
ABSTRACT

Title of Dissertation: LANGUAGE-BASED TECHNIQUES
FOR SECURE PROGRAMMING

Ian Sweet
Doctor of Philosophy, 2022

Dissertation Directed by: Professor Michael Hicks
Department of Computer Science

Secure Computation (SC) encompasses many different cryptographic techniques

for computing over encrypted data. In particular, Secure Multiparty Computation [179,

72] enables multiple parties to jointly compute a function over their secret inputs.

MPC languages offer programmers a familiar environment in which to express their

programs, but fall short when confronted with problems that require flexible coordi-

nation. More broadly, SC languages do not protect non-expert programmers from

violating obliviousness or expected bounds on information leakage. We aim to show

that secure programming can be made safer through language-based techniques for

expressive, coordinated MPC; probabilistically oblivious execution; and quantitative

analysis of information flow. We begin by presenting Symphony, an expressive MPC

language that provides flexible coordination of many parties, which has been used to

implement the secure shuffle of Laur, Willemson, and Zhang. Next, we present λObliv,

a core language guaranteeing that well-typed programs are probabilistically oblivious,

which has been used to type check tree-based, nonrecursive ORAM (NORAM). Fi-

nally, we present a novel application of dynamic analysis techniques to an existing

system for enforcing bounds on information leakage, providing a better balance of

precision and performance.



LANGUAGE-BASED TECHNIQUES FOR SECURE
PROGRAMMING

by

Ian Sweet

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2022

Advisory Committee:
Professor Michael Hicks, Chair/Advisor
Professor Lawrence Washington, Dean’s Representative
Professor David Darais
Professor Jonathan Katz
Professor David Van Horn



Acknowledgements

To my wonderful family – Allyn, Steve, Ellen, Skyler, Abbey, and Aidan – I cannot

put into words how influential you have been. So much of who I am has been shaped

by you. Thank you for all your love and support. I love you.

My wife, Camille, has assured me that she will never read these acknowledgements.

I considered calling her bluff, but here I am acknowledging her anyway. Camille and

I met in high school, dated all through college, and were married smack dab in the

middle of my PhD. I have never regretted a second I’ve spent with her. I could go

on, but she said I “better not write some long thing” about her.

My advisor, Mike Hicks, deserves all the thanks I can possibly give and then some.

All of the most important lessons and skills I learned during my PhD came directly

from him. He taught me to value and cultivate my community. He taught me the

importance of communication. He taught me how to conduct honest, meaningful

research. What strikes me most as I write this, though, is that he always treated me

as an equal. I hope one day I am able to mentor someone else and make them feel

the way Mike made me feel.

I would also like to acknowledge my committee – David Darais, David Van Horn,

Jon Katz, and Larry Washington – for their help shaping my proposal and disser-

tation. David Van Horn’s enthusiasm for programming languages inspired me to

pursue graduate studies. David Darais’ research agenda and aesthetic has helped

shape my own. Jon Katz’s questions and suggestions pushed my research to be truly

ii



interdisciplinary.

I am indebted to David Heath and Daniel Noble for helping me understand a

research area in which I had no prior experience. I’ve benefited immeasurably from

their patience and kindness. I am indebted to Ethan Cecchetti for helping me under-

stand a research area in which I had substantial prior experience. I regret that our

paths didn’t cross sooner. I have a deep appreciation for Ethan’s generosity of spirit.

Whether it is his time or his tea, he gives freely and with enthusiasm.

Finally, I must give my sincerest thanks to the dear friends that I made along the

way. José Calderón has been a consistent source of joy and support from the very

beginning. When I was struggling, José helped remind me what is important. I mean

it sincerely when I say I could not have done it without him. Kesha Hietala, Sankha

Guria, and James Parker are my academic siblings. They will never be rid of me,

whether they like it or not. My experience was infinitely richer because they were a

part of it.

iii



Table of contents

Acknowledgements ii

Table of contents iv

1 Introduction 1
1.1 A Language for Expressive, Coordinated Secure Multiparty Computation 6
1.2 A Language for Probabilistically Oblivious Computation . . . . . . . 8
1.3 Refining Probabilistic Bounds on Information Leakage . . . . . . . . . 10

2 Background 12
2.1 Secure Multiparty Computation . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Protocol Characterization . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Protocol Descriptions . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Information Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 λMPC: A Language for Expressive, Coordinated Secure Multiparty
Computation 23
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.1.1 Problem: Coordination . . . . . . . . . . . . . . . . . . . . . . 25
3.1.2 Symphony: Expressive, Coordinated MPC . . . . . . . . . . . 27

3.2 λMPC: Syntax and Semantics . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.2.4 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Distributed Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.1 Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.2 Operational Semantics . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Single-threaded Soundness . . . . . . . . . . . . . . . . . . . . . . . . 44
3.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5.1 Interpreter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.2 Runtime System . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.6.1 Expressiveness and Ergonomics . . . . . . . . . . . . . . . . . 55
3.6.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

iv



3.7 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 λObliv: A Language for Probabilistically Oblivious Computation 75
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.1.1 Threat Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.2 Oblivious Execution . . . . . . . . . . . . . . . . . . . . . . . 77
4.1.3 Probabilistic Oblivious Execution . . . . . . . . . . . . . . . . 79
4.1.4 λObliv: Obliviousness by Typing . . . . . . . . . . . . . . . . . 80

4.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.3 Type System . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.3 Probabilistic Memory Trace Obliviousness . . . . . . . . . . . . . . . 94
4.3.1 What is PMTO? . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3.2 Proof Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.3 Mixed Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.4 Capturing Correlations with Intensional Distributions . . . . . 100
4.3.5 Mixed Semantics Typing . . . . . . . . . . . . . . . . . . . . . 106
4.3.6 Proving PMTO . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4 Implementation and Tree-based ORAM Case Study . . . . . . . . . . 112
4.4.1 Tree-based ORAM: Overview . . . . . . . . . . . . . . . . . . 113
4.4.2 Tree-based Non-recursive ORAM . . . . . . . . . . . . . . . . 115
4.4.3 Recursive ORAM . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.5 Oblivious Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 122
4.5.1 Tree ORAM-based Oblivious Data Structures . . . . . . . . . 122
4.5.2 Tree ORAM-based Stack is not PMTO . . . . . . . . . . . . . 125

4.6 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5 Refining Probabilistic Bounds on Information Leakage 130
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.1.1 Computing vulnerability with abstract interpretation . . . . . 133
5.1.2 Improving precision with sampling and concolic execution . . 136

5.2 Preliminaries: Syntax and Semantics . . . . . . . . . . . . . . . . . . 137
5.2.1 Core Language and Semantics . . . . . . . . . . . . . . . . . . 137
5.2.2 Probabilistic polyhedra . . . . . . . . . . . . . . . . . . . . . . 139

5.3 Computing Vulnerability: Basic procedure . . . . . . . . . . . . . . . 141
5.4 Improving precision with sampling . . . . . . . . . . . . . . . . . . . 142
5.5 Improving precision with concolic execution . . . . . . . . . . . . . . 145

5.5.1 (Probabilistic) Concolic Execution . . . . . . . . . . . . . . . . 146
5.5.2 Improving precision . . . . . . . . . . . . . . . . . . . . . . . . 147
5.5.3 Combining Sampling with Concolic Execution . . . . . . . . . 148

5.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 150
5.7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

v



5.7.3 Evacuation Problem . . . . . . . . . . . . . . . . . . . . . . . 154
5.8 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

6 Conclusion 159

A Symphony: Architecture and Proofs 162
A.1 FFI and Resource Management . . . . . . . . . . . . . . . . . . . . . 162
A.2 Metatheory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.2.1 Proof Sketches for Correspondence Theorems . . . . . . . . . 163
A.2.2 Detailed Proofs for Key Lemmas . . . . . . . . . . . . . . . . 167

B λObliv: Definitions and Proofs 176
B.1 Complete PMTO Proof . . . . . . . . . . . . . . . . . . . . . . . . . . 176

B.1.1 Theorems and Lemmas . . . . . . . . . . . . . . . . . . . . . . 177
B.1.2 Type Preservation . . . . . . . . . . . . . . . . . . . . . . . . 191
B.1.3 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

C Bounding Information Leakage: Evacuation Scenario and Proofs 228
C.1 Query Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
C.2 Formal semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

C.2.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

Bibliography 236

vi



Chapter 1

Introduction

The field of Secure Computation encompasses different cryptographic techniques for

computing over encrypted data [67, 74, 35, 42, 179, 72]. For example, Fully Homo-

morphic Encryption (FHE) [67] can be used to outsource a computation over secret

data to an untrusted server and Zero-Knowledge Proofs (ZKP) [74] can be used to

prove properties about secret data from an untrusted client [32]. Of particular impor-

tance to this dissertation is Secure Multiparty Computation [179, 72] which enables

multiple parties to jointly compute a function over their secret data.

Problem: Lack of Expressiveness Secure computation based on MPC stands

out due to its generality and efficiency. MPC technology today is hundreds of mil-

lions of times faster than technology from a mere 20 years ago, meaning that many

applications have become feasible. Modern MPC languages and frameworks are also

increasingly convenient, offering programmers a familiar language with which to ex-

press their MPC programs [176, 5, 63, 181, 125, 155, 36]. Unfortunately, while these

frameworks allow the programmer to effectively express many MPCs, they fall short

when confronted with problems that require flexible coordination.

Overwhelmingly, MPC frameworks take the default view that all parties per-

form the same synchronized activity, in the style of single-instruction multiple-data

1



(SIMD). The SIMD view of computation is not always appropriate. In many scenar-

ios, it is useful if the parties can each execute different computations. For example,

suppose we wish to implement a round-based card game where N players use MPC

to jointly shuffle and deal the cards. By using MPC, the parties ensure that the deck

and the players’ individual hands remain secret. At the same time, each party might

choose to play its cards according to her own strategy, and so each party might carry

out different actions, perhaps by interacting with a user via I/O. Moreover, a party

might drop out of the computation altogether once eliminated from the game. As an-

other example, suppose that a very large number of parties wish to provide inputs to

a privacy-preserving computation. In such situations, it is pragmatic for the parties

to elect a small committee to carry out the computation on their behalf. Doing this

can greatly aid efficiency, since the performance of most MPC primitives degrades as

the number of parties grows.

To implement these kinds of applications, the programmer must carefully coordi-

nate the parties. Unfortunately, most existing MPC frameworks offer no coordination

features; non-synchrony is handled by ad hoc mechanisms, or not at all. Ad hoc

mechanisms can lead to programming mistakes, and these mistakes can result in (po-

tentially random) hangs or wrong answers. The one prior MPC language that does

provide coordination support, Wysteria [143], lacks expressiveness and ergonomics.

For example, individual parties may not delegate computations over their inputs to

other parties, and MPCs must be expressed in a rigid sublanguage that makes inter-

leaving encrypted and plaintext computation awkward and inefficient.

Problem: Lack of Obliviousness When programming in languages for secure

computation we often want to write programs that correspond closely to the programs

we would we write in a less exotic language (e.g. C or Java). Unfortunately, secure

computation requires that programs be expressible in a circuit model rather than

2



the more familiar RAM-model. A naive approach to solving this problem is simply

to declassify secret values and then use them as usual. Of course, this is not safe

as it can lead to side-channel vulnerabilities through observation of memory access

patterns [91, 114, 189] and instruction timing [37, 95] (as made famous by recent

Spectre and Meltdown attacks [97, 107, 171]).

One way to mitigate side-channel vulnerabilities is to store secret values in obliv-

ious RAM (ORAM) [170, 114]. First proposed by Goldreich [71] and Goldreich and

Ostrovsky [73], ORAM obfuscates the mapping between addresses and data, in effect

“encrypting” the addresses along with the data. Replacing RAM with ORAM solves

(much of) the security problem but incurs a substantial slowdown in practical situa-

tions [108, 111, 114] as reads/writes add overhead that is polylogarithmic in the size

of the memory.

Recent work has explored methods for reducing the cost of programming with

ORAM. Liu, Hicks, and Shi [108] and Liu et al. [111, 109] developed a family of type

systems to check when partial use of ORAM (alongside normal, encrypted RAM) re-

sults in no loss of security; i.e., only when the addresses of secret data could indirectly

reveal sensitive information must the data be stored in ORAM. This optimization can

provide order-of-magnitude asymptotic performance improvements. Wang et al. [174]

explored how to build oblivious data structures (ODSs), such as queues or stacks, that

are more efficient than their standard counterparts implemented on top of ORAM. In

follow-up work, Liu et al. [112] devised ObliVM, a programming language for imple-

menting such oblivious data structures, including ORAMs themselves. A key feature

of ObliVM is careful treatment of random values, which are at the heart of state-of-

the-art ORAM and ODS algorithms. While the goal of ObliVM is that well-typed

programs are secure, no formal argument to this effect is made.

3



Problem: Uncontrolled Information Release A secure computation guaran-

tees that execution will not leak any information about secret inputs beyond what is

released by the result. It is the responsibility of users to audit the program and ensure

that the result will not release “too much” information about their secret. Consider a

simple case in which two parties, A and B, have secret values, a and b respectively.

There are a number of scenarios in which A and B may want to perform secure

computation:

• A is allowed to query a sensor network, controlled by B, with sensitive features

such as the location of personnel in a building.

• A is allowed to query a database, controlled by B, which contains sensitive

information such as electronic health records.

• A and B are nations that want to determine if they have military units within

a particular range of each other without revealing their exact position.

In highly sensitive situations like these, A and B would like some assurance that the

function is not releasing more information than they expect. Unfortunately, existing

languages for secure computation do not allow the programmer to specify or enforce

bounds on the amount of information released by the result.

Controlled information release can be achieved by quantifying how much infor-

mation a function, f , releases about the secret input a (resp. b). Intuitively, A is

interested in how uncertain B is about a after observing f(a, b). The amount of infor-

mation released by f(a, b) can be measured as the change in B’s uncertainty about a.

For example, if f(a, b) = a mod 2b and B observes f(a, 1) = 0 then B’s uncertainty

is cut in half.

The intuition about uncertainty is formalized by modeling B’s uncertainty as a

probability distribution, δ, over the possible values of a [163, 44]. The informa-

tion release is quantified as the change in the Bayes Vulnerability of δ, which is the

4



probability that B can guess a in a single try: V (δ)
def
= maxa δ(a). In other words,

information release measures how much more likely B is to guess a in a single try after

observing f(a, b). Various works [115, 28, 78, 103] propose rejecting f if there exists

a result that causes the vulnerability to exceed a fixed threshold K. In particular, if

the vulnerability V (δ) exceeds K after observing f(a, b) for any possible value of a

then a should refuse to execute the program f .

Mardziel et al. [115] propose a sound analysis technique for automatically quanti-

fying information release according to vulnerability using abstract interpretation [47].

In particular, they approximate uncertainty, δ, using an abstract domain called prob-

abilistic polyhedron (PP), which pair standard numeric abstract domain, such as con-

vex polyhedra [48], with some additional ornaments, which include lower and upper

bounds on the size of the support of the distribution, and bounds on the probability

of each possible secret value. Using PP can yield a precise, yet safe, estimate of

the vulnerability. Unfortunately, PPs can be very inefficient. Defining intervals [46]

as the PP’s numeric domain can dramatically improve performance, but only with

an unacceptable loss of precision. Can we retain the precision afforded by convex

polyhedra while also enjoying the performance of intervals?

A promising approach to addressing the issues above is the use of techniques from

programming languages research, including type systems and dynamic analysis.

Thesis Statement Secure programming can be made safer through language-based

techniques for expressive, coordinated MPC; probabilistically oblivious execution; and

quantitative analysis of information flow.

5



1.1 A Language for Expressive, Coordinated Secure

Multiparty Computation

Our first contribution is the development of Symphony, an expressive MPC language

that provides appropriate tools for coordinating large numbers of parties. Sym-

phony, presented in Chapter 3, draws inspiration from prior work on coordinated

MPC languages [143] and on choreographic languages [50, 51, 137, 124]. This com-

bination can improve the flexibility and expressiveness of MPC languages without

sacrificing coordination and deadlock-freedom.

Symphony’s most interesting language features are:

• Scoped parallel expression blocks, or par blocks, allow the programmer to easily

control which parties execute which code. The programmer annotates a par

block with the (dynamically computed) set of parties who should enter the

block. The language ensures that parties executing within the block agree on

the logical values of local variables, so there is no risk of deadlocks or undefined

behavior. Crucially, Symphony retains a generalized SIMD character: We

prove that the developer can reason about and debug her program as if it runs

sequentially, even though in practice the program is executed in a distributed

deployment.

• First-class shares model multiparty-encrypted values in a way that allow the

programmer to freely delegate computation from one party set to another, and

to reactively mix MPC operations with cleartext operations.

These features have previously appeared, in part, in other MPC frameworks: Our par

blocks are inspired by Wysteria, and our first-class shares are inspired by the program-

ming style of EMP [176] and Obliv-C [181]. Symphony is the first MPC language to

carefully combine these features, and to generalize them, e.g., by allowing re-sharing

6



of already encrypted values among a different set of parties. This combination of

features is crucial for flexible coordination: by allowing the programmer to mix first-

class shares and par blocks, we ensure that she can write arbitrarily complex MPCs

where parties freely enter, leave, and shift the locus of cryptographic computations.

Contributions Our specific contributions are as follows.

• We motivate the need for Symphony, describe its key features using examples,

and compare it to the state of the art (Section 3.1, Section 3.7).

• We present a core formalism for Symphony, called λMPC—syntax (Section 3.2.1),

single-threaded semantics (Section 3.2.2), and distributed semantics (Section 3.3).

We prove that the single-threaded semantics faithfully represents the distributed

semantics, and thus can be used as the basis for reasoning about a Symphony

program’s behavior (Section 3.4).

• We describe our prototype implementation for Symphony, which leverages

EMP [176] and MOTION [36] as its cryptographic backends (Section 5.6).

• We discuss the 16 programs we have implemented in Symphony, showing that

it provides ergnomic and expressiveness advantages over Wysteria, its closest

competitor: Symphony programs tend to be shorter and more direct, and

support optimizations involving delegation and resharing that Wysteria cannot

(Section 3.6.1). We present a complete implementation of the LWZ secure

shuffling protocol [105], highly useful in a variety of scenarios [79, 60], that no

prior MPC language can express (Section 3.1.2).

• We show that despite its expressiveness, Symphony enjoys good performance.

On a set of kernel benchmarks running on a simulated LAN, we show that

Symphony takes a mean 1.15× the time taken by Obliv-C, a state-of-the-art

MPC implementation for C (Section 3.6.2).

7



Symphony is publicly available at https://github.com/plum-umd/symphony-lang.

1.2 A Language for Probabilistically Oblivious Com-

putation

Our second contribution is the development of λObliv, a core language for oblivious

computation, inspired by ObliVM. λObliv, presented in Chapter 4, extends a standard

language with primitives for securely generating and using uniformly distributed ran-

dom numbers. We prove that λObliv’s type system guarantees probabilistic memory

trace obliviousness (PMTO), i.e., that the distribution of adversary-visible execution

traces is independent of secret values. This property generalizes the deterministic

MTO property enforced by Liu, Hicks, and Shi [108] and Liu et al. [111], which did

not consider the use of randomness. In carrying out this work, we discovered that the

ObliVM type system is unsound, so an important contribution of λObliv is a design

which achieves soundness without overly restricting or complicating the language.

λObliv’s type system aims to ensure that no probabilistic correlation forms between

secrets and publicly revealed random choices. The language provides a mechanism for

transitioning secret random values to public ones—which we call a revelation—which

is not problematic so long as the revealed value does not communicate information

about a secret. λObliv ensures that revelations do not communicate information by

guaranteeing that all revealed values are uniformly distributed.

λObliv’s type system ensures that revelations are uniformly distributed by treating

randomly generated numbers as affine, meaning they cannot be freely copied. Affin-

ity prevents revealing the same number twice, which is problematic because a second

revelation is not uniformly distributed when conditioned on observing the first. Un-

fortunately, strict affinity is too strong for implementing oblivious algorithms, which

8

https://github.com/plum-umd/symphony-lang


require the ability to make copies of random numbers which are later revealed. λObliv’s

type system addresses this by allowing random numbers to be copied and then ensur-

ing that they can never be revealed. Moreover, λObliv ensures that random numbers

do not themselves influence whether or not they are revealed, as this could also result

in a non-uniform revelation. The type system prevents this behavior using a new

mechanism we call probability regions to track the probabilistic (in)dependence of

values in the program. (Probability regions are missing in ObliVM, and their absence

is the source of ObliVM’s unsoundness.) We prove that λObliv enjoys PMTO by re-

lating its semantics to a novel mixed semantics whose terms operate on distributions

directly, which makes stating and proving the PMTO property much easier.

λObliv is expressive enough to type check interesting algorithms. We present the

implementation of a tree-based, non-recursive ORAM (NORAM) that type checks

in a straightforward extension of λObliv; we have implemented a type checker for

this extension. NORAM is a key component of state-of-the-art ORAM implementa-

tions [160, 169, 175] and other oblivious data structures [174], and to our knowledge

ours is the first implementation automatically verified to be oblivious. We addition-

ally show that recursive ORAM, built on NORAM, is possible but requires a few

more advanced (but standard) language features we have not implemented, including

region polymorphism, recursive and variant types, and existential quantification.

Finally, we have also experimented with implementing oblivious data structures

using our NORAM implementation. We conclude by providing evidence that oblivi-

ous stacks (ostacks) don’t satisfy PMTO due to the possibility of information leakage

caused by overflow in the underlying NORAM. Instead, ostacks satisfy statistic secu-

rity as long as the underlying NORAM has a negligible probability of overflow with

respect to its size.

Contributions Our specific contributions are as follows.

9



• We motivate the need for λObliv, describe its key features using examples, and

show that ObliVM’s type system is not PMTO (Section 5.1).

• We present the formal syntax, semantics, and type system of λObliv (Section 5.2)

before proving that well-typed λObliv programs satisfy PMTO (Section 4.3).

• We describe our prototype typechecker for OblivML, an extension of λObliv

with standard features, and provide the first implementation of NORAM that

has been automatically verified as oblivious (Section 4.4).

• We show that oblivious stacks, a particular form of ODS [174], do not satisfy

PMTO due to the possibility of information leakage caused by overflow in the

underlying NORAM.

OblivML is publicly available at https://github.com/plum-umd/oblivml.

1.3 Refining Probabilistic Bounds on Information Leak-

age

Our third contribution is a new approach that ensures a better balance of precision

and performance for dynamic enforcement of knowledge-based security policies [115].

Our approach, presented in Chapter 5, augments PP with two new techniques which

can be used to improve their precision. Both techniques begin by analyzing a program,

f , using intervals as the underlying numeric abstract domain for the PP.

Our first technique is to use sampling to augment the result. We execute the

program using the possible secret values i sampled from the posterior δ′ derived from

a particular output oi. If the analysis were perfectly accurate, executing f(i) would

produce oi. But since intervals are overapproximate, sometimes it will not. With

many sampled outcomes, we can construct a Beta distribution to estimate the size of

10

https://github.com/plum-umd/oblivml


the support of the posterior, up to some level of confidence. We can use this estimate

to boost the lower bound of the abstraction, and thus improve the precision of the

estimated vulnerability.

Our second technique is of a similar flavor, but uses symbolic reasoning to mag-

nify the impact of a successful sample. We once again execute a sample which is

consistent with the posterior distribution but this time we do so concolically [157],

thus maintaining a symbolic formula (called the path condition) that characterizes

the set of variable valuations that would cause execution to follow the observed path.

We then count the number of possible solutions and use the count to boost the lower

bound of the support (with 100% confidence).

Finally, sampling and concolic execution can be combined for even greater preci-

sion.

Contributions Our specific contributions are as follows.

• We have formalized and proved our techniques are sound (Section 5.2, Sec-

tion 5.4, Section 5.5) with respect to the dynamic enforcement technique of

Mardziel et al. [115].

• We have implemented and evaluated our approaches (Section 5.6, Section 5.7),

using a privacy-sensitive ship planning scenario (Section 5.1). We find that

our techniques provide similar precision to convex polyhedra while providing

orders-of-magnitude better performance.

Our implementation is publicly available at https://github.com/GaloisInc/

TAMBA.

11

https://github.com/GaloisInc/TAMBA
https://github.com/GaloisInc/TAMBA


Chapter 2

Background

2.1 Secure Multiparty Computation

Secure Multiparty Computation (MPC) is a subfield of cryptography that allows mu-

tually untrusting parties to compute arbitrary functions of their private inputs while

revealing only the function output. That is, MPC allows parties to work together to

run programs under encryption.

For example, consider a scenario in which two parties, Alice and Bob, want to

compute who is richer without revealing their net worth to each other. They can use

an MPC protocol that implements the program a > b where a and b are Alice and

Bob’s wealth respectively. An MPC protocol allows Alice and Bob to compute a > b

and guarantees that they learn no more than if a trusted third party had performed

the comparison on their behalf. This scenario, originally posed by Yao [178], is known

as the Millionaire’s Problem.

The Millionaire’s Problem illustrates a helpful mental model for understanding

MPC. An MPC protocol can be understood as a cryptographic technique for simu-

lating a trusted third party when no such party is available.

12



2.1.1 Protocol Characterization

An MPC protocol can be characterized according to four criteria: number of sup-

ported parties, semantics, security model, and round complexity. Next, we discuss

these four criteria and summarize some representative MPC protocols accordingly.

Semantics The semantics of a protocol determines the sort of values that may

be encrypted and what operations are allowed on them. Typically, a distinction is

drawn between boolean (binary) and arithmetic protocols. Boolean protocols encrypt

booleans (bits), and permit XOR and AND operations. Arithmetic protocols encrypt

values according a finite algebraic ring or field and permit addition and multiplication

operations.

Security Model The security model of a protocol explicates assumptions about

the adversary. We assume that the adversary uses a static corruption strategy, mean-

ing that they must choose which parties they wish to corrupt before the protocol

begins executing. Next, we’ll discuss the adversary’s behavior, power, and corrup-

tion threshold. The adversary’s behavior can be either semi-honest (i.e. passive) or

malicious (i.e. active)1 A semi-honest adversary doesn’t deviate from the protocol,

so they can only learn secrets by observing values that are communicated to the par-

ties they have corrupted. In contrast, a malicious adversary may deviate from the

protocol arbitrarily.

The adversary’s power is either bounded or unbounded. A bounded adversary can

only invest polynomial time in κ2 into trying to learn secrets. An unbounded adver-

sary may invest an arbitrary amount of time. Almost all MPC protocols, especially

those which are efficient in practice, rely on computationally secure cryptographic

schemes (e.g. El-Gamal encryption [65]).
1We ignore covert adversaries, as they are less common.
2κ is a computational security parameter defined by the MPC protocol.

13



Table 2.1: Representative MPC protocols and their properties. Categorizes proto-
cols according to the number of supported parties, semantics, security model (S,M for
semi-honest and malicious, B,U for bounded and unbounded, D,H for dishonest and
honest majorities) and round complexity.

Protocol Parties Semantics Security Rounds
Yao [179] 2 B S,B,D Constant
GMW [72] N R S,B,D Depth
BGW [27] N F S,U,H Depth
BMR [24] N B S,B,D Constant
BaMaRo [13] 2 Zm S,B,D Constant
TinyOT [131] 2 B M,B,D Depth
WRK [177] 2 B M,B,D Constant
SPDZ [52] N F M,B,D Depth

Finally, the adversary’s corruption threshold bounds the number of parties they

may corrupt. In an honest majority protocol, the adversary cannot corrupt more than

N
2
− 1 out of N parties. In a dishonest majority protocol, the adversary can corrupt

N − 1 out of N parties. Honest majority protocols are generally more efficient than

dishonest majority protocols, and are required to achieve security against unbounded

adversaries [27].

Round Complexity The round complexity of a protocol describes how many

rounds of bidirectional communication it must perform to execute a circuit, C, in

terms of its multiplicative depth |C|.3 Only the multiplicative depth is considered

because most modern protocols are able to execute addition gates without any com-

munication [98, 72]. Protocols have constant round complexity when the number of

communication rounds is independent of |C|. Protocols have depth round complexity

when the number of communication rounds is proportional to |C|.

Table 2.1 provides a summary of some representative MPC protocols and their

properties. For a more comprehensive overview of MPC, see Lindell [106].
3This footnote is an explicit acknowledgement that I am abusing notation.

14



2.1.2 Protocol Descriptions

The two main approaches to MPC protocols are garbled circuits [179, 24], and secret

sharing [72, 27]. We describe each of these approaches shortly and discuss some of

their advantages and disadvantages. Before we can do so, we must shine a light on a

core cryptographic primitive used in almost every MPC protocol.

Oblivious Transfer Behind every great MPC protocol there is a great crypto-

graphic primitive called Oblivious Transfer [138] (OT). A
(

2
1

)
4 OT [59] enables a

party A (the “sender”) to send 1 out of 2 possible messages to B (the “receiver”) with-

out A learning which message they chose. Unfortunately, Impagliazzo and Rudich

[89] proved that OT requires public-key cryptography. This is concerning because

public-key encryption is much more expensive than public key encryption. Luckily,

Beaver [26] showed that a small number of so-called “base” OTs can be extended into

many more OTs using only private key encryption. The first efficienct construction

of OT extension was given by Ishai et al. [90]. Modern MPC protocols typically do

not use
(

2
1

)
OT directly, instead relying on variations such as Random and Corre-

lated OT [59]. Some modern MPC protocols, such as SPDZ [52], rely instead on

Fully Homomorphic Encryption [67] (FHE). We will not remark much on FHE, ex-

cept to say that it is cheap in terms of communication but very expensive in terms

of computation.

Garbled Circuits The garbled circuits approach to MPC, originally due to Yao

[179], enables two parties, A (the “garbler”) and B (the “evaluator”), to compute a

boolean circuit C. The garbling approach works by having A encrypt the circuit C

and send it to B who will then evaluate it.

A encrypts the wires by generating two κ-bit (a typical value is κ = 128) labels,

logically representing 0 and 1. A encrypts the gates by representing them as truth
4Another blatant abuse of notation, someone stop this mad man!

15



tables, replacing the values of the truth table with the corresponding labels (deter-

mined by the input wires), and encrypting the output label in each row using the

input labels in that row as the key. After encrypting the truth table, she must also

“garble” the gate by randomly permuting the rows.

A sends both the encrypted circuit and the labels for her input wires over to B.

At this point, all B needs to evaluate the circuit are the labels corresponding to his

inputs. A sends the appropriate labels to B using
(

2
1

)
OT. The OT ensures that

A does not observe which label is chosen by B. At this point, B can evaluate the

circuit. He evaluates a gate by decrypting each of the four rows using the labels on the

input wires as the key, determining the label of the output wire according to which

decryption succeeds. After B is done evaluating, the result can be revealed to A, B,

or both. The result is revealed to A by having B send her the labels of the output

wires. The result is revealed to B by having A send him the mapping between logical

values and output labels.

Yao’s protocol has constant round complexity because it only uses OT to handle

B’s input to the protocol. The Free-XOR optimization [98] allows XOR gates to be

computed without any symmetric key encryption. Furthermore, A no longer needs

to encrypt or send XOR gates to B. The Point-And-Permute [24] optimization allows

B to decrypt the correct row on the first try. This reduces the number of symmetric

key decryptions that B must execute for each gate from 4 to 1. The Half-Gate [182]

optimization reduces the number of rows in an encrypted AND gate from 4 to 2,

reducing the communication cost of sending the encrypted circuit. The BMR [24]

protocol generalizes the 2-party protocol to N parties by simulating the garbler using

an N party MPC protocol (e.g. based on secret sharing). The protocol retains

constant round complexity by garbling the gates in parallel.

16



Secret Sharing The additive secret sharing approach to MPC, originally due

to Goldreich, Micali, and Wigderson [72], is analogous to Yao’s protocol in that

it enables two parties, A and B, to compute a boolean circuit C. The secret sharing

approach works by having A and B exchange secret shares of their input and then

execute the circuit C on their shares in parallel.

A splits her input a into two secret shares σ and σ⊕a, where σ is a uniform random

bit. B does the same for his input b. We denote A’s share of a (b) as [a]A ([b]A) and

B’s share of a (b) as [a]B ([b]B). The shares are secret because neither σ nor σ ⊕ a

reveal any information about a to B. The shares are shares because the original value

can be reconstructed by XOR’ing the shares together: [a]A ⊕ [a]B = σ⊕ (σ⊕ a) = a.

To compute C, A and B homomorphically compute XOR and AND operations

over their shares. Computing XOR gates turns out to be easy. Each party computes

their share of the XOR simply by taking the XOR of their shares.

a⊕ b = ([a]A ⊕ [a]B)⊕ ([b]A ⊕ [b]B)

= ([a]A ⊕ [b]A)⊕ ([a]B ⊕ [b]B)

Unfortunately, AND gates cannot be computed locally because there are cross-terms

[a]A ∧ [b]B and [a]B ∧ [b]A involving shares of both parties.

a ∧ b = ([a]A ⊕ [a]B) ∧ ([b]A ⊕ [b]B)

= [a]A ∧ [b]A ⊕ [a]A ∧ [b]B ⊕ [a]B ∧ [b]A ⊕ [a]B ∧ [b]B

So, to compute an AND gate, A chooses a random bit σ and uses it as her share of

a∧b: [a∧b]A = σ. Then, A sends B his share using
(

4
1

)
OT with B choosing the share

corresponding to his values of [a]B and [b]B: [a∧ b]B = σ⊕ ([a]A⊕ [a]B)∧ ([b]A⊕ [b]B).

GMW has depth round complexity because each AND gate requires OT. The

complexity scales with the depth of the circuit, rather than the size, because all the

17



AND gates at the same depth of the circuit can be executed in parallel. The GMW

protocol can be generalized naturally to N parties without issue. Furthermore, the

GMW approach can also be generalized to arithmetic circuits by using precomputed

multiplication triples [25] to implement AND gates instead of OT. Instead of addi-

tative secret shares, th BGW [27] protocol uses threshold secret shares [158] in the

honest majority setting.

2.2 Information Flow

Having discussed how to allow secret data to be computed over securely, it seems only

natural that we now discuss how to prevent it from being computed over insecurely.

Information flow control (IFC) systems provide provably correct, automatic en-

forcement of security properties. Intuitively, IFC applies concepts from the literature

on access control to data manipulated by a program. For example, IFC has been used

to ensure that web applications which store sensitive information in an SQL database

don’t accidentally leak that information publicly [134, 168].

In this dissertation we advocate for language-based approaches to IFC, such as

type systems are static analyses. Language-based approaches are necessary because

the security of a program is intimately tied to its semantics. For example, the following

Rust function yields 0 if boolean disjunction is evaluated left to right and short-

circuited but yields x otherwise.

fn f (x: u32) -> u32 {

let mut ret = 0;

let _ = true || { ret = x; false };

ret

}

18



IFC Characterization An IFC system typically guarantees confidentiality, in-

tegrity, or both. A confidentiality property prevents sensitive information from being

read, and an integrity property prevents it from being written (i.e. modified). In

this dissertation, we only consider confidentiality properties.5 Likewise, IFC systems

can be characterized as either dynamic or static. A dynamic IFC system enforces the

security property by monitoring a program as it executes. In contrast, a static IFC

system enforces the security property by analyzing the program prior to execution.

In this dissertation, we only consider static IFC systems like type systems and static

analyses.

Information Flow Lattices Denning [55] observed that the security requirements

of a system can be specified according a lattice structure. The elements of the lattice

are security labels which specify the sensitivity level of data. For example, a simple

set of labels are public (P ) and secret (S). The partial order over these elements

specifies how data is allowed to flow through the program. For example, the ordering

P @ S indicates that public data may flow into a secret context, but not vice versa.

Finally, the join operation is required to compute the labels of data which is derived

from data which is already labeled. For example, the result of x+y where x is labeled

P and y is labeled S can be computed as P t S = S. We will often describe things

in terms of public and secret labels, leaving implicit the understanding that we may

substitute an arbitrary security lattice without issue.

Noninterference Goguen and Meseguer [70] proposed noninterference as a gen-

eral, rigorous way to define security properties. The definition presupposes that we

have some way of labeling data, with modern presentations using security lattices as

described above. Intuitively, a program satisfies noninterference if changing secret
5As observed by Biba [29], however, there is a duality between confidentiality and integrity which

can often be fruitfully exploited [45].

19



inputs has no observable effect on public outputs. With information flow lattices

and noninterference we are able to precisely and rigorously specify what it means for

a program to be secure. However, we have not yet considered any ways in which

noninterference might be enforced. Next, we consider an enforcement mechanism for

IFC based on static type systems.

Security-Typed Languages Building on the work of Denning [55] and Goguen

and Meseguer [70], Volpano, Irvine, and Smith [172] present a static type system

which provably ensures that programs satisfy noninterference. A language of this

kind is typically called a security-typed language, by virtue of the fact that well-typed

programs provably enjoy security (as defined by noninterference). There has been a

tremendous amount of work since on the metatheory [81, 1, 34] and application [128]

of security-typed languages. An important limitation of these approaches is that they

define noninterference only in terms of the extensional (i.e. input-output) behavior

of the program.

Oblivious Languages When performing IFC on programs that implement cryp-

tography, it is particularly important to consider the intensional (e.g. timing, mem-

ory traces) behaviors of the program. In the context of security, intensional behaviors

of a program are known as side-channels and are indirectly observable in practice.

For example, attacks have been demonstrated through observation of memory access

patterns [91, 114, 189] and instruction timing [37, 95] (as made famous by recent

Spectre and Meltdown attacks [97, 107, 171]). The feasibility of these attacks sug-

gests that applying IFC to cryptography requires a maximally intensional variant of

noninterference, called obliviousness. A program is oblivious [108] if changing the

secret inputs has no observable effect on the execution trace. Put another way, a pro-

gram is oblivious if it is noninterfering when the intensional aspects of a program are

considered observable. Recent work has demonstrated that security-typed languages

20



can be extended to enforce obliviousness [108, 110, 111].

Declassification and Quantitative Information Flow Noninterference is often

not precise enough to define the security of programs in the wild. Noninterference is

an example of a security policy that is qualitative because it only allows us to specify

where information is allowed to flow. In contrast, a quantitative policy is one that

allows us to specify not just where information may flow, but how much. To see why

this might be useful, consider the following two Rust functions where the input x is

considered secret and the output is considered public.

fn id (x: u32) -> u32 { x }

fn eq73 (x: u32) -> bool { x == 73 }

A qualitative security policy will disallow both id and eq73, since both propagate

information about x to the output. However, a quantitative security policy could

choose to allow eq73 but disallow id based on the observation that information

leaked by eq73 is small.

Clarkson, Myers, and Schneider [44] advocates defining quantative information

flow according to how an attacker’s belief changes as a result of observing the execu-

tion of a program. The attacker’s belief is a probability distribution over the possible

values of the secret. The probability assigned to a value corresponds to its likeli-

hood from the attacker’s perspective. The belief is updated, according to Bayesian

inference, whenever they observe the execution of the program on some input. The

information leakage is defined as the change in entropy of the attacker’s belief.

Mardziel et al. [115] provide an enforcement mechanism for quantified information

flow, according to the approach described by Clarkson, Myers, and Schneider [44].

They use abstract interpretation [47], a form of static analysis, to compute a sound

approximation of the attacker’s belief. This is used to bound the informaton leakage

by measuring the maximum change in entropy over all possible inputs. The result of

21



this analysis is used dynamically to determine whether or not to execute the program,

according to a specified bound on information leakage. If the program is executed,

the approximation of the attacker’s belief is revised according to the actual input they

provide.

22



Chapter 3

λMPC: A Language for Expressive,

Coordinated Secure Multiparty

Computation

This chapter presents Symphony, an expressive MPC language that provides appro-

priate tools for coordinating large numbers of parties. The most interesting language

features of Symphony are scoped parallel expressions, or par blocks, and first-class

shares. Scoped parallel expressions allow the programmer to easily control which

parties execute which code. First-class shares model multiparty-encrypted values in

a way that allow the programmer to freely delegate computation from one party set

to another, and to reactively mix MPC operations with cleartext operations.

Importantly, in the style of choreographic programming languages [50, 51, 137,

124], Symphony ensures that programs are deadlock-free by construction. This is

what allows Symphony to retains a generalized SIMD character, even though in

practice the program is executed using a distributed deployment. To prove that

Symphony programs are deadlock-free, we relate a sequential semantics that cannot

encounter deadlock with a distributed semantics that can. We prove a soundness

23



theorem that ensures that programs which do not encounter errors when executed

sequentially will not encounter errors when deployed according to the distributed

semantics.

In Section 3.1 we discuss the advantages of Symphony over existing MPC lan-

guages, and introduce Symphony by showing an implementation of an MPC proto-

col from the literature. Then, in Section 3.2 we formalize the syntax and semantics

of λMPC which is a minimal core language that captures the essential features of

Symphony. We then present the distributed semantics λMPC in Section 3.3 before

stating and proving sequential soundness theorem in Section 3.3. In Section 5.6 we

describe our implementation of Symphony before evaluating its expressiveness and

performance in Section 3.6.

3.1 Overview

Most MPC frameworks express secure computation via an extension to a familiar

programming language [176, 5, 63, 181, 125, 155]. The frameworks leverage standard

language features such as numeric types, loops, and arrays, but distinguish conceptu-

ally encrypted values, which are part of the MPC and not visible to the participating

parties, from cleartext ones. For example, here is “millionaires” in Obliv-C [181], in

which two parties, A and B, which to learn which is richer without revealing their

total wealth:

1 void millionaire(void* args) {

2 protocolIO* io = args;

3 obliv int v1 = feedOblivInt(io->mywealth, A);

4 obliv int v2 = feedOblivInt(io->mywealth, B);

5 obliv bool ge = v1 >= v2;

6 revealOblivBool(&io->cmp, ge, 0);

7 }

24



Both parties run this program, SIMD-style. Variables v1 and v2 are encrypted,

as per the obliv keyword. Function feedOblivInt sets the initial values of these

variables. On party A, line 3 encrypts the input stored in A’s copy of io->mywealth,

while line 4 does likewise for B. Internally, the function will send its encrypted input

to the other party, which synchronously recvs it; i.e., line 3 sends from A to B and

line 4 from B to A. Line 5 computes on these encrypted values (at both parties), with

the result itself being encrypted. Finally, revealOblivBool coordinates among the

two parties to decrypt the result; it is stored in each party’s &io->cmp.

Under the hood, Obliv-C uses garbled circuits [179] to carry out these operations;

other frameworks use secret shares [72, 27] or homomorphic encryption [67]. Regard-

less, most provide a similar SIMD-style programming model, either as library calls

within an existing language (EMP [176], MPyC [155], MOTION [36]), or as a direct

extension of that language (PICCO [188], ObliVM [112], and SCALE-MAMBA [5]).

Sharemind [142] has developed its own C-like language, SecreC, which compiled to

Sharemind assembly. Other works, such as CBMC-GC [63] and Frigate [125], compile

subsets of C into circuits.

3.1.1 Problem: Coordination

Suppose we wish to write a program in which not all parties do the same thing. In

Obliv-C you could write the following to execute <code> only at party X

if (ocCurrentParty()== X){ <code> }

Other Obliv-C constructs also take party identifiers, e.g., readInt reads from local

storage on the identified party. Using such constructs requires care. Suppose A wishes

to share the encrypted result of computing f on its input a. The following code to do

so contains a bug:

1 int a;

25



2 readInt(&a, "input.txt", A);

3 obliv int share;

4 if (ocCurrentParty() == A) {

5 share = feedOblivInt(f(a), A);

6 }

7 ... // proceed with secure computation on f(a)

Due to the conditional on line 4, the share on line 5 will trigger a send on A but

no corresponding recv on B, causing A to block forever awaiting B’s response. We

fix the issue by dropping the conditional on line 4, so feedOblivInt is called at both

parties.

1 int a;

2 readInt(&a, ..., A);

3 obliv int share = feedOblivInt(f(a), A);

The code no longer hangs on A, but now there is another problem: undefined behavior.

The call to readInt on line 2 initializes a on A but not on B. The call to f(a) causes

both A and B to read the value contained in a, causing undefined behavior on B. Our

final solution is to provide a dummy value for a when executing on B.1

1 int a;

2 readInt(&a, ..., A);

3 int fa = ocCurrentParty() == A ? f(a) : 0;

4 obliv int share = feedOblivInt(fa, A);

There is still a risk: f must not perform any communication among parties, otherwise

we will experience another coordination error like the one in the first example.

Experienced MPC programmers may be able to avoid such pitfalls assuming co-

ordination requirements do not get too complex. Unfortunately, complexity is more

likely when writing MPCs for N > 2 parties. In general, we might have dozens or
1We could have instead ensured that a is initialized to a dummy value on B. This works, but

when dealing with compound types (e.g. an array of integers) this requires allocating memory on B
for all of A’s input and initializing the memory with dummy values.

26



more parties, with interactions between overlapping sets of parties. Each party’s role

may shift over time, possibly dependent on prior computations. These complexi-

ties are perhaps the reason that, with the exception of Wysteria [143, 144], N -party

languages like PICCO [188], Frigate [125], and SCALE-MAMBA [5] do not provide

coordination mechanisms. Wysteria still suffers serious limitations, which we consider

in detail in Section 3.6.

3.1.2 Symphony: Expressive, Coordinated MPC

Symphony is a new MPC programming language that supports coordinated MPC

for N ≥ 2 parties by generalizing the standard SIMD-style view. It is a dynami-

cally typed functional programming language with support for integers, pairs, variant

(sum) types, lists, let-binding, pattern matching, (recursive) higher-order functions,

and (mutable) references and arrays.

We illustrate Symphony by showing how to use it to implement an efficient Secure

Shuffle protocol: Each party in a set P provides an array of inputs, and the protocol

concatenates and shuffles them in encrypted form so that the parties do not know

the origin of each element. The shuffled inputs can then be sorted efficiently because

knowing the result of comparisons between shuffled elements tells nothing about the

original inputs. Sorting is useful for follow-on algorithms, such as binary search.

LWZ Laur, Willemson, and Zhang [105] showed how to implement a highly efficient

secure shuffle among parties Q which is resilient to T corruptions using a linear secret.

The LWZ protocol implements a secure shuffle by repeatedly shuffling the elements

among committees (i.e., strict subsets of the parties) of size |Q| − T . The committee

is given shares of the input list and agrees on a random permutation, π; locally

permutes their shares according to π; and then constructs new shares for the next

committee. This process repeats until each set of T parties has been excluded from

27



1 party A B C D E

2

3 -- read input at p, secret-share to all in Q

4 def readShare Q p = par ({ p } \/ Q)

5 let i = par { p } read (array int) from "lwz.txt" in -- file local to each p

6 share [gmw, array int : { p } -> Q] i

7

8 def delegateShares P Q =

9 map (readShare Q) (psetToList P)

10

11 def shuffleWith Q S sharesQ = par (Q \/ S)

12 let sharesS = share [gmw, array int : Q -> S] sharesQ in

13 share [gmw, array int : S -> Q] (shuffle S sharesS)

14

15 def lwz Q sharesQ =

16 let t = 1 in

17 foldr (shuffleWith Q) shares (subsets Q ((psetSize Q) - t))

18

19 def revealLte Q x y = reveal [gmw, bool : Q -> Q] x <= y

20

21 def secureSort Q sharesList =

22 let sharesQ = par Q (arrayConcat sharesP) in

23 let shuffled = lwz Q sharesQ in

24 let sorted = quickSort (revealLte Q) shuffled

25

26 def main () = par {A,B,C,D,E}

27 let Q = {A,B,C} in

28 let sharesList = delegateShares {A,B,C,D,E} Q in

29 let sorted = secureSort Q sharesList in

30 ...

Figure 3.1: A secure, N -party sorting procedure written in Symphony. Uses the
Shuffle-Then-Sort paradigm [79] with LWZ as the underlying shuffle. Each party in
{A,B,C,D,E} contributes an array of integers, which are concatenated together and
then securely shuffled and sorted by the parties in Q.

some committee, which is sufficient to hide the global shuffle. Figure 3.1 lists LWZ in

Symphony. To the best of our knowledge, no other MPC language can express this

protocol, due to its coordination challenges. We explain Symphony’s features as we

explain its LWZ implementation.

As is standard, all parties run the same program, starting at main. While the

shuffling and sorting code works for arbitrary numbers of parties, main is specialized

to those parties declared at the top, named A–E.

28



Par blocks Symphony uses par blocks to permit some, but not all, parties to

execute a part of the program. For example, when par {A,B,C,D,E} ... is reached on

line 26, only the listed parties execute the subsequent code block. Parties not in the

given set skip the block, returning an opaque value F which will cause an error if

computed upon (since no real value is available at that party).

Located data As Symphony programs are fundamentally distributed, data is

located at particular parties’ hosts. An important invariant is that the same logical

variable will be bound to the same logical value on each executing party within a

par. As a result, those parties are naturally coordinated when operating on that

data, avoiding errors that can arise when coordination is more ad hoc, e.g., using

conditional execution based on party ID. Symphony provides an abstraction called

a bundle to allow different parties to use the same variable to hold different values;

these can be viewed as maps from party ID to value. We don’t use these in LWZ.

First-class party sets Party sets like {A,B,C,D,E} are run-time values in Sym-

phony, not static annotations. On line 27, Q is bound to the set {A,B,C} and is

then passed as the second argument to delegateShares on line 28, and as the first to

secureSort on line 29, which in turn provides it to par on line 22. First-class party

sets allow protocols to be generic in the number of parties, and the located-data

invariant allows the choice of parties to be reliably coordinated at run-time.

First-class Shares and Delegation Encrypted values in Symphony are called

shares, which we can think of as secret shares among a particular set of parties.

(Symphony implements both GMW and Yao back ends.) We use share[φ, τ : P →

Q] v to take value v now at P and secret-share it among parties Q, where φ is the

MPC protocol (e.g., gmw) and τ is the type of the share’s contents. Oftentimes P is

a single party and Q is a set. For example, in readShare Q p, party p reads an array

29



of integers from local file lwz.txt (line 5), and then creates a share among parties

in Q (in Symphony a share of an array is an array of shares). The share operation

requires all parties in {p}∪Q to be present (ensured by the par on line 4) so that p can

transmit to each party in Q its share and know they are ready to receive it—note that

p may or may not be a member of Q. The delegateShares function calls readShare Q

for each party p ∈ P, with the goal of delegating the subsequent computation to those

parties in Q.

Re-sharing Calling share on an existing share will reshare it. This is what happens

on lines 12–13: shares among parties Q are reshared to be among parties S, and then

reshared back to Q once shuffled by S (more below). Language support for resharing

is unique to Symphony, and it is critical for implementing LWZ, which we can now

explain. The lwz function securely shuffles sharesQ, which are shares among parties

Q. The foldr on line 17 invokes shuffleWith on each size |Q| − T subset S of Q

(computed by subsets). In turn, this function reshares sharesQ among those parties

in S, which invoke shuffle to permute its values, and then reshare the result back.

Within shuffle, the parties S agree on a seed for a PRNG that they use as the basis

for the shuffle, ensuring they compute the same permutation. Laur, Willemson, and

Zhang proved that if each subset S has size |P | − T , then nothing can be learned

about the order of the shuffled elements unless n > T parties collude. In Figure 3.1,

we specify T = 1 on line 16.

Revelation and Reactive MPC Once line 23 completes, shuffled contains a

shuffled, secret-shared array. Line 24 then quicksorts this array, using revealLte Q

as the comparison function. This function uses Symphony’s reveal construct—while

share converts its argument at P to shares at Q, reveal does the reverse, converting

shares at P to plaintext at Q. Here, reveal is used to perform reactive MPC : each

comparison is revealed to plaintext, allowing the bulk of the sorting function to occur

30



locally, at each party. This makes sorting much faster than performing it “within” an

MPC, as computations on shares directly, but no less secure because we shuffled the

elements first. Once sorted, we could perform other operations on the array, e.g., a

binary search, with similar privacy benefits.

3.2 λMPC: Syntax and Semantics

λMPC is a minimal core language which captures the essential features of Symphony.

This section presents its syntax and single-threaded (ST) semantics.

3.2.1 Syntax

The syntax of λMPC is shown in Fig. 3.2. To simplify the formal semantics, the

syntax adheres to a kind of administrative normal form (ANF), meaning that most

expression forms operate directly on variables x, rather than subexpressions e, as is

the case in the actual implementation.2 We isolate atomic expressions a as a sub-

category of full expressions e; the former evaluate to a final result in one “small”

step.

Most of the syntactic forms are standard. Binary operations apply either to inte-

gers or shares (e.g., +, ×) or to party sets (e.g., ∪). Conditionals x ? x�x correspond

to multiplexor expressions, i.e., mux if in Symphony. Pairs are accessed via projec-

tion (e.g., π1 〈1, 2〉 evaluates to 1), while sums (aka variants or tagged unions) are

accessed via pattern matching (e.g., case ι1 0 {y. e1} {y. e2} evaluates to e1 wherein

y is substituted with 0).3 Party sets are also accessed via case and processed like

lists—the first branch handles the ∅ case, while the second binds two variables, one

for a selected party and the other for the rest of the set. Recursive functions are
2This restriction does not harm expressiveness. Direct-style syntax like ref (1 + read) can be

encoded in λMPC’s formal syntax like let x = read in let y = 1 in let z = y + x in ref z.
3We can encode if x then e1 else e2 as let z = 0 in let y = x ? ι1 z �

ι2 z in case y {_. e1} {_. e2}. TODO: fix spacing

31



i ∈ Z integers
A,B,C ∈ party parties
m, p, q ∈ pset , ℘(party) sets of parties
x, y, z ∈ var variables
� ∈ bop binary ops (+, ×, ∪, ...)
a ∈ atom ::= x variable reference

| i integer literal
| p party set literal
| x� x binary operation
| x ? x � x conditional
| ιi x sum injection
| 〈x, x〉 pair creation
| πi x pair projection
| λzx. e (rec.) function def
| ref x reference creation
| !x dereference
| x := x reference assignment
| read read int input
| write x write output
| share[x→ x] x share encrypted val.
| reveal[x→ x] x reveal encrypted val.

e ∈ expr ::= a atomic expression
| case x {x̄.e}{x̄.e} elim for sums, psets
| x x function call
| par x e parallel execution
| let x = e in e let binding

Figure 3.2: λMPC formal syntax.

32



` ∈ loc memory locations
ψ ∈ prot ::= · cleartext

| enc#m encrypted
γ ∈ env , var⇀ value value environment
δ ∈ store , loc⇀ value value store
u ∈ loc-value ::= iψ integer/share value

| p party set value
| ιi v tagged union injection
| 〈v, v〉 pairs
| 〈λzx. e, γ〉 closures
| `#m reference

v ∈ value ::= u@m located value
| F opaque value

$m ∈ loc-value→ loc-value ; value→ value ; env→ env

iψ$m , iψ

p$m , p
(ιi v)$m , ιi (v$m)

〈v1, v2〉$m , 〈v1$m, v2$m〉
〈λzx. e, γ〉$m , 〈λzx. e, γ$m〉

`#p$m , `#p

(u@p)$m ,
{
u$m@(p ∩m) if p ∩m 6= ∅
F if p ∩m = ∅

F$m , F
γ$m , γ(x)$m

Figure 3.3: λMPC definitions and metafunctions used in formal semantics.

written λzx. e; the function body e may refer to itself via variable z. λMPC also has

mutable references, and primitives for I/O. λMPC does not model lists or bundles

because they are easily encoded; we explain how when discussing the semantics. The

MPC-related constructs par, share, and reveal match their Symphony counter-

parts; the latter two elide the output type and protocol annotation (which are useful

for an implementation but unnecessary for formal modeling). Symphony’s imple-

mentation generalizes other aspects of λMPC, too, as discussed in Section 5.6; e.g., it

permits sharing values of any type, and doing case analysis on encrypted sums.

33



3.2.2 Overview

The ST semantics for λMPC models all participating parties as if they were executing

in lockstep. We prove that the ST semantics faithfully models the distributed (DS)

semantics presented in Section 3.3, according to which parties may act independently.

Thus, the ST semantics can serve as the basis of λMPC formal reasoning, e.g., about

correctness and security.

The main judgment ς −→ ς is a reduction relation between configurations ς. A

configuration is a 5-tuple comprising the current mode m, environment γ, store δ,

stack κ, and expression e. The mode is the set of parties computing e in parallel; we

say the parties A ∈ m are present for a computation. Per Figure 3.3, environments

are partial maps from variables to values, and stores are partial maps from memory

locations to values; we discuss stacks shortly. The main judgment employs judgment

γ `m δ, a ↪→ δ, v, which defines the reduction of atomic expressions a to values v. The

rules for both judgments are given in Figure 3.4.

3.2.3 Values

Values v have one of two forms: u@m indicates that the located value u is only

accessible to A ∈ m, e.g., because it was the result of evaluating e in mode m;

whereas F is the opaque value which is both unknown and inaccessible. Located

values are defined in Figure 3.3, including for numbers iψ, sets of parties p, sums ιi v,

pairs 〈v, v〉, recursive functions 〈λzx. e, γ〉 which include a closure environment γ, and

memory locations (i.e., pointers) `#p. These are standard except for annotations ψ

and #p.

The annotation #p to indicate the parties p that are co-creators of the referenced

memory, whereas ψ indicates the protocol of the annotated integer: · represents a

cleartext value,4 whereas enc#p represents an encrypted value shared among parties
4We write just i when the annotation ψ is ·.

34



B ∈ p (a “share”). Thus, a value 1enc#q@q can be read as “an integer 1, encrypted (i.e.,

secret shared) between parties q, and accessible to parties q.” The first q represents

among whom is this value shared (determined when the share is created), and the

second q represents who has access to this value (determined by the enclosing par

blocks). Location annotations are only used in the ST semantics in order to simulate

the presence of multiple parties; they are unused in the distributed semantics and

final execution. On the other hand, the enc#q and #p annotations are used during

distributed execution to detect buggy programs which fail to coordinate properly,

e.g., if A alone attempts to do arithmetic on a share owned by both A and B, or if

only A attempts to write to a reference it co-created with B.

3.2.4 Operational Semantics

Now we consider some of the operational rules.

Literals, Variables, and Binding Rule ST-Var retrieves a variable’s value from

the environment and (re)locates it to the current mode m via γ(x)$m. The function

$m is given in Figure 3.3. For values u@p, $m relocates them to p ∩m, unless the

intersection is empty in which case the value is inaccessible, so it becomes F. Relo-

cating is a deep operation; u@p$m also relocates the contents u to u$m, which recurses

over the sub-terms of u. Relocation ensures that the retrieved value is compatible with

m. A value v is compatible with a set of parties m when it is accessible to some set

of parties p ⊆ m. Compatibility with the current mode is a general invariant of all

of the rules. Rule ST-Lit types integer and principal literals, annotating them with

(compatible) location m.

Local variable bindings with let are managed using a stack κ, which is either the

empty stack > or a list of frames 〈let x = � in e | m, γ〉 :: κ. To evaluate let x =

e1 in e2, we push frame 〈let x = � in e2 | m, γ〉 and set the active expression to

35



κ ∈ stack ::= > | 〈let x = � in e | m, γ〉 :: κ ς ∈ config ::= m, γ, δ, κ, e

γ `m δ, a ↪→ δ, v

ST-Var

γ `m δ, x ↪→ δ, γ(x)$m

ST-Lit

γ `m δ, i ↪→ δ, i@m
γ `m δ, p ↪→ δ, p@m

ST-Int-Binop
iψ1 @m = γ(x1)$m
iψ2 @m = γ(x2)$m `m ψ

γ `m δ, x1 � x2 ↪→ δ, J�K(i1, i2)ψ@m

ST-PSet-Binop
p1@m = γ(x1)$m
p2@m = γ(x2)$m

γ `m δ, x1 ∪ x2 ↪→ δ, (p1 ∪ p2)@m

ST-Mux
iψ1 @m = γ(x1)$m
iψ2 @m = γ(x2)$m
iψ3 @m = γ(x3)$m `m ψ

γ `m δ, x1 ? x2 � x3 ↪→ δ, cond(i1, i2, i3)ψ@m

ST-Pair
v1 = γ(x1)$m
v2 = γ(x2)$m

γ `m δ, 〈x1, x2〉 ↪→ δ, 〈v1, v2〉@m

ST-Proj
〈v1, v2〉@m = γ(x)$m
γ `m δ, πi x ↪→ δ, vi

ST-Inj
v = γ(x)$m

γ `m δ, ιi x ↪→ δ, (ιi v)@m

ST-Fun

γ `m δ, λzx. e ↪→ δ, 〈λzx. e, γ〉@m

ST-Ref
v = γ(x)$m

γ `m δ, ref x ↪→ {` 7→ v} ] δ, `#m@m

ST-Deref
`#q@m = γ(x)$m

γ `m δ, !x ↪→ δ, δ(`)$m

ST-Assign
`#m@m = γ(x1)$m

v = γ(x2)$m
γ `m δ, x1 := x2 ↪→ δ[` 7→ v], v

ST-Read
|m| = 1

γ `m δ, read ↪→ δ, i@m

ST-Write
i@m = γ(x)$m |m| = 1

γ `m δ, write x ↪→ δ, 0@m

ST-Share
p@m = γ(x1)$m
q@m = γ(x2)$m
iψ@p = γ(x3)$p

`p ψ
q 6= ∅
m = p ∪ q

γ `m δ, share[x1 → x2] x3 ↪→ δ, ienc#q@q

ST-Reveal
p@m = γ(x1)$m
q@m = γ(x2)$m

ienc#p@p = γ(x3)$p
q 6= ∅
m = p ∪ q

γ `m δ, reveal[x1 → x2] x3 ↪→ δ, i@q

ς −→ ςST-Case-Inj
(ιi v)@m = γ(x1)$m

m, γ, δ, κ, case x1 {x2.e1}{x2.e2} −→ m, {x2 7→ v} ] γ, δ, κ, ei
ST-Case-PSet-Emp

∅@m = γ(x1)$m
m, γ, δ, κ, case x1 {.e1}{x2x3.e2} −→ m, γ, δ, κ, e1

ST-Case-PSet-Cons
({A} ] p)@m = γ(x1)$m

m, γ, δ, κ, case x1 {.e1}{x2x3.e2} −→ m, {x2 7→ {A}, x3 7→ p} ] γ, δ, κ, e2
ST-Par

p@m = γ(x)$m m ∩ p 6= ∅
m, γ, δ, κ, par x e −→ m ∩ p, γ, δ, κ, e

ST-ParEmpty
p@m = γ(x)$m m ∩ p = ∅ γ′ = {x′ 7→ F} ] γ

m, γ, δ, κ, par x e −→ m, γ′, δ, κ, x′

ST-App
v1 = γ(x1)$m v2 = γ(x2)$m 〈λzx. e, γ′〉@m = v1

m, γ, δ, κ, x1 x2 −→ m, {z 7→ v1, x 7→ v2} ] γ′, δ, κ, e

ST-LetPush
κ′ = 〈let x = � in e2 | m, γ〉 :: κ

m, γ, δ, κ, let x = e1 in e2 −→ m, γ, δ, κ′, e1

ST-LetPop
γ `m δ, a ↪→ δ′, v κ = 〈let x = � in e | m′, γ′〉 :: κ′

m, γ, δ, κ, a −→ m′, {x 7→ v} ] γ′, δ′, κ′, e

Figure 3.4: λMPC sequential semantics.

36



e1 (Rule ST-Let-Push, not shown). When an expression evaluates to a value v, the

topmost frame 〈let x = � in e2 | m, γ〉 is popped and evaluation proceeds on e2

using saved mode m and environment γ, the latter updated to map x to v (Rule ST-

Let-Pop, not shown).

Rule ST-Int-Binop handles arithmetic over integers. This rule illustrates another

invariant that all elimination rules share. To compute on a value while running

in mode m requires that the value be accessible to all parties in m. We see this

in premises like iψ1 @m = γ(x1)$m, which locate the operated-on variable to current

modem and then ensure that the value’s location is alsom, i.e., all parties have access

to the computed-on value. Doing so ensures that these parties, when running in a

distributed setting with their own store, environment, etc. will agree on the result.

For this rule in particular, we also ensure that both integers have the same protocol

ψ, and that this protocol is compatible with mode m, written `m ψ. Compatibility

holds when ψ is cleartext, and when it is enc#m, i.e., i is a share amongst all parties

currently present. Compatibility checks are used in the distributed semantics, too, to

ensure parties are in sync.

Par mode Operationally, par x e evaluates e in mode m∩p where p@m = γ(x)$m;

i.e., only those parties in p which are also present in m will run e. When m ∩ p is

non-empty, rule ST-Par directs e to evaluate in the refined mode. If m ∩ p is empty,

then per rule ST-ParEmpty, e is skipped and F is returned.5 Note that because the

stack tracks each frame’s mode, when the current expression completes the old mode

will be restored when a stack frame is popped.

Here is an example of how par mode and variable access interact.
5Since F is not an expression—it is a value—we return a fresh variable and the environment

with that variable mapped to F.

37



par {A,B} let x = par {A} 1 in

let y = par {B} x in

let z = par {C} 2 in x

The outer par {A,B} evaluates its body in mode {A,B}, per rule ST-Par. Next,

according to rules ST-LetPush, ST-Par, and ST-Int we evaluate 1 in mode m =

{A,B} ∩ {A} = {A}; we bind the result 1@{A} to x in γ per rule ST-LetPop. Next,

according to rules ST-LetPush, ST-Par and ST-Var we evaluate x in mode m = {B}.

Per rule ST-Var, we retrieve value 1@{A} for x, and then ${B}(1@{A}) yieldsF as the

result, which is bound to y in γ per rule ST-LetPop. This result makes sense: Party

B reads variable x whose contents are only accessible to A, so all it can do is return

the opaque value. Finally, par {C} 2 evaluates to F according to rule T-ParEmpty,

since m = {A,B} ∩ {C} = ∅. This F result is bound to z per rule ST-LetPop, and

the final result x, evaluated in mode m = {A,B} is ${A,B}(1@{A}) = 1@{A} per

rule ST-Var.

Sums, Pairs, and Party Sets; Encodings Sums and pairs are essentially stan-

dard, modulo the consideration of their values’ locations, and party sets are con-

structed via set-union, and deconstructed via pattern matching (see Section 3.2.1).

Symphony directly supports lists and arrays; in λMPC they can be encoded by

iterated sum and pair values where nil , ι1 0 and cons , λx. λxs. ι2 〈x, xs〉; lists

can be deconstructed by pattern matching with case. We can encode bundles as an

association list, implementing a map from parties to values located at that party. For

example, the following list represents a bundle with 8 located at A and 3 located at

B.

ι2 〈〈{A}, 8@{A}〉, ι2 〈〈{B}, 3@{B}〉, (ι1 0)〉〉

(Missing location annotations for the list itself are dropped to avoid clutter; they are

38



all @{A,B}.)

References Rule ST-Ref creates a fresh reference in the usual way, returning a

located pointer, but annotated with the parties that created it. Rule ST-Deref takes

a reference located in the current mode m and returns the pointed-to contents made

compatible with m. Rule ST-Assign updates the store with the new value and returns

it, as usual, but only works for `#p references where p = m, the current mode. Why?

Consider the following example.

par {A,B} let x = ref 0 in

let = (par{A} x := 1) in

let y = !x in . . .

The variable x initially contains a reference `#{A,B} because it was created in a

context with mode m = {A,B}. Then x is assigned to by A in the par expression

on the subsequent line. By rule ST-Assign, the creators of the reference #{A,B}

must match mode m to proceed, but since m is {A} the program is stuck. This is

desirable because to proceed would cause A’s and B’s views of the computation to

get out of sync. When we run this program at each of A and B separately, as part

of the distributed semantics, on A we would do the assignment but on B it would

be skipped. As such, on A the value of y would be 1 but on B it would be 0. If the

continuation of the program in . . . were to branch on y and then in one branch do

some MPC constructs but not in the other, then the two parties would become even

further out of sync.

I/O Rules for handling I/O (not shown) require that the mode is a singleton party;

this is important for ensuring compatibility (i.e., so that all parties agree on the

contents of shared variables).

39



Multiparty computation Party A creates encrypted values (i.e., shares) among

parties q using syntax share[x1 → x2] x3 handled by rule ST-Share. Variable x1 is

the set of input parties p; variable x2 is the (nonempty) set of parties who will hold

shares q 6= ∅; and x3 is the value to be shared, known to the input parties p. The

input parties p and share parties q must all be present in the mode m, and no other

parties may be present (so m = p ∪ q). The resulting value is located at q, and has

protocol enc#q indicating it is an encrypted value shared among parties q. The value

to be shared may either be clear or encrypted among the parties p (i.e. `p ψ). When

the value is already encrypted, the encrypted value is reshared from p to q without

being decrypted.

A shared encrypted value is revealed from parties p to a nonempty set of parties

q 6= ∅ as a cleartext result via the reveal[x1 → x2] x3, where x1 evaluates to p,

x2 evaluates to q, and x3 evaluates to the encrypted value, as described by rule ST-

Reveal. All parties p among which x3 is shared must be present, as well as the

recipients of the value q, and no other parties.

The flexibility of rule ST-Share is a key strength of Symphony. By permitting

p 6⊆ q, we are able to support clients, which are parties in p but not in q. These clients

delegate the secure computation to the parties q by providing input to the MPC but

not participating thereafter. Clients and delegation are not directly supported by any

existing MPC languages, nor is resharing. The share expressions in the lwzShuffle

function of Figure 3.1 are (critically) both instances of resharing.

3.3 Distributed Semantics

This section presents λMPC’s distributed (DS) semantics, modeling the communica-

tion and coordination needed for MPC. The next section proves the correspondence

of the ST semantics w.r.t. the DS semantics.

40



3.3.1 Configurations

A distributed configuration C collects the execution states of the individual parties

in an MPC. As shown at the top of Figure 3.6, it consists of a partial function from

parties to local configurations ς̇, which are 5-tuples consisting of (1) a mode m, (2) a

local environment γ̇, (3) a local store δ̇, (4) a local stack κ̇, and (5) an expression e.

Local environments, stores, and stacks are the same as their ST counterparts except

that instead of containing values v, they contain local values v̇, which lack location

annotations @m.

For a set of partiesm wishing to jointly execute program e, the initial configuration

C0 will map each party A ∈ m to a local configuration (m,∅,∅,>, e), where ∅ is the

empty function (used for the empty environment and store), > is the empty stack,

and e is the source program. Notice that each party tracks the global mode m in its

local configuration.

3.3.2 Operational Semantics

The DS semantics C  C ′ uses auxiliary judgments γ̇ `m δ̇, a ↪→ δ̇, v̇ and ς̇ −→A ς̇;

these are defined in part in Figure 3.6. The main rule DS-Step is used to execute a

single party, independently of the rest. The rule selects some party A’s local configu-

ration ς̇, steps it to ς̇ ′, and then incorporates that back into the distributed configu-

ration. This rule can be used whenever A’s active expression e is anything other than

share or reveal, which require synchronizing between multiple parties. Those two

cases use the rules DS-Share and DS-Reveal, respectively, discussed below.

Non-synchronizing expressions The rules for relation γ̇ `m δ̇, a ↪→ δ̇, v̇ are

essentially the same as those for the ST semantics, except that they operate on non-

located data. The figure shows two examples. Rule ST-Var’s conclusion locates the

result at m via γ(x)$m, but rule DS-Var’s conclusion simply returns γ̇(x). Similarly,

41



v̇ ∈ lval ::= iψ | p | `#m
| ιi v̇ | 〈v̇, v̇〉
| 〈λzx. e, γ̇〉 | F

γ̇ ∈ lenv , var⇀ lval
δ̇ ∈ lstore , loc⇀ lval
κ̇ ∈ lstack ::= > | 〈let x = � in e | m, γ̇〉 :: κ̇

ς̇ ∈ lconfig ::= m, γ̇, δ̇, κ̇, e

C ∈ dconfig , party⇀ lconfig

γ̇ `m δ̇, a ↪→ δ̇, v̇

DS-Var

γ̇ `m δ̇, x ↪→ δ̇, γ̇(x)

DS-Lit

γ̇ `m δ̇, i ↪→ δ̇, i

γ̇ `m δ̇, p ↪→ δ̇, p

DS-Int-Binop
iψ1 = γ̇(x1)

iψ2 = γ̇(x2) `m ψ

γ̇ `m δ̇, x1 � x2 ↪→ δ̇, J�K(i1, i2)ψ

DS-PSet-Binop
p1 = γ̇(x1)
p2 = γ̇(x2)

γ̇ `m δ̇, x1 ∪ x2 ↪→ δ̇, p1 ∪ p2

DS-Mux
iψ1 = γ̇(x1)

iψ2 = γ̇(x2)

iψ3 = γ̇(x3) `m ψ

γ̇ `m δ̇, x1 ? x2 � x3 ↪→ δ̇, cond(i1, i2, i3)ψ

DS-Pair
v̇1 = γ̇(x1)
v̇2 = γ̇(x2)

γ̇ `m δ̇, 〈x1, x2〉 ↪→ δ̇, 〈v̇1, v̇2〉

DS-Proj
〈v̇1, v̇2〉 = γ̇(x)

γ̇ `m δ̇, πi x ↪→ δ̇, v̇i

DS-Inj
v̇ = γ̇(x)

γ̇ `m δ̇, ιi x ↪→ δ̇, (ιi v̇)

DS-Fun

γ̇ `m δ̇, λzx. e ↪→ δ̇, 〈λzx. e, γ̇〉

DS-Ref
v̇ = γ̇(x)

γ̇ `m δ̇, ref x ↪→ {` 7→ v̇} ] δ̇, `#m

DS-Deref
`#q = γ̇(x)

γ̇ `m δ̇, !x ↪→ δ̇, δ̇(`)

DS-Assign
`#m = γ̇(x1)

v̇ = γ̇(x2)

γ̇ `m δ̇, x1 := x2 ↪→ δ̇[` 7→ v̇], v̇

DS-Read
|m| = 1

γ̇ `m δ̇, read ↪→ δ̇, i

DS-Write
i = γ̇(x) |m| = 1

γ̇ `m δ̇, write x ↪→ δ̇, 0

ς̇ −→A ς̇
DS-Case-Inj

(ιi v̇) = γ̇(x1)

m, γ̇, δ̇, κ̇, case x1 {x2.e1}{x2.e2} −→A m, {x2 7→ v̇} ] γ̇, δ̇, κ̇, ei
DS-Case-PSet-Emp

∅ = γ̇(x1)

m, γ̇, δ̇, κ̇, case x1 {.e1}{x2x3.e2} −→A m, γ̇, δ̇, κ̇, e1
DS-Case-PSet-Cons

({B} ] p) = γ̇(x1)

m, γ̇, δ̇, κ̇, case x1 {.e1}{x2x3.e2} −→A m, {x2 7→ {B}, x3 7→ p} ] γ̇, δ̇, κ̇, e2
DS-Par

p = γ̇(x) A ∈ p
m, γ̇, δ̇, κ̇, par x e −→A m ∩ p, γ̇, δ̇, κ̇, e

DS-ParEmpty
p = γ̇(x) A /∈ p γ̇′ = {x′ 7→ F} ] γ̇
m, γ̇, δ̇, κ̇, par x e −→A m, γ̇′, δ̇, κ̇, x′

DS-App
v̇1 = γ̇(x1) v̇2 = γ̇(x2) 〈λzx. e, γ̇′〉 = v̇1

m, γ̇, δ̇, κ̇, x1 x2 −→A m, {z 7→ v̇1, x 7→ v̇2} ] γ̇′, δ̇, κ̇, e

DS-LetPush
κ̇′ = 〈let x = � in e2 | m, γ̇〉 :: κ̇

m, γ̇, δ̇, κ̇, let x = e1 in e2 −→A m, γ̇, δ̇, κ̇′, e1
DS-LetPop
γ̇ `m δ̇, a ↪→ δ̇′, v̇ κ̇ = 〈let x = � in e | m′, γ̇′〉 :: κ̇′

m, γ̇, δ̇, κ̇, a −→A m′, {x 7→ v̇} ] γ̇′, δ̇′, κ̇′, e

Figure 3.5: λMPC distributed semantics, local steps.

42



C  C
DS-Step

ς̇ −→A ς̇′

{A 7→ ς̇} ] C  {A 7→ ς̇′} ] C
DS-Share
share[x1 → x2] x3 = C(m).e

p = C(m).γ̇(x1)
q = C(m).γ̇(x2)

iψ = C(p).γ̇(x3)

`p ψ
m = C(m).m
m = p ∪ q
q 6= ∅

C′ = {A 7→ (m, {x 7→ v̇} ] γ̇, δ̇, κ̇, x)

| C(A) = (m, γ̇, δ̇, κ̇, e),

A ∈ q =⇒ v̇ = ienc#q ,
A ∈ p ∧A /∈ q =⇒ v̇ = F}

C0 ] C  C0 ] C′
DS-Reveal
reveal[x1 → x2] x3 = C(m).e

p = C(m).γ̇(x1)
q = C(m).γ̇(x2)

ienc#p = C(p).γ̇(x3)

m = C(m).m
m = p ∪ q
q 6= ∅

C′ = {A 7→ (m, {x 7→ v̇} ] γ̇, δ̇, κ̇, x)

| C(A) = (m, γ̇, δ̇, κ̇, e),
A ∈ q =⇒ v̇ = i,
A ∈ p ∧A /∈ q =⇒ v̇ = F}

C0 ] C  C0 ] C′

Figure 3.6: λMPC distributed semantics.

rule ST-IntBinop’s premise requires iψ1 @m = γ(x1)$m while rule DS-IntBinop’s premise

simply requires iψ1 = γ̇(x1). For elimination forms, a location mismatch in a ST rule

would translate to failed attempt to eliminate F in the DS rule. For example, if

rule ST-IntBinop would have failed because iψ1 was located not at m but at p ⊂ m

instead, then rule DS-IntBinop would fail for parties A ∈ (m − p) since for these

γ̇(x1) = F, which cannot be added to another share. The check `m ψ is present

in both rules to prevent attempts to add incompatible shares. Likewise, rules DS-

Deref and DS-Assign (not shown) retain the check from the ST versions that the

reference owners are compatible with m.

Judgment ς̇ −→A ς̇ corresponds to ST judgment ς −→ ς, where annotation A

indicates the executing local party. The rules for both judgments are essentially the

same except for those handling par[x] e. Rule DS-Par evaluates to the expression e

so long as A ∈ p, where p = γ̇(x), updating the global mode to m ∩ p, just as the

ST semantics does. Rule DS-ParEmpty handles the case when A /∈ p, thus skipping e

and leaving global mode m as it is, evaluating to result x′, which is a fresh variable

bound to F in γ̇′.

Synchronizing expressions Rules DS-Share and DS-Reveal are used to evaluate

expressions share and reveal, respectively. These expressions require synchronizing

43



between multiple parties, transferring data from one party to the other(s), so the

rules manipulate multiple local configurations. But they are quite similar to their ST

counterparts.

In the rules we write C(m) to refer to the set of configurations mapped to by

principals A ∈ m. When we write C(m).e = e′, we are saying that the expression

component (e) of each configuration in the set C(m) is equal to expression e′. For DS-

Share, e′ is share[x1 → x2] x3 and for DS-Reveal it is reveal[x1 → x2] x3. We

similarly insist that each party’s configuration agrees on the valuation of x1 to p

and x2 to q, which together comprise the agreed-upon mode m. For DS-Share, the

valuation of x3 must be an integer with a protocol ψ compatible with p: `p ψ; for DS-

Reveal, the valuation of x3 for all sharing parties p must be an encrypted integer

shared amongst those parties. These conditions are sufficient to guarantee that the

share and reveal operations of the actual MPC backend complete successfully. 6 The

updated configuration C ′ matches the original configuration C but updates the local

configuration for each party A ∈ m to have expression component x, where x is a fresh

variable added to the store γ̇ to map to the communicated (cleartext or encrypted)

integer; those sharing parties A ∈ p such that A /∈ q evaluate to F instead.

3.4 Single-threaded Soundness

This section presents our main meta-theoretical results around single-threaded sound-

ness , which is the sense in which we can interpret a λMPC program in terms of its

ST semantics, even though in reality it will execute in a distributed fashion. Proofs

are provided in Appendix A.2.1.

We relate a single-threaded configuration ς to a distributed one by slicing it,

written ς , which is defined in Figure 3.7. Each party A in the modem of ς is mapped
6Note that in the actual implementation, each party A ∈ m merely needs to check that its own

view of m, p, and q is consistent per m = p ∪ q—if not, as shown in the next section, it has landed
in a stuck configuration and can signal that MPC has failed with a type error.

44



 A ∈ loc-value→ lvalue ; value→ lvalueenv→ lenv ; store→ lstore ; stack→ lstack

iψ A , iψ

p A , p
(ιi v) A , ιi v A

〈v2, v2〉 A , 〈v1 A, v2 B〉
〈λzx. e, γ〉 A , 〈λzx. e, γ A〉

`#m A , `#m

u@p A ,
{
u A if A ∈ p
F if A /∈ p

F A , F

γ A(x) , γ(x) A
δ A(`) , δ(`) A

> A , > (〈let x = � in e | m, γ〉 :: κ) A , 〈let x = � in e | γ A〉 :: κ A

(m, γ, δ, κ, e) , {A 7→ m, γ A, δ A, κ A, e | A ∈ m}  ∈ config→ dconfig

Figure 3.7: Slicing metafunction; relates ST and DS semantics.

to its local DS configuration consisting of m, expression e, and the sliced versions of

the environment γ, store δ, and stack κ of ς that are specific to A. Slicing captures

the simple idea that for a value u@p, if A ∈ p then A can access u, but if A /∈ p then

it cannot;  A works much like ${A} but strips off all location annotations.

We might hope to prove full bisimulation for the two semantics, but the backward

direction (DS to ST) does not hold. Consider this program:

let x = par[A] <infinite loop> in par[B] 1

In the DS semantics, party B’s execution of the program can return 1 while A’s loops.

But such a distributed configuration cannot be “sliced to” from any ST execution,

which always gets stuck in A’s loop.

We can prove a full correspondence for programs whose execution trace concludes

in normal form that is a terminal state.

Definition 3.4.1 (Terminal State).

ς is a terminal state M⇐⇒ ς = m, γ, δ,>, a ∧ γ `m δ, a ↪→ δ′, v

ς̇ is a terminal state M⇐⇒ ς̇ = m, γ̇, δ̇,>, a ∧ γ̇ `m δ̇, a ↪→ δ̇′, v̇

C is a terminal state M⇐⇒ ∀A ∈ dom(C). C(A) is a terminal state

This definition captures the idea that a state is terminal if the execution stack is

empty (>), the next term to execute is atomic (a), and the atomic expression is able

to step (via ↪→) to a value v. There are no successor configurations which can be

reached from a terminal state. Any state which is both non-terminal and also has no

45



successor configurations we call stuck .

Theorem 3.4.1 (ST/DS Terminal Correspondence). If ς −→∗ ς ′, then the following

statements imply one another for any C:

1. ς ′ is a terminal state and C = ς ′ 

2. ς  ∗ C and C is a terminal state

The proof follows from a forward simulation lemma, which establishes that for

every single-threaded execution there exists a compatible distributed one, and conflu-

ence, which establishes that even though the distributed semantics is nondeterminis-

tic, its final states are uniquely determined.

What about executions which diverge or get stuck? We prove two useful theorems

about these.

Theorem 3.4.2 (ST/DS Strong Asymmetric Non-terminal Correspondence). The

following statements are true:

1. If ς reaches a stuck state (under  ) then ς reaches a stuck state (under −→)

2. If ς divergent (under −→) then ς divergent (under  )

Theorem 3.4.2 does not rule out the possibility that ς gets stuck while ς never

does. Consider this example

let x = par[A] <error> in par[B] <infinite loop>

In the ST semantics, this program gets stuck. In the DS semantics, A will only

become locally stuck while B runs forever. We can prove that if a single-threaded

configuration gets stuck, then for any reachable distributed configuration there exists

a reachable, locally stuck state:

46



Theorem 3.4.3 (ST/DS Soundness for Stuck States). If ς −→∗ ς ′ and ς ′ is stuck,

then for every C where ς  ∗ C there exists a C ′ s.t. C  ∗ C ′ and C ′ is locally

stuck.

It follows that if the ST semantics applied to ς detects a runtime error (i.e., gets

stuck), then (assuming a non-pathological scheduler) one of the local configurations

of ς will eventually detect a runtime failure (i.e., get locally stuck), too.

In sum: the ST and DS semantics correspond for terminating programs; they

correspond for non-terminating programs too, but with a local notion of “stuckness”

applied to DS states.

3.5 Implementation

We implemented a Symphony interpreter in 4K lines of Haskell. The interpreter

can run programs in sequential mode for prototyping and debugging, and distributed

mode for actual MPC. Symphony adds a number of features beyond λMPC, including

booleans and a conditional expression; nested pattern-matching on pairs, sums, lists,

principal sets and bundles; arrays (mutable vectors with O(1) lookup); synchronized

randomness; and implicit embedding of constants as shares.

We have implemented a standard library (about 800 LOC) for Symphony that

includes various data structures and coordination patterns, e.g., initializing a bundle

from a principal set, and bounded recursion for unrolling an MPC function.

In addition to the Symphony interpreter, we have also implemented a Symphony

runtime system in 2K lines of Rust. The runtime system acts as a compatibility layer

between the interpreter and MPC backends. The runtime provides a common in-

terface to the interpreter by enhancing MPC backends with missing features that

Symphony requires. The runtime supports MPC based on Yao’s garbled circuit pro-

tocol using EMP toolkit [176], and the N-party GMW protocol using MOTION [36].

47



Both Yao’s protocol and GMW are semi-honest and evaluate boolean circuits.

3.5.1 Interpreter

As briefly mentioned, the Symphony interpreter adds a number of interesting fea-

tures beyond λMPC. In this subsection, we discuss three of the most interesting and

important features: synchronized randomness, MPC over algebraic data types, and

the standard library.

Note that the share primitive is extended in Symphony as: share[φ, τ : P →

Q] v. Here, the metavariable φ denotes protocols and the metavariable τ denotes

types. A particular protocol implementation must provide operations for encrypting,

computing over, and decrypting base values.

Synchronized Randomness Symphony provides a convenient way to generate

randomness across multiple parties in parallel, ensuring that all parties receive the

same random value. This functionality can be implemented as a library using only

access to local randomness, as shown in the λMPC code below.

1 def randomSend P n =

2 let rec sum’ = fun Q ->

3 case Q

4 { {} -> 0n

5 ; { p } \/ Q’ ->

6 send [nat : p -> P]

7 (par { p } rand { p } nat) + (sum’ Q’)

8 }

9 in

10 let sum = sum’ P in

11 sum % n

48



This code will generate a random value on each party in P and sum them all

together, modulo n, to generate a random natural number in the range 0..n− 1. This

works, but it is inefficient because it requires communication between all the parties

each time they wish to generate a synchronized random number.

The primitive expression provided by Symphony, rand P µ (where µ is a base

type like nat), provides the same functionality but does so more efficiently. This is

implemented using a shared, cryptographic PRNG among the parties P .

MPC over Algebraic Types The Symphony interpreter also generalizes λMPC

by allowing mux, case, share and reveal to operate recursively over on pairs, sums

and lists. It adds mux-case for case analysis on encrypted sums, which are represented

with pairs: λMPC value ι0 v is represented as 〈true, 〈v, default〉〉 and value ι1 v is

represented as 〈false, 〈default, v〉〉, with each of the components encrypted. The

value default is to allow case analysis to proceed on both branches of mux-case, as a

kind of multiplexor. The precise value of default is determined when sharing, based

on the type annotation τ on share[φ,τ :P→Q] default.

Symphony generalizes λMPC’s share, mux, case, and reveal by allowing ar-

bitrary algebraic types as arguments. It also adds another expression, mux-case,

for case analysis on encrypted (shared) values. The share, mux, case, and reveal

expressions on pairs are generally unsurprising. Sharing a pair is implemented by

recursively sharing, component-wise.

share[φ, τ1 × τ2 : P → Q] (a, b) = (share[φ, τ1 : P → Q] a, share[φ, τ2 : P → Q] b)

The mux, case, and reveal operations on pairs are similar.

Sums are represented as tagged pairs. The λMPC value ι0 v is represented as

sum〈true, v, default〉 and the value ι1 v is represented as sum〈false, default, v〉.

The value default is a placeholder which will be replaced by a value of the appropriate

type if the sum value is shared. Sharing a sum value is implemented, as with pairs,

49



by recursively sharing, component-wise.

share[φ, τ1 + τ2 : P → Q] sum〈b, v1, v2〉 = sum〈share[φ,B : P → Q] b,

share[φ, τ1 : P → Q] v1, share[φ, τ2 : P → Q] v2〉

To share a default value, share[φ, τ : P → Q] default, we simply share instead an

arbitrary default value of the appropriate type τ . In practice, we choose the identity

value (e.g., false for B, 0 for Z) but, as we will see shortly, the choice doesn’t matter

because it will never be observable. The mux and reveal operations on sum values

work similarly.

The case v {θ1 → e1; . . . ; θn → en} expression works mostly as expected, iterat-

ing through the list of patterns, θ1, . . . , θn, and checking if there is a clear-match

of v against the current pattern θi. When the first match is encountered, the envi-

ronment is suitably extended7 and execution proceeds with the corresponding body

ei. The only caveat to this standard description of pattern matching is that an en-

crypted sum value does not clear-match left or right injection patterns. Since it

is encrypted, we cannot inspect the tag. This observation motivates Symphony’s

mux-case expression which does permit matching on encrypted sum values.

The mux-case v {θ1 → e1; . . . ; θn → en} expression works by mapping the follow-

ing procedure over the list of patterns, θ1, . . . , θn. First, check if there is an enc-match

of v against the current pattern θi. The enc-match check is exactly like clear-match

except that any sum value matches both the left injection and right injection patterns.

Then, evaluate the corresponding body ei to vi in the environment suitably extended.

If the pattern is not a left or right injection, then return vi. If the pattern is is a left

injection, then return mux b then vi else default. If the pattern is a right injection,

then return mux b then default else vi. We now have a list of values, v1, . . . , vm

(m ≤ n), which we add together according to an add procedure which is defined
7For example, a clear-match of sum〈true, vl, vr〉 against the pattern ιtrue x would extend the

environment with [x 7→ vl]

50



for values which have the same shape. The add procedure simply combines values

recursively, using an appropriate additive operation for each of the base values (e.g.,

add (false, 0) (true, 42) ≡ (add false true, add 0 42) ≡ (false ∨ true, 0 + 42) ≡

(true, 42). The default value is an identity for add.

Consider the standard encoding of booleans as a sum of units: bool := unit +

unit. We will take sum〈true, •, •〉 to be the encoding of true and symmetrically for

false. We would hope that the obvious encoding of mux in terms of mux-case

would work: mux sum〈b, •, •〉 then e1 else e2 := mux-case sum〈b, •, •〉 {ιtrue • →

e1; ιfalse • → e2}. Indeed, it does:

mux-case sum〈true, •, •〉 {ιtrue • → e1; ιfalse • → e2}

≡ add (mux true then e1 else default)

(mux true then default else e2)

≡ add e1 default

≡ e1

The Standard Library Symphony allows programmers to write complex dis-

tributed programs in a natural way. The standard library shipped with Symphony

has many of the usual fixings of functional programming languages such as libraries

for options; eliminators (folds) over various algebraic types (nats, options, lists, maps,

etc.); higher order functions (flip, compose, curry, uncurry, etc.). However, it also has

some unusual fixings, such as libraries for coordination and secure recursion.

The coordination library primarily addresses common operations on principal sets,

bundles, and their interaction. For example, Figure 3.8 contains a function, mapPairs,

which takes a function f, principal set P, and bundle b, and non-deterministically pairs

up principals in P before executing f with their respective inputs from b, returning all

the results as a list. This function could be used to pair up parties who then compete

51



in a 2-player game using MPC, in a tournament-style application.

Another function in Figure 3.8, solo-f, takes a principal set P and a function f

and runs f at every principal ρ in P. This function is used to define the bundleInputs

function.

def bundleInputs P = solo-f P (fun _ -> read nat)

The last function in Figure 3.8, unroll, takes an “almost” recursive function and

unrolls it n times. If the function would recur more than n-1 times, it uses init as

the value for the recursive call at recurrence n. The “almost” recursive function is

defined using brec and is just like a recursive function, except that recursive calls are

replaced with calls to a higher-order argument. The expectation is that the caller of

this function will provide the function itself as the higher-order argument to perform

a finite unrolling of the function. For example, here’s a recursive GCD function:

def gcd (a, b) = if (a == 0) then b else gcd (b % a, a)

and here’s its “almost” recursive counterpart:

def gcd-almost f (a, b) = if (a == 0) then b else f (b % a, a)

The unroll function is useful for defining a finite unrolling of a recursive function so

it may be computed in MPC.

def gcd-mpc f (a, b) = mux if (a == 0) then b else f (b % a, a)

As mentioned earlier, Symphony provides syntactic sugar, via the brec keyword,

which makes this look even more natural:

def brec gcd-mpc (a, b) = mux if (a == 0) then b else gcd-mpc (b % a, a)

If we now want to compute GCD to a maximum of 32 iterations, we can do so.

def gcd-mpc-32 = unroll gcd-mpc (const 0) 32n

52



1 def mapPairs P b f = case P

2 { {} -> []

3 ; {p1} \/ {p2} \/ P’ ->

4 let r = f p1 b@p1 p2 b@p2 in

5 r :: mapPairs P’ b f

6 }

7

8 def solo-f P f = case P

9 { {} -> <<>>

10 ; {p} \/ P’ -> << p | par {p} f p >> ++ solo-f P’ f

11 }

12

13 def unroll f init n =

14 if n == 0n then init

15 else f (unroll f init (n - 1n))

Figure 3.8: Selected functions from the standard library of Symphony.

3.5.2 Runtime System

As briefly mentioned, the Symphony runtime system acts as a compatibility layer be-

tween the Symphony interpreter and MPC backends. In this subsection, we discuss

how the runtime system adds support for delegation, resharing, and reactive MPC.

A detailed description of the implementation that addresses engineering details such

as the FFI and resource management can be found in Appendix A.1.

Delegation and Resharing The runtime adds support for delegation and reshar-

ing via semi-honest XOR sharing over Symphony parties. For example, A delegates

to B,C by generating two XOR shares of her input and sending those shares to B

and C respectively. Then, B and C convert their shares into the native representa-

tion of the backend by encrypting them and combining the encrypted shares into an

encrypted value using XOR. At this point, A’s original input is natively encrypted

among B and C. Similarly, B,C reshare to D,E, F by converting the encrypted

value into XOR shares and decrypting them to B and C respectively. Then, B and

C delegate their shares to D,E, F which D,E, F combine using XOR. At this point,

53



the value originally natively encrypted among B and C is natively encrypted among

D, E, and F .

The benefit of these procedures is that they are generic, treating the underlying

MPC backend as a black box by relying only on standard features. Of course, the

drawback of these procedures is also that they are generic, failing to take advantage

of optimizations available for specific protocols.

The Symphony runtime does not rely on generic conversion when converting

shares to and from MOTION’s native representation, since MOTION uses shares

natively. The Symphony runtime does rely on generic conversion when converting

shares to EMP’s native representation, but does use the optimal conversion (Y2B [54])

when converting from EMP back to shares. The optimal conversion from EMP

to shares is supported by EMP, but the optimal conversion from shares to EMP

(B2Y [54]) is not. Efficient conversion procedures for 2-party and N -party MPC pro-

tocols have been identified between Boolean sharing, Arithmetic sharing, and Boolean

garbling [54, 36].

Reactive MPC The runtime also adds support for reactive MPC to MOTION. An

MPC context in MOTION, called a Party, is a C++ object that manages the global

state associated with the MPC. It contains information about the current party that

is executing, the total number of parties, how parties can be contacted (e.g. via TCP

sockets), a shared PRG, and a binary circuit composed of gates and wires. When an

encrypted value is created or computed, the Party object creates a new gate which

is added to the circuit. The actual encrypted value is a reference to the output wire

of the new gate. When the programmer has finished their MPC, they instruct the

Party object to execute the underlying circuit. At that point, the circuit is executed

using GMW and an XOR share can be extracted from any encrypted value.

Unfortunately, after the Party is executed, we are no longer allowed to use this

54



Party object for additional MPC: the Party object is effectively defunct. The ability

to continue performing MPC is precisely what is needed to support reactive MPC, in

which values are decrypted and then used to influence additional computation.

The runtime adds support for reactive MPC to MOTION by caching the XOR

shares resulting from one execution of a Party object, destroying it, and then creating

a new one. When we compute on encrypted values produced by the previous Party,

we provide them as input to the new Party before proceeding with the computation.

While conceptually simple, it required considerable engineering to achieve acceptable

performance. For example, we had to modify MOTION to add support for creating

a Party object using existing TCP connections (rather than MOTION creating its

own). This ensured that TCP connections were only established once for each pair

of Symphony parties, rather than repeatedly by MOTION whenever a new Party

object was created (i.e. on each decryption).

3.6 Experimental Evaluation

This section shows, through a series of experiments and case studies, that Symphony

provides superior programming expressiveness and ergonomics compared to prior sys-

tems, while maintaining competitive performance.

3.6.1 Expressiveness and Ergonomics

We discuss Symphony’s expressiveness and ergnomics benefits based on our expe-

rience implementing sixteen programs from the MPC literature. The programs are

tabulated in Table 3.1. As points of comparison we consider if (or whether) versions

of these programs could be implemented in Wysteria [143, 144] and/or Obliv-C [181],

a state-of-the-art two-party MPC framework for C, and whether they are N -party

or 2-party programs. We categorize the Symphony language features required to

55



Table 3.1: A collection of implemented MPC programs. # indicates the number
of parties. Lang. indicates the implementation language: Symphony (S), Obliv-
C (O), or Wysteria (W), where ? means the program should be supported but we
have no example, and ∗ means a 2-party (rather than N -party) version is supported.
Features indicates the features required to implement the program: P for par, R for
reactive MPC, $ for synchronized randomness, D for delegation, and S for resharing.
L (C) indicates the lines of code (resp. characters) of the Symphony program
measured using wc -l (resp. wc -m).
Program # Lang. Features L (C) Description
hamming [10.1007/978-3-642-54807-9_15, 188] 2 S,O,W? 19 (629) Find the Hamming distance of two

strings.
edit [181] 2 S,O,W? 56 (1574) Find the edit distance, by dynamic pro-

gramming, of two strings.
bio-match [39] 2 S,O,W? 38 (949) Compute the minimum Euclidean dis-

tance between a set of points (from A)
and a single point (fromB) in 2D space.

db-analytics [39] 2 S,O,W? 121 (3020) Compute the mean and variance over
the union and join of two databases.

gcd [10.1145/3319535.3339818] 2 S,O,W 13 (416) Compute the GCD of two numbers via
Euclid’s algorithm.

richest [143] N S,W 8 (176) An N -party variant of the Millionaire’s
Problem.

gps [143] N S,W 40 (1213) Compute the one-dimensional nearest
neighbor for each of N parties.

auction [143] N S,W 34 (920) Compute a second-price auction, re-
vealing the second-highest bid to every-
one and the highest bidder to auction-
eer.

median [143] 2 S,O?,W R 26 (566) Compute the mixed-mode (reactive)
median of a set of numbers.

intersect [143] 2 S,O?,W R 17 (563) Compute a naive private set intersec-
tion over two sets.

tournament N S P,$,R 34 (760) Use a comparison-based single-
elimination tournament to find the
richest of N parties.

committee N S P,D,$ 45 (946) Elect a small committee of size K < N ,
which is useful for fair delegation MPC
from N to K parties.

waksman [173, 60] N S,O∗ $ 209 (5947) Securely shuffle of an array, using N
iterations of a Waksman permutation
network.

lwz [105] (Section 3.1.2) N S P,$,S 23 (745) Securely shuffle of an array, using N re-
shares of a linear secret sharing scheme
(LSSS).

trivial-doram [71, 38] N S,O∗,W? 55 (1883) A library for Oblivious RAM, adapted
to MPC from trivial client-server
ORAM.

shuffle-qs [79] N S P,D,$,S,R 62 (1742) Securely sort using Shuffle-Then-Sort
with lwz as the underlying secure shuf-
fle and QuickSort as the sorting algo-
rithm.

56



express the programs in the Features column:

• Coordination (P). Coordination of parties that would be difficult and error-prone

in languages without explicit support for par expressions.

• Reactive MPC (R). Secure computation that depends on the decrypted result

of a previous secure computation.

• Synchronized Randomness ($). Cryptographically secure random number gen-

eration which is synchronized among a set of parties (i.e. all parties agree on

the number generated).

• Delegation (D). A party encrypts a value to, or decrypts a value from, a secure

computation in which she does not participate.

• Resharing (S). A value encrypted among a set of parties is transferred to a

different set of parties without being decrypted.

tournament orchestrates a single-elimination tournament over N parties. Each

match in the tournament is a 2-player secure computation, with the winner moving

on to the next round. The program requires Coordination because the participants

in each match are dynamically assigned from the set of remaining players. Likewise,

the set of remaining players is determined dynamically according to outcome of the

matches in the previous round. It requires Synchronized Randomness to determine

the participants in each match. Finally, it requires Reactive MPC to decrypt the

winners in each round so that they may be coordinated in the following round.

committee performs an arbitrary secure computation among N parties by select-

ing a random committee of size K < N and delegating the secure computation to

them. The program requires Coordination and Synchronized Randomness because

the committee is computed dynamically according to K and synchronized random

57



numbers generated by the N parties. It requires Delegation because the parties out-

side the committee encrypt their input and send it to the committee but do not

participate in the secure computation.

waksman and lwz are protocols for securely shuffling an array of elements among N

parties without revealing the permutation to any of them. We discuss these protocols

in much more depth and compare their performance in Section 3.6.2. Both programs

require Synchronized Randomness to perform (non-secure) shuffles as a subroutine.

lwz additionally requires Coordination and Resharing to compute all the party sets

of size N − T and reshare the array of elements to and from these subsets.

shuffle-qs is the most sophisticated program, using both committee and lwz as

subroutines. It implements a secure sorting procedure over N parties by choosing a

committee of size K > 2, shuffling the elements among the committee using lwz, and

then sorting the elements with QuickSort by revealing the result of each comparison.

It requires Coordination, Delegation, Synchronized Randomness, and Resharing by

virtue of relying on committee and lwz. It requires Reactive MPC because each

comparison in QuickSort is decrypted before securely computing the next comparison.

Expressiveness Of the sixteen programs, we believe that Obliv-C can express 9 and

Wysteria can express 11. This is because both languages lack some needed features.

Obliv-C only supports two parties, ruling out fundamentally N -party programs.

Obliv-C also lacks clean support for Coordination, as discussed in Section 3.1.

Wysteria does not have support for Synchronized Randomness, Delegation, or Re-

sharing. These limitations make it impossible to express tournament, committee,

waksman, lwz, and shuffle-qs. Extending Wysteria with Synchronized Random-

ness would be straightforward, which would allow Wysteria to express waksman. The

other programs still have barriers: lwz and shuffle-qs require Delegation or Reshar-

ing, and tournament requires sophisticated coordination mechanisms that Wysteria’s

58



Figure 3.9: The gcd program of Table 3.1 as written in Symphony (left) andWysteria
(right).

1 def brec gcdr a b =

2 mux if (a == 0) then b

3 else gcdr (b % a) a

4 def gcd = unroll gcdr (const 0) 93

5

1 let gcdr i sa sb =

2 if i == 0 then

3 let ret =sec({A,B})=

4 combsh sb in ret

5 else

6 let (sa’, sb’) =sec({A,B})=

7 let (a, b) =

8 (combsh sa, combsh sb) in

9 if (a == 0) then

10 (makesh a, makesh b)

11 else

12 (makesh (b % a), makesh a)

13 in gcdr (i - 1) sa’ sb’

14 let gcd = gcdr 93

15

static type system does not accept. It uses on refinement types over subset constraints

to ensure coordination is performed safely, but its decisions can be over-conservative.

The first and third authors spent a few hours each trying to write the subsets function

of lwz (Section 3.1.2, Figure 3.1) in Wysteria, which is representative of computations

in tournament, but were not able to get it past the typechecker.

Ergnomics Symphony can also provide ergonomics benefits even when a program

could be expressed in another language. This is especially true when considering

Wysteria, which also has coordination features.

To illustrate, consider gcd. This program computes the GCD of two encrypted

values among {A,B}. It nicely leverages Symphony’s first-class shares to allow the

code to be straightforward. By contrast, Wysteria relies on special sec blocks for

secure computation, which can make programming awkward. Figure 3.9 shows GCD

in the two languages side by side. Conceptually, the entire gcd function is executed

under secure computation. Wysteria does not allow function calls within a sec scope.

As a result, we are forced to enter and exit sec mode (line 6) on each recursive

call to gcdr. In addition to being verbose, this pattern can also have performance

59



implications. Each time execution enters a sec block, the expression (lines 7-12) is

compiled and executed as a circuit. The overhead of compilation and circuit execution

is repeated on each iteration. In contrast, the Symphony version of gcd constructs

the entire circuit for GCD before execution. While the asymptotic performance is

identical, the measured performance is likely to be worse in Wysteria due to the

constant overhead mentioned above. Unfortunately, we were unable to empirically

validate this claim. We have only been able to get Wysteria to typecheck the programs

above, not actually run them.

As mentioned above, the conservativeness of Wysteria’s type system can also make

programming awkward, even if it does not ultimately prevent expressing a program

entirely.

3.6.2 Performance

Symphony’s expressiveness allows programmers to write optimized protocols directly

and simply. For example, the median and shuffle-qs programs leverage Reactive

MPC to perform certain comparison operations in the clear, dramatically improving

performance over a monolithic protocol [93, 145]. While Reactive MPC is available in

some languages, the combination of features needed to express the lwz secure shuffle

is unique to Symphony—no other language can express it. Compared to waksman,

another secure shuffle algorithm, lwz offers a substantial performance benefit because

it requires no computation under cryptography, just re-sharing and comparisons/shuf-

fling in the clear. As shown in Section 3.6.2, the result is dramatically faster running

times for all input sizes.

Symphony’s expressiveness does not place an undue burden on the implementa-

tion’s ability to achieve good performance. We compared Symphony’s performance

with that of Obliv-C, a highly optimized MPC framework. As described in detail in

Section 3.6.2, we ran on the first five programs in Table 3.1, which are well known and

60



frequently referenced in the literature. We configured both Symphony and Obliv-

C to use EMP’s [176] 2-party garbled circuits implementation, to isolate language

overhead from cryptography costs. On a simulated LAN under MPC, Symphony’s

running time was 1.15× that of Obliv-C. Without MPC, Symphony time is 2.4×

that of Obliv-C. On a WAN (limited to 100 gbps and 50 ms RTTs), Symphony time

was 0.85× that of Obliv-C. Examining these overheads, we find that one source is

Symphony’s support for N > 2 parties: party inclusion checks require the use of

sets (implemented as balanced binary trees) rather than simple equality tests. The

more significant overhead is unrelated to Symphony itself: the language is imple-

mented as an interpreter in Haskell, whereas Obliv-C is embedded within compiled

C. Indeed, looking at the sizes of garbled circuits generated by both frameworks, we

found them to be very similar. Thus, we would expect even closer performance in a

more production-quality implementation.

Utility: Waksman vs. LWZ in Symphony

We identified the LWZ shuffle (Section 3.1.2, Figure 3.1, lwz in Table 3.1) as one of the

programs that can only be expressed in Symphony. In this section we demonstrate

the utility of the LWZ shuffle by comparing it to the Waksman shuffle (waksman

in Table 3.1), which is the de-facto protocol for performing a secure shuffle in most

MPC languages. We show that the empirical performance of Waksman and LWZ in

Symphony matches the expected asymptotics. Based on these results, we conclude

that the added expressiveness of Symphony manifests not only as convenience and

safety, but can also manifest as performance when the optimal protocol (e.g. LWZ)

for a given task is difficult or impossible to express in another language.

Waksman The Waksman protocol implements a secure shuffle via repeated ap-

plication of a classic Waksman permutation network [173]. A permutation network

61



repeatedly and conditionally swaps two list elements at a time until the list is fully

shuffled; each swap can be implemented from Boolean gates. One subtlety of a per-

mutation network is that one must choose the control bits of the network, which is

an input that dictates which of the swap gates should indeed swap their input. To

fully hide the shuffle from all parties, each party secretly chooses their own control

bits and programs one of the sequence of |P | networks. Thus, the full shuffle requires

|P | networks, and the implementation requires some coordination: the programmer

must prescribe that each party will, one-by-one, program a network.

Security vs. Performance The Waksman and LWZ protocols present different

tradeoffs in terms of security and performance.

Given an input list of n integers of bitwidth w, a Waksman permutation network

is a recursive algorithm requiring O(w · n log n) Boolean gates. Since we must repeat

the network |P | times, we require O(|P | ·w ·n log n) gates total. The network’s circuit

depth grows with O(log n), which is relevant since the round complexity of interactive

MPC protocols, such as GMW, grows with depth; in total we need O(|P |·log n) rounds

of communication.

The LWZ protocol, on the other hand, avoids the need for general purpose MPC

circuit evaluation. Indeed, the protocol is strikingly lightweight: The LWZ protocol

does not require execution of any secure gates at all. The downside of LWZ is that its

performance degrades with the number of tolerated corruptions, t. I.e., suppose that

at most t parties will collude and share information with one another. To prevent

these adversaries from learning the final permutation of the elements, we must ensure

that for each subset of t parties, there exists one repetition of the protocol where none

of those parties is on the committee. Thus, we must make our committees each of

size |P |− t, and the number of needed repetitions grows with
( |P |
|P |−t

)
. If t is small, say

t = 1, then the LWZ protocol has excellent performance requiring only |P | rounds of

62



Figure 3.10: End-to-end execution time of Waksman vs LWZ shuffle over three par-
ties, averaged over five samples (lower is better). The Replicated protocol executes
the program without cryptography, executing operations in the clear. The GMW
protocol uses the Symphony implementation of GMW which uses MOTION as a
backend. Input Size indicates the length of the integer list provided as input by
each party.

communication. If t is large, say t = |P |
2
−1, then performance degrades exponentially

in |P |.

Symphony Execution Time Figure 3.10 plots Symphony’s end-to-end execu-

tion time for the LWZ and Waksman shuffles. In both protocols, three parties each

share an array of Input Size integers which are concatenated and shuffled. We ran

the programs using both the GMW protocol using the Replicated protocol as a

baseline. In the Replicated protocol, Boolean gates are implemented locally and

computed in the clear instead of via cryptography. For our LWZ threshold, we chose

the optimistic setting where the maximum number of colluding parties is t = 1.

Our results demonstrate that the Symphony implementation of LWZ properly

avoids MPC overhead: as already stated, LWZ is a lightweight protocol, so Sym-

phony should not – and does not – erroneously introduce cost just because we are

operating on GMW shares. As expected, we find that the GMW-based Waksman

63



implementation is much slower than both Replicated Waksman and both variants

of LWZ. The slowdown is primarily due to the cryptography required to execute the

Boolean gates under MPC.

We do note that GMW-based Waksman achieves lower performance than might

be expected. We observed that the low performance is due to the MOTION backend

which, on this benchmark, allocates > 4GB of memory per party to store the GMW

circuit. Moreover, the execution of each gate involves accessing many non-contiguous

memory addresses, leading to low spacial locality. We believe that performance can

be greatly increased by handling more of the circuit generation and execution in the

compatibility layer of Symphony.

Even with a highly optimized GMW backend, the LWZ protocol would remain

best for the setting of t = 1: the coordination-heavy LWZ protocol is simply a supe-

rior technique for the setting. Symphony’s features make the complex coordination

involved in this protocol easy to express.

Symphony vs. Obliv-C

We compared Symphony’s performance, in terms of running time and gate counts,

against that of Obliv-C on the same programs.

Experimental Setup For fair comparison, both Symphony and Obliv-C were

configured to use EMP [176] as their MPC backend; we extended Obliv-C to use

EMP via its callback interface. We used both Symphony and Obliv-C to implement

a benchmark suite of five programs: hamming, edit-dist, bio-match, db-analytics,

and gcd. See Table 3.1 for a description of these programs.

Experiments were run on a 2019 MacBook Pro with a 2.8 GHz Quad-Core Intel

Core i7 and 16GB of RAM (OSX 11.3.1). The Obliv-C compiler is an extension of

GCC 5.5.0, and all benchmarks were compiled with -O3 optimizations. Experiments

64



Figure 3.11: End-to-end execution time of 5 programs, averaged over five samples
(lower is better). LAN is a simulated 1gbps connection with no delay. WAN is a
simulated 100Mbps connection with a 50ms RTT latency. Yao and Plain protocols
use EMP’s sh2pc (semi-honest, two-party) and plain protocols respectively. Sym-
phony uses EMP’s Integer interface. Obliv-C uses EMP’s Bit interface (compiles
integer operations to circuits). Input sizes for all the benchmarks indicate the length
of the list(s) provided as input, except for gcd-gc where the input size indicates the
number of iterations of the GCD algorithm.

were run on two simulated networks: a LAN (1Gbps bandwidth, <1ms RTT latency)

and a WAN (100Mbps bandwidth, 50ms RTT latency). All experiments use 32-

bit integers, except for gcd-gc which uses 64-bit integers. Reported execution times

measure the end-to-end execution time of party A and were averaged over five samples.

Running time Figure 3.11 plots the end-to-end execution time of Symphony and

of Obliv-C on the benchmarks. On LAN under MPC (Yao), Symphony’s running

time is 1.15× that of Obliv-C (per the geometric mean). Without MPC, Symphony

time is 2.4× that of Obliv-C. On WAN under MPC, Symphony time is 0.85×

that of Obliv-C. The maximum slowdown occurs in edit-dist, which uses dynamic

programming and for Obliv-C is heavily optimized by GCC.

There are a two primary sources for Symphony’s overhead: First, Symphony

65



supports arbitrary numbers of parties while Obliv-C supports only two. This is signif-

icant because Symphony performs frequent runtime checks on the parties in scope.

Since Symphony supports an arbitrary number of possible parties, we represent the

parties in scope as a set (implemented by a balanced tree data structure). Thus

checks on principals are implemented by set operations. We could improve the ef-

ficiency of these runtime checks by implementing them using a bitset instead of a

balanced tree. Obliv-C also performs certain checks on parties but, since only two

parties are supported, these are implemented as simple integer equality checks.

Second, Symphony is interpreted but Obliv-C is compiled. Interpretation im-

poses overhead, especially for programs involving loops. For example, a simple stress

test which sums 1 million integers (in the clear) on a single party shows that Sym-

phony takes about 6 seconds where Obliv-C takes about 100 milliseconds. This

stress test executes no runtime checks imposed by λMPC, which suggests that the

overhead is due to interpretation.

Since both Symphony and Obliv-C are synchronous (i.e. they block when read-

ing from the network), each non-local MPC operation imposes a RTT delay on the

real execution time. If the implementations were asynchronous instead, the MPC

operations and interpretation would execute in parallel. Instead of an additive delay,

real execution time between non-local MPC operations would be the maximum of the

interpretation time and RTT. For all but the fastest LAN networks, the RTT is >

5ms. We conjecture that the interpretive overhead of Symphony is small enough

that it is dominated entirely by the network latency for most deployments. If that is

the case, real execution time between asynchronous Symphony and Obliv-C would

be indistinguishable.

Comparing the LAN and WAN benchmarks confirms that the language overhead

imposed by Symphony is dominated by the time it takes to perform network com-

munication during a WAN deployment of MPC. We believe Symphony is faster

66



than Obliv-C in the WAN setting due to its use of the EMP Integer interface, which

uses the network more efficiently than the Bit interface used by Obliv-C’s callback

mechanism, and consequently the EMP backend for Obliv-C.

Generated circuit sizes As a second experiment, we instrumented the EMP back-

end to count the number of utilized AND and XOR gates. Counting gates is primarily

a sanity check that ensures Symphony is not erroneously introducing large numbers

of unneeded gates. Table 3.2 tabulates the number of AND and XOR gates gener-

ated by Symphony and by Obliv-C. The gate counts generated by Symphony and

Obliv-C are very similar, with differences caused by using the EMP Integer interface

vs Obliv-C compiling to the Bit interface (as required by its callback mechanism. The

optimizations performed by EMP’s circuit compiler and Obliv-C’s circuit compiler are

similar, but not identical.

Overall, our experiments indicate that the language design itself does not impose

significant overhead on either end-to-end execution time or generated circuit sizes. We

leave a more sophisticated implementation which leverages compilation and compiler

optimizations to future work.

3.7 Related Work

We compare Symphony to existing MPC languages and frameworks, expanding the

discussion from Section 3.1. Most of the data and analysis included in Table 3.3

and Table 3.4 comes from Hastings et al. [80]. Readers who want to learn even more

about existing MPC languages should consult their paper.

Table 3.3 gives an overview of the most popular MPC languages and frameworks.

The Protocol column indicates the protocol family supported by the language. GC

and MC indicate support for garbled circuit and multiparty circuit protocols re-

spectively. The Hy protocol family indicates that the language does not represent

67



Table 3.2: Gate counts (AND and XOR) of select benchmark programs. Input
Size for Hamming Dist., Bio. Matching, DB Analytics, and Edit Dist. is the length
of the input lists. For GCD, it is the maximum number of GCD iterations. Gate
counts were collected by modifying EMP to record AND or XOR gate execution.
Symphony uses EMP’s Integer interface where applicable, OblivC uses EMP’s Bit
interface (compiling integer operations to circuits).

OblivC Symphony ∆ (OblivC - Symphony)

Benchmark Input Size AND Gates XOR Gates AND Gates XOR Gates AND Gates XOR Gates
Hamming Dist. 10000 1249875 3159595 950000 2550000 299875 609595

20000 2499875 6319595 1900000 5100000 599875 1219595
30000 3749875 9479595 2850000 7650000 899875 1829595
40000 4999875 12639595 3800000 10200000 1199875 2439595
50000 6249875 15799595 4750000 12750000 1499875 3049595

Bio. Matching 100 2617868 6353496 2675500 8007000 -57632 -1653504
200 5235768 12706996 5351000 16014000 -115232 -3307004
300 7853668 19060496 8026500 24021000 -172832 -4960504
400 10471568 25413996 10702000 32028000 -230432 -6614004
500 13089468 31767496 13377500 40035000 -288032 -8267504

DB Analytics 60 4609304 9569553 4732457 10425422 -123153 -855869
70 6246968 12970159 6413597 14128242 -166629 -1158083
80 8133020 16886701 8349937 18393262 -216917 -1506561
90 10268008 21320663 10541477 23220482 -273469 -1899819
100 12651370 26270229 12988217 28609902 -336847 -2339673

GCD 500 2360091 6735821 2302192 6910016 57899 -174195
600 2832991 8085621 2762592 8291916 70399 -206295
700 3305891 9435421 3222992 9673816 82899 -238395
800 3778791 10785221 3683392 11055716 95399 -270495
900 4251691 12135021 4143792 12437616 107899 -302595

Edit Dist. 50 780882 1704539 637372 1779607 143510 -75068
80 2003142 4378936 1631872 4556407 371270 -177471
110 3790602 8291824 3085372 8614807 705230 -322983
140 6143262 13443100 4997872 13954807 1145390 -511707
170 9061122 19832759 7369372 20576407 1691750 -743648

68



Table 3.3:
Paper Protocol Parties Semi-Honest Malicious

EMP-toolkit [176] GC 2
Obliv-C [181] GC 2
ObliVM [112] GC 2
TinyGarble [167] GC 2
Wysteria [143] MC 2+
ABY [54] GC,MC 2
MOTION [36] GC,MC 2+
SCALE-MAMBA [5] Hy 2+
Sharemind [31] Hy 3
MPyC [15] MC 3+
PICCO [188] Hy 3+
Symphony - GC,MC 2+

programs as circuits and instead represents certain important operations (e.g. squar-

ing) with custom protocols. The Parties column indicates the number of supported

parties, and the Semi-Honest and Malicious columns indicate the adversary model

of the underlying protocols of the language.

In addition to the overview provided in Table 3.3, we also provide a more detailed

view of the features provided by each language. The Language column indicates the

programming language in which the framework is implemented. The Custom, Ex-

tension, and Library columns indicate if the MPC framework is a custom language,

language extension, or library respectively. For example, Wysteria and Symphony

each provide a custom source language in which MPC programs are written. In con-

trast, EMP is a C++ library and OblivC extends the gcc compiler toolchain. Finally,

the Domain column indicates whether the framework supports MPC over boolean

(B) circuits, arithmetic (A) circuits, or both.

EMP and Obliv-C EMP-toolkit [176] and Obliv-C [181] are two-party, garbled

circuit MPC frameworks written in C++ and C respectively. They are currently

among the fastest frameworks available for two-party MPC. These frameworks are

ideally suited for SIMD-style computation, since the “boilerplate” coordination for all

69



Table 3.4:
Language Custom Extension Library Domain

EMP-toolkit C++ B
Obliv-C OCaml,C C B
ObliVM Java B
TinyGarble C/C++ Verilog B
Wysteria OCaml B
ABY C++ B,A
MOTION C++ B,A
SCALE-MAMBA Python,C++ A
Sharemind C/C++ A
MPyC Python A
PICCO C/C++ C A
Symphony Haskell,Rust B,A

MPC programs (e.g. reading input, streaming gates) is handled inside the framework.

EMP and Obliv-C both have support for reactive MPC, enabling intermediate values

to be revealed for the purpose of optimization. These frameworks are well-suited

for applications that do not require coordination, such as hamming or naive private

set intersection, while requiring maximum efficiency. Applications like these do not

benefit from Symphony’s expressiveness and flexible coordination. In contrast, EMP

and Obliv-C would not be a good choice for applications that require various forms of

coordination. One example is an application with N � 2 input parties that performs

MPC over 2 compute parties before revealing to K < N output parties. Symphony

makes this coordination simple while still allowing the compute parties to engage in

a 2-party MPC protocol (e.g. by leveraging Symphony’s EMP backend).

TinyGarble and ObliVM TinyGarble [167] and ObliVM [112] are two-party, gar-

bled circuit MPC languages written in C++ and Java respectively. TinyGarble takes

a Verilog program and uses hardware circuit synthesis techniques to produce a boolean

circuit. ObliVM takes a custom Java-like source language and compiles it to a boolean

circuit. The ObliVM source language provides standard data types and operators (e.g.

fixed-width integers with arithmetic and logical operators). It also provides built-in

70



support for private indexing using Circuit ORAM []. A distinguishing feature of both

languages is their support for global, whole-program optimization. These languages

produce small, highly-optimized circuits which are smaller than the circuits produced

by frameworks like EMP and Obliv-C. All else being equal, these language are the

most efficient option because the cost of circuit compilation is not incurred at runtime

and the circuits produced are small. However, efficiency in practice may vary due to

differences in protocol backend and engineering. As with EMP and Obliv-C, these

languages are ideally suited for SIMD-style computation and are not an appropri-

ate choice for applications that require coordination. Finally, practitioners should be

aware that these are domain-specific languages which may lack certain features that

are required for a particular application.

ABY and MOTION ABY [54] (2-party) and MOTION [36] (N -party) are mixed

protocol MPC frameworks written in C++. Programs are written in C++ using

classes to represent standard data types and overloaded operators for secure oper-

ations. In contrast to EMP and Obliv-C, these frameworks allow encrypted values

to be converted between secret-shared and garbled representations to improve the

efficiency of MPC applications that mix boolean and arithmetic computation. Both

frameworks separate the circuit construction and circuit execution phases to achieve

optimal round complexity for secret-sharing protocols. This is beneficial for perfor-

mance, but it makes reactive MPC much more difficult since circuits must be con-

structed prior to evaluation. As a consequence, neither framework supports reactive

MPC. These frameworks are optimal for SIMD-style applications that additionally

contain a mix of Boolean and arithmetic operations and do not require optimization

through reactive MPC. In contrast, Symphony supports non-SIMD, reactive MPC

programs with mixed protocols.

71



SCALE-MAMBA SCALE-MAMBA [5] is an N -party, secret-sharing MPC lan-

guage written in Python and C++. It is one of the most mature MPC frameworks

available and supports both semi-honest and malicious security. Programs are written

either in a Python or Rust DSL and compiled down to SCALE bytecode. The SCALE

bytecode is designed to expose bytecode instructions that can be implemented effi-

ciently using hybrid (Hy) protocols. For example, there is a dedicated instruction

SQUARE for generating a pair of encrypted values (a, b) such that b = a2 mod p.

SCALE-MAMBA is best suited to applications that require malicious security among

N > 2 parties. While it does not provide any support for coordination tasks, it

does support output of secret shares. This makes it possible, albeit unpleasant and

error-prone, to implement coordination patterns by writing many SCALE-MAMBA

programs and orchestrating them with a general-purpose language. Symphony does

not currently have support for any maliciously secure backends, but the protocol

interface was designed with malicious security in mind.

Sharemind and MPyC Sharemind [31] (3-party) and MPyC [15] (N -party) are

honest-majority, secret-sharing MPC frameworks. In contrast to the other languages

discussed here, these frameworks operate in the honest-majority adversary model.

For example, Sharemind assumes only 1 out of the 3 parties will be corrupted. In

this setting, MPC can be computed much faster because the protocols need only rely

on primitives that are information-theoretically secure (e.g. symmetric encryption).

Sharemind has explicit support for input and output parties which delegate secure

computation to the 3 compute parties running the Sharemind MPC framework pro-

tocol. Its source language, SecreC, supports reactive MPC through a declassify

expression. Sharemind is ideally suited for MPC applications with large amounts of

data that require support for delegation but no other forms of coordination. Lan-

guages like Symphony should be preferred for applications that require more flexible

72



coordination or a stronger adversary model. The use cases for MPyC are similar, ex-

cept that it does not have explicit support for delegation but does support N > 3

parties.

PICCO PICCO [188] is an 3+-party, secret-sharing MPC language which extends

C. Like Obliv-C, it extends C with private data types and strives to support as much

of C as possible. For example, it supports operations on private floats. Like Share-

mind, it has explicit support for input, compute, and output parties. This provides

support for a limited kind of delegation. One unique feature of PICCO is a lightweight

syntax for denoting that loops over arrays of secrets should be executed concurrently.

By exposing concurrency in source programs and leveraging a threshhold (honest-

majority) protocol, PICCO was one of the fastest 3+ MPC framework at the time of

its publication. We are not sure how its performance compares today, but it has been

periodically updated since its release in 2013. PICCO is ideally suited for the same

kind of applications as Sharemind while supporting more than 3 compute parties.

Viaduct Viaduct [2] compiles a Java-like language to secure distributed programs,

which leverage cryptography, including MPC. Symphony supports richer coordina-

tion patterns than Viaduct (e.g., LWZ in Figure 3.1), due to its first-class principal

sets, bundles, and par blocks. Viaduct’s programming model is higher-level than

Symphony; computation/communication patterns are synthesized based on security

policies specified as IFC labels. It also supports cryptographic schemes beyond MPC

(e.g., commitments, zero-knowledge proofs). Viaduct has no result corresponding to

Symphony’s soundness guarantee (Section 3.4), but has specific means to specify

security policies, including those involving declassification and endorsement. Sym-

phony essentially takes an “ideal world” approach, relying on the programmer to

judge (using the ST semantics) that a program does not release too much.

73



Choreography Languages Symphony’s semantics of “generalized SIMD” bears

resemblance to that of choreography languages [50, 51, 137, 124]. Choreographic

programs are conceptually sequential, ensuring that send and receive operations

are always matched up by combining them into a single expression. Pirouette [82]

is a typed choreographic functional programming language which proves that the

distributed deployment of well-typed programs is deadlock free by design. Pirou-

ette is able to prove strong metatheoretic properties relating choreographies to their

distributed deployment due to its static typing and static party annotations.

74



Chapter 4

λObliv: A Language for

Probabilistically Oblivious

Computation

This chapter presents λObliv, a core language for oblivious computation, inspired by

ObliVM. It extends a standard language with primitives for securely generating and

using uniformly distributed random numbers. We prove that λObliv’s type system

guarantees probabilistic memory trace obliviousness (PMTO), i.e., that the distri-

bution of adversary-visible execution traces is independent of secret values. This

property generalizes the deterministic MTO property enforced by Liu, Hicks, and Shi

[108] and Liu et al. [111], which did not consider the use of randomness. In carrying

out this work, we discovered that the ObliVM type system is unsound, so an im-

portant contribution of λObliv is a design which achieves soundness without overly

restricting or complicating the language.

λObliv’s type system uses affine types and a new mechanism that we call probability

regions to track the probabilistic (in)dependence of values in the program. (Prob-

ability regions are missing in ObliVM, and their absence is the source of ObliVM’s

75



unsoundness.) We prove that λObliv enjoys PMTO by relating its semantics to a novel

mixed semantics whose terms operate on distributions directly, which makes stating

and proving the PMTO property much easier.

λObliv is expressive enough to type check interesting algorithms. We present the

implementation of a tree-based, non-recursive ORAM (NORAM) that type checks

in a straightforward extension of λObliv; we have implemented a type checker for

this extension. NORAM is a key component of state-of-the-art ORAM implementa-

tions [160, 169, 175] and other oblivious data structures [174], and to our knowledge

ours is the first implementation automatically verified to be oblivious. We addition-

ally show that recursive ORAM, built on NORAM, is possible but requires a few

more advanced (but standard) language features we have not implemented, including

region polymorphism, recursive and variant types, and existential quantification.

Finally, we have also experimented with implementing oblivious data structures

using our NORAM implementation. We conclude by providing evidence that oblivious

stacks (ostacks) don’t satisfy PMTO due to the possibility of information leakage

caused by overflow in the underlying NORAM.

4.1 Overview

This section first presents the threat model. Then it discusses deterministic oblivious

execution, considered by prior work. Finally, it sketches our novel type system for

enforcing probabilistic oblivious execution, which we develop in full in the rest of the

paper.

4.1.1 Threat Model

We assume a powerful adversary that can make fine-grained observations about a

program’s execution. In particular, we use a generalization of the program counter

76



(PC) security model [121]: The adversary knows the program being executed, and

can observe during execution the PC, the contents of memory, and memory access

patterns. Some secret memory contents may be encrypted (while public memory is

not) but all addresses used to access memory are still visible.

Consider an untrusted cloud provider using a secure processor, like SGX [84].

Reads/writes from/to memory can be directly observed, but secret memory is en-

crypted (using a key kept by the processor). The pattern of accesses, timing informa-

tion, and other system features (e.g., instruction cache misses) provide information

about the PC. Another setting is secure multi-party computation (MPC) using secret

shares [72]. Here, two parties simultaneously execute the same program (and thus

know the program and program counter), but certain values—the input values from

each party—are kept hidden from both using secret sharing.

By handling such a strong adversary, our techniques can also handle adversaries

with fewer capabilities, such as those that can observe memory traffic but not the

PC, or can make timing measurements but cannot observe the PC or memory.

4.1.2 Oblivious Execution

Our goal is to ensure memory trace obliviousness (MTO), which is a kind of nonin-

terference property [69, 150]. This property states that despite being able to observe

each address (of instructions and data) as it is fetched, and each public value, the

adversary will not be able to infer anything about input secret values.

We can formalize this idea as a small-step operational semantics σ; e −→t σ′; e′,

which states that an expression e in memory σ transitions to memory σ′ and ex-

pression e′ while emitting trace event t. Trace events include fetched instruction

addresses, public values, and addresses of public and secret values that are read and

written. (Secret values are not visible in the trace.) Under this model, MTO means

that running low-equivalent input states σ1; e1 and σ2; e2 will produce the exact same

77



1 B[0] ← s0
2 B[1] ← s1
3 ...
4 let s = ... (∗ secret ∗)
5 let r = B[s] (∗ leaks s ∗)

1 B[0] ← s0
2 B[1] ← s1
3 ...
4 let s = ... (∗ secret ∗)
5 let s0’ = B[0]
6 let s1’ = B[1]
7 let r , _ = mux(s,s1’,s0’)

1 let sk = flip ()
2 let s0’, s1’ = mux(castS(sk),s1,s0)
3 B[0] ← s0’
4 B[1] ← s1’
5 ...
6 let s = ... (∗ secret ∗)
7 let s’ = xor(s,sk)
8 let r = B[castP(s’)]

(a) Leaky program (b) Deterministic MTO program (c) Probabilistic MTO program

Figure 4.1: Code examples

memory trace, along with low-equivalent output states. Two states are low equivalent

if they agree on the code and public values (but may differ on secret values). More

formally, MTO states that if σ1; e1 ∼ σ2; e2 and σ1; e1 −→t σ′1; e′1 then there exists

σ′2; e′2 s.t. σ2; e2 −→t σ′2; e′2 and σ′1; e′1 ∼ σ′2; e′2, where ∼ denotes low-equivalence.

To illustrate how revealing addresses can leak information, consider the program

in Figure 4.1(a). Here, we assume array B’s contents are secret, and thus invisible

to the adversary. Variables s0, s1, and s are secret (i.e., encrypted) inputs. The

assignments on the first two lines are safe since we are just storing secret values in

the secret array. The problem is on the last line, when the program uses s to index B.

Since the adversary is able to see which address was used (in trace t), they can infer

s.

The program in Figure 4.1(b) fixes the problem. It reads both secret values from

B, and then uses the mux to select the one indicated by s, storing it in r. The semantics

of mux is that if the first argument is 1 it pairs and returns the second two arguments

in order, otherwise it swaps them. To the adversary this appears as a single program

instruction, and so nothing is learned about s via branching. Moreover, nothing is

learned from the address trace: We always unconditionally read both elements of B,

no matter the value of s.

While this approach is secure, it is inefficient: To read a single secret value in B

this code reads all values in B, to hide which one is being selected. If B were an array

of size N , this approach would turn an O(1) operation into an O(N) operation.

78



4.1.3 Probabilistic Oblivious Execution

To improve performance while retaining security, the key is to employ randomness.

In particular, the client can randomly generate and hold secret a key, using it to map

logical addresses used by the program to physical addresses visible to the adversary.

The program in Figure 4.1(c) illustrates the idea, hinting at the basic approach to

implementing an ORAM. Rather than deterministically store s0 and s1 in positions

0 and 1 of B, respectively, the program scrambles their locations according to a coin

flip, sk, generated by the call to flip, and not visible to the adversary. Using the mux

on line 2, if sk is 1 then s0 and s1 will be copied to s0’ and s1’, respectively, but if sk

is 0 then s0 and s1 will be swapped, with s0 going into s1’ and s1 going into s0’. (The

castS coercion on sk is a no-op, used by the type system; it will be explained in the

next subsection.) Values s0’ and s1’ are then stored at positions 0 and 1, respectively,

on lines 3 and 4. When the program later wishes to look up the value at logical index

s, it must consult sk to retrieve the mapping. This is done via the xor on line 7. Then

s’ is used to index B and retrieve the value logically indicated by s.

In terms of memory accesses, this program is more efficient: It reads B only once,

not twice. One can argue that more work is done overall, but as we will see in

Section 4.4, this basic idea does scale up to build recursive ORAMs with access times

of O(logc N) for some c (rather than O(N)).

sk=0 sk=1

s=0 0,1,0 0,1,1

s=1 0,1,1 0,1,0

Figure 4.2: Traces

This program is also secure: no matter the value of s, the

adversary learns nothing from the address trace. Consider

Figure 4.2 which tabulates the four possible traces (the mem-

ory indexes used to access B) depending on the possible values

of s and sk. This table makes plain that our program is not

deterministically MTO. Looking at column sk=0, we can see

that a program that has s=0 may produce trace 0,1,0 while a

program that uses s=1 may produce trace 0,1,1; MTO programs may not produce

79



different traces when using different secrets.

But this is not actually a problem. Assuming that sk = 0 and sk = 1 are equally

likely, we can see that address traces 0,1,0 and 0,1,1 are also equally likely no matter

whether s = 0 or s = 1. More specifically, if we assume the adversary’s expectation

for secret values is uniformly distributed, then after conditioning on knowledge of the

third memory access, the adversary’s expectation for the secret remains unchanged,

and thus nothing is learned about s. This probabilistic model of adversary knowledge

is captured by a probabilistic variant of MTO. In particular, the probability of any

particular trace event t emitted by two low-equivalent programs should be the same

for both programs, and the resulting programs should also be low-equivalent. More

formally: If σ1; e1 ∼ σ2; e2 then Pr[σ1; e1 −→t σ′1; e′1] = q implies Pr[σ2; e2 −→t

σ′2; e′2] = q and σ′1; e′1 ∼ σ′2; e′2.

4.1.4 λObliv: Obliviousness by Typing

The main contribution of this paper is λObliv, an expressive language whose type

system guarantees that programs are probabilistically MTO. λObliv’s type system’s

power derives from two key features: affine treatment of random values, and proba-

bility regions to track probabilistic (in)dependence (i.e., correlation) between random

values that could leak information when a value is revealed. Together, these features

ensure that each time a random value is revealed to the adversary—even if the value

interacted with secrets, like the secret memory layout of an ORAM—it is always

uniformly distributed, which means that its particular value communicates no secret

information.

Affinity In λObliv, public and secret bits are given types bitP and bitS respectively,

and coin flips are given type flip. Our formalism uses bits for simplicity; it is easy

to generalize to (random fixed-width) integers, which is done in our implementation.

80



1 let sx, sy = (flip () , flip () )
2 let sz, _ = mux (s,sx,sy)
3 output (castP(sz)) (∗ OK ∗)
4 output (castP(sx)) (∗ Bad ∗)

1 let sx, sy = (flip () ,flip () )
2 let sk, _ = mux(castS(sx),sx,sy)
3 let sz, _ = mux(s,sk,flip())
4 output (castP(sz)) (∗ Bad ∗)

(a) Leak by multiple revelation (b) Leak due to probabilistic dependence

Figure 4.3: Example leaky programs (precluded by λObliv type system)

Values of flip type are, like secret bits of type bitS, invisible to the adversary. But a

flip can be revealed by using castP to convert it to a public bit, as is done on line 8 of

Figure 4.1(c) to perform a (publicly visible) array index operation.

The type system aims to ensure that a flip value is always uniformly distributed

when it is revealed. The uniformity requirement implies that each flip should be re-

vealed at most once. Why? Because the second time a flip is revealed, its distribution

is conditioned on prior revelations, meaning the each outcome is no longer equally

likely. To see how this situation could end up leaking secret information, consider the

example in Figure 4.3(a). Lines 1–3 in this code are safe: we generate two coin flips

that are invisible to the adversary, and then store one of them in sz depending on

whether the secret s is 1 or not. Revealing sz at line 3 is safe: regardless of whether sz

contains the contents of sx or sy, the fact that both are uniformly distributed means

that whatever is revealed, nothing can be learned about s. However, revealing sx on

line 4, after having revealed sz, is not safe. This is because seeing two ones or two

zeroes in a row is more likely when sz is sx, which happens when s is one. So this

program violates PMTO.

To prevent this problem, λObliv’s type system treats values of type flip affinely,

meaning that each can be used at most once. The read of sx on line 2 consumes that

variable, so it cannot be used again on the problematic line 4. Likewise, flip variable

sk is consumed when passed to xor on line 7 of Figure 4.1(c), and s’ is consumed when

revealed on line 8.

Unfortunately, a purely affine treatment of flips would preclude useful algorithms.

81



In particular, notice that line 2 of Figure 4.1(c) uses sk as the guard of a mux. If doing

so consumed sk, line 7’s use of sk would fail to type check. To avoid this problem,

λObliv relaxes the affinity constraint on flips passed to castS. In effect, programs can

make many secret bitS copies of a flip, and compute with them, but only the original

flip can ultimately be revealed.

It turns out that this relaxed treatment of affinity is insufficient to ensure PMTO.

The reason is that we can now use non-affine copies of a coin to make a flip’s distribu-

tion non-uniform when it is revealed. To see how, consider the code in Figure 4.3(b).

This code flips two coins, and then uses the mux to store the first coin flip, sx, in sk

if sx is 1, else to store the second coin flip there. Now sk is more likely to be 1 than

not: Pr[sk = 1] = 3
4
while Pr[sk = 0] = 1

4
. On line 3, the mux will store sk in sz if

secret s is 1, which means that if the adversary observes a 1 from the output on line

4, it is more likely than not that s is 1. The same sort of issue would happen if we

replaced line 1 from Figure 4.1(c) with the first two lines above: when the program

looks up B[castP(s’)] on line 8, if the adversary observes 1 for the address, it is more

likely that s is 0, and vice versa if the adversary observes 1. Notice that we have not

violated affinity here: no coin flip has been used more than once (other than uses of

castS which side-step affinity tracking). The problematic correlation in Figure 4.3(b)

is incorrectly allowed by ObliVM [112], and is the root of its unsoundness.

Probability regions λObliv’s type system addresses the problem of probabilistic

correlations leading to non-uniform distributions using a novel construct we call prob-

ability regions, which are static names that represent sets of coin flips, reminiscent

of a points-to location in alias analysis [57]. We have elided the region name in our

examples so far, but normally programmers should write flip
ρ() for flipping a coin in

region ρ, which then has type flip
ρ. Bits derived from flips via castS carry the region

of the original flip, so bit types also include a region ρ.

82



Regions form a partial order, and the type system enforces an invariant that each

flip labeled with region ρ is probabilistically independent of all bits derived from flips

at regions ρ′ when ρ′ @ ρ. Then, the type system will prevent problematic correlations

arising among bits and flips, in particular via the mux and xor operations, in a way that

could threaten uniformity. We can see regions at work in the problematic example

above: the region of the secret bit castS(sx) is the same region as sx, since castS(sx) was

derived from sx. As such, there is no assurance of probabilistic independence between

the guard and the branch; indeed, when conditioning on castS(sx) to return sx, the

output will not be uniform. On the other hand, if the guard of a mux is a bit in region

ρ and its branches are flips in region ρ′ where ρ @ ρ′, then the guard is derived from

a flip that is sure to be independent of the branches, so the uniformity of the output

is not threatened. This kind of provable independence is a critical piece of our Tree

ORAM implementation in Section 4.4.

4.2 Formalism

This section presents the syntax, semantics, and type system of λObliv. The following

section proves that λObliv’s type system is sufficient to ensure PMTO.

4.2.1 Syntax

Figure 5.4 shows the syntax for λObliv. The term language is expressions e. The set

of values v is comprised of (1) base values such as variables x (included to enable

a substitution-based semantics) and recursive function definitions funy(x:τ).e where

the function body may refer to itself using variable y; and (2) connectives from the

expression language e which identify a subset of expressions which are also values,

such as pairs 〈v, v〉 with type τ × τ .

Expressions also include bit literals b` (of type bit
⊥
` ) which are either O or I and

83



` ∈ label ::= P | S public and secret
(where P @ S) security labels

ρ ∈ R ::= . . . probability region
b ∈ B ::= O | I bits

x, y ∈ var ::= . . . variables
v ∈ val ::= x variable values

| funy(x:τ).e function values
| 〈v, v〉 tuple values

τ ∈ type ::= bit
ρ
` non-random bit

| flip
ρ secret uniform bit

| ref(τ) reference
| τ × τ tuple
| τ → τ function

e ∈ exp ::= v value expressions
| b` bit literal
| flip

ρ() coin flip in region
| cast`(v) cast flip to bit
| mux(e, e, e) atomic conditional
| xor(e, e) bit xor
| if(e){e}{e} branch conditional
| ref(e) reference creation
| read(e) reference read
| write(e, e) reference write
| 〈e, e〉 tuple creation
| let x = e in e variable binding
| let x, y = e in e tuple elimination
| e(e) fun. application

Figure 4.4: λObliv Syntax (source programs)

84



annotated with their security label `.1 A security label ` is either S (secret) or P

(public). Values with the label S are invisible to the adversary. Bit types include this

security label along with a probability region ρ. The expression flip
ρ() produces a

flip value, i.e., a uniformly random bit of type flip
ρ. The annotation assigns the coin

to region ρ. Coin flips are semantically secret, and have limited use; we can compute

on one using mux or xor, cast one to a public bit via castP, or cast to a secret bit via

castS. To simplify the type system, casts only apply to values, however cast`(e) could

be used as shorthand for let x = e in cast`(x).

The expression mux(e1, e2, e3) unconditionally evaluates e2 and e3 and returns their

values as a pair in the given order if e1 evaluates to I, or in the opposite order if it

evaluates to O. This operation is critical for obliviousness because it is atomic. By

contrast, normal conditionals if(e1){e2}{e3} evaluate either e2 or e3 depending on e1,

never both, so the branch taken is evident from the trace. The components of tuples

e constructed as 〈e1, e2〉 can be accessed via let x1, x2 = e in ... λObliv also has normal

let binding, function application, and means to manipulate mutable reference cells.

λObliv captures the key elements that make implementing oblivious algorithms

possible, notably: random and secret bits, trace-oblivious multiplexing, public reve-

lation of secret random values, and general computational support in tuples, condi-

tionals and recursive functions. Other features can be encoded in these, e.g., general

numbers and operators on them can be encoded as tuples of bits, and arrays can

be encoded as tuples of references (read/written using (nested) conditionals). Our

prototype interpreter implements these things directly.

4.2.2 Semantics

Figure 4.5 presents a monadic, probabilistic small-step semantics for λObliv programs.

The top of the figure contains some new and extended syntax. Values (and, by
1Bit literals are not values to create symmetry with the alternative, mixed semantics in the next

section.

85



ι ∈ loc ≈ N ref locations
v ∈ val ::= . . . extended. . .

| bitv`(b) bit value
| flipv(b) uniform bit value
| locv(ι) location value

σ ∈ store , loc ⇀ val store
e ∈ exp ::= . . . extended. . .
ς ∈ config ::= σ, e configuration
t ∈ trace ::= ε | t·ς trace
E ∈ context ::= . . . eval contexts. . .

stepM ∈ N× config ⇀M(config)

stepM(N, σ, b`) = return(σ, bitv`(b))
stepM(N, σ, flipρ()) = do b← bit(N) ; return(σ, flipv(b))
stepM(N, σ, cast`(flipv(b))) = return(σ, bitv`(b))
stepM(N, σ, mux(bitv`1 (b1), bitv`2 (b2), bitv`3 (b3))) = return(σ, 〈bitv`(cond(b1, b2, b3)), bitv`(cond(b1, b3, b2))〉)

where ` , `1 t `2 t `3
stepM(N, σ, mux(bitv`(b1), flipv(b2), flipv(b3))) = return(σ, 〈flipv(cond(b1, b2, b3)), flipv(cond(b1, b3, b2))〉)
stepM(N, σ, if(bitv`(b)){e1}{e2}) = return(σ, cond(b, e1, e2))
stepM(N, σ, xor(bitv`(b1), flipv(b2))) = return(σ, flipv(b1 ⊕ b2))
stepM(N, σ, ref(v)) = return(σ[ι 7→ v], refv(ι)) where ι /∈ dom(σ)
stepM(N, σ, read(refv(ι))) = return(σ, σ(ι))
stepM(N, σ, write(refv(ι), v)) = return(σ[ι 7→ v], σ(ι))
stepM(N, σ, let x = v in e) = return(σ, [v/x]e)
stepM(N, σ, let x1, x2 = 〈v1, v2〉 in e) = return(σ, [v1/x1][v2/x2]e)
stepM(N, σ, (funy(x : τ). e

v1

)(v2)) = return(σ, [v1/y][v2/x]e)

stepM(N, σ,E[e]) = do σ′, e′ ← stepM(N, σ, e) ; return(σ′, E[e′])
stepM(N, σ, v) = return(σ, v)

nstepM ∈ N× config ⇀M(trace)

nstepM(0, ς) = return(ε·ς)
nstepM(N + 1, ς) = do t·ς′ ← nstepM(N, ς) ; ς′′ ← stepM(N + 1, ς′) ; return(t·ς′·ς′′)

x̃ ∈ D(A) ,

{
f ∈ A→ R

∣∣∣∣∣ ∑x∈A f(x) = 1

}
Pr [x̃ =̇ x] , x̃(x) D(A) ∈ set

return ∈ D(A) bind ∈ D(A)× (A→ D(B))→ D(B) bit ∈ N→ D(B)

return(x) , λx′.

{
1 if x = x′

0 if x 6= x′
bind(x̃, f) , λy.

∑
x
f(x)(y)x̃(x) bit(N) , λb. 1/2

Figure 4.5: λObliv Semantics

86



extension, expressions) are extended with forms for bit values bitv`(b), flip values

flipv(b), and reference locations locv(ι); these do not appear in source programs. Stores

σ map locations to values. Stores are paired with expressions to form configurations

ς. A sequence of configurations arising during an evaluation is collected in a trace t.

We define evaluation contexts E (not shown) in the style of Felleisen and Hieb [61]

to enforce a left-to-right, call-by-value evaluation strategy.

The semantics is defined using an abstract probability monad M. Below the

semantics we define the standard “denotational” discrete probability monad D [68,

140]. The standard semantics for our language occurs whenM = D, and we leaveM

a parameter so we can instantiate the semantics to a new monad in the next section.

In the probability monad D, the return operation constructs a point distribution,

and the bind operation encodes the law of total probability, i.e., constructs a marginal

distribution from a conditional one. We only use proper distributions in the sense

that the combined mass of all elements sums to 1. We do not denote possibly non-

terminating programs directly into the monad, and therefore do not require the use

of computable distributions [87] or sub-probability distributions [122]—we use the

monad only to denote distributions of configurations which occur after a finite number

of small-step transitions, which is total.

The definition of stepM describes how a single configuration advances in a single

probabilistic step, yielding a distribution of resulting configurations. The definition

uses Haskell-style do notation as the usual notation for bind. Starting from the

bottom, we can see that a value v advances to itself (more on why, below) and

evaluating a redex e within a context E steps the former and packages its result back

with the latter, as usual. The cases for let binding, pair deconstruction, and function

application are standard, using a substitution-based semantics. Likewise, rules for

creating, reading, and writing from references operate on the store σ as usual.

Moving to the first case, we see that literals b` evaluate in one step to bit values.

87



A flip
ρ() expression evaluates to either flipv(I) or flipv(O) as determined by bit(N),

which for the monad D yields 1/2 probability for each outcome. (The monad D does

not use the N parameter in its definition of bit(N), but a later monad will.) The cast`

case converts a flip to a similarly-labeled bit value. The next few cases use the three-

argument metafunction cond(b,X, Y ), which returns X if b is I, and Y otherwise.

The two mux cases operate in a similar way: they return the second two arguments

of the mux in order when the first argument is bitv`(I), and in reverse order when it

is bitv`(O). The security label of the result is the join of the labels of all elements in

involved. (This is not needed for flip values, since these are always fixed to be secret.)

The case for if also uses cond in the expected manner. The case for xor permits xor-ing

a bit with a flip, returning a flip.

The bottom of the figure defines function nstepM(N, ς). It composesN invocations

of stepM starting at ς to produce a distribution of traces t.

Both stepM and nstepM are partial in the usual way: They are undefined (“stuck”)

for nonsensical programs like locv(ι)(bitv`(b)) (treating a reference location as if it were

a function). The λObliv type system, explained next, rejects such programs while also

ensuring PMTO.

4.2.3 Type System

Figure 4.6 defines the type system for λObliv source programs as rules for judgment

Γ ` e : τ ; Γ′, which states that under type environment Γ expression e has type τ ,

and yields residual type environment Γ′. We discuss typing configurations, including

non-source program values, in the next section. Type environments map variables to

either types τ or inaccessibility tags •, which are used to enforce affinity of flips. We

discuss the three key features of the type system—affinity, probability regions, and

information flow control—in turn.

88



•
τ ∈ t

•
ype ::= τ | • (where τ @ •)

κ ∈ kind ::= U | A (where U @ A)
Γ ∈ tcxt , var ⇀ t

•
ype

(Γ1 t Γ2)(x) , Γ1(x) t Γ2(x)

K ∈ type→kind

K(bitρ` ) , K(τ1→τ2) , K(ref(τ)) , U K(flipρ) , A K(τ1×τ2) , K(τ1)tK(τ2)

Γ ` e : τ ; Γ
VarU
K(Γ(x)) = U

Γ(x) = τ

Γ ` x : τ ; Γ

VarA
K(Γ(x)) = A

Γ(x) = τ

Γ ` x : τ ; Γ[x 7→•]

Bit

Γ ` b` : bit
⊥
` ; Γ

Flip

Γ ` flip
ρ() : flip

ρ ; Γ

Cast-S
Γ ` x : flip

ρ ;

Γ ` castS(x) : bit
ρ
S ; Γ

Cast-P
Γ ` x : flip

ρ ; Γ′

Γ ` castP(x) : bit
⊥
P ; Γ′

If
Γ′ ` e1 : τ ; Γ′′1

Γ ` e : bit
⊥
P ; Γ′ Γ′ ` e2 : τ ; Γ′′2

Γ ` if(e){e1}{e2} : τ ; Γ′′1 t Γ′′2

Mux-Bit
Γ ` e1 : bit

ρ1
`1

; Γ′

Γ′ ` e2 : bit
ρ2
`2

; Γ′′ ` = `1t`2t`3
Γ′′ ` e3 : bit

ρ3
`3

; Γ′′′ ρ = ρ2tρ3
Γ ` mux(e1, e2, e3) : bit

ρ
`×bit

ρ
` ; Γ′′′

Mux-Flip
Γ ` e1 : bit

ρ1
`1

; Γ′ ρ1 @ ρ2
Γ′ ` e2 : flip

ρ2 ; Γ′′ ρ1 @ ρ3
Γ′′ ` e3 : flip

ρ3 ; Γ′′′ ρ = ρ2uρ3
Γ ` mux(e1, e2, e3) : flip

ρ×flip
ρ ; Γ′′′

Xor-Flip
Γ ` e1 : bit

ρ1
`1

; Γ′

Γ′ ` e2 : flip
ρ2 ; Γ′′ ρ1 @ ρ2

Γ ` xor(e1, e2) : flip
ρ2 ; Γ′′

Ref
Γ ` e : τ ; Γ′

Γ ` ref(e) : ref(τ) ; Γ′

Read
K(τ) = U

Γ ` e : ref(τ) ; Γ′

Γ ` read(e) : τ ; Γ′

Write
Γ ` e1 : ref(τ) ; Γ′ Γ′ ` e2 : τ ; Γ′′

Γ ` write(e1, e2) : τ ; Γ′′

Tup
Γ ` e1 : τ1 ; Γ′ Γ′ ` e2 : τ2 ; Γ′′

Γ ` 〈e1, e2〉 : τ1 × τ2 ; Γ′′

Fun
Γ+ = Γ ] [x 7→τ1, y 7→(τ1→τ2)]

Γ+ ` e : τ2 ; Γ+′ Γ+′ = Γ ] [x 7→ , y 7→ ]

Γ ` funy(x : τ1). e : τ1 → τ2 ; Γ

App
Γ ` e1 : τ1 → τ2 ; Γ′

Γ′ ` e2 : τ1 ; Γ′′

Γ ` e1(e2) : τ2 ; Γ′′

Let
Γ ` e1 : τ1 ; Γ′ Γ′+ = Γ′ ] [x 7→τ1]

Γ′+ ` e2 : τ2 ; Γ′′+ Γ′′+ = Γ′′ ] [x 7→ ]

Γ ` let x = e1 in e2 : τ2 ; Γ′′

Let-Tup
Γ ` e1 : τ1 × τ2 ; Γ′ Γ′+ = Γ′ ] [x1 7→τ1, x2 7→τ2]

Γ′+ ` e2 : τ3 ; Γ′′+ Γ′′+ = Γ′′ ] [x1 7→ , x2 7→ ]

Γ ` let x1, x2 = e1 in e2 : τ3 ; Γ′′

Figure 4.6: λObliv Type System (source programs)

89



Affinity To enforce non-duplicability, when an affine variable is used by the pro-

gram, its type is removed from the residual environment. Figure 4.6 defines kinding

metafunction K that assigns a type either the kind universal U (freely duplicatable)

or affine A (non-duplicatable). Bits, functions, and references (but not their contents,

necessarily) are always universal, and flips are always affine. A pair is considered

affine if either of its components is. Rule VarU in Figure 4.6 types universally-kinded

variables; the output environment Γ is the same as the input environment. Rule

VarA types an affine variable by marking it • in the output environment. This rule

is sufficient to rule out the first problematic example in Section 4.1.4.

Rules Cast-S and Cast-P permit converting flips to bits via the castS and castP

coercions, respectively. The first converts a flip
ρ to a bit

ρ
S and does not make its

argument inaccessible (it returns the original Γ) while the second converts to a bit
⊥
P

and does make it inaccessible (returning Γ′). The type system is enforcing that any

random number is made adversary-visible at most once; secret copies are allowed

because they are never revealed.

References may contain affine values, but references themselves are universal.

Rather than track the affinity of aliased contents specifically, the Read rule disallows

reading out of a reference cell whose contents are affine. Since the write operation

returns the old contents of the cell, programs can see the existing contents of any

reference by first writing in a valid replacement [12].

The Fun rule ensures that no affine variables in the defining context are consumed

within the body of the function, i.e., they are not captured by its closure. We write

Γ ] [x 7→ , y 7→ ] to split a context into a part that binds x and y and a part Γ

that binds the rest; the Γ part is returned, dropping the x and y bindings. Both Let

and Let-Tup similarly remove their bound variables.

Finally, note that different variables could be made inaccessible in different branches

of a conditional, so If types each branch in the same initial context, but then joins

90



their the output contexts; if a variable is made inaccessible by one branch, it will be

inaccessible in the joined environment. Contexts are joined pointwise, and the join

of two pointed types •τ 1 t
•
τ 2 is • when either •τ i is •, the same as •τ i when both •τ i are

equal and not •, and undefined otherwise.

Information flow The type system aims to ensure that bits b` whose security label

` is secret S cannot be learned by an adversary. Bit types bit
ρ
` include the security label

`. The rules treat types with different labels as distinct, preventing so-called explicit

flows. For example, the Write rule prevents assigning a secret bit (of type bit
ρ
S) to

a reference whose type is ref(bitρP). Likewise, a function of type bit
ρ
P → τ cannot be

called with an argument of type bit
ρ
S, per the App rule. In our implementation we

relax App (but not Write, due to the invariance of reference types) to allow public

bits when secrets are expected; this is not done here just to keep things simpler.

The rules also aim to prevent implicit information flows. A typical static informa-

tion flow type system [150] would require the type of the conditional’s guard to be less

secret than the type of what it returns; e.g., the guard’s type could be bit
ρ
S but only

if the final type τ is secret too. However, in λObliv we must be more restrictive: rule

If requires the guard to be public since the adversary-visible execution trace reveals

which branch is taken, and thus the truth of the guard. Branching on secrets must

be done via mux. Notice that rule Mux-Bit sets the label ` of the each element of the

returned pair to be the join of the labels on the guard and the remaining components.

As such, if the guard was secret, then the returned results will be. The Mux-Flip rule

always returns flips, which are invisible to the adversary, so the guard can be secret

or public.

Probability regions. A probability region ρ appears on both bit and flip types.

The region is a static name for a collection of flip values and secret bit values that may

be derived from them. A flip value is associated with a region ρ when it is created, per

91



rule Flip. Rule Cast-S ascribes the region ρ from the input flip
ρ to the output type

bit
ρ
S, tracking the flip value(s) from which the secret bit value was possibly derived.

Per rule Bit, bit literals have probability region ⊥, as do public bits produced by

castP, per rule Cast-P.

Regions form a lattice. The type system maintains the invariant that flips at region

ρ are probabilistically independent of all secret bits in regions ρ′ when strictly ordered

ρ′ @ ρ. Strict ordering is used because it is irreflexive and asymmetric. The semantic

property of interest—probabilistic independence—is likewise irreflexive (except for

point distributions), and asymmetry restricts future mux operations between values

in one direction only; we say more below.

Consider the Mux-Flip rule. If a secret bit is typed at region ρ1 and a flip value

at region ρ2, and ρ1 6@ ρ2, then it may be that the values are correlated, and a

mux involving the values may produce flips that are non-uniform. The Mux-Bit rule

returns outputs whose region is the join of the regions of the branches, and the Mux-

Flip rule returns outputs whose region is the meet of the regions of the branches.

This indicates that the result of the mux is only independent of flips that are jointly

independent of ρ2 and ρ3. The use of join for bits and meet for flips follows from the

semantic property of the ordering @.

Because freshly generated random bits are always independent of each other, the

programmer is free to choose any regions when generating them via flip
ρ() expressions.

However, once chosen, the ordering establishes an invariant which constrains the order

in which mux operations can occur subsequently in the program. Requiring strict

region ordering for mux operations is enough to reject the example from the end of

Section 4.1.4, as it could produce a non-uniform coin sk. We recast the example below,

labeled (a), using regions ρ1 @ ρ2.

92



1 let sx, sy = (flip ρ1() ,flip ρ2() )
2 let sk, _ = mux(castS(sx),sx,sy)

(a) Incorrect example

1 let sx = flip ρ1() in
2 let sy, sz = mux(castS(sx),flipρ2(),flip

ρ2() )

(b) Correct example

The type checker first ascribes types flip
ρ1 and flip

ρ2 to sx and sy, respectively, accord-

ing to rules Let-Tup, Flip, and Tup. It uses Cast-S to give castS(sx) type bit
ρ1
S and

leaves sx accessible so that VarA can be used to give it and sy types flip
ρ1 and flip

ρ2 ,

respectively (then making them inaccessible). Rule Mux-Flip will now fail because

the independence conditions do not hold. In particular, the region ρ1 of the guard is

not strictly less than the region ρ1 of the second argument, i.e., ρ1 6@ ρ1. The program

labeled (b) above is well-typed. Here, the bit in the guard has region ρ1, the region

of the two flips is ρ2 and ρ1 @ ρ2 as required by Mux-Flip. It is easy to see that both

sy and sz are uniformly distributed and independent of sx.

Rule Xor-Flip permits xor’ing a secret with a flip, returning a flip, as long as the

secret’s region and the flip’s region are well ordered, which preserves uniformity.

We might be tempted not to order regions but instead maintain an invariant that

flips and bits in distinct regions are independent. This turns out to not work. While

at the outset a fresh flip value is independent of all other values in the context of

the program, the region ordering is needed to ensure that mux operations will only

occur in “one direction.” E.g., if two fresh flip values are created x = flip
ρ1() and

y = flip
ρ2 , it is true that x and y are mutually independent. Thus it would seem

reasonable that mux(castS(x), y, . . .) and mux(castS(y), x, . . .) should both be well typed.

While they are both safe in isolation, the combination is problematic. Consider the

results of each mux—they are both flip values, and they are both valid to reveal using

castP individually. However, the resulting values are correlated (revealing one tells

you information about the distribution of the other), which violates the uniformity

guarantee of all castP results. By ordering the regions, we are essentially promising

to only allow mux operations like this in one direction but not the other, and therefore

93



uniformity is never violated for revealed flip values. For example, by requiring ρ1 @ ρ2

we allow the first mux above but not the second.

Type safety λObliv is type safe in the traditional sense, i.e., that a well-typed

program will not get stuck. However, our interest is in the stronger property that

type-safe λObliv programs do not reveal secret information via inferences an adversary

can draw from observing their execution. We state and prove this stronger property

in the next section.

4.3 Probabilistic Memory Trace Obliviousness

The main metatheoretic result of this paper is that λObliv’s type system ensures

probabilistic memory trace obliviousness (PMTO). This section defines this property,

and then walks through its proof.

4.3.1 What is PMTO?

Figure 4.7 presents a model obs of the adversary’s view of a computation as a new

class of values, expressions and traces that “hide” sub-expressions considered to be

secret (written •). Secret bit expressions, secret bit values, and secret flip values all

map to •. Compound values, expressions, stores, traces etc. call obs in recursive

positions as expected.

Probabilistic memory trace obliviousness (PMTO), stated formally below, holds

when observationally equivalent configurations induce distributions of traces that are

themselves observationally equivalent after N steps, for any N .2

Proposition 4.3.1 (Probabilistic Memory Trace Obliviousness (PMTO)).
2Noninterference properties are often stated with a non-empty store. Our notion of expression

equivalence is simpler, and supports low-equivalent expressions that pre-populate such a store, so
there is no loss of generality.

94



•
v ∈ v

•
alue ::= . . . | •

•
e ∈ e

•
xp ::= . . . | •

•
σ ∈ st

•
ore , loc ⇀ v

•
alue

•
ς ∈ co

•
nfig ::=

•
σ,
•
e

•
t ∈ tr

•
ace ::= ε |

•
t·•ς

obs ∈ (exp→ e
•
xp)× (store→ st

•
ore)× (config→ co

•
nfig)× (trace→ tr

•
ace)

obs(x) , x

obs(funy(x : τ). e) , funy(x : τ). obs(e)

obs(bitvP (b)) , bitvP (b)

obs(bitvS(b)) , •
obs(flipv(b)) , •
obs(locv(ι)) , •
obs(bP ) , bP
obs(bS) , •
obs(flipρ()) , flip

ρ()

obs(cast`(v)) , cast`(obs(v))

obs(mux(e1, e2, e3)) , mux(obs(e1), obs(e2), obs(e3))

obs(xor(e1, e2)) , xor(obs(e1), obs(e2))

obs(if(e1){e2}{e3}) , if(obs(e1)){obs(e2)}{obs(e3)}
obs(ref(e)) , ref(obs(e))

obs(read(e)) , read(obs(e))

obs(write(e1, e2)) , write(obs(e1), obs(e2))

obs(〈e1, e2〉) , 〈obs(e1), obs(e2)〉
obs(let x = e1 in e2) , let x = obs(e1) in obs(e2)

obs(let x, y = e1 in e2) , let x, y = obs(e1) in obs(e2)

obs(e1(e2)) , obs(e1)(obs(e2))

obs(σ) , {ι 7→obs(v) | ι 7→v∈σ}
obs(σ, e) , obs(σ), obs(e)

obs(ε) , ε

obs(t·ς) , obs(t)·obs(ς)

õbs(t̃) , do t← t̃ ; return(obs(t)) õbs ∈ D(trace)→ D(tr
•
ace)

Figure 4.7: Adversary observability

95



If: e1 and e2 are closed source expressions, ` e1 : τ , ` e2 : τ and obs(e1) = obs(e2)

Then: (1) nstepD(N,∅, e1) and nstepD(N,∅, e2) are defined

And: (2) õbs(nstepD(N,∅, e1)) = õbs(nstepD(N,∅, e2)).

(1) ensures that information is not leaked due to lack of progress, i.e., if either program

gets “stuck,” and that the main property (2) applies to all related, well-typed source

expressions e1 and e2.

4.3.2 Proof Approach

t̂2

e2 t̂1

e1 t̂2

t̂1

=d̂·ê

nstepI

nstepI

=d̂·ê

≈∼

nstepI

nstepI=obs

≈=obs

Figure 4.8: Proof Approach as a Diagram

The remainder of this section works

through our proof of PMTO (Theo-

rem 4.3.1) which we complete in the fol-

lowing steps: (1) we develop a new prob-

ability monad called “intensional dis-

tributions” which simplifies reasoning

about conditional independence between

probabilistic values (§4.3.4); (2) we de-

fine an alternative syntax, semantics and

type system for λObliv programs called

the “mixed semantics” which uses inten-

sional distributions to simplify inductive

reasoning about the adversary’s view of probabilistic secret values (§4.3.3, §4.3.5); (3)

we show that evaluation in the mixed semantics corresponds exactly with the ground

truth semantics through simulation lemmas; (4) we prove that key invariants about

probabilistic values are ensured by well-typed mixed terms, and that terms remain

well-typed throughout evaluation—this establishes PMTO for the mixed semantics;

and (5) we demonstrate PMTO for the ground truth semantics as a consequence of

96



lemmas established in steps (3–4) and a soundness lemma relating equivalent distri-

butions of mixed terms to adversary-equivalent distributions of standard terms.

In Figure 4.8 we summarize the structure of this proof approach in a diagram. On

the left are two programs e1 and e2 which are equal modulo adversary observation

=obs, which translates to obs(e1) = obs(e2) as sketched in Proposition 4.3.1, and

means e1 and e2 agree on public values and program structure but may differ in

secrets. The rightward moving arrows represent running each program in either the

ground truth semantics stepI—the same semantics from Figure 4.5 but instantiated

with the intensional distribution monad I—and the mixed semantics stepI . Each

of these executions result in intensional distributions of standard and mixed traces,

respectively. In step (3) above we prove Lemma 4.3.0.1 to show these distributions are

equivalent according to =d̂·ê which uses d̂·ê to project distributions of mixed traces

to distributions of standard traces. In step (4) above we prove Lemma 4.3.0.4 to

establish PMTO for the mixed semantics; i.e., that the resulting distributions of

mixed traces are equivalent modulo an underlying low-equivalence relation ≈∼. In

step (5) we prove Lemma 4.3.0.5, which combines results from (3–4) to establish

PMTO for the standard semantics (instantiated with I)—the resulting distributions

of standard traces are equivalent modulo equality of adversary observations, notated

≈=obs
. The last step of PMTO (Theorem 4.3.1) is not shown: Lemma 4.3.0.2 proves

via simulation that the intensional distribution monad I corresponds with the usual

denotational probability monad presented in Section 5.2.

4.3.3 Mixed Semantics

An intuitive approach to proving Proposition 4.3.1 is to prove that a single-step

version of it holds for stepD, and then use that fact in an inductive proof over nstepD.

Unfortunately, proving the single-step version quickly runs into trouble. Consider a

source program castP(flipρ()) which steps to each of the expressions castP(flipv(I)) and

97



step ∈ N× config ⇀ I(config)

step(N, σ, b`) , return(σ, bitv`(return(b)))

step(N, σ, flipρ()) , return(σ, flipv(bit(N)))

step(N, σ, castS(flipv(b̂))) , return(σ, bitvS(b̂))

step(N, σ, castP (flipv(b̂))) , do b← b̂ ; return(σ, bitvP (return(b)))

step(N, σ, mux(bitv`1(b̂1), bitv`2(b̂2), bitv`3(b̂3))) , return(σ, 〈bitv`(ĉond(b̂1, b̂2, b̂3)),

bitv`(ĉond(b̂1, b̂3, b̂2))〉)
where ` , `1 t `2 t `3

step(N, σ, mux(bitv`(b̂1), flipv(b̂2), flipv(b̂3))) , return(σ, 〈flipv(ĉond(b̂1, b̂2, b̂3)),

flipv(ĉond(b̂1, b̂3, b̂2))〉)
step(N, σ, xor(bitv`1(b̂1), flipv(b̂2))) , return(σ, flipv(b̂1 ⊕̂ b̂2))

step(N, σ, if(bitv`(b̂)){e1}{e2}) , do b← b̂ ; return(σ, cond(b, e1, e2))

step(N, σ, ref(v)) , return(σ[ι 7→ v], refv(ι)) where ι /∈ dom(σ)

step(N, σ, read(refv(ι))) , return(σ, σ(ι))

step(N, σ, write(refv(ι), v)) , return(σ[ι 7→ v], σ(ι))

step(N, σ, let x = v in e) , return(σ, e[v/x])

step(N, σ, let x1, x2 = 〈v1, v2〉 in e) , return(σ, e[v1/x1][v2/x2])

step(N, σ, (funy(x : τ). e
v1

)(v2)) , return(σ, e[v1/y][v2/x])

step(N, σ,E[e]) , do σ′, e′ ← step(N, σ, e) ; return(σ′, E[e′])

step(N, σ, v) , return(σ, v)

nstep ∈ N× config ⇀ I(trace)

nstep(0, ς) , return(ε·ς)
nstep(N + 1, ς) , do t·ς ′ ← nstep(N, ς) ; ς ′′ ← step(N + 1, ς ′) ; return(t·ς ′·ς ′′)

Figure 4.9: Mixed Language Semantics, where b̂ ∈ I(B) is a distributional bit value
(see text)

castP(flipv(O)) with probability 1/2. These expressions are observationally equivalent—

the adversary’s view of each is castP(•). For single-step PMTO to be satisfied, each of

these terms must step to an equivalent distribution. Unfortunately, they do not: The

first produces a point distribution of the expression bitvP(I) and the second produces

a point distribution of the expression bitvP(O), which are not observationally the same.

To address this problem, we define an alternative mixed semantics which embeds

distributional bit values directly into (single) traces. Instead of the semantics of flipρ()

producing two possible outcomes, in the mixed semantics it produces just one: a single

distributional value flipv(b̂) where the b̂ represents either I or O with equal probability.

98



Doing this is like treating flip
ρ() expressions lazily, and lines up (mixed) traces with

the adversary’s view •.

The mixed semantics amends the syntax of flipv and bitv` to be distributional (i.e.,

they contain b̂ rather than just b). Other values from the standard semantics’ syntax

(top of Figure 4.5) are unchanged. As such, a distribution of pairs of bit values (say)

is represented as pair of distributional bit values. To allow values inside the pair

to be correlated, we represent them using what we call intensional distributions—

intensional distributions are written I(A) and discussed in the next subsection.

The mixed semantics is shown in Figure 4.9. The mixed semantics step function

step(N, σ, e) maps a configuration, ς , σ, e to an intensional distribution of config-

urations I(config). Mixed semantics expressions (and values, etc.) are underlined

to distinguish them from the standard semantics, and operations on distributional

values are hatted.

Most of the cases for the mixed semantics are structurally the same as the stan-

dard semantics. The key differences are the handling of flip
ρ() and cast`(v). For the

first, the standard semantics samples from the fresh uniform distribution immediately,

while the mixed semantics produces a single uniform distributional value. This dis-

tributional value is sampled at the evaluation of castP , which matches the adversary’s

view.

A secret literal will produce a point distribution on that literal. The semantic

operations for if, mux and xor are lifted monadically to operate over distributions of

secrets, e.g., b̂1 ⊕̂ b̂2 , do b1 ← b̂1 ; b2 ← b̂2 ; return(b1 ⊕ b2). Other operations are as

usual, e.g., let expressions and tuple elimination reduce via substitution and are not

lifted to distributions.

99



4.3.4 Capturing Correlations with Intensional Distributions

As mentioned, a distributional bit value b̂ can be viewed as a lazy interpretation

of a call flip
ρ(). To be sound, this interpretation must properly model conditional

probabilities between variables.

Example Consider the program let x = flip
ρ() in 〈castP(x), castP(x)〉.3After two eval-

uation steps in the standard semantics, the program will be reduced to either 〈castP(flipv(I)), castP(flipv(I))〉

or 〈castP(flipv(O)), castP(flipv(O))〉, with equal probability. The standard rules for castP

would then yield (equally likely) 〈bitvP(I), bitvP(I)〉 and 〈bitvP(O), bitvP(O)〉. In the

mixed semantics this program will evaluate in two steps to 〈castP(flipv(b̂)), castP(flipv(b̂))〉

where b̂ is a distributional value. At this point, the mixed semantics rule for castP

uses monadic bind to sample b̂ to yield some b (which is either I or O) and return it

as a point distribution. The semantics needs to “remember” the bit chosen for the

first castP so that when it samples the second, the same bit is returned. Sampling

independently would yield incorrect outcomes such as 〈bitvP(O), bitvP(I)〉.

Intensional distributions As shown in the upper left of Figure 4.10, an intensional

distribution I(A) over a set A is a binary tree with elements a of A at the leaves.

It represents a distribution as a function from input entropy—a sequence of coin

flips—to a result in A. Each node ‹x̂1 x̂2› in the tree represents two sets of worlds

determined by the result of a coin flip: the left side x̂1 defines the worlds in which the

coin was heads, and the right side x̂2 defines those in which it was tails. Each level

of the tree represents a distinct coin flip, with the earliest coin flip at the root, and

later coin flips at lower levels. The height of a tree represents an upper bound on the

number of coin flips upon which a distribution’s values depends. Each path through

the tree is a possible world.
3Although this program violates affinity and would be rejected for that reason by our type system,

its runtime semantics is well-defined and serves as a helpful demonstration.

100



a ∈ A
x̂ ∈ I(A) ::= a | ‹x̂ x̂›
p ∈ rpath ::= · | H© :: p | T© :: p

[ ] ∈ I(A)× rpath ⇀ A

a[p] , a

‹x̂1 x̂2›[ H© :: p] , x̂1[p]

‹x̂1 x̂2›[ T© :: p] , x̂2[p]

support ∈ I(A)→ ℘(A)

support(x̂) , {a | x̂[p] = a}

π1 ∈ I(A)→ I(A)

π1(a) , a

π1(‹x̂1 x̂2›) , x̂1

π2 ∈ I(A)→ I(A)

π2(a) , a

π2(‹x̂1 x̂2›) , x̂2

Pr
[
x̂ =̇ x

∣∣ ŷ =̇ y
]
,

Pr[x̂=̇x,ŷ=̇y]
Pr[ŷ=̇y]

height ∈ I(A)→ N
height(a) , 0

height(‹x̂1 x̂2›) , 1 + max(height(x̂1),height(x̂2))

length ∈ rpath→ B
length(·) , 0

length( :: p) , 1 + length(p)

bit ∈ N→ I(B)

bit(0) , ‹I O›
bit(N + 1) , ‹bit(N) bit(N)›

return ∈ A→ I(A)

return(a) , a

bind ∈ I(A)× (A→ I(B))→ I(B)

bind(a, f) , f(a)

bind(‹x̂1 x̂2›, f) , ‹bind(x̂1, π1◦f) bind(x̂2, π2◦f)›

Pr
[
x̂ =̇ x

]
,
|{p | length(p)=h,x̂[p]=x}|

2h

where h , max(height(x̂))

Figure 4.10: Intensional Distributions

101



For example, ‹‹3 4› ‹3 5›› is an intensional distribution of numbers in a scenario

where two coins have been flipped. There are four possible worlds. ‹3 4› is the world

where the 0th coin came up heads. 3 is the outcome in the world where both coins

came up heads, while 4 is the outcome where the 0th coin was heads but the 1th coin

was tails. ‹3 5› is the world where the 0th coin came up tails, with 3 the outcome

when the 1th coin was heads, and 5 when it was tails.

We can derive the probabilities of particular outcomes by counting the number of

paths that reach them. In the example, 3 has probability 1
2
, while 4 has probability 1

4
,

and 5 has probability 1
4
. Importantly, intensional distributions have enough structure

to represent correlations: We can see that we always get a 3 when the 1th coin

flip is heads, regardless of whether the 0th coin flip was heads or tails. Conversely,

the distribution ‹‹3 3› ‹4 5›› ascribes outcomes 3, 4, and 5 the same probabilities

as ‹‹3 4› ‹3 5››, but represents the situation in which the we always get 3 when 0th

coin flip is heads. An equivalent representation of ‹‹3 3› ‹4 5›› is ‹3 ‹4 5››. Although

the 3 only appears once, it is logically extended to the larger sub-tree ‹3 3› for the

purposes of counting. To compute a probability, all paths are considered of a fixed

length equal to the height of the tree, and shorter sub-trees are extended to copy

leaves that appear at shorter height. Trees are equal = when they are syntactically

equal modulo these extensions.

In the figure, a path p through the tree is a sequence of coin flip outcomes, either

H© or T©. The operation x̂[p] follows a path p through the tree x̂ going left on H©

and right on T©. When a leaf a is reached, it is simply returned, per the case a[p];

if p happens to not be ·, returning a is tantamount to extending the tree logically,

as mentioned above. Computing the probability of an outcome x for intensional

distribution x̂ is shown at the bottom of the figure. As with the example above, it

counts the number of paths that have outcome x, scaled by the total possible worlds.

The probability of an event involving multiple distributions is similar. Conditional

102



probability works as usual.

Finally, looking at the middle right of the figure, consider the monadic operations

used by the semantics in Figure 4.9. The bit(N) operation produces a uniform distri-

bution of bits following the Nth coin flip, where the outcomes are entirely determined

by the Nth flip, i.e., independent of the flips that preceded it, which appear higher

in the tree. return(a) simply returns a—this corresponds to a point distribution of

a since it is the outcome in all possible worlds (recall a[p] = a for all p). Lastly,

bind(x̂, f) applies f to each possible world in x̂, gathering up the results in an inten-

sional distribution tree that is of equal or greater height to that of x̂; the height could

grow if f returns a tree larger than x̂, and bind(x̂, f)[p] = f(x̂[p])[p] for all paths p.

Example revisited Reconsider the example let x = flip
ρ() in 〈castP(x), castP(x)〉.

According to the mixed semantics starting with N = 0, flipρ() evaluates to flipv(‹I O›),

which is then (as precipitated by nstep) substituted for x in the body of the let,

producing 〈castP(flipv(‹I O›)), castP(flipv(‹I O›))〉. Now we apply the context rule for

E[e] where E is 〈[], castP(flipv(‹I O›))〉 and e is castP(flipv(‹I O›)). The rule invokes

step on the latter, which performs do b ← ‹I O› ; return(σ, bitvP (return(b))) per the

rule for castP. Per the definitions of bind and return, this will return the intensional

distribution of configurations ‹(σ, bitvP (I)) (σ, bitvP (O))›. Back to the context rule, its

use of bind will re-package up these possibilities with E:

‹(σ, 〈bitvP (I), castP(flipv(‹I O›))〉) (σ, 〈bitvP (O), castP(flipv(‹I O›))〉)›

In this distribution of configurations there are two worlds—the left configuration

occurs when the 0th coin flip is heads, and right when it is tails. Inside of each of

these configurations is a distributional value flipv(‹I O›), where once again the left

side is due to the coin flip being heads, and the right side being tails. Both are

relative to the same coin flip. As such, there are two “unreachable” paths in the inner

103



trees: the right-branch of the left distributional value, and the left branch of the right

distributional value, shown here with bullets:

‹(σ, 〈bitvP (I), castP(flipv(‹I •›))〉) (σ, 〈bitvP (O), castP(flipv(‹• O›))〉)›

The next step of the computation will force the distributional value to be I in the

left branch and O in the right branch. Here’s how. First, the definition of nstep is a

bind on the above distribution of configurations with step as the function f passed

to bind. The definition of bind constructs a new distribution tree which calls step

on the left configuration, and then takes the left branch (π1) of the tree that comes

back, and likewise for the right configuration and the right branch that comes back

(π2). Here step will invoke cast and context rules similarly as before, returning a

two-element tree with bitvP (I) on the left and bitvP (O) on the right. These occurrences

of π1 and π2 “pick” the left (I case) and right (O case), respectively, resulting in the

final configuration ‹(σ, 〈bitvP (I), bitvP (I)〉) (σ, 〈bitvP (O), bitvP (O)〉)›

Simulation The concept of “unreachable” paths in a distributional value is captured

by a projection operation which “flattens” a distribution of mixed terms (which have

distributional values) into a distribution of standard terms (which do not have distri-

butional values). This projection will (1) discard unreachable paths of distributional

values, and (2) corresponds to evaluation in the standard semantics instantiated with

the intensional distribution monad.

Projection is defined in Figure 4.11. The definition is a straightforward use of bind

to recursively flatten embedded distributional values. In our example, the projection

of the mixed term before the step shows what is left after discarding the unreachable

distribution elements:

d̂‹(σ, 〈bitvP (I), castP(flipv(‹I O›))〉) (σ, 〈bitvP (O), castP(flipv(‹I O›))〉)›ê

= ‹(σ, 〈bitvP (I), castP(flipv(I))〉) (σ, 〈bitvP (O), castP(flipv(O))〉)›

104



d e ∈ (exp→ I(exp))× (store→ I(store))× (config→ I(config))× (trace→ I(trace))

dxe , return(x)

dlocv(ι)e , return(locv(ι))

db`e , return(b`)

dflipρ()e , return(flipρ())

dfuny(x : τ). ee , do e← dee ; return(funy(x : τ). e)

dbitv`(b̂)e , do b← b̂ ; return(bitv`(b))

dflipv(b̂)e , do b← b̂ ; return(flipv(b))

dcast`(v)e , do v ← dve ; return(cast`(v))

dmux(e1, e2, e3)e , do e1 ← de1e ; e2 ← de2e ; e3 ← de3e ; return(mux(e1, e2, e3))

dxor(e1, e2)e , do e1 ← de1e ; e2 ← de2e ; return(xor(e1, e2))

dif(e1){e2}{e3}e , do e1 ← de1e ; e2 ← de2e ; e3 ← de3e ; return(if(e1){e2}{e3})
dref(e1)e , do e1 ← de1e ; return(ref(e1))

dread(e1)e , do e1 ← de1e ; return(read(e1))

dwrite(e1, e2)e , do e1 ← de1e ; e2 ← de2e ; return(write(e1, e2))

d〈e1, e2〉e , do e1 ← de1e ; e2 ← de2e ; return(〈e1, e2〉)
dlet x = e1 in e2e , do e1 ← de1e ; e2 ← de2e ; return(let x = e1 in e2)

dlet x, y = e1 in e2e , do e1 ← de1e ; e2 ← de2e ; return(let x, y = e1 in e2)

de1(e2)e , do e1 ← de1e ; e2 ← de2e ; return(e1(e2))

d∅e , return(∅) d{ι 7→ v} ] σe , do v ← dve ; σ ← dσe ; return({ι 7→ v} ] σ)

dσ, ee , do σ ← σ ; e← e ; return(σ, e) dεe , return(ε) dt·ςe , do t← t ; ς ← ς ;
return(t·ς)

d̂t̂ê , do t← t̂ ; dte d̂ ê ∈ I(trace)→ I(trace)

Figure 4.11: Mixed Semantics Projection

105



and where the RHS corresponds exactly to the step of computation using the standard

semantics.

We prove that the projected, mixed semantics simulates the standard semantics.

Lemma 4.3.0.1 (Simulation (Mixed)). If e is a source expression, then dnstep(N,∅, e)e =

nstepI(N,∅, e).

To relate to “ground truth”, we also prove that the standard semantics using

intensional distributions I simulates the standard semantics using the denotational

probability monad D.

Lemma 4.3.0.2 (Simulation (Intensional)). Pr [nstepI(N,∅, e) =̇ t] = Pr [nstepD(N,∅, e) =̇ t].

4.3.5 Mixed Semantics Typing

Our type system aims to ensure that castP will produce I and O with equal probability,

meaning neither outcome leaks information. We establish this invariant in the PMTO

proof as a consequence of type preservation for mixed terms. The mixed term typ-

ing judgment extends typing of source-program expressions (Figure 4.6) with some

additional elements, and considers non-source values.

The judgment has the form Ψ,Φ,Σ ` ς : τ,Ψ, and is shown at the bottom of

Figure 4.12. Here, Σ is a store context, which maps store locations to types; it is used

to type the store σ in rules Store-Cons and LocV as usual. Φ represents trace history

which encodes the exact sequence of evaluation steps taken to reach the present one.

The type system reasons about the probability of distributional values conditioned on

this trace history having occurred. The Ψ is an fbset, which is a technical device used

to collect all distributional bit values b̂ that appear in ς. Per the top of the figure, the

fbset is a pair (ΨF ,ΨB), where ΨF is a flipset containing those b̂ that appear inside

of flip values, and ΨB is a bitset containing those b̂ inside bit values. The latter is a

map from a region ρ to a set of bit values in that region. The Ψ to the right of the

106



ΨF∈flipset , ℘(I(B)) ΨB∈bitset , R→℘(I(B)) Ψ∈fbset ::= ΨF ,ΨB Φ∈history ::= ς̂ =̇ ς

(ΨF
1 ,Ψ

B
1 ) ] (ΨF

2 ,Ψ
B
2 ) , (ΨF

1 ]ΨF
2 ), (ΨB

1 ∪ΨB
2 )[

x̂ ⊥⊥ ŷ
∣∣ ẑ =̇ z

] M⇐⇒ ∀x, y. Pr
[
x̂ =̇ x, ŷ =̇ y

∣∣ ẑ =̇ z
]

=

Pr
[
x̂ =̇ x

∣∣ ẑ =̇ z
]

Pr
[
ŷ =̇ y

∣∣ ẑ =̇ z
]

Flip-Value
Pr
[
b̂ =̇ I

∣∣∣ Φ
]

= 1/2

[
b̂ ⊥⊥ ΨF ,ΨB({ρ′ | ρ′ @ ρ})

∣∣∣ Φ
]

(ΨF ,ΨB),Φ ` b̂ : flip
ρ

Ψ,Φ ` b̂ : flip
ρ

BitV-P

Ψ,Φ,Σ,Γ ` bitvP (return(b)) : bit
⊥
P ; Γ,∅,∅

BitV-S

Ψ,Φ,Σ,Γ ` bitvS(b̂) : bit
ρ
S ; Γ,∅, {ρ 7→ {b̂}}

FlipV
Ψ,Φ ` b̂ : flip

ρ

Ψ,Φ,Σ,Γ ` flipv(b̂) : flip
ρ ; Γ, {b̂},∅

LocV
Σ(ι) = τ

Ψ,Φ,Σ,Γ ` locv(ι) : τ ; Γ,∅,∅

· · ·

Ref
Ψ,Φ,Σ,Γ ` e : τ ; Γ′,Ψ′

Ψ,Φ,Σ,Γ ` ref(e) : ref(τ) ; Γ′,Ψ′

Tup
Ψ ]Ψ2,Φ,Σ,Γ ` e1 : τ1 ; Γ′,Ψ1

Ψ ]Ψ1,Φ,Σ,Γ
′ ` e2 : τ2 ; Γ′′,Ψ2

Ψ,Φ,Σ,Γ ` 〈e1, e2〉 : τ1 × τ2 ; Γ′′,Ψ1 ]Ψ2
· · ·

Store-Empty

Ψ,Φ,Σ ` ∅ ; ∅,∅

Store-Cons
Ψ ]Ψσ,Φ,Σ,∅ ` v : Σ(ι) ; ∅,Ψv

Ψ ]Ψv,Φ,Σ,∅ ` σ ; Ψσ

Ψ,Φ,Σ ` {ι 7→ v} ] σ ; Ψv ]Ψσ
Ψ,Φ,Σ ` σ ; Ψ

Config
Ψ ]Ψe,Φ,Σ ` σ ; Ψσ Ψ ]Ψσ,Φ,Σ,∅ ` e : τ ; ∅,Ψe

Ψ,Φ,Σ ` σ, e : τ ; Ψσ ]Ψe
Φ,Σ ` ς : τ,Ψ

Figure 4.12: Mixed Semantics Typing

107



turnstile contains all of the flip and secret bit values in the configuration itself, while

the Ψ to the left of it captures those in the evaluation context and store.

The expression typing judgment Ψ,Φ,Σ,Γ ` e : τ ; Γ,Ψ is similar but includes

variable contexts Γ as in the source-program type rules. We can see secret bit values

being added to ΨB in the BitV-S rule, where ΨB is the singleton map from ρ, the

region of the bit value, to {b̂}, while ΨF is empty. Conversely, in the FlipV rule ΨB

is empty while ΨF is the singleton set {b̂}. We can see the maintenance of Ψ to the

left of the turnstile in the Tup rule. Recursively typing the pair’s left component e1

yields fbset Ψ1 to the right of the turnstile, which is used when typing e2, and vice

versa; the Store-Cons rule similarly handles the store and the expression. The rules

combine two fbsets using the ] operator. Per the top of the figure, it acts as disjoint

union for flipsets but normal union for bitsets, mirroring the handling of affine and

universal variables.

The key invariants ensured by typing are defined by the judgment Ψ,Φ ` b̂ : flip
ρ,

which is invoked by expression-typing rule FlipV and defined in the Flip-Value rule.

This judgment establishes that in a configuration reached by an execution path Φ the

flip value b̂ is uniformly distributed (first premise), and that it can be typed at region

ρ because it is properly independent of the other secret bit values in smaller regions

ΨB({ρ′ | ρ′ @ ρ}) and flip values ΨF (second premise). Conditional independence is

defined in the figure in the usual way—the overbar notation represents some sequence

of random variables and/or condition events.

We prove a type preservation lemma to establish that these invariants are pre-

served.

Lemma 4.3.0.3 (Type Preservation). If e is a closed source expression, t·ς ∈

support(nstep(N,∅, e)) and ` e : τ , then there exists Σ and Ψ s.t. Φ,Σ ` ς :

τ,Ψ where Φ , [nstep(N,∅, e) =̇ t·ς].

When a configuration takes any number of steps, the resulting configuration is

108



well-typed under new trace history Φ. Updating Φ is not arbitrary—it is necessary to

satisfy a proof obligation as used in a later lemma (PMTO (Mixed)). The new Σ and

Ψ are new store typings (in case new references were allocated), and the new fbset (in

case flip values were either created or consumed). The proof of preservation uses a

sublemma which shows typesafe substitution; this lemma makes crucial use of affinity

to ensure that aggregated Ψ1 ]Ψ2 in contexts for compound expressions (e.g., pairs)

are truly disjoint, which will be true only because the substitution is guaranteed to

only occur in Ψ1, Ψ2, or neither, but not both.

The key property established by type preservation is that flip values remain well-

typed. Recall that the first premise of Flip-Value—uniformity—is crucial in estab-

lishing that it is safe to reveal the flip via the castP coercion to a public bit. The

second premise is crucial in re-establishing the first premise after some other flip has

been revealed. When another flip is revealed, this information will be added to trace

history, and it is not true that uniformity conditioned on the current history Φ auto-

matically implies uniformity in the new history Φ′; this must be proved. Because the

second premise establishes independence from all other flips, we are able reestablish

the first premise via the second after some other flip is revealed to complete the proof.

Note that we also prove a progress lemma to ensure that no well-typed evaluation

reaches a stuck state; along with preservation, this lemma establishes standard type

soundness for λObliv under the mixed semantics.

4.3.6 Proving PMTO

To prove PMTO (Proposition 4.3.1) we first prove a variant of it for the mixed

semantics, and then apply a few more lemmas to show that PMTO holds for the

standard semantics too.

Lemma 4.3.0.4 (PMTO (Mixed)). If e1 and e2 are closed source expressions, `

e1 : τ , ` e2 : τ and e1 ∼ e2 , then (1) nstep(N,∅, e1) and nstep(N,∅, e2) are

109



defined, and (2) nstep(N,∅, e1) ≈∼ nstep(N,∅, e2).

The judgment e1 ∼ e2 in the premise indicates that the two expressions are low

equivalent, meaning that the adversary cannot tell them apart. The definition of this

judgment is basically standard (given in the Appendix) and we can easily prove that

it is implied by obs(e1) = obs(e2) for source expressions. Mixed PMTO establishes

equivalence of the distributions of mixed configurations modulo low-equivalence. We

define two distributions as equivalent modulo an underlying equivalence relation as

follows:

x̂1 ≈∼A x̂2
M⇐⇒ ∀x.

( ∑
x′|x′∼Ax

Pr [x̂1 =̇ x′]

)
=

( ∑
x′|x′∼Ax

Pr [x̂2 =̇ x′]

)

This definition captures the idea that two distributions are equivalent when, for any

equivalence class within the relation (represented by element x), each distribution as-

signs equal mass to the whole class. For Mixed PMTO, the relation ∼A is instantiated

to low equivalence, which we write just as ∼. When the underlying relation is equal-

ity, we recover the usual notion of distribution equivalence: equality of probability

mass functions.

We prove PMTO (Mixed) by induction over steps N and then unfolding the

monadic definition of nstep(N + 1). The induction appeals to a single-step PMTO

sublemma. (As mentioned in Section 4.3.3, such a proof would not have been possible

in the standard semantics.) To use this one-step PMTO sublemma, it must be that

the configuration at N steps is well-typed w.r.t. current trace history Φ; we get this

well-typing w.r.t. Φ from Type Preservation, discussed earlier.

A final major lemma in our PMTO proof is a notion of soundness for low-

equivalence on mixed terms, in particular, that equivalence modulo ∼ for distribu-

tions of mixed traces implies equality of adversary-observable traces in the standard

semantics:

110



Lemma 4.3.0.5 (Low-equivalence Soundness). If t̂1 ≈∼ t̂2 then ôbs(d̂t̂1ê) ≈= ôbs(d̂t̂2ê).

In this lemma we use a lifting of obs for intensional distributions, written ôbs; its

definition is identical to õbs in Figure 4.7 but with the intensional distribution monad

I instead of D.

We now complete the full proof of PMTO. The general strategy is to first con-

sider two well-typed source programs which are equal modulo adversary observation.

Next, these programs are transported to the mixed language, where low-equivalence

is established. The programs are executed in the mixed semantics, and PMTO for

mixed terms is applied, which appeals to type preservation. Due to PMTO for mixed

terms, the results will be low-equivalent, and via soundness of low-equivalence, we

conclude equality of distributions modulo adversary observation after projection. The

final steps are via simulation lemmas, showing that this final projection lines up with

executions of the initial programs in the standard semantics.

111



Theorem 4.3.1 (PMTO).

If: e1 and e2 are closed source expressions, ` e1 : τ , ` e2 : τ and obs(e1) = obs(e2)

Then: (1) nstepD(N,∅, e1) and nstepD(N,∅, e2) are defined

And: (2) õbs(nstepD(N,∅, e1)) = õbs(nstepD(N,∅, e2)).

Proof.

(1) is by Progress (see appendix). (2) is by the following:

obs(e1) = obs(e2)

=⇒ e1 ∼ e2 * Induction +

=⇒ nstep(N,∅, e1) ≈∼ nstep(N,∅, e2) * PMTO (Mixed) +

=⇒ ôbs(d̂nstepI(N,∅, e1)ê) ≈= ôbs(d̂nstepI(N,∅, e2)ê) * Low-equivalence Soundness +

=⇒ ôbs(nstepI(N,∅, e1)) ≈= ôbs(nstepI(N,∅, e2)) * Simulation (Mixed) +

=⇒ õbs(nstepD(N,∅, e1)) = õbs(nstepD(N,∅, e2)) * Simulation (Intensional) +

A detailed proof is given in the Appendix C.2.1.

4.4 Implementation and Tree-based ORAMCase Study

We have implemented an interpreter and type checker for a language that extends

λObliv in several (straightforward) ways. First, we add natural number literals and

random values; these can be encoded in λObliv as fixed-width tuples of bitv and flipv

respectively. We write them annotated with a security level, e.g., 2 S or 2 P, and write

rnd R () to generate a random number at region R. We write natS to be the type of a

secret number in region ⊥; natP for the type of a public number; R natS for the type

of a secret number in the region R. We also write R rnd to be the type of a random

112



natural number in the region R. Second, we add arrays; in our code examples, we

write a[n] and a[n] ← e to read and write array elements. An array of length N can

be encoded in λObliv as an N -tuple of references, using nested conditional expressions

to access the correct (public) index and swapping out affine contents, as must be

done with references. Finally, we add records, which are like tuples but permit field

accessor notation, r . x; if x is affine, doing so only consumes the field x rather than

consuming all of r.

To demonstrate the expressiveness of λObliv, we have used our extended language

to program (and type check) a series of interesting oblivious algorithms. Section 4.4.2

presents a modern non-recursive, tree-based ORAM (NORAM), which is a key com-

ponent of state-of-the-art ORAM implementations [160, 169, 175]. To our knowledge,

ours is the first implementation automatically verified to be oblivious. Building on

this NORAM, Section 4.4.3 presents a full recursive ORAM. Type checking it re-

quires some advanced (but standard) language features we have not implemented,

including region polymorphism, recursive and variant types, and existential quantifi-

cation. Finally, the appendix presents a mostly complete implementation of oblivious

stacks (ostacks), a kind of oblivious data structure [174] that builds on top of NO-

RAM. The λObliv type system is not powerful enough to reason that ostacks’ use of

NORAM is safe; the region ordering requirement is too strong. Sections 5.8 and ??

discuss integrating λObliv’s type system with a general-purpose logic as a way to po-

tentially overcome this limitation. Our type checker and all the examples are online

at https://github.com/plum-umd/oblivml.

4.4.1 Tree-based ORAM: Overview

A complete ORAM implements the same API as a standard array: A read operation

takes an ORAM oram and index i as arguments, and returns data d stored at that

index; a write operation updates oram at i with a given d. We assume that the ORAM

113

https://github.com/plum-umd/oblivml


contents and the indexes are not visible to the adversary (i.e., they are encrypted).

A simple implementation is a Trivial ORAM. It consists of an array of N “buckets,”

each of which consists of an index i and data d. A read at index j iterates over the

entire array and retrieves the data associated with j, if present. The data is returned

when the iteration is complete (or a default value is returned, if j is not present).

Since each read touches every bucket, nothing is leaked about i. Of course, this is very

inefficient—the read takes time O(N) where N is the size of the array. (The code

example in Figure 4.1(b) does something similar.)

A tree-based ORAM [160, 169, 175] offers better performance. It breaks its im-

plementation into two parts. The first is a tree-like structure noram for storing the

actual data blocks; this is called a non-recursive ORAM (or NORAM) for reasons

that will be clear in the next subsection. The second part is the position map pm that

maps logical data block indexes to position tags that indicate the block’s position in

the tree.

NORAMs do not implement read and write operations directly; instead they im-

plement two more-primitive operations called noram_readAndRemove (or noram_rr, for

short) and noram_add. The former reads the designated data block from noram and

also removes it, while the latter adds the given data. Putting it all together, a Tree

ORAM read from index i works in four steps: (1) retrieve tag t from pm[i]; (2) call

noram_rr noram i t to remove the data d at i using t to assist the lookup; (3) update pm[i]

with a randomly generated tag t2; and (4) call noram_add noram i t2 d to add back data

d, but with the new tag, before returning it. An ORAM write has the same four steps,

but in step (4) we add the provided data, rather than the original. (A fifth step in

both cases, eviction, will be explained later.) As with the example in Figure 4.1(c),

non-recursive ORAM combines randomness (and its tree structure) to avoid having

O(N) cost for the entire map: Under the right assumptions, these operations take

time O(log(N)).

114



The position tags mask the relationship between a logical index and the location

of its corresponding data block in the tree. As blocks are read and written, they

are shuffled around in the tree, and their new locations are recorded in the position

map. As such, two ORAM read operations to the same index i will involve different

access patterns in a way that leaks nothing about the index assuming lookups and

updates to the position map itself leak no information. This assumption could be

satisfied by making the position map a Trivial ORAM, but then we would lose our

performance benefits. In the next subsection we simply assume we have a leak-free

position map and in Section 4.4.3 we show how one can be obtained by efficiently

storing the position map recursively in the NORAM tree structure itself.

4.4.2 Tree-based Non-recursive ORAM

Now we present the details of our implementation of tree-based NORAM in λObliv.

Data definition The type of a tree-based NORAM is defined as follows:
type block = { is_dummy : R bitS ; idx : R natS ; tag : R natS ; data : (R ∨ R’ rnd) ∗ (R

∨ R’ rnd) }
type bucket = block array
type noram = bucket array

A noram is an array of 2N − 1 buckets which represents a complete tree in the style

of a heap data structure: for the node at index i ∈ {0, ..., 2N − 2}, its parents, left

child, and right child correspond to the nodes at index (i− 1)/2, 2i + 1, and 2i + 2,

respectively. Each bucket is an array of blocks, each of which is a record where the

data field contains the data stored in that bucket. The other three components of

the block are secret; they are (1) the is_dummy bit indicating if the block is dummy

(empty) or not; (2) the index (idx) of the block; and (3) the position tag of the block.

Note that the bucket type, ignoring the position tag, is essentially a Trivial ORAM. In

the operations discussed below, all functions prefixed with trivial are operations over

buckets.

115



The region R ∨ R’ should be read as “R join R’” and corresponds to the join

operation, t, over regions ρ in Section 5.2. Notice that we have R @ R ∨ R’, which

will be important when discussing well-typedness of mux in the discussion that follows.

We choose type (R ∨ R’ rnd) * (R ∨ R’ rnd) for the data portion to illustrate that

affine values can be stored in the NORAM, and to set up our implementation of full,

recursive ORAM, next.

Operations The code for noram_rr is given below; we explain it just afterward.
1 let rec trivial_rr_h (troram : bucket) (idx : R natS) (i : natP) (acc : block) : block =
2 if i = length(troram) then acc
3 else
4 (∗ read out the current block, replace with dummy ∗)
5 let curr = bucket[i ] ← (dummy_block ()) in
6 (∗ check if the current block is non−dummy, and its index matches the queried one ∗)
7 let swap : R bitS = !curr. is_dummy && curr.idx = idx in
8 let (curr , acc) = mux(swap, acc, curr) in
9 (∗ when swap is false , this equivalent to writing the data back; otherwise , acc

10 stores the found block and is passed into the next iteration ∗)
11 let _ = bucket[i] ← curr in
12 trivial_rr_h troram idx (i + 1) acc
13

14 let trivial_rr (troram : bucket) (idx : R natS) : (R ∨ R’ rnd) ∗ (R ∨ R’ rnd) =
15 let ret : block = trivial_rr_h troram idx 0 (dummy_block ()) in
16 ret . data
17

18 let rec noram_rr_h (noram : noram) (idx : R natS) (tag : natP) (level : natP) (acc : block)
: block =

19 (∗ compute the first index into the bucket array at depth level ∗)
20 let base : natP = (pow 2 level) − 1 in
21 if base >= length(noram) then acc
22 else
23 let bucket_loc : natP = base + (tag & base) in (∗ the bucket on the path to access ∗)
24 let bucket = noram[bucket_loc] in
25 let acc = trivial_rr_h bucket idx 0 acc in
26 noram_rr_h noram idx tag (level + 1) acc
27

28 let noram_rr (noram : noram) (idx : R natS) (tag : natP) : (R ∨ R’ rnd) ∗ (R ∨ R’ rnd) =
29 let ret = noram_rr_h noram idx tag 0 (dummy_block ()) in
30 ret . data

noram_rr takes the NORAM noram and the index idx of the desired element as

arguments. The tag argument is the position tag, which identifies a path through the

noram binary tree along which the indexed value will be stored, if present. This tag’s

type natP means it is publicly visible. Initially it is stored, secretly, in the position

map, but prior to passing it to this function it must be revealed (via castP) because

it (or derivatives of it) will be used to index the arrays that make up the NORAM,

116



and array indexes are always adversary-visible.

noram_rr works by calling noram_rr_h which recursively works its way down the

identified path. It maintains an accumulator, acc : block, over the course of the traver-

sal. Initially, acc is a dummy block. The dummy_block () is a function call rather than

a constant because the block record contains data: (R ∨ R’ rnd) * (R ∨ R’ rnd).

This member of the record must be generated fresh for each new block, since its

contents are treated affinely. Each recursive call to noram_rr_h moves to a node the

next level down in the tree, as determined by the tag. At each node, it reads out the

bucket array, which as mentioned earlier is essentially a Trivial ORAM. The trivial_rr

function calls trivial_rr_h to iterate through the entire bucket, to obliviously read out

the desired block, if present.

Notice that we are using arrays with both affine and non-affine (universal) contents

in this code. The noram type has contents which are kind U, since the type of its

contents is an array. As such, we can read from noram without writing a new value

(line 24). However, the bucket type has contents which are kind A, since the type of its

contents are tuples which contain type R ∨ R’ rnd. So, when we index into members

of values of type bucket we must write a dummy block (line 5).

This algorithm for noram_rr will access logN buckets (where N is the number of

buckets in the noram), and each bucket access causes a trivial_rr which takes time b

where b is the size of each bucket. Therefore, the noram_rr operation above takes time

O(b logN). In the state-of-the-art ORAM constructions, such as Circuit ORAM [175],

b can be parameterized as a constant (e.g., 4), which renders the overall time com-

plexity of noram_rr to be O(logN). This is asymptotically faster than implementing

the entire ORAM as a Trivial ORAM, which takes time O(N).

The noram_add routine has the following signature:
val noram_add : noram → (idx : R natS) → (tag : R natS) → (data : (R ∨ R’ rnd) ∗ (R ∨ R’

rnd)) → unit

Like the noram_rr operation, it takes an index and a position tag, but here the position

117



tag is secret, since it will not be examined by the algorithm. In particular, noram_add

simply stores a block consisting of the dummy bit, index, position tag, and data into

the root bucket of the noram. It does this as a Trivial ORAM operation: It iterates

down the root bucket’s array similarly to trivial_rr above, but stores the new block in

the first available slot.

To avoid overflowing the root’s bucket due to repeated noram_adds, our NORAM

employs an additional eviction routine. It is called after both noram_add and noram_rr,

to move blocks closer to the leaf buckets. This routine maintains the key invariant

that each data block should reside on the path from the root to the leaf corresponding

to its position tag. Different tree-based ORAM implementations differ only in their

choices of b and the eviction strategies. The simple eviction strategy we implement

(due to Shi et al. [160]) picks two random nodes at each level of the tree, reads a single

non-empty block from each chosen node’s bucket, and then writes that block one level

further down either to the left or right according to the position tag; a dummy block

is written in the opposite direction to make the operation oblivious.

4.4.3 Recursive ORAM

As described in Section 4.4.1, a complete ORAM combines a non-recursive ORAM

with a position map. So far, we have not said where the position map should be stored,

and how. One approach is to implement it as just a regular array stored in hidden

memory, e.g., on-chip (invisible to the adversary) in a secure processor deployment of

ORAM (see Section 4.1.1). However, this is not possible for MPC-based deployments,

in which both parties secret-share the map, and thus the adversary can observe the

access pattern on the map itself. To block this side channel, we could implement the

position map itself as an ORAM, e.g., a Trivial ORAM. But to do so would ruin the

efficiency gain of our tree-based NORAM, since the position map lookup would have

time O(N), as compared to O(log(N)) time for noram_rr and noram_add.

118



We could implement the position map in a NORAM in an attempt to get back

logarithmic-time efficiency, but doing so seems to “kick the can down the road” because

we now need another position map for our position map! We can close this cycle

by having each recursively defined position map be smaller than the previous. In

particular, to implement a map with N integer keys we can use a map of N/c keys,

each of which maps to c values, for a small constant c. Lookup of key k translates

to looking up key k/c in the smaller map, and then returning the (k%c)th value

(which takes time c to do obliviously). We can apply this idea recursively, ultimately

yielding logc(N) maps numbered i = 1... logc(N), where map i has N
ci

keys (and each

key maps to c values). We can implement each map at level i as a NORAM until i is

large enough that we can use a Trivial ORAM to tie it off (e.g., when N
ci

is 4). The

complexity of looking up a key will thus be
∑logc(N)

i=1 O(log(N
ci

) + c). Setting c to be

a constant 2 means that the complexity of the lookup procedure is O(log(N)2). This

construction is called a recursive ORAM.

Data Definition and Operations A recursive ORAM thus has the type oram,

given below.
type oram = (noram array) ∗ bucket

The data blocks are stored in the noram at index 0 in the first component, an noram

array; the remaining norams in that array consist of progressively smaller position maps,

finally ending in a trival ORAM, the second component (a bucket).

We implement the tree_rr as a call to the function tree_rr_h, which takes an addi-

tional public level argument, to indicate at which point in the list of orams to start its

work (initially, 0).
1 let rec tree_rr_h (oram : oram) (idx : natS) (level : natP): (R ∨ R’ rnd) ∗ (R ∨ R’ rnd) =
2 let (norams, troram) = oram in
3 let levels : natP = length(norams) in
4 if level >= levels then trivial_rr troram idx
5 else
6 let (r0, r1) : (R ∨ R’ rnd) ∗ (R ∨ R’ rnd) = tree_rr_h oram (idx / 2) (level + 1) in
7 let (r0’, tag) = mux(idx % 2 = 0, rnd (R ∨ R’) (), r0) in
8 let (r1’, tag) = mux(idx % 2 = 1, tag, r1) in

119



9 let _ = tree_add_h oram (idx / 2) (level + 1) (r0’, r1’) in
10 noram_rr norams[level] idx (castP tag)
11

12 let tree_rr (oram : oram) (idx : natS): (R ∨ R’ rnd) ∗ (R ∨ R’ rnd) =
13 tree_rr_h oram idx 0

In the code above, the level indicates the embedded NORAM from which to read.

For example, when level is 0, the data NORAM should be read. For any other level

> 0, the NORAM will be one of the embedded position maps. Recall that each

NORAM at level i has its position map at level i+ 1, with the exception of the very

last NORAM which uses a Trivial ORAM for its position map. The recursive call to

tree_rr_h on line 6 reads out of the next level’s map, returning the pair (r0, r1). These

are the two possible position tags for nrorams[level ]—we should return r0 if idx % 2 = 0

and r1 if idx % 2 = 1. The muxes on lines 7 and 8 obliviously achieve this, reading

the proper result into tag, replacing it with a freshly generated tag, to satisfy the

affinity requirement. Line 9 writes the updated block (r0’, r1’) for idx / 2 back, using

an analogous tree_add_h routine, for which a level can be specified. Finally, line 10

reveals the retrieved position tag for index idx, so that it can be passed to noram_rr.

Since level 0 corresponds to the actual data of the ORAM, that is what will finally

be returned to the client.

The tree_add routine is similar so we do not show it all. As with tree_rr it recursively

adds the corresponding bits of the position tag into the array of norams. At each level

of the recursion there is a snippet like the following:
1 let new_tag : R ∨ R’ rnd = rnd R ∨ R’ () in
2 let sec_tag = castS new_tag in (∗ does NOT consume new_tag ∗)
3 let (r0, r1) : (R ∨ R’ rnd) ∗ (R ∨ R’ rnd) = tree_rr_h oram (idx / 2) (level + 1) in
4 let r0’, tag = mux (idx % 2 = 0, new_tag, r0) in (∗ replaces with new tag ∗)
5 let r1’, tag = mux (idx % 2 = 1, tag, r1) in
6 let _ = tree_add_h oram (idx / 2) (level + 1) (r0’, r1’) in
7 noram_add norams[level] idx sec_tag data (∗ adds to Tree ORAM ∗)

Lines 1 and 2 generate a new tag, and make a secret copy of it. The new tag is

then stored in the recursive ORAM—lines 3–5 are similar to tree_add_h but replace

the found tag with new_tag, not some garbage value, at the appropriate level of the

position map (line 6). Finally, sec_tag is used to store the data in the appropriate

120



level of the noram.

We note that neither tree_rr nor tree_add are complete ORAM operations on their

own: to implement a full ORAM read, for example, we would need to call tree_rr with

a call to tree_add.

Discussion Unfortunately (as astute readers may have noticed), the code snippet

for add will not type check. In particular, the sec_tag argument has type R ∨ R’ natS

but noram_add requires it to have type R natS. This is because the position tags for the

noram at level are stored as the data of the noram at level + 1, and these are in different

regions. We cannot put them in the same region because we require a single noram’s

metadata to have a strictly smaller region than its data (i.e., R @ R ∨ R’).

We can solve this problem by extending the language to support variant and

recursive types, existential quantification, and region polymorphism, where region-

polymorphic variables may have ordering constraints. With these changes, the type

of oram would be the following:
type (R1,R2) block = { is_dummy : R1 bitS ; idx : R1 natS ; tag : R1 natS ; data: (R2 rnd) ∗

(R2 rnd) } where R1 @ R2
type (R1,R2) bucket = (R1,R2) block array
type (R1,R2) noram = (R1,R2) bucket array
type (R1, R2) oram =

Trivial of (R1,R2) bucket
| Recursive of ∃R. (R, R1) noram ∗ (R1,R2) oram where R1 @ R2

We re-present the definitions for the elements of noram, which we now parameterize

with polymorphic region variables. For block, we add the constraint that R1 @ R2

. When originally presenting NORAM, this wasn’t needed because we were using

concrete regions—notice that R and R ∨ R’ from our previous noram definition satisfy

the constraint on R1 and R2, respectively, in the new definition. Type oram is also

parameterized by region variables, and is now a recursive variant: it can be either

a trivial ORAM or a recursive ORAM. The latter is an NORAM paired with an

ORAM, which acts as its position map. Importantly, the region R2 of the ORAM

data is properly ordered with the region of the position map R1. The code would

121



be roughly the same as the code given above, except that rather than indexing the

norams array at each recursive level, it simply recurses down the oram datastructure.

Constructing such a datastructure would require satisfying the region constraints at

each level, which is easy to do by simply using distinct regions for each region variable.

Along with our other code examples at https://github.com/plum-umd/oblivml, we

show how this could work using OCaml-style functors.

4.5 Oblivious Data Structures

What if we wanted to implement an oblivious version of a data structure like a stack?

For such a data structure, the visible address trace should reveal nothing about the

data structure’s contents nor anything about the operations being performed on it

(e.g., which ones are pops vs. pushes). An easy way to do this is to store the

structure’s data in an oram, like a Tree ORAM, with a little meta-data stored client-

side, e.g., the head key of the stack. To hide pushes vs. pops, one can (with a little

effort) write the code to always perform the same sequence of ORAM operations, e.g.,

an oram_read always followed by an oram_write.

4.5.1 Tree ORAM-based Oblivious Data Structures

While using a full oram can work, it is space-inefficient: an oram of size n requires a

position map of size n, even if the stack contains only a few elements. Wang et al.

[174] proposed a clever way to reduce this overhead: Use a tree_oram, but replace the

full ORAM’s complete (size n) position map with one based on the data structure’s

API. We will generically refer to Wang et al.’s construction as an oblivious data

structure (ODS). For oblivious stacks, we have:
1 type cldata = rnd ∗ string <S>
2 type ostack = key ref ∗ rnd ref ∗ tree_oram
3

4 val empty : nat → nat → ostack
5 let empty n m = (ref 0, ref rnd, tree_create n m)
6

122

https://github.com/plum-umd/oblivml


Figure 4.13: Visualizing an OStack after a push of "a" and then two possible outcomes
(either blue or red) of a push of "b".

7 val stackop : ostack → bool<S> → string<S> → string<S>
8 let stackop (head_key, head_pos, stack) ispush v =
9 let hk = !head_key in

10 let hp = !head_pos in
11 if ispush then
12 (∗ Dummy read ∗)
13 let _ = tree_read stack 0 (castS rnd) in
14 let fresh = rnd in
15 let _ = tree_write stack hk (castS fresh ) (hp, v) in
16 let () = head_key := hk + 1 in
17 let () = head_pos := fresh in
18 ""
19 else
20 let (_, (_, (next, v))) = tree_read stack (hk − 1) (castP hp) in
21 (∗ Dummy write ∗)
22 let _ = tree_write 0 (castS rnd) (rnd, "") in
23 let () = head_key := hk − 1 in
24 let () = head_pos := next in
25 v

An oblivious stack is a triple of a key, a (rnd) position tag, and a Tree ORAM. The

first two components form a size-1 position map which points to the head of the stack

(the only element a client can access via the stack API); the head’s key corresponds

to the length of the stack (so it starts as 0). The position maps of the non-head stack

elements are stored in the stack itself. In particular, type cldata contains the client’s

data in its second component, and the rnd component of the next element’s position

map in the first; the key is the current element’s key, minus one. stackop takes a stack,

a secret boolean indicating either push or pop (ispush), and some client data. If the

operation is a push (ispush = true), stackop creates a new cldata object containing the

123



pushed data and the current head’s rnd tag ((hp,v) on line 15). It then calls tree_write

with a fresh position tag and new key to add the new object to the tree_oram; the new

key is the old head’s key plus one. Finally, it updates the current head to contain

the new key and tag. If the operation is a pop, stackop looks up the head and returns

the client data but also the pointer to the next element in the stack (next on line 20),

which becomes the new head. The implementation of stackop ignores the overflow bit

returned by tree_write. Doing so matches the behavior described by Wang et al. [174],

which (we assume) aims to make an overflow adversary-invisible, thereby preserving

PMTO. As we show in this section, ignoring overflow actually does the opposite, i.e.,

it compromises PMTO. The stackop code uses an if expression for clarity. Since the

ispush variable is considered secret, a real implementation would need to mux instead.

?? shows how to implement ostack using mux.

Figure 4.13 shows the configuration of an ODS stack after two pushes. The pair

head_key,head_pos are the pointer to the head of the stack (we depict the position tag

as either 1 or 0 since the figure considers two possible executions for the second push;

see below). Each block in the Tree ORAM has the usual fields: the occupied bit

occupied, the key key, position tag pos, and client data cldata. The first push generates

a fresh position tag, which happens to be 0. We add the block (true , head_key, 0, (

head_pos, "a")) = (true, 0, 0, (⊥, "a")) to the Tree ORAM,4 and it is evicted left because

its tag is 0. The head_key is incremented, and head_pos is updated to 0. An identical

procedure describes the second push, but in Figure 4.13 we instead show both possible

outcomes for the fresh, random position tag, p. Blue indicates the outcome p = 0 and

red indicates p = 1. We add the block (true , head_key + 1, p, (head_pos, "b")) = (true,

1, p, (0, "b")). The dashed arrows in Figure 4.13 indicate the bucket to which the

associated key and position tag refer, revealing the abstract linked-list structure.
4Here, ⊥ represents a garbage next pointer, since there is no next element.

124



α β Pr(ρ = 0 | γ = 0) Pr(ρ = 1 | γ = 0)
0 0 0.5 0.5
0 1 0 1
1 0 1 0
1 1 0 1

Figure 4.14: Distribution of ρ conditioned on γ = 0.

4.5.2 Tree ORAM-based Stack is not PMTO

We would expect ODSs to enjoy PMTO because the underlying Tree ORAM is PMTO

and ODS operations can be made oblivious. We were surprised to find that this is

not the case! The reason owes to the possibility of overflow in the Tree ORAM. If

we were to implement a stack on top of a full Tree ORAM, with a complete position

map, overflow will compromise correctness but not security. But for an ODS, some

of the stack’s metadata—in particular, the next pointers to neighboring elements—is

stored inside the Tree ORAM, and that metadata can be corrupted on an overflow

in a way that affects the adversary-visible address trace.

To see how, consider the blue configuration in Figure 4.13. This Tree ORAM

configuration results from pushing "a" and "b" onto the stack with position tags α

and β respectively, with α = β = 0. The Trivial ORAM associated with the left child

is full. Consider the unlucky situation in which the value "c" is pushed onto the stack

with a generated position tag, γ, of 0. The head_key and head_pos are updated to 2

and 0 respectively but the block containing "c" is not added to the underlying Tree

ORAM due to overflow. If a pop operation is executed, γ is revealed to the adversary

and the position tag, ρ, will be returned to the client. Under most executions, the

client will be returned "c" and the returned position tag will be ρ = β. However,

in the overflowing execution, the client will instead receive garbage. The returned

position tag is ρ = δ where δ is some fresh, uniform position tag.

Figure 4.14 shows the distribution of ρ conditioned on the observation that γ = 0.

125



For PMTO to hold, this distribution marginalized over α and β needs to be uniform.

In the first row, we see the overflow case. In this case, ρ = δ and since δ is a fresh,

uniform tag we see that ρ is zero or one with equal probability. In all other cases,

ρ = β. Since the outcome of γ does not affect the probability distributions of α or β,

each row in the table occurs with probability 1
4
. Therefore, when we marginalize over

α and β we have Pr(ρ = 1 | γ = 0) = 5
8
and Pr(ρ = 0 | γ = 0) = 3

8
. When the next

pop takes place, ρ will also be revealed to the adversary (again, via tree_read), since it

is assumed by the oblivious stack to be the position tag of b. If the adversary observes

γ = 0 and ρ = 1 (say), they know that it is (slightly) more likely that an overflow

took place. This observation of overflow leaks information about the operations being

performed on the data structure, which are considered secret.

4.6 Related Work

Lampson first pointed out various covert, or “side,” channels of information leakage

during a program’s execution [104]. Defending against side-channel leakage is chal-

lenging. Previous works have attempted to thwart such leakage from various angles:

processor architectures that mitigate leakage through timing [113, 96], power con-

sumption [96], or memory-traces [114, 111, 147, 62]; program analysis techniques

that formally ensure that a program has bounded or no leakage through instruc-

tion traces [121], timing channels [121, 3, 184, 149, 186], or memory traces [csf13,

109, 111]; algorithmic techniques that transform programs and algorithms to their

side-channel-mitigating or side-channel-free counterparts while introducing only mild

costs—e.g., works on mitigating timing channel leakage [6, 17, 183], and on prevent-

ing memory-trace leakage [73, 71, 160, 169, 175, 174, 180, 30, 76, 58, 40]. Often, the

most effective and efficient is through a comprehensive co-design approach combining

these areas of advances—in fact, several aforementioned works indeed combine (a

126



subset of) algorithms, architecture, and programming language techniques [111, 147,

62, 184, 186].

Our work belongs to a large category of work that aims to statically enforce

noninterference, e.g., by typing [172, 150]. csf13, Liu et al., Liu et al. developed

a type system that ensures programs are MTO, generalizing a line of prior works

on (language-enforced) timing channel security [3], program counter security [121].

In Liu et al’s work, types are extended to indicate where values are allocated; as

per our above example data can be public or secret, but can also reside in ORAM.

Trace events are extended to model ORAM accesses as opaque to the adversary

(similar to the Dolev-Yao modeling of encrypted messages Dolev and Yao [56]): the

adversary knows that an access occurred, but not the address or whether it was

a read or a write. Liu et al’s type system enforces obliviousness of deterministic

programs that use (assumed-to-be-correct) ORAM. λObliv’s key advance is that it

applies to probabilistic programs. It need not assume the existence of ORAM as a

primitive; rather, λObliv’s probabilistic nature is sufficient to allow us to program

ORAM, per Section 4.4. Thus we can express state-of-the-art algorithmic results

and formally reason about the security of their implementations, building a bridge

between algorithmic and programming language techniques.

ObliVM [112] is a language for programming probabilistically oblivious algorithms

intended to be run as secure multiparty computations [179]. Its type system also em-

ploys affine types to ensure random numbers are used at most once. However, it

provides no mechanism to disallow constructing a non-uniformly distributed random

number. When such random numbers are generated, they can be distinguished by an

attacker from uniformly distributed random numbers when being revealed. There-

fore, the type system in ObliVM does not guarantee obliviousness. λObliv’s use of

probability regions enforces that all random numbers are uniformly random, and thus

eliminates this channel of information leakage. Moreover, we prove that this mecha-

127



nism (and the others in λObliv) are sufficient to prove PMTO.

Our probabilistic memory trace obliviousness property bears some resemblance

to probabilistic notions of noninterference. Much prior work [151, 162, 148, 130]

is concerned with how random choices made by a thread scheduler could cause the

distribution of visible events to differ due to the values of secrets. Here, the source of

nondeterminism is the (external) scheduler, rather than the program itself, as in our

case. Smith and Alpízar [164, 165] consider how the influence of random numbers may

affect the likelihood of certain outcomes, mostly being concerned with termination

channels. Their programming model is not as rich as ours, as a secret random number

is never permitted to be made public; such an ability is the main source of complexity

in λObliv, and is crucial for supporting oblivious algorithms.

Some prior work aims to quantify the information released by a (possibly random-

ized) program (e.g., Köpf and Rybalchenko [101] and Mu and Clark [126]) according

to entropy-based measures. Work on verifying the correctness of differentially private

algorithms [18, 185, 187], essentially aims to bound possible leakage; by contrast, we

enforce that no information leaks due to a program’s execution.

Our intensional distributions—while a novel syntactic device instrumental to our

proof approach—are readily interpretable as measurable sets over infinite streams of

bits, and there is prior work which has considered such models such as Kozen’s seminal

treatment [102] among others [87, 133, 156, 140, 14]. A novelty in our model is support

for conditional probabilistic reasoning. This reasoning is enabled by our interpretation

of monadic bind as conditioning on outcomes, and performing sampling of new bits

via operations external to monad operations; doing so is in contrast to prior work

which interprets monadic bind directly as (effectively) sampling new random bits.

There is a rich history for reasoning about probabilistic programs [154], in par-

ticular relational properties [86, 19, 21] and program logics [23, 141], including trace

properties [161], privacy properties [20, 146, 64], obliviousness properties [132], and

128



uniformity and independence [22]. Much of this work is focused on verification tech-

niques for some program of interest, and not on proof techniques for establishing

metatheoric properties of entire languages (e.g., via a type system).

Perhaps the most closely related program logic to our setting is Probabilistic Sep-

aration Logic (PSL) [16]. PSL is a variant of separation logic in which separating

conjunction models probabilistic independence. It supports reasoning about (condi-

tional) independence and uniformity, which are both also key ideas in λObliv. There

is a similar connection between some of PSL’s proof rules and λObliv’s type rules; e.g.,

λObliv’s Mux-Flip rule and PSL’s RCond rule both reason about conditional indepen-

dence. It would be interesting to explore how to embed λObliv’s type system in PSL’s

logic, which might simplify reasoning about security for PSL, and open up reason-

ing about correctness for λObliv programs. It might also permit proofs of uniformity

that λObliv’s strict region ordering currently forbid. How to combine these two is not

obvious, though, as PSL works on an imperative “while” language with a fixed set

of (global) variables, while λObliv is functional, and supports dynamically-sized data

structures. Interesting future work!

129



Chapter 5

Refining Probabilistic Bounds on

Information Leakage

This chapter presents our approach for ensuring a better balance of precision and

performance for dynamic enforcement of knowledge-based security policies [115]. Our

approach augments PP with two new techniques which can be used to improve their

precision. Both techniques begin by analyzing a program, f , using intervals as the

underlying numeric abstract domain for the PP.

Our first technique is to use sampling to augment the result. We execute the

program using the possible secret values i sampled from the posterior δ′ derived from

a particular output oi. If the analysis were perfectly accurate, executing f(i) would

produce oi. But since intervals are overapproximate, sometimes it will not. With

many sampled outcomes, we can construct a Beta distribution to estimate the size of

the support of the posterior, up to some level of confidence. We can use this estimate

to boost the lower bound of the abstraction, and thus improve the precision of the

estimated vulnerability.

Our second technique is of a similar flavor, but uses symbolic reasoning to mag-

nify the impact of a successful sample. We once again execute a sample which is

130



consistent with the posterior distribution but this time we do so concolically [157],

thus maintaining a symbolic formula (called the path condition) that characterizes

the set of variable valuations that would cause execution to follow the observed path.

We then count the number of possible solutions and use the count to boost the lower

bound of the support (with 100% confidence).

We have formalized and proved our techniques are sound with respect to the

dynamic enforcement approach of Mardziel et al. [115]. In addition, we have imple-

mented and evaluated our approaches using a privacy-sensitive ship planning scenario.

We find that our techniques provide similar precision to convex polyhedra while pro-

viding orders-of-magnitude better performance. We also observe that sampling and

concolic execution can be combined for even greater precision. Additional experi-

ments are required to determine whether or not these results generalize to a diverse

set of programs.

5.1 Overview

To provide an overview of our approach, we will describe the application of our tech-

niques to a scenario that involves a coalition of ships from various nations operating in

a shared region. Suppose a natural disaster has impacted some islands in the region.

Some number of individuals need to be evacuated from the islands, and it falls to a

regional disaster response coordinator to determine how to accomplish this. While

the coalition wants to collaborate to achieve these humanitarian aims, we assume

that each nation also wants to protect their sensitive data—namely ship locations

and capacity.

More formally, we assume the use of the data model shown in Figure 5.1, which

considers a set of ships, their coalition affiliation, the evacuation capacity of the ship,

and its position, given in terms of latitude and longitude.1 We sometimes refer to
1We give latitude and longitude values as integer representations of decimal degrees fixed to four

131



Field Type Range Private?
ShipID Integer 1–10 No
NationID Integer 1–20 No
Capacity Integer 0–1000 Yes
Latitude Integer -900,000–900,000 Yes
Longitude Integer -1,800,000–1,800,000 Yes

Figure 5.1: The data model used in the evacuation scenario.

the latter two as a location L, with L.x as the longitude and L.y as the latitude. We

will often index properties by ship ID, writing Capacity(z) for the capacity associated

with ship ID z, or Location(z) for the location.

The evacuation problem is defined as follows

Given a target location L and number of people to evacuate N , compute

a set of nearby ships S such that
∑

z∈S Capacity(z) ≥ N .

Our goal is to solve this problem in a way that minimizes the vulnerability to the

coordinator of private information, i.e., the ship locations and their exact capacity. We

assume that this coordinator initially has no knowledge of the positions or capabilities

of the ships other than that they fall within certain expected ranges.

If all members of the coalition share all of their data with the coordinator, then a

solution is easy to compute, but it affords no privacy. Figure 5.2 gives an algorithm

the response coordinator can follow that does not require each member to share all of

their data. Instead, it iteratively performs queries AtLeast and Nearby. These queries

do not reveal precise values about ship locations or capacity, but rather admit ranges

of possibilities. The algorithm works by maintaining upper and lower bounds on the

capacity of each ship i in the array berths. Each ship’s bounds are updated based

on the results of queries about its capacity and location. These queries aim to be

privacy preserving, doing a sort of binary search to narrow in on the capacity of each

ship in the operating area. The procedure completes once is_solution determines

the minimum required capacity is reached.

decimal places; e.g., 14.3579 decimal degrees is encoded as 143579.

132



(* S = #ships; N = #evacuees; L = island loc.; D = min. proximity to L *)
let berths = Array.make S (0,1000)
let is _solution () = sum (Array.map fst berths) ≥ N
let mid (x, y) = (x + y) / 2
let AtLeast(z,b) = Capacity(z) ≥ b
let Nearby(z,l,d) = |Loc(z).x − l. x| + |Loc(z).y − l. y| ≤ d
while true do

for i = 0 to S do
let ask = mid berths[i ]
let ok = AtLeast(i, ask) && Nearby(i,L,D)
if ok then berths [ i ] ← (ask, snd berths [ i ] )
else berths [ i ] ← (fst berths [ i ] , ask)
if is _solution () then return berths

done
done

Figure 5.2: Algorithm to solve the evacuation problem for a single island.

5.1.1 Computing vulnerability with abstract interpretation

Using this procedure, what is revealed about the private variables (location and ca-

pacity)? Consider a single Nearby(z, l, d) query. At the start, the coordinator is

assumed to know only that z is somewhere within the operating region. If the query

returns true, the coordinator now knows that s is within d units of l (using Manhat-

tan distance). This makes Location(z) more vulnerable because the adversary has

less uncertainty about it.

Mardziel et al. [115] proposed a static analysis for analyzing queries such as

Nearby(z, l, d) to estimate the worst-case vulnerability of private data. If the worst-

case vulnerability is too great, the query can be rejected. A key element of their

approach is to perform abstract interpretation over the query using an abstract do-

main called a probabilistic polyhedron. An element P of this domain represents the set

of possible distributions over the query’s state. This state includes both the hidden

secrets and the visible query results. The abstract interpretation is sound in the sense

that the true distribution δ is contained in the set of distributions represented by the

computed probabilistic polyhedron P .

133



A probabilistic polyhedron P is a tuple comprising a shape and three ornaments.

The shape C is an element of a standard numeric domain—e.g., intervals [46], oc-

tagons [119], or convex polyhedra [48]—which overapproximates the set of possible

values in the support of the distribution. The ornaments p ∈ [0, 1], m ∈ R, and s ∈ Z

are pairs which store upper and lower bounds on the probability per point, the total

mass, and number of support points in the distribution, respectively. (Distributions

represented by P are not necessarily normalized, so the mass m is not always 1.)

Figure 5.3(a) gives an example probabilistic polyhedron that represents the pos-

terior of a Nearby query that returns true. In particular, if Nearby(z,L1,D) is true

then Location(z) is somewhere within the depicted diamond around L1. Using convex

polyhedra or octagons for the shape domain would permit representing this diamond

exactly; using intervals would overapproximate it as the depicted 9x9 bounding box.

The ornaments would be the same in any case: the size s of the support is 41 possible

(x,y) points, the probability p per point is 0.01, and the total mass is 0.41, i.e., p · s.

In general, each ornament is a pair of a lower and upper bound (e.g., smin and smax),

and m might be a more accurate estimate than p · s. In this case shown in the figure,

the bounds are tight.

Mardziel et al’s procedure works by computing the posterior P for each possible

query output o, and from that posterior determining the vulnerability. This is easy

to do. The upper bound pmax of p maximizes the probability of any given point.

Dividing this by the lower bound mmin of the probability mass m normalizes this

probability for the worst case. For P shown in Figure 5.3(a), the bounds of p and m

are tight, so the vulnerability is simply 0.01/0.41 = 0.024.

134



number of points
s ∈ [41,41] 

probability per point
p ∈ [0.01,0.01] 

total probability mass
m ∈ [0.41,0.41] 

L1

Upper bound on max probability
pmax / mmin = 0.01 / 0.41 = 0.024

(a) Probabilistic polyhedra

s ∈ [41,41] 

p ∈ [0.01,0.01] 

m ∈ [0.41,0.41] 

27 pts in overlap

Sound
Result

s ∈ [41,41] 

p ∈ [0.01,0.01] 

m ∈ [0.41,0.41] 

s ∈ [55,82] 

p ∈ [0.01,0.02] 

m ∈ [0.55,1.64] 

5 pts in overlap

Precise
Result

s ∈ [77,77] 

p ∈ [0.01,0.02] 

m ∈ [0.77,1.54] 

Max probability ≤ 0.02 / 0.55 = 0.036

Max probability ≤ 0.02 / 0.77 = 0.026

Sampling

in = 570, out = 430
s ∈ [72,81] (90% cred.)

Under Approximation

s ≥ 63

Precise Representation

Abstraction

Precision Recovery

Max probability ≤ 0.028
Max probability ≤ 0.032

(b) Improving precision with sampling and underapproximation (concolic execution)

Figure 5.3: Computing vulnerability (max probability) using abstract interpretation

135



5.1.2 Improving precision with sampling and concolic execu-

tion

In Figure 5.3(a), the parameters s, p, and m are precise. However, as additional

operations are performed, these quantities can accumulate imprecision. For example,

suppose we are using intervals for the shape domain, and we wish to analyze the

query Nearby(z, L1, 4) ∨ Nearby(z, L2, 4) (for some nearby point L2). The result is

produced by analyzing the two queries separately and then combining them with an

abstract join; this is shown in the top row of Figure 5.3(b). Unfortunately, the result

is very imprecise. The bottom row of Figure 5.3(b) illustrates the result we would

get by using convex polyhedra as our shape domain. When using intervals (top row),

the vulnerability is estimated as 0.036, whereas the precise answer (bottom row) is

actually 0.026. Unfortunately, obtaining this precise answer is far more expensive

than obtaining the imprecise one.

This paper presents two techniques that can allow us to use the less precise interval

domain but then recover lost precision in a relatively cheap post-processing step. The

effect of our techniques is shown in the middle-right of Figure 5.3(b). Both techniques

aim to obtain better lower bounds for s. This allows us to update lower bounds on the

probability mass m since mmin is at least smin ·pmin (each point has at least probability

pmin and there are at least smin of them). A larger m means a smaller vulnerability.

The first technique we explore is sampling, depicted to the right of the arrow in

Figure 5.3(b). Sampling chooses random points and evaluates the query on them to

determine whether they are in the support of the posterior distribution for a particular

query result. By tracking the ratio of points that produce the expected output,

we can produce an estimate of s, whose confidence increases as we include more

samples. This approach is depicted in the figure, where we conclude that s ∈ [72, 81]

and m ∈ [0.72, 1.62] with 90% confidence after taking 1000 samples, improving our

vulnerability estimate to V ≤ 0.02
0.72

= 0.028.

136



The second technique we explore is the use of concolic execution to derive a path

condition, which is a formula over secret values that is consistent with a query result.

By performing model counting to estimate the number of solutions to this formula,

which are an underapproximation of the true size of the distribution, we can safely

boost the lower bound of s. This approach is depicted to the left of the arrow in

Figure 5.3(b). The depicted shapes represent discovered path condition’s disjuncts,

whose size sums to 63. This is a better lower bound on s and improves the vulnera-

bility estimate to 0.032.

These techniques can be used together to further increase precision. In partic-

ular, we can first perform concolic execution, and then sample from the area not

covered by this underapproximation. Importantly, Section 5.7 shows that using our

techniques with the interval-based analysis yields an orders of magnitude performance

improvement over using polyhedra-based analysis alone, while achieving similar levels

of precision, with high confidence.

5.2 Preliminaries: Syntax and Semantics

This section presents the core language—syntax and semantics—in which we formalize

our approach to computing vulnerability. We also review probabilistic polyhedra [115],

which is the baseline analysis technique that we augment.

5.2.1 Core Language and Semantics

The programming language we use for queries is given in Figure 5.4. The language is

essentially standard, apart from pif q then S1 else S2, which implements probabilistic

choice: S1 is executed with probability q, and S2 with probability 1 − q. We limit

the form of expressions E so that they can be approximated by standard numeric

abstract domains such as convex polyhedra [48]. Such domains require linear forms;

137



Variables x ∈ Var
Integers n ∈ Z
Rationals q ∈ Q
States σ ∈ State def

= Var⇀ Z
Distributions δ ∈ Dist def

= State→ R+0

Arith.ops aop ::= + | × | −
Rel .ops relop ::= ≤ | < | = | 6= | · · ·
Arith.exps E ::= x | n | E1 aop E2

Bool .exps B ::= E1 relop E2 | B1 ∧ B2 | B1 ∨ B2 | ¬B
Statements S ::= skip | x := E | S1 ; S2 | while B do S |

if B then S1 else S2 | pif q then S1 else S2

Figure 5.4: Core language syntax

e.g., there is no division operator and multiplication of two variables is disallowed.2

We define the semantics of a program in terms of its effect on (discrete) distri-

butions of states. States σ are partial maps from variables to integers; we write

domain(σ) for the set of variables over which σ is defined. Distributions δ are maps

from states to nonnegative real numbers, interpreted as probabilities (in range [0, 1]).

The denotational semantics considers a program as a relation between distributions.

In particular, the semantics of statement S , written [[S ]], is a function of the form

Dist → Dist; we write [[S ]]δ = δ′ to say that the semantics of S maps input distri-

bution δ to output distribution δ′. Distributions are not necessarily normalized; we

write ‖δ‖ as the probability mass of δ (which is between 0 and 1). We write σ̇ to

denote the point distribution that gives σ probability 1, and all other states 0.

The semantics is standard and not crucial in order to understand our techniques.

In Appendix C.2 we provide the semantics in full. See Clarkson et al. [44] or Mardziel

et al [115] for detailed explanations.
2Relaxing such limitations is possible—e.g., polynominal inequalities can be approximated using

convex polyhedra [11]—but doing so precisely and scalably is a challenge.

138



5.2.2 Probabilistic polyhedra

To compute vulnerability for a program S we must compute (an approximation of)

its output distribution. One way to do that would be to use sampling: Choose states

σ at random from the input distribution δ, “run” the program using that input state,

and collect the frequencies of output states σ′ into a distribution δ′. While using

sampling in this manner is simple and appealing, it could be both expensive and

imprecise. In particular, depending on the size of the input and output space, it may

take many samples to arrive at a proper approximation of the output distribution.

Probabilistic polyhedra [115] can address both problems. This abstract domain

combines a standard domain C for representing numeric program states with addi-

tional ornaments that all together can safely represent S ’s output distribution.

Probabilistic polyhedra work for any numeric domain; in this paper we use both

convex polyhedra [48] and intervals [46]. For concreteness, we present the defintion

using convex polyhedra. We use the meta-variables β, β1, β2, etc. to denote linear

inequalities.

Definition 5.2.1. A convex polyhedron C = (B, V ) is a set of linear inequalities

B = {β1, . . . , βm}, interpreted conjunctively, over variables V . We write C for the

set of all convex polyhedra. A polyhedron C represents a set of states, denoted γC(C),

as follows, where σ |= β indicates that the state σ satisfies the inequality β.

γC((B, V ))
def
= {σ : domain(σ) = V, ∀β ∈ B. σ |= β}

Naturally we require that domain({β1, . . . , βn}) ⊆ V ; i.e., V mentions all variables

in the inequalities. Let domain((B, V )) = V .

Probabilistic polyhedra extend this standard representation of sets of program

states to sets of distributions over program states.

139



Definition 5.2.2. A probabilistic polyhedron P is a tuple (C, smin, smax, pmin, pmax,mmin,

mmax). We write P for the set of probabilistic polyhedra. The quantities smin and smax

are lower and upper bounds on the number of support points in the concrete distri-

bution(s) P represents. A support point of a distribution is one which has non-zero

probability. The quantities pmin and pmax are lower and upper bounds on the prob-

ability mass per support point. The mmin and mmax components give bounds on the

total probability mass (i.e., the sum of the probabilities of all support points). Thus P

represents the set of distributions γP(P) defined below.

γP(P)
def
= {δ : support(δ) ⊆ γC(C) ∧

smin ≤ |support(δ)| ≤ smax ∧

mmin ≤ ‖δ‖ ≤ mmax∧

∀σ ∈ support(δ). pmin ≤ δ(σ) ≤ pmax}

We will write domain(P)
def
= domain(C) to denote the set of variables used in the

probabilistic polyhedron.

Note the set γP(P) is a singleton exactly when smin = smax = #(C) and pmin =

pmax, and mmin = mmax, where #(C) denotes the number of discrete points in convex

polyhedron C. In such a case γP(P) contains only the uniform distribution where

each state in γC(C) has probability pmin. In general, however, the concretization of a

probabilistic polyhedron will have an infinite number of distributions, with per-point

probabilities varied somewhere in the range pmin and pmax. Distributions represented

by a probabilistic polyhedron are not necessarily normalized. In general, there is a

relationship between pmin, smin, and mmin, in that mmin ≥ pmin · smin (and mmax ≤

pmax · smax), and the combination of the three can yield more information than any

two in isolation.

The abstract semantics of S is written 〈〈S 〉〉P = P ′, and indicates that abstractly

140



interpreting S where the distribution of input states are approximated by P will

produce P ′, which approximates the distribution of output states. Following standard

abstract interpretation terminology, P (Dist) (sets of distributions) is the concrete

domain, P is the abstract domain, and γP : P→ P (Dist) is the concretization function

for P. We do not present the abstract semantics here; details can be found in Mardziel

et al. [115]. Importantly, this abstract semantics is sound:

Theorem 5.2.1 (Soundness). For all S , P1, P2, δ1, δ2, if δ1 ∈ γP(P1) and 〈〈S 〉〉P1 =

P2, then [[S ]]δ1 = δ2 with δ2 ∈ γP(P2).

Proof. See Theorem 6 in Mardziel et. al [115].

Consider the example from Section 5.1.2. We assume the adversary has no prior

information about the location of ship s. So, δ1 above is simply the uniform distribu-

tion over all possible locations. The statement S is the query issued by the adversary,

Nearby(z, L1, 4) ∨ Nearby(z, L2, 4).3 If we assume that the result of the query is true

then the adversary learns that the location of s is within (Manhattan) distance 4

of L1 or L2. This posterior belief (δ2) is represented by the overlapping diamonds

on the bottom-right of Figure 5.3(b). The abstract interpretation produces a sound

(interval) overapproximation (P2) of the posterior belief. This is modeled by the rect-

angle which surrounds the overlapping diamonds. This rectangle is the “join” of two

overlapping boxes, which each correspond to one of the Nearby calls in the disjuncts

of S .

5.3 Computing Vulnerability: Basic procedure

The key goal of this paper is to quantify the risk to secret information of running

a query over that information. This section explains the basic approach by which
3Appendix C.1 shows the code, which computes Manhattan distance between s and L1 and L2

and then sets an output variable if either distance is within four units.

141



we can use probabilistic polyhedra to compute vulnerability, i.e., the probability of

the most probable point of the posterior distribution. Improvements on this basic

approach are given in the next two sections.

Our convention will be to use C1, smin
1 , smax

1 , etc. for the components associated

with probabilistic polyhedron P1. In the program S of interest, we assume that secret

variables are in the set T , so input states are written σT , and we assume there is a

single output variable r. We assume that the adversary’s initial uncertainty about

the possible values of the secrets T is captured by the probabilistic polyhedron P0

(such that domain(P0) ⊇ T ).

Computing vulnerability occurs according to the following procedure.

1. Perform abstract interpretation: 〈〈S 〉〉P0 = P

2. Given a concrete output value of interest, o, perform abstract conditioning to

define Pr=o
def
= (P ∧ r=o).4

The vulnerability V is the probability of the most likely state(s). When a probabilistic

polyhedron represents one or more true distributions (i.e., the probabilities all sum to

1), the most probable state’s probability is bounded by pmax. However, the abstract

semantics does not always normalize the probabilistic polyhedron as it computes, so

we need to scale pmax according to the total probability mass. To ensure that our

estimate is on the safe side, we scale pmax using the minimum probability mass: V =

pmax

mmin . In Figure 5.3(b), the sound approximation in the top-right has V ≤ 0.02
0.55

= 0.036

and the most precise approximation in the bottom-right has V ≤ 0.02
0.77

= 0.026.

5.4 Improving precision with sampling

We can improve the precision of the basic procedure using sampling. First we intro-

duce some notational convenience:
4We write P ∧B and not P | B because P need not be normalized.

142



PT
def
= P ∧ (r = o) � T

PT+
def
= PT revised polyhedron with confidence ω

PT is equivalent to step 2, above, but projected onto the set of secret variables T .

PT+ is the improved (via sampling) polyhedron.

After computing PT with the basic procedure from the previous section we take

the following additional steps:

1. Set counters α and β to zero.

2. Do the following N times (for some N , see below):

(a) Randomly select an input state σT ∈ γC(CT ).

(b) “Run” the program by computing [[S ]]σ̇T = δ. If there exists σ ∈ support(δ)

with σ(r) = o then increment α, else increment β.

3. We can interpret α and β as the parameters of a Beta distribution of the likeli-

hood that an arbitrary state in γC(CT ) is in the support of the true distribution.

From these parameters we can compute the credible interval [pL, pU ] within

which is contained the true likelihood, with confidence ω (where 0 ≤ ω ≤ 1). A

credible interval is essentially a Bayesian analogue of a confidence interval and

can be computed from the cumulative distribution function (CDF) of the Beta

distribution (the 99% credible interval is the interval [a, b] such that the CDF

at a has value 0.005 and the CDF at b has value 0.995). In general, obtaining

a higher confidence or a narrower interval will require a higher N . Let result

PT+ = PT except that smin
T+ = pL ·#(CT ) and smax

T+ = pU ·#(CT ) (assuming these

improve on smin
T and smax

T ). We can then propagate these improvements to mmin

143



and mmax by defining mmin
T+ = pmin

T · smin
T+ and mmax

T+ = pmax
T · smax

T+ . Note that if

mmin
T > mmin

T+ we leave it unchanged, and do likewise if mmax
T < mmax

T+ .

At this point we can compute the vulnerability as in the basic procedure, but using

PT+ instead of PT .

Consider the example of Section 5.1.2. In Figure 5.3(b), we draw samples from

the rectangle in the top-right. This rectangle overapproximates the set of locations

where s might be, given that the query returned true. We sample locations from

this rectangle and run the query on each sample. The green (red) dots indicate true

(false) results, which are added to α (β). After sampling N = 1000 locations, we have

α = 570 and β = 430. Choosing ω = .9 (90%), we compute the credible interval

[0.53, 0.60]. With #(CT ) = 135, we compute [smin
T+ , s

max
T+ ] as [0.53 · 135, 0.60 · 135] =

[72, 81].

There are several things to notice about this procedure. First, observe that in

step 2b we “run” the program using the point distribution σ̇ as an input; in the case

that S is deterministic (has no pif statements) the output distribution will also be

a point distribution. However, for programs with pif statements there are multiple

possible outputs depending on which branch is taken by a pif. We consider all of

these outputs so that we can confidently determine whether the input state σ could

ever cause S to produce result o. If so, then σ should be considered part of PT+. If

not, then we can safely rule it out (i.e., it is part of the overapproximation).

Second, we only update the size parameters of PT+; we make no changes to pmin
T+

and pmax
T+ . This is because our sampling procedure only determines whether it is

possible for an input state to produce the expected output. The probability that an

input state produces an output state is already captured (soundly) by pT so we do

not change that. This is useful because the approximation of pT does not degrade

with the use of the interval domain in the way the approximation of the size degrades

(as illustrated in Figure 5.3(b)). Using sampling is an attempt to regain the precision

144



lost on the size component (only).

Finally, the confidence we have that sampling has accurately assessed which input

states are in the support is orthogonal to the probability of any given state. In

particular, PT is an abstraction of a distribution δT , which is a mathematical object.

Confidence ω is a measure of how likely it is that our abstraction (or, at least, the

size part of it) is accurate.

We prove (in Appendix C.2.1) that our sampling procedure is sound:

Theorem 5.4.1 (Sampling is Sound).

If δ0 ∈ γP(P0), 〈〈S 〉〉P0 = P , and [[S ]]δ0 = δ then δT ∈ γP(PT+) with confidence ω

where

δT
def
= δ ∧ (r = o) � T

PT
def
= P ∧ (r = o) � T

PT+
def
= PT sampling revised with confidence ω.

5.5 Improving precision with concolic execution

Another approach to improving the precision of a probabilistic polyhedron P is to

use concolic execution. The idea here is to “magnify” the impact of a single sample

to soundly increase smin by considering its execution symbolically. More precisely, we

concretely execute a program using a particular secret value, but maintain symbolic

constraints about how that value is used. This is referred to as concolic execu-

tion [157]. We use the collected constraints to identify all points that would induce

the same execution path, which we can include as part of smin.

We begin by defining the semantics of concolic execution, and then show how it

can be used to increase smin soundly.

145



5.5.1 (Probabilistic) Concolic Execution

Concolic execution is expressed as rewrite rules defining a judgment 〈Π, S 〉 −→p
π

〈Π′, S ′〉. Here, Π is pair consisting of a concrete state σ and symbolic state ζ. The

latter maps variables x ∈ Var to symbolic expressions E which extend expressions

E with symbolic variables α. This judgment indicates that under input state Π the

statement S reduces to statement S ′ and output state Π′ with probability p, with path

condition π. The path condition is a conjunction of boolean symbolic expressions B

(which are just boolean expressions B but altered to use symbolic expressions E

instead of expressions E) that record which branch is taken during execution. For

brevity, we omit π in a rule when it is true.

The rules for the concolic semantics are given in Figure 5.5. Most of these are

standard, and deterministic (the probability annotation p is 1). Path conditions

are recorded for if and while, depending on the branch taken. The semantics of

pif q then S1 else S2 is non-deterministic: the result is that of S1 with probability q,

and S2 with probability 1− q. We write ζ(B) to substitute free variables x ∈ B with

their mapped-to values ζ(x) and then simplify the result as much as possible. For

example, if ζ(x) = α and ζ(y) = 2, then ζ(x > y + 3) = α > 5. The same goes for

ζ(E).

We define a complete run of the concolic semantics with the judgment 〈Π, S 〉 ⇓pπ Π′,

which has two rules:

〈Π, skip〉 ⇓1
true Π

〈Π, S 〉 −→p
π 〈Π′, S ′〉 〈Π′, S ′〉 ⇓

q
π′ Π′′

〈Π, S 〉 ⇓p·qπ∧π′ Π′′

A complete run’s probability is thus the product of the probability of each individual

step taken. The run’s path condition is the conjunction of the conditions of each step.

146



〈(σ, ζ), x := E 〉 −→1 〈(σ[x 7→ σ(E )], ζ[x 7→ ζ(E )]), skip〉
〈(σ, ζ), if B then S1 else S2〉 −→1

ζ(B) 〈(σ, ζ), S1〉 if σ(B)

〈(σ, ζ), if B then S1 else S2〉 −→1
ζ(¬B) 〈(σ, ζ), S2〉 if σ(¬B)

〈Π, pif q then S1 else S2〉 −→q 〈Π, S1〉
〈Π, pif q then S1 else S2〉 −→1−q 〈Π, S2〉
〈Π, S1 ; S2〉 −→1

π 〈Π′, S ′1 ; S2〉 if 〈Π, S1〉 −→1
π 〈Π′, S ′1〉

〈Π, skip ; S 〉 −→1 〈Π, S 〉
〈Π,while B do S 〉 −→1

ζ(B) 〈Π, S ; while B do S 〉 if σ(B)

〈Π,while B do S 〉 −→1
ζ(¬B) 〈Π, skip〉 if σ(¬B)

Figure 5.5: Concolic semantics

The path condition π for a complete run is a conjunction of the (symbolic) boolean

guards evaluated during an execution. π can be converted to disjunctive normal form

(DNF), and given the restrictions of the language the result is essentially a set of

convex polyhedra over symbolic variables α.

5.5.2 Improving precision

Using concolic execution, we can improve our estimate of the size of a probabilistic

polyhedron as follows:

1. Randomly select an input state σT ∈ γC(CT ) (recall that CT is the polyhedron

describing the possible valuations of secrets T ).

2. Set Π = (σT , ζT ) where ζT maps each variable x ∈ T to a fresh symbolic

variable αx. Perform a complete concolic run 〈Π, S 〉 ⇓pπ (σ′, ζ ′). Make sure that

σ′(r) = o, i.e., the expected output. If not, select a new σT and retry. Give up

after some number of failures N . For our example shown in Figure 5.3(b), we

might obtain a path condition |Loc(z).x − L1.x| + |Loc(z).y − L1.y| ≤ 4 that

captures the left diamond of the disjunctive query.

3. After a successful concolic run, convert path condition π to DNF, where each

conjunctive clause is a polyhedron Ci. Also convert uses of disequality (≤ and

147



≥) to be strict (< and >).

4. Let C = CT u (
⊔
iCi); that is, it is the join of each of the polyhedra in DNF (π)

“intersected” with the original constraints. This captures all of the points that

could possibly lead to the observed outcome along the concolically executed

path. Compute n = #(C). Let PT+ = PT except define smin
T+ = n if smin

T < n

and mmin
T+ = pmin

T · n if mmin
T < pmin

T · n. (Leave them as is, otherwise.) For our

example, n = 41, the size of the left diamond. We do not update smin
T since 41

< 55, the probabilistic polyhedron’s lower bound (but see below).

Theorem 5.5.1 (Concolic Execution is Sound).

If δ0 ∈ γP(P0), 〈〈S 〉〉P0 = P , and [[S ]]δ0 = δ then δT ∈ γP(PT+) where

δT
def
= δ ∧ (r = o) � T

PT
def
= P ∧ (r = o) � T

PT+
def
= PT concolically revised.

The proof is in Appendix C.2.1.

5.5.3 Combining Sampling with Concolic Execution

Sampling can be used to further augment the results of concolic execution. The key

insight is that the presence of a sound under-approximation generated by the con-

colic execution means that it is unnecessary to sample from the under-approximating

region. Here is the algorithm:

1. Let C = C0 u (
⊔
iCi) be the under-approximating region.

2. Perform sampling per the algorithm in Section 5.4, but with two changes:

• if a sampled state σT ∈ γC(C), ignore it

148



• When done sampling, compute smin
T+ = pL · (#(CT ) − #(C)) + #(C) and

smax
T+ = pU · (#(CT ) − #(C)) + #(C). This differs from Section 5.4 in

not including the count from concolic region C in the computation. This

is because, since we ignored samples σT ∈ γC(C), the credible interval

[pL, pU ] bounds the likelihood that any given point in CT \ C is in the

support of the true distribution.

For our example, concolic execution indicated there are at least 41 points that satisfy

the query. With this in hand, and using the same samples as shown in Section 5.4,

we can refine s ∈ [74, 80] and m ∈ [0.74, 0.160] (the credible interval is formed over

only those samples which satisfy the query but fall outside the under-approximation

returned by concolic execution). We improve the vulnerability estimate to V ≤
0.02

0.0.74
= 0.027. These bounds (and vulnerability estimate) are better than those of

sampling alone (s ∈ [72, 81] with V ≤ 0.028).

The statement of soundness and its proof can be found in Appendix C.2.1.

5.6 Implementation

We have implemented our approach as an extension of Mardziel et al. [115], which

is written in OCaml. This baseline implements numeric domains C via an OCaml

interface to the Parma Polyhedra Library [10]. The counting procedure #(C) is

implemented by LattE [53]. Support for arbitrary precision and exact arithmetic

(e.g., for manipulating mmin, pmin, etc.) is provided by the mlgmp OCaml interface

to the GNU Multi Precision Arithmetic library. Rather than maintaining a single

probabilistic polyhedron P , the implementation maintains a powerset of polyhedra [9],

i.e., a finite disjunction. Doing so results in a more precise handling of join points in

the control flow, at a somewhat higher performance cost.

We have implemented our extensions to this baseline for the case that domain

149



C is the interval numeric domain [46]. Of course, the theory fully applies to any

numeric abstract domain. We use Gibbs sampling, which we implemented ourselves.

We delegate the calculation of the beta distribution and its corresponding credible

interval to the ocephesOCaml library, which in turns uses the GNU Scientific Library.

It is straightforward to lift the various operations we have described to the powerset

domain. All of our code is available at https://github.com/GaloisInc/TAMBA.

5.7 Experiments

To evaluate the benefits of our techniques, we applied them to queries based on

the evacuation problem outlined in Section 5.1. We found that while the baseline

technique can yield precise answers when computing vulnerability, our new techniques

can achieve close to the same level of precision far more efficiently.

5.7.1 Experimental Setup

For our experiments we analyzed queries similar to Nearby(s, l, d) from Figure 5.2. We

generalize the Nearby query to accept a set of locations L—the query returns true if

s is within d units of any one of the islands having location l ∈ L. In our experiments

we fix d = 100. We consider the secrecy of the location of s, Location(s). We also

analyze the execution of the resource allocation algorithm of Figure 5.2 directly; we

discuss this in Section 5.7.3.

We measure the time it takes to compute the vulnerability (i.e., the probability

of the most probable point) following each query. In our experiments, we consider a

single ship s and set its coordinates so that it is always in range of some island in

L, so that the concrete query result returns true (i.e. Nearby(s, L, 100) = true). We

measure the vulnerability following this query result starting from a prior belief that

the coordinates of s are uniformly distributed with 0 ≤ Location(s).x ≤ 1000 and

150

https://github.com/GaloisInc/TAMBA


0 ≤ Location(s).y ≤ 1000.

In our experiments, we varied several experimental parameters: analysis method

(either P, I, CE, S, or CE+S), query complexity c; AI precision level p; and number

of samples n. We describe each in turn.

Analysis method We compared five techniques for computing vulnerability:

P: Abstract interpretation (AI) with convex polyhedra for domain C (Section 5.3),

I: AI with intervals for C (Section 5.3),

S: AI with intervals augmented with sampling (Section 5.4),

CE: AI with intervals augmented with concolic execution (Section 5.5), and

CE+S: AI with intervals augmented with both techniques (Section 5.5.3)

The first two techniques are due to Mardziel et al. [115], where the former uses convex

polyhedra and the latter uses intervals (aka boxes) for the underlying polygons. In

our experiments we tend to focus on P since I’s precision is unacceptably poor (e.g.,

often vulnerability = 1).

Query complexity. We consider queries with different L; we say we are increasing

the complexity of the query as L gets larger. Let c = |L|; we consider 1 ≤ c ≤ 5,

where larger L include the same locations as smaller ones. We set each location to

be at least 2 · d Manhattan distance units away from any other island (so diamonds

like those in Figure 5.3(a) never overlap).

Precision. The precision parameter p bounds the size of the powerset abstract

domain at all points during abstract interpretation. This has the effect of forcing joins

when the powerset grows larger than the specified precision. As p grows larger, the

results of abstract interpretation are likely to become more precise (i.e. vulnerability

gets closer to the true value). We considered p values of 1, 2, 4, 8, 16, 32, and 64.

151



Samples taken. For the latter three analysis methods, we varied the number of

samples taken n. For analysis CE, n is interpreted as the number of samples to try

per polyhedron before giving up trying to find a “valid sample.”5 For analysis S, n

is the number of samples, distributed proportionally across all the polyhedra in the

powerset. For analysis CE+S, n is the combination of the two. We considered sample

size values of 1, 000− 50, 000 in increments of 1, 000. We always compute an interval

with ω =99.9% confidence (which will be wider when fewer samples are used).

System description. We ran experiments varying all possible parameters. For

each run, we measured the total execution time (wall clock) in seconds to analyze the

query and compute vulnerability. All experiments were carried out on a MacBook

Air with OSX version 10.11.6, a 1.7GHz Intel Core i7, and 8GB of RAM. We ran a

single trial for each configuration of parameters. Only wall-clock time varies across

trials; informally, we observed time variations to be small.

5.7.2 Results

Figure 5.6(a)–(c) measure vulnerability (y-axis) as a function of time (x-axis) for each

analysis.6 These three figures characterize three interesting “zones” in the space of

complexity and precision. The results for method I are not shown in any of the figures.

This is because I always produces a vulnerability of 1. The refinement methods (CE, S,

and CE+S) are all over the interval domain, and should be considered as “improving”

the vulnerability of I.

In Figure 5.6(a) we fix c = 1 and p = 1. In this configuration, baseline analysis

P can compute the true vulnerability in ∼0.95 seconds. Analysis CE is also able to

compute the true vulnerability, but in ∼0.19 seconds. Analysis S is able to compute

a vulnerability to within ∼ 5 · e−6 of optimal in ∼ 0.15 seconds. These data points

support two key observations. First, even a very modest number of samples improves
5This is the N parameter from section 5.5.
6These are best viewed on a color display.

152



(a) Vulnerability vs. time,
c = 1 and p = 1

(b) Vulnerability vs. time,
c = 2 and p = 4

(c) Vulnerability vs. time,
c = 5 and p = 32 (X-axis is log-scale)

(d) Time vs. complexity,
n = 50, 000 and p = 64

Figure 5.6: Experimental results

vulnerability significantly over just analyzing with intervals. Second, concolic exe-

cution is only slightly slower and can achieve the optimal vulnerability. Of course,

concolic execution is not a panacea. As we will see, a feature of this configuration is

that no joins take place during abstract interpretation. This is critical to the precision

of the concolic execution.

In Figure 5.6(b) we fix c = 2 and p = 4. In contrast to the configuration of

Figure 5.6(a), the values for c and p in this configuration are not sufficient to prevent

all joins during abstract interpretaion. This has the effect of taking polygons that

represent individual paths through the program and joining them into a single polygon

153



representing many paths. We can see that this is the case because baseline analysis

P is now achieving a better vulnerability than CE. However, one pattern from the

previous configuration persists: all three refinement methods (CE, S, CE+S) can

achieve vulnerability within ∼ 1 · e−5 of P, but in 1
4
the time. In contrast to the

previous configuration, analysis CE+S is now able to make a modest improvement

over CE (since it does not achieve the optimal).

In Figure 5.6(c) we fix c = 5 and p = 32. This configuration magnifies the effects

we saw in Figure 5.6(b). Similarly, in this configuration there are joins happening,

but the query is much more complex and the analysis is much more precise. In this

figure, we label the X axis as a log scale over time. This is because analysis P took

over two minutes to complete, in contrast to the longest-running refinement method,

which took less than 6 seconds. The relationship between the refinement analyses

is similar to the previous configuration. The key observation here is that, again, all

three refinement analyses achieve within ∼ 3 · e−5 of P, but this time in 4% of the

time (as opposed to 1
4
in the previous configuration).

Figure 5.6(d) makes more explicit the relationship between refinements (CE, S,

CE+S) and P. We fix n = 50, 000 (the maximum) here, and p = 64 (the maximum).

We can see that as query complexity goes up, P gets exponentially slower, while CE,

S, and CE+S slow at a much lower rate, while retaining (per the previous graphs)

similar precision.

5.7.3 Evacuation Problem

We conclude this section by briefly discussing an analysis of an execution of the

resource allocation algorithm of Figure 5.2. In our experiment, we set the number of

ships to be three, where two were in range d = 300 of the evacuation site, and their

sum-total berths (500) were sufficient to satisfy demand at the site (also 500). For

our analysis refinements we set n = 1000. Running the algorithm, a total of seven

154



Table 5.1: Analyzing a 3-ship resource allocation run
Resource Allocation (3 ships)

Analysis Time (s) Vulnerability
P Timeout (5 min) N/A
I 0.516 1
CE 16.650 1.997 · 10−24

S 1.487 1.962 · 10−24

CE+S 17.452 1.037 · 10−24

pairs of Nearby and Capacity queries were issued. In the end, the algorithm selects

two ships to handle the evacuation.

Table 5.1 shows the time to execute the algorithm using the different analysis

methods, along with the computed vulnerability—this latter number represents the

coordinator’s view of the most likely nine-tuple of the private data of the three ships

involved (x coordinate, y coordinate, and capacity for each). We can see that, as

expected, our refinement analyses are far more efficient than baseline P, and far more

precise than baseline I. The CE methods are precise but slower than S. This is because

of the need to count the number of points in the DNF of the concolic path conditions,

which is expensive.

Discussion The queries considered in Figure 5.6 have two features that contribute

to the effectiveness of our refinement methods. First, they are defined over large

domains, but return true for only a small subset of those values. For larger subsets of

values, the benefits of sampling may degrade, though concolic execution should still

provide an improvement. Further experiments are needed to explore such scenarios.

Second, the example in Figure 5.6 contains short but complex queries. A result of

this query structure is that abstract interpretation with polyhedra is expensive but

sampling can be performed efficiently. The evacuation problem results in Table 5.1

provide some evidence that the benefits of our techniques also apply to longer queries.

However it may still be possible to construct queries where the gap in runtime between

155



polyhedral analysis and sampling is smaller, in which case sampling would provide

less improvement.

5.8 Related Work

Quantifying Information Flow. There is a rich research literature on techniques that

aim to quantify information that a program may release, or has released, and then use

that quantification as a basis for policy. One question is what measure of information

release should be used. Past work largely considers information theoretic measures,

including Bayes vulnerability [163] and Bayes risk [41], Shannon entropy [159], and

guessing entropy [116]. The g-vulnerability framework [4] was recently introduced

to express measures having richer operational interpretations, and subsumes other

measures.

Our work focuses on Bayes Vulnerability, which is related to min-entropy. Vul-

nerability is appealing operationally: As Smith [163] explains, it estimates the risk

of the secret being guessed in one try. While challenging to compute, this approach

provides meaningful results for non-uniform priors. Work that has focused on other,

easier-to-compute metrics, such as Shannon entropy and channel capacity, require

deterministic programs and priors that conform to uniform distributions [117, 8, 127,

100, 101]. The work of Klebanov [94] supports computation of both Shannon entropy

and min-entropy over deterministic programs with non-uniform priors. The work

takes a symbolic execution and program specification approach to QIF. Our use of

concolic execution for counting polyhedral constraints is similar to that of Klebanov.

However, our language supports probabilistic choice and in addition to concolic exe-

cution we also provide a sampling technique and a sound composition. Like Mardziel

et al. [115], we are able to compute the worst-case vulnerability, i.e., due to a par-

ticular output, rather than a static estimate, i.e., as an expectation over all possible

156



outputs. Köpf and Basin [99] originally proposed this idea, and Mardziel et al. were

the first to implement it, followed by several others [28, 78, 103].

Köpf and Rybalchenko [100] (KR) also use sampling and concolic execution to

statically quantify information leakage. But their approach is quite different from

ours. KR uses sampling of a query’s inputs in lieu of considering (as we do) all possible

outputs, and uses concolic execution with each sample to ultimately compute Shannon

entropy, by underapproximation, within a confidence interval. This approach benefits

from not having to enumerate outputs, but also requires expensive model counting for

each sample. By contrast, we use sampling and concolic execution from the posterior

computed by abstract interpretation, using the results to boost the lower bound on the

size/probability mass of the abstraction. Our use of sampling is especially efficient,

and the use of concolic execution is completely sound (i.e., it retains 100% confidence

in the result). As with the above work, KR requires deterministic programs and

uniform priors.

Probabilistic Programming Langauges. A probabilistic program is essentially a

lifting of a normal program operating on single values to a program operating on

distributions of values. As a result, the program represents a joint distribution over

its variables [77]. As discussed in this paper, quantifying the information released by

a query can be done by writing the query in a probabilistic programming language

(PPL) and representing the uncertain secret inputs as distributions. Quantifying

release generally corresponds to either the maximum likelihood estimation (MLE)

problem or the maximum a-posteriori probability (MAP) problem. Not all PPLs

support computation of MLE and MAP, but several do.

PPLs based on partial sampling [75, 133] or full enumeration [139] of the state

space are unsuitable in our setting: they are either too inefficient or too imprecise.

PPLs based on algebraic decision diagrams [43], graphical models [118], and factor

graphs [33, 136, 120] translate programs into convenient structures and take advantage

157



of efficient algorithms for their manipulation or inference, in some cases supporting

MAP or MLE queries (e.g. [135, 129]). PSI [66] supports exact inference via com-

putation of precise symbolic representations of posterior distributions, and has been

used for dynamic policy enforcement [103]. Guarnieri et al. [78] use probabilistic logic

programming as the basis for inference; it scales well but only for a class of queries

with certain structural limits, and which do not involve numeric relationships.

Our implementation for probabilistic computation and inference differs from the

above work in two main ways. Firstly, we are capable of sound approximation and

hence can trade off precision for performance, while maintaining soundness in terms

of a strong security policy. Even when using sampling, we are able to provide precise

confidence measures. The second difference is our compositional representation of

probability distributions, which is based on numerical abstractions: intervals [46],

octagons [119], and polyhedra [48]. The posterior can be easily used as the prior for

the next query, whereas prior work would have to repeatedly analyze the composition

of past queries.

A few other works have also focused on abstract interpretation, or related tech-

niques, for reasoning about probabilistic programs. Monniaux [123] defines an ab-

stract domain for distributions. Smith [166] describes probabilistic abstract interpre-

tation for verification of quantitative program properties. Cousot [49] unifies these

and other probabilistic program analysis tools. However, these do not deal with sound

distribution conditioning, which is crucial for belief-based information flow analysis.

Work by Sankaranarayanan et al [153] uses a combination of techniques from program

analysis to reason about distributions (including abstract interpretation), but the rep-

resentation does not support efficient retrieval of the maximal probability, needed to

compute vulnerability.

158



Chapter 6

Conclusion

Our goal was to show that secure programming can be made safer through language-

based techniques for expressive, coordinated MPC; probabilistically oblivious execu-

tion; and quantitative analysis of information flow. We provided evidence in the form

of Symphony, an expressive MPC language with support for coordinating many

parties; λObliv, a core language for oblivious computation that ensures well-typed

programs are probabilistically oblivious; and an application of dynamic analysis tech-

niques to an existing system for bounding information leakage, providing a better

balance of precision and performance. But, of course, the quest for even better lan-

guages for secure computation continues. We conclude with some promising directions

for future work below.

Synthesis of Wysteria, λMPC, and λObliv Ultimately, we would like an MPC lan-

guage with the flexible coordination of λMPC and static checking of deadlock-freedom

and probabilistic obliviousness. Roughly speaking, this would require generalizing

Wysteria’s [143] type system to support the additional features provided by λMPC

and then unifying the resulting language with λObliv. Unifying the syntax and op-

erational semantics should present no major issues, since λObliv was designed to be

MTO and can therefore be expressed in the circuit model. However, unifying the type

159



systems is likely to be much more challenging. The proof of PMTO for λObliv relies

on random values being the only kind of value which can be coerced from secret to

public. An MPC language provides a general-purpose declassification mechanism (i.e.

decryption) and so the definition and proof of PMTO must be adapted to account

for declassifications.

Resource Awareness for MPC Languages MPC programs are expensive and

their performance can be impacted dramatically by both the features of the underlying

protocol and innocuous variations in the program itself. For example, a 2-party

MPC program may wish to use Yao’s protocol if it is being deployed on a high-

latency network but would probably choose GMW for deployments on a network

with very low latency. Additionally, a non-expert programmer might use multiplexors

in places where logical operators would suffice, leading to bloated circuits. There

may be opportunities to integrate resource-based reasoning into the language to help

programmers optimize performance. For example, a language like Resource-Aware

ML [85] could provide a good starting place.

High-Performance Compilation λMPC is implemented as an interpreter, and in-

curs non-negligible overhead as a result. In addition to being a significant engineering

challenge, there are also open research problems that must be solved to achieve peak

performance while also providing flexible features. For example, most MPC frame-

works based on secret sharing [92, 5] execute circuits layer-by-layer ensuring that

gates on a particular layer are executed in parallel. However, as observed by Braun et

al. [36], this approach is not always optimal in practice despite being asymptotically

optimal. Optimally executing a circuit depends both on the network conditions (e.g.

bandwidth, latency) as well as the structure of the circuit. This challenge is exacer-

bated by reactive MPC, which complicates any potential analysis of optimal circuit

execution by demanding that circuits be executed as they are being constructed. We

160



leave the design and implementation of a high-performance compiler for a flexible,

coordinated MPC language like λMPC to future work.

User Studies of MPC Languages We claim in this proposal that the choreo-

graphic, or SIMD, approach to MPC programming renders them more usable and less

error-prone. We justify that claim by showing that such a design can eliminate dead-

lock that can occur in other MPC languages. However, choreographic languages [50,

51, 137, 124] are not the only way of achieving deadlock-free distributed programming.

Another popular alternative are process languages [152, 83] which can be guaranteed

deadlock-free using session types [88]. It would be interesting to evaluate the usability

of various approaches to distributed programming in the context of MPC.

161



Appendix A

Symphony: Architecture and Proofs

A.1 FFI and Resource Management

The Haskell interpreter for Symphony implements MPC using the Symphony run-

time library. The Symphony runtime library implements MPC using the EMP

and MOTION libraries. Each of these layers (Symphony interpreter, Symphony

runtime, and EMP/MOTION) interact via FFI, using opaque foreign pointers to

represent values in the next layer.

In Haskell, the raw foreign pointers are wrapped with the ForeignPtr type, which

executes an associated finalizer (i.e. a Haskell function) on the raw foreign pointer

when it is garbage collected. We use this finalizer to call (via FFI) an appropriate

destructor function which is provided by Symphony runtime.

In Rust, the raw foreign pointers are wrapped with newtype-style Rust structures.

These Rust structures contain an explicit implementation of the Drop trait, calling

the drop function on the structure when it is dropped. This is analogous to the

ForeignPtr in Haskell, except that Rust can insert calls to drop statically rather

than relying on garbage collection. Just as in Haskell, the drop function calls (via

FFI) an appropriate destructor function, which is provided by EMP and MOTION.

162

https://hackage.haskell.org/package/base-4.16.1.0/docs/Foreign-ForeignPtr.html
https://doc.rust-lang.org/std/ops/trait.Drop.html


Finally, we implement FFI interfaces for both EMP and MOTION which expose

constructor and destructor functions which perform heap allocation and deallocation

of the requisite C++ objects.

Putting all this together, when an encrypted value is garbage collected by Haskell

the ForeignPtr will call the appropriate destructor defined by Symphony runtime.

Then, that destructor function will drop the value which will call the appropriate

destructor defined by EMP or MOTION. Finally, the destructor of EMP or MOTION

exposed by the FFI will free the C++ object using the delete keyword.

These approaches to integrating software written in different languages are largely

standard. We chose to implement the enhancements in Symphony runtime as a

separate library to optimize performance. We chose Rust specifically because it has

excellent libraries, tooling, and documentation. The Symphony runtime is written

in idiomatic Rust, meaning that it may serve as an artifact of independent interest for

researchers who need access to MPC protoocols with support for delegation, resharing,

and reactive MPC.

A.2 Metatheory

A.2.1 Proof Sketches for Correspondence Theorems

To prove theorems Theorem 3.4.1, Theorem 3.4.2 and Theorem 3.4.3 given in Sec-

tion 3.4, we first formalize key definitions.

Definition A.2.1 (Divergence). A single-threaded configuration ς is divergent if for

all ς ′ where ς −→∗ ς ′, there exists ς ′′ s.t. ς ′ −→ ς ′′. (And likewise for distributed

configurations C and transitions  ∗.)

163



Definition A.2.2 (Locally stuck).

C is locally stuck M⇐⇒ ∃A s.t. C(A) = ς̇

and where ς̇ is not a terminal state

ς̇ .e /∈ {share[ → ] , reveal[ → ] }

ς̇ 6−→A

or ς̇ .e ∈ {share[x1 → x2] x3, reveal[x1 → x2] x3}

p = ς̇ .γ̇(x1) m = ς̇ .m

q = ς̇ .γ̇(x2) m 6= p ∪ q

Now we establish a number of key lemmas. Our proof approach for Theorem 3.4.1

largely follows the proof approach from Wysteria [143], and our proof approach for

Theorem 3.4.2 and Theorem 3.4.3—while novel—are straightforward proofs by case

analysis and inductive reasoning on the recursive syntax of configurations and induc-

tively defined relations −→, and −→A. In this section we show the high level proof

approach.

First, we establish determinism for the single-threaded semantics and confluence

for the distributed semantics:

Lemma A.2.0.1 (ST Determinism). If ς −→ ς1 and ς −→ ς2 then ς1 = ς2.

Proof. Case analysis on derivations ς −→ ς1 and ς −→ ς2.

Lemma A.2.0.2 (D Confluence). If C  ∗ C1 and C  ∗ C2 then C1  ∗ C3 and

C2  ∗ C3 for some C3.

Proof. We first prove a diamond property sublemma that shows if C  C1, C  

C2 and C1 6= C2, then C1  C3 and C2  C3 for some C3, which is proved by

case analysis on derivations C  C1 and C  C2. Confluence is established as a

classic results whereby transition systems which satisfy the diamond property are also

confluent, the proof of which is by induction on derivations C  ∗ C1 and C  ∗ C2

and appealing to the diamond property in the base cases.

164



Next, we establish forward simulation between terminal states and semantics:

Lemma A.2.0.3 (ST Forward Simulation).

1. If ς is terminal then ς is terminal

2. If ς is stuck then ς is locally stuck

3. If ς −→∗ ς ′ then ς  ∗ ς ′ .

Proof.

1. Case analysis on ς

2. Case analysis on ς

3. Induction on steps in ς −→∗ ς ′ and case analysis on intermediate derivations

ς −→ ς ′′.

Theorem 3.4.1 then follows from these lemmas:

Proof of ST/D Terminal Correspondence. The forward direction is equivalent to show-

ing ς −→∗ ς ′ and ς ′ terminal implies ς −→∗ ς ′ and ς ′ terminal, which follows from

Lemma A.2.0.3.

The backward direction is equivalent to showing ς  ∗ C and C terminal im-

plies ς −→∗ ς ′ for some ς ′ where ς ′ terminal and C = ς ′ . By Lemma A.2.0.3 and

Lemma A.2.0.2 we know that if ς diverges then ς must diverge, and therefore under

the assumption that ς converges, we know must converge, so ς −→∗ ς ′ for some

terminal state ς ′. By Lemma A.2.0.3 we know ς  ∗ ς ′ , and by Lemma A.2.0.2 we

know C = ς ′ .

165



Our proof of Theorem 3.4.2 also follows from the lemmas and theorem proven

thus far:

Proof of ST/D Strong Asymmetric Non-terminal Correspondence.

1. By Theorem 3.4.1 we know ς doesn’t reach a terminal state, so it either diverges

or converges to a stuck state. Consider each case. Assume ς diverges, then we

know by Lemma A.2.0.3 we know that there exists a distributed trace that also

diverges. By Lemma A.2.0.2 applied to the stuck distributed state, the divergent

distributed state (just established), and ς as the common ancestor, we know

the stuck distributed state can make progress towards a divergent one, which is

a contradiction—so this subcase can never happen. The other subcase is when ς

reaches a stuck state, which trivially satisfies the goal.

2. Because  is confluent by Lemma A.2.0.2, ς must either converge to a terminal

state, converge to a stuck state, or diverge. (E.g., it impossible for ς  ∗ ς ′ where

ς ′ is stuck, and for ς  ∗ ς ′′ where ς ′′ can continue to transition without ever

reaching a stuck or terminal state.) If ς converged then by Theorem 3.4.1, which

would reach a contradiction. If ς reached a stuck state, then so would ς by (1)

of this theorem, which would reach a contradiction. Therefore, ς must diverge.

We prove one final lemma before proving our third theorem:

Lemma A.2.0.4 (D Local Stuck Preservation). If C is locally stuck and C  ∗ C ′

then C ′ is locally stuck.

Proof. Induction on the number of steps in  ∗, and case analysis on intermediate

derivations C  C ′′.

166



Our proof of Theorem 3.4.3 then uses the prior lemma:

Proof of ST/D Soundness for Stuck States. We assume ς −→∗ ς ′ where ς ′ is stuck

and some C where ς  C. We must show there exists C ′ s.t. C  C ′ and C ′ locally

stuck. By Lemma A.2.0.3 we know ς  ∗ ς ′ and ς ′ is locally stuck. By confluence

we have there exists C ′ s.t. C  ∗ C ′ and ς ′  ∗ C ′. By Lemma A.2.0.4 with ς as

the common ancestor we have C ′ locally stuck.

Theorem 3.4.1 captures the same metatheoretical properties proved of prior work

(Wysteria [143]), whereas Theorems 3.4.2 and 3.4.3 are refinements of divergence-

soundness and stuck-state-soundness results novel to our work.

A.2.2 Detailed Proofs for Key Lemmas

In this section, we prove the key meta-theoretic properties of the distributed seman-

tics, namely forward simulation (Appendix A.2.2) and confluence (Appendix A.2.2),

along with their corollaries. The full DS-semantics rules are given in ??.

Forward Simulation

The key lemma for proving simulation states that if global single-threaded config-

uration ς steps to ς ′, then the slicing of ς steps to ς ′ over multiple steps of the

multi-threaded semantics. The basic structure of the proof is, based on the form of

step from global configuration ς, to construct a sequence of distributed steps that

each updates the local configuration of some party in the mode of ς. For non-atomic

expressions, there is exactly one step for every party in the mode; the most interesting

case are global steps that are applications SS-Par: these are simulated by a sequence

of steps which may be built from applications of SS-Par themselves or SS-Empty.

For expressions that evaluate an atom and bind the result, there is a single step,

performed by all parties.

167



Lemma A.2.0.5 (Forward Simulation-Step). If ς → ς ′, then ς  ∗ ς ′ .

Proof. ς → ς ′, by assumption. Let (m, γ, δ, κ, e) = ς and let (m′, γ′, δ′, κ′, e′) = ς ′.

Proceed by cases on the form of the evidence of ς → ς ′:

ST-Case-Inj ς  . . .  Ci  . . .  ς ′ , where each Ci is ς |[0,i] ] ς ′ |[i+1,|m|]

(where C|I denotes distributed configuration C restricted to parties at indices

I).

The proof that each Ci steps to Ci+1 is as follows. Apply DS-Step, with ς̇ as

the configuration

mi, γ, δ, κ, case x{x1.e1}{x2.e2}

ς̇ ′ as the configuration

mi, {x 7→ v} ] γ, δ, κ, ej

where γ(x) $mi= (ιjv)@{mi} and Ci|[0,i−1],[i+1,|m|] as C. ς̇ −→i ς̇
′ by DS-Case-

Inj. Ci+1 is Ci|[0,i−1] ] {mi 7→ ς̇ ′} ] Ci|[i+1,|m|].

The proofs for evidence constructed from rules DS-Case-PSet-Emp and DS-

Case-PSet-Cons are similar. The only distinction is that the updated local

configuration in each distributed configuration Ci+1 is formed by updating the

subject of expression to e1 in the case of Rule DS-Case-PSet-Emp and e2 in

the case of Rule DS-Case-PSet-Cons. Additionally, in the case of Rule DS-

Case-PSet-Cons, the local state is updated to bind variables x2 and x3 to the

deconstructed principal and remaining set of principals.

ST-Par ς  . . . Ci  . . . ς ′ , where each Ci is ς |[0,i] ] ς ′ |[i+1,|m|].

The proof that each Ci steps to Ci+1 is as follows. Ifmi ∈ p, then apply DS-Step,

with ς̇ as the configuration

mi, γ, δ, κ, par p e

168



ς̇ ′ as the configuration

mi, γ, δ, κ, e

and Ci|[0,i−1],[i+1,|m|] as C. ς̇ −→i ς̇
′ by DS-Par, because mi ∈ p and thus

{mi} ∩ p = {mi} 6= ∅.

If mi /∈ p, then let ς̇ ′ = ς̇.

In both cases, Ci+1 is Ci|[0,i−1] ] {mi 7→ ς̇ ′} ] Ci|[i+1,|m|].

ST-ParEmpty ς  . . . Ci  . . . ς ′ , where each Ci is ς |[0,i] ] ς ′ |[i+1,|m|].

The proof that each Ci steps to Ci+1 is as follows. Apply DS-Step, with ς̇ as

the configuration

mi, γ, δ, κ, par p e

ς̇ ′ as the configuration

mi, {x 7→F} ] γ, δ, κ, x

and Ci|[0,i−1],[i+1,|m|] as C. ς̇ −→i ς̇
′ by DS-ParEmpty, because m∩ p = ∅ by the

fact that c → c is an application of ST-ParEmpty; thus {mi} ∩ p = ∅. Ci+1 is

Ci|[0,i−1] ] {mi 7→ ς̇ ′} ] Ci|[i+1,|m|].

ST-App ς  . . . Ci  . . . ς ′ , where each Ci is ς |[0,i] ] ς ′ |[i+1,|m|].

The proof that each Ci steps to Ci+1 is as follows. Let 〈λzx.e′, γ′〉@m = v1 =

γ(x1), which holds in the case that c→ c′ is an application of ST-App.

Apply DS-Step, with ς̇ as the configuration

mi, γ, δ, κ, x1 x2

ς̇ ′ as the configuration

mi, {z 7→ v1, x2 7→ γ(x2)} ] γ, δ, 〈let x = _ in e2 | γ〉 :: κ, e′

169



and Ci|[0,i−1],[i+1,|m|] as C. ς̇ −→i ς̇
′ by DS-App. Ci+1 is Ci|[0,i−1] ] {mi 7→

ς̇ ′} ] Ci|[i+1,|m|].

ST-LetPush ς  . . . Ci  . . . ς ′ , where each Ci is ς |[0,i] ] ς ′ |[i+1,|m|].

The proof that each Ci steps to Ci+1 is as follows. Apply DS-Step, with ς̇ as

the configuration

mi, γ, δ, κ, let x = e1 in e2

ς̇ ′ as the configuration

mi, γ, δ, 〈let x = _ in e2 | 〉 :: κ, e1

and Ci|[0,i−1],[i+1,|m|] as C. ς̇ −→i ς̇
′ by DS-LetPush. Ci+1 is Ci|[0,i−1] ] {mi 7→

ς̇ ′} ] Ci|[i+1,|m|].

ST-LetPop e is some atom a, δ and a step to δ′ and some value v under γ in mode

m, and κ = 〈let x = _ in e′ | m′, γ′′〉 :: κ′, and γ′ = {x 7→ v} ] γ′′, by

assumption.

Proceed by cases on the fact that δ and a step to δ′ and some value v under

γ in mode m. Subcase: solo atom In the case that the evaluation is an

application of ST-Int, ST-Var, ST-Fun, ST-Inj, ST-Pair, ST-Proj, ST-Ref, ST-

Deref, ST-Assign, ST-Fold, ST-Unfold, ST-Read, ST-Write, ST-Embed, and

ST-Star, ς  . . .  Ci  . . .  ς ′ , where each Ci is ς |[0,i] ] ς ′ |[i+1,|m|].

The proof that each Ci steps to Ci+1 is as follows. Apply DS-Step, with ς̇ as

the configuration

mi, γ, δ, 〈let x = _ in e′ | m′, γ′′〉 :: κ′, a

170



ς̇ ′ as the configuration

mi, {x 7→ v} ] γ, δ′, κ′, e′

and Ci|[0,i−1],[i+1,|m|] as C. ς̇ −→i ς̇
′ by DS-LetPop. Ci+1 is Ci|[0,i−1] ] {mi 7→

ς̇ ′} ] Ci|[i+1,|m|].

Subcases: binary operation over clear data The subcases in which evalua-

tion is an application of ST-Binop, a is of the form x1 ⊕ x2, i·1@m = γ(x1) $m,

and i·2@m = γ(x1) $m or in which evaluation is an application of ST-PSet-Binop

(i.e., the computation is an binary operation over clear data) is directly similar

to the previous subcase.

Subcase: mux on clear data The subcase in which evaluation is an applica-

tion of ST-Mux, a is of the form mux if x1 then x2 else x3, i·1@m = γ(x1) $m,

i·2@m = γ(x2) $m, and i·3@m = γ(x3) $m is directly similar to the previous

subcases.

Subcase: binary operation on encrypted data For the subcase in which

evaluation is an application of ST-Binop, a is of the form x1 ⊕ x2, ienc#m1 @m =

γ(x1) $m, and ienc#m2 @m = γ(x1) $m (i.e., the computation is an binary opera-

tion over encrypted data), ς steps to ς ′ by application of DS-Step, with

m, γ, δ, κ, x1 ⊕ x2

as ς̇,

m, {x 7→ v} ] γ, δ, κ, x

as ς̇ ′, and ς |parties\m as C. ς̇ steps to ς̇ ′ by ST-Binop.

Subcase: mux on encrypted data The subcase in which evaluation is an

application of ST-Mux, a is of the form mux if x1 then x2 else x3, ienc#m1 @m =

γ(x1) $m, ienc#m2 @m = γ(x2) $m, and ienc#m3 @m = γ(x3) $m is directly similar

171



to the previous subcase.

Subcases: synchronization The subcases in which evaluation is an applica-

tion of ST-Share or ST-Reveal are directly similar to the previous two subcaes,

in that they are simulated by a single step of the distributed semantics.

The proof of weak forward simulation follows directly from Lemma A.2.0.5.

Lemma A.2.0.6 (ST Weak Forward Simulation). If ς −→∗ ς ′ and ς ′ is terminal,

then ς  ∗ ς ′ and ς ′ 6 .

Proof. The claim holds by induction on the multistep judgment ς −→∗ ς.

Empty If the trace is empty, then ς̇ is ς̇ ′. ς multi-steps to ς over the empty

sequence of steps.

Non-empty If the trace is of the form ς → ς ′′ →∗ ς ′, then ς  ∗ ς ′′ by Lemma A.2.0.5

and ς ′′  ∗ ς ′ by the inductive hypothesis. ς  ∗ ς by the fact that the

concatenation of two traces is a trace.

Confluence and End-State Determinism

In order to prove the Diamond Property, we will first claim and prove a lemma

that establishes that distinct sub-configurations that can step within each step of a

distributed configuration in fact update the local configurations of disjoint sets of

parties.

Lemma A.2.0.7. For all distributed configurations C, C0, and C1 and all non-halting

distributed configurations C ′0 and C ′1 such that

C = C ′0 ] C0 = C ′1 ] C1

172



one of the following cases holds:

1. C ′0 = C ′1 and C0 = C1;

2. the domains of C ′0 and C ′1 are disjoint.

Proof. Proceed by cases on whether the domains of C ′0 and C ′1 are disjoint. If so,

then the second clause of the claim is satisfied.

Otherwise, there is some partymi in the domains of both C ′0 and C ′1. The domains

of C ′0 and C ′1 are the same, by cases on the active expression ei in the local configu-

ration located at mi: if ei is a non-atom, a variable occurrence, an integer literal, a

binary operation over integers, a binary operation over sets of principals, a multiplex,

a pair creation, a pair projection, a sum injection, a function creation, a reference

creation, a dereference, a reference assignment, a recursive type introduction, a read,

or a write then the domains are singletons. Thus the domains are the same, because

they are singletons that overlap.

In the case that the expression shares a value from p to q, the steps from C ′0 and

C ′1 are applications of DS-Share, which has a premise that the mode is p ∪ q; thus,

the domains of C ′0 and C ′1 are the identical set of parties p ∪ q.

In the case that the expression reveals the value bound to variable x to parties q,

the steps from C ′0 and C ′1 are applications of DS-Reveal, which has a premise that

the value bound to x is encrypted for parties p, and that the active parties are p∪ q;

thus, the domains of C ′0 and C ′1 are the same set of parties p∪ q. C0 and C1 are thus

the same, given they are the restrictions of C to the complements of the domains of

C ′0 and C ′1, respectively.

Using Lemma A.2.0.7, we can prove the Diamond Property for the transition

relation over multi-threaded configurations.

173



Proof. There are distributed configurations C0,0, C0,1, C1,0, and C1,1 such that

C0,0 ] C0,1 = C = C1,0 ] C1,1

and

C0 =C0,0 ] C ′0,1

C1 =C1,0 ] C ′1,1

with C0,1  C ′0,1 and C1,1  C ′1,1, by inverting the facts that C steps to C0 and C

steps to C1. Proceed by cases on the application of Lemma A.2.0.7 to C, C0,0, C0,1,

C1,0, and C1,1:

Identical It follows immediately that C0,0 = C1,0. Furthermore, it follows from a

direct analysis of the multi-threaded transition relation that C ′0,1 = C ′1,1. Thus

C0 = C0,0 ] C ′0,1 = C1,0 ] C ′1,1 = C1

by congruence. Thus for C ′ = C ′0 = C ′1, both C  C ′0 and C  C ′1.

Disjoint Let C ′′ be C restricted to parties in C0,0 and C1,0 and let

C ′ = C ′′ ] C ′0,1 ] C ′1,1

C ′ is well-defined because the domains of C ′0,1 and C ′1,0, are the domains of C0,1

and C1,1, which are disjoint by assumption of this clause.

C0  C ′ by cases on the fact that C0  C ′0: in each case, adjust the evidence

to use C ′′ ] C1 as the distributed configuration that remains unchanged and is

joined with C0. C1  C ′ by a symmetric argument.

174



Given that the distributed semantics satisfies the diamond property, confluence

(Lemma A.2.0.8) is a direct consequence of fundamental properties of general transi-

tion and rewrite systems.

Lemma A.2.0.8 (DS Multi-step Confluence). If C  ∗ C1 and C  ∗ C2 then there

exists C3 s.t. C1  ∗ C3 and C2  ∗ C3.

Proof. Apply the fact that any binary relation that satisfies the Diamond property

satisfies confluence [7] to the Diamond Property for the distributed step relation.

An direct corollary of confluence is that all halting states reached from the same

state are the same.

Corollary A.2.0.1 (DS End-state Determinism). If C  ∗ C1 and C  ∗ C2, C1 6 

and C2 6 then C1 = C2.

Proof. There is some distributed configuration C ′ such that C1  ∗ C ′ and C2  ∗ C ′,

by applying Lemma A.2.0.8 to the fact that C  ∗ C1 and C  ∗ C2. C ′ is C1 by

the fact that C1 is halting and thus C1 multi-steps to C ′ over the empty sequence of

steps; C ′ is C2 by a symmetric argument. Thus, C1 is C2.

175



Appendix B

λObliv: Definitions and Proofs

B.1 Complete PMTO Proof

In this section we give a complete proof of PMTO. First, in Section B.1.1 we present

the final proof of PMTO in top-down breadth-first organization for major lemmas,

and depth-first organization for sublemmas required to prove major lemmas. In many

proofs we abbreviate “suffices to show” as “STS”. Next, in Section B.1.3 we show

complete definitions for all semantics, type rules, auxiliary metafunctions, and low-

equivalence relations which are used in the proof.

The heart of the type system design is typing for flip values:

Flip-Value

Pr
[
b̂ =̇ I

∣∣∣ Φ
]

= 1/2

[
b̂ ⊥⊥ ΨF ,ΨB({ρ′ | ρ′ @ ρ})

∣∣∣ Φ
]

ΨF ,ΨB,Φ ` b̂ : flip
ρ

This invariant dictates that (1) the distribution is uniform, and (2) that it is jointly

independent of all other flip values in the execution context ΨF , and all other secret

bit values in the execution context at strictly lower region ΨB. Joint independence

is crucial and strictly stronger than individual independence; to see this, note that

176



A ⊥⊥ B and A ⊥⊥ C does not imply A ⊥⊥ B,C, however the converse is true.

The heart of the proof is Type Preservation, and its main sublemma Type Preser-

vation Redex. The key semantic property of mux operations used in those lemmas is

Cond Stability.

B.1.1 Theorems and Lemmas

The main metatheory result for λObliv is PMTO. The proof follows from major sub-

lemmas.
Theorem B.1.1 (PMTO).

Probabilistic equality modulo adversary observability for source expressions is pre-

served by the ground truth semantics.

If: e1 and e2 are closed source expressions

And: ` e1 : τ and ` e2 : τ

And: obs(e1) = obs(e2)

Then:

(1) nstepD(N,∅, e1) and nstepD(N,∅, e2) are defined

(2) õbs(nstepD(N,∅, e1)) = õbs(nstepD(N,∅, e2))

Proof.

(1) is by Progress (Ground Truth)

(2) is by the following:

177



obs(e1) = obs(e2)

=⇒ * Low-equivalence Completeness (Source Expressions) +

e1 ∼ e2

=⇒ * PMTO (Mixed) +

nstep(N,∅, e1) ≈∼ nstep(N,∅, e2)

=⇒ * Low-equivalence Soundness +

ôbs(d̂nstep(N,∅, e1)ê) ≈= ôbs(d̂nstep(N,∅, e2)ê)

=⇒ * Simulation (Mixed) +

ôbs(nstepI(N,∅, e1)) ≈= ôbs(nstepI(N,∅, e2))

=⇒ * Simulation (Intensional) +

õbs(nstepD(N,∅, e1)) = õbs(nstepD(N,∅, e2))

PMTO Proof Key Lemmas

Progress (Ground Truth)

Lemma B.1.1.1 (Progress (Ground Truth)).

Progress holds for the ground truth semantics.

If: ` ς

Then: nstepD(N, ς) is total

Proof. Induction on N and Progress (Ground Truth) Single

178



Lemma B.1.1.2 (Progress (Ground Truth) Single).

Progress holds for the ground truth semantics on a single step.

If: Σ ` σ, e

Then either:

(1) e = v for v a value

(2) e = E[e′] and e′ a redex

In both cases stepD(N, σ, e) is total

Proof. Induction on e and inversion on assumed well-typing

Low-equivalence Completeness

Lemma B.1.1.3 (Low-equivalence Completeness (Source Expressions)).

Source expressions which are equal modulo adversary observation are low-equivalent.

If: e1 and e2 are source expressions

And: obs(e1) = obs(e2)

Then: be1c ∼ be2c

Proof. Induction on e1 and e2, and discrimination on assumed obs(e1) = obs(e2)

PMTO (Mixed)

179



Lemma B.1.1.4 (PMTO (Mixed)).

Probabilistic low-equivalence for source expressions is preserved by the mixed seman-

tics.

If: e1 and e2 are closed source expressions

And: ` e1 : τ and ` e2 : τ

And: e1 ∼ e2

Then:

(1) nstep(N,∅, e1) and nstep(N,∅, e2) are defined

(2) nstep(N,∅, e1) ≈∼ nstep(N,∅, e2)

Proof.

(1) is by Progress (Mixed)

(2) is by induction on N

- Case N = 0:

STS: return(e1) ≈∼ return(e2)

By Return Equivalence

- Case N = N + 1:

nstep(N,∅, e1) ≈∼ nstep(N,∅, e2) (IH) (by inductive hypothesis)

STS:

180



do t·ς ← nstep(N,∅, e1)

ς ′ ← step(N + 1, ς)

return(t·ς, ς ′)

≈∼

do t·ς ← nstep(N,∅, e1)

ς ′ ← step(N + 1, ς)

return(t·ς, ς ′)
By Bind Equivalence, Return Equivalence and (IH), STS:

- t1·ς1
∼ t2·ς2

=⇒
[
step(N + 1, ς

1
)
∣∣ Φ1

]
≈∼

[
step(N + 1, ς

2
)
∣∣ Φ2

]
where Φ1 , [nstep(N,∅, e1) =̇ t1·ς1

] and Φ2 , [nstep(N,∅, e2) =̇ t2·ς2
]

By Type Preservation:

- There exists Σ1, Σ2, Ψ1 and Ψ2

S.t. Φ1,Σ1 ` ς1
; Ψ1 and Φ2,Σ2 ` ς2

; Ψ2

Conclusion is by PMTO (Mixed) Single applied to premise and the above well-

typing

Lemma B.1.1.5 (PMTO (Mixed) Single).

Probabilistic low-equivalence for source expressions is preserved by the mixed seman-

tics on a single step.

If: Φ1,Σ1 ` ς1
; Ψ1 and Φ2,Σ2 ` ς2

; Ψ2

And: ς
1
∼ ς

2

Then:
[
step(N, ς

1
)
∣∣ Φ1

]
≈∼

[
step(N, ς

2
)
∣∣ Φ2

]
Proof. By case analysis on ς

1
∼ ς

2
and Progress (Mixed); two cases:

(1) Case ς
1

= σ1, v1 and ς
2

= σ2, v2 for v1 and v2 values

181



step(N, ) is the same as return on values

Immediate by Return Equivalence

(2) Case ς
1

= σ1, E1[e1] and ς
2

= σ2, E2[e2] for e1 and e2 redexes

σ1 ∼ σ2

e1 ∼ e2 (by Contexts Preserve Low Equivalence)

[step(N, σ1, e1) | Φ1] ≈∼ [step(N, σ2, e2) | Φ2] (by PMTO (Mixed) Redex)

[step(N, σ1, E1[e1]) | Φ1] ≈∼ [step(N, σ2, E2[e2]) | Φ2] (by Bind Equivalence, Re-

turn Equivalence and Contexts Preserve Low Equivalence)

Lemma B.1.1.6 (PMTO (Mixed) Redex).

Probabilistic low-equivalence for source expressions is preserved by the mixed seman-

tics on a single step for redex configurations.

If: ς
1
and ς

2
are redex configurations

And: Φ1,Σ1 ` ς1
; Ψ1 and Φ2,Σ2 ` ς2

; Ψ2

And: ς
1
∼ ς

2

Then:
[
step(N, ς

1
)
∣∣ Φ1

]
≈∼

[
step(N, ς

2
)
∣∣ Φ2

]
Proof. By inversion:

σ1 ∼ σ2 e1 ∼ e2

σ1, e1 ∼ σ2, e2

Case analysis on e1 and e2 and inversion on low-equivalence judgment; all cases but

two are immediate by Return Equivalence because definition of step is a return

(1) Non-immediate case e1 = castP (flipv(b̂1)) and e2 = castP (flipv(b̂2)):

By assumed well-typing:

182



- Pr
[
b̂1 =̇ I

∣∣∣ Φ1

]
= 1/2

- Pr
[
b̂2 =̇ I

∣∣∣ Φ2

]
= 1/2

By above facts, Bind Equivalence and because return(bitvP (I)) 6∼ return(bitvP (F)): do b← b̂1

return(bitvP (b))

∣∣∣∣∣∣∣ Φ1

 ≈∼
 do b← b̂2

return(bitvP (b))

∣∣∣∣∣∣∣ Φ2


(2) Non-immediate case e1 = if(bitvP (b̂)){e11}{e12} and e2 = if(bitvP (b̂)){e21}{e22}:

By assumed well-typing:

- b̂ = return(b)

By assumed low-equivalence judgment:

- e11 ∼ e21 and e12 ∼ e22

By above facts and Monad Laws: do b← b̂

return(cond(b, e11, e12))

∣∣∣∣∣∣∣ Φ1

 ≈∼
 do b← b̂

return(cond(b, e21, e22))

∣∣∣∣∣∣∣ Φ2


(3) Non-immediate cases e1 and e2 let-statements or function application

By PMTO (Mixed) Substitution

Lemma B.1.1.7 (PMTO (Mixed) Substitution).

Low-equivalence is preserved by substitution.

If: v1 ∼ v2

And: e1 ∼ e2

And: x is free in e1 and e2

Then: [v1/x]e1 ∼ [v2/x]e2

Proof. Induction on e1 and e2 and inversion on assumed low equivalence

183



Lemma B.1.1.8 (Contexts Preserve Low Equivalence).

Low-equivalent terms have low-equivalent sub-terms, and contexts respect low-

equivalence.

If: E1[e1] ∼ E2[e2]

Then:

(1) e1 ∼ e2

(2) e′1 ∼ e′2 =⇒ E1[e1] ∼ E2[e2]

Proof. Induction on E1 and E2 and inversion on assumed low equivalence

Lemma B.1.1.9 (Progress (Mixed)).

Progress holds for the mixed semantics.

If: Ψc,Φ,Σ ` ς : τ ; Ψ

Then: nstep(N, ς) is total

Proof. Induction on N and Progress (Mixed) Single

Lemma B.1.1.10 (Progress (Mixed) Single).

Progress holds for the mixed semantics on a single step.

If: Ψc,Φ,Σ ` σ, e : τ ; Ψ

Then either:

(1) e = v for v a value

(2) e = E[e] and e a redex

In both cases step(N, σ, e) is total.

Proof. Induction on e and inversion on assumed well-typing

184



Low-equivalence Soundness

Lemma B.1.1.11 (Low-equivalence Soundness).

When projected, low-equivalent trace distributions have equal probability distributions

modulo adversary observation.

If: t̂1 ≈∼ t̂2

Then: ôbs(d̂t̂1ê) ≈= ôbs(d̂t̂2ê)

Proof. Rewrite both sides by:

ôbs(d̂t̂iê)

= ôbs(do t← t̂i ; dte) * defn. of d̂ ê +

= do t← t̂i ; ôbs(dte) * defn. of ôbs and Monad Laws +

By Bind Equivalence and low-equivalence premise, STS:

- t1 ∼ t2 =⇒ ôbs(dt1e) ≈= ôbs(dt2e)

By Low-equivalence Soundness Element

Lemma B.1.1.12 (Low-equivalence Soundness Element).

When projected, low-equivalent traces have equal probability distributions modulo ad-

versary observation.

If: t1 ∼ t2

Then: ôbs(dt1e) ≈= ôbs(dt2e)

Proof. Induction on traces t1 and t2 and inversion on assumed low-equivalence

(1) Case t1 = t2 = ε

Immediate

(2) Case t1 = t′1·σ1, e1 and t2 = t′2·σ2, e2

185



By inversion on assumed low-equivalence:

- t′1 ∼ t′2

- σ1 ∼ σ2

- e1 ∼ e2

By induction hypothesis:

- ôbs(dt′1e) ≈= ôbs(dt′2e)

By Low-equivalence Soundness Element Store and Low-equivalence Soundness El-

ement Expression:

- ôbs(dσ1e) ≈= ôbs(dσ2e)

- ôbs(de1e) ≈= ôbs(de2e)

Rewrite both sides by:

ôbs(dt′i·ς ie)

= do
•
t← ôbs(dt′ie)
•
σ ← ôbs(dσie)
•
e← ôbs(deie)

return(
•
t· •σ, •e)

* defn. of d e and ôbs, and Monad Laws +

By iterated Bind Equivalence, Return Equivalence and three previously established

facts

Lemma B.1.1.13 (Low-equivalence Soundness Element Store).

When projected, low-equivalent stores have equal probability distributions modulo ad-

versary observation.

If: σ1 ∼ σ2

Then: ôbs(dσ1e) ≈= ôbs(dσ2e)

Proof. Induction on σ1 and σ2, inversion on assumed low-equivalence, Monad Laws,

Return Equivalence and Bind Equivalence.

186



Lemma B.1.1.14 (Low-equivalence Soundness Element Expression).

When projected, low-equivalent expressions have equal probability distributions modulo

adversary observation.

If: e1 ∼ e2

Then: ôbs(de1e) ≈= ôbs(de2e)

Proof. Induction on e1 and e2, inversion on assumed low-equivalence, Monad Laws,

Return Equivalence and Bind Equivalence.

Simulation (Mixed)

Lemma B.1.1.15 (Simulation (Mixed)).

When projected, the mixed semantics simulates the intensional standard semantics on

source expressions.

If: e is a source expression

Then: d̂nstep(N,∅, e)ê = nstepI(N,∅, e)

Proof. Induction on N

(1) Case N = 0:

dee = e (by Simulation (Mixed) Zero)

(2) Case N = N + 1:

d̂nstep(N,∅, e)ê = nstepI(N,∅, e) (IH) (by inductive hypothesis)

By equational reasoning:

187



d̂nstep(N + 1,∅, e)ê

= * defn. of nstep and d̂ ê, Monad Laws and Monad Commutativity +

do t·ς ← nstep(N,∅, e)

t← dte

ς ← dςe

ς ′ ← step(N + 1, ς)

ς ′ ← dς ′e

return(t·ς·ς ′)

= * Simulation (Mixed) Single, Monad Laws, Monad Idempotence (Intensional Only) +

do t·ς ← nstep(N,∅, e)

t← dte

ς ← dςe

ς ′ ← stepI(N + 1, ς)

return(t·ς·ς ′)

= * (IH), Monad Laws and defn. of d e +

do t·ς ← nstepI(N,∅, e)

ς ′ ← stepI(N + 1, ς)

return(t·ς·ς ′)

= * defn. of nstepI +

nstepI(N,∅, e)

Lemma B.1.1.16 (Simulation (Mixed) Zero).

Projection on source expressions is the identity.

If: e is a source expression

Then: dee = e

Proof. Induction on e

188



Lemma B.1.1.17 (Simulation (Mixed) Single).

When projected, the mixed semantics simulates the intensional standard semantics on

source expressions and on a single step.

d̂step(N, σ, e)ê = ŝtepI(N, dσ, ee)

Proof. Induction on e; first case is shown as representative trivial case; subsequent

cases are non-trivial

- Case e = b`:

d̂step(N, σ, b`)ê

= * defn. of step +

d̂return(σ, bitv`(return(b)))ê

= * defn. of d̂ ê, stepI and Monad Laws +

do σ ← dσe

e← db`e

stepI(σ, e)

= * defn. of d e, ŝtepI and Monad Laws +

ŝtepI(N, dσ, b`e)

- Case e = flip
ρ():

d̂step(N, σ, flipρ())ê

= * defn. of step +

d̂return(σ, flipv`(bit(N)))ê

= * defn. of d̂ ê, stepI and Monad Laws +

do b← bit(N) ; return(σ, flipv(b))

= * defn. of d e, ŝtepI and Monad Laws +

ŝtepI(N, dσ, flipρ()e)

- Case e = castP (flipv(b̂)):

189



d̂step(N, σ, castP (flipv(b̂)))ê

= * defn. of step +

d̂do b← b̂ ; return(σ, bitvP (return(b)))ê

= * defn. of d̂ ê, stepI and Monad Laws +

do b← b̂ ; return(σ, bitvP (b))

= * defn. of d e, ŝtepI and Monad Laws +

ŝtepI(N, dσ, castP (flipv(b̂))e)

- All other cases are analogous to above cases.

Simulation (Intensional)

Lemma B.1.1.18 (Simulation (Intensional)).

The intensional standard semantics simulates the ground truth semantics on source

expressions.

Pr [nstepD(N,∅, e) =̇ ς] = Pr [nstepI(N,∅, e) =̇ ς]

Proof. Induction on N and by Bind Probability, Return Probability and Simulation

(Intensional)
Lemma B.1.1.19 (Simulation (Intensional) Single).

The intensional standard semantics simulates the ground truth semantics on source

expressions, and on a single step.

Pr [stepD(N, σ, e) =̇ ς] = Pr [stepI(N, σ, e) =̇ ς]

Proof. Induction on e and by Bind Probability, Return Probability and bitI(N+1) ⊥⊥

nstepI(N, ς), which is true by height(nstep(N, ς)) ≤ N and bitI(N + 1) ⊥⊥ x̂ when

height(x̂) ≤ N

190



B.1.2 Type Preservation

Lemma B.1.1.20 (Type Preservation).

Well-typing is preserved by the mixed semantics w.r.t. new trace history.

If: e is a closed source expression

And: ` e : τ

And: t·ς ∈ support(nstep(N,∅, e))

Let: Φ , [nstep(N,∅, e) =̇ t·ς]

Then: there exists Σ and Ψ

S.t.: Φ,Σ ` ς : τ,Ψ

Proof. By Type Preservation (Strong) which has a stronger conclusion (and therefore

induction hypothesis)

191



Lemma B.1.1.21 (Type Preservation (Strong)).

Well-typing is preserved by the mixed semantics w.r.t. new trace history.

If: e is a closed source expression

And: ` e : τ

And: t·ς ∈ support(nstep(N,∅, e))

Let: Φ , [nstep(N,∅, e) =̇ t·ς]

Then: there exists Σ and Ψ

S.t.: Φ,Σ ` ς : τ,Ψ

And: ∀b̂ ∈ Ψ. b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N + 1}

Proof. Induction on N

(1) Case N = 0:

Φ = [nstep(0,∅, e) =̇ return(∅, e)] = [true]

Σ = ∅

Ψ = ∅

∅,∅,∅ ` ∅, e : τ,∅ (by Source Expression Mixed Typing)

(2) Case N = N + 1:

By induction hypothesis (IH):

- Φ′,Σ′ ` ς ′ : τ,Ψ′ for some Σ′, Ψ′

and where Φ′ , [nstep(N,∅, e) =̇ t′·ς ′]

and where t = t′·ς ′

- ∀b̂ ∈ Ψ′. b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N + 1}

By Type Preservation Single and second fact due to (IH):

- Φ′′,Σ′′ ` ς : τ,Ψ′′ for some Σ′′, Ψ′′

192



and where Φ′′ , [Φ′, step(N, ς ′) =̇ ς]

- ∀b̂ ∈ Ψ′′. b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N + 1 + 1}

Construct Σ , Σ′′ and Ψ , Ψ′′; by previous typing and bit independence, and

Φ′′ = Φ (b.c. t = t′·ς ′)

Lemma B.1.1.22 (Source Expression Mixed Typing).

Well-typed source expressions are well-typed in the mixed type system.

If: e is a source expression

And: ` e : τ (via source expression typing)

Then: ` e : τ (via mixed evaluation typing)

Proof. Induction on e and inversion on assumed well-typing

Lemma B.1.1.23 (Type Preservation Single).

Well-typing is preserved by the mixed semantics w.r.t. new trace history on a single

step.

If: Φ,Σ ` ς : τ,Ψ

And: ∀b̂ ∈ Ψ. b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N}

And: ς ′ ∈ support(stepI(N, ς))

Let: Φ′ , [Φ, stepI(N, ς) =̇ ς ′]

Then: there exists Σ′ and Ψ′

S.t.: Φ′,Σ′ ` ς ′ : τ,Ψ′

And: ∀b̂ ∈ Ψ′. b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N + 1}

Proof. By Progress (Mixed) and definition of stepI ; two cases:

193



(1) ς = σ, v

ς ′ = ς , Φ′ = Φ , Σ′ = Σ and Ψ′ = Ψ

Immediate

(2) ς = σ,E[e]

ς ′ = σ′, E[e′] for σ′, e′ ∈ support(stepI(N, σ, e))

By Contexts Preserve Typing:

- There exists τ ′ , Ψc and Ψ′

S.t.: Ψc,Φ,Σ ` σ, e : τ ′ ; Ψ′

And: Ψc ]Ψ′ = Ψ

By Type Preservation Redex:

- There exists Σ′ and Ψ′′

S.t.: Σ′ ⊇ Σ

And: Ψc,Φ
′,Σ′ ` σ′, e′ : τ ′ ; Ψ′′

And: ∀ρ, b̂. Ψc \ ({b̂},∅) ]Ψ′,Φ ` b̂ : flip
ρ =⇒ Ψc \ ({b̂},∅) ]Ψ′′,Φ′ ` b̂ : flip

ρ

And: ∀b̂ ∈ Ψc ]Ψ′′. b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N + 1}

By Weaken Context and Contexts Preserve Typing:

- Φ′,Σ′ ` σ′, E[e′] : τ ; Ψc ]Ψ′′

Construct Σ′ , Σ′ and Ψ′ = Ψc ]Ψ′′; by previous typing and bit independence

Lemma B.1.1.24 (Contexts Preserve Typing).

If: ∅,Φ,Σ,∅ ` E[e] : τ ; ∅,Ψ

Then: there exists τ ′,Ψc,Ψ
′ s.t.:

(1) Ψc,Φ,Σ,∅ ` e : τ ′ ; ∅,Ψ′ and Ψc ]Ψ′ = Ψ

(2) Ψc,Φ,Σ,∅ ` e′ : τ ′ ; ∅,Ψ′ and Ψc ]Ψ′ = Ψ =⇒ Ψc,Φ,Σ,∅ ` E[e′] : τ ; ∅,Ψ

194



Proof. Induction on E and inversion on Ψc,Φ,Σ,∅ ` E[e] : τ ; ∅,Ψ

Type Preservation Redex

Lemma B.1.1.25 (Type Preservation Redex).

If: e a redex

And: Ψc,Φ,Σ ` σ, e : τ ; Ψ

And: ∀b̂ ∈ Ψc ]Ψ. b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N}

And: ς ∈ support(stepI(N, σ, e))

Let: Φ′ , [Φ, stepI(N, σ, e) =̇ ς]

Then: there exists Σ′ and Ψ′

S.t.: Σ′ ⊇ Σ

And: Ψc,Φ
′,Σ′ ` ς : τ ; Ψ′

And: ∀ρ, b̂. Ψc \ ({b̂},∅) ]Ψ,Φ ` b̂ : flip
ρ =⇒ Ψc \ ({b̂},∅) ]Ψ′,Φ′ ` b̂ : flip

ρ

And: ∀b̂ ∈ Ψc ]Ψ′. b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N + 1}

Proof. By inversion:

Ψc ]Ψe,Φ,Σ ` σ ; Ψσ Ψc ]Ψσ,Φ,Σ,∅ ` e : τ ; ∅,Ψe

Ψc,Φ,Σ ` σ, e : τ ; Ψσ ]Ψe

Case analysis on e:

(1) e = flip
ρ()

By inversion:

195



Ψc ]Ψσ,Φ,Σ,∅ ` flip
ρ() : flip

ρ ; �,∅,∅

τ = flip
ρ

Ψe = ∅,∅

ς = σ, flipv(bit(N))

Φ′ = [Φ, stepI(N, σ, flip
ρ() =̇ σ, flipv(bit(N))] = Φ

Ψ′e , {bit(N)},∅

Construct Σ′ , Σ ⊇ Σ

Construct Ψ′ , Ψσ ] ({bit(N)},∅) = Ψσ ]Ψ′e

To show:

(a) Ψc ] {bit(N)},Φ,Σ ` σ ; Ψσ

(b) Ψc ]Ψσ,Φ,Σ ` flipv(bit(N)) : flip
ρ ; ∅

(c) ∀ρ′, b̂′.

Ψc \ ({b̂′},∅) ]Ψσ,Φ,Σ ` b̂′ : flip
ρ′

=⇒

Ψc \ ({b̂′},∅) ]Ψσ ] ({bit(N)},∅),Φ,Σ ` b̂′ : flip
ρ′

(d) ∀b̂ ∈ Ψc ]Ψσ ] ({bit(N)},∅). b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N + 1}

(a) is by Weaken Store and Type Preservation: Flip applied to Ψc

(b-c) are by Type Preservation: Flip applied to Ψc ]Ψσ

(d) is by assumed bit independence and Bit Independence

(2) e = castP (flipv(b̂))

By inversion:

Ψc ]Ψσ,Φ ` b̂ : flip
ρ

Ψc ]Ψσ,Φ,Σ ` flipv(b̂) : flip
ρ ; {b̂},∅

Ψc ]Ψσ,Φ,Σ,∅ ` castP (flipv(b̂)) : bit
⊥
P ; �, {b̂},∅

τ = bit
⊥
P

196



Ψe = {b̂},∅

ς = σ, bitvP (return(b)) for b ∈ {O, I}

Φ′ = [Φ, stepI(N, σ, castP (flipv(b̂))) =̇ σ, bitvP (return(b))] = [Φ, b̂ =̇ b]

Ψ′e , ∅

Construct Σ′ , Σ ⊇ Σ

Construct Ψ′ , Ψσ = Ψσ ]Ψ′e

To show:

(a) Ψc, [Φ, b̂ =̇ b],Σ ` σ ; Ψσ

(b) Ψc ]Ψσ, [Φ, b̂ =̇ b],Σ ` bitvP (return(b)) : bit
⊥
P ; ∅

(c) ∀ρ′, b̂′.

Ψc \ ({b̂′},∅) ]Ψσ ] ({b̂},∅),Φ,Σ ` b̂′ : flip
ρ′

=⇒

Ψc \ ({b̂′},∅) ]Ψσ, [Φ, b̂ =̇ b],Σ ` b̂′ : flip
ρ′

(d) ∀b̂ ∈ Ψc ]Ψσ. b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N + 1}

(a) is by Weaken Store and Type Preservation: CastP applied to Ψc

(b-c) are by Type Preservation: CastP applied to Ψc ]Ψσ

(d) is by assumption

(3) e = castS(flipv(b̂))

By inversion:

Ψc ]Ψσ,Φ ` b̂ : flip
ρ

Ψc ]Ψσ,Φ,Σ ` flipv(b̂) : flip
ρ ; ∅, {ρ 7→ b̂}

Ψc ]Ψσ,Φ,Σ,∅ ` castS(flipv(b̂)) : bit
ρ
S ; �,∅, {ρ 7→ {b̂}}

τ = bit
ρ
S

Ψe = ∅, {ρ 7→ {b̂}}

ς = σ, bitvS(b̂)

Φ′ = [Φ, stepI(N, σ, castS(flipv(b̂))) =̇ σ, bitvS(b̂)] = Φ

197



Ψ′e , ∅, {ρ 7→ {b̂}} = Ψe

Σ , Σ ⊇ Σ

Ψ′ , Ψσ ]Ψe = Ψσ ]Ψ′e

To show:

(a) Ψc ] (∅, {ρ 7→ {b̂}}),Φ,Σ ` σ ; Ψσ

(b) Ψc ]Ψσ,Φ,Σ ` bitvS(b̂) : bit
ρ
S ; ∅, {ρ 7→ {b̂}}

(c) ∀ρ′, b̂′.

Ψc \ ({b̂′},∅) ]Ψσ ] (∅, {ρ 7→ {b̂}}),Φ,Σ ` b̂′ : flip
ρ′

=⇒

Ψc \ ({b̂′},∅) ]Ψσ ] (∅, {ρ 7→ {b̂}}),Φ,Σ ` b̂′ : flip
ρ′

(d) ∀b̂ ∈ Ψc ]Ψσ ] (∅, {ρ 7→ {b̂}}). b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N + 1}

(a) is by assumption

(b) is immediate

(c) is immediate

(d) is by assumption

(4) e = mux(bitvS(b̂1), bitvS(b̂2), bitvS(b̂3))

By inversion:

Ψc ]Ψσ,Φ,Σ ` bitvS(b̂1) : bit
ρ1
S ; ∅, {ρ1 7→{b̂1}}

Ψc ]Ψσ,Φ,Σ ` bitvS(b̂2) : bit
ρ2
S ; ∅, {ρ2 7→{b̂2}}

Ψc ]Ψσ,Φ,Σ ` bitvS(b̂3) : bit
ρ3
S ; ∅, {ρ3 7→{b̂3}}

Ψc ]Ψσ,Φ,Σ,∅ ` mux(bitvS(b̂1), bitvS(b̂2), bitvS(b̂3)) : bit
ρ1tρ2tρ3
S × bit

ρ1tρ2tρ3
S ; �,∅, {ρi 7→ {b̂i}}

τ = bit
ρ1tρ2tρ3
S × bit

ρ1tρ2tρ3
S

Ψe = ∅, {ρi 7→ {b̂i}}

ς = σ, 〈bitvS(ĉond(b̂1, b̂2, b̂3)), bitvS(ĉond(b̂1, b̂3, b̂2))〉

198



Φ′ = [Φ, stepI(N, σ, mux(bitvS(b̂1), bitvS(b̂2), bitvS(b̂3))) =̇ σ, 〈bitvS(ĉond(b̂1, b̂2, b̂3)), bitvS(ĉond(b̂1, b̂3, b̂2))〉] =

Φ

Ψ′e = ∅, {ρ1 t ρ2 t ρ3 7→ {ĉond(b̂1, b̂2, b̂3), ĉond(b̂1, b̂3, b̂2)}}

Σ , Σ ⊇ Σ

Ψ′ , Ψσ ] (∅, {ρ1 t ρ2 t ρ3 7→ {ĉond(b̂1, b̂2, b̂3), ĉond(b̂1, b̂3, b̂2)}}) = Ψσ ]Ψ′e

To show:

(a) Ψc ]Ψ′e,Φ,Σ ` σ ; Ψσ

(b) Ψc]Ψσ,Φ,Σ ` 〈bitvS(ĉond(b̂1, b̂2, b̂3)), bitvS(ĉond(b̂1, b̂3, b̂2))〉 : bit
ρ1tρ2tρ3
S ×bit

ρ1tρ2tρ3
S ;

Ψ′e

(c) ∀ρ′, b̂′.

Ψc \ ({b̂′},∅) ]Ψσ ]Ψe,Φ,Σ ` b̂′ : flip
ρ′

=⇒

Ψc \ ({b̂′},∅) ]Ψσ ]Ψ′e,Φ,Σ ` b̂′ : flip
ρ′

(d) ∀b̂ ∈ Ψc ]Ψσ ]Ψ′e. {b̂ ⊥⊥ bit(N ′) | N ′ ≥ N + 1}

(a) is by assumption

(b) is immediate

(c) is by Type Preservation: Mux BitS applied to Ψc ]Ψσ

(d) is by assumption and Cond Independence

(5) e = mux(bitvS(b̂1), flipv(b̂2), flipv(b̂3))

By inversion:

Ψc ]Ψσ,Φ,Σ ` bitvS(b̂1) : bit
ρ1
S ; ∅, {ρ1 7→{b̂1}}

ρ1 @ ρ2 ρ1 @ ρ3

Ψc ]Ψσ,Φ ` b̂2 : flip
ρ2

Ψc ]Ψσ,Φ,Σ ` flipv(b̂2) : flip
ρ2 ; {b̂2},∅

Ψc ]Ψσ,Φ ` b̂3 : flip
ρ3

Ψc ]Ψσ,Φ,Σ ` flipv(b̂3) : flip
ρ3 ; {b̂3},∅

Ψc ]Ψσ,Φ,Σ,∅ ` mux(bitvS(b̂1), flipv(b̂2), flipv(b̂3)) : flip
ρ2uρ3 × flip

ρ2uρ3 ; �, {b̂2, b̂3}, {ρ1 7→{b̂1}}

τ = flip
ρ2uρ3 × flip

ρ2uρ3

199



Ψe = {b̂2, b̂3}, {ρ1 7→{b̂1}}

ς = σ, 〈flipv(ĉond(b̂1, b̂2, b̂3)), flipv(ĉond(b̂1, b̂3, b̂2))〉

Φ′ = [Φ, stepI(N, σ, mux(bitvS(b̂1), flipv(b̂2), flipv(b̂3))) =̇ σ, 〈flipv(ĉond(b̂1, b̂2, b̂3)), flipv(ĉond(b̂1, b̂3, b̂2))〉] =

Φ

Ψ′e = {ĉond(b̂1, b̂2, b̂3), ĉond(b̂1, b̂3, b̂2)},∅

Σ , Σ ⊇ Σ

Ψ′ , Ψσ ] ({ĉond(b̂1, b̂2, b̂3), ĉond(b̂1, b̂3, b̂2)},∅) = Ψσ ]Ψ′e

To show:

(a) Ψc ]Ψ′e,Φ,Σ ` σ ; Ψσ

(b) Ψc]Ψσ,Φ,Σ ` 〈flipv(ĉond(b̂1, b̂2, b̂3)), flipv(ĉond(b̂1, b̂3, b̂2))〉 : flip
ρ2uρ3×flip

ρ2uρ3 ;

Ψ′e

(c) ∀ρ′, b̂′.

Ψc \ ({b̂′},∅) ]Ψσ ]Ψe,Φ,Σ ` b̂′ : flip
ρ′

=⇒

Ψc \ ({b̂′},∅) ]Ψσ ]Ψ′e,Φ,Σ ` b̂′ : flip
ρ′

(d) ∀b̂ ∈ Ψc ]Ψσ ]Ψ′e. {b̂ ⊥⊥ bit(N ′) | N ′ ≥ N + 1}

(a) is by Weaken Store and Type Preservation: Flip applied to Ψc

(b-c) are by Type Preservation: Flip applied to Ψc ]Ψσ

(d) is by assumption and Cond Independence

(6) e = xor(bitvS(b̂1), flipv(b̂2))

Analogous to mux-flip case

(7) e = let x = v in e

By inversion:

Ψc ]Ψσ ]Ψe,Φ,Σ,∅ ` v : τ ′ ; ∅,Ψv

Ψc ]Ψσ ]Ψv,Φ,Σ, [x 7→ τ ′] ` e′ : τ ; ,Ψ′e

Ψc ]Ψσ,Φ,Σ,∅ ` let x = v in e′ : τ ; �,Ψv ]Ψ′e

200



Ψe = Ψv ]Ψ′e

ς = σ, [v/x]e

Φ′ = [Φ, stepI(N, σ, let x = v in e′)) =̇ σ, [v/x]e] = Φ

By Type Preservation: Substitution:

- There exists Ψ′v

S.t.: Ψ′v ⊆ Ψv

And: Ψc,Φ,Σ,Γ ` [v/x]e : τ2 ; Γ′,Ψ′v ]Ψ′e

Σ , Σ ⊇ Σ

Ψ′ , Ψσ ]Ψ′v ]Ψ′e

To show:

(a) Ψc ]Ψ′v ]Ψ′e,Φ,Σ ` σ ; Ψσ

(b) Ψc,Φ,Σ,Γ ` [v/x]e : τ2 ; Γ′,Ψ′v ]Ψ′e

(c) ∀ρ′, b̂′.

Ψc \ ({b̂′},∅) ]Ψσ ]Ψv ]Ψ′e,Φ,Σ ` b̂′ : flip
ρ′

=⇒

Ψc \ ({b̂′},∅) ]Ψσ ]Ψ′v ]Ψ′e,Φ,Σ ` b̂′ : flip
ρ′

(d) ∀b̂ ∈ Ψc ]Ψσ ]Ψ′v ]Ψ′e. {b̂ ⊥⊥ bit(N ′) | N ′ ≥ N + 1}

(a) is by Weaken Store and Weaken Flip

(b) is by Type Preservation: Substitution

(c) is by Weaken Flip

(d) is by assumed bit independence

(8) e = let x, y = v in e and e = (funy(x : τ). e)(v)

Analogous to single-variable let-binding case

201



Lemma B.1.1.26 (Type Preservation: Flip).

If: ∀b̂ ∈ ΨF ,ΨB. b̂ ⊥⊥ {bit(N ′) | N ′ ≥ N}

Then: ∀ρ′, b̂′. ΨF \ {b̂},ΨB,Φ ` b̂′ : flip
ρ′ =⇒ Ψ \ {b̂} ] {bit(N)},ΨB,Φ ` b̂′ : flip

ρ′

Proof. Assume some ρ′, b̂′ where ΨF \ {b̂′},ΨB,Φ ` b̂′ : flip
ρ′

By inversion:

- Pr
[
b̂′ =̇ I

∣∣∣ Φ
]

= 1/2

-
[
b̂′ ⊥⊥ ΨF \ {b̂′},ΨB({ρ′′ | ρ′′ @ ρ′})

∣∣∣ Φ
]

STS:

-
[
b̂′ ⊥⊥ bit(N),ΨF \ {b̂′},ΨB({ρ′′ | ρ′′ @ ρ′})

∣∣∣ Φ
]

By assumption of bit independence and second inversion fact

Lemma B.1.1.27 (Type Preservation: CastP).

If: ΨF ,ΨB,Φ ` b̂ : flip
ρ

Then:

(1) Ψc, [Φ, b̂ =̇ b] ` return(b) : bit
⊥
P ; ∅

(2) ∀ρ′, b̂′. ΨF \ {b̂′} ] {b̂},ΨB,Φ ` b̂′ : flip
ρ′ =⇒ ΨF \ {b̂′},ΨB, [Φ, b̂ =̇ b] ` b̂′ : flip

ρ′

Proof.(1) Immediate by constructing type derivation

(2) Assume some ρ′ and b̂′ where ΨF \ {b̂′} ] {b̂},ΨB,Φ ` b̂′ : flip
ρ′

By inversion:

- Pr
[
b̂′ =̇ I

∣∣∣ Φ
]

= 1/2 (H1)

-
[
b̂′ ⊥⊥ b̂,ΨF \ {b̂′},ΨB({ρ′′ | ρ′′ @ ρ′})

∣∣∣ Φ
]
(H2)

STS:

202



(a) Pr
[
b̂′ =̇ I

∣∣∣ Φ, b̂ =̇ b
]

= 1/2

(b)
[
b̂′ ⊥⊥ ΨF \ {b̂′},ΨB({ρ′′ | ρ′′ @ ρ′})

∣∣∣ Φ, b̂ =̇ b
]

(a) is by Decomposition applied (H2) to establish
[
b̂′ ⊥⊥ b̂

∣∣∣ Φ
]
, which is then

applied to (H1)

(b) is by Decomposition applied to (H2), moving b̂ from the RHS of independence

into the condition

Lemma B.1.1.28 (Type Preservation: Mux BitS).

If: ΨF \ {b̂′},ΨB ∪ {ρ1 7→{b̂1}, ρ2 7→{b̂2}, ρ3 7→{b̂3}},Φ ` b̂′ : flip
ρ′

Then: ΨF \ {b̂′},ΨB ∪ {ρ1 t ρ2 t ρ3 7→{ĉond(b̂1, b̂2, b̂3)}},Φ ` b̂′ : flip
ρ′

Proof. By inversion:

- Pr
[
b̂′ =̇ I

∣∣∣ Φ
]

= 1/2

-
[
b̂′ ⊥⊥ b̂,ΨF \ {b̂′}, (ΨB ∪ {ρ1 7→{b̂1}, ρ2 7→{b̂2}, ρ3 7→{b̂3}})({ρ′′ | ρ′′ @ ρ′})

∣∣∣ Φ
]
(H)

STS:

-
[
b̂′ ⊥⊥ bit(N),ΨF \ {b̂′}, (ΨB ∪ {ρ1 t ρ2 t ρ3 7→{ĉond(b̂1, b̂2, b̂3)}})({ρ′′ | ρ′′ @ ρ′})

∣∣∣ Φ
]

(1) Case ρ1 t ρ2 t ρ3 6@ ρ′:

(ΨB ∪ {ρ1 t ρ2 t ρ3 7→{ĉond(b̂1, b̂2, b̂3)}})({ρ′′ | ρ′′ @ ρ′}) = ΨB

By (H) and Decomposition

(2) Case ρ1 t ρ2 t ρ3 @ ρ′:

(ΨB ∪ {ρ1 t ρ2 t ρ3 7→{ĉond(b̂1, b̂2, b̂3)}})({ρ′′ | ρ′′ @ ρ′}) = ΨB({ρ′′ | ρ′′ @ ρ′}) ∪

{ĉond(b̂1, b̂2, b̂3)}

(ΨB ∪ {ρ1 7→{b̂1}, ρ2 7→{b̂2}, ρ3 7→{b̂3}})({ρ′′ | ρ′′ @ ρ′}) = ΨB({ρ′′ | ρ′′ @ ρ′}) ∪

{b̂1, b̂2, b̂3}

203



By (H) and Cond Independence

Lemma B.1.1.29 (Type Preservation: Flip).

If: ΨF ] {b̂3},ΨB ] {ρ1 7→ {b̂1}},Φ ` b̂2 : flip
ρ2

And: ΨF ] {b̂2},ΨB ] {ρ1 7→ {b̂1}},Φ ` b̂3 : flip
ρ3

And: ρ1 @ ρ2 and ρ1 @ ρ3

Then:

(1) ΨF ] {ĉond(b̂1, b̂3, b̂2)},ΨB,Φ ` ĉond(b̂1, b̂2, b̂3) : flip
ρ2uρ3

(2) ΨF ] {ĉond(b̂1, b̂2, b̂3)},ΨB,Φ ` ĉond(b̂1, b̂3, b̂2) : flip
ρ2uρ3

(3) ∀ρ′, b̂′.

ΨF \ {b̂′} ] {b̂2, b̂3},ΨB ] {ρ1 7→ {b̂1}},Φ ` b̂′ : flip
ρ′

=⇒

ΨF \ {b̂′} ] {ĉond(b̂1, b̂2, b̂3), ĉond(b̂1, b̂3, b̂2)},ΨB,Φ ` b̂′ : flip
ρ′

Proof. By inversion:

- Pr
[
b̂2 =̇ I

∣∣∣ Φ
]

= 1/2 (H11)

-
[
b̂2 ⊥⊥ ΨF ] {b̂3}, (ΨB ] {ρ1 7→ {b̂1}})({ρ′ | ρ′ @ ρ2})

∣∣∣ Φ
]
(H12)

- Pr
[
b̂3 =̇ I

∣∣∣ Φ
]

= 1/2 (H21)

-
[
b̂3 ⊥⊥ ΨF ] {b̂2}, (ΨB ] {ρ1 7→ {b̂1}})({ρ′ | ρ′ @ ρ3})

∣∣∣ Φ
]
(H22)

By ρ1 @ ρ2 and ρ1 @ ρ3:

-
[
b̂2 ⊥⊥ ΨF ] {b̂3},ΨB({ρ′ | ρ′ @ ρ2}), b̂1

∣∣∣ Φ
]
(H13)

-
[
b̂3 ⊥⊥ ΨF ] {b̂2},ΨB({ρ′ | ρ′ @ ρ3}), b̂1

∣∣∣ Φ
]
(H23)

(1) STS:

204



(a) Pr
[
ĉond(b̂1, b̂2, b̂3) =̇ I

]
= 1/2 (i)

(b)
[
ĉond(b̂1, b̂2, b̂3) ⊥⊥ ΨF ] {ĉond(b̂1, b̂3, b̂2)},ΨB({ρ′ | ρ′ @ ρ2 u ρ3})

∣∣∣ Φ
]
(ii)

(i) is by Cond Stability applied to (H13) and Decomposition (to achieve
[
b̂2 ⊥⊥ b̂1

∣∣∣ Φ
]
),

(H23) and Decomposition (to achieve
[
b̂3 ⊥⊥ b̂1

∣∣∣ Φ
]
), (H11) and (H21)

(ii) is by:

Pr
[
ĉond(b̂1, b̂2, b̂3)

∣∣∣ ΨF ] {ĉond(b̂1, b̂3, b̂2)},ΨB({ρ′ | ρ′ @ ρ2 u ρ3}),Φ
]

= * Total Probability +

Pr
[
b̂2

∣∣∣ b̂1 =̇ I,ΨF ] {ĉond(b̂1, b̂3, b̂2)},ΨB({ρ′ | ρ′ @ ρ2 u ρ3}),Φ
]

Pr
[
b̂1 =̇ I

]
+

Pr
[
b̂3

∣∣∣ b̂1 =̇ O,ΨF ] {ĉond(b̂1, b̂3, b̂2)},ΨB({ρ′ | ρ′ @ ρ2 u ρ3}),Φ
]

Pr
[
b̂1 =̇ O

]
= * (H13), (H23) and Decomposition +

Pr
[
b̂2

∣∣∣ b̂1 =̇ I,Φ
]

Pr
[
b̂1 =̇ I

]
+ Pr

[
b̂3

∣∣∣ b̂1 =̇ O,Φ
]

Pr
[
b̂1 =̇ O

]
= * Total Probability +

Pr
[
ĉond(b̂1, b̂2, b̂3)

∣∣∣ Φ
]

(2) STS:

(a) Pr
[
ĉond(b̂1, b̂3, b̂2) =̇ I

]
= 1/2

(b)
[
ĉond(b̂1, b̂3, b̂2) ⊥⊥ ΨF ] {ĉond(b̂1, b̂2, b̂3)},ΨB({ρ′ | ρ′ @ ρ2 u ρ3})

∣∣∣ Φ
]

Analogous to previous cases

(3) Assume ρ′ and b̂′ where ΨF \ {b̂′} ] {b̂2, b̂3},ΨB ] {ρ1 7→ {b̂1}},Φ ` b̂′ : flip
ρ′

By inversion:

- Pr
[
b̂′ =̇ I

]
= 1/2

-
[
b̂′ ⊥⊥ ΨF \ {b̂′} ] {b̂2, b̂3}, (ΨB ∪ {ρ1 7→ {b̂1}})({ρ′′ | ρ′′ @ ρ′})

∣∣∣ Φ
]
(i)

STS:

-
[
b̂′ ⊥⊥ ΨF \ {b̂′} ] {ĉond(b̂1, b̂2, b̂3), ĉond(b̂1, b̂3, b̂2)},ΨB({ρ′′ | ρ′′ @ ρ′})

∣∣∣ Φ
]

205



Pr
[
b̂′
∣∣∣ ΨF \ {b̂′} ] {ĉond(b̂1, b̂2, b̂3), ĉond(b̂1, b̂3, b̂2)},ΨB({ρ′′ | ρ′′ @ ρ′}),Φ

]
= * Total Probability +

Pr
[
b̂′
∣∣∣ b̂1 =̇ I,ΨF \ {b̂′} ] {b̂2, b̂3},ΨB({ρ′′ | ρ′′ @ ρ′}),Φ

]
Pr
[
b̂1 =̇ I

]
+

Pr
[
b̂′
∣∣∣ b̂1 =̇ O,ΨF \ {b̂′} ] {b̂2, b̂3},ΨB({ρ′′ | ρ′′ @ ρ′}),Φ

]
Pr
[
b̂1 =̇ O

]
= * (i), (H13) and (H23) +

Pr
[
b̂′
∣∣∣ b̂1 =̇ I,Φ

]
Pr
[
b̂1 =̇ I

]
+ Pr

[
b̂′
∣∣∣ b̂1 =̇ O,Φ

]
Pr
[
b̂1 =̇ O

]
= * Total Probability +

Pr
[
b̂′
∣∣∣ Φ
]

Lemma B.1.1.30 (Type Preservation: Substitution).

If: K(τ1) = A

And: Ψc ]Ψ2,Φ,Σ,∅ ` v : τ1,Ψ1

And: Ψc ]Ψ1,Φ,Σ,Γ ] [x 7→ τ1] ` e : τ2 ; Γ′ ] [x 7→ •
τ ′1],Ψ2

Then: there exists Ψ′1

S.t.: Ψ′1 ⊆ Ψ1

And: Ψc,Φ,Σ,Γ ` [v/x]e : τ2 ; Γ′,Ψ′1 ]Ψ2

Proof.

Case analysis on •τ ′1:

(1) •τ ′1 = τ1

Ψ′1 , ∅

By ∅ ⊆ Ψ1, Affine Substitution Unused and Weaken Expression applied to Weaken

Bit Value and Weaken Flip

(2) •τ ′1 = •

206



Ψ′1 , Ψ1

By Ψ1 ⊆ Ψ1 and Affine Substitution Used

Lemma B.1.1.31 (Affine Substitution Used).

If: K(τ1) = A

And: Ψc ]Ψ2,Φ,Σ,∅ ` v : τ1 ; ∅,Ψ1

And: Ψc ]Ψ1,Φ,Σ,Γ ] [x 7→ τ1] ` e : τ2 ; Γ′ ] [x 7→ •],Ψ2

Then: Ψc,Φ,Σ,Γ ` [v/x]e : τ2 ; Γ′,Ψ1 ]Ψ2

Proof.

Induction on e, Context Monotonicity and Affine Substitution Unused

Representative inductive case:

e = 〈e1, e2〉

Must be one of the following (by Context Monotonicity):

(1)

Ψc ]Ψ1 ]Ψ22,Φ,Σ,Γ ] [x 7→ τ1] ` e21 : τ21 ; Γ′′ ] [x 7→ τ1],Ψ21

Ψc ]Ψ1 ]Ψ21,Φ,Σ,Γ
′′ ] [x 7→ τ1] ` e22 : τ22 ; Γ′ ] [x 7→ •],Ψ22

Ψc ]Ψ1,Φ,Σ,Γ ] [x 7→ τ1] ` 〈e21, e22〉 : τ21 × τ22 ; Γ′ ] [x 7→ •],Ψ21 ]Ψ22

Goal: Ψc,Φ,Σ,Γ] [x 7→ τ1] ` [v/x]〈e21, e22〉 : τ21× τ22 ; Γ′] [x 7→ •],Ψ1]Ψ21]Ψ22

[v/x]〈e21, e22〉 = 〈e21, [v/x]e22〉 (by Affine Substitution Unused)

STS:

(a) Ψc ]Ψ22,Φ,Σ,Γ ` e21 : τ21 ; Γ′′,Ψ21 (by Weaken Expression)

(b) Ψc ]Ψ21,Φ,Σ,Γ
′′ ` [v/x]e22 : τ ; Γ′,Ψ1 ]Ψ22 (by Inductive Hypothesis)

(2)

Ψc ]Ψ1 ]Ψ22,Φ,Σ,Γ ] [x 7→ τ1] ` e21 : τ21 ; Γ′′ ] [x 7→ •],Ψ21

Ψc ]Ψ1 ]Ψ21,Φ,Σ,Γ
′′ ] [x 7→ •] ` e22 : τ22 ; Γ′ ] [x 7→ •],Ψ22

Ψc,Φ,Σ,Γ ] [x 7→ τ1] ` 〈e21, e22〉 : τ21 × τ22 ; Γ′ ] [x 7→ •],Ψ21 ]Ψ22

207



Analogous to (1) where [v/x]〈e21, e22〉 = 〈[v/x]e21, e22〉

Lemma B.1.1.32 (Affine Substitution Unused).

If: Ψc,Φ,Σ,Γ ] [x 7→ •] ` e : τ2 ; Γ′ ] [x 7→ •],Ψ

Or: K(τ1) = A and Ψc,Φ,Σ,Γ ] [x 7→ τ1] ` e : τ2 ; Γ′ ] [x 7→ τ1],Ψ

Then: [v/x]e = e

Proof.

Induction on e and Context Monotonicity

Lemma B.1.1.33 (Context Monotonicity).

If: Ψc,Φ,Σ,Γ ` e : τ2 ; Γ′,Ψ

Then: Γ(x) v Γ′(x)

Proof.

Induction on e and partial order properties

Weakening

208



Lemma B.1.1.34 (Weaken Context).

If: Ψc,Φ,Σ ` σ, e : τ,Ψ

And: Ψc,Φ
′,Σ′ ` σ′, e′ : τ,Ψ′

And: Σ′ ⊇ Σ

And: ∀b̂, ρ. Ψ ]Ψc,Φ ` b̂ : bit
ρ
S =⇒ Ψ′ ]Ψc,Φ

′ ` b̂ : bit
ρ
S

And: ∀b̂, ρ. Ψ/Ψc,Φ ` b̂ : flip
ρ =⇒ Ψ′/Ψc,Φ

′ ` b̂ : flip
ρ

And: Φ,Σ ` σ,E[e] : τ ′,Ψc ]Ψ

Then: Φ′,Σ′ ` σ′, E[e′] : τ ′,Ψc ]Ψ′

Proof.

Induction on E and Weaken Expression

Lemma B.1.1.35 (Weaken Store).

If: Ψc,Φ,Σ ` σ ; Ψ

And: Σ′ ⊇ Σ

And: ∀b̂, ρ. Ψc/Ψ,Φ ` b̂ : flip
ρ =⇒ Ψ′c/Ψ,Φ

′ ` b̂ : flip
ρ

Then: Ψ′c,Φ
′,Σ′ ` σ ; Ψ

Proof.

Induction on σ, Weaken Expression and Σ(ι) = τ =⇒ Σ′(ι) = τ

209



Lemma B.1.1.36 (Weaken Expression).

If: Ψc,Φ,Σ,Γ ` e : τ ; Γ′,Ψ

And: Σ′ ⊇ Σ

And: ∀b̂, ρ. Ψc/Ψ,Φ ` b̂ : flip
ρ =⇒ Ψ′c/Ψ,Φ

′ ` b̂ : flip
ρ (H)

Then: Ψ′c,Φ
′,Σ′,Γ ` e : τ ; Γ′,Ψ

Induction on e, Weaken Bit Value and application of (H) on flip values
Lemma B.1.1.37 (Weaken Bit Value).

If: Ψc,Φ ` b̂ : bitv
ρ
`

Then: Ψ′c,Φ
′ ` b̂ : bit

ρ
`

Proof.

Immediate by inversion and re-construction of the type derivation

Lemma B.1.1.38 (Weaken Flip).

If: ΨF
c ,Ψ

B
c ,Φ ` b̂ : flipv

ρ

And: ΨF ′
c ,Ψ

B′
c ⊆ ΨF

c ,Ψ
B
c

Then: ΨF ′
c ,Ψ

B
c ,Φ ` b̂ : flipv

ρ

Proof.

By inversion:

Pr
[
b̂ =̇ I

∣∣∣ Φ
]

= 1/2

[
b̂ ⊥⊥ ΨF

c ,Ψ
B
c ({ρ′ | ρ′ @ ρ})

∣∣∣ Φ
]
(H)

ΨF
c ,Ψ

B
c ,Φ,Σ ` b̂ : flipv

ρ

STS:
[
b̂ ⊥⊥ ΨF ′

c ,Ψ
B′
c ({ρ′ | ρ′ @ ρ})

∣∣∣ Φ
]

By (H) and Decomposition with ΨF ′
c ⊆ ΨF

c and ΨB′
c ({ρ′ | ρ′ @ ρ}) ⊆ ΨB

c ({ρ′ | ρ′ @ ρ})

210



Intensional Distribution Lemmas

All of the following lemmas are proved for intensional distributions x̂ ∈ I(A), however

except for Monad Idempotence (Intensional Only), each of the properties are also

true of denotational distributions x̃ ∈ D(A) (although the proof given only applies

to intensional distributions). Recall that trees are considered equal = when they are

syntactically equal modulo height extension, i.e., x̂ = ‹x̂x̂›.
Lemma B.1.1.39 (Proper Distribution).

(1)
∑

x∈support(x̂)

Pr [x̂ =̇ x] = 1

(2) If: Pr [ŷ =̇ y] > 0

Then: Pr [x̂ =̇ x | ŷ =̇ y] is defined

And:
∑

x∈support(x̂)

Pr [x̂ =̇ x | ŷ =̇ y] = 1

Proof. Induction on the tree-structure of x̂

Lemma B.1.1.40 (Return Probability).

(1) Pr [returnI(x) =̇ x] = 1

(2) Pr [returnI(x) =̇ y] = 0 when x 6= y

Proof. Immediate by definition of return and Pr

Lemma B.1.1.41 (Bind Probability).

Pr [do x← x̂ ; f(x) =̇ y] =
∑
x

Pr [f(x) =̇ y | x̂ =̇ x] Pr [x̂ =̇ x]

Proof. Induction on the tree-structure of x̂

211



Lemma B.1.1.42 (Monad Laws).

(do x← returnI(y) ; f(x)) = f(y) (left-unit)

(do x← x̂ ; return(x)) = x̂ (right-unit)

(do y ← (do x← x̂ ; f(x)) ; g(y)) = (do x← x̂ ; y ← f(x) ; g(y)) (associativity)

Proof.(1) (left-unit)

immediate from definitions

(2) (right-unit)

Case analysis on x̂

- Case x̂ = x:

x = x; immediate

- Case x̂ = ‹x̂1x̂2›:

‹π1(‹x̂1x̂2›)π2(‹x̂1x̂2›)› = ‹x̂1x̂2›; immediate

(3) (associativity)

Case analysis on x̂:

- Case x̂ = x:

(do y ← f(x) ; g(y)) = (do y ← f(x) ; g(y)); immediate

- Case x̂ = ‹x̂1x̂2›:

‹π1(g(π1(f(x̂1))))π2(g(π2(f(x̂2))))› = ‹π1(g(π1(f(x̂1))))π2(g(π2(f(x̂2))))›; im-

mediate

Lemma B.1.1.43 (Monad Commutativity).

(do x← x̂ ; y ← ŷ ; f(x, y)) = (do y ← ŷ ; x← x̂ ; f(x, y))

Proof. Case analysis on x̂:

- Case x̂ = x:

212



(do y ← ŷ ; f(x, y)) = (do y ← ŷ ; f(x, y)); immediate

- Case x̂ = ‹x̂1x̂2›:

‹π1(do y ← ŷ ; f(x̂1, y))π2(do y ← ŷ ; f(x̂2, y))›

=

do y ← ŷ ; ‹π1(f(x̂1, y))π2(f(x̂2, y))›

Finally by case analysis on ŷ

Lemma B.1.1.44 (Monad Idempotence (Intensional Only)).

The intensional distribution monad I is idempotent.

NOTE: this is in contrast with the denotational distribution monad D which is not

idempotent.

(do x1 ← x̂ ; x2 ← x̂ ; f(x1, x2)) = (do x← x̂ ; f(x, x))

Proof. Case analysis on x̂ (analogous to monad laws and commutativity proofs)

Lemma B.1.1.45 (Bit Independence).

A particular random bit is independent of all other random bits.

bit(N) ⊥⊥ bit(N ′) for N 6= N ′

Proof. Induction on N and N ′

Lemma B.1.1.46 (Cond Independence).

A conditional is independent when its inputs are jointly indpendent.

x̂ ⊥⊥ b̂, ŷ, ẑ =⇒ x̂ ⊥⊥ cond(b̂, ŷ, ẑ)

Proof. By Total Probability on b̂ and unfolding definition of b̂

213



Lemma B.1.1.47 (Cond Stability).

A conditional is stable when the guard is independent of branches, and branches have

equal distributions.

If: b̂ ⊥⊥ x̂1

And: b̂ ⊥⊥ x̂2

And: Pr [x̂1 =̇ x] = Pr [x̂2 =̇ x]

Then:

(1) Pr
[
cond(b̂, x̂1, x̂2) =̇ x

]
= Pr [x̂1 =̇ x] = Pr [x̂2 =̇ x]

(2) b̂ ⊥⊥ cond(b̂, x̂1, x̂2)

Proof.(1) Pr
[
cond(b̂, x̂1, x̂2) =̇ x

∣∣∣ b̂ =̇ b
]

= * Total Probability +

Pr
[
x̂1 =̇ x

∣∣∣ b̂ =̇ I

]
Pr
[
b̂ =̇ I

]
+ Pr

[
x̂2 =̇ x

∣∣∣ b̂ =̇ O

]
Pr
[
b̂ =̇ O

]
= * b̂ ⊥⊥ x̂i +

Pr [x̂1 =̇ x] Pr
[
b̂ =̇ I

]
+ Pr [x̂2 =̇ x] Pr

[
b̂ =̇ O

]
= * Pr [x̂1 =̇ x] = Pr [x̂2 =̇ x] +

Pr [x̂1 =̇ x] (Pr
[
b̂ =̇ I

]
+ Pr

[
b̂ =̇ O

]
)

= * Proper Distribution +

Pr [x̂1 =̇ x]

= Pr [x̂2 =̇ x]

(2) Follows direction from (1)

214



Probability Facts

All of the following facts are stated using intensional distribution notation x̂ ∈ I(A),

however they are true of any model which supports joint probabilities, including

x̃ ∈ D(A). Proofs are not given because they are standard properties w.r.t. standard

definitions.
Fact B.1.1 (Conditional Decomposition).

Pr [x̂ =̇ x | ŷ =̇ y] = Pr[x̂=̇x,ŷ=̇y]
Pr[ŷ=̇y]

Fact B.1.2 (Bayes’ Rule).

Pr
[
x̂ =̇ x

∣∣ ŷ =̇ y, ẑ =̇ z
]

=
Pr[ŷ=̇y|x̂=̇x,ẑ=̇z]Pr[x̂=̇x|ẑ=̇z]

Pr[ŷ=̇y|ẑ=̇z]
Fact B.1.3 (Total Probability).

Pr [x̂ =̇ x] =
∑

y∈support(ŷ)

Pr [x̂ =̇ x | ŷ =̇ y] Pr [ŷ =̇ y]

Proof. Induction on the tree-structure of x̂ and ŷ

Fact B.1.4 (Decomposition).

(1) x̂ ⊥⊥ ŷ, ẑ =⇒ x̂ ⊥⊥ ŷ

(2) x̂ ⊥⊥ ŷ, ẑ =⇒ x̂ ⊥⊥ ẑ
Fact B.1.5 (Decomposition).

(1) x̂ ⊥⊥ ŷ, ẑ =⇒ [x̂ ⊥⊥ ŷ | ẑ]

(2) x̂ ⊥⊥ ŷ, ẑ =⇒ [x̂ ⊥⊥ ẑ | ŷ]
Fact B.1.6 (Decomposition).

If: x̂ ⊥⊥ ŷ

And: [x̂ ⊥⊥ ŷ | ẑ]

Then: x̂ ⊥⊥ ŷ, ẑ

215



Fact B.1.7 (Independence Equivalences).

(1)
[
x̂ ⊥⊥ ŷ

∣∣ ẑ =̇ z
]

M⇐⇒ ∀x, y. Pr
[
x̂ =̇ x, ŷ =̇ y, ẑ =̇ z

]
= Pr

[
x̂ =̇ x

∣∣ ẑ =̇ z
]

Pr
[
ŷ =̇ y

∣∣ ẑ =̇ z
]

⇐⇒ ∀x, y. Pr
[
x̂ =̇ x

∣∣ ŷ =̇ y, ẑ =̇ z
]

= Pr
[
x̂ =̇ x

∣∣ ẑ =̇ z
]

⇐⇒ ∀x, y. Pr
[
ŷ =̇ y

∣∣ x̂ =̇ x, ẑ =̇ z
]

= Pr
[
ŷ =̇ y

∣∣ ẑ =̇ z
]

⇐⇒
[
ŷ ⊥⊥ x̂

∣∣ ẑ =̇ z
]

Fact B.1.8 (Return Equivalence).

If: x1 ∼A x2

Then:
[
returnI(x1)

∣∣ ŷ =̇ y
]
≈∼A

[
returnI(x2)

∣∣ ẑ =̇ z
]

Fact B.1.9 (Bind Equivalence).

For: f1, f2 ∈ A→ I(B)

If: x̂1 ≈∼A x̂2

And:

∀(x1 ∈ support(x̂1)), (x2 ∈ support(x̂2)). x1 ∼A x2 =⇒ [f1(x1) | x̂1 =̇ x1] ≈∼B

[f2(x2) | x̂2 =̇ x2]

Then: (x̂1 �= f1) ≈∼B (x̂2 �= f2)
Fact B.1.10 (Extensional Equivalence).[

x̂1

∣∣ ŷ =̇ y
]
≈=

[
x̂2

∣∣ ẑ =̇ z
]

⇐⇒

∀x, y. Pr
[
x̂1 =̇ x

∣∣ ŷ =̇ y
]

= Pr
[
x̂2 =̇ x

∣∣ ẑ =̇ z
]

Fact B.1.11 (Distribution Equality Injective Function).

If: x̂1 ≈= x̂2

And: f is injective

Then: (do x← x̂1 ; return(f(x))) ≈= (do x← x̂2 ; return(f(x)))

216



217



B.1.3 Definitions

D(A) ∈ set

x ∈ A x̃ ∈ D(A) ,

{
f ∈ A→ R

∣∣∣∣ ∑
x∈A

f(x) = 1

}
Pr [x̃ =̇ x] , x̃(x)

return ∈ D(A) return(x) , λx′.

 1 if x = x′

0 if x 6= x′

bind ∈ D(A)× (A→ D(B))→ D(B) bind(x̃, f) , λy.
∑
x
f(x)(y)x̃(x)

bit ∈ N→ D(B) bit(N) , λb. 1/2

Pr
[
x̃ =̇ x

∣∣ ỹ =̇ y
]
,

Pr[x̃=̇x,ỹ=̇y]
Pr[ỹ=̇y]

[
x̃1
∣∣ ỹ =̇ y

]
≈∼A

[
x̃2
∣∣ z̃ =̇ z

] M⇐⇒ ∀x.

( ∑
x′|x′∼Ax

Pr
[
x̃1 =̇ x′

∣∣ ỹ =̇ y
])

=( ∑
x′|x′∼Ax

Pr
[
x̃2 =̇ x′

∣∣ z̃ =̇ z
])

[
x̃ ⊥⊥ ỹ

∣∣ z̃ =̇ z
] M⇐⇒ ∀x, y. Pr

[
x̃ =̇ x, ỹ =̇ y

∣∣ z̃ =̇ z
]

= Pr
[
x̃ =̇ x

∣∣ z̃ =̇ z
]

Pr
[
ỹ =̇ y

∣∣ z̃ =̇ z
]

I(A) ∈ set

x ∈ A

x̂ ∈ I(A) ::= x | ‹x̂ x̂›

p ∈ rpath ::= · | H© :: p | T© :: p

[ ] ∈ I(A)× rpath ⇀ A

x[p] , x

‹x̂1 x̂2›[ H© :: p] , x̂1[p]

‹x̂1 x̂2›[ T© :: p] , x̂2[p]

support ∈ I(A)→ ℘(A)

support(x̂) , {x | x̂[p] = x}

π1 ∈ I(A)→ I(A)

π1(x) , x

π1(‹x̂1 x̂2›) , x̂1

π2 ∈ I(A)→ I(A)

π2(x) , x

π2(‹x̂1 x̂2›) , x̂2

height ∈ I(A) ⇀ N

height(x) , 0

height(‹x̂1 x̂2›) , 1 + max(height(x̂1),height(x̂2))

length ∈ rpath→ B

length(·) , 0

length( :: p) , 1 + length(p)

bit ∈ N→ I(B)

bit(0) , ‹I O›

bit(N + 1) , ‹bit(N) bit(N)›

return ∈ A→ I(A)

return(x) , x

bind ∈ I(A)× (A→ I(B))→ I(B)

bind(x, f) , f(x)

bind(‹x̂1 x̂2›, f) , ‹bind(x̂1, π1◦f) bind(x̂2, π2◦f)›

Pr
[
x̂ =̇ x

]
,
|{p | length(p)=h,x̂[p]=x}|

2h
where h , max(height(x̂))

Figure B.1: (1) Denotational Distribution Monad; (2) Intensional Distribution Monad

218



` ∈ label ::= P | S public and secret

(where P @ S) security labels

ρ ∈ R probability region

b ∈ B ::= O | I bits

x, y ∈ var variables

v ∈ val ::= x variable values

| 〈v, v〉 tuple values

| funy(x:τ).e function values

τ ∈ type ::= bit
ρ
` non-random bit

| flip
ρ secret uniform bit

| ref(τ) reference

| τ × τ tuple

| τ → τ function

e ∈ exp

e ::= v value expressions

| b` bit literal

| flip
ρ() coin flip in region

| cast`(v) cast flip to bit

| mux(e, e, e) atomic conditional

| xor(e, e) bit xor

| if(e){e}{e} branch conditional

| ref(e) reference creation

| read(e) reference read

| write(e, e) reference write

| 〈e, e〉 tuple creation

| let x = e in e variable binding

| let x, y = e in e tuple elimination

| e(e) fun. application

ι ∈ loc ≈ N

v ∈ val ::= . . .

| bitv`(b)

| flipv(b)

| locv(ι)

σ ∈ store , loc ⇀ val

ς ∈ config ::= σ, e

t ∈ trace ::= ε | t·ς

e ∈ exp ::= . . . same schema

E ∈ cxt ::= . . . same schema

v ∈ val ::= . . . extended with. . .

| bitv`(b̂) bit value

| flipv(b̂) flip value

| locv(ι) location value

σ ∈ store , loc ⇀ val store

ς ∈ config ::= σ, e configuration

t ∈ trace ::= ε | t·ς trace

E ∈ cxt ::= �

| mux(E, e, e) | mux(v,E, e) | mux(v, v, E)

| xor(E, e) | xor(v,E) | if(E, e, e)

| ref(E) | read(E) | write(E, e) | write(v,E)

| 〈E, e〉 | 〈v,E〉 | E(e) | v(E)

| let x = E in e | let x, y = E in e

•
e ∈ e

•
xp ::= . . . same schema

•
E ∈ c

•
xt ::= . . . same schema

•
v ∈ v

•
al ::= . . . | • extend with •

•
σ ∈ st

•
ore , loc ⇀ v

•
al store

•
ς ∈ co

•
nfig ::=

•
σ,
•
e configuration

•
t ∈ tr

•
ace ::= ε |

•
t,
•
ς trace

Figure B.2: (1) Source Syntax; and (2) Runtime syntax: standard, mixed and adver-

sary

219



•
τ ∈ t

•
ype ::= τ | • (where τ @ •)

κ ∈ kind ::= U | A (where U @ A)

Γ ∈ tcxt , var ⇀ t
•
ype

(Γ1 t Γ2)(x) , Γ1(x) t Γ2(x)

K ∈ type→ kind

K(bitρ` ) , K(τ1 → τ2) , K(ref(τ)) , U K(flipρ) , A K(τ1 × τ2) , K(τ1) t K(τ2)

Γ ` e : τ ; Γ

VarU

K(Γ(x)) = U

Γ(x) = τ

Γ ` x : τ ; Γ

VarA

K(Γ(x)) = A

Γ(x) = τ

Γ ` x : τ ; Γ[x 7→•]

Bit

Γ ` b` : bit
∅
` ; Γ

Flip

ρ 6= ⊥

Γ ` flip
ρ() : flip

ρ ; Γ

Cast-S

Γ ` x : flip
ρ ;

Γ ` castS(x) : bit
ρ
S ; Γ

Cast-P

Γ ` x : flip
ρ ; Γ′

Γ ` castP(x) : bit
∅
P ; Γ′

If

Γ′ ` e1 : τ ; Γ′′1

Γ ` e : bit
∅
P ; Γ′ Γ′ ` e2 : τ ; Γ′′2

Γ ` if(e){e1}{e2} : τ ; Γ′′1 t Γ′′2

Mux-Bit

Γ ` e1 : bit
ρ1
`1

; Γ′

Γ′ ` e2 : bit
ρ2
`2

; Γ′′ ` = `1 t `2 t `3

Γ′′ ` e3 : bit
ρ3
`3

; Γ′′′ ρ = ρ1 t ρ2 t ρ3

Γ ` mux(e1, e2, e3) : bit
ρ
` × bit

ρ
` ; Γ′′′

Mux-Flip

Γ ` e1 : bit
ρ1
`1

; Γ′ ρ1 @ ρ2

Γ′ ` e2 : flip
ρ2 ; Γ′′ ρ1 @ ρ3

Γ′′ ` e3 : flip
ρ3 ; Γ′′′ ρ = ρ2 u ρ3

Γ ` mux(e1, e2, e3) : flip
ρ × flip

ρ ; Γ′′′

Xor-Flip

Γ ` e1 : bit
ρ1
`1

; Γ′

Γ′ ` e2 : flip
ρ2 ; Γ′′ ρ1 @ ρ2

Γ ` xor(e1, e2) : flip
ρ2 ; Γ′′

Ref

Γ ` e : τ ; Γ′

Γ ` ref(e) : ref(τ) ; Γ′

Read

K(τ) = U

Γ ` e : ref(τ) ; Γ′

Γ ` read(e) : τ ; Γ′

Write

Γ ` e1 : ref(τ) ; Γ′ Γ′ ` e2 : τ ; Γ′′

Γ ` write(e1, e2) : τ ; Γ′′

Tup

Γ ` e1 : τ1 ; Γ′ Γ′ ` e2 : τ2 ; Γ′′

Γ ` 〈e1, e2〉 : τ1 × τ2 ; Γ′′

Fun

Γ+ = Γ ] [x 7→τ1, y 7→(τ1→τ2)]

Γ+ ` e : τ2 ; Γ+′ Γ+′ = Γ ] [x 7→ , y 7→ ]

Γ ` funy(x : τ1). e : τ1 → τ2 ; Γ

App

Γ ` e1 : τ1 → τ2 ; Γ′

Γ′ ` e2 : τ1 ; Γ′′

Γ ` e1(e2) : τ2 ; Γ′′

Let

Γ ` e1 : τ1 ; Γ′ Γ′+ = Γ′ ] [x 7→τ1]

Γ′+ ` e2 : τ2 ; Γ′′+ Γ′′+ = Γ′′ ] [x 7→ ]

Γ ` let x = e1 in e2 : τ2 ; Γ′′

Let-Tup

Γ ` e1 : τ1 × τ2 ; Γ′ Γ′+ = Γ′ ] [x1 7→τ1, x2 7→τ2]

Γ′+ ` e2 : τ3 ; Γ′′+ Γ′′+ = Γ′′ ] [x1 7→ , x2 7→ ]

Γ ` let x1, x2 = e1 in e2 : τ3 ; Γ′′

Figure B.3: Source Typing

220



stepM ∈ N× config ⇀M(config)

stepM(N, σ, b`) , return(σ, bitv`(b))

stepM(N, σ, flipρ()) , do b← bit(N + 1) ; return(σ, flipv(b))

stepM(N, σ, cast`(flipv(b))) , return(σ, bitv`(b))

stepM(N, σ, mux(bitv`1(b1), bitv`2(b2), bitv`3(b3))) , return(σ, 〈bitv`(cond(b1, b2, b3)), bitv`(cond(b1, b3, b2))〉)

` , `1 t `2 t `3

stepM(N, σ, mux(bitv`(b1), flipv(b2), flipv(b3))) , return(σ, 〈flipv(cond(b1, b2, b3)), flipv(cond(b1, b3, b2))〉)

stepM(N, σ, xor(bitv`(b1), flipv(b2))) , return(σ, flipv(b1 ⊕ b2))

stepM(N, σ, if(bitv`(b)){e1}{e2}) , return(σ, cond(b, e1, e2))

stepM(N, σ, ref(v)) , return(σ[ι 7→ v], refv(ι)) where ι /∈ dom(σ)

stepM(N, σ, read(refv(ι))) , return(σ, σ(ι))

stepM(N, σ, write(refv(ι), v)) , return(σ[ι 7→ v], σ(ι))

stepM(N, σ, let x = v in e) , return(σ, [v/x]e)

stepM(N, σ, let x1, x2 = 〈v1, v2〉 in e) , return(σ, [v1/x1][v2/x2]e)

stepM(N, σ, (funy(x : τ). e

v1

)(v2)) , return(σ, [v1/y][v2/x]e)

stepM(N, σ,E[e]) , do σ′, e′ ← stepM(N, σ, e) ; return(σ′, E[e′])

stepM(N, σ, v) , return(σ, v)

nstepM ∈ N× config ⇀M(trace)
nstepM(0, ς) , return(ε·ς)

nstepM(N + 1, ς) , do t·ς ′ ← nstepM(N, ς) ; ς ′′ ← stepM(N + 1, ς ′) ; return(t·ς ′·ς ′′)

ŝtepM(N, ς̂) , do ς ← ς̂ ; stepM(N, ς)

n̂stepM(N, ς̂) , do ς ← ς̂ ; nstepM(N, ς)

ŝtepM ∈ N×M(config) ⇀M(config)

n̂stepM ∈ N×M(config) ⇀M(trace)

step ∈ N× config ⇀ I(config)

step(N, σ, b`) , return(σ, bitv`(return(b)))

step(N, σ, flipρ()) , return(σ, flipv(bit(N + 1)))

step(N, σ, castS(flipv(b̂))) , return(σ, bitvS(b̂))

step(N, σ, castP (flipv(b̂))) , do b← b̂ ; return(σ, bitvP (return(b)))

step(N, σ, mux(bitv`1(b̂1), bitv`2(b̂2), bitv`3(b̂3))) , return(σ, 〈bitv`(ĉond(b̂1, b̂2, b̂3)), bitv`(ĉond(b̂1, b̂3, b̂2))〉)

where ` , `1 t `2 t `3

step(N, σ, mux(bitv`(b̂1), flipv(b̂2), flipv(b̂3))) , return(σ, 〈flipv(ĉond(b̂1, b̂2, b̂3)), flipv(ĉond(b̂1, b̂3, b̂2))〉)

step(N, σ, xor(bitv`1(b̂1), flipv(b̂2))) , return(σ, flipv(b̂1 ⊕̂ b̂2))

step(N, σ, if(bitv`(b̂)){e1}{e2}) , do b← b̂ ; return(σ, cond(b, e1, e2))

step(N, σ, ref(v)) , return(σ[ι 7→ v], refv(ι)) where ι /∈ dom(σ)

step(N, σ, read(refv(ι))) , return(σ, σ(ι))

step(N, σ, write(refv(ι), v)) , return(σ[ι 7→ v], σ(ι))

step(N, σ, let x = v in e) , return(σ, e[v/x])

step(N, σ, let x1, x2 = 〈v1, v2〉 in e) , return(σ, e[v1/x1][v2/x2])

step(N, σ, (funy(x : τ). e
v1

)(v2)) , return(σ, e[v1/y][v2/x])

step(N, σ,E[e]) , do σ′, e′ ← step(N, σ, e) ; return(σ′, E[e′])

step(N, σ, v) , return(σ, v)

nstep ∈ N× config ⇀ I(trace)
nstep(0, ς) , return(ε·ς)

nstep(N + 1, ς) , do t·ς ′ ← nstep(N, ς) ; ς ′′ ← step(N + 1, ς ′) ; return(t·ς ′·ς ′′)

Figure B.4: λObliv Semantics Standard and Mixed

221



obs ∈ (exp→ e
•
xp) ] (store→ st

•
ore) ] (config→ co

•
nfig) ] (trace→ tr

•
ace)

obs(x) , x

obs(funy(x : τ). e) , funy(x : τ). obs(e)

obs(bitvP (b)) , bitvP (b)

obs(bitvS(b)) , •

obs(flipv(b)) , •

obs(locv(ι)) , locv(ι)

obs(bP ) , bP

obs(bS) , •

obs(flipρ()) , flip
ρ()

obs(cast`(v)) , cast`(obs(v))

obs(mux(e1, e2, e3)) , mux(obs(e1), obs(e2), obs(e3))

obs(xor(e1, e2)) , xor(obs(e1), obs(e2))

obs(if(e1){e2}{e3}) , if(obs(e1)){obs(e2)}{obs(e3)}

obs(ref(e)) , ref(obs(e))

obs(read(e)) , read(obs(e))

obs(write(e1, e2)) , write(obs(e1), obs(e2))

obs(〈e1, e2〉) , 〈obs(e1), obs(e2)〉

obs(let x = e1 in e2) , let x = obs(e1) in obs(e2)

obs(let x, y = e1 in e2) , let x, y = obs(e1) in obs(e2)

obs(e1(e2)) , obs(e1)(obs(e2))

obs(σ) , {ι 7→ obs(v) | ι 7→ v ∈ σ} obs(σ, e) , obs(σ), obs(e) obs(ε) , ε obs(t·ς) , obs(t)·obs(ς)

õbs ∈ D(trace)→ D(tr
•
ace)

ôbs ∈ I(trace)→ I(tr
•
ace)

õbs(t̃) , do t← t̃ ; return(obs(t)) ôbs(t̂) , do t← t̂ ; return(obs(t))

Figure B.5: Adversary Observation

222



d e ∈ exp→ I(exp)

dxe , return(x)

dfuny(x : τ). ee , do e← dee ; return(funy(x : τ). e)

dbitv`(b̂)e , do b← b̂ ; return(bitv`(b))

dflipv(b̂)e , do b← b̂ ; return(flipv(b))

dlocv(ι)e , return(locv(ι))

db`e , return(b`)

dflipρ()e , return(flipρ())

dcast`(v)e , do v ← dve ; return(cast`(v))

dmux(e1, e2, e3)e , do e1 ← de1e ; e2 ← de2e ; e3 ← de3e ; return(mux(e1, e2, e3))

dxor(e1, e2)e , do e1 ← de1e ; e2 ← de2e ; return(xor(e1, e2))

dif(e1){e2}{e3}e , do e1 ← de1e ; e2 ← de2e ; e3 ← de3e ; return(if(e1){e2}{e3})

dref(e1)e , do e1 ← de1e ; return(ref(e1))

dread(e1)e , do e1 ← de1e ; return(read(e1))

dwrite(e1, e2)e , do e1 ← de1e ; e2 ← de2e ; return(write(e1, e2))

d〈e1, e2〉e , do e1 ← de1e ; e2 ← de2e ; return(〈e1, e2〉)

dlet x = e1 in e2e , do e1 ← de1e ; e2 ← de2e ; return(let x = e1 in e2)

dlet x, y = e1 in e2e , do e1 ← de1e ; e2 ← de2e ; return(let x, y = e1 in e2)

de1(e2)e , do e1 ← de1e ; e2 ← de2e ; return(e1(e2))

d e ∈ store→ I(store)

d∅e , return(∅)

d{ι 7→ v} ] σe , do v ← dve ; σ ← dσe ; return({ι 7→ v} ] σ)

config→ I(config)

dσ, ee , do σ ← σ ; e← e ; return(σ, e)

trace→ I(trace)

dεe , return(ε)

dt·ςe , do t← t ; ς ← ς ; return(t·ς)

d̂êê , do e← ê ; dee

d̂σ̂ê , do σ ← σ̂ ; dσe

d̂ς̂ ê , do ς ← ς̂ ; dςe

d̂̂tê , do t← t̂ ; dte

d̂ ê ∈ I(exp)→ I(exp)

d̂ ê ∈ I(store)→ I(store)

d̂ ê ∈ I(config)→ I(config)

d̂ ê ∈ I(trace)→ I(trace)

Figure B.6: Projection

223



Σ,Γ ` e : τ ; Γ

VarU
K(Γ(x)) = U Γ(x) = τ

Σ,Γ ` x : τ ; Γ

VarA
K(Γ(x)) = A Γ(x) = τ

Σ,Γ ` x : τ ; Γ[x 7→ •]

Bit

Σ,Γ ` b` : bit
⊥
` ; Γ

Flip
ρ 6= ⊥

Σ,Γ ` flip
ρ() : flip

ρ ; Γ

Cast-S
Σ,Γ ` v : flip

ρ ;

Σ,Γ ` castS(v) : bit
ρ
S ; Γ

Cast-P
Σ,Γ ` v : flip

ρ ; Γ′

Σ,Γ ` castP(v) : bit
⊥
P ; Γ′

If
Σ,Γ ` e1 : bit

⊥
P ; Γ′

Σ,Γ′ ` e2 : τ ; Γ′′1

Σ,Γ′ ` e3 : τ ; Γ′′2

Σ,Γ ` if(e1){e2}{e3} : τ ; Γ′′1 t Γ′′2

Mux-Bit
Σ,Γ ` e1 : bit

ρ1
`1

; Γ′

Σ,Γ′ ` e2 : bit
ρ2
`2

; Γ′′ ` = `1 t `2 t `3

Σ,Γ′′ ` e3 : bit
ρ3
`3

; Γ′′′ ρ = ρ1 t ρ2 t ρ3

Σ,Γ ` mux(e1, e2, e3) : bit
ρ
` × bit

ρ
` ; Γ′′′

Mux-Flip
Σ,Γ ` e1 : bit

ρ1
`1

; Γ′ ρ1 @ ρ2

Σ,Γ′ ` e2 : flip
ρ2 ; Γ′′ ρ1 @ ρ3

Σ,Γ′′ ` e3 : flip
ρ3 ; Γ′′′ ρ = ρ2 u ρ3

Σ,Γ ` mux(e1, e2, e3) : flip
ρ × flip

ρ ; Γ′′′

Xor-Flip
Σ,Γ ` e1 : bit

ρ1
`1

; Γ′ ρ1 @ ρ2

Σ,Γ′ ` e2 : flip
ρ2 ; Γ′′ ρ = ρ2

Σ,Γ ` xor(e1, e2) : flip
ρ ; Γ′′

Ref
Σ,Γ ` e : τ ; Γ′

Σ,Γ ` ref(e) : ref(τ) ; Γ′

Read
K(τ) = U

Σ,Γ ` e : ref(τ) ; Γ′

Σ,Γ ` read(e) : τ ; Γ′

Write
Σ,Γ ` e1 : ref(τ) ; Γ′

Σ,Γ′ ` e2 : τ ; Γ′′

Σ,Γ ` write(e1, e2) : τ ; Γ′′

Tup
Σ,Γ ` e1 : τ1 ; Γ′

Σ,Γ′ ` e2 : τ2 ; Γ′′

Σ,Γ ` 〈e1, e2〉 : τ1 × τ2 ; Γ′′

Fun
Γ+ = Γ ] [x 7→ τ1, y 7→ (τ1 → τ2)]

Σ,Γ+ ` e : τ2 ; Γ+′ Γ+′ = Γ ] [x 7→ , y 7→ ]

Σ,Γ ` funy(x : τ1). e : τ1 → τ2 ; Γ

App
Σ,Γ ` e1 : τ1 → τ2 ; Γ′

Σ,Γ′ ` e2 : τ1 ; Γ′′

Γ ` e1(e2) : τ2 ; Γ′′

Let
Σ,Γ ` e1 : τ1 ; Γ′ Γ′+ = Γ′ ] [x 7→ τ1]

Σ,Γ′+ ` e2 : τ2 ; Γ′′+ Γ′′+ = Γ′′ ] [x 7→ ]

Σ,Γ ` let x = e1 in e2 : τ2 ; Γ′′

Let-Tup
Σ,Γ ` e1 : τ1 × τ2 ; Γ′ Γ′+ = Γ′ ] [x1 7→ τ1, x2 7→ τ2]

Σ,Γ′+ ` e2 : τ3 ; Γ′′+ Γ′′+ = Γ′′ ] [x1 7→ , x2 7→ ]

Σ,Γ ` let x1, x2 = e1 in e2 : τ3 ; Γ′′

BitV

Σ,Γ ` bitv`(b) : bit
ρ
` ; Γ

FlipV

Σ,Γ ` flipv(b) : flip
ρ ; Γ

LocV
Σ(ι) = τ

Σ,Γ ` locv(ι) : τ ; Γ

Σ ` σ

Store-Empty

Σ ` ∅

Store-Cons
Σ,∅ ` v : Σ(ι) ; ∅

Σ,∅ ` σ

Σ ` {ι 7→ v} ] σ

Σ ` ς : τ

Config
Σ ` σ Σ,∅ ` e : τ ; ∅

Σ ` σ, e : τ

Figure B.7: λObliv Type System Evaluation Standard Expressions

224



ΨF∈flipset , ℘(I(B)) ΨB∈bitset , R→℘(I(B)) Ψ∈fbset ::= ΨF ,ΨB Φ∈history ::= ς̂ =̇ ς

(ΨF1 ,Ψ
B
1 ) ] (ΨF2 ,Ψ

B
2 ) , (ΨF1 ]ΨF2 ), (ΨB1 ∪ΨB2 )

Ψ,Φ,Σ,Γ ` e : τ ; Γ,Ψ

VarU
K(Γ(x)) = U Γ(x) = τ

Ψc,Φ,Σ,Γ ` x : τ ; Γ,∅,∅

VarA
K(Γ(x)) = A Γ(x) = τ

Ψc,Φ,Σ,Γ ` x : τ ; Γ[x 7→ •],∅,∅

Bit

Ψc,Φ,Σ,Γ ` b` : bit
⊥
` ; Γ,∅,∅

Flip
ρ 6= ⊥

Ψc,Φ,Σ,Γ ` flip
ρ() : flip

ρ ; Γ,∅,∅

Cast-S
Ψc,Φ,Σ,Γ ` v : flip

ρ ; , {b̂},∅

Ψc,Φ,Σ,Γ ` castS(v) : bit
ρ
S ; Γ,∅, {ρ 7→ {b̂}}

Cast-P
Ψc,Φ,Σ,Γ ` v : flip

ρ ; Γ′,Ψ

Ψc,Φ,Σ,Γ ` castP(v) : bit
⊥
P ; Γ′,Ψ

If
Ψc ]Ψ2 ]Ψ3,Φ,Σ,Γ ` e1 : bit

⊥
P ; Γ′,Ψ1

Ψc ]Ψ1 ]Ψ3,Φ,Σ,Γ
′ ` e2 : τ ; Γ′′1 ,Ψ2

Ψc ]Ψ1 ]Ψ2,Φ,Σ,Γ
′ ` e3 : τ ; Γ′′2 ,Ψ3

Ψc,Φ,Σ,Γ ` if(e1){e2}{e3} : τ ; Γ′′1 t Γ′′2 ,Ψ1 ]Ψ2 ]Ψ3

Mux-Bit
Ψc ]Ψ2 ]Ψ3,Φ,Σ,Γ ` e1 : bit

ρ1
`1

; Γ′,Ψ1

Ψc ]Ψ1 ]Ψ3,Φ,Σ,Γ
′ ` e2 : bit

ρ2
`2

; Γ′′,Ψ2 ` = `1 t `2 t `3

Ψc ]Ψ1 ]Ψ2,Φ,Σ,Γ
′′ ` e3 : bit

ρ3
`3

; Γ′′′,Ψ3 ρ = ρ1 t ρ2 t ρ3

Ψc,Φ,Σ,Γ ` mux(e1, e2, e3) : bit
ρ
` × bit

ρ
` ; Γ′′′,Ψ1 ]Ψ2 ]Ψ3

Mux-Flip
Ψc ]Ψ2 ]Ψ3,Φ,Σ,Γ ` e1 : bit

ρ1
`1

; Γ′,Ψ1 ρ1 @ ρ2

Ψc ]Ψ1 ]Ψ3,Φ,Σ,Γ
′ ` e2 : flip

ρ2 ; Γ′′,Ψ2 ρ1 @ ρ3

Ψc ]Ψ1 ]Ψ2,Φ,Σ,Γ
′′ ` e3 : flip

ρ3 ; Γ′′′,Ψ3 ρ = ρ2 u ρ3

Ψc,Φ,Σ,Γ ` mux(e1, e2, e3) : flip
ρ × flip

ρ ; Γ′′′,Ψ1 ]Ψ2 ]Ψ3

Xor-Flip
Ψc ]Ψ2,Φ,Σ,Γ ` e1 : bit

ρ1
`1

; Γ′,Ψ1 ρ1 @ ρ2

Ψc ]Ψ1,Φ,Σ,Γ
′ ` e2 : flip

ρ2 ; Γ′′,Ψ2 ρ = ρ2

Ψc,Φ,Σ,Γ ` xor(e1, e2) : flip
ρ ; Γ′′,Ψ1 ]Ψ2

Ref
Ψc,Φ,Σ,Γ ` e : τ ; Γ′,Ψ

Ψc,Φ,Σ,Γ ` ref(e) : ref(τ) ; Γ′,Ψ

Read
K(τ) = U

Ψc,Φ,Σ,Γ ` e : ref(τ) ; Γ′,Ψ

Ψc,Φ,Σ,Γ ` read(e) : τ ; Γ′,Ψ

Write
Ψc ]Ψ2,Φ,Σ,Γ ` e1 : ref(τ) ; Γ′,Ψ1

Ψc ]Ψ1,Φ,Σ,Γ
′ ` e2 : τ ; Γ′′,Ψ2

Ψc,Φ,Σ,Γ ` write(e1, e2) : τ ; Γ′′,Ψ1 ]Ψ2

Tup
Ψc ]Ψ2,Φ,Σ,Γ ` e1 : τ1 ; Γ′,Ψ1

Ψc ]Ψ1,Φ,Σ,Γ
′ ` e2 : τ2 ; Γ′′,Ψ2

Ψc,Φ,Σ,Γ ` 〈e1, e2〉 : τ1 × τ2 ; Γ′′,Ψ1 ]Ψ2

Fun
Γ+ = Γ ] [x 7→ τ1, y 7→ (τ1 → τ2)]

Γ+′ = Γ ] [x 7→ , y 7→ ]

Ψc,Φ,Σ,Γ
+ ` e : τ2 ; Γ+′,Ψ

Ψc,Φ,Σ,Γ ` funy(x : τ1). e : τ1 → τ2 ; Γ,Ψ

App
Ψc ]Ψ2,Φ,Σ,Γ ` e1 : τ1 → τ2 ; Γ′,Ψ1

Ψc ]Ψ1,Φ,Σ,Γ
′ ` e2 : τ1 ; Γ′′,Ψ2

Γ ` e1(e2) : τ2 ; Γ′′

Let
Ψc ]Ψ2,Φ,Σ,Γ ` e1 : τ1 ; Γ′,Ψ1 Γ′+ = Γ′ ] [x 7→ τ1]

Ψc ]Ψ1,Φ,Σ,Γ
′+ ` e2 : τ2 ; Γ′′+,Ψ2 Γ′′+ = Γ′′ ] [x 7→ ]

Ψc,Φ,Σ,Γ ` let x = e1 in e2 : τ2 ; Γ′′,Ψ1 ]Ψ2

Let-Tup
Ψc ]Ψ2,Φ,Σ,Γ ` e1 : τ1 × τ2 ; Γ′,Ψ1 Γ′+ = Γ′ ] [x1 7→ τ1, x2 7→ τ2]

Ψc ]Ψ1,Φ,Σ,Γ
′+ ` e2 : τ3 ; Γ′′+,Ψ2 Γ′′+ = Γ′′ ] [x1 7→ , x2 7→ ]

Ψc,Φ,Σ,Γ ` let x1, x2 = e1 in e2 : τ3 ; Γ′′,Ψ

Figure B.8: λObliv Type System Evaluation Mixed Expressions

225



Ψ,Φ ` b̂ : flip
ρ

Flip-Value

Pr
[
b̂ =̇ I

∣∣∣ Φ
]

= 1/2

[
b̂ ⊥⊥ ΨF ,ΨB({ρ′ | ρ′ @ ρ})

∣∣∣ Φ
]

ΨF ,ΨB,Φ ` b̂ : flip
ρ

Ψ,Φ,Σ,Γ ` v : τ ; Γ,Ψ

BitV-P

Ψc,Φ,Σ,Γ ` bitvP (return(b)) : bit
⊥
P ; Γ,∅,∅

BitV-S

Ψc,Φ,Σ,Γ ` bitvS(b̂) : bit
ρ
` ; Γ,∅, {ρ 7→ {b̂}}

FlipV

Ψc,Φ ` b̂ : flip
ρ

Ψc,Φ,Σ,Γ ` flipv(b̂) : flip
ρ ; Γ, {b̂},∅

LocV

Σ(ι) = τ

Ψc,Φ,Σ,Γ ` locv(ι) : τ ; Γ,∅,∅

Ψ,Φ,Σ ` σ ; Ψ

Store-Empty

Ψc,Φ,Σ ` ∅ ; ∅,∅

Store-Cons

Ψc ]Ψσ,Φ,Σ,∅ ` v : Σ(ι) ; ∅,Ψv

Ψc ]Ψv,Φ,Σ,∅ ` σ ; Ψσ

Ψc,Φ,Σ ` {ι 7→ v} ] σ ; Ψv ]Ψσ

Ψ,Φ,Σ ` ς : τ,Ψ

Config

Ψc ]Ψe,Φ,Σ ` σ ; Ψσ Ψc ]Ψσ,Φ,Σ,∅ ` e : τ ; ∅,Ψe

Ψc,Φ,Σ ` σ, e : τ ; Ψσ ]Ψe

Figure B.9: λObliv Type System Evaluation Mixed Values, Store and Configurations

226



e1 ∼ e2

BitV-P

bitvP (b̂) ∼ bitvP (b̂)

BitV-S

bitvS(b̂) ∼ bitvS(b̂′)

FlipV

flipv(b̂) ∼ flipv(b̂′)

LocV

locv(ι) ∼ locv(ι)

Var

x ∼ x

BitP

bP ∼ bP

BitS

bS ∼ b′S

Flip

flip
ρ() ∼ flip

ρ()

Cast

v ∼ v′

cast`(v) ∼ cast`(v
′)

If

e1 ∼ e′1 e2 ∼ e′2 e3 ∼ e′3

if(e1){e2}{e3} ∼ if(e′1){e′2}{e′3}
Mux

e1 ∼ e′1 e2 ∼ e′2 e3 ∼ e′3

mux(e1, e2, e3) ∼ mux(e′1, e
′
2, e
′
3)

Xor

e1 ∼ e′1 e2 ∼ e′2

xor(e1, e2) ∼ xor(e′1, e
′
2)

Ref

e1 ∼ e′1

ref(e1) ∼ ref(e′1)

Read

e ∼ e′

read(e) ∼ read(e′)

Write

e1 ∼ e′1 e2 ∼ e′2

write(e1, e2) ∼ write(e′1, e
′
2)

Tup

e1 ∼ e′1 e2 ∼ e′2

〈e1, e2〉 ∼ 〈e′1, e′2〉
Fun

e ∼ e′

funy(x : τ). e ∼ funy(x : τ). e′

App

e1 ∼ e′1 e2 ∼ e′2

e1(e2) ∼ e′1(e′2)

Let

e1 ∼ e′1 e2 ∼ e′2

let x = e1 in e2 ∼ let x = e′1 in e′2

Let-Tup

e1 ∼ e′1 e2 ∼ e′2

let x, y = e1 in e2 ∼ let x, y = e′1 in e′2

Figure B.10: Low Equivalence Relation

227



Appendix C

Bounding Information Leakage:

Evacuation Scenario and Proofs

C.1 Query Code

The following is the query code of the example developed in Section 5.1.2. Here,

s_x and s_y represent a ship’s secret location. The variables l 1_x, l 1_y, l 2_x, l 2_y,

and d are inputs to the query. The first pair represents position L1, the second pair

represents the position L2, and the last is the distance threshold, set to 4. We assume

for the example that L1 and L2 have the same y coordinate, and their x coordinates

differ by 6 units.

We express the query in the language of Figure 5.4 basically as follows:

d_l1 := |s_x - l1_x| + |s_y - l1_y|;

d_l2 := |s_x - l2_x| + |s_y - l2_y|;

if (d_l1 <= d || d_l2 <= d) then

out := true // assume this result

else

out := false

228



The variable out is the result of the query. We simplify the code by assuming the ab-

solute value function is built-in; we can implement this with a simple conditional. We

run this query probabilistically under the assumption that s_x and s_y are uniformly

distributed within the range given in Figure 5.1. We then condition the output on

the assumption that out = true. When using intervals as the baseline of probabilistic

polyhedra, this produces the result given in the upper right of Figure 5.3(b); when

using convex polyhedra, the result is shown in the lower right of the figure. The use of

sampling and concolic execution to augment the former is shown via arrows between

the two.

C.2 Formal semantics

Here we defined the probabilistic semantics for the programming language given in

Figure 5.4. The semantics of statement S , written [[S ]], is a function of the form

Dist → Dist, i.e., it is a function from distributions of states to distributions of

states. We write [[S ]]δ = δ′ to say that the semantics of S maps input distribution δ

to output distribution δ′.

Figure C.1 gives this denotational semantics along with definitions of relevant

auxiliary operations. We write [[E]]σ to denote the (integer) result of evaluating

expression E in σ, and [[B]]σ to denote the truth or falsehood of B in σ. The variables

of a state σ, written domain(σ), is defined by domain(σ); sometimes we will refer to

this set as just the domain of σ. We will also use the this notation for distributions;

domain(δ)
def
= domain(domain(δ)). We write lfp as the least fixed-point operator. The

notation
∑

x : φ ρ can be read ρ is the sum over all x such that formula φ is satisfied

(where x is bound in ρ and φ).

This semantics is standard. See Clarkson et al. [44] or Mardziel et al [115] for

detailed explanations.

229



[[skip]]δ = δ
[[x := E ]]δ = δ [x→ E ]

[[if B then S1 else S2]]δ = [[S1]](δ ∧B) + [[S2]](δ ∧ ¬B)
[[pif q then S1 else S2]]δ = [[S1]](q · δ) + [[S2]]((1− q) · δ)

[[S1 ; S2]]δ = [[S2]]([[S1]]δ)
[[while B do S ]] = lfp [λf : Dist→ Dist. λδ.

f ([[S ]](δ ∧B)) + (δ ∧ ¬B)]

where

δ [x→ E ]
def
= λσ.

∑
τ : τ [x→[[E ]]τ ]=σ δ(τ)

δ1 + δ2
def
= λσ. δ1(σ) + δ2(σ)

δ ∧ B
def
= λσ. if [[B ]]σ then δ(σ) else 0

p · δ def
= λσ. p · δ(σ)

‖δ‖ def
=
∑

σ δ(σ)
normal(δ) def

= 1
‖δ‖ · δ

δ|B def
= normal(δ ∧B)

δ1 × δ2
def
= λ(σ1, σ2). δ1(σ1) · δ2(σ2)

σ̇
def
= λσ0. if σ = σ0 then 1 else 0

σ � V
def
= λx ∈ VarV . σ(x)

δ � V
def
= λσV ∈ StateV .

∑
τ : τ�V=σV

δ(τ)

fx(δ)
def
= δ � (domain(δ)− {x})

support(δ) def
= {σ : δ(σ) > 0}

Figure C.1: Distribution semantics

230



C.2.1 Proofs

Here we restate the soundness theorems for our techniques, and include their proofs.

Theorem C.2.2 (Sampling is Sound).

If δ0 ∈ γP(P0), 〈〈S 〉〉P0 = P , and [[S ]]δ0 = δ then

δT ∈ γP(PT+) with confidence ω

where

δT
def
= δ ∧ (r = o) � T

PT
def
= P ∧ (r = o) � T

PT+
def
= PT sampling revised with confidence ω.

Proof. Suppose we have some δ0 ∈ γP(P0) whereby [[S ]]δ0 = δ. We want to prove that

δT ∈ γP(PT+). Per Definition 5.2.2, this means we must show that

(1) support(δT ) ⊆ γP(CT+)

(2) smin
T+ ≤ |support(δT )| ≤ smax

T+

(3) mmin
T+ ≤ ‖δT‖ ≤ mmax

T+

(4) ∀σ ∈ support(δT ). pmin
T+ ≤ δT (σ) ≤ pmax

T+

Our proof goes as follows. First, we know that δT ∈ γP(CT ) by Theorem 5.2.1, Lemma

15 and Lemma 7 of Mardziel et al. By Definition 5.2.2, this means

(a) support(δT ) ⊆ γP(CT )

(b) smin
T ≤ |support(δT )| ≤ smax

T

(c) mmin
T ≤ ‖δT‖ ≤ mmax

T

231



(d) ∀σ ∈ support(δT ). pmin
T ≤ δT (σ) ≤ pmax

T

So (1) and (4) follow directly from (a) and (d), since pmin
T = pmin

T+ , pmax
T = pmax

T+ , and

CT = CT+.

To prove (2), we argue as follows. Let p = |support(δT )|
#(CT )

, which represents the

probability that a randomly selected point from CT is in support(δT ). From the

computed credible interval over the Beta distribution, we have that p ∈ [pL, pU ] with

confidence ω. As such,

pL ≤ p ≤ pU

pL ≤ |support(δT )|
#(CT )

≤ pU

pL ·#(CT ) ≤ |support(δT )| ≤ pU ·#(CT )

smin
T+ ≤ |support(δT )| ≤ smax

T+

which is the desired result.

To prove (3), first consider that if mmin
T+ = mmin

T then the first half of (3) follows

from the first half of (c). Otherwise, we have that mmin
T+ = pmin

T · smin
T+ . Then we can

reason the first half of (3) holds using the following reasoning:

smin
T+ ≤ |support(δT )| by (2)

pmin
T+ · smin

T+ ≤ pmin
T+ · |support(δT )| as pmin

T+ nonneg.

mmin
T+ ≤ pmin

T+ · |support(δT )| by def.

= Σσ∈support(δT )p
min
T+

≤ Σσ∈support(δT )δT (σ) by (4)

= ‖δT‖

We can prove the soundness of mmax
T+ (the other half of (3)) with similar reasoning.

Theorem C.2.3 (Concolic Execution is Sound).

If δ0 ∈ γP(P0), 〈〈S 〉〉P0 = P , and [[S ]]δ0 = δ then

232



δT ∈ γP(PT+)

where

δT
def
= δ ∧ (r = o) � T

PT
def
= P ∧ (r = o) � T

PT+
def
= PT concolically revised.

Proof. Our proof is quite similar to that of Theorem C.2.2. Once again we proceed

to show the four elements of Definition 5.2.2, where (1) and (4) hold by construction.

To prove (2) we are only concerned with the inequality smin
T ≤ |support(δT )|, since

smax
T+ = smax

T . We know by the soundness of PT that

smin
T ≤ |support(δT )|

From the definition of concolic execution we have {σ | σ ∈ CT ∧ σ |= π} ⊆ {σ |

δT (σ) > 0}. Notice that this is just saying that the concolic execution is a valid

under-approximation for the support. From this we know that:

|{σ | σ ∈ CT ∧ σ |= π}| ≤ |{σ | δT (σ) > 0}|

#(CT u (
⊔
i

Ci)) ≤ |{σ | δT (σ) > 0}|

#(CT u (
⊔
i

Ci)) ≤ |support(δT )|

smin
T+ ≤ |support(δT )|

Given (2), our proof of (3) proceeds similarly to Theorem C.2.2.

233



Theorem C.2.4 (Concolic and Sampling Composition is Sound).

If δ0 ∈ γP(P0), 〈〈S 〉〉P0 = P , and [[S ]]δ0 = δ then

δT ∈ γP(PT+)

where

δT
def
= δ ∧ (r = o) � T

PT
def
= P ∧ (r = o) � T

PT+
def
= PT sampling-and-concolically revised with confidence ω

Proof. Our proof is quite similar to that of Theorem 2. Once again we proceed to

show the four elements of Definition 2, where (1) and (4) hold by construction. To

prove (2), consider the set |support(δT )|. For any state σT ∈ support(δT ) it must be

the case that either σT ∈ C or σT ∈ CT \C. This is because C ⊆ CT . Thus, we have

|support(δT )| = |support(CT \ C)|+ |support(C)|

Additionally, since C represents a sound under-approximation of the support, we

know that

|support(C)| = #(C)

So, p = |support(CT \C)|
#(CT \C)

represents the probability that a point in the region sur-

rounding C is in the support of δT . Note that our procedure implements a uniform,

random sample over this region. Thus, from the computed credible interval over the

234



Beta distribution, we have that p ∈ [pL, pU ] with confidence ω. As such,

pL ≤ p ≤ pU

pL ≤ |support(CT \C)|
#(CT \C) ≤ pU

pL ·#(CT \ C) ≤ |support(CT \ C)| ≤ pU ·#(CT \ C)

pL ·#(CT \ C) + |support(C)| ≤ |support(CT \ C)|+ |support(C)| ≤ pU ·#(CT \ C) + |support(C)|

pL ·#(CT \ C) + |support(C)| ≤ |support(δT )| ≤ pU ·#(CT \ C) + |support(C)|

pL ·#(CT \ C) + #(C) ≤ |support(δT )| ≤ pU ·#(CT \ C) + #(C)

pL · (#(CT )−#(C)) + #(C) ≤ |support(δT )| ≤ pU · (#(CT )−#(C)) + #(C)

smin
T+ ≤ |support(δT )| ≤ smax

T+

which is the desired result.

Given (2), our proof of (3) proceeds similarly to Theorem C.2.2 and C.2.3.

235



Bibliography

[1] Martín Abadi et al. “A Core Calculus of Dependency”. In: Proceedings of
the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. POPL ’99. San Antonio, Texas, USA: Association for Comput-
ing Machinery, 1999, pp. 147–160. isbn: 1581130953. doi: 10.1145/292540.
292555. url: https://doi.org/10.1145/292540.292555.

[2] Coşku Acay et al. “Viaduct: An Extensible, Optimizing Compiler for Secure
Distributed Programs”. In: Proceedings of the 42nd ACM SIGPLAN Inter-
national Conference on Programming Language Design and Implementation.
PLDI 2021. Virtual, Canada: Association for Computing Machinery, 2021,
pp. 740–755. isbn: 9781450383912. doi: 10.1145/3453483.3454074. url:
https://doi.org/10.1145/3453483.3454074.

[3] Johan Agat. “Transforming out Timing Leaks”. In: POPL. 2000.

[4] Mário S. Alvim et al. “Measuring Information Leakage Using Generalized Gain
Functions”. In: Proc. IEEE Computer Security Foundations Symposium (CSF).
2012.

[5] Abdelrahaman Aly et al. SCALE-MAMBA. https://homes.esat.kuleuven.be/ ns-
mart/SCALE/. 2019.

[6] Aslan Askarov, Danfeng Zhang, and Andrew C. Myers. “Predictive black-box
mitigation of timing channels”. In: CCS. 2010.

[7] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge
university press, 1999.

[8] Michael Backes, Boris Köpf, and Andrey Rybalchenko. “Automatic Discovery
and Quantification of Information Leaks”. In: Proceedings of the IEEE Sym-
posium on Security and Privacy (S&P). 2009.

[9] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “Widening operators
for powerset domains”. In: International Journal on Software Tools for Tech.
Transfer 8.4 (2006), pp. 449–466.

[10] Roberto Bagnara, Patricia M. Hill, and Enea Zaffanella. “The Parma Polyhe-
dra Library: Toward a Complete Set of Numerical Abstractions for the Anal-
ysis and Verification of Hardware and Software Systems”. In: Sci. Comput.
Program. 72 (June 2008).

236

https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/292540.292555
https://doi.org/10.1145/3453483.3454074
https://doi.org/10.1145/3453483.3454074


[11] Roberto Bagnara, Enric Rodríguez-Carbonell, and Enea Zaffanella. “Genera-
tion of basic semi-algebraic invariants using convex polyhedra”. In: SAS. 2005.

[12] Henry G. Baker. “Lively Linear Lisp: “Look Ma, No Garbage!”;” in: SIGPLAN
Not. 27.8 (Aug. 1992), pp. 89–98. issn: 0362-1340. doi: 10.1145/142137.
142162. url: http://doi.acm.org/10.1145/142137.142162.

[13] Marshall Ball, Tal Malkin, and Mike Rosulek. “Garbling Gadgets for Boolean
and Arithmetic Circuits”. In: Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security. CCS ’16. Vienna, Austria:
Association for Computing Machinery, 2016, pp. 565–577. isbn: 9781450341394.
doi: 10.1145/2976749.2978410. url: https://doi.org/10.1145/2976749.
2978410.

[14] Tyler Barker. “A Monad for Randomized Algorithms”. In: Electronic Notes in
Theoretical Computer Science 325 (2016). The Thirty-second Conference on
the Mathematical Foundations of Programming Semantics (MFPS XXXII),
pp. 47–62. issn: 1571-0661. doi: https://doi.org/10.1016/j.entcs.2016.
09.031. url: http://www.sciencedirect.com/science/article/pii/
S1571066116300780.

[15] Barry Schoenmakers.MPyC: Secure Multiparty Computation in Python. July 25,
2022. url: https://github.com/lschoe/mpyc.

[16] Gilles Barthe, Justin Hsu, and Kevin Liao. “A Probabilistic Separation Logic”.
In: PACMPL 4.POPL (2020).

[17] Gilles Barthe et al. “Security of multithreaded programs by compilation”.
In: ACM Transactions on Information and System Security (TISSEC) 13.3
(2010), p. 21.

[18] Gilles Barthe et al. “Probabilistic Relational Reasoning for Differential Pri-
vacy”. In: ACM Trans. Program. Lang. Syst. 35.3 (2013), 9:1–9:49.

[19] Gilles Barthe et al. “Probabilistic Relational Verification for Cryptographic
Implementations”. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. POPL ’14. San Diego, Cali-
fornia, USA: ACM, 2014, pp. 193–205. isbn: 978-1-4503-2544-8. doi: 10.1145/
2535838.2535847. url: http://doi.acm.org/10.1145/2535838.2535847.

[20] Gilles Barthe et al. “Higher-order approximate relational refinement types
for mechanism design and differential privacy”. In: ACM SIGPLAN Notices.
Vol. 50. 1. ACM. 2015, pp. 55–68.

[21] Gilles Barthe et al. “Coupling Proofs Are Probabilistic Product Programs”. In:
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Program-
ming Languages. POPL 2017. Paris, France: ACM, 2017, pp. 161–174. isbn:
978-1-4503-4660-3. doi: 10.1145/3009837.3009896. url: http://doi.acm.
org/10.1145/3009837.3009896.

237

https://doi.org/10.1145/142137.142162
https://doi.org/10.1145/142137.142162
http://doi.acm.org/10.1145/142137.142162
https://doi.org/10.1145/2976749.2978410
https://doi.org/10.1145/2976749.2978410
https://doi.org/10.1145/2976749.2978410
https://doi.org/https://doi.org/10.1016/j.entcs.2016.09.031
https://doi.org/https://doi.org/10.1016/j.entcs.2016.09.031
http://www.sciencedirect.com/science/article/pii/S1571066116300780
http://www.sciencedirect.com/science/article/pii/S1571066116300780
https://github.com/lschoe/mpyc
https://doi.org/10.1145/2535838.2535847
https://doi.org/10.1145/2535838.2535847
http://doi.acm.org/10.1145/2535838.2535847
https://doi.org/10.1145/3009837.3009896
http://doi.acm.org/10.1145/3009837.3009896
http://doi.acm.org/10.1145/3009837.3009896


[22] Gilles Barthe et al. “Proving uniformity and independence by self-composition
and coupling”. In: LPAR-21. 21st International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning. Ed. by Thomas Eiter and
David Sands. Vol. 46. EPiC Series in Computing. EasyChair, 2017, pp. 385–
403. doi: 10.29007/vz48. url: https://easychair.org/publications/
paper/L9T5.

[23] Gilles Barthe et al. “An Assertion-Based Program Logic for Probabilistic Pro-
grams”. In: Programming Languages and Systems. Ed. by Amal Ahmed. Cham:
Springer International Publishing, 2018, pp. 117–144. isbn: 978-3-319-89884-1.

[24] D. Beaver, S. Micali, and P. Rogaway. “The Round Complexity of Secure
Protocols”. In: Proceedings of the Twenty-Second Annual ACM Symposium on
Theory of Computing. STOC ’90. Baltimore, Maryland, USA: Association for
Computing Machinery, 1990, pp. 503–513. isbn: 0897913612. doi: 10.1145/
100216.100287. url: https://doi.org/10.1145/100216.100287.

[25] Donald Beaver. “Efficient Multiparty Protocols Using Circuit Randomization”.
In: Advances in Cryptology - CRYPTO ’91, 11th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 11-15, 1991, Pro-
ceedings. Vol. 576. Lecture Notes in Computer Science. Springer, 1991, pp. 420–
432. doi: 10.1007/3-540-46766-1_34.

[26] Donald Beaver. “Correlated Pseudorandomness and the Complexity of Private
Computations”. In: Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing. STOC ’96. Philadelphia, Pennsylvania, USA: Asso-
ciation for Computing Machinery, 1996, pp. 479–488. isbn: 0897917855. doi:
10.1145/237814.237996. url: https://doi.org/10.1145/237814.237996.

[27] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. “Completeness The-
orems for Non-Cryptographic Fault-Tolerant Distributed Computation (Ex-
tended Abstract)”. In: 20th Annual ACM Symposium on Theory of Computing.
Chicago, IL, USA: ACM Press, May 1988, pp. 1–10. doi: 10.1145/62212.
62213.

[28] Frédéric Besson, Nataliia Bielova, and Thomas Jensen. “Browser Randomisa-
tion against Fingerprinting: A Quantitative Information Flow Approach”. In:
NordSec. 2014.

[29] Ken Biba. “Integrity Considerations for Secure Computer Systems”. In: (Apr.
1977), p. 68.

[30] Marina Blanton, Aaron Steele, and Mehrdad Alisagari. “Data-oblivious Graph
Algorithms for Secure Computation and Outsourcing”. In: ASIA CCS. 2013.

[31] Dan Bogdanov, Sven Laur, and Jan Willemson. “Sharemind: A Framework for
Fast Privacy-Preserving Computations”. In: ESORICS. 2008.

[32] Dan Boneh et al. Zero-Knowledge Proofs on Secret-Shared Data via Fully Lin-
ear PCPs. Cryptology ePrint Archive, Paper 2019/188. https://eprint.
iacr.org/2019/188. 2019. url: https://eprint.iacr.org/2019/188.

238

https://doi.org/10.29007/vz48
https://easychair.org/publications/paper/L9T5
https://easychair.org/publications/paper/L9T5
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1145/100216.100287
https://doi.org/10.1007/3-540-46766-1_34
https://doi.org/10.1145/237814.237996
https://doi.org/10.1145/237814.237996
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188
https://eprint.iacr.org/2019/188


[33] Johannes Borgström et al. “Measure transformer semantics for Bayesian ma-
chine learning”. In: Proceedings of the European Symposium on Programming
(ESOP). 2011. isbn: 978-3-642-19717-8.

[34] William J. Bowman and Amal Ahmed. “Noninterference for Free”. In: Pro-
ceedings of the 20th ACM SIGPLAN International Conference on Functional
Programming. ICFP 2015. Vancouver, BC, Canada: Association for Computing
Machinery, 2015, pp. 101–113. isbn: 9781450336697. doi: 10.1145/2784731.
2784733. url: https://doi.org/10.1145/2784731.2784733.

[35] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function Secret Sharing”. In: EU-
ROCRYPT (2). Springer, 2015, pp. 337–367. doi: 10.1007/978- 3- 662-
46803- 6_12. url: https://www.iacr.org/archive/eurocrypt2015/
90560300/90560300.pdf.

[36] Lennart Braun et al. “MOTION – A Framework for Mixed-Protocol Multi-
Party Computation”. In: ACM Trans. Priv. Secur. 25.2 (Mar. 2022). issn:
2471-2566. doi: 10 . 1145 / 3490390. url: https : / / doi . org / 10 . 1145 /
3490390.

[37] David Brumley and Dan Boneh. “Remote Timing Attacks Are Practical”. In:
USENIX Security. 2003.

[38] Paul Bunn et al. “Efficient 3-Party Distributed ORAM”. In: Security and
Cryptography for Networks: 12th International Conference, SCN 2020, Amalfi,
Italy, September 14–16, 2020, Proceedings. Amalfi, Italy: Springer-Verlag, 2020,
pp. 215–232. isbn: 978-3-030-57989-0. doi: 10.1007/978-3-030-57990-6_11.
url: https://doi.org/10.1007/978-3-030-57990-6_11.

[39] Niklas Büscher et al. “HyCC: Compilation of Hybrid Protocols for Practical
Secure Computation”. In: ACM CCS 2018: 25th Conference on Computer and
Communications Security. Ed. by David Lie et al. Toronto, ON, Canada: ACM
Press, Oct. 2018, pp. 847–861. doi: 10.1145/3243734.3243786.

[40] T-H. Hubert Chan et al. “Foundations of Differentially Oblivious Algorithms”.
In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms. SODA ’19. San Diego, California: Society for Industrial and Ap-
plied Mathematics, 2019, pp. 2448–2467. url: http://dl.acm.org/citation.
cfm?id=3310435.3310585.

[41] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash Panangaden.
“On the Bayes risk in information-hiding protocols”. In: Journal of Computer
Security 16.5 (2008).

[42] Benny Chor et al. “Private Information Retrieval”. In: IEEE Symposium on
Foundations of Computer Science (FOCS). 1995, pp. 41–50.

[43] Guillaume Claret et al. Bayesian Inference for Probabilistic Programs via Sym-
bolic Execution. Tech. rep. MSR-TR-2012-86. Microsoft Research, 2012.

239

https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1145/2784731.2784733
https://doi.org/10.1007/978-3-662-46803-6_12
https://doi.org/10.1007/978-3-662-46803-6_12
https://www.iacr.org/archive/eurocrypt2015/90560300/90560300.pdf
https://www.iacr.org/archive/eurocrypt2015/90560300/90560300.pdf
https://doi.org/10.1145/3490390
https://doi.org/10.1145/3490390
https://doi.org/10.1145/3490390
https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1007/978-3-030-57990-6_11
https://doi.org/10.1145/3243734.3243786
http://dl.acm.org/citation.cfm?id=3310435.3310585
http://dl.acm.org/citation.cfm?id=3310435.3310585


[44] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. “Quantifying
information flow with beliefs”. In: Journal of Computer Security 17.5 (2009),
pp. 655–701.

[45] Michael R. Clarkson and Fred B. Schneider. “Quantification of Integrity”. In:
2010 23rd IEEE Computer Security Foundations Symposium. 2010, pp. 28–43.
doi: 10.1109/CSF.2010.10.

[46] Patrick Cousot and Radhia Cousot. “Static Determination of Dynamic Prop-
erties of Programs”. In: Proceedings of the Second International Symposium on
Programming. 1976.

[47] Patrick Cousot and Radhia Cousot. “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of
fixpoints”. In: Proceedings of the ACM SIGPLAN Conference on Principles of
Programming Languages (POPL). 1977.

[48] Patrick Cousot and Nicolas Halbwachs. “Automatic Discovery of Linear Re-
straints Among Variables of a Program”. In: POPL. 1978.

[49] Patrick Cousot and Michael Monerau. “Probabilistic Abstract Interpretation”.
In: Proceedings of the European Symposium on Programming (ESOP). 2012.

[50] Luís Cruz-Filipe and Fabrizio Montesi. “A Core Model for Choreographic Pro-
gramming”. In: Formal Aspects of Component Software. Ed. by Olga Kouchnarenko
and Ramtin Khosravi. Cham: Springer International Publishing, 2017, pp. 17–
35. isbn: 978-3-319-57666-4.

[51] Luís Cruz-Filipe and Fabrizio Montesi. “Procedural Choreographic Program-
ming”. In: Formal Techniques for Distributed Objects, Components, and Sys-
tems. Ed. by Ahmed Bouajjani and Alexandra Silva. Cham: Springer Interna-
tional Publishing, 2017, pp. 92–107. isbn: 978-3-319-60225-7.

[52] Ivan Damgård et al. “Multiparty Computation from Somewhat Homomorphic
Encryption”. In: CRYPTO. 2012.

[53] Jesus A. De Loera et al. LattE. https://www.math.ucdavis.edu/~latte/.
2008.

[54] Daniel Demmler, Thomas Schneider, and Michael Zohner. “ABY - A Frame-
work for Efficient Mixed-Protocol Secure Two-Party Computation”. In: ISOC
Network and Distributed System Security Symposium – NDSS 2015. San Diego,
CA, USA: The Internet Society, Feb. 2015.

[55] Dorothy E. Denning. “A Lattice Model of Secure Information Flow”. In: Com-
mun. ACM 19.5 (May 1976), pp. 236–243. issn: 0001-0782. doi: 10.1145/
360051.360056. url: https://doi.org/10.1145/360051.360056.

[56] D. Dolev and A. C. Yao. “On the Security of Public Key Protocols”. In: Pro-
ceedings of the 22nd Annual Symposium on Foundations of Computer Science
(SFCS). 1981.

240

https://doi.org/10.1109/CSF.2010.10
https://www.math.ucdavis.edu/~latte/
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056
https://doi.org/10.1145/360051.360056


[57] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. “Context-sensitive
Interprocedural Points-to Analysis in the Presence of Function Pointers”. In:
PLDI. 1994.

[58] David Eppstein, Michael T. Goodrich, and Roberto Tamassia. “Privacy-preserving
data-oblivious geometric algorithms for geographic data”. In: GIS. 2010.

[59] Shimon Even, Oded Goldreich, and Abraham Lempel. “A Randomized Proto-
col for Signing Contracts”. In: Commun. ACM 28.6 (June 1985), pp. 637–647.
issn: 0001-0782. doi: 10.1145/3812.3818. url: https://doi.org/10.
1145/3812.3818.

[60] Brett Hemenway Falk and Rafail Ostrovsky. “Secure Merge with O(n log log
n) Secure Operations”. In: 2nd Conference on Information-Theoretic Cryp-
tography (ITC 2021). Ed. by Stefano Tessaro. Vol. 199. Leibniz International
Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2021, 7:1–7:29. isbn: 978-3-95977-197-9. doi:
10.4230/LIPIcs.ITC.2021.7. url: https://drops.dagstuhl.de/opus/
volltexte/2021/14326.

[61] Matthias Felleisen and Robert Hieb. “The revised report on the syntactic the-
ories of sequential control and state”. In: Theoretical computer science 103.2
(1992), pp. 235–271.

[62] Christopher W. Fletcher et al. “Suppressing the Oblivious RAM timing chan-
nel while making information leakage and program efficiency trade-offs”. In:
HPCA. 2014.

[63] Martin Franz et al. “CBMC-GC: An ANSI C Compiler for Secure Two-Party
Computations”. In: Compiler Construction. Ed. by Albert Cohen. Vol. 8409.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2014, pp. 244–
249. doi: 10.1007/978-3-642-54807-9\_15. url: http://dx.doi.org/10.
1007/978-3-642-54807-9%5C_15.

[64] Marco Gaboardi et al. “Linear dependent types for differential privacy”. In:
ACM SIGPLAN Notices. Vol. 48. 1. ACM. 2013, pp. 357–370.

[65] Taher El Gamal. “A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms”. In: IEEE Transactions on Information Theory IT–
31.4 (1985), pp. 469–472.

[66] Timon Gehr, Sasa Misailovic, and Martin Vechev. “PSI: Exact Symbolic In-
ference for Probabilistic Programs”. In: CAV. 2016.

[67] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: 41st
Annual ACM Symposium on Theory of Computing. Ed. by Michael Mitzen-
macher. Bethesda, MD, USA: ACM Press, May 2009, pp. 169–178. doi: 10.
1145/1536414.1536440.

[68] Michèle Giry. “A categorical approach to probability theory”. In: Categorical
Aspects of Topology and Analysis. Ed. by B. Banaschewski. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1982, pp. 68–85. isbn: 978-3-540-39041-1.

241

https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/3812.3818
https://doi.org/10.1145/3812.3818
https://doi.org/10.4230/LIPIcs.ITC.2021.7
https://drops.dagstuhl.de/opus/volltexte/2021/14326
https://drops.dagstuhl.de/opus/volltexte/2021/14326
https://doi.org/10.1007/978-3-642-54807-9\_15
http://dx.doi.org/10.1007/978-3-642-54807-9%5C_15
http://dx.doi.org/10.1007/978-3-642-54807-9%5C_15
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440


[69] J.A. Goguen and J. Meseguer. “Security policy and security models”. In: IEEE
S & P. 1982.

[70] Joseph A. Goguen and José Meseguer. “Security Policies and Security Models”.
In: IEEE Symposium on Security and Privacy. 1982, pp. 11–20.

[71] O. Goldreich. “Towards a Theory of Software Protection and Simulation by
Oblivious RAMs”. In: Proceedings of the Nineteenth Annual ACM Symposium
on Theory of Computing. STOC ’87. New York, New York, USA: Association
for Computing Machinery, 1987, pp. 182–194. isbn: 0897912217. doi: 10.
1145/28395.28416. url: https://doi.org/10.1145/28395.28416.

[72] Oded Goldreich, Silvio Micali, and Avi Wigderson. “How to Play any Mental
Game or A Completeness Theorem for Protocols with Honest Majority”. In:
19th Annual ACM Symposium on Theory of Computing. Ed. by Alfred Aho.
New York City, NY, USA: ACM Press, May 1987, pp. 218–229. doi: 10.1145/
28395.28420.

[73] Oded Goldreich and Rafail Ostrovsky. “Software protection and simulation on
oblivious RAMs”. In: J. ACM (1996).

[74] S Goldwasser, S Micali, and C Rackoff. “The Knowledge Complexity of Inter-
active Proof-Systems”. In: Proceedings of the Seventeenth Annual ACM Sym-
posium on Theory of Computing. STOC ’85. Providence, Rhode Island, USA:
Association for Computing Machinery, 1985, pp. 291–304. isbn: 0897911512.
doi: 10.1145/22145.22178. url: https://doi.org/10.1145/22145.22178.

[75] Noah D. Goodman et al. “Church: a language for generative models”. In: Pro-
ceedings of the Conference on Uncertainty in Artificial Intelligence (UAI).
2008.

[76] Michael T. Goodrich, Olga Ohrimenko, and Roberto Tamassia. “Data-Oblivious
Graph Drawing Model and Algorithms”. In: CoRR abs/1209.0756 (2012).

[77] Andrew D. Gordon et al. “Probabilistic Programming”. In: Conference on the
Future of Software Engineering. FOSE 2014. Hyderabad, India: ACM, 2014,
pp. 167–181. isbn: 978-1-4503-2865-4. doi: 10.1145/2593882.2593900.

[78] Marco Guarnieri, Srdjan Marinovic, and David Basin. “Securing Databases
from Probabilistic Inference”. In: Proc. IEEE Computer Security Foundations
Symposium (CSF). 2017.

[79] Koki Hamada et al. “Practically Efficient Multi-Party Sorting Protocols from
Comparison Sort Algorithms”. In: Proceedings of the 15th International Con-
ference on Information Security and Cryptology. ICISC’12. Seoul, Korea: Springer-
Verlag, 2012, pp. 202–216. isbn: 9783642376818. doi: 10.1007/978-3-642-
37682-5_15. url: https://doi.org/10.1007/978-3-642-37682-5_15.

[80] Marcella Hastings et al. “SoK: General Purpose Compilers for Secure Multi-
Party Computation”. In: S&P. 2019.

242

https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28416
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/22145.22178
https://doi.org/10.1145/2593882.2593900
https://doi.org/10.1007/978-3-642-37682-5_15
https://doi.org/10.1007/978-3-642-37682-5_15
https://doi.org/10.1007/978-3-642-37682-5_15


[81] Nevin Heintze and Jon G. Riecke. “The SLam Calculus: Programming with
Secrecy and Integrity”. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’98. San Diego,
California, USA: Association for Computing Machinery, 1998, pp. 365–377.
isbn: 0897919793. doi: 10.1145/268946.268976. url: https://doi.org/
10.1145/268946.268976.

[82] Andrew K. Hirsch and Deepak Garg. Pirouette: Higher-Order Typed Functional
Choreographies. 2021. arXiv: 2111.03484 [cs.PL].

[83] C. A. R. Hoare. “Communicating Sequential Processes”. In: Commun. ACM
21.8 (Aug. 1978), pp. 666–677. issn: 0001-0782. doi: 10.1145/359576.359585.
url: https://doi.org/10.1145/359576.359585.

[84] Matt Hoekstra. Intel SGX for Dummies (Intel SGX Design Objectives). https:
//software.intel.com/en-us/blogs/2013/09/26/protecting-application-

secrets-with-intel-sgx. 2015.

[85] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann. “Resource Aware ML”.
In: Proceedings of the 24th International Conference on Computer Aided Ver-
ification. CAV’12. Berkeley, CA: Springer-Verlag, 2012, pp. 781–786. isbn:
9783642314230. doi: 10 . 1007 / 978 - 3 - 642 - 31424 - 7 _ 64. url: https :

//doi.org/10.1007/978-3-642-31424-7_64.

[86] Justin Hsu. “Probabilistic Couplings for Probabilistic Reasoning”. In: CoRR
abs/1710.09951 (2017). arXiv: 1710.09951. url: http://arxiv.org/abs/
1710.09951.

[87] Daniel Huang and Greg Morrisett. “An Application of Computable Distri-
butions to the Semantics of Probabilistic Programming Languages”. In: Pro-
gramming Languages and Systems. Ed. by Peter Thiemann. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2016, pp. 337–363. isbn: 978-3-662-49498-1.

[88] Hans Hüttel et al. “Foundations of Session Types and Behavioural Contracts”.
In: ACM Comput. Surv. 49.1 (Apr. 2016). issn: 0360-0300. doi: 10.1145/
2873052. url: https://doi.org/10.1145/2873052.

[89] R. Impagliazzo and S. Rudich. “Limits on the Provable Consequences of One-
Way Permutations”. In: Proceedings of the Twenty-First Annual ACM Sym-
posium on Theory of Computing. STOC ’89. Seattle, Washington, USA: As-
sociation for Computing Machinery, 1989, pp. 44–61. isbn: 0897913078. doi:
10.1145/73007.73012. url: https://doi.org/10.1145/73007.73012.

[90] Yuval Ishai et al. “Extending Oblivious Transfers Efficiently”. In: Advances in
Cryptology - CRYPTO 2003. Ed. by Dan Boneh. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 145–161. isbn: 978-3-540-45146-4.

[91] Mohammad Islam, Mehmet Kuzu, and Murat Kantarcioglu. “Access Pattern
disclosure on Searchable Encryption: Ramification, Attack and Mitigation”.
In: Network and Distributed System Security Symposium (NDSS). 2012.

243

https://doi.org/10.1145/268946.268976
https://doi.org/10.1145/268946.268976
https://doi.org/10.1145/268946.268976
https://arxiv.org/abs/2111.03484
https://doi.org/10.1145/359576.359585
https://doi.org/10.1145/359576.359585
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://software.intel.com/en-us/blogs/2013/09/26/protecting-application-secrets-with-intel-sgx
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://doi.org/10.1007/978-3-642-31424-7_64
https://arxiv.org/abs/1710.09951
http://arxiv.org/abs/1710.09951
http://arxiv.org/abs/1710.09951
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052
https://doi.org/10.1145/2873052
https://doi.org/10.1145/73007.73012
https://doi.org/10.1145/73007.73012


[92] Marcel Keller. “MP-SPDZ: A Versatile Framework for Multi-Party Compu-
tation”. In: Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. New York, NY, USA: Association for Com-
puting Machinery, 2020, pp. 1575–1590. isbn: 9781450370899. url: https:
//doi.org/10.1145/3372297.3417872.

[93] Florian Kerschbaum. “Automatically optimizing secure computation”. In: CCS.
2011.

[94] Vladimir Klebanov. “Precise quantitative information flow analysis—a sym-
bolic approach”. In: Theoretical Computer Science 538 (2014), pp. 124–139.

[95] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-Hellman, RSA,
DSS, and Other Systems”. In: CRYPTO. 1996.

[96] Paul Kocher et al. “Security As a New Dimension in Embedded System De-
sign”. In: Proceedings of the 41st Annual Design Automation Conference. DAC
’04. Moderator-Ravi, Srivaths. 2004, pp. 753–760.

[97] Paul Kocher et al. “Spectre Attacks: Exploiting Speculative Execution”. In:
Commun. ACM 63.7 (June 2020), pp. 93–101. issn: 0001-0782. doi: 10.1145/
3399742. url: https://doi.org/10.1145/3399742.

[98] Vladimir Kolesnikov and Thomas Schneider. “Improved Garbled Circuit: Free
XOR Gates and Applications”. In: Proceedings of the 35th International Collo-
quium on Automata, Languages and Programming, Part II. ICALP ’08. Reyk-
javik, Iceland: Springer-Verlag, 2008, pp. 486–498. isbn: 9783540705826. doi:
10.1007/978-3-540-70583-3_40. url: https://doi.org/10.1007/978-3-
540-70583-3_40.

[99] Boris Köpf and David Basin. “An Information-Theoretic Model for Adaptive
Side-Channel Attacks”. In: Proceedings of the ACM Conference on Computer
and Communications Security (CCS). 2007. isbn: 978-1-59593-703-2.

[100] Boris Köpf and Andrey Rybalchenko. “Approximation and Randomization for
Quantitative Information-Flow Analysis”. In: Proceedings of the IEEE Com-
puter Security Foundations Symposium (CSF). 2010.

[101] Boris Köpf and Andrey Rybalchenko. “Automation of Quantitative Information-
Flow Analysis”. In: 13th International School on Formal Methods for the De-
sign of Computer, Communication, and Software Systems (SFM), 2013. Vol. 7938.
Lecture Notes in Computer Science. Springer, 2013, pp. 1–28.

[102] Dexter Kozen. “Semantics of Probabilistic Programs”. In: Proceedings of the
20th Annual Symposium on Foundations of Computer Science. SFCS ’79.
Washington, DC, USA: IEEE Computer Society, 1979, pp. 101–114. doi:
10.1109/SFCS.1979.38. url: https://doi.org/10.1109/SFCS.1979.38.

[103] Martin Kučera et al. “Synthesis of Probabilistic Privacy Enforcement”. In:
Proc. ACM Conference on Computer and Communications Security (CCS).
2017.

244

https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3399742
https://doi.org/10.1145/3399742
https://doi.org/10.1145/3399742
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1109/SFCS.1979.38
https://doi.org/10.1109/SFCS.1979.38


[104] Butler W. Lampson. “A Note on the Confinement Problem”. In: Commun.
ACM (1973).

[105] Sven Laur, Jan Willemson, and Bingsheng Zhang. “Round-Efficient Oblivious
Database Manipulation”. In: ISC 2011: 14th International Conference on In-
formation Security. Ed. by Xuejia Lai, Jianying Zhou, and Hui Li. Vol. 7001.
Lecture Notes in Computer Science. Xi’an, China: Springer, Heidelberg, Ger-
many, Oct. 2011, pp. 262–277.

[106] Yehuda Lindell. “Secure Multiparty Computation”. In: Commun. ACM 64.1
(Dec. 2020), pp. 86–96. issn: 0001-0782. doi: 10.1145/3387108. url: https:
//doi.org/10.1145/3387108.

[107] Moritz Lipp et al. “Meltdown: Reading Kernel Memory from User Space”. In:
USENIX Security. 2018.

[108] Chang Liu, Michael Hicks, and Elaine Shi. “Memory Trace Oblivious Program
Execution”. In: Proceedings of the Computer Security Foundations Symposium
(CSF). Winner of the 2014 NSA Best Scientific Cybersecurity Paper
competition. June 2013. url: http://www.cs.umd.edu/~mwh/papers/
csf2013oram.pdf.

[109] Chang Liu et al. “Automating Efficient RAM-Model Secure Computation”. In:
IEEE S & P. May 2014.

[110] Chang Liu et al. “Automating Efficient RAM-Model Secure Computation”. In:
Proceedings of the IEEE Symposium on Security and Privacy (Oakland). May
2014. url: http://www.cs.umd.edu/~mwh/papers/ram-sc.pdf.

[111] Chang Liu et al. “GhostRider: A Hardware-Software System for Memory Trace
Oblivious Computation”. In: ASPLOS. 2015.

[112] Chang Liu et al. “ObliVM: A Programming Framework for Secure Compu-
tation”. In: 2015 IEEE Symposium on Security and Privacy. San Jose, CA,
USA: IEEE Computer Society Press, May 2015, pp. 359–376. doi: 10.1109/
SP.2015.29.

[113] Isaac Liu et al. “A PRET microarchitecture implementation with repeatable
timing and competitive performance”. In: ICCD. 2012.

[114] Martin Maas et al. “Phantom: Practical Oblivious Computation in a Secure
Processor”. In: CCS. 2013.

[115] Piotr Mardziel et al. “Dynamic Enforcement of Knowledge-based Security Poli-
cies using Probabilistic Abstract Interpretation”. In: Journal of Computer Se-
curity 21 (Oct. 2013), pp. 463–532.

[116] James L. Massey. “Guessing and Entropy”. In: Proc. IEEE Intl. Symposium
on Information Theory (ISIT). 1994.

[117] Stephen McCamant and Michael D. Ernst. “Quantitative information flow as
network flow capacity”. In: Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 2008.

245

https://doi.org/10.1145/3387108
https://doi.org/10.1145/3387108
https://doi.org/10.1145/3387108
http://www.cs.umd.edu/~mwh/papers/csf2013oram.pdf
http://www.cs.umd.edu/~mwh/papers/csf2013oram.pdf
http://www.cs.umd.edu/~mwh/papers/ram-sc.pdf
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1109/SP.2015.29


[118] Brian Milch et al. “Blog: Probabilistic models with unknown objects”. In: Pro-
ceedings of the International Joint Conference on Artificial Intelligence (IJ-
CAI). 2005.

[119] Antoine Miné. “The Octagon Abstract Domain”. In: Proceedings of the Working
Conference on Reverse Engineering (WCRE). 2001.

[120] T. Minka et al. Infer.NET 2.6. Microsoft Research Cambridge. http : / /

research.microsoft.com/infernet. 2014.

[121] David Molnar et al. “The Program Counter Security Model: Automatic De-
tection and Removal of Control-flow Side Channel Attacks”. In: ICISC. 2006.

[122] David Monniaux. “Abstract Interpretation of Probabilistic Semantics”. In:
Seventh International Static Analysis Symposium (SAS’00). Lecture Notes in
Computer Science 1824. Springer Verlag, 2000, pp. 322–339. isbn: 978-3-540-
67668-3. doi: 10.1007/978-3-540-45099-3_17.

[123] David Monniaux. “Analyse de programmes probabilistes par interprétation
abstraite”. Thèse de doctorat. Université Paris IX Dauphine, 2001.

[124] Fabrizio Montesi. Choreographic Programming. English. 2013.

[125] Benjamin Mood et al. “Frigate: A validated, extensible, and efficient compiler
and interpreter for secure computation”. In: 2016 IEEE European Symposium
on Security and Privacy (EuroS&P). IEEE. 2016, pp. 112–127.

[126] Chunyan Mu and David Clark. “An abstraction quantifying information flow
over probabilistic semantics”. In: Workshop on Quantitative Aspects of Pro-
gramming Languages (QAPL). 2009.

[127] Chunyan Mu and David Clark. “An Interval-based Abstraction for Quantify-
ing Information Flow”. In: Elec. Notes in Theoretical Computer Science 253.3
(2009), pp. 119–141.

[128] Andrew C. Myers. “JFlow: Practical Mostly-Static Information Flow Control”.
In: Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’99. San Antonio, Texas, USA: Association
for Computing Machinery, 1999, pp. 228–241. isbn: 1581130953. doi: 10.
1145/292540.292561. url: https://doi.org/10.1145/292540.292561.

[129] Praveen Narayanan et al. “Probabilistic Inference by Program Transformation
in Hakaru (System Description)”. In: Proc. Functional and Logic Programming.
2016.

[130] Tri Minh Ngo, Mariëlle Stoelinga, and Marieke Huisman. “Effective verifica-
tion of confidentiality for multi-threaded programs”. In: Journal of computer
security 22.2 (2014).

[131] Jesper Buus Nielsen et al. “A New Approach to Practical Active-Secure Two-
Party Computation”. In: CRYPTO. 2012.

246

http://research.microsoft.com/infernet
http://research.microsoft.com/infernet
https://doi.org/10.1007/978-3-540-45099-3_17
https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/292540.292561
https://doi.org/10.1145/292540.292561


[132] Olga Ohrimenko et al. “Oblivious Multi-party Machine Learning on Trusted
Processors”. In: Proceedings of the 25th USENIX Conference on Security Sym-
posium. SEC’16. Austin, TX, USA: USENIX Association, 2016, pp. 619–636.
isbn: 978-1-931971-32-4. url: http://dl.acm.org/citation.cfm?id=
3241094.3241143.

[133] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. “A Probabilistic Lan-
guage Based on Sampling Functions”. In: ACM Trans. Program. Lang. Syst.
31.1 (Dec. 2008), 4:1–4:46. issn: 0164-0925. doi: 10.1145/1452044.1452048.
url: http://doi.acm.org/10.1145/1452044.1452048.

[134] James Parker, Niki Vazou, and Michael Hicks. “LWeb: Information Flow Secu-
rity for Multi-Tier Web Applications”. In: Proc. ACM Program. Lang. 3.POPL
(Jan. 2019). doi: 10.1145/3290388. url: https://doi.org/10.1145/
3290388.

[135] Avi Pfeffer. Figaro: An object-oriented probabilistic programming language.
Tech. rep. Charles River Analytics, 2000.

[136] Avi Pfeffer. “The Design and Implementation of IBAL: A General-Purpose
Probabilistic Language”. In: Statistical Relational Learning. Ed. by Lise Getoor
and Benjamin Taskar. MIT Press, 2007.

[137] Mila Dalla Preda et al. “Dynamic Choreographies - Safe Runtime Updates of
Distributed Applications”. In: COORDINATION. 2015.

[138] Michael O. Rabin. How To Exchange Secrets with Oblivious Transfer. Harvard
University Technical Report 81 talr@watson.ibm.com 12955 received 21 Jun
2005. 2005. url: http://eprint.iacr.org/2005/187.

[139] Alexey Radul. “Report on the probabilistic language Scheme”. In: Proceedings
of the Dynamic Languages Symposium (DLS). 2007.

[140] Norman Ramsey and Avi Pfeffer. “Stochastic Lambda Calculus and Monads
of Probability Distributions”. In: Proceedings of the 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’02.
Portland, Oregon: ACM, 2002, pp. 154–165. isbn: 1-58113-450-9. doi: 10.
1145/503272.503288. url: http://doi.acm.org/10.1145/503272.503288.

[141] Robert Rand and Steve Zdancewic. “VPHL”. In: Electron. Notes Theor. Com-
put. Sci. 319.C (Dec. 2015), pp. 351–367. issn: 1571-0661. doi: 10.1016/j.
entcs.2015.12.021. url: http://dx.doi.org/10.1016/j.entcs.2015.
12.021.

[142] Jaak Randmets. “Programming Languages for Secure Multi-party Computa-
tion Application Development”. In: 2017.

[143] Aseem Rastogi, Matthew A. Hammer, and Michael Hicks. “Wysteria: A Pro-
gramming Language for Generic, Mixed-Mode Multiparty Computations”. In:
Proceedings of the IEEE Symposium on Security and Privacy (Oakland). May
2014. url: http://www.cs.umd.edu/~mwh/papers/wysteria.pdf.

247

http://dl.acm.org/citation.cfm?id=3241094.3241143
http://dl.acm.org/citation.cfm?id=3241094.3241143
https://doi.org/10.1145/1452044.1452048
http://doi.acm.org/10.1145/1452044.1452048
https://doi.org/10.1145/3290388
https://doi.org/10.1145/3290388
https://doi.org/10.1145/3290388
http://eprint.iacr.org/2005/187
https://doi.org/10.1145/503272.503288
https://doi.org/10.1145/503272.503288
http://doi.acm.org/10.1145/503272.503288
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1016/j.entcs.2015.12.021
http://dx.doi.org/10.1016/j.entcs.2015.12.021
http://dx.doi.org/10.1016/j.entcs.2015.12.021
http://www.cs.umd.edu/~mwh/papers/wysteria.pdf


[144] Aseem Rastogi, Nikhil Swamy, and Michael Hicks. “Wys∗: A DSL for Verified
Secure Multi-party Computations”. In: Proceedings of the Symposium on Prin-
ciples of Security and Trust (POST). Apr. 2019. url: http://www.cs.umd.
edu/~mwh/papers/wysstar.pdf.

[145] Aseem Rastogi et al. “Knowledge Inference for Optimizing Secure Multi-Party
Computation”. In: Proceedings of the Eighth ACM SIGPLAN Workshop on
Programming Languages and Analysis for Security. PLAS ’13. Seattle, Wash-
ington, USA: Association for Computing Machinery, 2013, pp. 3–14. isbn:
9781450321440. doi: 10.1145/2465106.2465117. url: https://doi.org/
10.1145/2465106.2465117.

[146] Jason Reed and Benjamin C Pierce. “Distance makes the types grow stronger: a
calculus for differential privacy”. In: ACM Sigplan Notices 45.9 (2010), pp. 157–
168.

[147] Ling Ren et al. “Design space exploration and optimization of path oblivious
RAM in secure processors”. In: ISCA. 2013.

[148] Alejandro Russo and Andrei Sabelfeld. “Securing interaction between threads
and the scheduler”. In: CSF-W. 2006.

[149] Alejandro Russo et al. “Closing Internal Timing Channels by Transformation”.
In: Annual Asian Computing Science Conference (ASIAN). 2006.

[150] A. Sabelfeld and A. C. Myers. “Language-based Information-flow Security”.
In: IEEE J.Sel. A. Commun. 21.1 (Sept. 2006).

[151] Andrei Sabelfeld and David Sands. “Probabilistic noninterference for multi-
threaded programs”. In: CSF-W. 2000.

[152] Davide Sangiorgi and David Walker. PI-Calculus: A Theory of Mobile Pro-
cesses. USA: Cambridge University Press, 2001. isbn: 0521781779.

[153] Sriram Sankaranarayanan, Aleksandar Chakarov, and Sumit Gulwani. “Static
Analysis for Probabilistic Programs: Inferring Whole Program Properties from
Finitely Many Paths”. In: Conference on Programming Language Design and
Implementation. PLDI. Seattle, Washington, USA, 2013. isbn: 978-1-4503-
2014-6. doi: 10.1145/2491956.2462179.

[154] Tetsuya Sato et al. “Formal Verification of Higher-order Probabilistic Pro-
grams: Reasoning About Approximation, Convergence, Bayesian Inference,
and Optimization”. In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019), 38:1–
38:30. issn: 2475-1421. doi: 10.1145/3290351. url: http://doi.acm.org/
10.1145/3290351.

[155] Berry Schoenmakers.MPyC: Secure multiparty computation in Python. Github.
Feb. 2019. url: https://github.com/lschoe/mpyc.

248

http://www.cs.umd.edu/~mwh/papers/wysstar.pdf
http://www.cs.umd.edu/~mwh/papers/wysstar.pdf
https://doi.org/10.1145/2465106.2465117
https://doi.org/10.1145/2465106.2465117
https://doi.org/10.1145/2465106.2465117
https://doi.org/10.1145/2491956.2462179
https://doi.org/10.1145/3290351
http://doi.acm.org/10.1145/3290351
http://doi.acm.org/10.1145/3290351
https://github.com/lschoe/mpyc


[156] Adam Ścibior, Zoubin Ghahramani, and Andrew D. Gordon. “Practical Prob-
abilistic Programming with Monads”. In: Proceedings of the 2015 ACM SIG-
PLAN Symposium on Haskell. Haskell ’15. Vancouver, BC, Canada: ACM,
2015, pp. 165–176. isbn: 978-1-4503-3808-0. doi: 10.1145/2804302.2804317.
url: http://doi.acm.org/10.1145/2804302.2804317.

[157] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A Concolic Unit Testing
Engine for C”. In: ESEC/FSE. 2005.

[158] Adi Shamir. “How to Share a Secret”. In: Commun. ACM 22.11 (Nov. 1979),
pp. 612–613. issn: 0001-0782. doi: 10.1145/359168.359176. url: https:
//doi.org/10.1145/359168.359176.

[159] Claude Shannon. “A Mathematical Theory of Communication”. In: Bell System
Technical Journal 27 (1948).

[160] Elaine Shi et al. “Oblivious RAM with O((logN)3) Worst-Case Cost”. In:
ASIACRYPT. 2011.

[161] Calvin Smith, Justin Hsu, and Aws Albarghouthi. “Trace Abstraction Modulo
Probability”. In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019), 39:1–39:31.
issn: 2475-1421. doi: 10.1145/3290352. url: http://doi.acm.org/10.
1145/3290352.

[162] Geoffrey Smith. “Probabilistic noninterference through weak probabilistic bisim-
ulation”. In: CSF-W. 2003.

[163] Geoffrey Smith. “On the Foundations of Quantitative Information Flow”. In:
Proc. Conference on Foundations of Software Science and Computation Struc-
tures (FoSSaCS). 2009.

[164] Geoffrey Smith and Rafael Alpízar. “Secure Information Flow with Random
Assignment and Encryption”. In: Workshop on Formal Methods in Security.
FMSE. 2006.

[165] Geoffrey Smith and Rafael Alpízar. “Fast Probabilistic Simulation, Nontermi-
nation, and Secure Information Flow”. In: PLAS. 2007.

[166] Michael J. A. Smith. “Probabilistic Abstract Interpretation of Imperative Pro-
grams using Truncated Normal Distributions”. In: Elec. Notes in Theoretical
Computer Science (2008). issn: 1571-0661. doi: 10.1016/j.entcs.2008.11.
018.

[167] Ebrahim M. Songhori et al. “TinyGarble: Highly Compressed and Scalable
Sequential Garbled Circuits”. In: IEEE S & P. 2015.

[168] Deian Stefan et al. Flexible Dynamic Information Flow Control in the Presence
of Exceptions. 2012. doi: 10.48550/ARXIV.1207.1457. url: https://arxiv.
org/abs/1207.1457.

[169] Emil Stefanov et al. “Path ORAM – an Extremely Simple Oblivious RAM
Protocol”. In: CCS. 2013.

249

https://doi.org/10.1145/2804302.2804317
http://doi.acm.org/10.1145/2804302.2804317
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/3290352
http://doi.acm.org/10.1145/3290352
http://doi.acm.org/10.1145/3290352
https://doi.org/10.1016/j.entcs.2008.11.018
https://doi.org/10.1016/j.entcs.2008.11.018
https://doi.org/10.48550/ARXIV.1207.1457
https://arxiv.org/abs/1207.1457
https://arxiv.org/abs/1207.1457


[170] G. Edward Suh et al. “AEGIS: architecture for tamper-evident and tamper-
resistant processing”. In: ICS. 2003.

[171] Jo Van Bulck et al. “Foreshadow: Extracting the Keys to the Intel SGX King-
dom with Transient Out-of-order Execution”. In: USENIX Security. 2018.

[172] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. “A Sound Type System
for Secure Flow Analysis”. In: J. Comput. Secur. 4.2-3 (Jan. 1996).

[173] Abraham Waksman. “A Permutation Network”. In: J. ACM 15.1 (Jan. 1968),
pp. 159–163. issn: 0004-5411. doi: 10.1145/321439.321449. url: https:
//doi.org/10.1145/321439.321449.

[174] Xiao Shaun Wang et al. “Oblivious Data Structures”. In: CCS. 2014.

[175] Xiao Wang, Hubert Chan, and Elaine Shi. “Circuit ORAM: On Tightness
of the Goldreich-Ostrovsky Lower Bound”. In: Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security. CCS ’15.
Denver, Colorado, USA: Association for Computing Machinery, 2015, pp. 850–
861. isbn: 9781450338325. doi: 10.1145/2810103.2813634. url: https:
//doi.org/10.1145/2810103.2813634.

[176] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-toolkit: Efficient
MultiParty computation toolkit. https://github.com/emp-toolkit. 2016.

[177] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. “Authenticated Garbling
and Efficient Maliciously Secure Two-Party Computation”. In: Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications Se-
curity. CCS ’17. Dallas, Texas, USA: Association for Computing Machinery,
2017, pp. 21–37. isbn: 9781450349468. doi: 10.1145/3133956.3134053. url:
https://doi.org/10.1145/3133956.3134053.

[178] Andrew Chi-Chih Yao. “Protocols for Secure Computations (Extended Ab-
stract)”. In: FOCS. 1982.

[179] Andrew Chi-Chih Yao. “How to Generate and Exchange Secrets (Extended
Abstract)”. In: 27th Annual Symposium on Foundations of Computer Science.
Toronto, Ontario, Canada: IEEE Computer Society Press, Oct. 1986, pp. 162–
167. doi: 10.1109/SFCS.1986.25.

[180] Samee Zahur and David Evans. “Circuit Structures for Improving Efficiency
of Security and Privacy Tools”. In: S & P. 2013.

[181] Samee Zahur and David Evans. Obliv-C: A Language for Extensible Data-
Oblivious Computation. Cryptology ePrint Archive, Report 2018/706. https:
//eprint.iacr.org/2015/1153. 2015.

[182] Samee Zahur, Mike Rosulek, and David Evans. “Two Halves Make a Whole:
Reducing Data Transfer in Garbled Circuits using Half Gates”. In: EURO-
CRYPT. 2015.

[183] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. “Predictive Mitigation
of Timing Channels in Interactive Systems”. In: CCS. 2011.

250

https://doi.org/10.1145/321439.321449
https://doi.org/10.1145/321439.321449
https://doi.org/10.1145/321439.321449
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://doi.org/10.1145/2810103.2813634
https://github.com/emp-toolkit
https://doi.org/10.1145/3133956.3134053
https://doi.org/10.1145/3133956.3134053
https://doi.org/10.1109/SFCS.1986.25
https://eprint.iacr.org/2015/1153
https://eprint.iacr.org/2015/1153


[184] Danfeng Zhang, Aslan Askarov, and Andrew C. Myers. “Language-based Con-
trol and Mitigation of Timing Channels”. In: PLDI. 2012.

[185] Danfeng Zhang and Daniel Kifer. “LightDP: Towards Automating Differential
Privacy Proofs”. In: POPL. 2017.

[186] Danfeng Zhang et al. “A Hardware Design Language for Timing-Sensitive
Information-Flow Security”. In: ASPLOS. 2015.

[187] Hengchu Zhang et al. “Fuzzi: A Three-level Logic for Differential Privacy”. In:
PACMPL 3.ICFP (2019).

[188] Yihua Zhang, Aaron Steele, and Marina Blanton. “PICCO: a general-purpose
compiler for private distributed computation”. In: ACM CCS 2013: 20th Con-
ference on Computer and Communications Security. Ed. by Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung. Berlin, Germany: ACM Press, Nov. 2013,
pp. 813–826. doi: 10.1145/2508859.2516752.

[189] Xiaotong Zhuang, Tao Zhang, and Santosh Pande. “HIDE: an infrastruc-
ture for efficiently protecting information leakage on the address bus”. In:
SIGARCH Comput. Archit. News 32.5 (Oct. 2004).

251

https://doi.org/10.1145/2508859.2516752

	Acknowledgements
	Table of contents
	Introduction
	A Language for Expressive, Coordinated Secure Multiparty Computation
	A Language for Probabilistically Oblivious Computation
	Refining Probabilistic Bounds on Information Leakage

	Background
	Secure Multiparty Computation
	Protocol Characterization
	Protocol Descriptions

	Information Flow

	MPC: A Language for Expressive, Coordinated Secure Multiparty Computation
	Overview
	Problem: Coordination
	Symphony: Expressive, Coordinated MPC

	MPC: Syntax and Semantics
	Syntax
	Overview
	Values
	Operational Semantics

	Distributed Semantics
	Configurations
	Operational Semantics

	Single-threaded Soundness
	Implementation
	Interpreter
	Runtime System

	Experimental Evaluation
	Expressiveness and Ergonomics
	Performance

	Related Work

	Obliv: A Language for Probabilistically Oblivious Computation
	Overview
	Threat Model
	Oblivious Execution
	Probabilistic Oblivious Execution
	Obliv: Obliviousness by Typing

	Formalism
	Syntax
	Semantics
	Type System

	Probabilistic Memory Trace Obliviousness
	What is PMTO?
	Proof Approach
	Mixed Semantics
	Capturing Correlations with Intensional Distributions
	Mixed Semantics Typing
	Proving PMTO

	Implementation and Tree-based ORAM Case Study
	Tree-based ORAM: Overview
	Tree-based Non-recursive ORAM
	Recursive ORAM

	Oblivious Data Structures
	Tree ORAM-based Oblivious Data Structures
	Tree ORAM-based Stack is not PMTO

	Related Work

	Refining Probabilistic Bounds on Information Leakage
	Overview
	Computing vulnerability with abstract interpretation
	Improving precision with sampling and concolic execution

	Preliminaries: Syntax and Semantics
	Core Language and Semantics
	Probabilistic polyhedra

	Computing Vulnerability: Basic procedure
	Improving precision with sampling
	Improving precision with concolic execution
	(Probabilistic) Concolic Execution
	Improving precision
	Combining Sampling with Concolic Execution

	Implementation
	Experiments
	Experimental Setup
	Results
	Evacuation Problem

	Related Work

	Conclusion
	Symphony: Architecture and Proofs
	FFI and Resource Management
	Metatheory
	Proof Sketches for Correspondence Theorems
	Detailed Proofs for Key Lemmas


	Obliv: Definitions and Proofs
	Complete PMTO Proof
	Theorems and Lemmas
	Type Preservation
	Definitions


	Bounding Information Leakage: Evacuation Scenario and Proofs
	Query Code
	Formal semantics
	Proofs


	Bibliography

