
Composite Model Checking with Type Speci�cSymbolic Encodings�Tev�k Bultan Richard GerberDepartment of Computer ScienceUniversity of Maryland, College Park, MD 20742, USAAbstractWe present a new symbolic model checking technique, which analyzes temporal properties in multi-typed transition systems. Speci�cally, the method uses multiple type-speci�c data encodings to representsystem states, and it carries out �xpoint computations via the corresponding type-speci�c symbolicoperations. In essence, di�erent symbolic encodings are uni�ed into one composite model checker. Anytype-speci�c language can be included in this framework { provided that the language is closed underBoolean connectives, propositions can be checked for satis�ability, and relational images can be computed.Our technique relies on conjunctive partitioning of transition relations of atomic events based on variabletypes involved, which allows independent computation of one-step pre- and post-conditions for eachvariable type.In this paper we demonstrate the e�ectiveness of our method on a nontrivial data-transfer protocol,which contains a mixture of integer and Boolean-valued variables. The protocol operates over an unre-liable channel that can lose, duplicate or reorder messages. Moreover, the protocol's send and receivewindow sizes are not speci�ed in advance; rather, they are represented as symbolic constants. The re-sulting system was automatically veri�ed using our composite model checking approach, in concert witha conservative approximation technique.�This research is supported in part by ONR grant N00014-94-10228 and NSF CCR-9619808.

1 IntroductionSymbolic model checking has been quite successful in hardware veri�cation [6, 7, 14]. This success is generallydue to e�ciency of encodings like BDDs, which can represent huge sets of bit-vector states in a highly compactformat [3]. However, one shortcoming of the BDD representation is its inability to handle unboundedvariables (like integers).Alternatively, we recently proposed a model checker for general integer based systems, which uses Pres-burger constraints as its underlying state representation [5]. As with BDDs for Boolean arrays, Presburgerconstraints can compactly represent huge (even unbounded) sets of integer states over multiple dimensions.Speci�cally, our model checker represents sets of state-valuations using unions of convex polytopes, each ofwhich is formed by a�ne constraints over the system's variables. And like BDDs, this representation alsoa�ords e�cient techniques for carrying out pertinent set-theoretic operations.While our Presburger technique easily veri�ed some interesting integer-valued problems, it was ine�cientfor handling Boolean and (unordered) enumerated types. When all state sets are represented as Presburgerconstraint expressions, all Boolean variables end up getting mapped to integers { which ends up beingextremely wasteful.In this paper, we present a general framework for combining multiple type-speci�c encodings, whichallows us to exploit the strengths of both BDDs and Presburger formulas in analyzing systems with a varietyof variable types. Also, our strategy can easily include other symbolic encodings as well { provided that thelanguage is closed under Boolean connectives, propositions can be checked for satis�ability, and relationalimages can be computed. In [13], such an encoding is called an adequate language.The concepts in this paper rest on a large body of work done by us and others. Obviously, we rely heavilyon the previous work on symbolic model-checking [6, 7, 14]. As for the de�nition of an adequate language{ and the requisite operations contained in one { the concept was nicely reported by [13] at CAV '97. Atthe same conference, we described our prototype Presburger-based model-checker [5], and showed how itcould be used in concert with a multi-polytope widening operator. Recently, we reported some preliminaryprogress with exact BDD/Presburger model-checking, where the objective was verifying requirements of asensor-control system [4].In this paper we extend these results, by (1) presenting a model checker that accepts any adequatelanguage; (2) showing how it works on a TCP-like data-transfer protocol; and (3) integrating conservativeapproximation techniques with composite model-checking { where the goal is to accelerate �xpoint computa-tions over in�nite variable domains. Speci�cally, we show how we use type-speci�c approximation operators(such as widening) over multiple-types.The example protocol is similar to TCP; however, abstractions and simpli�cations have been made.Yet, much of TCP's complexity remains: the protocol is assumed to operate over an unreliable channel,which can lose, duplicate or reorder messages (this is modeled using existential quanti�cation). Moreover,the protocol's send and receive window sizes are not speci�ed in advance; rather, they are represented assymbolic constants.The protocol system contains a mixture of integer and Boolean-valued variables. Hence, it was notamenable to veri�cation by a BDD-checker alone; moreover, its size (and the number of Boolean variables)made pure-Presburger checking infeasible. In this paper, we show how the system was automatically veri�edusing our composite model checking approach, in concert with a conservative approximation technique.In [11], a di�erent version of a sliding-window protocol was veri�ed, using a compositional preorderapproach. In certain respects, this previous study was more broad, e.g., it handled liveness properties forarbitrary channel lengths. In other respects, it was more constrained, e.g., it assumed a �xed window size,whereas we verify the problem for any window size. But essentially, while examining a similar problem,[11] and this paper illustrate two di�erent (but related) techniques. In [11], veri�cation is carried out in asemi-automated fashion, where some key user-generated abstractions were required. Here, the protocol isveri�ed automatically, via composite model checking. In the future, we would expect to see many of these1

concepts used together, toward solving more complex problems.In recent years various symbolic encodings have been proposed which are e�cient for certain variabletypes. For example model checkers for hybrid systems encode real variables using a�ne constraints [1].A�ne constraint encoding of real variables is similar to the way we encode integer variables using Presburgerformulas.In [13], Kesten et al. use rich assertional languages that can encode in�nite-state systems for symbolicmodel checking. In particular, they use regular sets and tree regular sets as symbolic encodings.Queue content Decision Diagrams (QDDs) are proposed to encode sets of queue-con�gurations [2], wherethe prime use is to carry out reachability queries on communicating state machines. Queue con�gurationsare modeled via deterministic �nite-state automata structures, where the language accepted by the automatais equal to the set of queue-contents. QBDDs extend QDDs, by combining QDD representation with BDDencoding [10]. QBDDs have limited expressiveness for in�nite sets, they are more appropriate for encodingbounded queues.Several symbolic representations have been proposed for modeling functions over Boolean variables withnon-Boolean ranges, including Multi-Terminal Binary Decision Diagrams (MTBDDs), Binary Moment Dia-grams (BMDs), and their generalization Hybrid Decision Diagrams (HDDs) [9]. These are especially usefulfor datapath circuit veri�cation, since they can encode functions that map Boolean vectors to integers.Each of these representations can provide an e�cient encoding for a speci�c variable type. However, webelieve our techniques for combining di�erent symbolic encodings could, with little e�ort, be extended to allabovementioned representations { with the result being a general-purpose model checker.2 Composite ModelWe represent a concurrent system C = (V; I; E) by (1) a �nite set of variables V ; (2) an initial conditionI, which speci�es the starting states of the program; and (3) a �nite set of events E, where each eventis considered atomic. A system state is determined by the values of its variables. Each event de�nes atransformation on the variables of the program.Given a system C = (V; I; E), we model it as an in�nite transition system M = (S; I;X; V F), whereS is the set of states, I is the set of initial states, X � S � S is the transition relation (derived from theset of events E), and V F : S � SF ! ftrue; falseg is the valuation function for state formulas over theprogram's variables. (We de�ne the set of state formulas SF below.) The set of states S is obtained bytaking Cartesian product of domains of all program variables; hence, each state corresponds to a valuationof all the variables of the program.Every event e 2 E de�nes a binary relation on the program's states, Xe � S � S, such that when(s; s0) 2 Xe, s and s0 denote program's states before and after the execution of event e, respectively. Theglobal transition relation is X � We2E Xe. Note that we use an interleaving model, where each transitionrepresents execution of a single event, i.e., only one event can occur at a time.2.1 Symbolic RepresentationsGiven a concurrent system C = (V; I; E), each variable v 2 V has a type tv 2 T where T denotes the setof variable types. We assume that for each type t 2 T , there is a symbolic assertional language Lt, whichencodes formulas over t-typed variables and constants. For the sake of carrying out model checking, weassume that any type language Lt has the following properties:� Lt is e�ectively closed under the Boolean connectives negation, conjunction and disjunction.� Satis�ability is decidable for assertions over Lt, and we have an algorithm to carry out the procedure.� There is also an algorithm to compute binary relational images over Lt. That is, given R of typeLt ! Lt, and Q 2 Lt, we can compute R[Q], which is de�ned by restricting the domain of R to set Q,2

and returning the range of the result.This de�nition was borrowed (with some modi�cations) from the concept of an adequate language describedin [13]. We use the term \adequate language" to describe any type signature (with a corresponding imple-mentation) which adheres to these three properties. Speci�cally we have implemented a model checker usingtwo adequate languages { Presburger arithmetic (implemented with the Omega Library [12]), and BDDs(implemented in our own class library).More generally, given a set of variable types t 2 T and their associated adequate languages Lt, we de�nea composite language Lc to be generated by the following grammar:f ::= (f) j f _ f j f ^ f j :f j f twhere t 2 T and f t 2 Lt.We use this composite language to represent the state formulas SF , i.e., f 2 SF only if f 2 Lc. We alsoassume that the set of initial states I can be represented as a composite formula, i.e., I 2 Lc.As with single-type symbolic model checking, formulas in Lc can symbolically encode composite statesets. We convert any composite state formula Q 2 Lc; Q � S to a disjunctive form, and represent it asfollows: Q � nQ_i=1 t̂2T qtiwhere each qti 2 Lt, and nQ denotes the number of disjuncts needed. Such a disjunctive form can be obtainedfor any composite term, since we do not allow functions (or predicates) with arguments which have di�erenttypes.2.2 Logical Operations on Composite RepresentationsAssume that we have two state sets P and Q represented symbolically asP � nP_i=1 t̂2T pti and Q � nQ_i=1 t̂2T qtiwhere each pti; qti 2 Lt. Now we show how to compute logical operators disjunction, conjunction and negationon P and Q:P _Q � (nP_i=1 t̂2T pti) _ (nQ_i=1 t̂2T qti) P ^Q � nP ;nQ_i=1;j=1 t̂2T pti ^ qtj:Q � _ nQ̂j=1:qj where qj = qtj t 2 TIn other words, disjunction just requires appending the two disjuncts together; the result will be in ourcomposite symbolic form. Conjunction is computationally more expensive. Using the distributive propertiesof Boolean algebra, we can compute all the pertinent disjuncts { yet we may end up with nP �nQ disjuncts,which we have to compute by traversing the disjunctive representations of P and Q.Finally, taking a complement is more expensive; indeed, complementation of a set Q with nQ disjunctsmay, in fact, create jT jnQ disjuncts in the worst case { however it is very likely that most of these will beempty. Hence, we build :Q in an incremental manner so that we try to minimize the number of disjunctsgenerated. We do this by testing for emptiness on the
y, while we are computing the conjunctions.During model checking operations, the number of disjuncts in a composite formula can easily increase.As we showed above, applying the disjunction operation is relatively cheap { yet it can still linearly increase a3

formula's complexity. And this problem gets worse when applying conjunction (with quadratic growth) andeven more so with negation (and its worst-case exponential growth). In practice, however, most type-speci�csymbolic libraries contain their own simpli�cation procedures, which can minimize the number of formulasused to represent a set of valuations. (This is true for both the BDD and the Presburger libraries we use.)So, for composite models, the challenge lies in merging as many terms as possible into a single-type format,and still retaining the semantics of the original formula. To do this we use some simple reduction rules.Given a composite formula with two disjuncts Q � (Vt2T qt1) _ (Vt2T qt2) we have the following properties:8s 2 T s 6= t qs1 � qs2 ! Q � (^s2T;s6=t qs1) ^ (qt1 _ qt2)8t 2 T qt1 � qt2 ! Q � t̂2T qt2Note that in both cases we can reduce the formula from two disjuncts to one. Hence, to simplify a generalcomposite formula we (1) check all pairs for the conditions listed above, and (2) merge the appropriatedisjuncts when a condition is satis�ed.2.3 Composite TransitionsGiven a system C = (V; I; E) we assume that every atomic event e 2 E can be conjunctively partitionedbased on the variable types. Any system which does not allow type-casting or multi-typed functions wouldsatisfy this requirement. Then, for an event e, we can represent its transition relation Xe as Xe � Vt2T Xte,where each Xte 2 Lt. Hence, we can symbolically encode the entire transition relation X as:X � _e2EXe � _e2E t̂2T XteNow we state the fundamental property which enables us to manipulate the type speci�c symbolicencodings independently: (t̂2T Xte)[t̂2T qti] � t̂2T Xte[t̂2T qti] � t̂2T Xte[qti]The �rst step follows from the fact that each Xte only references variables of type t, i.e., we can push theexistential quanti�cation for the image computation inside the �rst conjunction. The second step followsfrom the fact that each qti only references variables of type t, i.e., we can push the existential quanti�cationfor the image computation inside the second conjunction. Taken as a whole, the property shows that theimage computation for di�erent variable types are orthogonal, and hence they can be computed separately.3 Composite Model CheckerNow we de�ne a precondition operator, pre : 2S ! 2S , which, given a set of states, returns all the statesthat can reach this set in one step (i.e. after execution of a single event):pre(Q) def= fs : 9s0[s0 2 Q ^ (s; s0) 2 X]g:By de�nition, we have that pre(Q) � X�1[Q]. More practically, however, we can symbolically compute prewith respect to the system's event decomposition, and the symbolic representation of Q � WnQi=1Vt2T qti :pre(Q) � _e2EX�1e [Q] � _e2E(t̂2T(Xte)�1)[nQ_i=1 t̂2T qti] � _e2E nQ_i=1 t̂2T(Xte)�1[qti]4

f = 9
 f1 :Return(pre(f1)) f = 8
 f1 :Return(:pre(:f1))f = 93f1 :Q0 = f1 f = 83f1 :Q0 � f1Qi+1 � Qi _ pre(Qi) Qi+1 � Qi _ (pre(Qi) ^ (:pre(:Qi)))Return(Qn) when Qn � Qn+1 Return(Qn) when Qn � Qn+1Figure 1: Computation of Temporal Properties.which follows from results developed in the previous section.Now, using the pre, as well as the symbolic operations ^ , _ and :, we can construct computationprocedures for basic CTL properties, as shown in Figure 1; the full composite model-checker follows fromthe Boolean operations described in the previous section. If all types are �nite, the algorithm will alwaysconverge { after all, Figure 1 is basically the core part of any symbolic model-checker. However, if integers(or other unbounded types) are involved, this procedure may well be a partial-function, as it is with ourprototype tool { which uses BDDs and Presburger arithmetic over unbounded transition systems. Hence,we often appeal to conservative techniques, which can help when exact results are unobtainable.3.1 Approximate �xpoint computationsAs reported in [5], if we cannot directly compute a property f for a program C, we generate a lower-boundfor f , denoted f�, such that f� � f . Then we check if I � f�; if so, we conclude that I � f . However,if I 6� f�, we cannot conclude anything, because it may be a false negative. In that case, we compute alower bound for the negated property, (:f)�. If we can �nd a state s such that s 2 I \ (:f)�, then wecan generate a counter-example, which would be a true negative. If both cases fail, i.e., both I 6� f� andI \ (:f)� � ;, then the model checker can not report a de�nite answer.To compute a lower bound to a property like g � :h, we �rst need to compute an upper approximationh+ for the subformula h, and then let g� � S � h+. Thus, we need algorithms to compute both lower andupper bounds of temporal formulas.Since all operators in our temporal logic other than \:" are monotonic, we can compute a lower/upperapproximation for a negation free formula using the corresponding lower/upper approximations for its sub-formulas. As for handling arbitrary levels of negation, we can easily generalize the abovementioned methodfor outermost negation operators and determine what type of approximation we need for each subformula [5].Note that each iteration of the exact �xpoint computations (Figure 1) will yield a lower a bound for93f1 and 83f1. So, to obtain a lower approximation for the purposes of analysis, we need only stop aftera �nite number of iterations; in this manner we are guaranteed to have a conservative approximation. Inmost cases, deciding when to stop is usually a matter of computing resources, time constraints, and humanpatience. However, if a result obtained is not precise enough to prove the property of interest, it can becached away and improved later, by running more �xpoint iterations.As for upper bounds, we use a technique similar to widening [8], but over multiple convex regions, andover multiple types. Assume that qt1 and qt2 are two symbolic sets formed over a single type t 2 T , and that\5t" is a type-speci�c widening operator such that:qt1 [qt2 � qt15t qt2i.e., qt1 5t qt2 is an upper bound for the union computation. (Note that we do not have the guaranteedconvergence requirement given in [8], i.e., our approximate �xpoint computations are not guaranteed toconverge.)Obviously there are many choices for operators which majorize binary union. However, if 5t is to beuseful, it should { in many settings { be able to \guess" the direction of growth in the �xpoint iterates,5

Constants:snd wnd: positive integer // sender windowrcv wnd: positive integer // receiver windowVariables:sender : fclosed;syn sent;established;fin waitg // sender statereceiver : flisten;establishedg // receiver statesnd una: positive integer // oldest unacknowledged sequence numbersnd nxt: positive integer // next sequence number to be sentrcv nxt: positive integer // next sequence number to be receivedsyn: boolean // if true, then sender has sent a synack: boolean // if true, then receiver has sent an acksnt: boolean // if true, then receiver has sent datafinS: boolean // if true, then sender has sent a �nfinR: boolean // if true, then receiver has sent a �nInitial Condition:snd una = snd nxt = rcv nxt = 0 ^ sender = closed ^ receiver = listen^ syn = ack = snt = finS = finR = falseEvents:// SENDER EVENTSevent eS1 : // sender goes from closed to syn sentsender = closed ^ sender0 = syn sent ^ syn0 = true ^ finS0 = falseevent eS2 : // sender receives ack and goes from syn sent to establishedack = true ^ sender = syn sent ^ sender0 = established ^ syn0 = false^ snd una0 = snd nxt0 = 0event eS3 : // sender sends data in establishedsender = established ^ snt0 = true^ (9seg len : 0 < seg len ^ snd nxt+ seg len � snd una + snd wnd^ snd nxt0 = snd nxt+ seg len) _ snd nxt0 = snd nxtevent eS4 : // sender receives ack in establishedsender = established^ (9seg ack : 0 � seg ack ^ seg ack � rcv nxt ^ snd una < seg ack � snd nxt^ snd una0 = seg ack) _ snd una0 = snd unaevent eS5 : // sender goes from established to �n waitsender = established ^ sender0 = fin wait ^ finS0 = trueevent eS6 : // sender goes from �n wait to closed after receiving �nfinR = true ^ sender = fin wait ^ sender0 = closed ^ syn0 = finS0 = snt0 = false// RECEIVER EVENTSevent eR1 : // receiver goes from listen to established after receiving synsyn = true ^ receiver = listen ^ receiver0 = established ^ ack0 = true ^ finR0 = false^ rcv nxt0 = 0event eR2 : // receiver receives data in establishedsnt = true ^ receiver = established ^(9seg seq; seg len : 0 � seg seq ^ 0 < seg len ^ rcv wnd > 0 ^ (seg seq + seg len � snd nxt)^ (rcv nxt � seg seq < rcv nxt+ rcv wnd _ rcv nxt � seg seq + seg len� 1 < rcv nxt+ rcv wnd)^ ((seg seq + seg len > rcv nxt+ rcv wnd ^ rcv nxt0 = rcv nxt+ rcv wnd)_ (seg seq + seg len � rcv nxt+ rcv wnd ^ rcv nxt0 = seg seq + seg len))) _ rcv nxt0 = rcv nxtevent eR3 : // receiver goes from established to listen after receiving �nfinS = true ^ receiver = established ^ receiver0 = listen ^ finR0 = true ^ ack0 = false// IDLE EVENTevent eI : // receiver and sender events can be delayed inde�nitelytrue Figure 2: A Data Transfer Protocol.6

and to extend the successive iterates in these directions. This will accelerate the �xpoint computation bygenerating a majorizing sequence to the exact �xpoint iterates. We show in [5] how this is done for integerdomains, over multiple convex regions.We have extended the widening idea to composite models. Assume that we have two composite repre-sentations P � nP_i=1pi � nP_i=1 t̂2T pti and Q � nQ_i=1 qi � nQ_i=1 t̂2T qtisuch that P � Q. Let P 0 denote the following subset of disjuncts forming P : For each pi 2 P 0, there existssome qj such that pi � qj. Likewise, let Q0 denote the set of disjuncts in Q for which qj 2 Q0 means thereis a pi such that pi � qj. Then we de�ne P 5Q asP 5Q � _pi =2P 0 pi _ _qi =2Q0 qi _ _pi2P 0 ;qj2Q0 t̂2T(pti 5t qtj)Using this operator we can generate a majorizing sequence for our least �xpoint computations as follows:Q̂0 � fQ̂i+1 � Q̂i5 (Q̂i _ pre(Q̂i))(93f)+ � Q̂n when Q̂n � Q̂n+1 Q̂0 � fQ̂i+1 � Q̂i5 (Q̂i _ (pre(Q̂i) ^ :pre(:Q̂i)))(83f)+ � Q̂n when Q̂n � Q̂n+14 A Data Transfer ProtocolIn this section we demonstrate the e�ectiveness of our technique on a one-directional data transfer protocol,abstracted from the TCP speci�cation (RFC 793). We analyze parts of the protocol, speci�cally: hand-shaking for call setup and take-down, as well as reliable data-transfer over an unreliable channel, which candelay, duplicate, lose or reorder messages to an unlimited extent. There are several points to the exercise:(1) the properties examined rely on multiple state changes, triggered by conditions over both Boolean andinteger-valued variables; (2) we verify these properties without bounding window sizes or sequence numbers;hence, correctness is assured for any implementation of the protocol; (3) automated veri�cation was onlypossible using composite models, as well as approximation techniques based on their operators.
SENDER

RECEIVER

syn sent established fin waitclosed eS1 eS2 eS5eR3eR1listen established eR2eS4eS3eS6Figure 3: Sender and Receiver States.Figure 2 gives the event-action language description of our protocol, which involves one sender processand one receiver process. (In Figure 2, next value of a variable v is denoted as v0; if v0 does not appear in theaction of an event then v0 = v.) As in TCP call-establishment, a sender can be in one of the following states:closed; syn sent; established , and fin wait, whereas the receiver process will either be in listen, orestablished states. We show the event transitions in Figure 3 without their enabling conditions { whichinvolve sequence numbers, link-state
ags, etc. 7

After the connection is established via hand-shaking, and both parties are in the established state, theyuse a sliding-window protocol to send and receive data, where each message has a unique sequence number.Here, it is su�cient to model the sequence numbers, as well as the send and receive pointers, and to abstractaway the message contents.As speci�ed in TCP, a sender has two integer pointers snd una (oldest unacknowledged sequence number),and snd nxt (next sequence number to be sent). On the other hand, the receiver maintains a single integerpointer rcv nxt (next sequence number to be received). Again, these variables can be unbounded; hence,it is not hard to see how the underlying transition system is an in�nite one, and why it is not amenable toknown automated techniques.The integers snd wnd and rcv wnd denote the sizes of sender and receiver windows, respectively. Theseare unspeci�ed constants; hence, a property veri�ed for the protocol will hold for any interpretation ofthese constants. As usual, the windows are used to avoid bu�er over
ow on the sender and receiver sides.The sender can have snd wnd messages outstanding { a situation maintained by ensuring that snd nxt �snd una � snd wnd. Also, the receiver can only queue up rcv wnd messages, and additional messages willbe lost.Upon start-up, the sender forwards a syn message to the receiver, and then it goes into the syn sent state(event eS1). When the receiver gets the syn, it acknowledges via an ack; then it goes into the establishedstate (event eR1). When the send party receives the ack, it likewise transitions into the established state(eS2). Note that both parties initialize their sequence number pointers to 0 before starting data-transfer,which works in a \stop-and-wait" manner: The sender repeatedly sends messages within its current window(event eS3), and updates snd una when acknowledgments are received (eS4). The receiver, on the otherhand, attempts to receive new messages within its own window (event eR2); when the input queue bound isexceeded, the excess is dropped.To close a connection, the sender sends a finS message, and goes to the fin wait state (event eS5).When receiver receives this signal, it responds with a finR, and then it goes back to listen. Finally, whensender receives this signal, it goes back to closed state, and the hand-shake is complete.We assume that the communication channel is unreliable, i.e., it can delay, lose, duplicate or reorderoutstanding messages. To model this, we use shared variables and existential quanti�cation, which includeall the possible behaviors such a channel would generate. Also, note the presence of an idle event { which isused to delay messages for an arbitrary number of transitions before being received (if ever). We do assume,however, that there are no delayed duplicates in the network { i.e., after an instantiation of the protocol,there are no previous syn's hanging around in the network. (There are standard �xes for this used TCP,but for the sake of conciseness, we omit them.)PROP. FIXPOINT CONVERGED IN(P1) Exact 4 iterations { 3.11 sec.Approximate 4 iterations { 3.42 sec.(P2) Exact did not convergeApproximate 6 iterations { 14.13 sec.(P3) Exact 1 iterations { 1.74 sec.Approximate 1 iterations { 1.93 sec. PROP. FIXPOINT CONVERGED IN(P4) Exact 1 iterations { 1.73 sec.Approximate 1 iterations { 1.71 sec.(P5) Exact 7 iterations { 91.97 sec.Approximate 4 iterations { 11.52 sec.(P6) Exact did not convergeApproximate 10 iterations { 377.44 sec.Figure 4: Veri�ed Properties.Some interesting properties of this data transfer protocol are as follows:� (P1) 82(sender = established! receiver = established) :If the sender establishes a connection, then so does the receiver.� (P2) 82(receiver = established! :(sender = closed)) : If the receiver establishes a connection,8

then the sender is not closed.� (P3) 82(sender = established! snd una � snd nxt � snd una+ snd wnd) : The sender does notoverload the send bu�er.� (P4) 82((receiver = established ^ rcv nxt = i) ! 8
 (rcv nxt � i + rcv wnd)) : The receiverdoes not overload the receive bu�er.� (P5) 82(sender = receiver = established! snd una � rcv nxt) : All the acknowledged messagesare received by the receiver.� (P6) 82(sender = receiver = established ! rcv nxt � snd nxt) : All messages received wereactually sent by the sender.Figure 4 shows the results of our experiments. Property (P1) converged in 4 iterations, using both exactand approximate �xpoint computations; and due to additional cost of widening, the approximate �xpointactually used a bit more time. However, property (P2) does not converge at all using the exact method {even though the property does not use any integer variables. However, this is not too surprising, since withinthe protocol, almost all state-changes are due to a combination of interacting variables, both Booleans andintegers. We were able to prove property (P2) using the approximate �xpoint computations.On the other hand, properties (P3) and (P4) are both built up exclusively using integer variables { yet,both converge exactly in one iteration; indeed they follow from the event speci�cations of the sender and thereceiver.Property (P5) establishes the relationship between snd una and rcv nxt. Since snd una is updated bythe sender, and since rcv nxt is updated by the receiver, veri�cation of this property involves considering allpossible concurrent executions. The model-checker veri�es the property in 7 iterations using exact �xpointcomputations, whereas the approximate �xpoint computations converges much faster in 4 iterations. Thisshows that conservative approximations are not only useful for approximating divergent �xpoint computa-tions; they can also be used to get quicker results in general.Property (P6) is another property which involves both the sender and the receiver processes, and itshows the relationship between variables rcv nxt and snd nxt. Again rcv nxt is updated by the receiver,and snd nxt is a variable updated by the sender. While exact analysis did not converge for this property,the approximate �xpoint computations converged in 10 iterations.5 ConclusionsWe presented a technique to combine symbolic type-speci�c languages in a single composite model checker,and to maintain their encodings in carrying out �xpoint computations. To do this, we conjunctively partitionthe atomic events of the system based on the underlying variable types, and then compute each type's pre-image separately. We use some simple rules for handling the logical connectives over multiple types.Our current model checker uses two class libraries for encoding type-speci�c constraints. While bothshare a similar API, one of them (a BDD implementation) is used exclusively for Boolean types, and theother is the Omega library, used for integer-valued variables and their constraints. Then a composite-modellibrary handles operations over mixed-type constraints (e.g., set-inclusion, intersection, etc.); in turn, theseoperations invoke their relevant type-speci�c counterparts to help carry out the desired e�ect. At the topmostlevel is the model checker, which imports the composite-model routines.Using this model-checker, we were able to analyze the sliding-window semantics of a data-transfer proto-col, in addition to its handshaking involved in connection-setup and tear-down. The properties were veri�edautomatically (with conservative approximations in some cases). Moreover, they were proved for unboundedinteger variables, over an unbounded state space, as theorems intrinsic to the underlying protocol { and notspeci�c to arbitrary bounds for integers. 9

Our approach to mixed constraints { and their orthogonal implementations { will allow expanding toadditional datatypes in the future. To this end, we plan to incorporate QDDs as well, to help modelcommunication channels more realistically.References[1] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P. H. Ho, X. Nicollin, A. Olivero, J. Sifakis,S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer Science, 138(1):3{34,1995.[2] B. Boigelot, and P. Godefroid. Symbolic veri�cation of communication protocols with in�nite statespaces using QDDs. In Proceedings of the 8th International Conference on Computer Aided Veri�cation(CAV '96).[3] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transactions onComputers, 35(8):677-691.[4] T. Bultan, R. Gerber, and C. League. \Verifying Systems with Integer Constraints and Boolean Pred-icates: A Composite Approach." To appear in Proceedings of the 1998 ACM/SIGSOFT InternationalSymposium on Software Testing and Analysis (ISSTA '98).[5] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of in�nite state systems using Presburgerarithmetic. In Proceedings of the 9th International Conference on Computer Aided Veri�cation (CAV'97), LNCS 1254, pages 400{411.[6] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. H. Hwang. Symbolic model checking:1020 states and beyond. In Proc. of the 5th Annual IEEE Symposium on Logic in Computer Science,pages 428{439, 1990.[7] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. H. Hwang. Symbolic model checkingfor sequential circuit veri�cation. IEEE Trans. on Computer-Aided Design of Integrated Circuits andSystems, 13(4): 401-424.[8] P. Cousot and R. Cousot. Abstract interpretation: a uni�ed lattice model for static analysis of programsby construction or approximation of �xpoints. In Proc. 4th Annual ACM Symp. on Principles ofProgramming Languages, pages 238{252, 1977.[9] E. Clarke, X. Zhao. Word level symbolic model checking: A new approach for verifying arithmeticcircuits. Technical Report CMU-CS-95-161, School of Computer Science, Carnegie Mellon University,May 1995.[10] P. Godefroid, and D. Long. Symbolic protocol veri�cation with queue BDDs. In Proceedings of the 11thSymposium on Logic in Computer Science, 198{206, July 1996.[11] R. Kaivola. Using Compositional Preorders in the Veri�cation of Sliding Window Protocol. In Proceed-ings of the 9th International Conference on Computer Aided Veri�cation (CAV '97), LNCS 1254, pages48{59.[12] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman and D. Wonnacott. The Omega Library(version 1.00) interface guide. Available at <http://www.cs.umd.edu/projects/omega>.[13] Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with rich asser-tional languages. In Proceedings of the 9th International Conference on Computer Aided Veri�cation(CAV '97), LNCS 1254, pages 424{435.[14] K. L. McMillan. Symbolic model checking. Massachusetts, 1993, Kluwer Academic Publishers.10

