SCI 0 
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Table B1 

Falling Weight Results Slab 1, Position 100 

b Deflection -3 (x 10 in.) Load 
Position a 

(lb) D c D c 
D 24 

c 
D 36 

c 
D 48 

c 
D 

c D c 
0 12 60 72 

100 22,278 28.0 24.6 18.9 14.0 10.3 7.7 5.7 
100 22,421 26.9 23.6 18.0 13.5 10.0 7.5 5.6 
100 22,405 27.1 23.4 18.0 13.5 10.0 7.5 5.6 
100 22,437 27.3 23.6 18.0 13.5 10.0 7.5 5.6 

101 22,071 45.7 47.2 30.2 20.7 14.1 9.5 6.7 
101 22,389 42.7 41.7 28.3 19.4 13.1 9.0 6.3 
101 22,357 42.6 40.7 28.3 19.3 13.0 8.9 6.3 
101 22,373 42.6 40.4 28.3 19.2 13.0 8.9 6.3 

102 13,109 67.2 55.6 31.9 19.0 11.6 7.4 5.0 
102 13, 109 67.2 55.0 32.0 19.1 11.7 7.4 5.0 
102 13,141 67.3 54.8 32.2 19.3 11.7 7.5 5.0 
102 13,125 67.2 54.4 32.4 19.2 11.7 7.4 5.0 

103 13,093 65.7 56.0 32.2 19.0 ll.5 7.7 5.0 
103 13,173 64.0 52.2 31.1 18.2 11.1 7.4 4.9 
103 13,125 64.4 52.4 31.2 18.2 11.0 7 .4 4.9 
103 13,093 64.6 52.3 31.3 18.2 10.8 7.3 4.9 

104 7,627 d 64.0 32.0 16.7 7.2 3.3 2.6 79.3d 
104 7, 770 80.9d 63.7 32.4 16.8 7.6 3.4 2.6 
104 7,818 82.0d 65.0 32.5 16.9 7.5 3.4 2.5 
104 7,850 83.0 64.4 32.7 17.0 7.5 3.4 2.6 

104 8,215 d 63.1 29.6 15.3 7.3 84.9d 3.0 2.5 
104 8,326 84 .6d. 63.2 29.9 15.4 7.4 3.1 2.6 
104 8,358 85.6d 64.3 30.4 15.6 7.4 3.2 2.6 
104 8,390 86.5 65.0 30.8 15.7 7.5 3.1 2.6 

a Third digit in position number shows cracking level; i.e., 100 ini-
tial condition, 101 first cracking, 102 second cracking, etc. 

b Measured on plate. 
c Sensor location D0 at center of plate, Dl2 at 12 in. 

of plate, n
24 

at 24 in. from center of p ate, 

d Overranged sensor maximum capacity of 75 x 10-3 in. 
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Table B2 

Falling Weight Results Slab 1' Position 100.5 

-3 in.) b Deflection (x 10 Load 
Position a (lb) D 

c 
D12 

c 
D24 

c 
D36 

c 
D48 

c 
D60 

c 
D72 

c 
0 

101.5 22,278 39.7 32.8 23.7 16.8 ll. 7 8.2 5.9 
101.5 22,294 39.2 32.4 23.3 16.6 u.s 8.1 5.8 
101.5 22,294 39.4 32.3 23.4 16.6 11.4 8.1 5.8 
101.5 22,294 39.4 32.2 23.5 16.6 11.4 8.1 5.8 

102.5 13,538 61.8 42.6 26.0 16.1 10.7 6.7 4.6 
102.5 13,570 61.5 42.6 26.0 16.1 10.2 6.7 4.6 
102.5 13,538 61.7 42.8 26.1 16.2 10.4 6.7 4.6 
102.5 13,538 61.9 43 .l 26.2 16.3 10.4 6.7 4.6 

103.5 13,808 45.5 35.6 22.4 14.4 9.1 6.1 4.3 
103.5 13' 872 45.2 34.7 22.2 14.2 9.3 6.1 4.4 
103.5 13,856 45.4 34.8 22.3 14.1 9.3 6.1 4.4 
103.5 13,840 45.5 34.8 22.3 14.3 9.0 6.0 4.3 

104.5 7,484 65.6 45.8 25.0 9.1 3.8 3.7 2.8 
104.5 7,548 66.5 46.8 25.6 9.3 3.8 3.8 2.8 
104.5 7,580 67.0 47.3 25.9 9.4 3.6 3.7 2.8 
104.5 7,611 68.1 48.1 26.5 9.6 3.6 3.8 2.9 

a Third digit in position number shows cracking level; i.e., 100 ini­
tial condition, 101 first cracking, 102 second cracking, etc. 

b 

c 
Measured on plate. 

Sensor location D0 at center of plate, n
12 

at 12 in. from center 
of plate, n24 at 24 in. from center of p ate. 
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Table B3 

Fallin~ Weight Results Slab 1, Position 200 

b -3 in.) Deflection (x 10 
Load 

Position a (lb) D c 0 12 
c 024 

c 
0 36 

c 
D48 

c 
D60 

c 
0 72 

c 
0 

200 23,025 32.6 26.3 19.6 14.6 9.8 7.9 5.7 
200 23,501 31.0 25.0 18.7 14.1 9.6 7.6 5.6 
200 23,517 31.5 25.2 18.8 14.0 9.7 7.7 5.6 
200 23,470 32.0 25.5 19.0 14.1 9.8 7.6 5.6 

201 22,087 48.0 37.0 26.3 18.8 12.5 9.3 6.5 
201 22' 119 47.5 36.2 25.9 18.4 12.3 9.2 6.5 
201 22,119 54.4 36.1 26.1 18.5 12.4 9.3 6.5 
201 22,039 48.2 36.2 26.3 18.7 12.4 9.3 6.5 

202 13,967 43.5 32.0 21.4 14.8 10.0 6.8 4. 9 
202 14,047 41.8 30.8 20.6 14.3 9.8 6.1 4.9 
202 14,031 42.2 31.1 20.7 15.6 9.8 6.0 5.1 
202 14,015 42.4 31.3 20.9 14.4 9.6 5.5 5.4 
202 18,369 56.3 41.9 27.8 19.3 12.6 9.1 6.7 
202 18,337 57.0 42.6 28.3 19.4 12.7 8.8 6.9 
202 18,337 57.8 43.0 28.7 20.7 12.8 9.3 6.9 
202 18,369 58.5 43.4 28.9 20.0 13.0 9.4 7.0 

202 21,483 67.9 50.4 33.5 22.9 15.7 10.9 8.3 
202 21,563 68.6 51.1 33.8 23.6 15.8 11.0 8.3 
202 21,563 69.8 51.5 33.9 23.3 16.1 11.1 8.3 
202 21,610 70.4 51.7 34.1 23.5 16.1 11.1 8.3 

203 18,591 44.3 35.4 24.8 16.1 10.3 7.3 5.4 
203 18,639 40.2 32.4 22.2 15.0 9.8 7.1 5.4 
203 18,655 40.3 32.3 22.1 15.0 9.4 7 .1 5.5 
203 18,639 40.6 32.5 22.2 15.0 9.6 7 .1 5.5 

203 21,388 52.2 42.2 26.3 17.8 11.7 8.4 6.5 
203 21,420 51.9 40.2 26.7 16.7 10.3 6.9 6.3 
203 21,404 52.6 41.9 26.9 17.6 12.2 8.5 6.2 
203 21,356 53.0 41.1 27.0 17.7 12.3 8.5 6.1 

(Continued) 

a Third digit in position number shows cracking level; i.e. 100 initial 

b 

c 

condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location n0 at center of plate, n12 at 12 
of plate, n

24 
at 24 in. from center of p ate. 
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Table B3 (Concluded) 

b 
-3 in.) Deflection (x 10 

Load 
Position a (lb) D c 

D12 
c 

D24 
c 

D36 
c 

D48 
c 

D60 
c 

D72 
c 

0 

204 8,374 19.3 17.8 14.2 9.8 6.1 3. 7 2.6 
204 8,453 18.9 17.5 14.0 9.8 6.1 3.7 2.7 
204 8,422 18.9 17.5 14.0 9.8 6.1 3.7 2.8 
204 8,422 19.0 17.6 14.1 9.8 6.1 3.7 2.8 
204 14,094 35.2 31.9 24.8 16.9 10.4 6.4 4.8 
204 14,158 35.0 31.9 24.6 16.8 10.4 6.5 5.0 
204 14,142 35.2 32.0 24.8 16.9 10.4 6.5 5.0 
204 14,142 35.4 32.3 24.8 16.9 10.4 6.5 5.0 

204 21 '515 59.3 54.1 40.2 27.4 16.4 10.2 8.1 
204 21,595 59.2 53.0 40.2 27.4 16.1 2.8 8.3 
204 21,610 59.5 53.1 39.9 27.6 14.9 8.6 8.4 
204 21,595 59.8 53.5 41.4 27.2 15.1 8.1 8.4 

204 13,475 65.4 48.3 29.2 13.5 7.4 4.8 7.2 
204 13,522 65.0 47.8 29.3 13.6 7.6 4.8 4.8 
204 13,554 65.2 47.9 29.4 13.8 7.5 4.9 5.2 
204 13,554 65.2 47.9 29.4 13.9 7.6 4.9 4.9 

a Third digit in position number shows cracking level; i.e. 100 initial 

b 

c 

condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location D0 at center of plate, Dl2 at 12 in. from center 
of plate, n24 at 24 in. from center of p ate, 
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Table B4 

Falling Weight Results Slab 1, Position 300 

Loadb 
Positiona (lb) 

300 
300 
300 
300 

301 
301 
301 
301 

302 
302 
302 
302 

303 
303 
303 
303 

304.5 
304.5 
304.5 
304.5 

304 
304 
304 
304 

304.5 
304.5 
304.5 
304.5 
304.5 
304.5 
304.5 
304.5 

21,912 
21,976 
21,992 
21,992 

22,262 
22,262 
22,167 
22,055 

21,849 
21,912 
21,896 
21,881 

21' 642 
21,817 
21,833 
21,849 

7,595 
7,627 
7,675 
7,691 

8,088 
8,120 
8,136 
8,120 
8,072 
8,088 
8,024 
8,009 

13,220 
13,205 
13,220 
13,220 

D c 
0 

30.4 
30.2 
30.4 
30.6 

35.4 
34.5 
34.6 
34.7 

36.5 
36.4 
37.1 
36.9 

66.3 
61.7 
61.6 
61.6 

43.2 
43.3 
44.0 
44.3 

60.3 
60.5 
60.6 
60.5 
38.8 
38.7 
38.9 
39.2 
75.6 
75.7 
75.9 
76.1 

26.6 
26.0 
26.2 
26.2 

33.7 
32.8 
33.1 
33.3 

35.7 
33.5 
33.2 
33.1 

57.8 
55.7 
53.9 
51.2 

36.1 
35.8 
36.6 
37.1 

42.1 
42.2 
42.3 
42.2 
34.4 
34.1 
34.5 
34.9 
66.7 
66.2 
66.3 
67.0 

Deflection (x 10-3 in.) 

20.2 
20.0 
20.0 
20.0 

26.3 
25.7 
25.9 
26.0 

27.5 
26.5 
26.4 
26.5 

42.6 
40.3 
40.6 
40.9 

19.0 
18.8 
19.2 
19.3 

21.1 
21.3 
21.3 
21.3 
16.6 
16.8 
17.1 
17.2 
35.1 
35.4 
35.2 
35.4 

15.3 
14.9 
14.9 
14.9 

20.0 
19.6 
19.6 
19.6 

20.7 
20.2 
20.0 
20.2 

29.6 
29.1 
27.9 
27.9 

11.4 
11.2 
11.4 
11.4 

11.7 
11.8 
11.9 
11.8 
9.5 
9.6 
9.7 
9.8 

18.9 
19.0 
19.1 
19.3 

11.2 
11.0 
11.0 
11.0 

14.1 
13.9 
14.0 
14.1 

14.8 
14.4 
14.4 
14.4 

18.7 
18.1 
18.0 
18.1 

7.8 
7.7 
7.8 
7.9 

6.2 
6.3 
6.3 
6.3 
6.5 
6.7 
6.7 
6.7 

12.6 
12.6 
12.6 
12.8 

8.2 
8.1 
8.7 
8.1 

10.3 
10.2 
10.1 
10.1 

10.6 
10.3 
10.1 
10.3 

11.1 
11.3 
11.3 
11.3 

5.3 
5.3 
5.4 
5.3 

3.4 
3.4 
3.5 
3.4 
4.8 
4.8 
4.8 
4.8 
8.5 
8.6 
8.7 
8.7 

6.0 
5.9 
5.9 
5.9 

4.8 
4.2 
4.0 
2.1 

7.7 
7.8 
7.7 
7.8 

7.8 
8.1 
8.1 
8.1 

3.4 
3.5 
3.5 
3.4 

2.6 
2.7 
2.7 
2.7 
3.2 
3.2 
3.2 
3.2 
5.7 
5.7 
5.7 
5.8 

a Third digit in position number shows cracking level; i.e., lOO.ini-
tial condition, 101 first cracking, 102 second cracking, etc. 

b Measured on plate. 
c Sensor location D0 at center of plate, n12 at 12 in. from center 

of plate, D
24 

at 24 in. from center of p ate. 
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Table B5 

Falling Weight Results, Slab 2, Position 100 

b -3 in.) Deflection (x 10 
Load 

Position a (lb) 0 c 0
12 

c 
D24 

c 
D36 

c 
D48 

c 
D60 

c 
D72 

c 
0 

100 22,246 26.7 24.2 19.4 14.9 10.9 7.6 5.4 
100 22,246 26.0 23.4 18.8 14.5 10.7 7.5 5.5 
100 22,294 26.1 23.5 18.9 14.6 10.7 7.6 5.5 
100 22,278 26.2 23.5 18.9 14.6 10.7 7.6 5.6 

1000 23,025 26.3 24.2 19.1 14.9 11.5 9.0 6.8 
1000 23,009 26.3 23.8 18.9 14.8 11.6 9.0 6.8 
1000 22,913 26.3 23.7 19.0 14.9 11.6 9.0 6.9 
1000 22,897 26.4 23.6 19.1 15 11.5 9.0 6.9 

101 22,516 30.2 27.0 21.9 17.1 12.8 9.5 7.1 
101 22,484 29.5 26.3 21.5 16.7 12.6 9.4 7.2 
101 22,389 29.6 26.4 21.5 16.8 12.6 9.5 7.2 
101 22,357 29.6 26.4 21.5 16.8 12.6 9.5 7.2 

102 22,135 32.6 31.1 22.6 17.6 13.2 9.8 7.4 
102 22,135 30.2 27.8 22.3 17.4 13.0 9.8 7.4 
102 22,151 30.2 27.6 22.3 17.4 13.0 9.8 -7.5 
102 22' 135 30.2 27.4 22.3 17.4 13.1 9.7 7.4 

103 21,706 52.8 48.8 34.3 25.1 17.9 12.4 8.9 
103 21,896 49.7 43.9 32.8 24.1 17.2 12.2 9.1 
103 21,896 49.6 43.9 32.7 24.1 17.3 12.3 9.2 
103 21,881 49.7 43.9 32.8 24.1 17.2 12.3 9.3 

104 21,769 61.1 49.9 34.1 23.2 15.5 10.4 7.7 
104 21,881 57.0 47.0 32.8 22.7 15.3 10.6 8.0 
104 21,881 56.9 46.7 32.9 22.7 15.5 10.7 8.1 
104 21,896 57.1 46.9 33.1 22.8 15.6 10.7 8.1 

a Third digit in position number shows cracking level; i.e., 100 ini-
tial condition, 101 first cracking, 102 second cracking, etc. 

b Measured on plate. 
c Sensor location D0 at center of plate, Dl2 at 12 in. from center 

of plate, o24 at 24 in. from center of p ate. 

274 



Table B6 

Fallin~ Wei~ht Results, Slab 2, Position 200 

Load 
b Deflection (x 10-3 in.) 

Position a (lb) D c 
D12 

c 
D24 

c 
D36 

c 
D48 

c 
D60 

c 
D72 

c 
0 

200 22,516 28.8 24.2 19.4 15.5 10.7 8.7 6.6 
200 22,548 27.1 24.1 19.3 15.2 10.8 8.7 6.7 
200 22,437 27.2 24.0 19.2 15.1 11.5 8.7 6.7 
200 22,389 27.4 24.1 19.3 15.2 11.5 8.7 6.7 

2000 22,818 28.4 27.4 19.6 15.0 10.9 8.5 6.4 
2000 22,850 27.0 24.9 19.7 15.0 11.1 8.6 6.5 
2000 22,802 26.7 25.0 19.6 15.0 11.2 8.6 6.5 
2000 22 '770 26.1 26.1 19.6 15.0 11.3 8.6 6.5 

201 22,500 30.0 26.1 20.7 16.2 12.2 9.2 6.9 
201 22,453 29.4 25.6 20.4 16.1 12.2 9.3 7.0 
201 22,532 29.4 25.8 20.4 16.1 12.3 9.3 7.0 
201 22,580 29.4 25.6 20.6 16.2 12.4 9.3 7.0 

202 22,754 34.3 29.4 23.1 17.9 13.5 10.1 7.5 
202 22,723 33.3 28.3 22.4 17.3 13.1 9.8 7.2 
202 22,611 33.4 28.2 22.4 17.3 13 .l 9.8 7.3 
202 22,564 33.5 28.5 22.4 17.3 13.1 9.8 7.3 

203 21,769 61.2 53.6 40.7 29.8 21.5 15.0 10.7 
203 21,896 58.4 50.7 39.8 29.3 21.5 15.4 11.0 
203 21,928 58.7 50.7 40.4 29.4 21.6 15.5 11.1 
203 21,896 58.9 50.9 39.8 29.5 21.6 15.6 11.1 

204 18,432 51.5 45.0 33.5 24.3 16.2 11.5 7.9 
204 18,575 49.4 43.5 32.0 23.4 14.8 11.3 7.8 
204 18,560 49.6 42.0 31.9 23.4 13.8 11.4 7.8 
204 18,560 49.8 42.9 32.0 23.5 13.0 11.5 7.8 
204 21,753 60.2 50.6 41.1 28.1 19.9 13.6 9.4 
204 21,785 59.6 50.9 39.1 28 19.9 13.7 9.4 
204 21,785 59.9 51.3 38.6 28.3 20.0 13.7 9.5 
204 21,769 60.2 51.2 38.8 28.4 20.0 13.7 9.5 

a Third digit in position number shows cracking level; i.e., 100 ini-

b 

c 

tial condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location D0 at center of plate, D12 at 12 in. from center 
of plate, D24 at 24 in. from center of plate. 
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Table B7 

Fallin~ Wei~ht Results, Slab 2' Position 300 

Load b Deflection (x 10-3 
in.) 

a 
(lb) D c 

D12 
c 

D24 
c 

D36 
c 

D48 
c 

D60 
c 

D72 
c Position 0 

300 22,357 30.6 25.2 19.6 15.1 10.4 8.7 6.5 
300 22,421 27.7 24.6 19.0 14.8 9.4 8.5 6.4 
300 22,421 27.9 24.2 19.1 14.8 9.3 8.5 6.4 
300 22,437 28.0 24.4 19.1 15.0 10.6 8.5 6.5 

3,000 22,405 27.8 24 18.9 14.7 11.3 8.3 6.3 
3,000 22,516 27.4 23.7 18.9 13.8 9.7 8.2 6.3 
3,000 22,532 27.4 23.5 18.3 14.1 8.9 8.3 6.3 
3,000 22,532 27.5 23.9 18.0 14.1 9.8 8.2 6.0 

301 22,024 42.9 37.2 25.4 18.6 13.5 9.9 7.4 
301 22,230 41.0 34.1 24.3 17.8 13.0 9.7 7.2 
301 22,278 41.2 33.5 24.2 17.7 12.9 9.6 7.1 
301 22,325 41.5 33.4 24.3 17.7 13.0 9.6 7.2 

302 21,372 61.0 58.3 47.3 38.3 30.2 24.6 17.8 
302 21,563 57.7 54.1 44.8 36.4 28.9 23.3 17.1 
302 21,626 60.3 53.9 45.0 36.7 28.8 23.3 17.2 
302 21,626 58.1 53.7 45.0 37.1 28.4 23.4 17.2 

303 21,007 80.2 74.6 62.8 50.5 35.1 25.6 17.2 
303 21,181 75.1 69.7 59.3 49.4 36.2 26.3 17.8 
303 21,197 75.7 69.8 59.8. 50.0 38.9 26.3 18.0 
303 21,102 76.1 70.5 60.3 50.4 39.4 26.5 18.1 
303 18,226 66.0 61.7 53.9 43.8 33.2 23.8 16.0 
303 18,242 66.1 62.3 53.0 44.2 33.6 24.1 16.1 
303 18,210 66.1 61.5 53.1 44.3 33.1 24.0 16.1 
303 18,242 66.3 61.5 53.2 44.4 32.8 24.1 16.2 

304 21,245 76.7 71.5 59.1 43.6 24.8 16.0 10.5 
304 21,420 72.6 69.6 58.2 44.3 51.4 16.9 11.0 
304 21,404 73.2 69.6 59.4 45.5 27.3 17.2 11.1 
304 21,404 73.6 70.3 59.7 45.7 28.0 17.0 11.0 

a Third digit in position number shows cracking level; i.e., 100 ini­
tial condition, 101 first cracking, 102 second cracking, etc. 

b Measured on plate. 
c Sensor location D0 at center of plate, Dl2 at 12 in. from center 

of plate, n
24 

at 24 in. from center of p ate. 
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Table B8 

Fallin~ Weil!;ht Results, Slab 3, Position 100 

Load 
b Deflection (x 10-3 in.) 

Position a (lb) D c 
D12 

c 
D24 

c 
D36 

c 
D48 

c 
D60 

c 
D72 

c 
0 

a 

2 

3 

100 22,-802 21.2 19.9 15.7 12.0 8.3 6.5 4.8 
100 22,993 21.0 19.1 15.4 11.9 6.9 6.5 4.8 
100 22,977 21.1 19.2 15.5 12.0 7.0 6.5 4.8 
100 23,009 21.1 19.1 15.7 11.9 7.4 6.5 4.8 

101 22,659 30.0 34.7 19.8 14.6 10.3 7.5 5.2 
101 22,786 28.8 28.8 19.2 14.2 10.1 7.3 5.2 
101 22,786 28.7 28.5 19.2 14.2 10.1 7.3 5.2 
101 22,786 28.6 28.5 19.1 14.2 10.1 7.3 5.2 

102 22,325 41.4 43.7 26.3 19.7 14.0 9.9 6.7 
102 22,437 38.7 39.3 23.8 18.0 13.1 9.4 6.4 
102 22,421 38.6 38.9 24.0 17.4 13.0 9.3 6.4 
102 22,437 38.6 38.8 22.4 17.4 12.9 9.2 6.3 

Third digit in position number shows cracking level; i.e., 100 ini­
tial condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location D0 at center of plate, Dl2 at 12 in. from center 
of plate, n

24 
at 24 in. from center of p ate. 
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Table B9 

Fallin~ Wei~ht Results, Slab 3, Position 200 

Load b Deflection (x 10-3 in.) 

Position a (lb) D c 
D12 

c 
D24 

c 
D36 

c 
D48 

c 
D60 

c 
D72 

c 
0 

a 

b 

c 

200 21,944 37.6 29.5 20.4 13.8 9.6 7.0 5.2 
200 22,437 38.6 29.9 20.7 14.1 9.6 7.0 5.1 
200 22,405 39.8 30.5 21.0 14.3 9.6 7.1 5.0 
200 22,437 40.7 31.0 21.4 14.4 9.6 7.2 5.2 

201 13' 713 65.9 36.6 17.8 8.3 5.6 4.6 3.6 
201 13,729 65.6 36.7 17.7 8.3 5.9 4.7 3.7 
201 13,761 65.6 36.1 16.8 8.6 5. 1 4.7 3.7 
201 13 '729 65.6 36.2 17.0 8.5 5.9 4.7 3.7 

202 13,634 68.3 38.2 18.0 9.6 5.3 4.4 3.7 
202 13,650 69.4 38.2 18.3 9.9 5.5 4.5 3.7 
202 13' 618 68.0 38.0 18.3 9.6 5.5 4.4 3.6 
202 13,618 67.9 38.0 18.4 9.7 5.5 4.4 3.6 

Third digit in position number shows cracking level; i.e., 100 ini­
tial condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location, D0 at center of plate, n12 at 12 in. from center 
of plate, n

24 
at 24 in. from center of plate. 
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Table B10 

FallinB; WeiB;ht Results, Slab 3, Position 300 

Load b Deflection (x 10-3 in.) 

Position 
a 

(lb) D c 
D12 

c 
D24 

c 
D36 

c 048 
c 

D60 
c 

D72 
c 

0 

a 

b 

c 

300 22,580 28.8 26.1 18.0 12.1 8.5 6.6 4.9 
300 22,659 28.3 24.6 16.7 12.1 7.8 6.6 5.0 
300 22,611 28.4 24.5 17.1 12.7 8.3 6.7 5.0 
300 22,627 28.4 24.9 17.3 12.0 8.1 6.7 5.0 

301 22,389 37.5 32.4 21.7 13.9 9.2 6.5 4.7 
301 22,468 35.9 30.9 21.1 13.5 9.1 6.6 4.9 
301 22,421 36.0 30.4 21.1 13.4 9.1 6.7 4.9 
301 22,389 36.3 30.7 20.9 13.5 9.1 6.6 4.9 

302 22,246 47.9 45.0 27.2 14.1 9.2 7.2 5.5 
302 22,310 44.0 40.2 25.4 14.0 9.4 7.4 5.6 
302 22,294 44.4 39.8 25.3 14.1 9.5 7.5 5.7 
302 22,278 44.8 39.7 25.0 14.1 9.6 7.5 5.7 

Third digit in position number shows cracking level; i.e., 100 ini­
tial condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location D0 at center of plate, Dl2 at 12 
of plate, n

24 
at 24 in. from center of p ate. 
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Table Ell 

Fallins; Wei12ht Results, Slab 4, Position 100 

Load b Deflection (x 10-3 in.) 

Position 
a (lb) D c 

Dl2 
c 

D24 
c 

D36 
c 

D48 
c 

D60 
c 

D72 
c 

0 

a 

b 

c 

100 22,850 18.0 16.0 12.9 10.1 7.4 5.9 4.3 
100 22,961 17.8 15.9 12.8 10.0 7.6 5.8 4.3 
100 22,929 17.8 15.9 12.8 10.0 7.6 5.8 4.3 
100 22,897 17.9 15.9 12.8 10.0 7.6 5.9 4.4 

101 22,310 38.0 32.4 22.9 16.3 11.2 8.1 5.4 
101 22,532 35.5 29.3 22.0 15.6 10.7 7.9 5.3 
101 22,516 35.4 28.9 21.6 15.5 10.7 7.8 5.2 
101 22,516 35.4 28.8 21.5 15.5 10.6 7.8 5.2 

102 21,912 50.1 45.0 28.4 16.7 10.7 7.9 5.7 
102 21,928 46.8 40.9 27.4 16.3 10.4 7.8 5.7 
102 21,912 46.8 40.6 27.4 16.3 10.4 7.8 5.7 
102 21,912 46.8 40.6 27.4 16.1 10.4 7.8 5.7 

Third digit in position number shows cracking level; i.e. 100 initial 
condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location, D0 at center of plate, D12 at 12 in. from center 
of plate, n

24 
at 24 in. from center of plate. 
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Table Bl2 

Fallin8 Weight Results, Slab 4, Position 200 

Load b Deflection (x 10-3 in.) 

Position a 
(lb) D c 0 12 

c 
0 24 

c 
036 

c 
0 48 

c 
0 60 

c 
D72 

c 
0 

a 

b 

c 

200 22,246 51.4 38.9 25.0 16.1 10.4 6.9 5.0 
200 22,310 51.3 38.5 24.7 16.1 10.4 7.0 5.0 
200 22,262 52.0 38.9 24.6 16.3 10.6 7.0 5.0 
200 22,262 52.4 38.8 24.6 16.4 10.6 7.0 5.1 

201 21,499 72.4 52.7 32.1 16.8 ll.S 8.0 5.4 
201 21,674 66.7 47.7 29.6 15.8 11.0 7.9 5.6 
201 21,595 66.4 47.7 29.7 15.7 10.9 7.8 5.7 
201 21,610 66.8 48.1 29.8 15.5 10.9 7.9 5.6 

202 18,051 74.9 53.2 29.3 9.9 5.6 4.6 4.1 
202 18' 115 74.0 52.6 29.6 10.1 5.8 4.6 4.1 
202 18,051 75.9 52.7 29.7 10.0 5.8 4.3 4.0 
202 18' 115 75.2 53.1 29.9 10.2 5.8 4.3 4.1 

Third digit in position number shows cracking level; i.e., 100 ini­
tial condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location 00 at center of plate, n12 at 12 in. from center 
of plate, o24 at 24 in. from center of plate. 
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Table B13 

Fallins Weight Results, Slab 4, Position 300 

Load b Deflection (x 10-3 in.) 

Position a (lb) D c 
D12 

c 
D24 

c 
D36 

c 
D48 

c 
D60 

c 
D72 

c 
0 

a 

b 

c 

300 22,818 20.7 18.3 14.1 10.6 7.3 5.8 4.4 
300 22 '770 20.4 18.0 14.0 10.5 7.5 5.7 4.4 
300 22' 770 20.5 17.9 14.1 10.6 7.5 5.8 4.4 
300 22,739 20.6 17.9 14.0 10.6 7.6 5.8 4.4 

301 22,484 23.6 20.9 16.3 12.1 8.7 6.2 4.7 
301 22,580 22.8 20.2 15.8 11.8 8.5 6.2 4.7 
301 22,564 22.7 20.2 15.8 11.8 8.5 6.2 4.8 
301 22,468 22.8 20.1 15.8 11.8 8.5 6.3 4.8 

302 21,960 40.2 37.2 26.3 16.1 9.2 6.1 4.7 
302 21,976 35.2 31.7 23.8 15.2 9.2 6.3 4.8 
302 21,960 35.1 31.5 23.9 15.1 8.9 6.3 4.8 
302 22,008 35.2 31.5 23.7 15.2 8.9 6.3 4.9 

Third digit in position number shows cracking level; i.e., 100 ini­
tial condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location D0 at center of plate, Dl 2 at 12 in. from center 
of plate, n24 at 24 in. from center of p ate. 
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Table B14 

Falling Weight Results, Slab 5, Position 100 

Load 
b Deflection (x 10-3 in.) 

Position a (lb) D c 0 12 
c 

D24 
c 

D36 
c 

0
48 

c 
0

60 
c 

D72 
c 

0 

100 20,371 4.3 4.0 3.7 3.3 3.0 2.6 2.3 
100 20,466 4.2 4.0 3.7 3.3 3.0 2.6 2.4 
100 20,419 4.3 4.0 3.7 3.3 2.9 2.6 2.3 
100 20,419 4.3 4.0 3.7 3.3 3.0 2.6 2.4 

1,000 21,213 4.8 4.3 3.9 3.5 3 .1 2.7 2.3 
1,000 21' 134 4.6 4.2 3.8 3.4 3.0 2.6 2.3 
1,000 21,150 4.6 4.2 3.8 3.4 3.0 2.6 2.3 
1,000 21,118 4.4 4.3 3.8 3.4 3.0 2.6 2.2 

101 20,482 9.4 8.2 7.0 5.8 4.8 3.9 2.9 
101 20,546 9.1 8.0 6.9 5.6 4.5 3.8 2.8 
101 20,466 9.1 8.0 6.9 5.7 4.6 3.8 2.8 
101 20,562 9.2 8.0 6.9 5.8 4.7 3.8 2.9 

102 20,721 13.7 11.2 9.4 7.8 5.9 4.9 3.6 
102 20,784 13.1 10.7 9.0 7.5 5.9 4.8 3.5 
102 20,641 12.9 10.6 9.0 7.4 5.4 4.7 3.4 
102 20,530 14.6 10.5 9.0 7.4 5.2 4.7 3.4 

1020 20641 13.6 15.4 9.8 8.1 6.6 5.1 3.8 
1020 20705 13.5 15.3 9.8 8.1 6.5 5.1 3.8 
1020 20689 13.7 15.4 9.8 8.1 6.5 5.2 3.8 
1020 20641 13.8 15.6 9.8 8.1 6.5 5.1 3.8 

103 20053 29.7 34.7 14.1 9.4 7.5 5.8 . 4.4 
103 20069 27.6 31.9 13.3 9.3 7.5 5.9 4.5 
103 20021 27.6 31.7 13.2 9.3 7.5 5.9 4.5 
103 20069 27.7 31.7 13.2 9.2 7.4 5.9 4.5 

a Third digit in position number shows cracking level; i.e., 100 ini­
tial condition, 101 first cracking, 102 second cracking, etc. 

b 

c 
Measured on plate. 

Sensor location D0 at center of plate, n12 at 12 in. from center 
of plate, n24 at ~4 in. from center of p ate. 
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Table Bl5 

Fallin!!! Wei8ht Results, Slab 5, Position 200 

Load 
b Deflection (x 10-3 in.) 

Position 
a 

(lb) D c 012 
c 024 

c 036 
c 048 

c 060 
c 

D72 
c 

0 

200 22,071 10.1 8.5 7.4 6.4 5.1 4.4 3.5 
200 22,214 9.9 8.4 7.5 6.5 4.4 4.0 3.5 
200 22,071 7.2 8.4 7.6 6.5 4.8 3.5 2.3 
200 21,881 7.3 8.4 7.6 6.4 4.9 3.5 3.1 

2,000 20,435 9.4 8.3 7.2 6.2 5.3 4.5 3.5 
2,000 20,816 9.3 8.1 7.0 6.1 4.9 4.5 3.5 
2,000 20,736 9.2 8.1 7.1 6.1 5.2 4.4 3.5 
2,000 20,768 9.2 8.1 7.0 6.1 5.2 4.3 3.5 

201 20,657 16.8 14.2 ll.5 8.8 6.5 4.6 3.5 
201 20,625 16.3 13.9 11.1 8.6 6.4 4.6 3.6 
201 20,625 16.3 13.8 11.1 8.6 6.3 4.6 3.7 
201 20,657 16.4 13.9 11.2 8.6 6.4 4.6 3.7 

202 20,403 23.8 19.6 15.7 12.0 8.3 5.3 3.9 
202 20,530 22.3 18.6 14.8 11.4 8.1 5.3 4.1 
202 20,450 22.3 18.6 14.8 11.4 8.0 5.3 4.1 
202 20,498 22.4 18.7 14.8 11.4 8.1 5.5 4.1 

2020 20,180 22.2 18.7 13.5 10.8 7 .1 4.4 4.0 
2020 20,498 22.2 18.1 14.0 10.8 7.1 4.4 4.3 
2020 20,546 22.3 18.5 14.6 10.7 7.2 4.4 4.3 
2020 20,546 22.4 18.5 14.6 10.7 7.2 4.4 4.4 

203 19,386 64.2 49.4 28.9 16.5 8.7 5.9 3.7 
203 19,513 58.0 35.0 28.3 15.7 8.5 6.4 4.5 
203 19,449 57.7 41.1 24.5 15.4 9.2 6.7 4.6 
203 19,449 57.4 42.2 27.0 15.4 9.2 6.7 4.8 

a Third digit in position number shows cracking level; i.e., 100 ini-

b 

c 

tial condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location D0 at center of plate, Dl2 at 12 in. from center 
of plate, n24 at 24 in. fro~ center of p ate. 
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Table B16 

Fallin~ Wei~ht Results, Slab 5. Position 300 

-3 
in.) b Deflection (x 10 

Load 
Pcsitiona (lb) D c 

D12 
c 

D24 
c 

D36 
c 

D48 
c 

D60 
c 

D72 
c 

0 

a 

b 

c 

300 27,680 8.2 7.8 7.2 6.8 6.4 5.9 5.4 
300 27,394 8.3 7.4 7.2 7.0 5.9 6.1 5.5 
300 27,251 8.2 7.5 7.2 7.0 6. 1 5.9 5.4 
300 27,220 8.1 7.5 7.0 7.0 5.2 5.9 5.4 

3,000 20,879 5.7 5.4 5.0 4.6 4.3 3.9 3.5 
3,000 20,943 5.6 5.2 4.9 4.5 4.2 3.8 3.4 
3,000 20,895 5.6 5.2 4.9 4.5 4. 1 3.8 3.4 
3,000 20,879 5.6 5.2 4.9 4.5 4.2 3.8 3.4 

301 20, 911 9.6 9.5 8.0 6.7 5.4 4.4 3.5 
301 20,975 9.6 9.4 8.0 6.7 5.4 4.4 3.4 
301 20,848 9.6 9.4 8.0 6.7 5.5 4.4 3.4 
301 20,832 9.6 9.5 8.0 6.7 5.4 4.4 3.4 

302 19,878 22.8 12.6 10.5 8.6 5.8 5.0 3.6 
302 19,831 22.2 12.6 10.4 8.7 6 5.0 3.7 
302 19,783 22.4 12.6 10.5 8.2 6.8 5.0 3.8 
302 19,783 22.6 12.6 10.5 8.3 6.9 5.1 3.8 

3,020 19,862 23.8 13.0 10.8 8.7 6.9 5.2 3.7 
3,020 19,878 24.0 13.0 10.8 8.7 6.9 5.2 3.7 
3,020 19,831 24.2 13.0 10.8 8.7 6.9 5.2 3.8 
3,020 19,767 24.4 13.0 10.8 8.8 6.9 5.2 3.7 

303 19,354 41.9 19.7 13.1 10.9 8.3 5.8 4.2 
303 19,608 39.1 18.9 11.4 11.0 8.1 6.0 4.3 
303 19,561 39.1 18.7 11.7 10.9 8.3 6.1 4.4 
303 19,561 39.1 18.6 11.9 11.0 8 .1 6.1 4.4 

Third digit .in position number shows cracking level; i.e., 100 ini­
tial condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location DQ at center of plate, Dl
2 

at 12 in. from center 
of plate, D24 at ~4 in. from center of p ate. 
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Table B17 

Falling Weight Results, Slab 6' Position 100 

Load b Deflection (x 10-3 in.) 

Position a (lb) D c 
Dl2 

c 
D24 

c 
D36 

c 
D48 

c c 
D72 

c 
0 D60 

a 

b 

c 

100 20,975 3.7 3.6 3.5 3.4 3.3 3.3 3.3 
100 20,705 3.8 3.6 3.5 3.4 3.3 3.3 3.2 
100 20,657 3.8 3.6 3.5 3.4 3.3 3.3 3.2 
100 20,498 3.7 3.5 3.5 3.4 3.2 3.2 3.1 

1,000 20,975 3.9 3.7 3.6 3.4 3.3 3.1 3.0 
1,000 20,991 3.9 3.7 3.6 3.4 3.2 3.1 3.0 
1,000 21,070 3.9 3.7 3.6 3.4 3.3 3.1 3.0 
1,000 21,007 3.9 3.7 3.6 3.4 3.3 3.1 3.0 

101 20,546 6.5 6.1 5.5 5.0 4.3 3.9 3.4 
101 20,625 6.4 6.0 5.4 4.9 4.3 3.8 3.4 
101 20,625 6.4 6.0 5.4 5.0 4.3 3.9 3.4 
101 20,578 6.3 5.9 5.4 4.9 4.3 3.8 3.4 

102 20,546 9.3 8.8 7.7 6.6 5.5 4.4 3.5 
102 20,466 8.9 8.5 7.4 6.3 5.3 4.3 3.4 
102 20,578 8.9 8.5 7.4 6.3 5.3 4.3 3.4 
102 20,562 8.9 8.5 7.4 6.3 5.3 4.3 3.4 

103 20,403 17.2 14.6 11.7 9.2 7.6 5.5 4.1 
103 20,419 16.5 14.0 11.2 8.9 7.2 5.4 4,0 
103 20,387 16.5 14.0 11.2 9.0 7.3 5.4 4.1 
103 20,323 16.6 15.0 11.3 9.0 7.2 5.4 4.1 

Third digit in position number shows cracking level; i.e., 100 ini­
tial condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location D0 at center of plate, Dl2 at 12 in. from center 
of plate, n24 at 24 in. from center of p ate. 
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Table B18 

Falling Wei~ht Results, Slab 6, Position 200 

Load b Deflection (x 10-3 in.) 

Position a (lb) D c 
D12 

c 
D24 

c 
036 

c 
D48 

c 
0 60 

c 
D72 

c 
0 

200 20,879 7.7 6.4 5.5 4.7 4.1 3.5 2.9 
200 20,800 7.6 6.4 5.4 4.7 4.0 3.4 2.9 
200 20,752 7.6 8.7 5.5 4.6 3.9 3.4 2.8 
200 20,530 7.5 7.1 5.5 4.7 3.9 3.4 2.9 

201 20,546 10.2 8.6 7.2 5.9 5.0 4.3 3.5 
201 20,562 9.5 8.1 6.8 5.6 4.9 4.2 3.6 
201 20,466 9.5 8.1 6.8 5.6 4.8 4.2 3.5 
201 20,482 9.5 8.1 6.9 5.8 4.8 4.2 3.5 

202 20,149 13.4 10.7 8.2 5.9 5.0 4.2 3.5 
202 20,021 12.4 10.0 7.8 5.7 4.8 4.3 3.5 
202 19,799 12.3 10.0 7.9 5.9 4.9 4.3 3.5 
202 19,799 12.3 10.2 7.8 5.8 4.6 4.2 3.5 

203 20,260 23.4 19.0 14.2 9.1 6.7 4.8 3.5 
203 20,180 21.5 17.8 . 13.6 9.1 6.7 5.2 3.5 
203 20,021 21.4 17.7 13.7 9.1 6.8 5.1 3.6 
203 20,037 21.6 17.8 13.7 9.3 6.7 5.2 3.6 

a Third digit in position number shows cracking level; i.e., 100 ini-

b 

c 

tial condition, 101 first cracking, 102 second cracking, etc. 

Measured on plate. 

Sensor location D0 at center of plate, n12 at 12 in. from center 
of plate, n24 at 24 in. from center of p ~te. 
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Table B19 

Falling Weight Results, Slab 6, Position 300 

Load b Deflection (x 10-3 
in.) 

Position a 
(lb) D c 

D12 
c 

D24 
c 

D36 
c 

D48 
c 

D60 
c 

D72 
c 

0 

301 20,466 6.5 6.2 5.5 ·4.9 4.3 3.9 3.5 
301 20,530 6.5 6.1 5.5 4.8 4.3 3.9 3.5 
301 20,514 6.4 6.1 5.4 4.8 4.3 3.9 3.5 
301 20,593 6.4 6.1 5.4 4.8 4.2 3.9 3.5 

302 20,307 10.5 9.3 8.4 7.2 5.8 5.2 4.4 
302 20' 180 10.2 8.9 8.0 6.9 5.6 5.0 4.2 
302 20,133 10.2 9.1 8.0 6.9 5.9 5.2 4.4 
302 20' 164 10.2 8.8 8.0 6.9 5.4 5.1 4.1 

303 19,926 27.0 18.0 14.5 11.2 8.3 6.2 4.7 
303 19,894 25.4 17.4 14.0 11.0 7.9 6.2 4.4 
303 19,910 25.5 17.3 14.1 10.9 8.1 6 .1. 4.7 
303 19,878 25.7 17.3 13.2 10.9 7.8 6.2 4.4 

a Third digit in position number shows cracking level; i.e., 100 ini-
tial condition, 101 first cracking, 102 second cracking, etc. 

b Measured on plate. 
c Sensor location D0 at center of plate, D12 at 12 in. from center 

of plate, n
24 

at 24 in. from center of plate. 
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WESTERGAARD AND LAYERED ELASTIC STRESS CALCULATIONS 
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Table C1 

Stresses Calculated From Corps of Engineers Test 

Sections (after Parker et al 1979) 

Layered Elastic Westergaard Edge 

Test Item Stress (lb/in. 2) Stress 
? 

(lb/in. -) 

Lockbourne No. 1 A-1 405 836 

A-2 599 1,215 

B-1 504 1,035 

B-2 759 1,527 

C-1 558 1,051 

C-2 853 1,553 

D-1 572 1,035 

D-2 877 1,527 

E-1 505 907 

E-2 771 1,331 

F-1 396 700 

F-2 625 1,072 

K-3 570 973 

K-2 410 729 

N-2 564 945 

N-3 785 1,248 

0-2 458 759 

0-3 647 1,019 

P-2 632 961 

P-3 883 1,249 

Q-2 465 699 

Q-3 659 925 

U-2 527 1,091 

U-3 651 1,327 

A-Rec 390 601 

Lockbourne No. 2 E-1 629 1,061 

E-2 574 961 

(Continued) 

(Sheet 1 of 3) 
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Table C1 (Continued) 

Layered Elastic . Westergaard Edge 

Test Item Stress (lb/in. 2) Stress (lb/in.
2

) 

E-3 663 1,043 

E-4 642 943 

E-5 454 764 

E-6 397 673 

E-7 312 529 

M-1 600 959 

M-2 446 724 

M-3 295 485 

Lockbourne No. 3 976 1, 785 

Sharonville 57 315 596 
Channelized 58 373 692 

59 394 780 

60 416 872 

61 349 717 

62 274 571 

Sharonville 71 249 479 
Heavy 72 319 621 

73 401 780 

MWHGL 1-CS 580 1,093 

2-C5 473 843 

3-C5 394 680 

4-CS 735 1,352 

2-D7 566 1,039 

3-D7 461 849 

KLJS 1-C5 656 996 

2-C5 522 855 

3-C5 580 1,017 

4-CS 522 768 

4-D7 643 945 

(Continued) 

(Sheet 2 of 3) 
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Table Cl (Concluded) 

Layered Elastic Westergaard Edge 

Test Item Stress (lb/in. 2) Stress (lb/in. 2) 

SSPS 3-200 463 828 

3-240 564 993 

4-200 463 784 

4-240 555 941 

(Sheet 3 or 3) 
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Table C2 

Calculated Wester8aard and Lal':ered Elastic Stresses for 

Different Aircraft and Sub grade Conditions 

Subgrade Pavement Westergaard Layered Elastic 

Aircraft k (lb/in. 
2 
/in.)* Thickness (in.) Stress (lb/in.

2
) Stress (lb/in. 2) 

B-707 50 6 3,123 1,420 

50 10 1,591 834 

50 30 322 187 

50 40 199 121 

200 6 2,125 714 

200 10 1,166 459 

200 30 257 129 

200 40 165 87 

400 6 1,758 499 

400 10 966 325 

400 30 .228 101 

400 40 147 70 

B-727 so 6 2,335 1,210 

50 10 1,150 639 

(Continued) 

* Value of subgrade E for layered elastic calculations estimated from k using relation of Parker 
et al. (1979). 
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Table C2 (Continued) 

Sub grade Pavement Hestergaard Layered Elastic 

Aircraft k (lb/in. 2/in.)* Thickness (in.) Stress (lb/in. 2) Stress (lb/in. 2) 

B-727 50 30 201 126 

50 40 122 79 

200 6 1,675 661 

200 10 866 399 

200 30 172 94 

200 40 106 61 

N 400 6 1,404 473 
1.0 
.p. 400 10 740 296 

400 30 156 79 

400 40 98 52 

B-747 50 6 2, 774 1 '510 

50 10 1,550 894 

50 30 329 207 

50 40 214 132 

200 6 1,843 791 

200 10 1,047 489 

200 30 261 140 

(Continued) 

* Value of subgrade E for layered elastic calculations estimated from k using relation of Parker 
et al. (1979). (Sheet 2 of 4) 



Table C2 (Continued) 

Sub grade Pavement Westergaard Layered Elastic 

Aircraft k (lb/in. 2/in.)* Thickness (in.) Stress (lb/in. 2) Stress (lb/in. 2) 

B-747 200 40 170 93 

400 6 1 ,Sll S86 

400 10 852 351 

400 30 22S 109 

400 40 151 74 

C-141 50 6 2,782 1,460 

N so 10 1,497 850 
'-!) 

Ln so 30 306 187 

so 40 194 120 

200 6 1,781 722 

200 10 1,041 471 

200 30 244 130 

200 40 160 88 

400 6 1,413 498 

400 10 842 331 

400 30 218 103 

400 40 142 71 

(Continued) 

* Value of subgrade E for layered elastic calculations estimated from k using relation of Parker 
et al. (1979). 
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Table C2 (Concluded) 

Sub grade Pavement Westergaard Layered Elastic 

(lb/in.
2
/in.)* (in.) 

2 2 
Aircraft k Thickness Stress (lb/in. ) Stress (lb/in. ) 

F-4 50 6 1 '377 898 

50 10 613 395 

50 30 90 54 

50 40 53 31 

200 6 1 '091 653 

200 10 506 305 

200 30 82 44 

200 40 49 25 

400 6 958 535 

400 10 455 260 

400 30 78 39 

400 40 47 23 

* Value of subgrade E for layered elastic calculations estimated from k using relation of Parker 
et al. (1979). 

(Sheet 4 of 4) 
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CORPS OF ENGINEERS RIGID OVERLAY TEST SECTION DATA 

297 



Table Dl 

Overlay Hate rial Pro~erties 

Sub grade 
Flexural 2 Elastig Modulus2 Elastic 

Test Strength (lb/in. ) (x 10 lb/in. ) Modulus 2 
Test Series Item Base Overlay Base Overlay (lb/in. ) 

Lockbourne A 2.7-60 740 760 3.8 3.8 16,000 
l 2.7-66 740 760 3.8 3.8 a No. D 4,900b 

E 12.14-100 740 760 3.8 3.8 6,000 
F 2.7-80 760 760 3.8 3.8 4,100 

Lockbourne F 12.14-100 735 735 4.0 4.0 16,880 
N No. 2 
\0 G 12.14-100 735 735 4.0 4.0 17,580 CP 

L 14.14-80 735 735 4.0 4.0 26,500 
M 14.14-80 735 735 4.0 4.0 19,700 

Sharonville 23 775 840 4.4 4.8 6,300-12,000 
24 775 840 4.4 4.8 4,800-12,000 
25 775 840 4.4 4.8 4,900-12,800 
26 775 840 4.4 4.8 5,100-12,800 
27 775 840 4.4 4.8 4,700-12,800 
28 775 840 4.4 4.8 3,800-12,800 

Sharonville 69 615-770 710-825 4.4 4.4 9,600 
Heavy Load 

70 615-770 710-825 4.4 4.4 9,600 

a Overlain by a 6-in. base lb/in.~. b with an E of 10,000 
Overlain by a 6-in. base with an E of 18,000 lb/in. . 



Table D2 

Observed Field Deterioration Data 

Item Coverages SCI 

D 2.7-66 138 78 
712 45 

E 2.7-66 138 100 
712 58 

F 2.7-80 138 100 
712 58 

F 12.14-100 10 71 
63 45 

1,000 ll 
1,430 0 

G 12.14-100 10 100 
370 100 
887 71 

1,430 50 

L 14.14-80 5 58 
1,000 0 

M 14.14-80 36 58 
807 0 

69 180 85 
240 80 

2,750 60 
3,310 51 
3,750 42 
3,810 38 
3,940 31 
4,630 20 
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Table D3 

Base Slab Stress Calculations for Unbonded Overlays 

Sub grade 
After Overlay 

Item E(lb/in. 2) Stress (lb/in. 2) c CF 0 

23 12,800 229 2 X 10 7 
9 X 10

7 

23 6,300 263 1.5 X 10 6 6,7 X 106 

24 12,800 277 634,056 2.8 X 10 6 

24 4,800 326 53,621 229,609 

25 12,800 345 24,851 105,596 

25 4,900 402 3,827 15,957 

26 12,800 372 9,537 40,136 

26 5' 100 444 1,311 5,408 

27 12,800 430 1,830 7,577 

27 4,700 513 330 1,343 

28 12,800 536 226 914 

28 3,800 656 48 190 

69a 9,600 335 2,228 9,242 

69b 9,600 335 8,301 34,885 

a Low flexural strength values used in analysis. 

b Average flexural strength values used in analysis.-
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Table D4 

Overla~ Stress Calculations for Unbonded Overla~s 

Overlay Base Overlay 
Subgrade 2 Traffic 2 Stress2 co CF Item E (lb/in. ) Covera~es E-Ratio E (lb/in. ) (lb/in. ) 

23 12,800 0-2x10 7 1.000 4,400,000 373 25,687 109,178 

23 6,300 0-1.5x10 6 1.000 4,400,000 405 9,032 37,991 

24 12,800 0-634,056 1.000 4,400,000 357 46,473 198,712 

24 4,800 0-53,621 1.000 4,400,000 395 12,296 51,877 

25 12,800 0-24,851 1.000 4,400,000 340 92,751 399,356 
w 
0 24,851-38,758 o. 748 3,291,268 374 24,795 105,353 
1-' 

38,758-51,764 0.525 2,310,980 413 7,134 29,934 

51' 764-69,133 0.330 1,450,639 459 2,154 8,932 

69,133-105,596 0.161 710,245 518 633 2,593 

105,596+ 0.020 89,800 649 96 385 

25 4, 900 0-3,827 1.000 4,400,000 370 28,596 121,678 

3,827-5,933 0.748 3,291,268 410 7,785 32,697 

5,933-7,894 0.525 2,310,980 456 2,312 9,593 

7,894-10,503 0.330 1,lf50,639 512 708 2,903 

10,503-15,957 0.161 710,249 588 204 825 

15,957+ 0.020 89,800 760 31 121 

(Continued) 
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Table D4 (Continued) 

Overlay Base Overlal: 
Subgrade 2 Traffic 

(lb/in. 2) 
Stress2 co CF Item E (lb/in. ) Coverages E-Ratio E (lb/in. ) 

26 12,800 0-9,537 1.000 4,400,000 499 910 3,741 

26 5,100 0-l J 3112 1.000 4,400,000 517 310 1,260 

27 12,800 0-1,830 1.000 4,400,000 437 3,701 15,429 

1,830-2,831 0.748 3,291,268 477 1,436 5,929 

2,831-3,762 0.525 2,310,980 521 599 2,454 

w 
3,762-4,998 0.330 1,450,639 572 258 1,046 

0 4,998-7,557 0.161 710,245 636 108 435 N 

7,557+ 0.020 89,800 777 26 105 

27 4,700 0-330 1.000 4,400,000 486 1,186 4,886 

330-508 0.748 3,291,268 533 484 1,978 

508-672 0.525 2,310,980 587 207 837 

672-892 0.330 1,450,639 652 89 359 

892-1,343 0.161 710,245 738 37 147 

1,343+ 0.020 89,800 933 9 36 

28 12,800 0-226 1.000 4,400,000 318 253,128 1.1x10 6 

226-347 0.748 3,291,268 382 18,809 79,698 

347-459 0.525 2,310,980 467 1, 792 7,416 

(Continued) 
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Table D4 (Continued) 

Overlay Base Overlal 
Subgrade2 Traffic 

E (lb/in. 2) 
Stress

2 co CF Item E (lb/in. ) Cove rases E-Ratio (lb/in. ) 

28 459-607 0.330 1,450,639 584 216 874 

607-914 0.161 710,245 760 31 121 

914+ 0.020 89,800 1,170 3 12 

28 3,800 0-48 1.000 4,400,000 343 81,694 351,304 

48-73 0.748 3,291,268 418 6,184 25,910 

73-96 0.525 2,310,980 518 633 2,593 
w 
0 96-127 0.330 1,450,639 661 81 324 w 

127-190 0.161 710,245 884 12 48 

190+ 0.020 89,800 1,460 1 5 
69a 6,900 0-2,228 1.000 4,400,000 250 812,257 3.6x10 6 

2,228-3449 0.748 3,291,268 283 116,114 501,080 

3,449-4584 0.525 2,310,980 325 17,290 73,199 

4,584-6,093 0.330 1,450,639 377 2,945 12,249 

6,093-9,242 0.161 710,245 454 451 1,841 

9,242+ 0.020 89,800 653 27 109 
69b 9,600 0-8,301 1.000 4,400,000 250 3.3xl0 6 14.8x10 6 

8,301-12,903 0.748 3,291,268 283 403,399 1.8x10 6 

(Continued) 
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Table D4 (Concluded) 

Overlay 
Subgrade 2 Traffic 

Item E (lb/in. ) Coverages E-Ratio 

69b 12,903-17,193 0.525 

22,912-34,886 0,161 

34,886+ 0,020 

a Low flexural strength values used in analysis. 

b 
Average flexural strength values used in analysis. 

Base 

E (lb/in. 
2

) 

2,310,980 

710,245 

89,800 

Overlay 
Stress

2 (lb/in. ) co CF 

325 51,139 218,876 

454 980 4,033 

653 47 188 
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Table D5 

Calculated ComEosite Unhanded Overla;z Deterioration 

Item 
Subgrade2 

E (lb/in. ) Coverages SCI Remarks 

23 12,800 25,687 100 Base did not crack 

109,178 0 

23 6,800 9,032 100 Base did not crack 

37,991 0 

24 12,800 46,473 100 Base did not crack 

198,712 0 

24 4,800 12,296 100 Base did not crack 

51,877 0 

25 12,800 40,426 100 

51,764 34 

25 4,900 55,162 0 

7,357 100 

26 12,800 7,894 85 

9,926 0 

910 100 Base did not crack 

3,791 0 

26 5,100 310 100 Base did not crack 

1,260 0 

26 12,800 2,556 100 

2,831 88 

3,762 28 

4,105 0 

27 4,700 609 100 

672 81 

892 5 

901 0 

28 12,800 615 100 

706 0 

(Continued) 
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Table DS (Concluded) 

Item 
Subgrade2 

E (lb/in. ) CoveraBes SCI 

28 

69a 

69b 

a 

b 

3,800 134 100 

170 0 

9,600 6,297 100 

7,687 0 

9,600 23,067 100 

26,128 0 

Low flexural strength values used in analysis. 

Average flexural strength values used in analysis. 
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Table D6 

Base Slab Stress Calculations for Partiall~ Bonded Overlays 

Before Overlay After Overlay 
Bond K 

Stress (lb/in. 2) co CF 
Equiv. 

(lb/in. 2) co CF Item Factor SCI Traffic Stress 

D 2.7-66 1,000 549 127 511 42 385 529 171 692 

750 549 127 511 42 403 526 179 725 

500 549 127 511 42 444 520 197 799 

250 549 127 511 42 570 505 253 1,026 

0 549 127 511 42 1,957 442 862 3,543 
w 

E 2.7-66 1,000 485 361 1,469 100 301 495 301 1,223 0 
-....! 

750 485 361 1,469 100 317 492 317 1,391 

500 485 361 1,469 100 354 486 354 1,441 

250 485 361 1, 469 100 462 472 462 1,884 

F 2.7-80 1,000 381 4,164 17,379 100 27 519 200 812 

750 381 4,164 17,379 100 31 510 232 942 

500 381 4,164 17,379 100 40 495 301 1,223 



Table D7 

Overla~ Stress Calculations for Partially Bonded Overlays 

Overlay Base Overla~ 
Bond K Traffic 

E (lb/in. 2) (lb/in~ co CF Item Factor Covera1:2es E-Ratio Stress ) 

D 2.7-66 1,000 0-70 0.330 1,252,824 596 83 332 

70-307 0.161 613,394 661 40 158 

307+ 0.020 77' 554 821 11 42 

750 0-74 0.330 1,252,824 565 125 503 

74-322 0.161 613,394 635 52 209 
w 
0 322+ 0.020 77' 554 816 11 43 
OJ 

500 0-81 0.330 1,252,824 519 251 1,020 

81-335 0.161 613,394 600 79 316 

335+ 0.020 77,554 809 12 45 

250 0-104 0.330 1,252,824 443 1,100 4,528 

104-456 0.161 613,394 542 175 706 

456+ 0.020 77' 554 801 12 48 

0 0-362 0.330 1, 252' 824 248 3x106 13x10
6 

362-1' 586 0.161 613,394 413 2,286 9,485 

1,586+ 0.020 77,554 790 13 52 

E 2.7-66 1,000 0-157 0.748 2,842,459 468 642 2,629 

157-306 0.525 1,995,846 506 314 1 '275 

(Continued) (Sheet 1 of 3) 



Table D7 (Continued) 

Overlay Base Overlay 
Bond K Traffic 

(lb/in. 2) (lb/in~ co CF Item Factor Coverages E-Ratio E Stress 

E 2.7-66 306-502 0.330 1,252,824 552 150 607 

502-922 0.161 613,394 614 66 266 

922+ 0.020 77' 554 768 15 61 

750 0-166 0.748 2,842,459 437 1,263 5,208 

166-323 0.525 1,995,846 476 547 2,236 

323-530 0.330 1,252,824 523 235 955 
w 530-974 0.161 613,394 590 89 359 0 
\0 

974+ 0.020 77 '554 763 16 63 

E 2.7-66 500 0-185 0.748 2,842,459 391 4,201 17,532 

185-360 0.525 1,995,846 430 1,491 6' 160 

360-592 0.330 1,252,824 480 506 2,066 

592-1,087 0.161 613,394 555 144 581 

1,087+ 0.020 77' 5542 756 17 67 

250 0-242 0.748 842,459 310 82,968 356,836 

242-4 71 0.525 1,995,846 351 15,430 65,251 

471-774 0.330 1,252,824 407 2,681 11,142 

774-1,423 0.161 613,394 499 355 1,445 

1,423+ 0.020 77.554 748 18 71 

(Continued) 
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Table D7 (Concluded) 

Overlay Base Overlaz 
Bond K Traffic 

E (lb/in. 2) (lb/in: co CF Item Factor CoveraBes E-Ratio Stress ) 

F 2.7-80 1,000 0-174 1.000 3,800,000 322 48 '511 207,517 

174-278 0.748 2,842,459 367 8,863 37,270 

278-377 0.525 1,995,846 420 1,910 7,907 

377-507 0.330 1,252,824 488 434 1' 771 

507-785 0.161 613,394 586 94 378 

785+ 0.020 77,554 817 11 43 
\...<.) 

1-' 

0 
F 2.7-80 750 0-202 1.000 3,800,000 293 191,327 115 '815 

202-323 0.748 2,842,459 336 27,225 115,786 

323-437 0.525 1,995,846 388 4,588 19,167 

437-588 0.330 1,252,824 455 843 3,462 

588-911 0.161 613,394 554 146 589 

911+ 0.020 77,554 809 12 45 

500 0-261 1.000 3,800,000 251 2 .4xl0 6 
lO.Ox10 6 

261-418 0.748 2,842,459 291 212,449 922,393 

418-567 0.525 1,995,846 341 22,406 95,104 

567-763 0.330 1,252,824 407 2,681 11' 142 

763-1,183 0.161 613,394 511 288 1,169 

1,183+ 0.020 77,554 798 12 49 

(Sheet 3 of 3) 



Table DB 

Calculated Com12osite Partially Bonded Overlaz Deterioration 

Bond K 
Item Factor Coverages SCI 

D 2.7-66 1,000 76 100 

194 0 

750 95 100 

252. 0 

500 134 100 

355 4 

357 0 

250 262 100 

456 46 

479 0 

0 1,592 100 

1,631 0 

E 2.7-66 1,000 362 200 

502 53 

640 0 

750 481 100 

530 86 

781 0 

500 661 100 

1,087 1 

1,088 0 

250 1,088 100 

1,423 53 

1,460 0 

F 2.7-80 1,000 571 100 

785 15 

793 0 

(Continued) 
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Table D8 (Concluded) 

Bond K 
Item Factor Coverages SCI 

F 2.7-80 750 707 100 

911 37 

929 0 

1,029 100 

1,183 69 

1,213 0 
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