Composite Model Checking with Type Specific
Symbolic Encodings*

Tevfik Bultan Richard Gerber
Department of Computer Science

University of Maryland, College Park, MD 20742, USA

Abstract

We present a new symbolic model checking technique, which analyzes temporal properties in multi-
typed transition systems. Specifically, the method uses multiple type-specific data encodings to represent
system states, and it carries out fixpoint computations via the corresponding type-specific symbolic
operations. In essence, different symbolic encodings are unified into one composite model checker. Any
type-specific language can be included in this framework — provided that the language is closed under
Boolean connectives, propositions can be checked for satisfiability, and relational images can be computed.
Our technique relies on conjunctive partitioning of transition relations of atomic events based on variable
types involved, which allows independent computation of one-step pre- and post-conditions for each
variable type.

In this paper we demonstrate the effectiveness of our method on a nontrivial data-transfer protocol,
which contains a mixture of integer and Boolean-valued variables. The protocol operates over an unre-
liable channel that can lose, duplicate or reorder messages. Moreover, the protocol’s send and receive
window sizes are not specified in advance; rather, they are represented as symbolic constants. The re-
sulting system was automatically verified using our composite model checking approach, in concert with
a conservative approximation technique.

*This research is supported in part by ONR grant N00014-94-10228 and NSF CCR-9619808.

1 Introduction

Symbolic model checking has been quite successful in hardware verification [6, 7, 14]. This success is generally
due to efficiency of encodings like BDDs, which can represent huge sets of bit-vector states in a highly compact
format [3]. However, one shortcoming of the BDD representation is its inability to handle unbounded
variables (like integers).

Alternatively, we recently proposed a model checker for general integer based systems, which uses Pres-
burger constraints as its underlying state representation [5]. As with BDDs for Boolean arrays, Presburger
constraints can compactly represent huge (even unbounded) sets of integer states over multiple dimensions.
Specifically, our model checker represents sets of state-valuations using unions of convex polytopes, each of
which is formed by affine constraints over the system’s variables. And like BDDs, this representation also
affords efficient techniques for carrying out pertinent set-theoretic operations.

While our Presburger technique easily verified some interesting integer-valued problems, it was inefficient
for handling Boolean and (unordered) enumerated types. When all state sets are represented as Presburger
constraint expressions, all Boolean variables end up getting mapped to integers — which ends up being
extremely wasteful.

In this paper, we present a general framework for combining multiple type-specific encodings, which
allows us to exploit the strengths of both BDDs and Presburger formulas in analyzing systems with a variety
of variable types. Also, our strategy can easily include other symbolic encodings as well — provided that the
language 1s closed under Boolean connectives, propositions can be checked for satisfiability, and relational
images can be computed. In [13], such an encoding is called an adequate language.

The concepts in this paper rest on a large body of work done by us and others. Obviously, we rely heavily
on the previous work on symbolic model-checking [6, 7, 14]. As for the definition of an adequate language
— and the requisite operations contained in one — the concept was nicely reported by [13] at CAV "97. At
the same conference, we described our prototype Presburger-based model-checker [5], and showed how it
could be used in concert with a multi-polytope widening operator. Recently, we reported some preliminary
progress with exact BDD/Presburger model-checking, where the objective was verifying requirements of a
sensor-control system [4].

In this paper we extend these results, by (1) presenting a model checker that accepts any adequate
language; (2) showing how it works on a TCP-like data-transfer protocol; and (3) integrating conservative
approximation techniques with composite model-checking — where the goal is to accelerate fixpoint computa-
tions over infinite variable domains. Specifically, we show how we use type-specific approximation operators
(such as widening) over multiple-types.

The example protocol 1s similar to TCP; however, abstractions and simplifications have been made.
Yet, much of TCP’s complexity remains: the protocol is assumed to operate over an unreliable channel,
which can lose, duplicate or reorder messages (this is modeled using existential quantification). Moreover,
the protocol’s send and receive window sizes are not specified in advance; rather, they are represented as
symbolic constants.

The protocol system contains a mixture of integer and Boolean-valued variables. Hence, it was not
amenable to verification by a BDD-checker alone; moreover, its size (and the number of Boolean variables)
made pure-Presburger checking infeasible. In this paper, we show how the system was automatically verified
using our composite model checking approach, in concert with a conservative approximation technique.

In [11], a different version of a sliding-window protocol was verified, using a compositional preorder
approach. In certain respects, this previous study was more broad, e.g., it handled liveness properties for
arbitrary channel lengths. In other respects, it was more constrained, e.g., it assumed a fixed window size,
whereas we verify the problem for any window size. But essentially, while examining a similar problem,
[11] and this paper illustrate two different (but related) techniques. In [11], verification is carried out in a
semi-automated fashion, where some key user-generated abstractions were required. Here, the protocol is
verified automatically, via composite model checking. In the future, we would expect to see many of these

concepts used together, toward solving more complex problems.

In recent years various symbolic encodings have been proposed which are efficient for certain variable
types. For example model checkers for hybrid systems encode real variables using affine constraints [1].
Affine constraint encoding of real variables is similar to the way we encode integer variables using Presburger
formulas.

In [13], Kesten et al. use rich assertional languages that can encode infinite-state systems for symbolic
model checking. In particular, they use regular sets and tree regular sets as symbolic encodings.

Queue content Decision Diagrams (QDDs) are proposed to encode sets of queue-configurations [2], where
the prime use is to carry out reachability queries on communicating state machines. Queue configurations
are modeled via deterministic finite-state automata structures, where the language accepted by the automata
is equal to the set of queue-contents. QBDDs extend QDDs, by combining QDD representation with BDD
encoding [10]. QBDDs have limited expressiveness for infinite sets, they are more appropriate for encoding
bounded queues.

Several symbolic representations have been proposed for modeling functions over Boolean variables with
non-Boolean ranges, including Multi-Terminal Binary Decision Diagrams (MTBDDs), Binary Moment Dia-
grams (BMDs), and their generalization Hybrid Decision Diagrams (HDDs) [9]. These are especially useful
for datapath circuit verification, since they can encode functions that map Boolean vectors to integers.

Each of these representations can provide an efficient encoding for a specific variable type. However, we
believe our techniques for combining different symbolic encodings could, with little effort, be extended to all
abovementioned representations — with the result being a general-purpose model checker.

2 Composite Model

We represent a concurrent system C' = (V, I, E) by (1) a finite set of variables V; (2) an initial condition
I, which specifies the starting states of the program; and (3) a finite set of events E, where each event
i1s considered atomic. A system state is determined by the values of its variables. Each event defines a
transformation on the variables of the program.

Given a system C = (V,I, F), we model it as an infinite transition system M = (S,I, X, VF), where
S is the set of states, I is the set of initial states, X C S x S is the transition relation (derived from the
set of events F), and VI : S x SF — {true, false} is the valuation function for state formulas over the
program’s variables. (We define the set of state formulas SF' below.) The set of states S is obtained by
taking Cartesian product of domains of all program variables; hence, each state corresponds to a valuation
of all the variables of the program.

Every event e € E defines a binary relation on the program’s states;, X, C S x .S, such that when
(s,s") € X, s and s’ denote program’s states before and after the execution of event e, respectively. The
global transition relation is X = \/_.p X.. Note that we use an interleaving model, where each transition
represents execution of a single event, 1.e., only one event can occur at a time.

2.1 Symbolic Representations

Given a concurrent system C = (V,I, E), each variable v € V' has a type t, € T where T' denotes the set
of variable types. We assume that for each type ¢ € T, there is a symbolic assertional language L, which
encodes formulas over ¢-typed variables and constants. For the sake of carrying out model checking, we
assume that any type language L! has the following properties:

o L' is effectively closed under the Boolean connectives negation, conjunction and disjunction.
o Satisfiability is decidable for assertions over L!, and we have an algorithm to carry out the procedure.

e There is also an algorithm to compute binary relational images over L!. That is, given R of type
Lt — L' and @ € L, we can compute R[Q], which is defined by restricting the domain of R to set @,

and returning the range of the result.

This definition was borrowed (with some modifications) from the concept of an adequate language described
in [13]. We use the term “adequate language” to describe any type signature (with a corresponding imple-
mentation) which adheres to these three properties. Specifically we have implemented a model checker using
two adequate languages — Presburger arithmetic (implemented with the Omega Library [12]), and BDDs
(implemented in our own class library).

More generally, given a set of variable types t € T and their associated adequate languages L', we define
a composite language L° to be generated by the following grammar:

fe=NIFVFIFAFI-fIS

where t € T and f' € L!.

We use this composite language to represent the state formulas SF,i.e., f € SF only if f € L. We also
assume that the set of initial states I can be represented as a composite formula, i.e., I € L°.

As with single-type symbolic model checking, formulas in L° can symbolically encode composite state
sets. We convert any composite state formula Q € L°,Q C S to a disjunctive form, and represent it as

e=\/ Nd

i=1 teT

follows:

where each ¢ € L', and ng denotes the number of disjuncts needed. Such a disjunctive form can be obtained
for any composite term, since we do not allow functions (or predicates) with arguments which have different
types.

2.2 Logical Operations on Composite Representations
Assume that we have two state sets P and () represented symbolically as
npe nQ
PE\/ /\pf and QE\/ /\qf
i=1 +teT i=1 teT

where each pf, ¢¢ € L'. Now we show how to compute logical operators disjunction, conjunction and negation

on P and Q:

np,nQ

Vo Aving

Py = (W A vV A PAQ

i=1 teT i=1 teT i=1,j=1 teT
ng
@ = \//\—'qj where qj:q} teT
j=1

In other words, disjunction just requires appending the two disjuncts together; the result will be in our
composite symbolic form. Conjunction is computationally more expensive. Using the distributive properties
of Boolean algebra, we can compute all the pertinent disjuncts — yet we may end up with np x ng disjuncts,
which we have to compute by traversing the disjunctive representations of P and Q.

Finally, taking a complement is more expensive; indeed, complementation of a set @) with ng disjuncts
may, in fact, create |T'|*@ disjuncts in the worst case — however it is very likely that most of these will be
empty. Hence, we build =) in an incremental manner so that we try to minimize the number of disjuncts
generated. We do this by testing for emptiness on the fly, while we are computing the conjunctions.

During model checking operations, the number of disjuncts in a composite formula can easily increase.
As we showed above, applying the disjunction operation is relatively cheap — yet it can still linearly increase a

formula’s complexity. And this problem gets worse when applying conjunction (with quadratic growth) and
even more so with negation (and its worst-case exponential growth). In practice, however, most type-specific
symbolic libraries contain their own simplification procedures, which can minimize the number of formulas
used to represent a set of valuations. (This is true for both the BDD and the Presburger libraries we use.)
So, for composite models, the challenge lies in merging as many terms as possible into a single-type format,
and still retaining the semantics of the original formula. To do this we use some simple reduction rules.
Given a composite formula with two disjuncts @ = (A,)V (Aser ¢%) we have the following properties:

VseT s#t ¢i=¢3 — Q=(N\ d)Ar(d V)
seT s#t

VieT ¢iCqy — Q= N\

teT

Note that in both cases we can reduce the formula from two disjuncts to one. Hence, to simplify a general
composite formula we (1) check all pairs for the conditions listed above, and (2) merge the appropriate
disjuncts when a condition is satisfied.

2.3 Composite Transitions

Given a system C' = (V, I, F) we assume that every atomic event e € E can be conjunctively partitioned
based on the variable types. Any system which does not allow type-casting or multi-typed functions would
satisfy this requirement. Then, for an event e, we can represent its transition relation X, as X, = /\tET X1
where each X! € L'. Hence, we can symbolically encode the entire transition relation X as:

x=\x.=\/ Ax!

eEE ecEteT

Now we state the fundamental property which enables us to manipulate the type specific symbolic

(A XDIN d1= A\ XA dl= N\ Xl

teT teT teT teT teT

encodings independently:

The first step follows from the fact that each X! only references variables of type ¢, i.e., we can push the
existential quantification for the image computation inside the first conjunction. The second step follows
from the fact that each ¢ only references variables of type ¢, i.e., we can push the existential quantification
for the image computation inside the second conjunction. Taken as a whole, the property shows that the
image computation for different variable types are orthogonal, and hence they can be computed separately.

3 Composite Model Checker

Now we define a precondition operator, pre : 2° — 25 which, given a set of states, returns all the states
that can reach this set in one step (i.e. after execution of a single event):

pre(Q) ! {s:3s'[€ Q N (s,5") € X]}.

By definition, we have that pre(Q) = X~1[Q]. More practically, however, we can symbolically compute pre
with respect to the system’s event decomposition, and the symbolic representation of () = \/?:Q1 Nier ql:

pre(@) = \/ X' @QI= \/(AGDHN Adl= V V AGEH

1= eeE teT i=1teT ecE 1=1 teT

f=30 f1:RETURN(pre(f1)) F=VYO f1: RETURN(—pre(—fi))

f=3CH Qo=h J=VOf Qo= h
Qiy1 = Q: Vpre(Q:) Qit1 = Q: V (pre(Qi) A (—pre(—Q;)))
RETURN(Q,) when Qp = Qi1 RETURN(Qy) when Qp = Qni1

Figure 1: Computation of Temporal Properties.

which follows from results developed in the previous section.

Now, using the pre, as well as the symbolic operations A, V and —, we can construct computation
procedures for basic CTL properties, as shown in Figure 1; the full composite model-checker follows from
the Boolean operations described in the previous section. If all types are finite, the algorithm will always
converge — after all, Figure 1 is basically the core part of any symbolic model-checker. However, if integers
(or other unbounded types) are involved, this procedure may well be a partial-function, as it is with our
prototype tool — which uses BDDs and Presburger arithmetic over unbounded transition systems. Hence,
we often appeal to conservative techniques, which can help when exact results are unobtainable.

3.1 Approximate fixpoint computations

As reported in [5], if we cannot directly compute a property f for a program C', we generate a lower-bound
for f, denoted f~, such that f= C f. Then we check if I C f~; if so, we conclude that I C f. However,
if I € f~, we cannot conclude anything, because it may be a false negative. In that case, we compute a
lower bound for the negated property, (=f)~. If we can find a state s such that s € I N (=f)~, then we
can generate a counter-example, which would be a true negative. If both cases fail, i.e., both I € f~ and
IN(=f)" =0, then the model checker can not report a definite answer.

To compute a lower bound to a property like ¢ = —h, we first need to compute an upper approximation
ht for the subformula h, and then let g~ = .S — hT. Thus, we need algorithms to compute both lower and
upper bounds of temporal formulas.

Since all operators in our temporal logic other than “—” are monotonic, we can compute a lower/upper
approximation for a negation free formula using the corresponding lower/upper approximations for its sub-
formulas. As for handling arbitrary levels of negation, we can easily generalize the abovementioned method
for outermost negation operators and determine what type of approximation we need for each subformula [5].

Note that each iteration of the exact fixpoint computations (Figure 1) will yield a lower a bound for
IO f1 and VO f1. So, to obtain a lower approximation for the purposes of analysis, we need only stop after
a finite number of iterations; in this manner we are guaranteed to have a conservative approximation. In
most cases, deciding when to stop is usually a matter of computing resources, time constraints, and human
patience. However, if a result obtained is not precise enough to prove the property of interest, it can be
cached away and improved later, by running more fixpoint iterations.

As for upper bounds, we use a technique similar to widening [8], but over multiple convex regions, and
over multiple types. Assume that ¢} and ¢} are two symbolic sets formed over a single type ¢ € T', and that
“7'” is a type-specific widening operator such that:

tUgh Cql v

i.e., ¢} 7' ¢} is an upper bound for the union computation. (Note that we do not have the guaranteed
convergence requirement given in [8], i.e., our approximate fixpoint computations are not guaranteed to
converge.)

Obviously there are many choices for operators which majorize binary union. However, if 5/ is to be
useful, it should — in many settings — be able to “guess” the direction of growth in the fixpoint iterates,

Constants:

snd_wnd: positive integer // sender window
rcv_wnd: positive integer // receiver window

Variables:
sender : {closed,syn_sent,established,fin wait} // sender state
recetver : {listen,established} // Teceiver state
snd_una: positive integer // oldest unacknowledged sequence number
snd_nzt: positive integer // next sequence number to be sent
rcv_ngt: positive integer // next sequence number to be received
syn: boolean // if true, then sender has sent a syn
ack: boolean // if true, then receiver has sent an ack
snt: boolean // if true, then receiver has sent data
finS: boolean // if true, then sender has sent a fin
finR: boolean // if true, then receiver has sent a fin

Initial Condition:
snd_una = snd_nzt = rco_nzt =0 A sender = closed A recetver = listen
A syn = ack = snt = finS = finR = false
Events:
// SENDER EVENTS
event eg; : // sender goes from closed to syn_sent
sender = closed A sender’ = syn_sent A syn’ =true A finS' = false
event esy : // sender receives ack and goes from syn_sent to established
ack = true A sender = syn_sent A sender’ = established A syn’ = false
A snd_una’ = snd_nat’' =0
event egs : // sender sends data in established
sender = established A snt’ = true
A (Iseglen : 0 < seglen A snd_nzt+ seglen < snd_una + snd_wnd
A snd_nzt' = snd_nzt + seg_len) Vv snd_nzt’ = snd_nxt
event ess : // sender receives ack in established
sender = established
A (segack : 0 < seg_ack A seg_ack < rcvnst A snd_una < seg_ack < snd_nzt
A snduna' = seg_ack) V snd_una’ = snd_una
event eg; : // sender goes from established to fin_wait
sender = established A sender’ = finwait A finS' = true
event esg : // sender goes from fin_wait to closed after receiving fin
finR =true A sender = finwait A sender’ = closed A syn’ = finS’ = snt’ = false
// RECEIVER EVENTS
event epy ¢ // receiver goes from listen to established after receiving syn
syn = true A receiver = listen A recetver’ = established A ack’ = true A finR' = false
A rcomet =0
event ep : // receiver receives data in established
snt = true A recetver = established A
(dseg_seq,seglen : 0 < seg_seq A 0 < seglen A rcv_wnd >0 A (seg_seq+ seg_len < snd_nzt)
N (rcv_nxt < seg_seq < rcv_nzt+ rcvwnd V revonet < seg_seq + seg_len — 1 < rev_naxt + rcv_wnd)
A ((seg_seq + seglen > rcvnazt + rcvwnd A revnzt’ = revonzt + rev_wnd)
V (seg_seq + seglen < rcvnzt +revwnd A revnzt = seg_seq + seglen))) V rcvmat’ = revonat
event eps : // receiver goes from established to listen after receiving fin
finS =true A recetver = established A recetver’ = listen A finR' =true A ack’ =false
// IDLE EVENT
event ey : // receiver and sender events can be delayed indefinitely
true

Figure 2: A Data Transfer Protocol.

and to extend the successive iterates in these directions. This will accelerate the fixpoint computation by
generating a majorizing sequence to the exact fixpoint iterates. We show in [5] how this is done for integer
domains, over multiple convex regions.

We have extended the widening idea to composite models. Assume that we have two composite repre-

sentations
np np nQ nQ
PV A i 0=z Al
=1 i=1teT 1=1 i=1teT

such that P C Q. Let P’ denote the following subset of disjuncts forming P: For each p; € P’, there exists
some ¢; such that p; C ¢;. Likewise, let Q' denote the set of disjuncts in) for which ¢; € @' means there
is a p; such that p; C ¢;. Then we define P 7) as

PvQ=\ nv \ av \ AGIv
pig P’ 7:¢Q’ pi€P',q;€Q'teT

Using this operator we can generate a majorizing sequence for our least fixpoint computations as follows:
Qo = f Qo = 7

Qi1 Qi 7 (Qi V pre(Q:)) Qi1 Qi 7 (Qi V (pre(Q:) A—pre(=Q:)))
(3ont Qn when @, = Qny1 (VOrN* Qn when @Qp = Qny1

4 A Data Transfer Protocol

In this section we demonstrate the effectiveness of our technique on a one-directional data transfer protocol,
abstracted from the TCP specification (RFC 793). We analyze parts of the protocol, specifically: hand-
shaking for call setup and take-down, as well as reliable data-transfer over an unreliable channel, which can
delay, duplicate, lose or reorder messages to an unlimited extent. There are several points to the exercise:
(1) the properties examined rely on multiple state changes, triggered by conditions over both Boolean and
integer-valued variables; (2) we verify these properties without bounding window sizes or sequence numbers;
hence, correctness is assured for any implementation of the protocol; (3) automated verification was only
possible using composite models, as well as approximation techniques based on their operators.

syn_sent
€52

€53

established
€R1

RECEIVER listen established
€R3 €R2

Figure 3: Sender and Receiver States.

SENDER

closed

Figure 2 gives the event-action language description of our protocol, which involves one sender process
and one receiver process. (In Figure 2, next value of a variable v is denoted as v'; if v’ does not appear in the
action of an event then ¢/ = v.) Asin TCP call-establishment, a sender can be in one of the following states:
closed, syn_sent, established , and fin wait, whereas the receiver process will either be in listen, or
established states. We show the event transitions in Figure 3 without their enabling conditions — which
involve sequence numbers, link-state flags, etc.

After the connection is established via hand-shaking, and both parties are in the established state, they
use a sliding-window protocol to send and receive data, where each message has a unique sequence number.
Here, 1t is sufficient to model the sequence numbers, as well as the send and receive pointers, and to abstract
away the message contents.

As specified in TCP, a sender has two integer pointers snd_una (oldest unacknowledged sequence number),
and snd_nat (next sequence number to be sent). On the other hand, the receiver maintains a single integer
pointer rev_nxt (next sequence number to be received). Again, these variables can be unbounded; hence,
it 1s not hard to see how the underlying transition system is an infinite one, and why it is not amenable to
known automated techniques.

The integers snd_wnd and rcv_wnd denote the sizes of sender and receiver windows, respectively. These
are unspecified constants; hence, a property verified for the protocol will hold for any interpretation of
these constants. As usual, the windows are used to avoid buffer overflow on the sender and receiver sides.
The sender can have snd_wnd messages outstanding — a situation maintained by ensuring that snd_nzt —
snd_una < snd_wnd. Also, the receiver can only queue up rcv_wnd messages, and additional messages will
be lost.

Upon start-up, the sender forwards a syn message to the receiver, and then it goes into the syn_sent state
(event egy). When the receiver gets the syn, it acknowledges via an ack; then it goes into the established
state (event epy). When the send party receives the ack, it likewise transitions into the established state
(eg2). Note that both parties initialize their sequence number pointers to 0 before starting data-transfer,
which works in a “stop-and-wait” manner: The sender repeatedly sends messages within its current window
(event egs), and updates snd_una when acknowledgments are received (esq). The receiver, on the other
hand, attempts to receive new messages within its own window (event egs); when the input queue bound is
exceeded, the excess 1s dropped.

To close a connection, the sender sends a finS message, and goes to the fin wait state (event egs).
When receiver receives this signal, it responds with a finR, and then it goes back to 1isten. Finally, when
sender receives this signal, it goes back to closed state, and the hand-shake is complete.

We assume that the communication channel is unreliable, i.e., it can delay, lose, duplicate or reorder
outstanding messages. To model this, we use shared variables and existential quantification, which include
all the possible behaviors such a channel would generate. Also, note the presence of an idle event — which is
used to delay messages for an arbitrary number of transitions before being received (if ever). We do assume,
however, that there are no delayed duplicates in the network — i.e., after an instantiation of the protocol,
there are no previous syn’s hanging around in the network. (There are standard fixes for this used TCP,
but for the sake of conciseness, we omit them.)

| PROP. | FIXPOINT CONVERGED IN | | PROP. | FIXPOINT CONVERGED IN
(P1) Exact 4 iterations — 3.11 sec. (P4) Exact 1 iterations — 1.73 sec.
Approximate | 4 iterations — 3.42 sec. Approximate | 1 iterations — 1.71 sec.
(P2) Exact did not converge (P5) Exact 7 iterations — 91.97 sec.
Approximate | 6 iterations — 14.13 sec. Approximate | 4 iterations — 11.52 sec.
(P3) Exact 1 iterations — 1.74 sec. (P6) Exact did not converge
Approximate | 1 iterations — 1.93 sec. Approximate | 10 iterations — 377.44 sec.

Figure 4: Verified Properties.

Some interesting properties of this data transfer protocol are as follows:

e (P1) YO(sender = established — receiver = established) :

If the sender establishes a connection, then so does the receiver.

e (P2) VO(receiver = established — —(sender = closed)) : If the receiver establishes a connection,

then the sender is not closed.

(P3) VO(sender = established — snd_una < snd_nxt < snd_una + snd_wnd) : The sender does not
overload the send buffer.

(P4) VO((receiver = established A rcv_nazt = i) — ¥V O (revonat < i 4 rev_wnd)) @ The receiver
does not overload the receive buffer.

(P5) YO(sender = receiver = established — snd_una < rev_nat) : All the acknowledged messages
are received by the receiver.

(P6) YO(sender = receiver = established — rev_nat < snd_nat) : All messages received were
actually sent by the sender.

Figure 4 shows the results of our experiments. Property (P1) converged in 4 iterations, using both exact
and approximate fixpoint computations; and due to additional cost of widening, the approximate fixpoint
actually used a bit more time. However, property (P2) does not converge at all using the exact method —
even though the property does not use any integer variables. However, this is not too surprising, since within
the protocol, almost all state-changes are due to a combination of interacting variables, both Booleans and
integers. We were able to prove property (P2) using the approximate fixpoint computations.

On the other hand, properties (P3) and (P4) are both built up exclusively using integer variables — yet,
both converge exactly in one iteration; indeed they follow from the event specifications of the sender and the
receiver.

Property (P5) establishes the relationship between snd_una and rev_nat. Since snd_una is updated by
the sender, and since rev_nat is updated by the receiver, verification of this property involves considering all
possible concurrent executions. The model-checker verifies the property in 7 iterations using exact fixpoint
computations, whereas the approximate fixpoint computations converges much faster in 4 iterations. This
shows that conservative approximations are not only useful for approximating divergent fixpoint computa-
tions; they can also be used to get quicker results in general.

Property (P6) is another property which involves both the sender and the receiver processes, and it
shows the relationship between variables rev_nazt and snd_nzt. Again rcv_nzt is updated by the receiver,
and snd_nzt is a variable updated by the sender. While exact analysis did not converge for this property,
the approximate fixpoint computations converged in 10 iterations.

5 Conclusions

We presented a technique to combine symbolic type-specific languages in a single composite model checker,
and to maintain their encodings in carrying out fixpoint computations. To do this, we conjunctively partition
the atomic events of the system based on the underlying variable types, and then compute each type’s pre-
image separately. We use some simple rules for handling the logical connectives over multiple types.

Our current model checker uses two class libraries for encoding type-specific constraints. While both
share a similar API, one of them (a BDD implementation) is used exclusively for Boolean types, and the
other is the Omega library, used for integer-valued variables and their constraints. Then a composite-model
library handles operations over mixed-type constraints (e.g., set-inclusion, intersection, etc.); in turn, these
operations invoke their relevant type-specific counterparts to help carry out the desired effect. At the topmost
level is the model checker, which imports the composite-model routines.

Using this model-checker, we were able to analyze the sliding-window semantics of a data-transfer proto-
col, in addition to its handshaking involved in connection-setup and tear-down. The properties were verified
automatically (with conservative approximations in some cases). Moreover, they were proved for unbounded
integer variables, over an unbounded state space, as theorems intrinsic to the underlying protocol — and not
specific to arbitrary bounds for integers.

Our approach to mixed constraints — and their orthogonal implementations — will allow expanding to

additional datatypes in the future. To this end, we plan to incorporate QDDs as well, to help model

communication channels more realistically.

References

(1]

[12]

[13]

[14]

R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis,
S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1):3-34,
1995.

B. Boigelot, and P. Godefroid. Symbolic verification of communication protocols with infinite state
spaces using QDDs. In Proceedings of the 8th International Conference on Computer Aided Verification
(CAV °96).

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions on

Computers, 35(8):677-691.

T. Bultan, R. Gerber, and C. League. “Verifying Systems with Integer Constraints and Boolean Pred-
icates: A Composite Approach.” To appear in Proceedings of the 1998 ACM/SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA "98).

T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state systems using Presburger
arithmetic. In Proceedings of the 9th International Conference on Computer Aided Verification (CAV
’97), LNCS 1254, pages 400-411.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. H. Hwang. Symbolic model checking:
1029 states and beyond. In Proc. of the 5th Annual IEEE Symposium on Logic in Computer Science,
pages 428-439, 1990.

J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. H. Hwang. Symbolic model checking
for sequential circuit verification. IEFEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems, 13(4): 401-424.

P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In Proc. Jth Annual ACM Symp. on Principles of
Programming Languages, pages 238252, 1977.

E. Clarke, X. Zhao. Word level symbolic model checking: A new approach for verifying arithmetic
circuits. Technical Report CMU-CS-95-161, School of Computer Science, Carnegie Mellon University,
May 1995.

P. Godefroid, and D. Long. Symbolic protocol verification with queue BDDs. In Proceedings of the 11th
Symposium on Logic in Computer Science, 198-206, July 1996.

R. Kaivola. Using Compositional Preorders in the Verification of Sliding Window Protocol. In Proceed-
ings of the 9th International Conference on Computer Aided Verification (CAV °97), LNCS 1254, pages
48-59.

W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman and D. Wonnacott. The Omega Library
(version 1.00) interface guide. Available at <http://www.cs.umd.edu/projects/omega>.

Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with rich asser-
tional languages. In Proceedings of the 9th International Conference on Computer Aided Verification

(CAV °97), LNCS 1254, pages 424-435.
K. L. McMillan. Symbolic model checking. Massachusetts, 1993, Kluwer Academic Publishers.

10

